
i

Honours Year Project Report

Mining Algorithm for Bicliques

By

Chen Xiankun

Department of Computer Engineering

School of Computing

National University of Singapore

2007/2008

ii

Honours Year Project Report

Mining Algorithm for Bicliques

By

Chen Xiankun

Department of Computer Engineering

School of Computing

National University of Singapore

2007/2008

Project No: H114110
Advisor: Prof Wong Lim Soon
Deliverables:
 Report: 1 Volume

iii

Abstract

There exist several existing algorithm for computing maximal bicliques (or complete

bipartite) subgraphs or an undirected graph with origins in graph theory or in data mining. In

this project, three algorithms, two depth first search graph algorithm, one from Tomita and

one from Makino both using tree construction and pruning, and a closed-pattern-based

method using frequent pattern matching are explained and implemented and their efficiency

compared based on different random graphs generated.

Subject Descriptors:

F.2.2 Nonnumerical Algorithms and Problems
G.2.2 Graph Theory
G.4 Mathematical Software

Keywords:

 maximal bicliques, algorithms, performance, search trees

Implementation Software and Hardware:

 Linux/Unix, C++

iv

Acknowledgement

I would like to express my heartfelt gratitude to my project supervisor, Prof .Wong

Limsoon for his timely and useful advice during the past year. His advice has been very

useful for the completition of this project.

 I would also like to thank my family and friends who have been supportive and

understanding to me for this past year.

v

Table of Contents

Abstract ..iii

Acknowledgement ... iv

1 Introduction..1

1.1 Motivation...1

1.2 Project Objective...1

1.3 Report Structure ..2

2 General Definitions and Notations...3

3 Graph-Based Approach..5

3.1 Tomita’s CLIQUES Algorithm...5

3.2 Modified CLIQUES Algorithm ..8

3.3 Makino Algorithm...11

4 Closed Pattern-Based Approach .. 15

4.1 Basis .. 15

4.2 Frequent Pattern algorithm.. 15

5 Computational Experiments... 17

5.1 Timings ... 17

5.2 Data Sets ... 17

5.3 Hardware Specifications ... 18

6 Results.. 19

7 Summary .. 22

7.1 Analysis of Results obtained... 22

7.2 Conclusion .. 23

7.3 Future work ... 23

References... 24

Appendix A1: Comparison of Timings for density... 25

Appendix A2: Comparison of Timings for number of vertices .. 26

vi

 LIST OF FIGURES

 Figure 1: A graph G, its corresponding adjacency list and adjacency matrix…………………….…3

 Figure 2: Illustration of procedure EXPAND for generating maximal cliques……….…………..…6

 Figure 3: Tree constructed using Makino’s Algorithm……………………………………….…….12

 Figure 4: A FP tree constructed from data and its header table storing the links to nodes………....15

 Figure 5a: Time taken for different algorithms vs density of graph for a general graph………….. 23

 Figure 5b: Time taken for different algorithms vs density of graph for a bipartite graph….……....23

 Figure 6a: Time taken for different algorithms vs number of vertices for a general graph…….…..24

 Figure 6b: Time taken for different algorithms vs number of vertices for a bipartite graph………..24

 Figure 7a: Time taken for different algorithms vs number of vertices for a sparse general graph….25

 Figure 7b: Time taken for different algorithms vs number of vertices for a sparse bipartite graph....25

LIST OF TABLES

 Table 1: Results from Set 1 (Sparse/Dense General Graph)……………………………………...…18

 Table 2: Results from Set 2 (Sparse/Dense Bipartite Graph).………………………………………19

 Table 3: Results from Set 3 (Locally Sparse General Graph).………………………………………20

 Table 4: Results from Set 4 (Locally Sparse Bipartite Graph)…………………………...…………20

1

1 Introduction

1.1 Motivation

Maximal biclique (or complete bipartite) subgraphs are useful in the modelling of

many real-life applications. Two applications are listed as follows. The first application

comes from social networks where the data is a bipartite graph of what is known as

‘affiliation’ networks. Examples of such networks would be the scientific collaboration

networks with the two node sets consisting of authors and papers, or the movie

recommendation network where the edge set connects users to the movies they have watched.

Web communities can be identified through identifying maximal bicliques from such web

networks. Another application would be from the metabolic network from the biological

field, where the nodes sets are enzymes and the list of reaction they participate in, the

biclique subgraphs obtained would help us in determine the function of detected

communities.

The problem of maximal bicliques have long been studied and there exists several

algorithms for enumerating them. Some common approaches include clique algorithm

(Tomita et al, 2006) where nodes are added to a search tree and branches are pruned if they

are unable to generate a maximal biclique, algorithm suggested by Makino and Uno based on

generating child nodes which are maximal bicliques from its parent in a tree based on a

certain relation which is acyclic (Makino and Uno, 2004), and closed pattern finding with

roots in data mining. However, such algorithms have not been directly compared with in

terms of efficiency.

1.2 Project Objective

 With the above motivation, the objective of the project is to implement some of these

algorithms, model different conditions and evaluate their performance under these conditions.

Time would be the main criterion used for evaluating the performance of the algorithms.

2

1.3 Report Structure

The rest of the paper will be organised as such. Chapter two of the paper will define

notation used throughout the paper, Chapter three will explain the graph-based algorithms

used and modification made. Chapter four will explain the algorithm based on data mining.

Chapter five will explain the background for testing and the generation of the random graphs

used for the experiments. Chapter six will present the results and chapter seven will conclude

the paper.

3

2 General Definitions and Notations

 Let G = (V, E) be a simple undirected graph with a vertex set V = {v1, … ,vn} and an

edge set E = {e1, …, em} where each edge is an unordered pair (v, w) of distinct vertices. A

pair of vertices v and w are said to be adjacent if (v, w) ∈ E. For a subset W ⊆ V, G(W) = (W,

E(W)) with E(W) = {(v, w) ∈ W x W | (v, w) ∈ E} is called an induced subgraph of G by W.

If there is a partition V1 and V2 of V such that no two vertices in Vi, where i = 1 or 2 are

adjacent, G is known as a bipartite graph and we denote by G = (V1 ∪ V2, E). A vertex set K

is called a bipartite clique is a induced subgraph of G such that any vertex in K ∩ V1 is

adjacent to any vertex in K ∩ V2, and maximal in the sense that no other bipartite clique

contains K in addition.

 For a vertex v of G, Γ(v) = {u ∈ V | (u, v) ∈ E} is also known as the neighbour of v.

Also, for any vertex set S, we define Λ(S) as the set of v ∈ V \ S such that (u, v) for any u ∈

S. Let δ(v) = | Γ(v)| denote the degree of v and Δ the maximal degree of G. The adjacency list

of G is the set of all Γ(v). Figure 1 below illustrates the corresponding adjacency list and

matrix for a graph G.

Figure 1: A graph G, its corresponding adjacency list and adjacency matrix.

Adjacency Matrix

 a b c d e f g

a 0 0 0 0 1 1 0

b 0 0 0 0 1 0 1

c 0 0 0 0 1 1 0

d 0 0 0 0 0 0 1

e 1 1 1 0 0 0 0

f 1 0 1 0 0 0 0

g 0 1 0 1 0 0 0

Adjacency List
Vertex v Γ(v)

a {e,f}

b {e,g}

c {e,f}

d {g}

e {a,b,c}

f {a,c}

g {b,d}

4

 Note that the graph in Figure 1 is bipartite, where the partition V1 = {a,b,c,d} and V2

= {e,f,g}. We also note that the subgraph {{a,b} ∪ {e}, {(a,e), (b,e)}} is a bipartite clique of

G but not maximal. A maximal bipartite clique of G would be {{a,c} ∪ {e,f}, {(a,e), (c,e),

(a,e),(a,f)}}.

A sparse graph is a graph where |E| = O(|V|) and a dense graph is a graph where |E| =

ϴ(|V2|). A locally sparse graph is a graph where different vertices vi and vj are adjacent with

probability ½ if i – j + n (mod n) ≤ r or j + n – i (mod n) ≤ r, for a certain (usually small)

value of r. Locally sparse graph are commonly encountered when modelling real networks

due to physical or cost constraints.

For purposes of comparing, for any two vertex sets X and Y, X is lexicographically

larger than Y if the smallest vertex(i.e a vertex with the smallest index) in (X \ Y) ∪ (Y \ X) is

contained in X.

Finally, we may be interested to find only maximal biclique subgraphs meeting a

specific size condition. This is because not all maximal biclique subgraphs are interesting to

us as some might be trivial or too small to be of interest. A maximal biclique subgraphs H = {

V1 ∪ V2, E} is said to be (p, q) large if either |V1| ≥ p , |V2| ≥ q or |V1| ≥ q, |V2| ≥ p. Note that

if we want to enumerate all maximal biclique subgraphs, it is equivalent to finding all (1, 1)

large maximal biclique subgraphs.

5

3 Graph-Based Approach

3.1 Tomita’s CLIQUES Algorithm

 A depth-first search algorithm based on Tomita algorithm for clique generation was

considered. Q is a global variable of a set of vertices that constitutes a complete subgraph

(clique) found up to this time. The algorithm begins by letting Q be an empty set and expands

Q step by step by applying a recursive procedure EXPAND to V and its succeeding induced

subgraphs to search for larger and larger complete subgraphs until they reach maximal

cliques. Hence, if Q = {v1, v2, … vd}at some point, then the variable SUBG is a set V ∩ Γ(v1)

∩ Γ(v2) ∩ … ∩ Γ(vd). Applying the procedure EXPAND at each stage, when SUBG = ∅, Q

will be a maximal clique. Otherwise, Q U {q} is a larger complete subgraph for every q ∈

SUBG, and we can consider the smaller subgraphs induced by the addition of each q ∈

SUBGq where SUBGq = SUBG ∩ Γ(q) for each q. We can then apply recursively EXPAND

to SUBGq to find larger complete subgraphs containing Q U {q}.

Pruning is done with the inclusion of two more variables FINI and CAND, where

FINI is a subset of SUBG that have already be processed by the algorithm and CAND being

those that have not been processed. We therefore have CAND = SUBG – FINI. Letting

CANDq = CAND ∩ Γ(q) and FINIq = FINI ∩ Γ(q), it follows that only the vertices in

CANDq need to be considered as candidates for expanding the complete subgraph Q U {q} to

find new larger cliques, since all the cliques containing Q U {q} U {r} where r ∈ FINIq and

thus not in CANDq have been generated by application of the procedure EXPAND to r

already.

Another optimising used was to prune the search subtrees to be expanded. Given a

certain vertex u ∈ SUBG, assume all maximal cliques containing Q U {u} have been

generated. Then, every new maximal clique containing Q, but not Q U {u}, must contain at

least one vertex q ∈ SUBG - Γ(u). Thus, we only need to expand Q to Q U {q} such that q ∈

6

CAND - Γ(u) instead of q ∈ CAND. Choosing u ∈ SUBG to minimize |CAND - Γ(u)| will

thus minimize the number of tree branches. This is achieved by finding and choosing u ∈

SUBG to maximise |CAND ∩ Γ(u)|.

Figure 2: Illustration of procedure EXPAND for generating maximal cliques

Tomita’s algorithm can be shown to have a worse-case running time of O(n3n/3) for an

n-vertex graph. This is efficient as the maximal number of cliques possible is 3n/3 and it

would take O(n) to print out each clique. If we merely print out the vertex we are expanding

and not the entire clique each time a clique is discovered, we would obtain a worse case

timing of O(3n/3)

7

The algorithm is summarised as

procedure CLIQUES(G)

 /* Graph G = (V,E) */

begin

 Q := ∅; //Q constitutes a global clique

 EXPAND(V,V);

end of CLIQUES

procedure EXPAND(SUBG, CAND)

begin

 if SUBG = ∅

 then print Q; //Q is a maximal clique at this point

else

u := a vertex in SUBG that maximises |CAND ∩ Γ(u)|

while CAND - Γ(u) ≠ ∅

do q:= a vertex in (CAND - Γ(u));

 Q := Q ∪ {q};

 SUBGq := SUBG ∩ Γ(q);

 CANDq := CAND ∩ Γ(q);

 EXPAND(SUBGq , CANDq);

 CAND := CAND – {q};

 Q := Q – {q};

od

fi

end EXPAND

8

3.2 Modified CLIQUES Algorithm

 Tomita’s algorithm could generate maximal cliques from a general graph. To use this

algorithm, we observe that to generate maximal bipartite clique from a bipartite graph is a

special case of the maximal clique problem in a general graph. Given a bipartite graph G =

(V1 ∪ V2, E), it is easy to transform it to a general graph where G = (V1 ∪ V2, E1), where E1 =

E ∪ (V1 x V1) ∪ (V2 x V2) and we can apply the EXPAND procedure for it. However, we

eliminate any the clique set generated V where V = V1, or V = V2. This is because such

cliques do not have any edges after removing the extra edges we added in as they comprise of

vertices from one bipartite set only.

For generation of maximal bipartite from a non bipartite graph G = (V, E), duplication

of the non bipartite graph was made such that the new graph G = (V1 ∪ V2 , E1) where |V1| =

|V2| = |V| and E1 = (V1 x V1) ∪ (V2 x V2) ∪ En ,and (v1j, v2k) ∈ En if (vj ,vk) ∈ E where v1j

denotes the jth vertex in V1, v2k denotes the kth vertex in V2 and vj ,vk denotes the jth and kth

vertex in the original graph. Essentially, this creates a duplicate set of the original graph, and

duplicates the edges. We can then apply the modified algorithm above for this. However, this

will cause duplicates in the maximal bicliques generated and will have to be filtered out. A

simple check at this point would be only to generate it as a maximal biclique if the size of the

first is no smaller than the size of the second, i.e Q ∩ V1 ≥ Q ∩ V2 where Q is the clique

generated by Tomita’s algorithm. To eliminate bicliques of the same size, this is done in the

output processing portion of the algorithm.

The other change to be made lies in the (p, q) - large filtering condition (p ≤ q). At

each call, the number of remaining vertices on each side of the bipartite input graph is added

to the number of vertices already in the set Q (which constitutes the maximal biclique) on the

same side of the bipartite input graph. It is then checked whether it is possible to form a (p, q)

large biclique. If not, then we can prune the rest of this branch of the search tree. For a

biclique graph input, we check that both sums are at least p and that at least one is not smaller

than q. For a non-biclique graph input, we modify the condition due to symmetry and check

9

that the vertices belonging in V1 is at least q and the vertices belonging in V2 is at least p (due

to only needing Q ∩ V1 ≥ Q ∩ V2).

A bitSet was chosen to represent the adjacency list and other sets as there were a lot

of union and intersection operations. The minus operation was implemented as the

intersection with the complement.

The modified algorithm for the input graph being non bipartite is shown as below (the

algorithm for bipartite input graph being very similar). LQ_SIZE and RQ_SIZE holds the

current size of Q belonging in V1 and V2 respectively, and LMAX and RMAX calculates the

maximum possible size of the subgraph possible for Q ∪ {q} belonging in V1 and V2

respectively.

procedure BICLIQUES(G)

 /* Graph G = (V,E) */

begin

 Vc := V1 ∪ V2 where |V1| = |V2| = |V|;

 E1 = (V1 x V1) ∪ (V2 x V2) ∪ En where (v1j, v2k) ∈ En if (vj ,vk) ∈ E

 Q := ∅; //Q constitutes a global clique

 EXPAND(Vc, Vc, 0 , 0);

end of BICLIQUES

procedure EXPAND(SUBG, CAND, LQ_SIZE, RQ_SIZE)

begin

 if SUBG = ∅

 then if LQ_SIZE ≥ q and RQ_SIZE ≥ p and LQ_SIZE ≥ RQ_SIZE

print Q; //Q is a maximal clique at this point

 fi

10

else // (SUBG != ∅)

 u := a vertex in SUBG that maximises |CAND ∩ Γ(u)|

 while CAND - Γ(u) ≠ ∅

 do q:= a vertex in (CAND - Γ(u));

 Q := Q ∪ {q};

 SUBGq := SUBG ∩ Γ(q);

 CANDq := CAND ∩ Γ(q);

 if q ∈V1

 then LQ_SIZE := LQ_SIZE+1;

 else RQ_SIZE := RQ_SIZE + 1;

 fi

LMAX = LQ_SIZE + |SUBGq∩ V1|;

RMAX = RQ_SIZE + |SUBGq∩ V2|;

if LMAX ≥ q && RMAX ≥ p //Still possible to find a (p,q) biclique

 then EXPAND(SUBGq , CANDq , LQ_SIZE, RQ_SIZE);

fi

 CAND := CAND – {q};

Q := Q – {q};

if q ∈V1

 then LQ_SIZE := LQ_SIZE - 1;

 else

RQ_SIZE := RQ_SIZE - 1;

 fi

od

fi

end EXPAND

11

3.3 Makino Algorithm

 A depth first search algorithm based on papers written by Makino and Uno was also

considered. Their algorithm is based on reverse search (Avis and Fukuda, 1996) and based on

works done earlier by Tsukiyama et al. and Johnson et al.

 For any vertex set S and an index i, let S≤i denote the vertices in S such that the index

is less than or equal to i, i.e S ∩{v1,…. vi}. For a biclique K, let C(K) denote the maximal

biclique that is the lexicographically largest among all maximal bicliques containing K. Note

that C(K) is not lexicographically smaller than K.

 First of all, the algorithm finds the lexicographically largest biclique, denoted by K0.

For each maximal biclique K (K ≠ K0), its parent P(K) of K is defined by C(K≤i-1) such that i

is the maximal index satisfying C(K≤i-1) ≠ K. This i is denoted as the parent index, denoted by

i(K). This is well defined, since K ≠ C(K≤0) holds as K ≠ K0. Since P(K) is lexicographically

larger than K, this parent-child binary relation on maximum bicliques is thus acyclic, and

creates a tree with root at K0. Every child node will have exactly one parent node, and so this

forms our search tree.

 It can be shown that K’ is a child of K if and only if K’ = K[i] for some i such that

a) vi ∉ K

b) i > i(K)

c) (Λ(K ∩ Γ(vi)) – K) ≤i-1 = ∅

where K[i] = (K ∩ Γ(vi)) ∪ (Λ(K ∩ Γ(vi)). If an index satisfies (a), (b) and (c), then i is the

parent index of K[i].

12

Figure 3: Tree constructed using Makino’s Algorithm, where the lines show the index of

the parent, and the boxes show the maximal bicliques(exception of (0,1,2)), the

adjacency List and the graph.

Referring to Figure 3, applying the algorithm to K0, we obtain 3 as a value for i. With that

value, we compute K ∩ Γ(v3) to be v1 and Λ(v1) = {v1, v3, v5} as the new child with parent

index 3.

 For checking of valid i’s, it is easy to check the first condition, and for the second

condition, the parameter i is passed in as the parent index to ease checking. Only when both

conditions are satisfied do we then proceed to check for the third condition.

 Once we find the set of all i, we can compute K[i] which are maximal bipartite graphs

with parent as K. To optimise this, we note that (Λ(K ∩ Γ(vi)) has been computed earlier, and

we can use it for the computation of K[i]. We then find the child nodes of K[i] recursively.

The initial value of K0 is passed in as all the vertices in V1, and the index the size of V1.This

initial K0 can be ignored as a maximal bipartite clique.

Adjacency List
Vertex v Γ(v)

0 {4,5}

1 {3,5}

2 {4,6}

3 {1}

4 {0,2}

5 {0,1}

6 {2}

13

 The algorithm is summarised as follows for a bipartite graph input (the algorithm for

non-bipartite input graph is similar).

procedure MAXBICLIQUES(G)

 /* Graph G (bipartite) = (V1 ∪ V2 ,E) */

begin

 ALLCHILDREN(V1,|V1|);

end of MAXBICLIQUES

procedure ALLCHILDREN(K, I) /* K is a maximal biclique of G, i is its index */

 print K;

 ALLI := ∅ //ALLI is to hold all possible values for I.

 for each i ≥ I

 if i satisfies (Λ(K ∩ Γ(vi)) – K) ≤i-1 = ∅

 ALLI := ALLI ∪ {vi};

 end

 for each i ∈ ALLI

 compute K[i];

 call ALLCHILDREN (K[i], i);

 end

end of ALLCHILDREN

The algorithm is shown to be of the order of O(Δ3) , where Δ is the maximal degree of

the graph. However, it is not easy to limit ourselves to the (p,q) large criteria for this

algorithm except at the output stage and as such, this algorithm testing and analysis is only

restricted to the case where we enumerate all maximal bicliques. Furthermore, for the case of

14

non-bipartite input graph, the duplication of nodes will lead to duplication of bicliques

generated, and so will have to be filtered out at the output stage.

15

4 Closed Pattern-Based Approach

4.1 Basis

 The approach views the adjacency matrix as a transactional database. This is a non-

empty multi-set of transaction, where each transaction is a subset of a pre-specified set I of

items. Each of these transaction can be viewed thus as the neighbours of the given vertex and

I corresponds to the entire vertex set of the graph. A pattern is defined as a non-empty set of

items of I. Given a transactional database and a pattern P, the transactions containing P forms

the occurrence set of P denoted as occDB(P), and the cardinality of this is the support of P,

denoted supDB(P). Furthermore, the closure of P, CLDB(P) is defined as the set of items shared

by all the transactions containing pattern P in the database, i.e the set of items shared by all

transactions in the occurrence set.

 It is trivial to see that P ⊆ CLDB(P). However, if P = CLDB(P), it forms a closed

pattern of DB. The occurrence set of such closed patterns is another closed pattern, and these

give rise to the two vertex sets of maximal biclique subgraph. If graph H = {V1 U V2, E} is a

maximal biclique subgraph of G, V1 and V2 are both closed patterns of DBG and we have

occDB(V1) = V2 and occDB(V2) = V1.

4.2 Frequent Pattern Algorithm

 The Frequent Pattern tree is a representation of all relevant frequency information in a

database. Every branch of the tree represents a frequent itemset, and nodes are stored in

decreasing order of frequencies of the corresponding items, with the leaves having the least

frequent items. The tree is built in such a way that overlapping itemsets share prefixes of the

corresponding branches

16

F
igure 4: A FP tree constructed from data and its header table storing the links to nodes

 Referring to figure 4, to construct the FP-tree, we first find all the items {a,b,c,d,e} by

an initial scan. They are inserted into the header table in decreasing order of count. On the

second scan, as each data is scanned, if it shares a prefix with an itemset already in the tree, it

will share the prefix of the branch representing that itemset. In addition, each branch keeps

track of a counter to represent the number of transactions containing the itemset represented

by the path from the root to the node. For example, the d:1 leaf nodes shows that there is one

and only one itemset containing {e,c,a,d} whereas the a:2 node above it shows that there are

2 itemset containing {e,c,a}. We can thus view our adjacency list as a set of items and

arrange them in such a tree to find the support for a pattern.

 Searching for maximal bicliques is thus equivalent to finding such closed patterns in

the tree. An implementation using this algorithm for finding maximal bicliques, FP-MBC,

developed by Guimei Liu was used for this comparison. For more information, refer to A

Correspondence Between Maximal Complete Bipartite Subgraphs and Closed Patterns by

Jinyan Li, Haiquan Li, Donny Soh, Limsoon Wong.

17

5 Computational Experiments

5.1 Timings

 Timing for algorithms is divided into three portions, input processing time, bicliques

generating time and any additional output processing time. The input processing time is the

time required to read in the raw data and store it in a data structure, for the case of the graph

based approach, it is the time required to generate the adjacency list, and for the case of the

pattern based approach, it is the time required to construct the frequent pattern tree. The

algorithm time is the time required to process the input and generate sets and the output

processing time is the time required to filter off any unwanted sets. Shown is the combined

time for all three portions.

5.2 Data Sets

 Four sets of graphs were generated to compare the approaches. Firstly, small and

large graphs were created with increasing connectivity. This was done with two parameters, n

and p, where n is the number of nodes in the graph, and p is the probability for any two

vertices to be connected. Since the absolute maximum number of connections possible is n *

(n-1) / 2, so on average, we have around p * n * (n-1) / 2 edges in the graph. For each of these

graphs, the total number of maximal bicliques, and a limited (p,q) large number of maximal

bicliques was generated.

The second set of graphs generated were bipartite graphs of similar sizes. Again, two

parameters, n and p are used, where n is the size of one of the bipartite set and p is the

probability that any two vertices v1 ∈ V1 and v2 ∈ V2 are connected. Since the absolute

maximum number of connections possible is n2, on average, we have around p * n2 number

of edges in the graph. To keep the number of vertices similar to the first set, n is halved for

this set so the graphs for this set contains lesser edges on average (1/4 * p * n2 or about half

the number of edges of the first set).

The third set of graphs generated were for locally random graphs with two

parameters, n and r. Recall that a locally random graph with n vertices is generated such for

18

any two vertices vi, vj they are adjacent with probability ½ if i + n - j (mod n) ≤ r or j + n – i ≤

r. The average number of neighbours for each vertices is therefore r. Graphs were generated

for values of r = 10, 30 and all maximal bicliques were generated. For this, the average

number of edges is ½ * n * r.

The fourth set is similar to the third set except that now the graphs are bipartite in nature.

Again, the number of vertices in both bipartite sets is halved from the first set. However, the

average number of edges is around the same at ½ * n * (r+1). As the number of bicliques

generated is very huge (16,530,659 in the case of n = 500, r = 30 compared to 275,027 for

similar parameters in set 3), the set only consisted the cases for which r = 10.

For each of the sets, the number of maximal bicliques generated by the conditions and

the timing for the three algorithms are shown.

5.3 Hardware Specifications

 The three algorithms were coded in C++ and were run on a PC of 1.60 Ghz processor

with 512MB memory whose OS is Unix.

19

6 Results

 The results are organised in the four sets with their parameters explained in Chapter 5. There

are 3 algorithms used, CLIQUES is denoted as Cliques, FREQUENT PATTERN as Pattern, and

MAKINO’s algorithm as Makino. For each test data, the total number of maximal bicliques found is

listed as Num Cli and for each algorithm, the total time is shown, followed by the average time took

to find 1000 maximal bicliques.

Set 1: Varying sparseness of graph, number of vertices, and minimum size of biCliques found

for general graphs as input

Table 1: Results from Set 1

n p Min

Size

Num Cli Cliques Time/

1000

Pattern Time/

1000

Makino Time/

1000

100 0.1 1 627 1.08 1.72 0.03 0.05 0.33 0.53

 0.2 1 6444 9.49 1.47 0.18 0.03 3.86 0.60

 3 3150 5.78 1.84 0.13 0.04

 0.3 1 38873 54.27 1.40 1.06 0.03 24.78 0.64

 4 7814 27.47 3.52 0.46 0.06

 0.4 1 419337 534.52 1.27 13.78 0.03 323.06 0.77

 5 63542 275.44 4.33 5.27 0.08

 0.5 1 3522925 4133.60 1.17 131.70 0.04 2466.04 0.70

 6 551765 1971.30 3.57 47.46 0.09

300 0.1 1 29836 53.67 1.80 1.20 0.04 70.70 2.37

 3 6428 25.36 3.95 0.49 0.08

 0.2 1 851905 1422.84 1.67 37.81 0.04 3201.94 3.76

 3 807077 1237.89 1.53 37.34 0.05

 5 244 449.83 1843.58 5.01 20.52

 0.3 1 33453689 ≥ 2 hrs 1966.59 0.06

 7 22 ≥ 2 hrs 93.46 4247.9

20

500 0.1 1 212067 477.06 2.25 10.79 0.05 1270.84 5.99

1000 0.05 1 241838 775.97 3.21 21.26 0.09 2824.68 11.68

Set 2: Varying sparseness of graphs, number of vertices, and minimum size of BiCliques
found for bipartite graphs as input

Table 2: Results from Set 2

n P Min

Size

Num Cli Cliques Time/

1000

Pattern Time/

1000

Makino Time/1

000

100 0.1 1 218 0.10 0.44 0.03 0.07 0.02 0.09

 0.2 1 777 0.26 0.34 0.07 0.07 0.08 0.10

 3 97 0.21 2.14 0.03 0.18

 0.3 1 4185 1.23 0.29 0.03 0.00 0.51 0.12

 4 155 0.91 5.85 0.03 0.14

 0.4 1 16380 4.55 0.28 0.61 0.04 1.86 0.11

 5 164 2.72 16.57 0.08 0.23

 0.5 1 94107 22.38 0.24 3.98 0.04 11.01 0.12

 6 1355 13.45 9.92 0.21 0.14

300 0.1 1 5275 2.05 0.39 0.21 0.04 2.01 0.38

 3 285 1.48 5.21 0.04 0.09

 0.2 1 69087 48.52 0.70 4.76 0.07 40.33 0.58

 3 49823 35.93 0.72 1.18 0.02

 5 0 15.42 0.09

 0.3 1 936980 289.31 0.31 105.63 0.11 638.36 0.68

 7 0 110.32 0.82

500 0.1 1 33491 13.48 0.40 4.25 0.13 29.17 0.87

1000 0.05 1 40130 34.54 0.86 11.08 0.27 68.98 1.72

21

Set 3: Locally sparse graphs, varying sparseness of graphs, number of vertices for general
graphs as input

Table 3: Results from Set 3

n r Min

Size

Num Cli Cliques Time/

1000

Pattern Time/

1000

Makino Time/1

000

100 10 1 929 2.38 2.56 0.04 0.05 0.42 0.45

300 10 1 2950 7.97 2.70 0.10 0.03 5.11 1.73

 30 1 143828 185.47 1.29 4.27 0.03 408.36 2.84

500 10 1 4543 11.33 2.49 0.16 0.03 11.11 2.45

 30 1 275027 338.90 1.23 8.22 0.03 1263.38 4.59

1000 10 1 8929 59.78 6.70 0.27 0.03 44.42 4.97

 30 1 540128 2200.42 4.07 16.08 0.03 5162.93 9.56

2000 10 1 18842 143.80 7.63 0.81 0.04 468.48 24.86

3000 10 1 27376 496.00 18.12 1.52 0.06 1030.41 37.64

5000 10 1 46113 1030.11 22.34 3.67 0.08 1549.01 33.59

Set 4: Locally sparse graphs, varying number of vertices for bipartite graphs as input

Table 4: Results from Set 4

n R Min

Size

Num Cli Cliques Time/

1000

Pattern Time/

1000

Makino Time/

1000

100 10 1 5122 2.26 0.44 0.15 0.03 2.89 0.56

300 10 1 11347 10.85 0.96 0.28 0.02 20.91 1.84

500 10 1 24181 22.86 0.95 0.89 0.04 76.99 3.18

1000 10 1 43284 83.99 1.94 1.37 0.03 268.55 6.20

2000 10 1 93377 365.75 3.92 2.59 0.03 1188.75 12.73

3000 10 1 139625 1390.30 9.96 3.60 0.03 2035.19 14.58

5000 10 1 222643 2428.71 10.91 6.32 0.03 3712.31 16.67

22

7 Summary

7.1 Analysis of Results obtained

 The algorithm chosen based on graphs are very simple and consequently easy to

implement. However, they scale poorly in timing when compared to the algorithm based on

FREQUENT PATTERN. For example, the rise in timing per 1000 bicliques found for

PATTERN does not increase as much with either the increase in number of vertices or for the

density of the graph.

 It is clear that the time taken to find a maximal biclique is shortened by increasing the

(p,q) large filter condition, however, for the FREQUENT PATTERN algorithm, it is

shortened quite proportionally to the number of maximal bicliques found. On the other hand,

CLIQUES only shows a slight improvement when we tighten the filter criteria. This is

because the elimination condition for the filter takes place only near the end of its subtree

usually and thus, prunes lesser of the tree whereas the FREQUENT PATTERN algorithm

searches for larger patterns and thus have less choices for these patterns, pruning the tree

more from the very start.

For the case where the total number of vertices in a bipartite graph is compared to a

normal graph (Set 2 vs Set 1), the graph based approach gives some fairly competent timings.

As the density of the graph increases, we find that the CLIQUES algorithm has a linear factor

in timing when compared to FREQUENT PATTERN. However, the algorithm suggested by

Makino starts off faster than CLIQUES but seems to fare poorly when the vertex sets

becomes much larger due to the need to construct maximal bicliques before calling the

recursive method.

 Comparing local sparseness with normal sparse graph, we find that both FREQUENT

PATTERN and CLIQUES do better with increasing sparseness (lower r values) compared

with the original graph. There are less cliques or pattern to search for, and thus give better

results.

23

7.2 Conclusion

 In conclusion, the paper has explained several existing fast algorithms for solving the

maximal biclique subgraph problem and has implemented and tested them with randomly

generated graph sets. Graph based approach based on finding nodes and using them to

compute maximal bicliques in a tree does not scale well with increasing nodes compared to

finding frequent patterns and matching them when searching for relatively sparse graph, as

most of the graphs presented here are. This could also be due to the idea that graph based

work was done mainly on enumerating maximal cliques from a graph and extending it to

bicliques would add a lot of redundant edges that would lessen the efficiency of the

algorithm.

7.3 Future work

 There are other algorithms both in the area of data mining and graph based. For

example, Linear time Closed Itemset Miner (Takiake Uno et al) which were not implemented

in this study. Also, there already exist algorithms for parallel computation to search for

maximal bicliques. It might be useful to evaluate the performance of such parallel algorithms

as well as the portability of existing algorithms for parallel computer.

24

References

David Eppstein, “Arboricity and Bipartite Subgraph Listing Algorithms”, Department of Information and
Computer Science, University of California, Irvine, CA 92717, 2004

Etsuji Tomita, Akira Tanaka, Haruhisa Takahashi “The worst-case time complexity for generating all maximal
cliques and computational experiments”, Theoretical Computer Science archive Volume 363, Issue 1 (October
2006), 28-42, 2006

Gӧsta Grahne and Jianfei Zhu “Efficiently Using Prefix-trees in Mining Frequent Itemsets”, Concordia
University, Montreal, Canada, 2003

Jinyan Li, Guimei Liu, Haiquan Li, Limsoon Wong “Maximal Biclique Subgraphs and Closed Pattern Pairs of
the Adjacency Matrix: A 1-to-1 Correspondence and Mining Algorithms”, IEEE Transactions on Knowledge
and Data Engineering, 19(2):1625--1637, December 2007

Jinyan Li, Haiquan Li, Donny Soh, Limsoon Wong “A Correspondence Between Maximal Complete Bipartite
Subgraphs and Closed Patterns”, Proceedings of 9th European Conference on Principles and Practice of
Knowledge Discovery in Databases, pages 146--156, Porto, Portugal, October 2005

Kazuhisa Makino and Takeaki Uno “New Algorithms for Enumerating All Maximal Cliques”, Algorithm
Theory - SWAT 2004, 260-272, 2004

Kumlander, Deniss “Some practical algorithms to solve the maximum clique problem”, Tallinn University of
Technology, Faculty of Information Technology, Department of Informatics , Estonia, 2005

Panos M. Pardalos, Jonas Rappe, Mauricio G.C Resende, “An exact parallel algorithm for the maximal clique
problem”, High Performance Algorithms and Software in Nonlinear Optimization, pp. 279-300, 1999

Sune Lehmann, Martin Schwartz, Hansen Lars Kai, “Biclique Communities”, arxiv.org/abs/0710.4867, Center
for Complex Network Research and Department of Physics, Northeastern University, Boston, 2007

Takiake Uno, Masashi Kiyomi, Hiroaki Arimura, “Efficient mining algorithms for frequent/closed/maximal
itemsets”, IEEE ICDM’04 Workshop FIMI’04 (International Conference on Data Mining, Frequent Itemset
Mining Implementation), 2004

Vicky Choi, “Faster Algorithms for Constructing a Galois Lattice, Enumerating All Maximal Bipartite Cliques
and Closed Frequent Sets”, arXiv:cs/0602069v1 , Department of Computer Science, Virginia Tech, USA, 2006

Y. Cheng and G.M. Church, “Biclustering of expression data”, Proceedings of the Eighth International
Conference on Intelligent Systems for Molecular Biology (ISMB), pages 93-103, 2000.

25

Appendix A1: Comparison of Timings for density

Figure 5a: Time taken for different algorithms vs density of graph for a general graph

Figure 5b: Time taken for different algorithms vs density of graph for a bipartite graph

 The above graphs (from set 1 and 2) compares the three algorithms based on running
time for a fixed n of 100 and varying the probability p, the density of the graph. There is a

26

clear pattern that the time taken by all three algorithms increases at an exponential rate with
respect to the density of the graph. Also for small n, PATTERN runs the fastest, followed by
Makino’s and finally CLIQUES.

Appendix A2: Comparison of Timings for number of
vertices

Figure 6a: Time taken for different algorithms vs number of vertices for a general graph

Figure 6b: Time taken for different algorithms vs number of vertices for a bipartite graph

27

 The figures above compare how the time taken to generate maximal bicliques varies
based on the number of vertices n, taken from Set 1 and 2. Although Makino’s algorithm
generates maximal bicliques very fast for small n, the average time increases as we increase
the number of vertices n compared to CLIQUES and PATTERN, whereas for the other two,
the increase in time per thousand bicliques is not very significant.

Figure 7a: Time taken for different algorithms vs number of vertices for a sparse general
graph.

Figure 7b: Time taken for different algorithms vs number of vertices for a sparse bipartite
graph.

28

The graphs above, taken from Set 3 and 4 compare how the time taken to generate
maximal bicliques vary based on the number of vertices n, with a fixed r of 10. Makino
algorithm does indeed seem to have a poor performance when we increase the size of the
number of vertices.

Mining Algorithms for bicliques
Chen Xiankun, Department of Computer Engineering,
School of Computing, National University of Singapore

Abstract: There exist several existing algorithm for computing maximal bicliques (or complete bipartite) subgraphs or an undirected graph with
origins in graph theory or in data mining. In this project, three algorithms, two depth first search graph algorithm, one from Tomita and one from
Makino both using tree construction and pruning, and a closed-pattern-based method using frequent pattern matching are explained and
implemented and their efficiency compared based on different random graphs generated.

Introduction Results

Maximal bicliques are useful to model many real-life applications, such
as social affiliation networks, and metabolic network from the biological
field, with the edges representing enzymes-reactions relations.

A maximal biclique (or complete bipartite) subgraph is an induced
subgraph K = {V1 U V2, E} of a general graph G such that any vertex in
V1 is adjacent to all vertices in V2, and maximal in the sense that we
cannot find another complete bipartite subgraph K1 of G such that K is
contained in K1.

There exists several fast algorithms, with origins in graph theory or in
data mining. The aim of the project is to implement some of these
algorithms, model different conditions for testing, and evaluate their
performance (running time) under the different conditions.

Tomita’s CLIQUES algorithm (Graph)

A global variable Q representing vertices of the graph is used to store
the biclique found until this point while a temporary local variable SUBG
were used to store the remaining possible candidates vertices to add for
maximal bicliques due to the biclique Q at this time. Another temporary
variable CAND holds the set of unprocessed candidates vertices of SUBG
while FINI holds the set of processed candidates.

CAND

SUBG Global BiClique

Q

Q ∪{q}

q

CANDq

…to be further
expanded

…to be further
expanded

where
SUBGq = SUBG ∩ Γ(q)
CANDq = CAND ∩ Γ(q)
Initial FINI = CAND ∩ Γ(u) where u is chosen to maximize FINI

FINI

FINIq

Makino’s Algorithm (Graph)

Makino’s algorithm is based on finding a tree that arranges all maximal
bicliques in lexicographical order. The main procedure is ALLCHILDREN,
which takes in a maximal biclique K, and its parent index I, and computes the
children of K. Since this binary child relation is anti-symmetric, and since every
child node will have exactly one parent node, this forms our search tree.

Closed Pattern Based Approach

The approach views the adjacency matrix as a transactional database. Each
transaction (neighbours) is a subset of a pre-specified set I (vertex set of graph).
Given a pattern P (non-empty set of items of I), the occurrence set of P
(transactions containing P), the closure of P (the set of items shared by all the
occurrence set of P), will form the two vertex sets of a maximal biclique. The
problem thus reduces to harvesting such patterns P from a frequent pattern tree.

Data:
acde
e
abce
e
bc
c

root

e:4 c:2

b:1c:2

a:2

d:1 b:1

e: 4
c: 4
a: 2
b: 2
d: 1

Item
Head of
Node-links

-2.0000

-1.0000

0.0000

1.0000

2.0000

3.0000

4.0000

0.1 0.2 0.3 0.4 0.5

Timings vs. p (Log scale)

CLIQUES

PATTERN

MAKINO

Figure 3: Effect of increasing p, the probability of edge
between any two vertices on execution time for the 3
algorithms

Figure 1: Tomita’s CLIQUES algorithm, adapted for maximal
biclique generation

Figure 2: A frequent pattern tree generated from data. The

Average Time to generate 1000 Bicliques

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

100 300 500 1000

Number of Vertices n

Time(s)
CLIQUES

PATTERN

MAKINO

Figure 4: Effect of increasing number of vertices on average
time to find 1000 bicliques for the 3 algorithms

Also tested was adapting the algorithm for a minimum size (number of
vertices on both sides of the biclique) for each biclique generated.
Makino could not be properly adapted to fit this, while pattern algorithm
fared better than cliques.
Other observations noted include that locally sparse graphs tend to be

faster to evaluate for all algorithms as compared to random sparse
graphs, as well as input graphs which are bipartite as compared to a
general graph.

Conclusion and Future Work

Graph based approach based on finding nodes and using them to
compute maximal bicliques in a tree does not scale well with increasing
nodes compared to finding frequent patterns and matching them when
searching for relatively sparse graph. This could be due to graph based
work was done mainly on enumerating maximal cliques from a graph
and extending it to bicliques (by assuming all vertices in one bipartite set
are interconnected) would add a lot of redundant edges that would
lessen the efficiency of the algorithm.

There are other algorithms both in the area of data mining and graph
based, for example, Linear time Closed Itemset Miner which were not
considered in this study. Also, there already exist algorithms for parallel
computation to search for maximal bicliques. It might be useful to
evaluate the performance of such parallel algorithms as well as the
portability of existing algorithms for parallel computation.

	HYPReportFinal
	Poster2

