
i 

 

 

Honours Year Project Report 

 

 

 

Mining Algorithm for Bicliques 

 

 

 

By 

Chen Xiankun 

 

 

 

 

 

Department of Computer Engineering 

School of Computing 

National University of Singapore 

2007/2008 



ii 

 

Honours Year Project Report 

 

Mining Algorithm for Bicliques 

 

 

 

By 

Chen Xiankun 

 

 

 

Department of Computer Engineering 

School of Computing 

National University of Singapore 

2007/2008 

 

 

 

 

Project No: H114110 
Advisor:  Prof Wong Lim Soon 
Deliverables: 
 Report:  1 Volume 
 



iii 

Abstract 

 

There exist several existing algorithm for computing maximal bicliques (or complete 

bipartite) subgraphs or an undirected graph with origins in graph theory or in data mining. In 

this project, three algorithms, two depth first search graph algorithm, one from Tomita and 

one from Makino both using tree construction and pruning, and a closed-pattern-based 

method using frequent pattern matching are explained and implemented and their efficiency 

compared based on different random graphs generated.  

 

Subject Descriptors: 

F.2.2 Nonnumerical Algorithms and Problems 
G.2.2 Graph Theory  
G.4 Mathematical Software 
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1 Introduction 

1.1 Motivation 
 

Maximal biclique (or complete bipartite) subgraphs are useful in the modelling of 

many real-life applications. Two applications are listed as follows. The first application 

comes from social networks where the data is a bipartite graph of what is known as 

‘affiliation’ networks. Examples of such networks would be the scientific collaboration 

networks with the two node sets consisting of authors and papers, or the movie 

recommendation network where the edge set connects users to the movies they have watched. 

Web communities can be identified through identifying maximal bicliques from such web 

networks.  Another application would be from the metabolic network from the biological 

field, where the nodes sets are enzymes and the list of reaction they participate in, the 

biclique subgraphs obtained would help us in determine the function of detected 

communities. 

The problem of maximal bicliques have long been studied and there exists several 

algorithms for enumerating them. Some common approaches include clique algorithm 

(Tomita et al, 2006) where nodes are added to a search tree and branches are pruned if they 

are unable to generate a maximal biclique, algorithm suggested by Makino and Uno based on 

generating child nodes which are maximal bicliques from its parent in a tree based on a 

certain relation which is acyclic (Makino and Uno, 2004), and closed pattern finding with 

roots in data mining. However, such algorithms have not been directly compared with in 

terms of efficiency. 

 

1.2 Project Objective 
 

 With the above motivation, the objective of the project is to implement some of these 

algorithms, model different conditions and evaluate their performance under these conditions. 

Time would be the main criterion used for evaluating the performance of the algorithms. 
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1.3 Report Structure 
 

The rest of the paper will be organised as such. Chapter two of the paper will define 

notation used throughout the paper, Chapter three will explain the graph-based algorithms 

used and modification made. Chapter four will explain the algorithm based on data mining. 

Chapter five will explain the background for testing and the generation of the random graphs 

used for the experiments. Chapter six will present the results and chapter seven will conclude 

the paper.  



3 

 

2 General Definitions and Notations 

 Let G = (V, E) be a simple undirected graph with a vertex set V = {v1,  … ,vn} and an 

edge set E = {e1, …, em} where each edge is an unordered pair (v, w) of distinct vertices. A 

pair of vertices v and w are said to be adjacent if (v, w) ∈ E. For a subset W ⊆ V, G(W) = (W, 

E(W)) with E(W) = {(v, w) ∈ W x W | (v, w) ∈ E} is called an induced subgraph of G by W. 

If there is a partition V1 and V2 of V such that no two vertices in Vi, where i = 1 or 2 are 

adjacent, G is known as a bipartite graph and we denote by G = (V1 ∪ V2, E).  A vertex set K 

is called a bipartite clique is a induced subgraph of G such that any vertex in K ∩ V1 is 

adjacent to any vertex in K ∩ V2, and maximal in the sense that no other bipartite clique 

contains K in addition.  

  For a vertex v of G, Γ(v) = {u ∈ V | (u, v) ∈ E} is also known as the neighbour of v. 

Also, for any vertex set S, we define Λ(S) as the set of v ∈ V \ S such that (u, v) for any u ∈ 

S. Let δ(v) = | Γ(v)| denote the degree of v and Δ the maximal degree of G. The adjacency list 

of G is the set of all Γ(v). Figure 1 below illustrates the corresponding adjacency list and 

matrix for a graph G.   

 

 

Figure 1: A graph G, its corresponding adjacency list and adjacency matrix. 

 

Adjacency Matrix 

 a b c d e f g 

a 0 0 0 0 1 1 0 

b 0 0 0 0 1 0 1 

c 0 0 0 0 1 1 0 

d 0 0 0 0 0 0 1 

e 1 1 1 0 0 0 0 

f 1 0 1 0 0 0 0 

g 0 1 0 1 0 0 0 

Adjacency List   
Vertex v Γ(v) 

a {e,f} 

b {e,g} 

c {e,f} 

d {g} 

e {a,b,c} 

f {a,c} 

g {b,d} 
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 Note that the graph in Figure 1 is bipartite, where the partition V1 = {a,b,c,d}  and V2 

= {e,f,g}. We also note that the subgraph {{a,b} ∪ {e}, {(a,e), (b,e)}} is a bipartite clique of 

G but not maximal. A maximal bipartite clique of G would be {{a,c} ∪ {e,f}, {(a,e), (c,e), 

(a,e),(a,f)}}. 

A sparse graph is a graph where |E| = O(|V|) and a dense graph is a graph where |E| = 

ϴ(|V2|). A locally sparse graph is a graph where different vertices vi and vj are adjacent with 

probability ½ if i – j + n (mod n) ≤ r or j + n – i (mod n) ≤ r, for a certain (usually small) 

value of r. Locally sparse graph are commonly encountered when modelling real networks 

due to physical or cost constraints. 

For purposes of comparing, for any two vertex sets X and Y, X is lexicographically 

larger than Y if the smallest vertex(i.e a vertex with the smallest index) in (X \ Y) ∪ (Y \ X) is 

contained in X.  

Finally, we may be interested to find only maximal biclique subgraphs meeting a 

specific size condition. This is because not all maximal biclique subgraphs are interesting to 

us as some might be trivial or too small to be of interest. A maximal biclique subgraphs H = { 

V1 ∪ V2, E} is said to be (p, q) large if either |V1| ≥ p , |V2| ≥ q or |V1| ≥ q, |V2| ≥ p. Note that 

if we want to enumerate all maximal biclique subgraphs, it is equivalent to finding all (1, 1) 

large maximal biclique subgraphs.  
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3 Graph-Based Approach 

3.1 Tomita’s CLIQUES Algorithm 
 

 A depth-first search algorithm based on Tomita algorithm for clique generation was 

considered.  Q is a global variable of a set of vertices that constitutes a complete subgraph 

(clique) found up to this time. The algorithm begins by letting Q be an empty set and expands 

Q step by step by applying a recursive procedure EXPAND to V and its succeeding induced 

subgraphs to search for larger and larger complete subgraphs until they reach maximal 

cliques. Hence, if Q = {v1, v2, … vd}at some point, then the variable SUBG is a set V ∩ Γ(v1) 

∩ Γ(v2) ∩ … ∩ Γ(vd). Applying the procedure EXPAND at each stage, when SUBG = ∅, Q 

will be a maximal clique. Otherwise, Q U {q} is a larger complete subgraph for every q ∈ 

SUBG, and we can consider the smaller subgraphs induced by the addition of each q ∈ 

SUBGq where SUBGq  = SUBG ∩ Γ(q) for each q. We can then apply recursively EXPAND 

to SUBGq  to find larger complete subgraphs containing Q U {q}.  

Pruning is done with the inclusion of two more variables FINI and CAND, where 

FINI is a subset of SUBG that have already be processed by the algorithm and CAND being 

those that have not been processed. We therefore have CAND = SUBG – FINI. Letting 

CANDq =  CAND ∩ Γ(q) and FINIq = FINI ∩ Γ(q), it follows that only the vertices in 

CANDq need to be considered as candidates for expanding the complete subgraph Q U {q} to 

find new larger cliques, since all the cliques containing Q U {q} U {r} where r ∈ FINIq and 

thus not in CANDq have been generated by application of the procedure EXPAND to r 

already.  

Another optimising used was to prune the search subtrees to be expanded. Given a 

certain vertex u ∈ SUBG, assume all maximal cliques containing Q U {u} have been 

generated. Then, every new maximal clique containing Q, but not Q U {u}, must contain at 

least one vertex q ∈ SUBG - Γ(u). Thus, we only need to expand Q to Q U {q} such that q ∈ 
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CAND - Γ(u) instead of q ∈ CAND. Choosing u ∈ SUBG to minimize |CAND - Γ(u)| will 

thus minimize the number of tree branches. This is achieved by finding and choosing u ∈ 

SUBG to maximise |CAND ∩ Γ(u)|. 

 

 

Figure 2: Illustration of procedure EXPAND for generating maximal cliques 

Tomita’s algorithm can be shown to have a worse-case running time of O(n3n/3) for an 

n-vertex graph. This is efficient as the maximal number of cliques possible is 3n/3 and it 

would take O(n) to print out each clique. If we merely print out the vertex we are expanding 

and not the entire clique each time a clique is discovered, we would obtain a worse case 

timing of O(3n/3) 
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The algorithm is summarised as 

procedure CLIQUES(G)  

  /* Graph G = (V,E) */ 

begin 

 Q := ∅; //Q constitutes a global clique 

   EXPAND(V,V); 

end of CLIQUES 

procedure EXPAND(SUBG, CAND) 

begin 

   if SUBG = ∅ 

 then print Q; //Q is a maximal clique at this point 

else 

u := a vertex in SUBG that maximises |CAND ∩ Γ(u)| 

while CAND - Γ(u) ≠ ∅ 

do q:= a vertex in (CAND - Γ(u)); 

 Q := Q ∪ {q}; 

 SUBGq := SUBG ∩ Γ(q); 

 CANDq := CAND ∩ Γ(q); 

 EXPAND(SUBGq , CANDq ); 

 CAND := CAND – {q}; 

 Q := Q – {q}; 

od 

fi 

end EXPAND 
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3.2 Modified CLIQUES Algorithm 
 

 Tomita’s algorithm could generate maximal cliques from a general graph. To use this 

algorithm, we observe that to generate maximal bipartite clique from a bipartite graph is a 

special case of the maximal clique problem in a general graph. Given a bipartite graph G = 

(V1 ∪ V2, E), it is easy to transform it to a general graph where G = (V1 ∪ V2, E1), where E1 = 

E ∪ (V1 x V1) ∪ (V2 x V2) and we can apply the EXPAND procedure for it. However, we 

eliminate any the clique set generated V where V = V1, or V = V2. This is because such 

cliques do not have any edges after removing the extra edges we added in as they comprise of 

vertices from one bipartite set only.  

For generation of maximal bipartite from a non bipartite graph G = (V, E), duplication 

of the non bipartite graph was made such that the new graph G = (V1 ∪ V2 , E1) where |V1| = 

|V2| = |V| and E1 = (V1 x V1) ∪ (V2 x V2) ∪ En ,and (v1j, v2k) ∈ En if  (vj ,vk)  ∈ E where v1j 

denotes the jth vertex in V1, v2k denotes the kth vertex in V2 and vj ,vk denotes the jth and kth 

vertex in the original graph. Essentially, this creates a duplicate set of the original graph, and 

duplicates the edges. We can then apply the modified algorithm above for this. However, this 

will cause duplicates in the maximal bicliques generated and will have to be filtered out. A 

simple check at this point would be only to generate it as a maximal biclique if the size of the 

first is no smaller than the size of the second, i.e Q ∩ V1 ≥ Q ∩ V2 where Q is the clique 

generated by Tomita’s algorithm. To eliminate bicliques of the same size, this is done in the 

output processing portion of the algorithm.    

The other change to be made lies in the (p, q) - large filtering condition (p ≤ q). At 

each call, the number of remaining vertices on each side of the bipartite input graph is added 

to the number of vertices already in the set Q (which constitutes the maximal biclique) on the 

same side of the bipartite input graph. It is then checked whether it is possible to form a (p, q) 

large biclique. If not, then we can prune the rest of this branch of the search tree. For a 

biclique graph input, we check that both sums are at least p and that at least one is not smaller 

than q. For a non-biclique graph input, we modify the condition due to symmetry and check 
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that the vertices belonging in V1 is at least q and the vertices belonging in V2 is at least p (due 

to only needing Q ∩ V1 ≥ Q ∩ V2). 

 

A bitSet was chosen to represent the adjacency list and other sets as there were a lot 

of union and intersection operations. The minus operation was implemented as the 

intersection with the complement.  

The modified algorithm for the input graph being non bipartite is shown as below (the 

algorithm for bipartite input graph being very similar). LQ_SIZE and RQ_SIZE holds the 

current size of Q belonging in V1 and V2 respectively, and LMAX and RMAX calculates the 

maximum possible size of the subgraph possible for Q ∪ {q} belonging in V1 and V2 

respectively. 

procedure BICLIQUES(G)  

  /* Graph G = (V,E) */ 

begin 

       Vc := V1 ∪ V2  where |V1| = |V2| = |V|; 

          E1 = (V1 x V1) ∪ (V2 x V2) ∪ En  where (v1j, v2k) ∈ En if  (vj ,vk)  ∈ E 

 Q := ∅; //Q constitutes a global clique 

   EXPAND(Vc, Vc, 0 , 0); 

end of BICLIQUES 

procedure EXPAND(SUBG, CAND, LQ_SIZE, RQ_SIZE) 

begin 

   if SUBG = ∅ 

 then if LQ_SIZE ≥ q and RQ_SIZE ≥ p and LQ_SIZE ≥ RQ_SIZE 

print Q; //Q is a maximal clique at this point 

          fi 
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else // (SUBG != ∅) 

  u := a vertex in SUBG that maximises |CAND ∩ Γ(u)|  

  while CAND - Γ(u) ≠ ∅ 

  do q:= a vertex in (CAND - Γ(u)); 

   Q := Q ∪ {q}; 

   SUBGq := SUBG ∩ Γ(q); 

   CANDq := CAND ∩ Γ(q); 

 if q ∈V1 

   then LQ_SIZE := LQ_SIZE+1; 

            else RQ_SIZE := RQ_SIZE + 1; 

   fi 

LMAX = LQ_SIZE + |SUBGq∩ V1|; 

RMAX = RQ_SIZE + |SUBGq∩ V2|; 

if LMAX ≥ q && RMAX ≥ p //Still possible to find a (p,q) biclique 

  then EXPAND(SUBGq , CANDq , LQ_SIZE, RQ_SIZE); 

fi 

 CAND := CAND – {q}; 

Q := Q – {q}; 

if q ∈V1 

  then LQ_SIZE := LQ_SIZE - 1; 

   else 

RQ_SIZE := RQ_SIZE - 1; 

 fi 

od 

fi 

end EXPAND 
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3.3 Makino Algorithm 
 

 A depth first search algorithm based on papers written by Makino and Uno was also 

considered. Their algorithm is based on reverse search (Avis and Fukuda, 1996) and based on 

works done earlier by Tsukiyama et al. and Johnson et al. 

 For any vertex set S and an index i, let S≤i denote the vertices in S such that the index 

is less than or equal to i, i.e S ∩{v1,…. vi}. For a biclique K, let C(K) denote the maximal 

biclique that is the lexicographically largest among all maximal bicliques containing K. Note 

that C(K) is not lexicographically smaller than K. 

 First of all, the algorithm finds the lexicographically largest biclique, denoted by K0. 

For each maximal biclique K (K ≠ K0), its parent P(K) of K is defined by C(K≤i-1) such that i 

is the maximal index satisfying C(K≤i-1) ≠ K. This i is denoted as the parent index, denoted by 

i(K). This is well defined, since K ≠ C(K≤0) holds as K ≠ K0. Since P(K) is lexicographically 

larger than K, this parent-child binary relation on maximum bicliques is thus acyclic, and 

creates a tree with root at K0. Every child node will have exactly one parent node, and so this 

forms our search tree.  

 It can be shown that K’ is a child of K if and only if K’ = K[i] for some i such that 

a) vi ∉ K 

b) i > i(K) 

c) (Λ(K ∩ Γ(vi)) – K) ≤i-1 = ∅  

where K[i] = (K ∩ Γ(vi)) ∪ (Λ(K ∩ Γ(vi)). If an index satisfies (a), (b) and (c), then i is the 

parent index of K[i]. 
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Figure 3: Tree constructed using Makino’s Algorithm, where the lines show the index of 

the parent, and the boxes show the maximal bicliques(exception of (0,1,2)), the 

adjacency List and the graph. 

Referring to Figure 3, applying the algorithm to K0, we obtain 3 as a value for i. With that 

value, we compute  K ∩ Γ(v3) to be v1 and Λ(v1) = {v1, v3, v5} as the new child with parent 

index 3. 

 For checking of valid i’s, it is easy to check the first condition, and for the second 

condition, the parameter i is passed in as the parent index to ease checking. Only when both 

conditions are satisfied do we then proceed to check for the third condition.  

 Once we find the set of all i, we can compute K[i] which are maximal bipartite graphs 

with parent as K. To optimise this, we note that (Λ(K ∩ Γ(vi)) has been computed earlier, and 

we can use it for the computation of K[i]. We then find the child nodes of K[i] recursively. 

The initial value of K0 is passed in as all the vertices in V1, and the index the size of V1.This 

initial K0 can be ignored as a maximal bipartite clique. 

Adjacency List   
Vertex v Γ(v) 

0 {4,5} 

1 {3,5} 

2 {4,6} 

3 {1} 

4 {0,2} 

5 {0,1} 

6 {2} 
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 The algorithm is summarised as follows for a bipartite graph input (the algorithm for 

non-bipartite input graph is similar). 

procedure MAXBICLIQUES(G)  

  /* Graph G (bipartite) = (V1 ∪ V2 ,E) */ 

begin 

       ALLCHILDREN(V1,|V1|); 

end of MAXBICLIQUES 

procedure ALLCHILDREN(K, I) /* K is a maximal biclique of G, i is its index */ 

  print K; 

  ALLI := ∅ //ALLI is to hold all possible values for I. 

  for each i ≥ I 

  if i satisfies  (Λ(K ∩ Γ(vi)) – K) ≤i-1 = ∅ 

    ALLI := ALLI ∪ {vi}; 

  end 

  for each i ∈ ALLI 

   compute K[i]; 

   call ALLCHILDREN (K[i], i); 

  end 

end of ALLCHILDREN 

The algorithm is shown to be of the order of O(Δ3) , where Δ is the maximal degree of 

the graph. However, it is not easy to limit ourselves to the (p,q) large criteria for this 

algorithm except at the output stage and as such, this algorithm testing and analysis is only 

restricted to the case where we enumerate all maximal bicliques. Furthermore, for the case of 
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non-bipartite input graph, the duplication of nodes will lead to duplication of bicliques 

generated, and so will have to be filtered out at the output stage.  
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4 Closed Pattern-Based Approach 

4.1 Basis 
 

 The approach views the adjacency matrix as a transactional database. This is a non-

empty multi-set of transaction, where each transaction is a subset of a pre-specified set I of 

items. Each of these transaction can be viewed thus as the neighbours of the given vertex and 

I corresponds to the entire vertex set of the graph. A pattern is defined as a non-empty set of 

items of I. Given a transactional database and a pattern P, the transactions containing P forms 

the occurrence set of P denoted as occDB(P), and the cardinality of this is the support of P, 

denoted supDB(P). Furthermore, the closure of P, CLDB(P) is defined as the set of items shared 

by all the transactions containing pattern P in the database, i.e the set of items shared by all 

transactions in the occurrence set.   

 It is trivial to see that P ⊆ CLDB(P). However, if P = CLDB(P), it forms a closed 

pattern of DB. The occurrence set of such closed patterns is another closed pattern, and these 

give rise to the two vertex sets of maximal biclique subgraph. If graph H = {V1 U V2, E} is  a 

maximal biclique subgraph of G, V1 and V2 are both closed patterns of DBG  and we have 

occDB(V1) = V2 and occDB(V2) = V1. 

4.2 Frequent Pattern Algorithm 
 

 The Frequent Pattern tree is a representation of all relevant frequency information in a 

database. Every branch of the tree represents a frequent itemset, and nodes are stored in 

decreasing order of frequencies of the corresponding items, with the leaves having the least 

frequent items. The tree is built in such a way that overlapping itemsets share prefixes of the 

corresponding branches 
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F
igure 4: A FP tree constructed from data and its header table storing the links to nodes 
 

  Referring to figure 4, to construct the FP-tree, we first find all the items {a,b,c,d,e} by 

an initial scan. They are inserted into the header table in decreasing order of count. On the 

second scan, as each data is scanned, if it shares a prefix with an itemset already in the tree, it 

will share the prefix of the branch representing that itemset. In addition, each branch keeps 

track of a counter to represent the number of transactions containing the itemset represented 

by the path from the root to the node. For example, the d:1 leaf nodes shows that there is one 

and only one itemset containing {e,c,a,d} whereas the a:2 node above it shows that there are 

2 itemset containing {e,c,a}. We can thus view our adjacency list as a set of items and 

arrange them in such a tree to find the support for a pattern.  

 Searching for maximal bicliques is thus equivalent to finding such closed patterns in 

the tree. An implementation using this algorithm for finding maximal bicliques, FP-MBC, 

developed by Guimei Liu was used for this comparison. For more information, refer to A 

Correspondence Between Maximal Complete Bipartite Subgraphs and Closed Patterns by 

Jinyan Li, Haiquan Li, Donny Soh, Limsoon Wong. 
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5 Computational Experiments 

5.1 Timings 
 

 Timing for algorithms is divided into three portions, input processing time, bicliques 

generating time and any additional output processing time. The input processing time is the 

time required to read in the raw data and store it in a data structure, for the case of the graph 

based approach, it is the time required to generate the adjacency list, and for the case of the 

pattern based approach, it is the time required to construct the frequent pattern tree. The 

algorithm time is the time required to process the input and generate sets and the output 

processing time is the time required to filter off any unwanted sets.  Shown is the combined 

time for all three portions.  

5.2 Data Sets 
 

 Four sets of graphs were generated to compare the approaches. Firstly, small and 

large graphs were created with increasing connectivity. This was done with two parameters, n 

and p, where n is the number of nodes in the graph, and p is the probability for any two 

vertices to be connected. Since the absolute maximum number of connections possible is n * 

(n-1) / 2, so on average, we have around p * n * (n-1) / 2 edges in the graph. For each of these 

graphs, the total number of maximal bicliques, and a limited (p,q) large number of maximal 

bicliques was generated.  

The second set of graphs generated were bipartite graphs of similar sizes. Again, two 

parameters, n and p are used, where n is the size of one of the bipartite set and p is the 

probability that any two vertices v1 ∈ V1 and v2  ∈ V2 are connected. Since the absolute 

maximum number of connections possible is n2, on average, we have around p * n2 number 

of edges in the graph. To keep the number of vertices similar to the first set, n is halved for 

this set so the graphs for this set contains lesser edges on average (1/4 * p * n2   or about half 

the number of edges of the first set). 

The third set of graphs generated were for locally random graphs with two 

parameters, n and r. Recall that a locally random graph with n vertices is generated such for 
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any two vertices vi, vj they are adjacent with probability ½ if i + n - j (mod n) ≤ r or j + n – i ≤ 

r. The average number of neighbours for each vertices is therefore r. Graphs were generated 

for values of r = 10, 30 and all maximal bicliques were generated. For this, the average 

number of edges is ½ * n * r.  

The fourth set is similar to the third set except that now the graphs are bipartite in nature. 

Again, the number of vertices in both bipartite sets is halved from the first set. However, the 

average number of edges is around the same at ½ * n * (r+1). As the number of bicliques 

generated is very huge (16,530,659 in the case of n = 500, r = 30 compared to 275,027 for 

similar parameters in set 3), the set only consisted the cases for which r = 10.  

For each of the sets, the number of maximal bicliques generated by the conditions and 

the timing for the three algorithms are shown.  

5.3 Hardware Specifications 

 The three algorithms were coded in C++ and were run on a PC of 1.60 Ghz processor 

with 512MB memory whose OS is Unix.  
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6 Results 

 The results are organised in the four sets with their parameters explained in Chapter 5. There 

are 3 algorithms used, CLIQUES is denoted as Cliques, FREQUENT PATTERN as Pattern, and 

MAKINO’s algorithm as Makino. For each test data, the total number of maximal bicliques found is 

listed as Num Cli and for each algorithm, the total time is shown, followed by the average time took 

to find 1000 maximal bicliques. 

 

Set 1: Varying sparseness of graph, number of vertices, and minimum size of biCliques found 

for general graphs as input 

Table 1: Results from Set 1 

n p Min 

Size 

Num Cli Cliques Time/ 

1000 

Pattern Time/ 

1000 

Makino Time/

1000 

100 0.1 1 627 1.08 1.72 0.03 0.05 0.33 0.53 

 0.2 1 6444 9.49 1.47 0.18 0.03 3.86 0.60 

  3 3150 5.78 1.84 0.13 0.04   

 0.3 1 38873 54.27 1.40 1.06 0.03 24.78 0.64 

  4 7814 27.47 3.52 0.46 0.06   

 0.4 1 419337 534.52 1.27 13.78 0.03 323.06 0.77 

  5 63542 275.44 4.33 5.27 0.08   

 0.5 1 3522925 4133.60 1.17 131.70 0.04 2466.04 0.70 

  6 551765 1971.30 3.57 47.46 0.09   

300 0.1 1 29836 53.67 1.80 1.20 0.04 70.70 2.37 

  3 6428 25.36 3.95 0.49 0.08   

 0.2 1 851905 1422.84 1.67 37.81 0.04 3201.94 3.76 

  3 807077 1237.89 1.53 37.34 0.05   

  5 244 449.83 1843.58 5.01 20.52   

 0.3 1 33453689 ≥ 2 hrs  1966.59 0.06   

  7 22 ≥ 2 hrs  93.46 4247.9   
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500 0.1 1 212067 477.06 2.25 10.79 0.05 1270.84 5.99 

1000 0.05 1 241838 775.97 3.21 21.26 0.09 2824.68 11.68 

 

Set 2: Varying sparseness of graphs, number of vertices, and minimum size of BiCliques 
found for bipartite graphs as input 

Table 2: Results from Set 2 

n P Min 

Size 

Num Cli Cliques Time/ 

1000 

Pattern Time/ 

1000 

Makino Time/1

000 

100 0.1 1 218 0.10 0.44 0.03 0.07 0.02 0.09 

 0.2 1 777 0.26 0.34 0.07 0.07 0.08 0.10 

  3 97 0.21 2.14 0.03 0.18   

 0.3 1 4185 1.23 0.29 0.03 0.00 0.51 0.12 

  4 155 0.91 5.85 0.03 0.14   

 0.4 1 16380 4.55 0.28 0.61 0.04 1.86 0.11 

  5 164 2.72 16.57 0.08 0.23   

 0.5 1 94107 22.38 0.24 3.98 0.04 11.01 0.12 

  6 1355 13.45 9.92 0.21 0.14   

300 0.1 1 5275 2.05 0.39 0.21 0.04 2.01 0.38 

  3 285 1.48 5.21 0.04 0.09   

 0.2 1 69087 48.52 0.70 4.76 0.07 40.33 0.58 

  3 49823 35.93 0.72 1.18 0.02   

  5 0 15.42  0.09    

 0.3 1 936980 289.31 0.31 105.63 0.11 638.36 0.68 

  7 0 110.32  0.82    

500 0.1 1 33491 13.48 0.40 4.25 0.13 29.17 0.87 

1000 0.05 1 40130 34.54 0.86 11.08 0.27 68.98 1.72 
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Set 3: Locally sparse graphs, varying sparseness of graphs, number of vertices for general 
graphs as input 

Table 3: Results from Set 3 

n r Min 

Size 

Num Cli Cliques Time/ 

1000 

Pattern Time/ 

1000 

Makino Time/1

000 

100 10 1 929 2.38 2.56 0.04 0.05 0.42 0.45 

300 10 1 2950 7.97 2.70 0.10 0.03 5.11 1.73 

 30 1 143828 185.47 1.29 4.27 0.03 408.36 2.84 

500 10 1 4543 11.33 2.49 0.16 0.03 11.11 2.45 

 30 1 275027 338.90 1.23 8.22 0.03 1263.38 4.59 

1000 10 1 8929 59.78 6.70 0.27 0.03 44.42 4.97 

 30 1 540128 2200.42 4.07 16.08 0.03 5162.93 9.56 

2000 10 1 18842 143.80 7.63 0.81 0.04 468.48 24.86 

3000 10 1 27376 496.00 18.12 1.52 0.06 1030.41 37.64 

5000 10 1 46113 1030.11 22.34 3.67 0.08 1549.01 33.59 

 

Set 4: Locally sparse graphs, varying number of vertices for bipartite graphs as input 

Table 4: Results from Set 4 

n R Min 

Size 

Num Cli Cliques Time/ 

1000 

Pattern Time/ 

1000 

Makino Time/

1000 

100 10 1 5122 2.26 0.44 0.15 0.03 2.89 0.56 

300 10 1 11347 10.85 0.96 0.28 0.02 20.91 1.84 

500 10 1 24181 22.86 0.95 0.89 0.04 76.99 3.18 

1000 10 1 43284 83.99 1.94 1.37 0.03 268.55 6.20 

2000 10 1 93377 365.75 3.92 2.59 0.03 1188.75 12.73 

3000 10 1 139625 1390.30 9.96 3.60 0.03 2035.19 14.58 

5000 10 1 222643 2428.71 10.91 6.32 0.03 3712.31 16.67 
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7 Summary 

7.1 Analysis of Results obtained 

 The algorithm chosen based on graphs are very simple and consequently easy to 

implement. However, they scale poorly in timing when compared to the algorithm based on 

FREQUENT PATTERN. For example, the rise in timing per 1000 bicliques found for 

PATTERN does not increase as much with either the increase in number of vertices or for the 

density of the graph. 

 It is clear that the time taken to find a maximal biclique is shortened by increasing the 

(p,q) large filter condition, however, for the FREQUENT PATTERN algorithm, it is 

shortened quite proportionally to the number of maximal bicliques found. On the other hand, 

CLIQUES only shows a slight improvement when we tighten the filter criteria. This is 

because the elimination condition for the filter takes place only near the end of its subtree 

usually and thus, prunes lesser of the tree whereas the FREQUENT PATTERN algorithm 

searches for larger patterns and thus have less choices for these patterns, pruning the tree 

more from the very start.  

For the case where the total number of vertices in a bipartite graph is compared to a 

normal graph (Set 2 vs Set 1), the graph based approach gives some fairly competent timings. 

As the density of the graph increases, we find that the CLIQUES algorithm has a linear factor 

in timing when compared to FREQUENT PATTERN. However, the algorithm suggested by 

Makino starts off faster than CLIQUES but seems to fare poorly when the vertex sets 

becomes much larger due to the need to construct maximal bicliques before calling the 

recursive method. 

 Comparing local sparseness with normal sparse graph, we find that both FREQUENT 

PATTERN and CLIQUES do better with increasing sparseness (lower r values) compared 

with the original graph. There are less cliques or pattern to search for, and thus give better 

results. 
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7.2 Conclusion 

 In conclusion, the paper has explained several existing fast algorithms for solving the 

maximal biclique subgraph problem and has implemented and tested them with randomly 

generated graph sets. Graph based approach based on finding nodes and using them to 

compute maximal bicliques in a tree does not scale well with increasing nodes compared to 

finding frequent patterns and matching them when searching for relatively sparse graph, as 

most of the graphs presented here are. This could also be due to the idea that graph based 

work was done mainly on enumerating maximal cliques from a graph and extending it to 

bicliques would add a lot of redundant edges that would lessen the efficiency of the 

algorithm.  

7.3 Future work 

 There are other algorithms both in the area of data mining and graph based. For 

example, Linear time Closed Itemset Miner (Takiake Uno et al) which were not implemented 

in this study. Also, there already exist algorithms for parallel computation to search for 

maximal bicliques. It might be useful to evaluate the performance of such parallel algorithms 

as well as the portability of existing algorithms for parallel computer.  
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Appendix A1: Comparison of Timings for density 

 

Figure 5a: Time taken for different algorithms vs density of graph for a general graph 
 

 

Figure 5b: Time taken for different algorithms vs density of graph for a bipartite graph 

 The above graphs (from set 1 and 2) compares the three algorithms based on running 
time for a fixed n of 100 and varying the probability p, the density of the graph. There is a 
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clear pattern that the time taken by all three algorithms increases at an exponential rate with 
respect to the density of the graph.  Also for small n, PATTERN runs the fastest, followed by 
Makino’s and finally CLIQUES. 

Appendix A2: Comparison of Timings for number of 
vertices 

  

Figure 6a: Time taken for different algorithms vs number of vertices for a general graph 
 

 

Figure 6b: Time taken for different algorithms vs number of vertices for a bipartite graph 
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 The figures above compare how the time taken to generate maximal bicliques varies 
based on the number of vertices n, taken from Set 1 and 2. Although Makino’s algorithm 
generates maximal bicliques very fast for small n, the average time increases as we increase 
the number of vertices n compared to CLIQUES and PATTERN, whereas for the other two, 
the increase in time per thousand bicliques is not very significant. 

 

 

Figure 7a: Time taken for different algorithms vs number of vertices for a sparse general 
graph. 

 

Figure 7b: Time taken for different algorithms vs number of vertices for a sparse bipartite 
graph. 
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The graphs above, taken from Set 3 and 4 compare how the time taken to generate 
maximal bicliques vary based on the number of vertices n, with a fixed r of 10. Makino 
algorithm does indeed seem to have a poor performance when we increase the size of the 
number of vertices. 



Mining Algorithms for bicliques
Chen Xiankun, Department of Computer Engineering, 
School of Computing, National University of Singapore

Abstract: There exist several existing algorithm for computing maximal bicliques (or complete bipartite) subgraphs or an undirected graph with 
origins in graph theory or in data mining. In this project, three algorithms, two depth first search graph algorithm, one from Tomita and one from 
Makino both using tree construction and pruning, and a closed-pattern-based method using frequent pattern matching are explained and 
implemented and their efficiency compared based on different random graphs generated.

Introduction Results

Maximal bicliques are useful to model many real-life applications, such 
as social affiliation networks, and metabolic network from the biological 
field, with the edges representing enzymes-reactions relations.

A maximal biclique (or complete bipartite) subgraph is an induced 
subgraph K = {V1 U V2, E} of a general graph G such that any vertex in 
V1 is adjacent to all vertices in V2, and maximal in the sense that we 
cannot find another complete bipartite subgraph K1 of G such that K is 
contained in K1.

There exists several fast algorithms, with origins in graph theory or in 
data mining. The aim of the project is to implement some of these 
algorithms, model different conditions for testing, and evaluate their 
performance (running time) under the different conditions.

Tomita’s CLIQUES algorithm (Graph)

A global variable Q representing vertices of the graph is used to store 
the biclique found until this point while a temporary local variable SUBG 
were used to store the remaining possible candidates vertices to add for 
maximal bicliques due to the biclique Q at this time. Another temporary 
variable CAND holds the set of unprocessed candidates vertices of SUBG 
while FINI holds the set of processed candidates.

CAND

SUBG Global BiClique

Q

Q ∪{q}

q

CANDq

…to be further 
expanded

…to be further 
expanded

where 
SUBGq = SUBG ∩ Γ(q) 
CANDq = CAND ∩ Γ(q)
Initial FINI = CAND ∩ Γ(u) where u is chosen to maximize FINI

FINI

FINIq

Makino’s Algorithm (Graph)

Makino’s algorithm is based on finding a tree that arranges all maximal
bicliques in lexicographical order. The main procedure is ALLCHILDREN, 
which takes in a maximal biclique K, and its parent index I, and computes the 
children of K. Since this binary child relation is anti-symmetric, and since every 
child node will have exactly one parent node, this forms our search tree. 

Closed Pattern Based Approach

The approach views the adjacency matrix as a transactional database. Each 
transaction (neighbours) is a subset of a pre-specified set I (vertex set of graph). 
Given a pattern P (non-empty set of items of I), the occurrence set of P 
(transactions containing P), the closure of P (the set of items shared by all the 
occurrence set of P), will form the two vertex sets of a maximal biclique. The 
problem thus reduces to harvesting such patterns P from a frequent pattern tree. 

Data:
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Figure 3: Effect of increasing p, the probability of edge 
between any two vertices on execution time for the 3 
algorithms

Figure 1: Tomita’s CLIQUES algorithm, adapted for maximal 
biclique generation

Figure 2: A frequent pattern tree generated from data. The 
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Figure 4: Effect of increasing number of vertices on average 
time to find 1000 bicliques for the 3 algorithms

Also tested was adapting the algorithm for a minimum size (number of 
vertices on both sides of the biclique) for each biclique generated. 
Makino could not be properly adapted to fit this, while pattern algorithm 
fared better than cliques. 
Other observations noted include that locally sparse graphs tend to be 

faster to evaluate for all algorithms as compared to random sparse 
graphs, as well as input graphs which are bipartite as compared to a 
general graph.

Conclusion and Future Work

Graph based approach based on finding nodes and using them to 
compute maximal bicliques in a tree does not scale well with increasing 
nodes compared to finding frequent patterns and matching them when 
searching for relatively sparse graph. This could be due to graph based 
work was done mainly on enumerating maximal cliques from a graph
and extending it to bicliques (by assuming all vertices in one bipartite set 
are interconnected) would add a lot of redundant edges that would 
lessen the efficiency of the algorithm.

There are other algorithms both in the area of data mining and graph 
based, for example, Linear time Closed Itemset Miner which were not 
considered in this study. Also, there already exist algorithms for parallel 
computation to search for maximal bicliques. It might be useful to 
evaluate the performance of such parallel algorithms as well as the 
portability of existing algorithms for parallel computation.
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