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Advances in high-throughput protein interaction detection methods enable

biologists to experimentally detect protein interactions at the whole genome level for

many organisms. However, current protein interaction detection via high-throughput

experimental methods such as yeast-two-hybrid are reported to be highly erroneous.

At the same time, the false negative rate of the interaction networks have also been

estimated to be high.

The purpose of this study was to investigate protein interaction networks from

the topological aspect, and to develop a series of effective computational methods to

automatically purify these networks, i.e., to identify true protein interactions from

the existing protein interaction networks and discover unknown protein interactions,

by their topological nature.

This thesis introduced three different approaches. First, it presented a novel

measure called IRAP, and further IRAP*, to assess the reliability of protein interac-

tion based on the alternative paths in the protein interaction network. A candidate

protein interaction is likely to be reliable if it is involved in a closed loop, in which

the alternative path of interactions between the two interacting proteins is strong.

The algorithm AlternativePathFinder was designed to compute the IRAP value for

each interaction in a protein interaction network.
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Second, the thesis presented a new model to identify true protein interactions

with meso-scale (middle size) network motifs in the protein interaction networks.

The algorithm NeMoFinder was designed to discover such network motifs efficiently.

In the algorithm, frequent trees are discovered firstly. Tree is a simper structure than

graph and the number of distinct trees is much smaller than the number of graphs

with the same size. By finding frequent trees, graph G is naturally divided into a set

of graphs GD, in which each graph is an embedding of a frequent tree. Then, the

notion of graph cousin was introduced to reduce the computational time of motif

candidate generation and frequency counting in GD.

Third, the thesis exploited the currently available biological information that

are associated with network motif vertices to capture not only the topological shapes,

but also the biological contexts in which they occurred in the PPI networks for net-

work motif applications. We present a method called LaMoFinder to label network

motifs with Gene Ontology terms in a PPI network. We also show how the resulting

labeled network motifs can be used to predict unknown protein functions.

Validation of IRAP and network motifs as measures for assessing the reli-

ability of protein interactions from conventional high-throughput experiments was

performed. For Saccharomyces cerevisiae, IRAP/motif models discovered 81.5% re-

liable protein interactions if the cutoff threshold was set to 0.5. If the threshold was

increased to 0.85, all the reliable protein interactions could be captured either by

the IRAP model or by the network motif model. Experimental results demonstrated

that both of the measures are good for assessing the reliability of protein interactions

from conventional high-throughput experiments. Furthermore, the performance of

IRAP/motif is clearly better than other topology based evaluation methods, such

as IG1 and IG2, for identifying true positive and false negative protein interactions.

Protein function prediction experiments showed that the labeled network motifs

extracted are biologically meaningful and can achieve better performance (both pre-

cision and recall) than existing PPI topology based methods for predicting unknown

protein functions.

The results suggest that a significant proportion of true protein-protein in-

teractions could be identified by our IRAP/motif models. These two models could
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facilitate the rapid construction of protein interaction networks that will help sci-

entists in understanding the biology of living systems. The results also suggest

that exploring remote but topologically similar proteins with labeled network motifs

could enable a more precise functional prediction of unknown proteins.
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xix

Summary

High-throughput protein-protein interaction networks are reported to be highly er-

roneous, and a large proportion of protein functions are unknown. The purpose of

this study was to investigate the protein interaction networks from the topological

aspect, and to develop a series of effective computational methods to automati-

cally purify these networks, and to automatically predict protein functions, by their

topological nature.

This thesis introduced three distinct approaches. First, it presented a novel

measure called IRAP, and further IRAP*, for assessing the reliability of protein inter-

action based on the alternative paths in the protein interaction network. Second, the

thesis presented a new model to identify true protein interactions with large size net-

work motifs in the protein interaction networks. A scalable algorithm NeMoFinder

was designed to discover meso-scale network motifs. The protein-protein interaction

assessment with the resulted meso-scale network motifs showed better performance

than small predefined network motifs. Third, this thesis explored not only the topo-

logical shapes of the network motifs, but also the biological context in which they

occurred. it was also showed the resulting labeled network motifs can be used to

precisely predict unknown protein functions.



CHAPTER 1

Introduction

DNA, RNA and proteins are the molecules that participate in life’s many vital

biological processes. They are unbranched polymer chains, formed by the string

together of monomeric building blocks drawn from a standard repertoire that is the

same for all living cells. These molecules often interact with each other frequently,

and/or conditionally depend on each other to provide higher level functional fea-

tures, e.g., functions of a protein are usually provided by its interacting with other

proteins and genes. This brings the new term, interactome, which refers to all

the interactions/relations in the cell. The resulted biological networks, such as sig-

nal transduction pathways and protein-protein interaction networks, play important

roles in many biological processes.

The research work on interactomics is important and necessary. That is

because inappropriate protein expression and interactions due to either genetic or

environmental factors usually cause diseases. Misunderstanding of these biological

networks will cause serious results, especially in new drug design and new medical

therapies.

Recent progress in genetics and computer science has offered various solu-

tions to generate vast amounts of data that simultaneously reports on all net-

works in the cell. These methods include the technological developments in high-
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throughput protein interaction detection methods such as yeast-two-hybrid [FS89]

and protein chips [Z+01], which have enabled biologists to experimentally detect pro-

tein interactions at the whole genome level for many organisms [ICO+01, UGC+00,

MHMF00, DBTM+01, RSDR+01]. In addition, many effective computational pro-

tein interaction prediction methods such as gene-fusions[MP+99] and phylogenetic

profiles[PMT+99] have been developed to help biologists to predict protein interac-

tions or to narrow down the list of candidates before doing biological experimenta-

tions. All these methods can be used to help to reconstruct the biological networks

that operate in cells: the collection of interactions can be modelled as a network,

with active elements modelled as vertices and interacting nodes connected by edges.

Now that the Human Genome Project and other genome projects have pro-

vided us with a partial view of the parts of networks in the cell, scientists’ focus has

shifted to how those networks operate to make an organism function. This will in

turn be easier for genome-based research to generate more data once we can iden-

tify and understand existing biological networks. Nevertheless, interactome is much

larger than genome and protonome. Consequently, interactome is much more com-

plex and far from fully developed (see Figure 1.1). Current general understanding of

these networks still remains rudimentary, even at a qualitative level. For example,

most signal transduction pathways are still modelled as a series of uni-directional

arrows connecting a linear chain of components. Such diagrams ignore connections

to and from other pathways, non-linear structures, and reactions that restore the

pathway to its original state when its input disappears, or allow it to adapt to a

prolonged stimulus.

Therefore, it will be an appropriate approach to combine classical graph anal-

ysis and data mining methods to study the behavior of the biological networks, in

the hope of uncovering general principles of network structures, functions, and evo-

lutions that can be used to construct a broad understanding of how cells work.
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Figure 1.1: Information Complexity.

1.1 Background

The function of a cell is based on complex networks of interacting chemical reactions

carefully organized in space and time. The cell can be viewed as an overlay of at

least three types of networks, which describes protein-protein, protein-DNA, and

protein-metabolite interactions. Interaction networks provide a convenient frame-

work for understanding complex biological systems and the study of their inherent

properties has proven extremely useful. However, understanding the structure of

these intracellular networks is a complex task, which is complicated by the presence

of and interactions between networks of different kinds of elements.

**To make the problem simple, this thesis focuses only on protein-protein

interaction (PPI) networks, to interpret the activity of proteins as well as how these

proteins interact from the graph topological prospect. It would be easy to append

the application to other real networks.

With the development of recent high-throughput techniques, a large amount

of PPI data are available. Unfortunately, a significant proportion of the PPIs ob-

tained from these high-throughput biological experiments has been found to contain

false positives. Recent surveys have revealed that the reliability of popular high-

throughput yeast-two-hybrid assay can be as low as 50% [LWG01, MKS+02, SSM03].

These errors in the experimental protein interaction data will lead to spurious dis-

coveries that can be potentially costly, e.g., wrong drug targets for diseases. It is

therefore important to develop systematic methods to detect reliable PPIs from high
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throughput experimental data.

Meanwhile, valuable information, such as the function and localization of

uncharacterized proteins, and the existence of novel protein complexes and signal-

transduction pathways are still not clear to us. People realize that the interaction

networks may provide a convenient framework for exploring and understanding the

complex biological systems. Even current network analysis is sometimes too ab-

stract to be readily applicable to biology and the networks lack structural details,

knowledge could still be learned even from the currently very incomplete networks,

for example, unknown protein function predictions based on existing PPI networks.

1.2 Aims

The purpose of this study was to investigate the PPI networks from the topological

aspect, and to develop a series of effective computational methods for reconstructing

portions of the networks so as to (1) automatically purify interactions for various

genomes. i.e., to identify true protein-protein interactions and discover hidden in-

teractions by their topological nature, and (2) predict unknown protein functions

based on existing PPIs. To do this art, the three following approaches were taken:

• Identifying the most promising alternative path for each protein

interacting pairs

The alternative interaction paths in PPI networks were used as a measure

to indicate the functional linkage between two proteins. The existence of

strong alternative path is likely to indicate a true-positive interaction. For

example, the presence of alternative paths in the PPI networks form circular

contigs, and proteins that are found together within a circular contig in yeast-

two-hybrid screens have been detected for known proteins in macromolecular

complexes as well as signal transduction pathways [WSL+00, WBV00]. These

closed loops (the alternative path plus the direct linkage) indicate an increased

likelihood of biological relevance for the corresponding potential interactions

[WSL+00, WBV00, ICO+01].
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• Finding unique and frequent network motifs in a protein-protein

interaction network

The conserved property of network motifs has been adopted as a measure

to validate interaction candidates. Network motifs, such as triad or tetrad,

usually represent particular topological patterns which appear only in one

kind of networks rather than in any other networks [MSOI+02]. The over-

represented property of the network motifs has been confirmed in a wide variety

of protein complexes [MSOI+02, SOMMA02]. Network motif can be used as a

measure for PPI validation as an interaction appearing frequently in curtain

network motifs is knowing to be reliable [SSH02a].

• Labelling network motifs in protein interactomes for protein function

prediction

Current network motif finding algorithms models the PPI network as a uni-

labeled graph, discovering only unlabeled and thus relatively uninformative

network motifs as a result. To exploit the currently available biological infor-

mation that are associated with the vertices (the proteins), a method called

LaMoFinder is presented to label network motifs with Gene Ontology terms in

a PPI network. The resulting labeled network motifs are then used to predict

unknown protein functions.

Current protein function prediction methods are based on the functional in-

formation of nearby proteins in the network. The missing interactions in an

incomplete PPI network usually cause a false prediction. By labeling network

motifs, we are able to exploit the currently available biological information that

are associated with the vertices (the proteins), and associate remote proteins

that are topologically and functionally correlated. The use of labeled network

motifs will enable, for the first time, the exploitation of remote but topologi-

cally similar proteins for the functional prediction of unknown proteins.

This research may provide a precise and efficient way to automatically ver-

ify protein interactions and predict protein functions in the existing protein-protein
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interaction networks of many organisms. It could help biologists in identifying true

protein interactions and predict unknown protein functions. It also may guide re-

searchers to discover unknown protein links or narrow down the list of candidates

before biological experiments. The tools presented in the study could be used to

generate highly reliable protein interaction networks, which are helpful for discover-

ing structures and functions of key proteins for new drug design. The set of labelled

network motifs generated may be of importance in explaining the functional and

physical linages among proteins inside or cross these network motifs.

1.3 Scope

These three approaches only focus on the topological properties of the protein-

protein interaction networks. Other properties, such as functional similarity or

subcellular co-localization, are mainly used as criteria to validate these three ap-

proaches.

The target of this study is to identify “true physical” links. Hence, only the

physical interaction networks are adopted in the experiments to validate the three

approaches. Functional links, which size are much larger, are not used.

1.4 Organization

The rest of this thesis is organized as follows. First, the topological properties of the

protein interaction network and its existing PPI evaluation methods will be reviewed

in detail in chapter 2. Chapter 3 introduces a quantitative measure with alternative

path approach for the reliability of protein interactions detected in high-throughput

genome-wide experiments. Chapter 4 describes a novel method as a computational

complement for repurification of the highly erroneous protein interactomes, involving

an iterative process of removing false positive interactions and adding interactions

detected as false negatives. Chapter 5 presents another strategy by using network

motifs to access the reliability of interaction pairs. The network motif strategy can

evaluate protein interacting pairs which have no alternative path. Chapter 6 exploits
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the currently available biological information that are associated with the proteins to

capture not only the topological shapes of the network motifs, but also the biological

context in which they occurred in the PPI networks for network motif applications.

Finally, we conclude in Chapter 7 with discussions about further work.

Networks have been used to model real-world relationships to better under-

stand them and to guide experiments to predict their behavior. Since incorrect

models will lead to incorrect predictions, it is vital to find a good model to fit

the protein-protein interaction networks that networks turns to be scale-free. In

chapter 2, we will first introduce the PPI network and then explore its topological

properties, both on global and local scale, which may reveal design principles of the

network.
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CHAPTER 2

Literature Review

In this chapter we first introduce existing protein-protein interaction (PPI) networks.

Then we review the global and local topological properties of the PPI networks.

In the end, we review recent protein interaction evaluation methods and protein

function prediction methods. Most of these methods are based on graph topologies.

2.1 Terminology

This section introduces the graph theoretic terminology and biological terminology

which will be used in the rest of the thesis.

2.1.1 Graph Theoretic Terminology

Biomolecular interaction data, generally referred to as biological or cellular net-

works, are frequently abstracted using graph models. Biological networks are ab-

stract representations of biological systems, which capture many of their essential

characteristics. In a biological network, molecules are represented by vertices, and

their interactions are represented by edges. We present here basic graph theoretic

terminology used in this thesis. We also give definitions of basic biological terms

used in this thesis. We assume that the definitions of DNA, RNA, protein, genome,
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proteome and interactome are commonly known and do not include them here.

A graph is a collection of points and lines connecting a subset of them; the

points are called vertices or vertices, and the lines are called edges. A graph is

usually denoted by G = (V, E), where V is the set of vertices and E ⊆ V × V is

the set of edges of G. We also use V (G) to represent the set of vertices of a graph

G, and E(G) to represent the set of edges of a graph G. A graph is undirected if

its edges are undirected, and otherwise it is directed. Vertices joined by an edge are

said to be adjacent. A neighbor of a vertex v is a vertex adjacent to v. We denote

by N(v) the set of neighbors of vertex v (called the neighborhood of v). The degree

of a vertex is the number of edges incident with the vertex. In directed graphs, an

in-degree of a vertex is the number of edges ending at the vertex, and the out-degree

is the number of edges originating at the vertex. A graph is complete if it has an

edge between every pair of vertices. Such a graph is also called a clique. A complete

graph on vertices is commonly denoted by Kn. A path in a graph is a sequence of

vertices and edges such that a vertex belongs to the edges before and after it and no

vertices are repeated; a path with k vertices is commonly denoted by Pk. The path

length is the number of edges in the path. The shortest path length between vertices

u and v is commonly denoted by d(u, v). The diameter of a graph is the maximum

of d(u, v) over all vertices u and v; if a graph is disconnected, we assume that its

diameter is equal to the maximum of the diameters of its connected components. A

subgraph of G is a graph whose vertices and edges all belong to G. A subgraph with

k vertices is said to be a size-k subgraph; a subgraph with n vertices and m edges

is represented as gn
m.

2.1.2 Biological Terminology

Proteins are important components of a cell. They are able of transferring signals,

controlling the function of enzymes, regulating production and activities in the cell

etc. To do this, they interact with other proteins, DNA, and other molecules. Some

of the PPIs are permanent, while others happen only during certain cellular pro-

cesses. Groups of proteins that together perform a certain cellular task are called

protein complexes. There is evidence that protein complexes correspond to complete
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or “nearly complete” subgraphs of PPI networks.

A molecular pathway is a chain of cascading molecular reactions involved in

cellular processes. Thus, they are naturally directed.

Homology is a relationship between two biological features which have a com-

mon ancestor. The two subclasses of homology are orthology and paralogy. Two

genes are orthologous if they have evolved from a common ancestor by speciation;

they often have the same function, taken over from the precursor gene in the species

of origin. Orthologous gene products are believed to be responsible for essential cel-

lular activities. In contrast, paralogous proteins have evolved by gene duplication;

they either diverge functionally, or all but one of the versions is lost.

2.2 Protein-protein interaction network

Proteins are the molecules that actually participate in life’s many biological pro-

cesses. They are often described as the “workers” in living cells. Similar to social

animals, proteins often interact with each other frequently. Functions of a protein are

usually provided by its interacting with other proteins and genes. The interactions

results in a large, and consequently complex, interaction network.

PPI networks are commonly represented in a graph format, with vertices

corresponding to proteins and edges corresponding to protein-protein interactions.

An example of a PPI network constructed in this way is presented in Figure 2.1

[PWJ04]. The network consists of many small subnets (groups of proteins that

interact with each other but not interact with any other protein) and one large

connected subnet comprising more than half of all interacting proteins. The volume

of experimental data on protein-protein interactions is rapidly increasing thanks to

high-throughput techniques which are able to produce large batches of PPIs. For

example, yeast contains over 5000 proteins, and currently about 18000 PPIs have

been identified between the yeast proteins, with hundreds of labs around the world

adding to this list constantly [XRS+00]. The analogous networks for mammals are

expected to be much larger. For example, humans are expected to have around

12000 proteins and about 106 interactions.
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The relationships between the structure of a PPI network and a cellular func-

tion are just starting to be explored. Many recent research works have been done on

interactome, including protein interaction network construction, topological analy-

sis, network purification, functional prediction, etc.,

Figure 2.1: The PPI network constructed on 11000 yeast interactions involving 2401
proteins from [PWJ04]. The network consists of many small subnets (groups of proteins
that interact with each other but not interact with any other protein) and one large
connected subnet comprising more than half of all interacting proteins.

2.2.1 Yeast PPI Network

Yeast, perhaps the best understood eukaryotic organism at the molecular and cellular

levels, is a tiny form of fungi or plant-like microorganism that exist in or on all

living matter, i.e., water, soil, plants, air, etc.,. A common example of a yeast is

the bloom we can observe on grapes. There are hundreds of different species of

yeast identified in nature, but the genus and species most commonly used for baking

is Saccharomyces cerevisiae. The scientific name Saccharomyces cerevisiae means

“a mold which ferments the sugar in cereal (saccharo-mucus cerevisiae) to produce

alcohol and carbon dioxide”. The ultimate reaction of importance in this process is
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the conversion of simple sugars to ethyl alcohol and carbon dioxide.

C6H12O6 → 2 CH3CH2OH + 2 CO2

A yeast cell is about 0.001 millimeter in diameter, which weighs about 0.008

to 0.010 milligram. Inside each cell are the following: a liquid solution of protoplasm,

protein, fat and mineral matter; one or more dark patches called vacuoles; and a

darker spot which is the nucleus. Nucleus is where the cell’s genetic information is

stored which controls all the operations of the cell.

A yeast cell has about 6000 different proteins. Like any living thing, yeast

is made up of chromosomes; there are 16 different chromosomes in yeast compared

with 23 in humans. In present, about 18000 protein-protein interactions have been

discovered and stored in databases. Protein interaction network databases such as

DIP [XSD+02], BIND [BDH03] and MIPS [MFG+02] documents these experimen-

tally determined protein-protein interactions. They also present protein interaction

from the molecular level to the pathway level for various organisms. The abundant

number of protein interactions allows us to analyze organisms at the genome level.

Recent studies on the reliability of high-throughout detection of protein inter-

actions using Y2H have revealed high error rates [EIKO99, MKS+02], some reporting

as high as 50% false positive rates [SSM03]. And as pointed out frequently, there is

very little overlap of observed interactions among yeast proteins when more than one

method is used [MKS+02]. The low coverage and small overlap suggest that high

false negatives coexist with high positives exhibited by current experimental detec-

tion methods. Accordingly, methods for assessing the reliability of each candidate

protein-protein interaction are urgently needed.

2.2.2 PPI networks of other genomes

Protein interactions of other genomes, such as E. Coli, C. elegans, D. melanogaster

(fruit fly), Mus musculus (house mouse) and even Homo sapiens (Human), are ac-

tively studied as well as S. cerevisiae. For example, C. elegans is an ideal model for

studying how protein networks relate to multicellularity [SCN+04]. Table 2.1 lists
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the current PPI networks for various genomes generated with high-throughput tools

[XRS+00, P+03].

ORGANISM PROTEINS INTERACTIONS
D. melanogaster 7052 20988

S. cerevisiae 4920 18228
E. coli 1852 7430

D. melanogaster 7052 20988
C. elegans 2638 4030
H. pylori 710 1425
H. sapiens 18284 33710

M. musculus 202 293
R. norvegicus 87 109

Table 2.1: PPI networks for various genomes. Data collected from DIP [XRS+00] and
HPRD [P+03]

In the rest of the chapter, global and local natural network topology prop-

erties will be studied. Unlike random distributed networks, natural networks turns

to be scale-free. Then, the state-of-art computational protein interaction evaluation

methods and protein function prediction methods will be discussed. Computational

methods using natural network topology properties are able to show better perfor-

mance than previous methods.

2.3 Network Topological Properties

Biological networks are usually modeled using various graph theoretic formalisms.

Metabolic pathways, for instance, are naturally modeled using directed hyper-graphs,

with vertices representing compounds (substrates and products), and hyper-edges

representing enzymes (reactions). It is possible to reduce such a model into a gen-

eral directed graph with vertices representing enzymes, and a directed edge from an

enzyme to another implying that the product of the first enzyme is consumed by a

reaction catalyzed by the other. Similarly, protein interaction networks are modeled

by simple graphs with edges corresponding to an observed interaction between pairs

of proteins.
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The PPI networks tend to be scale-free from their global topology aspect, i.e.,

the number of connections per protein is not distributed randomly. Instead, they

follow a power-law distribution such that most vertices have only a few connections,

and a small number of ‘hubs’ are highly connected. The deletion of such hubs is often

lethal, which is logical because something so centrally connected probably affects

many crucial cellular processes. Locally, PPI networks are seen to share structural

principles with engineered networks [Alo03]. Three of the most important shared

principles are modularity, robustness to component tolerances, and use of recurring

circuit elements. It is a complex task to understand and properly use these global

and local topologies of the PPI networks to evaluate protein interactions and predict

protein functions.

2.3.1 Global Properties

Recent works in network analysis [MSOI+02, GBBK02, YLSea04] have revealed

that the topology of complex natural networks such as protein-protein interaction

(PPI) networks are far from random. Many of these networks have been shown to

exhibit common global topological features such as the “small-world” and “scale-

free” properties [WS98, BR99].

Small-world

In 1998, small-world networks were identified as a class of random graphs by Duncan

Watts and Steven Strogatz [WS98] by noting that graphs could be classified accord-

ing to their clustering coefficient and their mean-shortest path length. Small-world

networks, as compared to other random graphs with the same number of vertices and

edges, are characterized by clustering coefficients significantly higher than expected

and mean shortest-path length lower than expected.

Small-world networks mean that it does not take many hops to get from one

vertex to another - the science behind the notion that there are only six degrees of

separation between any two people in the world. Many empirical graphs are well

modeled by small-world networks [Wat03], including social networks, the Internet,
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and gene networks. By definition, small-world networks have high representation

of cliques and subgraphs that are a few edges shy of being cliques, i.e. small-world

networks have sub-networks that are characterized by the presence of connections

between almost any two vertices within them. This follows from the requirement

of a high cluster coefficient. Secondly, most pairs of vertices will be connected by

at least one short path. This follows from the requirement that the mean-shortest

path length be small.

It is hypothesized that the prevalence of small-world networks in biological

systems may reflect an evolutionary advantage of such an architecture [BR99]. One

possibility is that small-world networks are more robust to perturbations than other

network architectures. If this were the case, it would provide an advantage to bio-

logical systems that are subject to damage by mutation or viral infection.

Scale-free

In 1999, Albert-Laszlo Barabasi and his colleagues at the University of Notre Dame

mapped the connectedness of the Web with a web crawler. They were surprised to

find that the structure of the web didn’t conform to the then-accepted model of ran-

dom connectivity. Instead, their experiment yielded a network that they christened

”scale-free”: the ratio of very connected vertices to the number of vertices in the

rest of the network remains constant as the network changes in size [BR99].

The follow-up discoveries about networks have been found to have impli-

cations well beyond the Internet, including some social and biological networks

[BJR+02, FFF99, Wuc01]. The notion of scale-free networks has turned the study

of a number of fields upside down. Scale-free networks have been used to explain

behaviors as diverse as those of airline traffic routes, power grids, the stock market

and cancerous cells, the dispersal of sexually transmitted diseases, as well as the

biological network functions and behaviors.

From the topological view, the vertices of a scale-free network aren’t randomly

or evenly connected. Scale-free networks include many “very connected” vertices,

hubs of connectivity that shape the way the network operates, while the rest of

vertices have limited number of neighbors. In contrast, random connectivity dis-
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tributions predicted that there would be no well-connected vertices, or that there

would be so few that they would be statistically insignificant. Although not all ver-

tices in that kind of network would be connected to the same degree, most would

have a number of connections hovering around a small, average value. Also, as a

randomly distributed network grows, the relative number of very connected vertices

decreases.

Mathematically, a scale-free network is defined by the presence of a power-law

tail in the degree distribution P (k) (probability distribution of the number of links

per vertex over the network), see Equation 2.1. The power-law behavior emerges by

a non-zero probability to find vertices with high number of links (hence high number

of neighbors). While in random networks, all the vertices are likely to have the same

degree k ∼ (k), as a consequence the system defines a ”scale” (k ∼ (k)).

P (k) ∼ k−γ (2.1)

The ramifications of this difference between the two types of networks (scale-

free and randomly distributed) are significant, but it’s worth pointing out that both

scale-free and randomly distributed networks can be what are called “small-world”

networks. So, in both scale-free and randomly distributed networks, with or without

very connected vertices, it may not take many hops for a vertex to make a connection

with another vertex. There’s a good chance, though, that in a scale-free network,

many transactions would be funneled through one of the well-connected hub vertices.

Because of these differences, the two types of networks behave differently as

they break down. The connectedness of a randomly distributed network decays

steadily as vertices fail, slowly breaking into smaller, separate domains that are

unable to communicate. Scale-free networks, on the other hand, may show almost

no degradation as random vertices fail. With their very connected vertices, which are

statistically unlikely to fail under random conditions, connectivity in the network is

maintained. It takes quite a lot of random failure before the hubs are wiped out, and

only then does the network stop working. In a targeted attack, however, in which

failures aren’t random but are the result of mischief, or worse, directed at hubs, the
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scale-free network fails catastrophically. Take out the very connected vertices, and

the whole network stops functioning. For example, viruses have evolved to interfere

with the activity of hub proteins such as p53 in a protein-protein interaction network,

thereby bringing about the massive changes in cellular behavior which are conducive

to viral replication.

2.3.2 Local Topological Properties

Complex biological networks have been classified by global characteristics such as

scale-free [BR99, BJR+02, FFF99, Wuc01] and small-world network connection

topologies [WS98, Wat03]. In order to investigate networks further beyond their

global features requires an understanding of the potential basic structural elements

which make up complex networks. Here are 2 of the most important principles of

local topology: modularity and network motif.

Modularity

Apart from these global topological characteristics, the complex networks are very

different from each other, but they all share the property that their structures are

like the result of dynamic non-Markovian processes of individual decisions [Alo03].

A closer observation found that these networks share striking local proper-

ties: the presence of many small dense subnetworks/clusters, namely, modules. For

example, proteins are known to work in slightly overlapping, co-regulated groups

such as pathways and complexes. An understanding of this principle will enable us

to model and search these networks effectively.

Modules, usually called clusters, in PPI networks of different size have been

found using the Highly Connected Subgraphs (HCS) algorithm [HS00] for cluster

analysis. By definition, a module is a set of vertices that have strong interac-

tions and a common function. A module has boundary vertices that control the

input/output interactions with the rest of the network. A module also has internal

vertices that do not significantly interact with vertices outside the module. Modules

may have special features that make them easily embedded in almost any system.
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For example, output vertices usually have “low impedance” [Alo03], so that adding

on additional downstream clients should not drain the output to existing clients.

Modules convey an advantage in situations where the environments change from

time to time. Therefore, modular biological networks may have an advantage over

non-modular networks in real-life ecologies, which change over time, i.e., modular

networks can be readily reconfigured to adapt to new conditions.

The modules in complex networks also make the networks robust to pertur-

bation. This makes sense in biology, because biological networks must work under

all plausible interferences that come with the inherent properties of the components

and the environment. Thus, for example, E. coli needs to be robust with respect

to temperature changes over a few tens of degrees, and no circuit in the cell should

depend on having precisely copies of a curtain protein.

Recent analysis on experimentally derived PPI networks observed that with

increasing size of the PPI network, the number of vertices in individual modules in-

creases, while the number of identified modules decreases [PWJ04]. This result may

be due to increasing noise in the data, or to an aggregation of transient complexes

in the overall network.

Network Motif

It turns out that many local topological patterns can be detected in the large complex

natural networks. For example, Milo et al.[MSOI+02] discovered various significant

patterns of local connections occurring more frequently in complex networks than

in random networks. They called these recurring local topological substructures as

“network motifs”.

While relatively less widely studied than the global topological features, such

network motifs can lead to better understanding about various classes of complex

networks, as some network motifs may be particular to specific classes of networks,

such as filtering out spurious input fluctuation, generating temporal programs of

expression or accelerating the throughput of the network. Whereas, a curtain part

of network motifs are discovered to be conserved in one class of networks. For

example, curtain triad and tetrad motifs are found to appear commonly in gene
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transcription networks of S. cerevisiae and E. coli but rather than in any other

kinds of networks [MSOI+02]. In addition, the presence of such network motifs also

indicates the basic structural elements that underlie the hierarchical and modular

architecture of such complex natural networks as PPI networks.

It is important to stress that the similarity in network motif topology does

not necessarily stem from duplication. Evolution, by constant tinkering, appears to

converge on these network motifs in different non-homologous systems, presumably

because they are optimally suited to carry out key functions [Wag03].

Network motifs can be detected by algorithms that compare the patterns

found in the target network to those found in suitably randomized networks. Once

a dictionary of network motifs and their functions is established, one could envision

researchers detecting network motifs in new networks just as protein domains are

currently detected in the sequences of new genes. Finding a sequence motif (e.g., a

kinase domain) in a new protein sheds light on its biochemical function; similarly,

finding a network motif in a new network may help explain what systems-level

function the network performs, and how it performs it.

2.4 Protein Interaction Evaluation Methods

With the development of recent screening techniques, a large amount of protein-

protein interaction data are available, from which biologically important information

such as the function and localization of uncharacterized proteins and the existence

of novel protein complexes and signal-transduction pathways can be recognized.

However, existing data on protein interactions contain many false positives, which

may lead to spurious discoveries that can be potentially costly, e.g., wrong drug

targets for diseases. Consequently, computational methods of assessing the reliability

of each candidate protein-protein interaction are urgently needed.

The evaluation methods based on the topological properties of the protein-

protein interaction networks could be divided into three types: experimental results

combination, interaction generalities and network motifs.
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2.4.1 Experimental Results Combination

The initial approach proposed by Mering et al. is to consider combining the re-

sults from multiple independent detection methods[MKS+02]. The multi-occurring

interactions are thought to be highly reliable because of its reproducible property.

In the abstract, it is easy to demonstrate that combining independent data

sets results in a lower error rate overall. For instance, combining three independent

binary-type data sets with error rates of 10% reduces the overall error rate to 2.8%

(for both false positives and negatives) [HN8] (7). Moreover, interrelating two differ-

ent types of whole-genome data also enables one to discover potentially important

but not obvious relationships–for example, between gene expression and the position

of genes on chromosomes, or between gene expression and the subcellular localiza-

tion of proteins (8, 9). (Enhanced: Integrating Interactomes. Science) However,

this is a limited approach because of the low overlap between the different detection

methods[HF01, MKS+02]. In Mering’s analysis, out of the 80,000 available inter-

actions between yeast proteins from the different high-throughput methods, only a

surprisingly small number (2,400) is supported by more than one method[MKS+02].

That is mainly because the interactions generated from these methods do not reach

saturation, and also because a significant fraction of protein interactions detected

are false positives. Therefore, co-existing interactions in more than one experiment

are usually treated as a good validation instead of a stand alone evaluation method.

2.4.2 Logistic Regression Model

Bader et al [BCC04] developed a quantitative method recently to compute con-

fidence values for protein interacting pairs with a logistic regression approach, in

which statistical and topological descriptors are used to predict the biological rel-

evance of protein-protein interactions. The training set is generated by comparing

networks from two major biological protein interaction detection methods, yeast-two-

hybrid[FS89] and co immunoprecipitation[G+02]. Pairs of proteins close together in

both networks were selected as positive examples, and proteins connected in one

network and far apart in the second network were selected as negative examples.
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After that, a logistic regression model is built in the training set to shift the divid-

ing surface between low and high confidence. Explanatory variables are based on

the data source, the topological properties of the interaction partners, etc.,. The

model is then used to predict confidence scores for pair-wise interactions in the full

data set.

Although the high-confidence interactions in Bader’s experiments show high

agreement with similar database annotations, it is abnormal that the co immuno-

precipitation interactions have a negative correlation with mRNA co-expression,

while the yeast-two-hybrid interactions have a positive correlation with mRNA co-

expression in their experiments [BCC04]. The contravention could be explained by

the fact that both of the biological methods have specific strengths and weaknesses

[MKS+02]. For example, interactions detected by the yeast-two-hybrid technology

largely fail to cover certain categories, such as proteins involved in translation.

2.4.3 Interaction Generalities

Besides the various works on the results from different biological experiments, an-

other approach is to model the expected topological characteristics of true protein

interaction networks, and then devise mathematical measures to assess the reliability

of the candidate interactions. Saito et al. developed a series of computational mea-

sures called interaction generalities (IG) [SSH02b, SSH02a] to assess the reliability

of protein-protein interactions.

Interaction Generality 1 (IG1). The IG1 measure was based on the idea

that interacting proteins that appear to have many interacting partners that have

no further interactions were likely to be false positives. IG1 was defined as the

number of proteins that directly interact with the target protein pair but do not

interact with any other proteins. The higher the IG1 value for an interaction, the

more likely it was a false positive.

This is a reasonable model for yeast-two-hybrid data, as some ‘sticky’ pro-

teins in yeast-two-hybrid assays do have a tendency to turn on the positive signals

of the assay by themselves. In yeast two-hybrid assays, candidate proteins carry

different parts of the biological mechanism necessary for the transcription of a re-
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porter gene; the interaction of two proteins brings about the complete assembly for

the transcription of the reporter gene, turning on a positive signal that can be de-

tected for the interaction. A sticky protein, however, can activate transcription of

the reporter gene without actually interacting with their partners, which leads to

an excess number of candidate partners for the protein. These proteins would be

observed to interact with a large number of random proteins in the experimental

data. They often have in silico high IG1 values.

Interaction Generality 2 (IG2). IG1 is a local measure which does not

consider the topological properties of the protein interaction network beyond the

candidate protein pair. As such, it has limited coverage for the different types of

experimental data errors. Saito et al. developed the IG2 measure [SSH02a] to

incorporate topological properties of interactions beyond the candidate interacting

pairs by considering the five possible topological relationships of a third protein C

with a candidate interacting pair (A,B). IG2 was the weighted sum of the five

topological components with respect to C. The weights were assigned a priori

by performing a principal component analysis on the entire interaction network.

Experimental results demonstrated that IG2 performed better than IG1 [SSH02a].

But IG2 remains a fixed local measure since the topological context that it

considers involved only five topological components of a neighbor C. As such, both

the IG1 and IG2 measures do not consider the underlying system-wide topologi-

cal structure of the entire interaction network to determine the reliability of the

discovered protein interactions.

2.4.4 Network Motifs

Either IG1 or IG2 uses the alternative links which connect the target protein pairs

separately. A more advanced method is to group these links into network motifs

and use these network motifs to access the reliability of the interaction pairs.

To understand the complex wiring diagrams of real networks–including the

protein interaction network–with unknown design principles, researchers thought

of breaking down such networks to identify the simplest units of commonly used

network architecture. In 2002, Milo introduced the concept of “network motif”
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[MSOI+02] as small patterns of interconnections that occur in the network at num-

bers that are significantly higher than those in randomized networks.

Because different types of networks are constructed by different network mo-

tifs, network motifs can be used to uncover the structural design principles of com-

plex networks. For example, the motifs in ecological food webs were distinct from

the motifs shared by the genetic networks of Escherichia coli and Saccharomyces

cerevisiae [MSOI+02]. These network motifs provide specific regulatory capacities

based on network topology. The star network motif was discovered frequently in com-

puter networks, because a central hub represented a switch or router which connects

a number of computers in the network[MFCG03]. The eukaryotic network motifs

were found in regulator gene interaction networks. Their topological structures can

be explained by the functional modules composed by these motifs[LRR+02]. There-

fore, these significative motifs can be assembled into network structures that help

the researchers evaluate the reliability of protein interaction pairs. An interaction

that appears frequently in multiple network motifs is usually thought to be reliable.

However, existing algorithms for detecting network motifs are not scalable

enough to find large network motifs. These algorithms mainly act by exhaustively

enumerating all subgraphs with a given number of vertices in the network. The

runtime of such algorithms increases significantly with network size. The subprob-

lem, maximal independent set, is NP-hard and even has no heuristic algorithm

which could be accomplished in polynomial time. Moreover, the number of pos-

sible network motifs increases exponentially with the motif size and the subgraph

isomorphism problem, an essential technique to identify different network motifs,

has already been proved to be at least NP-complete. It greatly limits the number of

network motifs researchers could scale to. Hence, to find meaningful network motifs,

which are sufficiently large, is difficult and very expensive.

2.4.5 Methods for Performance Study

All the evaluation methods based on topological properties of the protein-protein

interaction network will give a weight to each interaction. Normally the higher the

weight, the more reliable the interaction. Consequently, a series of experiments were

23



carried out to evaluate the effectiveness of using these weights to detect reliable

protein-protein interactions.

1. Experimentally reproducible interactions. Protein interactions that have been

detected by multiple independent experiments are able to be used as the de-

sired “gold standards”. The proportion of reproducible interactions should

increase in filtered protein interaction data with the increasing of the weight;

2. Annotated functional associations. By the ‘guilt-by-association’ principle [Oli00],

true interacting proteins should share at least a common functional role. The

proportion of interacting proteins with a common functional role should in-

crease in filtered interaction data with the increasing of the weight;

3. Gene expression correlations. Genes that are co-expressed indicate that their

gene products (the proteins) partake in the same pathway—the correspond-

ing proteins are thus highly likely to be interacting. Here, we need to check

whether the filtered interactions can be confirmed by co-expression at the

mRNA level;

4. Cellular localization cross-talks. For two proteins to be interacting in vivo,

they should at least be at a common cellular localization. Hence, the rate

of cellular localization cross-talk should be decreased in filtered interactions

with the increasing of the weight, indicating a reduced degree of biologically

irrelevant interactions in the rest data.

5. Biologically interacting cross-talkers. Biologically genuine cross-talkers, such

as the proteins involved in signal transduction pathways, share same functions

but are not co-localized. Therefore, there should be a proportion of the cross-

talking interactions with high weights having functional matches.

6. Many-Few interaction trend in protein networks. Maslov et al.[MS02] found

that there is a “many-few” interaction pattern in protein interaction networks.

As the weight thresholds increased, the proportion of “many-few” interactions

also should increase in the filtered interaction data.
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Another way to do performance study is to use the Gene Ontology (GO) 1.

The Gene Ontology (GO) is one of the most important otologies within the

bioinformatics community. 3554 out of the 4141 Saccharomyces cerevisiae

proteins, 2175 out of the 2911 Caenorhabditis elegans proteins and 6132 out

of the 7621 Drosophila melanogaster proteins were annotated under GO for

our evaluation experiments.

To compute the degree of biological homogeneity for any two proteins ac-

cording to their GO molecular function annotations, biological processing and

subcellular localizations, an enriched GO similarity measure is introduced by

Lord et al [LSBG03], which gives different weights to GO terms based on the

GO term frequency in the target species, and the similarity values of different

GO terms are determined by their shared parents, as follows:

Similarity(ta, tb) =
2× ln p(tab)

ln p(ta) + ln p(tb)
(2.2)

Here ta and tb are any two GO terms, and tab is their common parent. The

probabilities p(ta), p(tb), and p(tab) refer to the probabilities of the respective

GO terms occurring in the target species based on their term frequencies.

1Available at http://www.geneontology.org/
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CHAPTER 3

IRAP: Interaction Reliability by

Alternative Path

Current protein interaction detection via high-throughput experimental methods

such as yeast-two-hybrid has been reported to be highly erroneous, leading to po-

tentially costly spurious discoveries. This work introduces a novel measure called

IRAP, i.e., “Interaction Reliability by Alternative Path”, for assessing the reliabil-

ity of protein interactions based on the underlying topology of the protein-protein

interaction(PPI) network.

A candidate protein interaction is considered to be reliable if it is involved

in a closed loop in which the alternative path of interactions between the two in-

teracting proteins is strong. We devise an algorithm called AlternativePathFinder

to compute the IRAP value for each interaction in a complex PPI network. Vali-

dation of the IRAP as a measure for assessing the reliability of PPIs is performed

with extensive experiments on yeast PPI data. Results show consistently that IRAP

measure is an effective way for discovering reliable PPIs in large datasets of error-

prone experimentally-derived PPIs. Results also indicate that IRAP is better than

IG2, and markedly better than the more simplistic IG1 measure.

Experimental results demonstrate that a global, system-wide approach—such
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as our IRAP measure that considers the entire interaction network instead of merely

local neighbors—is a much more promising approach for assessing the reliability of

PPIs.

3.1 Introduction

Technological developments in high-throughput protein-protein interaction (PPI)

detection methods such as yeast-two-hybrid [FS89] and protein chips [Z+01] have

enabled biologists to experimentally detect protein interactions at the whole genome

level for many organisms [ICO+01, UGC+00, MHMF00, DBTM+01, RSDR+01]. Un-

fortunately, a significant proportion of the PPIs obtained from these high throughput

biological experiments has been found to contain false positives. Recent surveys have

revealed that the reliability of popular high-throughput yeast-two-hybrid assay can

be as low as 50% [LWG01, MKS+02, SSM03]. These errors in the experimental pro-

tein interaction data will lead to spurious discoveries that can be potentially costly,

e.g., wrong drug targets for diseases. It is therefore important to develop systematic

methods to detect reliable PPIs from high throughput experimental data.

Biological studies have shown that the interaction clusters obtained from

contiguous connections that form closed loops in PPI networks indicate an in-

creased likelihood of biological relevance for the corresponding potential interactions

[WSL+00, WBV00, ICO+01]. Proteins that are found together within a circular

contig in yeast-two-hybrid screens have been detected for known proteins in macro-

molecular complexes as well as signal transduction pathways [WSL+00, WBV00].

For example, the configuration A/B/C/D/A indicates that protein A binds to B, B

binds to C, C binds to D and D binds to A. We observe that such circular contigs

are formed by the presence of alternative paths in the interaction networks. This

has led to the use of alternative interaction paths in PPI networks as a measure to

indicate the functional linkage between two proteins [ICO+01].

In this chapter, we propose to use the length and strength of the alternative

paths between pairs of interacting proteins as a basis for detecting reliable PPIs from

high-throughput experimental data. We introduce a quantitative measure called
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“Interaction Reliability by Alternative Path” (IRAP) [CHLN04, CHLN05b] for as-

sessing the reliability of a detected PPI with respect to the presence of alternative

reliable interaction paths in the underlying topology of the experimentally derived

interaction network. We devise an AlternativePathFinder algorithm to compute the

IRAP values of the interactions in large complex PPI networks. Using the yeast

PPI data with annotated functional information as well as other experimental data,

we show positive experimental results that validate IRAP as a good system-wide

measure for discovering reliable PPIs in error-prone high-throughput experimental

data.

The rest of this chapter is organized as follows. Section 3.2 gives the related

work and the motivation for this work. Section 3.3 introduces IRAP as a quanti-

tative measure for the reliability of PPIs detected in high-throughput genome-wide

experiments. In Section 3.5, we describe the AlternativePathFinder algorithm for

computing IRAP values in complex PPI networks. Section 3.7 presents the various

comparative results of using the computed IRAP values for discovering reliable PPIs

for yeast. Finally, we conclude in Section 3.8 with discussions about further work.

3.2 Background

The reported high false positive rates associated with high-throughput experimental

PPI data [MKS+02, SSM03] have led researchers to develop methods to assess the

reliability of PPIs generated by large-scale biological experiments.

One approach is to combine the results from multiple independent detection

methods to derive highly reliable data [MKS+02]. However, this approach has lim-

ited applicability because of the low overlap [HF01, MKS+02] between the different

detection methods.

Another approach is to model the expected topological characteristics of true

PPI networks, and then devise mathematical measures to assess the reliability of the

candidate interactions. Saito et al. develop a series of computational measures called

interaction generalities (IG) [SSH02b, SSH02a] to assess the reliability of PPIs.

Interaction Generality 1 (IG1). The IG1 measure is based on the idea
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that interacting proteins that appear to have many interacting partners that have

no further interactions are likely to be false positives. IG1 is defined as the number

of proteins that directly interact with the target protein pair, subtracted by the

number of proteins interacting with more than one protein. The higher the IG1

value for an interaction, the more likely it is a false positive.

This is a reasonable model for yeast two-hybrid data, as some ‘sticky’ pro-

teins in yeast two-hybrid assays do have a tendency to turn on the positive signals

of the assay by themselves. In yeast two-hybrid assays, candidate proteins carry

different parts of the biological mechanism necessary for the transcription of a re-

porter gene; the interaction of two proteins brings about the complete assembly for

the transcription of the reporter gene, turning on a positive signal that can be de-

tected for the interaction. A sticky protein, however, can activate transcription of

the reporter gene without actually interacting with their partners, which leads to an

excess number of candidate partners for the protein. These proteins will be observed

to interact with a large number of random proteins in the experimental data. They

can be detected in silico with high IG1 values.

Interaction Generality 2 (IG2). IG1 is a local measure which does not

consider the topological properties of the PPI network beyond the candidate protein

pair. As such, it has limited coverage for the different types of experimental data

errors. Saito et al. develop the IG2 measure [SSH02a] to incorporate topological

properties of interactions beyond the candidate interacting pairs. By considering the

five possible topological relationships of a third protein C with a candidate inter-

acting pair (A,B), IG2 is the weighted sum of the five topological components with

respect to C. The weights are assigned a priori by performing a principal compo-

nent analysis on the entire interaction network. Experimental results demonstrate

that IG2 performs better than IG1.

We observe that IG2 remains a local measure since the topological context

that it considers involved only five topological components of a neighbor C. As

such, both the IG1 and IG2 measures do not consider the underlying system-wide

topological structure of the entire interaction network to determine the reliability of

the discovered PPIs. In contrast, the proposed alternative path approach aims to
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provide a comprehensive interaction reliability measure that does not impose any

restriction on the number of intervening proteins.

Evolution studies in the conservation of PPI networks [PB01] have suggested

association of PPIs with alternative paths, as the global interaction networks evolve

by augmenting existing interactions with new interactions in order to yield PPI

networks that are more efficient and robust to changes. Therefore, we introduce

a quantifiable measure called IRAP to evaluate the reliability of a detected PPI

with respect to the presence of a reliable alternative interaction path between the

two proteins in the global interaction network. IRAP takes into consideration both

the strength and the length of the alternative paths connecting the two proteins.

Extensive experimental results on yeast experimental data (see Section 3.7) will

show that IRAP is able to detect the reliable PPIs from error-prone high-throughput

experimental interactions better than existing assessment measures.

3.3 IRAP: Interaction Reliability by Alternative

Path

In this section, we define the proposed interaction reliability measure—Interaction

Reliability by Alternative Path (IRAP)—that assigns a reliability value to each can-

didate interacting protein pair in genome-wide interaction data. IRAP takes into

consideration both the strength and the length of the alternative paths connecting

the two proteins. The reliability of a candidate PPI is indicated by the collective

reliability of the strongest alternative path of interactions connecting the two pro-

teins in the underlying interaction network. A reliable PPI is accompanied by at

least one reliable alternative interaction path in the underlying interaction network.

3.3.1 Network Construction

An experimentally detected PPI network can be modelled using an undirected net-

work G = (V, E). Each node in the network represents a unique protein. An edge

exists between two nodes vA and vB if there is an interaction between the corre-
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sponding proteins A and B. The weight for this edge is initialized as the normalized

value of reversed IG1 [SSH02b]:

weight(vA, vB) = 1−
(

IG1G(A,B)

IG1G
max

)
(3.1)

IG1G(A,B) = 1 + |{(A′, B′) ∈ E|A′ ∈ {A,B}&degG(B′) = 1}| (3.2)

As defined by Saito et al., IG1G(A,B) is the number of proteins that directly

interact with the candidate protein pair, subtracted by the number of proteins in-

teracting with more than one protein [SSH02b], while IG1G
max is the maximum IG1

value in the interaction network G.

We use reversed and normalized IG1 as the initial edge weights to reflect the

local reliability of each interaction in the PPI network. Since IG1 is an reverse index

(i.e. the lower the better), we first reverse it to make it more natural (i.e. the higher

the better). Then, we normalize the the reversed IG1 values to fall between 0 and

1 so that it can be treated as a proper weight in our algorithm. The distribution of

the modified weights remains the same as that of IG1.

The task is to find the strongest alternative path that connects a candidate

pair of interacting proteins A and B. We initialize the weight value for node vA

to 1 and the rest of the nodes in the network G to 0. To compute IRAP (A,B),

we calculate the weight product through a path from vA to vB in the network that

excludes the direct connection between the two nodes.

3.3.2 Path Selection

True PPI networks are known to be real world networks that have short average dis-

tances between vertices [GR03]. This suggests that we should use path length as a

path selection criterion. However, (short) path length should not be used as the sole

selection criterion in PPI networks constructed from high-throughput experiments—

we should also take into consideration inherent but path length-independent exper-

imental errors such as the presence of sticky proteins which are measured by such

local topological values as IG1. In other words, we should consider both the path
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lengths and strengths when selecting a path in an interaction network constructed

from high throughout experimental data. If we choose the shortest path regardless

of the local strengths of the connections (in terms of IG1, say), it is likely that we

may select a path with spurious connections involving sticky proteins. On the other

hand, if we choose the strongest path regardless of the path lengths, we could end

up with a lengthy path which is highly likely to be formed by some spurious link(s).

For example, a path consisting of 30 locally strong interactions of weight 0.9 each is

less reliable compared to a path with a single but weaker interaction of weight 0.1.

This is because of the highly erroneous nature of such PPI networks constructed

from high-throughput experiments that have been shown to contain approximately

50% false positives [LWG01, MKS+02, SSM03].

Our IRAP algorithm takes into consideration both the path length and path

weight with the following path selection strategy. Whenever there is sharing of nodes,

we use the shortest path to approximate the (biologically) strongest alternative path

that connects the candidate interacting pair of proteins A and B in the interaction

network. This is done in IRAP by considering only non-reducible paths (Definition

1) as candidate alternative paths. Then, given all the candidate non-reducible paths

connecting nodes vA and vB that do not have any common nodes with each other,

we select the (experimentally) strongest path that has the largest weight product as

indicated by local experimental weights.

Definition 1. Non-reducible Path. A path φ = v1, . . . , vn is a non-reducible path

of edge (vA, vB) if we have v1 = vA, vn = vB (or vice versa); and there is no shorter

path φ′ connecting node vA and vB that shares some common intermediate nodes

with the path φ. That is, @ path φ′ = u1, . . . , um such that (ui, ui+1) ∈ E, u1vA, um =

vB, ur = vs for some r ∈ [2..m− 1], s ∈ [2..n− 1], m < n.

Figure 3.1 shows 3 alternative paths between the nodes A and B. Two of

the paths <A-D-E-B> and <A-F-G-D-E-B> have nodes D and E in common. The

shorter path is selected as a non-reducible path.

Formally, we define IRAP as follows:

Definition 2. IRAP. The reliability of a candidate PPI (A, B), IRAP (A,B), is
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Figure 3.1: An example of alternate paths.

indicated by the collective reliability of the strongest alternative path of interactions

connecting the two proteins in the underlying interaction network.

IRAP (A,B) = max
φ∈Φ(A,B)

∏

(u,v)∈φ

weight(u, v) (3.3)

where weight(u, v) denotes the weight value for edge (u, v) in the PPI network G;

Φ(A,B) denotes the set of non-reducible paths.

IRAP uses IG1-derived values as the local edge weights to identify interac-

tions that are more likely to be “experimentally-correct”. At the same time, by

considering only non-reducible paths as candidate alternative paths and by globally

taking the products of the normalized individual local weights as the path weights

for these candidate paths, IRAP also favors for shorter paths1 that are more likely

to be “biologically-correct”. The empirical results in Section 5 will show that such

combined strategy in IRAP’s path selection is indeed robust and effective for identi-

fying reliable interactions in networks constructed from interaction data that contain

a high percentage of false positives.

1As the local edge weights are normalized between 0 and 1, their product tends to become
smaller as more weights are multiplied together, resulting in a tendency for IRAP to favor shorter
paths.
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3.4 Statistics of Alternative Paths in PPI net-

works

First, we analyzed protein-protein interaction (PPI) datasets from three different

species (Saccharomyces cerevisiae, Drosophila melanogaster , and Caenorhabditis ele-

gans) to investigate the extent to which alternative paths are present in PPI datasets.

We focus here only on interactomes that are derived by the popular high-throughput

assays such as Y2H. Then, we provide some actual examples in which the presence

or absence of alternative paths can be used to increase or decrease the confidence of

protein-protein interactions.

3.4.1 PPI Statistics

The Saccharomyces cerevisiae PPI dataset has a total of 7,903 interactions and 4,141

proteins. After removing redundant and self- links, the dataset has 7,686 interactions

between the 4,141 proteins. 5,802 (75.5%) of these interactions have at least one

alternative path. The average length of the alternative path detected by IRAP is

4.98. Note that the alternative path determined by IRAP is not necessarily the

shortest path according to its definition (see [CHLN04], [CHLN05b], and the main

manuscript for the technical details).

The Drosophila melanogaster PPI dataset is a much larger one — it has 24,477

interactions between 7,621 proteins. After removing redundancy and self- links, the

dataset is left with 22,437 interactions between the 7,621 proteins. 19,732 (87.9%)

of these interactions have at least one alternative path with an average length of

4.64.

The Caenorhabditis elegans PPI dataset has 5,123 interactions between 2,911

proteins. After removing redundancy and self-links, the dataset has 5,025 interac-

tions between the 2,911 proteins. 3,312 (65.9%) of these interactions have at least

one alternative path with an average length of 3.93.

Table 3.1 summarizes these PPI statistics of the three experimental data sets.
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Table 3.1: PPI statistics of the various interactomes.

Species Interactome size PPI’s w/ alternative paths Avg path len
Saccharomyces cerevisiae 7,686 interactions btw 4,141 proteins 5,802 (75.5%) 4.98
Drosophila melanogaster 22,437 interactions btw 7,621 proteins 19,732 (87.9%) 4.64
Caenorhabditis elegans 5,025 interactions btw 2,911 proteins 3,312 (65.9%) 3.93

3.4.2 Example Alternative Paths

In our works[CHLN04, CHLN05b], we noted biological studies have showed that the

interaction clusters obtained from contiguous connections forming closed loops in

PPI networks have indicated an increased likelihood of biological relevance for the

corresponding potential interactions [WSL+00, WBV00, ICO+01]. Proteins that are

found together within a circular contig in yeast-two-hybrid screens have been de-

tected for known proteins in macromolecular complexes as well as signal transduction

pathways [WSL+00, WBV00]. These observations have led to the use of alterna-

tive interaction paths in protein interaction networks as a measure to indicate the

functional linkage between two proteins [ICO+01].

We illustrate here several actual examples from our yeast PPI dataset in which

the presence or absence of alternative paths can be used to increase or decrease the

confidence of protein-protein interactions.

Example 1: Absence of or weak alternative path indicating a false positive

PPI.

An interaction has been detected between the protein pair 〈Snf4, Yjl114w〉 (BIND

ID 6321323 and 6322348) with Y2H assays. However, the degree of functional ho-

mogeneity between the pair of proteins, as measure by enriched GO term similarity

[LSBG03], is as low as 0.062224. This biological observation indicates that the

detected interaction between 〈Snf4, Yjl114w〉 is highly likely to be a false positive.

We verify whether we can come to the same conclusion using only network

topological measures. The reversed IG1 value for 〈Snf4, Yjl114w〉 is a high 0.977012,

which supports the possibly wrong suggestion that this is a true interaction. In

contrast, the IRAP value is a low 0.02108, which means that even the strongest
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alternative path between the two proteins 〈Snf4, Yjl114w〉 (in this case, ”Snf4-

Yjr083c-Hsp82-Yjl114w”) has been deemed unreliable in our IRAP model. This

concurs well with the biological observation of a low degree of functional homogeneity

between the proteins.

Figure 3.2: Example: absence of or weak alternative path indicating a false positive
PPI. GOSimilarity(Snf4, Y jl114w) = 0.062224. IG1(Snf4, Y jl114w) = 0.977012.
IRAP (Snf4, Y jl114w) = 0.02108. Path = Snf4− Y jr083c−Hsp82− Y jl114w

Example 2: Strong alternative path indicating a true positive PPI.

In the previous example, a low IRAP value indicates a false positive PPI. IRAP

can thus be used to detect and eliminate possible false positives in an interactome.

Meanwhile, a strong alternative path can be used to identify true positives. We give

two examples below: the first example illustrates that IRAP can detect the same

true positive as IG1, while the second example shows a PPI that was missed by IG1

but was detected with our IRAP model.

• IRAP is high, IG1 is high

The protein pair 〈Ste5, Fus3〉 (BIND ID 6320308 and 6319455, labeled as 5

and 32 in the following figure) has a high degree of functional homogeneity

- in fact, its enriched GO term similarity is 1.000000. This interaction has a
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high probability to be true, because the two proteins have the same functions

(MAP-kinase scaffold activity, signal transduction during conjugation with

cellular fusion, etc.,) and are located at the same place (e.g. cytoplasm) in the

cell.

We verify whether using only network topological information can also help

us identify this interaction. Indeed, both its IRAP and reversed IG1 values

are 1.0000. The alternative path selected by IRAP was ”Ste5-Ste11-Fus3”. In

this case, both IRAP and IG1 correctly identified the true positive PPI.

Figure 3.3: Example: a strong alternative path indicating a strong positive PPI.
GO Similarity(Ste5, Fus3)=1.0000, Function=MAP-kinase scaffold activity. IG1(Ste5,
Fus3)=1.0000. IRAP(Ste5, Fus3)=1.0000. Path=Ste5-Ste11-Fus3

• IRAP is high, IG1 is low

Another protein pair of interest is 〈Spc34, Jsn1〉 (BIND ID 6322890 and

6322550). This interaction was supported by the high degree of functional

homogeneity between the two proteins, which have a relatively high enriched

GO term similarity of 0.886994.

For this interaction, IG1 failed to detect it. The reversed IG1 value is a low

0.103448. On the other hand, it has a relatively high IRAP value of 0.504180,

with an alternative path of ”Spc34-Spc19-Ykr083c-Ask1-Vps20-Taf40-Jsn1”.
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Note that in this case, the corresponding alternative path detected by IRAP

is fairly long, illustrating that the shortest path need not be the strongest one.

Figure 3.4: Example: strong alternative path indicating a strong positive PPI.
GO Similarity(Spc34, Jsn1)=0.886994. IG1(Spc34, Jsn1)=0.103448. IRAP(Spc34,
Jsn1)=0.504180. Path=Spc34-Spc19-Ykr083c-Ask1-Vps20-Taf40-Jsn1

3.5 AlternativePathFinder Algorithm

The yeast PPI network is very large in size and highly loopy. The network con-

structed for the yeast PPIs in our experiments has more than 4,000 nodes and 8,000

edges with many loopy components. Hence, it is necessary to develop an efficient

method to find the strongest alternative path and compute the IRAP value for each

candidate interacting pair (vA, vB) in G where G is a PPI network as described in

Section 3.3.1.

Based on the definition of IRAP, the strongest alternative path is not nec-

essarily the shortest path. For example, for 2 vertices u and v in V , if path Pa

shares an edge with another path Pb but does not share any edge with path Pc,

|Pc| < |Pa| < |Pb|, Weight(Pc) < Weight(Pa) < Weight(Pb), then Pa is stronger

than Pb and Pc according to the definition of IRAP, but Pa is neither the shortest

weighted path nor the shortest unweighted path. Thus, standard shortest path al-

gorithms, such as Dijkstra [Dij59], cannot be directly used here to find the strongest

38



alternative path. We develop a method called alternative path finder that utilizes

a breadth first search to compute the IRAP values in a large undirected network.

Algorithm 1 shows the details of the procedure.

The algorithm AlternativePathFinder first removes the edge (vA, vB) from

the network, and initializes the weight W of node vA to 1 and the rest of the

nodes in the network to 0. In each iteration t, the algorithm computes W (v) =

max(weight(v, v′) ∗W (v′)) for each node v in the current level, where v′ is a node

connected to v and W (v′) ∗ weight(v, v′) > W (v). The edge (v, v′) is then removed

from the network. The process stops when no more edge can be removed or when all

the edges connected to vB have been removed. Note that the function append(p, v)

appends the node v to the end of path p and returns the new path. The function

overlap(p, P ) returns true if the path p overlaps with any path in the path set P .

Our algorithm is based on breadth first search (BFS). It terminates when all

the edges of target pair have been removed. In the worst case, it traverses the whole

graph. The computational time for each interaction pair is therefore linear to the

number of edges, m. Since there are altogether m candidate interaction pairs, the

total computational time is O(m2).

Consider again Figure 3.1 which shows 3 alternative paths between the nodes

A and B. Two of the paths <A-D-E-B> and <A-F-G-D-E-B> have nodes D and

E in common. Let us illustrate how the algorithm computes the IRAP value for the

PPI between A and B.

First, we set the value for node A to 1 and the values for the remaining nodes

to 0. The edge (A,B) is removed from the graph. After the first iteration, node

values are propagated from A to C, A to D, and A to F . The edges (A,C), (A,D)

and (A,F ) are thus removed from the network. In the second iteration, node values

are propagated from C to B, D to E, D to G, and F to G, and the edges (C, B),

(D,E), (D,G) and (F,G) are removed from the network. In the final iteration, the

node value is propagated from E to B, and the edge (E, B) is removed. This results

in an empty graph, and the process terminates at this point with the IRAP (A,B)

given by the value at B.

Note that the path <A-F-G-D-E-B> was not traversed as the algorithm
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Algorithm 1 AlternativePathFinder

1: Input: PPI network G = (V, E);
2: Output: Set of IRAP (vi, vj) for all edges (vi, vj) ∈ E;
3: Let weight(vi, vj) denote the weight of edge (vi, vj) ∈ E, W (t)(v) denote the weight

of node v ∈ V in iteration t, pv denote a path connecting vA and v, P denote the set
of paths connecting vA and vB, and p denote the strongest alternative path between
vA and vB;

4: for each pair of interacting proteins (A,B) denoted by (vA, vB) do
5: Set t = 0; W (t)(vA) = 1; P = ∅;
6: for each node v ∈ V − {vA} do
7: Set W (t)(v) = 0;
8: end for
9: Remove edge (vA, vB) from E;

10: repeat
11: for each (vi, vj) ∈ E & W (t)(vj) > 0 do
12: if vj = vB then
13: Skip edge (vi, vj);
14: end if
15: IRAP = W (t)(vj)× weight(vi, vj);
16: Remove edge (vi, vj) from E;
17: if IRAP > W (t)(vi) then
18: W (t+1)(vi) = IRAP ;
19: pvi = append(pvj , vi);
20: if vi = vB & overlap(pvi , P ) = false then
21: IRAP (vA, vB) = IRAP ;
22: P = P + {pvi};
23: end if
24: end if
25: end for
26: t = t + 1;
27: until (no more edge is removed) OR (all the edges connected to vB have been

removed)
28: end for

automatically selects the shorter path when the paths share some common nodes.

In this case, path <A-F-G-D-E-B> shared two common nodes D and E with path

<A-D-E-B>. Hence, only two paths <A-D-E-B> and <A-C-B> are traversed by

the algorithm to propagate node values from A to B. The target node B is assigned

the larger weight product of the two paths.

Next, we prove that the path p chosen by the algorithm has the maximum

weight product among all the non-reducible paths between two nodes in G.

Theorem 3.5.1. The algorithm AlternativePathFinder finds the strongest alterna-

tive path p such that
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∏

(u,v)∈p

weight(u, v) = IRAP (vA, vB)

Proof: Let vA and vB be the nodes that correspond to a pair of interaction proteins.

Let PATH = {p1, p2, . . . , pk} denote the set of paths between vA and vB that have

at least one node in common. Let {v1, v2, . . . , vq}, q ≥ 1 be the common nodes of

the paths. We can partition PATH into q + 1 sets of subpaths, PATH1,PATH2,

. . ., PATHq+1, where PATH1 consists of paths from node vA to v1, PATH2 consists

of paths from v1 to v2, . . ., PATHq+1 consists of paths from vq to vB.

Consider the set PATH1. Only the first path that reaches v1 is allowed to

propagate values to the nodes beyond v1. This is because the algorithm removes

an edge after propagating a value through the edge. Thus, the first path reaching

the common node v1 removes all the edges connecting to v1. This path is also the

shortest path from vA to v1 since the procedure propagates values from node vA to

the next nodes simultaneously along all the paths.

Similarly, in the sets PATH2, . . ., PATHq+1, the first path that reaches the

end node from the start node is also the shortest path. Hence, the algorithm finds

all the shortest path(s) from node vA to node vB among all the paths in PATH.

Given the definition of the non-reducible path in section 3.3, the shortest path(s)

found by the algorithm in PATH is non-reducible.

Thus, the algorithm finds all the non-reducible paths from node vA to node

vB. Among them, the algorithm chooses p which has the maximum weight product.

2

3.6 Heuristic IRAP

While IRAP has shown great promises, the AlternativePathF inder algorithm em-

ployed to determine IRAP is computationally expensive and cannot scale well.

It has to traverse the PPI network once for each target interaction in order to

find all non-reducible path(s). Figure 3.5 shows the runtime requirement of the

AlternativePathF inder algorithm (on a 800 MHz Pentium III PC with 256 MB

RAM) versus the increase in network size. We find that for 8,454 interactions, the
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program requires more than half an hour. Clearly, this approach is infeasible for a

large PPI network such as the D. melanogaster.
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Figure 3.5: Running time of AlternativePathF inder versus network size.

To overcome this limitation, we introduce the use of heuristic search to speed

up the computation of IRAP in large PPI networks. The essential idea is to make

use of a well designed cost function to guide the search for the most promising path.

Here, we adopt the best first search strategy. Each node that has been visited is

assigned two values: The first value g is the cost from the source node to the node

n, and the second value h is the estimated distance from n to the destination node.

The node with the lowest g +h value is the most promising node and will be visited

first.

The key to ensuring a good speedup using heuristic search lies in the design

of the cost function, namely the function to estimate the h value. In recent years,

analysis of interactome data has highlighted the apparent scale-free behaviour of

the observed PPI network [JMBO01]. Scale-free networks are characterized by an

uneven distribution of connectedness. A selected number of nodes will serve as

“very connected” hubs, while the rest of the nodes in the network will have very

few neighbours. We call the former a hub node. The defining feature of scale-free

networks is that the degrees of vertices (k) are distributed according to a power

law: f(k) ∝ k−γ, where γ > 0 and k = 0, 1, . . .. Hence, a plot of log(degree) by
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De- No. of hubs Paths in- Paths not in- Path avg Path avg
gree (Percentage) volve hub volve hub len w/ hub len w/o hub
≥40 25 (0.6%) 61.2% 38.8% 5.23 5.28
≥30 39 (0.9%) 69.8% 30.2% 5.23 5.31
≥25 52 (1.2%) 74.7% 25.3% 5.21 5.41
≥20 87 (2.0%) 82.7% 17.3% 5.20 5.74

Table 3.2: Statistics on hubs in a PPI network.

log(frequency) will show a decreasing linear trend.

Such kind of degree distribution greatly influences the way the network op-

erates. Table 3.2 shows a summary of the percentage of paths involving at least

a hub node, the percentage of paths not involving a hub node, and their average

path lengths respectively. We observe that at 2% of hub nodes, the reduction in the

average lengths of the paths with and without hub nodes is rather significant. A

non-reducible path is highly likely to pass through a hub node. In other words, an

alternative path involving a hub node is likely to be shorter than a path without any

hub node. With this in mind, we design a function to estimate h (see Algorithm 2

and 3).

In Algorithm 2, we select the top 2 % nodes with highest degree as hub nodes

and store them in a set V ′. For each node vi ∈ V ′ (1 ≤ i ≤ k), we use a breadth

first search strategy to compute its distance to all other nodes u, dist(vi, u), in the

graph G.

Once the distances from a hub node to other nodes have been computed, we

proceed to perform the heuristic search. Suppose the source node is vA and the

destination node is vB. For each node u in G, the estimated length of the remaining

path, h, is given by the estimation function as detailed in Algorithm 3. Lines 4-6

deal with the case when vB is a neighbor of u, then h is 1. Lines 8-11 check to see if

u is a hub node and use the pre-computed distance if u turns out to be a hub node.

Lines 12-14 perform the computation of the distance of u through all the hub nodes.

Finally, in Line 15, we select the smaller of the shortest distance through the hub

nodes and (2D − g) where D is the diameter of graph G, and g is the sum of the

length of path thus far. (2D − g) is the upper bound of h as it denotes the longest

path length (2D) subtracting the path length from source node to node u.

We implemented the heuristic IRAP in C++ and evaluated its performance
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Algorithm 2 SelectHubs

1: Input: PPI network G = (V, E), number of hub nodes k;
2: Output: Set of selected k hub nodes V ′, and the distance dist(vi, u) for each vi ∈ V ′

and u ∈ V − V ′;
3: for each node v ∈ V do
4: degree(v) = No. of neighbours of v;
5: end for
6: Sort nodes with their degrees from the largest to smallest;
7: Let V ′ = {v1, v2, . . . , vk};
8: for each node vi ∈ V ′, 1 ≤ i ≤ k do
9: Compute the distance dist(vi, u) for all nodes u ∈ V −V ′ with a breadth first search

strategy;
10: end for

Algorithm 3 Estimate

1: Input: PPI network G = (V, E), current node u, the initial node vA and the destina-
tion node vB;

2: Output: Estimated length of remaining path h for node u;
3: Let D be the diameter of graph G, and g be the sum of the length of path thus far;
4: if vB is a neighbor of u then
5: h = 1;
6: return h;
7: end if
8: if u ∈ V ′ then
9: h = dist(u, vB);

10: return h;
11: end if
12: for each vi ∈ V ′ do
13: hi = (dist(vi, u) + dist(vi, vB));
14: end for
15: h = min(h1, h2, . . . , hk, 2D − g);
16: return h;

with the AlternativePathFinder algorithm. Two sets of experiments are performed

on the yeast PPI network. The first set of experiment aims to determine the speedup

of heuristic IRAP over the AlternativePathFinder algorithm. The second set of

experiments aims to show the accuracy attained by the heuristic IRAP as compared

to the AlternativePathFinder algorithm.

Figure 3.6 indicates that as the network size increases, the ratio of the runtime

for the AlternativePathFinder algorithm over the heuristic IRAP increases from 1.01

to 1.40. In other words, at 16,000 interactions network, we achieve a speedup of 40%.

This indicates that it is feasible to run the algorithm on larger PPI networks, such
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Figure 3.6: Speedup of heuristic search over AlternativePathFinder algorithm.

as D. melanogaster which has more than 20,000 PPIs.

However, while the speedup achieved is impressive, one worry is that the

heuristic search may miss the optimal solution too often to make the results in-

accurate. Therefore, an accuracy measure should be taken to show the quality of

the heuristic IRAP. The next experiment examines the effect of network size on the

accuracy of the heuristic IRAP. The accuracy measure is the number of PPIs, for

which the heuristic IRAP correctly finds the strongest alternative paths, divided by

the total number of PPIs.
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Figure 3.7: Accuracy of the heuristic IRAP.
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Figure 3.7 shows the result of the experiment. We observe that once the net-

work size exceeds 5000 interactions, the accuracy of the heuristic IRAP is relatively

stable at a high degree of accuracy of around 95 %.

3.7 Experimental Results

We implemented2 the alternative path finder algorithm and its heuristic IRAP al-

gorithm in C++, and applied them to compute the IRAP values of protein interac-

tions in large protein interaction networks generated by data from high-throughout

genome-wide biological experimental methods. Then we validated the effectiveness

of IRAP in the following ways.

3.7.1 Data Preparation

The experimental data were combined from the following publicly available yeast

protein interaction datasets:

1. Ito et al. [ICO+01]. We downloaded the core dataset containing 841 protein-

protein interactions available from the BRITE web site at KEGG [KGKN02].

The core set of Ito is formed by cases, in which the interactions have been

detected more than three times by the two-hybrid assay; and

2. Uetz et al. [UGC+00]. We downloaded a dataset of 957 protein-protein

interactions, also from the BRITE web site; and

3. Munich Information Center for Protein Sequences (MIPS) [MFG+02].

We obtain a dataset of 10,413 interactions (from the MIPS PPI 120803 data

file).

After combining these three datasets and removing redundancy from them, we

had 8,454 protein-protein interactions involving 4,319 proteins. Note that this was a

much larger set of interaction than the interaction dataset that Saito et al. previously

2The computer has a pentium IV 1.1G Hz CPU and 1G memory. The operating system is
Linux Fedora Core 3.0.
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used to evaluate their IG2 measure in [SSH02a]—much new interaction data have

since been added to the above databases. For comparison, we also implemented the

IG1 and IG2 algorithms as described in [SSH02b, SSH02a].

3.7.2 Validation of IRAP

We carried out a series of experiments to evaluate the effectiveness of using the

computed IRAP values to detect reliable protein-protein interactions.

1. Experimentally reproducible interactions. We use protein interactions that

have been detected by multiple independent experiments as the desired “gold

standards”. We show that the proportion of reproducible interactions increases

in IRAP-filtered protein interaction data;

2. Annotated functional associations. By the ‘guilt-by-association’ principle [Oli00],

true interacting proteins should share at least a common functional role. Here,

we show that the proportion of interacting proteins with a common functional

role increases in IRAP-filtered interaction data;

3. Gene expression correlations. Genes that are co-expressed indicate that their

gene products (the proteins) partake in the same pathway—the corresponding

proteins are thus highly likely to be interacting. Here, we check whether the

IRAP-filtered interactions can be confirmed by co-expression at the mRNA

level;

4. Cellular localization cross-talks. For two proteins to be interacting in vivo,

they should at least be at a common cellular localization. We check here

that the rate of cellular localization cross-talk is decreased in IRAP-filtered

interactions, indicating a reduced degree of biologically irrelevant interactions

in the post-IRAP data.

5. Biologically interacting cross-talkers. Biologically genuine cross-talkers, such

as the proteins involved in signal transduction pathways, share same func-

tions but are not co-localized. We check the IRAP model and found that a
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large proportion of the cross-talking interactions with high IRAP values have

functional matches.

6. Many-Few interaction trend in protein networks. Maslov et al.[MS02] found

that there is a “many-few” interaction pattern in protein interaction networks.

The proposed IRAP model indicates that as the IRAP thresholds increased,

the proportion of “many-few” interactions also increases in the IRAP-filtered

interaction data. This result provides yet another biological validation of

IRAP.

Experimentally-Reproducible Interactions

Protein interactions that are confirmed by multiple independent experiments3 are

often regarded as highly reliable. In the combined dataset, 2,394 (that is, ∼28%)

experimentally reproducible interactions are confirmed by at least two independent

experiments. We use this set of reproducible interactions as the “gold standard” to

estimate the degree of true positives in our IRAP-filtered interaction data.

Figure 3.8 shows the ratios of experimentally-reproducible (reliable) interac-

tions over the non-reproducible ones found in sets of protein interactions filtered

with various IRAP values. The proportion of reliable experimentally reproducible

interactions increased with higher IRAP values, as more of the unreliable experi-

mental interactions were filtered away by the higher IRAP thresholds. The curve in

figure 3.8 indicates that IRAP is effective in detecting reliable protein interactions

from high-throughput experimental data.

We also compared the performance of IRAP with Saito et al.’s Interaction

Generality measures IG1 and IG2 based on their average values in the class of repro-

ducible interactions and non-reproducible interactions. Table 3.3 shows the different

mean values and standard deviation values for IG1, IG2, and IRAP. The difference

between the mean values of IRAP for reproducible interactions and non-reproducible

interactions was much more pronounced than the corresponding differences between

the mean values for IG1 and IG2 (0.13 vs. 0.07 and 0.05). The differences indicate

3This includes interactions that are symmetrically detected in yeast-two-hybrid screens: namely,
protein A(bait)–protein B(prey) and protein B(bait)-protein A(prey) are both positive.
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that the performance of IRAP is clearly better than IG1 and IG2 for identifying

reproducible and non-reproducible protein interactions. The excellent performance

of IRAP could be explained by the topological nature of the alternative paths. The

alternative path approach provides a comprehensive interaction reliability measure

that does not impose any restriction on the number of intervening proteins. In con-

trast, IG1 and IG2 are local measures since their topological context involves only

directed neighbors or five topological components of a neighbor C. As such, both

the IG1 and IG2 measures do not consider the underlying system-wide topological

structure of the entire interaction network as IRAP does to determine the reliability

of the discovered protein interactions.

We note that table 3.8 also shows that IRAP has a relatively higher stan-

dard deviation value(0.28) than IG1(0.05) and IG2(0.08). This is because about

14% overlapping interactions in the target network have no alternative path, and

thus result in zero IRAP value. By excluding these interactions, the corresponding

standard deviation value for IRAP decreases to 0.14, which is close to the standard

deviation value of IG1 and IG2. The experiment shows that IRAP is better than

IG1 and IG2 if the target protein interacting pair has at least one alternative path.
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reproducible ones (“non-rep”) increases as PPIs are filtered with higher IRAP values.
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Reproducible Non-Rep Diff-
Mean Dev Mean Dev erence

IG1 0.9564 0.05 0.8967 0.12 0.0597
IG2 0.9190 0.09 0.8487 0.15 0.0703

IRAP 0.7467 0.28 0.6162 0.36 0.1304

Table 3.3: Mean and standard deviation values for IG1, IG2 and IRAP.

Functional Associations

The ‘guilt-by-association’ approach [Oli00] has been used widely to infer the func-

tional roles of unknown proteins by using the principle that interacting proteins

should share at least a common functional role. Here, we used this principle to eval-

uate the performance of IRAP in filtering false positives from large sets of experi-

mental protein interaction data. By the ‘guilt-by-association’ principle, we expect

that as the value of IRAP increases, the proportion of interacting proteins with a

common functional role also increases in the resulting IRAP-filtered data.

We referred to the Comprehensive Yeast Genome Database at MIPS[MFG+02]

available at http://mips.gsf.de/genre/proj/yeast for reference functional annotations

of the yeast proteins. We used the MIPS annotation dated 03-06-25 in our experi-

ment here. Out of the 4,319 proteins and 8,454 interactions in our original dataset,

3,150 proteins and 4,743 interactions had functional annotations. Only 61% of the

interactions share at least one common cellular role. [E1, E2]In Figure 5.14, we

show the effect of IRAP as a filtering measure: as the IRAP threshold was increased,

the proportion of interacting pairs with common cellular roles increased from 61%

to 87%, [E3, generalization]indicating an increased proportion of true protein in-

teractions in the filtered interaction data by the ‘guilt-by-association’ principle. The

experiment results matched what we predicted very well.

For comparison, we also showed the performance of IG1 and IG2 in the fig-

ure. With IG2, the proportion of interacting pairs with common functional roles

increased from 61% to about 73%; and with IG1, the proportion increased from

61% to 68%. The performance of IRAP is clearly better than IG1 and IG2 for

identifying true protein interactions. This is because, unlike IG1 and IG2, IRAP
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considers topological content involving the proteins that are not directly connected

to, but have at least one solid path to the target proteins. These proteins may

form circular contigs to provide higher level functions. The circular contigs with

known proteins have been detected in macromolecular complexes as well as signal

transduction pathways [WSL+00, WBV00].
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Gene Expression Correlations

Studies have also shown that the average correlation coefficient of gene expression

profiles that corresponds to interacting protein pairs is significantly higher than those

that correspond to random pairs [Gri01, DSXE02]. If IRAP is an effective measure

for assessing protein interactions, then we should find that interacting protein pairs

with higher IRAP values are more likely to be co-expressed.

To evaluate if this is true with our dataset, we downloaded the yeast gene

expression dataset from Eisen’s Lab [ESBB98]( http://rana.lbl.gov/EisenData.htm).

The dataset comprised expression vectors from 80 experiments on 6,221 yeast genes,

4,287 of which had their corresponding proteins in our interaction dataset. We

computed the average correlations of gene expression for protein partners with dif-

ferent IRAP thresholds, and show in figure 5.16 that gene expression correlations

increased from 26.4 to 30.5, as the IRAP threshold increased. The experimental

results indicate that protein interactions with higher IRAP values also have higher

gene expression correlation. Because high gene correlation corresponds to the true

interacting protein pair, the high IRAP values imply an increased possibility of true

positives.

We also compared the performance of IRAP with that of IG1 and IG2 in

figure 5.16. As the threshold of IG1 and IG2 increased, gene expression correlations

increased from 26.4 to 27.6 and 29.0 respectively. The result shows that IRAP

once again performs better than IG1 and IG2. A reasonable explanation is that

in a small-world protein interaction network, high clustering coefficient property

predicates that proteins are likely to form dense clusters by interactions[Wag01].

Therefore, the denser the alternative paths between two nodes are, the more likely

that the edge connecting the two nodes is true positive.

Cellular Localization Cross-talks

An experimentally-detected PPI can still be a false positive in the biological sense.

An example is an interaction involving two proteins in different cellular localization—

it is most likely an in vivo false positive. We use this principle to check if the rate of
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cellular localization cross-talk is decreased in IRAP-filtered interactions, which will

indicate that IRAP is an effective measure for reducing the degree of false-positives.

We refer again to the MIPS[MFG+02] database for the cellular localization

annotation dated 03-03-21 of the yeast proteins. Out of the 4,319 proteins in our

8,454 interaction dataset, we have 2,588 proteins with known cellular localizations

and 4,188 PPIs involving these proteins. Only 49.5% of our original interactions

involved proteins with an annotated cellular location, and 85.3% of them share a

common cellular location.
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Figure 3.11: Proportion of interacting proteins with common cellular localizations in-
creases at different rates under different interaction reliability measures.

Figure 5.15 shows that as the IRAP threshold is increased, the proportion of

interacting pairs with common cellular localization increases from 85.3% to 93.4%,

indicating that the rate of potential cellular localization cross-talk has decreased in

PPI data filtered with IRAP values. The corresponding performance for IG1 and

IG2 is also shown for comparison. Again, IRAP is a better indicator for true PPIs

under the cellular localization cross-talk criterion, consistent with the results in all

the other experiments.

Biologically interacting cross-talkers

From our cellular co-localization experiment in the previous section, we also ob-

serve that there are 257 protein pairs with very high IRAP values (≥ 0.95) that do
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Figure 3.12: Distribution of “many-few” interactions increases with higher IRAP values.
Protein with less than 10 interacting partners is a “few” protein; otherwise it is a “many”
protein.

not co-occur in the same cellular localization. On closer inspection, we find that a

large proportion (53%) of these cross-talking interactions have functional matches

based on MIPS [MFG+02] 4, suggesting that these interactions are highly likely to

be biologically genuine cross-talkers, such as those involved in signal transduction

pathways. Signal transduction refers to the movement of biological signals from

outside the cell to inside by proteins that can interact in vivo with partners across

subcellar boundaries (i.e., they are not co-localized). As in the previous evaluation

(Section 3.7.2) where we have used co-localization as a necessary criterion for inter-

action, many current PPI prediction methods also exclude non-co-localized protein

pairs in their training data [JYG+03]. As a result, they are often inadequate for

detecting the cross-talkers.

Our IRAP method can be useful for recognizing cross-talking protein pairs by

detecting high IRAP interactions that involve non-co-localized protein pairs. Table

3.4 shows some examples of non-co-localizing PPIs with high IRAP values that are

involved in a common functional pathway such as signal transduction.

4In comparison, only 14% of the interactions with low IRAP value (< 0.1) have functional
matches.
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ProteinA Cellular Localization ProteinB Cellular Localization Functional Pathway
YDR299w nucleolus-protein YLR208w cytoplasm-release of Vesicular transport

transport transport vesicles from ER (Golgi network)
YOL018c endosome, ER- YMR117c spindle pole body- Cellular import

syntaxin SNARE spindle pole component
YDL154w nucleus-recombination YBR133c cytoplasm- neg. Meiosis

regulator of kinase and budding
YGL192w nucleus-put. Adenosine YBR057c cytoplasm-meiosis Development of

methyltransferase potentially in premeiosis asco-basido
for sporulation DNA synth -zygo spore

YDR299w nucleolous- protein YPL085w cytoplasm,ER-veiscle coat both in vesicular
transport protein interacts cytoplasm, transport

with sec23p
YEL013w vacuole-phosphorylated YFL039c cytoskeleton-actin Protein targeting

protein which interacts with and budding
Atg13p for cyto to vacuole
targeting vacuole targeting

Table 3.4: Examples of interactions with high IRAP values (≥ 0.95) between non-
co-localized proteins (“cross-talkers”) involved in the same cellular pathway

Many-Few interaction trend in protein networks

Maslov et al.[MS02] quantify the correlations between the connectivities of interact-

ing nodes in protein networks and compare them to a null model of a network, in

which all the links are randomly rewired. Protein with less than 10 interacting part-

ners is defined as a “few” protein; otherwise it is a “many” protein. They find that

there is a “many-few” interaction pattern in PPI networks—that is, links between

highly connected proteins are systematically suppressed, whereas those between a

highly connected and low-connected pairs of proteins are favored. Biologically, this

effect decreases the likelihood of cross talk between different functional modules of

the cell and increases the overall robustness of a network by localizing effects of

deleterious perturbations.

Saito et al.[SSH02a] report that they could not confirm with their IG2 values

Maslov et al. [MS02]’s recent findings about the observed specificity and stability

of protein networks. We test the IRAP model on our PPI data and find that unlike

IG2, the IRAP values are consistent with Maslov et al.’s “many-few” interaction

trend. As shown in Figure 3.12, as the IRAP thresholds increase, the proportion

of “many-few” interactions also increases in the IRAP-filtered (reliable) interaction

data. This result provides yet another biological validation of our IRAP model over

other alternative models.

55



Discover interactions within a protein complex

A well studied protein complex is chosen to see how many true interactions could be

discovered inside it. Because the size of protein complex is much smaller than the

whole PPI network, we could test every possible links and select the most reliable

ones.

In the experiment, we selected Saccharomyces cerevisiae 26S Proteosome

Complex as a case to study. Out of the 36 proteins in Proteosome Complex, 34

proteins could be found in our dataset. This complex is selected because it is well

studied and has 3D interaction information in PDB database.

Saccharomyces cerevisiae 26S Proteosome Complex contains 36 proteins in

BIND database. It also contains 4 structures in PDB covering 13 proteins and 23

physical interactions, only 1 exists in our dataset.

In the experiment, IRAP detects 45 interactions between 13 proteins: 14 of

these are the physical interactions recorded in PDB (c.f. 1 exists in the original

dataset); another 12 are experimentally detected interactions in BIND only; 19 new

interactions are also predicted.

3.8 Conclusions

The dissection of the protein interactome is important for extracting invaluable bio-

logical knowledge for understanding the molecular mechanism of our cellular system,

and eventually leading to the discovery of new drugs and drug targets for various

human diseases. Thus far, most of the recent technological advance in this field has

focused on the high throughput detection of PPIs in order to map the tremendously

vast protein interactome. Unfortunately, the interaction data that have been gener-

ated in large-scale experimental studies using the high throughput technologies have

very high error rates. In this work, we therefore focused on tackling the problem of

high false positive rates in high-throughput experimental PPI data.

We proposed the use of a novel measurement—Interaction Reliability by Al-

ternative Path (IRAP)—to computationally assess the reliability of candidate PPIs

by using the topological properties of the underlying interaction network. We de-
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veloped an algorithm called alternative path finder to compute the IRAP values

efficiently in large, interconnected, and loopy PPI networks. Results from our ex-

tensive experiments showed consistently that our IRAP measure is an effective way

for discovering reliable PPIs in large datasets of error-prone experimentally-derived

PPIs. Our results also indicated that IRAP is better than IG2, and markedly bet-

ter than the more simplistic IG1 measure, which shows that a global, system-wide

approach—such as our IRAP measure that considers the entire interaction network

instead of merely local neighbors—is a much more promising approach for assessing

the reliability of PPIs.

Our IRAP measure is currently based on the “strongest alternative path”

model. A candidate interaction that is not accompanied by a strong alternative

path of interactions in the overall interaction network is considered to be unreliable

under this model. While this may not be true for all the biologically relevant PPIs,

we have performed an analysis on our yeast-two-hybrid PPI datasets and found that

more than 80% of PPIs in our experiments do have at least one alternative path. This

suggests that a significant proportion of PPIs is captured by the current IRAP model.

Our next step is to develop further network models to capture PPIs associated with

more sophisticated topological characteristics than alternative paths. Combined

with our current IRAP model, we hope to be able to detect errors in interaction

data effectively. This will facilitate the rapid construction of PPI networks that will

help scientists in understanding the biology of living systems.
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CHAPTER 4

IRAP*: Repurify protein interactomes

Experimental limitations in high-throughput protein-protein interaction detection

methods have resulted in low quality interaction datasets that contained sizable

fractions of false positives and false negatives. Small-scale, focused experiments are

then needed to complement the high throughput methods to extract true protein

interactions. However, the naturally vast interactomes would require much more

scalable approaches.

We describe a novel method called IRAP* [CHLN06c] as a computational

complement for repurification of the highly erroneous experimentally-derived pro-

tein interactomes. Our method involves an iterative process of removing interactions

that are confidently identified as false positives and adding interactions detected as

false negatives into the interactomes. Identification of both false positives and false

negatives are performed in IRAP* using interaction confidence measures based on

network topological metrics. Potential false positives are identified amongst the de-

tected interactions as those with very low computed confidence values, while poten-

tial false negatives are discovered as the undetected interactions with high computed

confidence values. Our results from applying IRAP* on large-scale interaction data

sets generated by the popular yeast-two-hybrid assays for yeast, fruit fly and worm

showed that the computationally repurified interaction data sets contained poten-
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tially lower fractions of false positive and false negative errors based on functional

homogeneity.

4.1 Introduction

Although recent progress in high-throughput experimental techniques [UGC+00,

ITM+00, MKS+02] has provided us with much more protein-protein interaction

(PPI) data than those accumulated using traditional detection methods from the

past decades, we are still far from being able to unravel the actual interactomes

completely. This is because while the new experimental methods have allowed PPIs

to be detected en masse, it was done at the expense of data quality. As stated in

the previous chapter, the PPI data generated by the high-throughput methods are

by no means at the same level of quality as those that were painstakingly generated

by conventional small-scale, focused experimental approaches. For example, recent

surveys [LWG01, MKS+02, SSM03] have revealed that the interaction data detected

by the popular yeast-two-hybrid (Y2H) assay may contain as much as 50% false pos-

itives. At the same time, the false negative rate of the Y2H-constructed interaction

map for S. cerevisiae interaction maps has also been estimated to be as high as 70%

[DMSC02]. Such alarmingly high levels of errors in terms of both false positives and

false negatives greatly diminish the potential usefulness of the experimental data

made available by technology.

As a result, further carefully-focused small-scale experiments are often needed

to complement the large-scale methods to validate the detected interactions. How-

ever, the vast interactomes require much more scalable and inexpensive approaches.

In this chapter, we explore the possibility of computationally “repurifying” the highly

erroneous experimentally-derived interaction data sets. We propose a computational

method that uses only network topological metrics to sort the PPIs according to their

computed reliability [CHLN06c]. Our proposed method can then identify false pos-

itives amongst the detected interactions that have low reliability values, and false

negative from the putative interactions with high computed reliability values. By

iteratively removing false positives from the interactomes and replacing them with
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interactions that are identified as false negatives, we will show that the computation-

ally repurified PPI data sets contain potentially lower proportions of false positive

and false negative errors than the original experimentally-derived interactomes.

The rest of this chapter is structured as follows. In Section 4.2, we describe

the related work and motivation for our topological approach. In Section 4.3, we

describe IRAP*, our iterative computational repurification method, and how it uses

network topological metrics to identify false positives and false negatives in the

experimentally detected interactomes. We report, in Section 6.4, evaluation results

from applying IRAP* on actual large-scale interaction data sets generated by the

popular Y2H assays for yeast, fruit fly and worm that show that the computationally

repurified interaction data sets contain potentially lower fractions of false positive

and false negative errors. We then conclude in Section 6.6 with a summary and

discussions about possible further work.

4.2 Background

The potential benefits of the current technological advances in large-scale PPI detec-

tion have been largely diminished by the abundant presence of both false positives

and negatives in the resulting experimental data. Other than resorting to small-scale,

focused experiments to selectively validate the PPIs of interest in the interactomes,

researchers have also begun to consider various bioinformatics approaches to identify

the false negatives and false positives in the PPI data sets.

The problem of false negatives was typically addressed by PPI prediction

methods. Researchers have proposed numerous approaches to predict PPIs using a

variety of biological information from genome sequences[TO00, MVR+01, WS01] to

3D structures[ABC+04]. However, these prediction methods depended on, and are

limited by, the availability and richness of biological information; few have attempted

to make use of the existing interactions in a PPI network to predict new interactions

for the interactome. In this work, we focus on the latter by directly discovering the

false negatives amongst the missing interactions in the experimentally derived PPI

networks, using only the topological information from the PPI networks.
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In terms of false positive detection, a naive approach would be to use the inter-

section of PPI data sets derived from various independent methods to detect reliable

interactions. However, because of the different and limited coverage of various PPI

detection methods, this operation would leave only few interactions [DSXE02] and it

is therefore suitable only for identifying a small set of highly confident interactions.

As such, some researchers have recently started to explore alternative approaches,

such as the use of expected topological characteristics of PPI networks to assess the

reliability of the experimentally detected interactions mathematically. Saito et al.

pioneered such approach by developing a series of computational measures called

interaction generalities (IG1 and IG2) [SSH02b, SSH02a] that used local topology

and the statistics of adjacent interactions to detect false positives in a PPI network.

Motivated by the success of interaction generalities, we have proposed an al-

ternative topologically-based quantitative measure called “Interaction Reliability by

Alternative Path” (IRAP) [CHLN04, CHLN05b] in the previous chapter. Instead of

using small-sized, predefined network motifs such as those in the interaction gener-

alities, IRAP uses the observation that alternative paths are often present in many

real-world networks (for example, there is often more than one way to fly from one

city to another in an airline network), and computes the reliability of a detected

PPI with respect to the presence of alternative reliable interaction paths in the un-

derlying network Our evaluation results reported in our previous works showed that

IRAP outperformed the IG measures in the system-wide detection of false positives

in the yeast interactome.

Both the problems of false positives and false negatives must be addressed

together in order to improve the usability of experimentally-derived interactomes. In

this work, we extend our previous IRAP scoring method to detect both false positives

and false negatives, using different topological metrics as the initial weights. We

call the IRAP-based iterative approach for computational interactome repurification

IRAP*, which stands for Interactome Repurification by Alternate Paths, with the

asterisk indicating that it is an iterative process. We will show in this work that

our approach works well in other species’ interactomes in addition to the commonly

evaluated yeast interactome.
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4.3 Method

Computationally, an experimentally-derived protein interactome can be modeled

using an undirected network G = (V, E, w). Each node in the network represents a

unique protein in the species’ proteome. An edge exists between two nodes vA and

vB if there is a detected interaction between the corresponding proteins A and B.

The PPI network is modelled as a weighted graph to account for the existence of

experimental errors in the interactome, with w(vA, vB) as the weight of edge (vA, vB)

that serves also as a reliability index for the PPI.

In last chapter, we used a quantifiable measure called IRAP to evaluate the

reliability of a detected PPI with respect to the presence of a reliable alternative

interaction path between the two proteins in the global PPI network.

As stated in the previous chapter, IRAP is defined as follows:

Definition 3. IRAP. The reliability of a candidate PPI (A,B), IRAP (A,B), is

indicated by the collective reliability of the strongest alternative path of interactions

connecting the two proteins in the underlying PPI network.

IRAP (A,B) = max
φ∈Φ(A,B)

∏

(u,v)∈φ

w(u, v) (4.1)

where w(u, v) denotes the weight value for edge (u, v) in the PPI network G; Φ(A,B)

denotes the set of non-reducible paths.

4.3.1 False Positive Detection

As mentioned earlier, some proteins in Y2H assays tend to activate transcription of

the reporter gene without actually interacting with their partners, leading to an ex-

cess number of candidate partners (false positives) detected for the proteins [SG01].

The IG1 topological metric proposed by Saito et al. [SSH02b] was designed to de-

tect these easily-identified ‘sticky’ proteins. Since in this work, we are focusing on

Y2H-derived experimental data sets (Y2H being the most popular hight-throughput

PPI detection method), for false positive detection, we use IG1 values as a basis for

the PPI network’s initial weights:
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IG1G(vA, vB) = 1+

|{(v′A, v′B) ∈ E|v′A ∈ {vA, vB}& degG(v′B) = 1}|
(4.2)

w+(vA, vB) = 1−
(

IG1G(vA, vB)

IG1G
max

)
(4.3)

where IG1G
max is the maximum IG1 value in the interaction network, and w+(vA, vB)

is the initial weight for edge (vA, vB).

Using (4.1) on the resulting interaction graph G = (V, E, w+), we compute an

interaction reliability index for all the detected PPIs in the interactome. The IRAP

scores for each of the edges in the interaction graph can be computed efficiently

using the algorithm in our previous work[CHLN04]. Those PPI’s that are low in the

IRAP reliability index can then be considered as potential false positives.

4.3.2 False Negative Detection

While IG1 was useful as initial weights for false positive detection, it turns out

that a different topological metric is required for false negative detection. This is

because IG1 tends to assume interaction links to be true unless there are topological

evidence from the immediate neighbors to suggest otherwise. As such, while it was

well-designed for detecting false positives in Y2H data, when used for false negative

detection, IG1 will tend to overestimate the reliability for the missing links during the

false negative detection process. For example, under IG1, all missing orphan links

will be identified as false negatives since they will all have the lowest (strongest) IG1

values because there are no immediate neighbors to suggest otherwise. As such, for

effective false negative detection, we would need a more stringent topological metric

that assumes the missing links to be true negatives unless there are topological

evidence to suggest otherwise.

Therefore, for false negative detection, we adopt a non-IG1 topological metric

that is based on a different observation that interactions between proteins having a

large number of common neighbors tend to be true interactions themselves. This

was shown previously[KI05] to be a useful measure for predicting interactions in

genetic networks. Here, we apply such a common neighbor counting approach to
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compute the initial weight for edges (vA, vB) in a PPI network for false negative

detection:

ComNbrG(vA, vB) = |N(vA)| ∩ |N(vB)| (4.4)

w−(vA, vB) =
ComNbrG(vA, vB)

ComNbrG
max

(4.5)

where ComNbrG
max is the maximum number of common neighbors in the interaction

network, and w−(vA, vB) is the initial weight for edge (vA, vB).

We then use IRAP as defined in (4.1) on the resulting interaction graph

G = (V, E, w−) to assign a refined reliability value to each candidate false negative.

Those missing links having high IRAP values can then be treated as potential false

negatives.

However, unlike false positive detection, a major challenge for false negative

detection is the huge number of candidate false negatives. For instance, the size of

the yeast proteome is about 6,000 proteins and the current PPI network detected

for it is about 10,000. The number of false negative candidates to be considered

could be as many as (6000× 5999)/2− 10000 ≈ 1.8× 107. It is clearly impractical

to evaluate the reliability of every possible link. Fortunately, as we are interested in

only the top k
100
×|E| false negatives at each iteration of computational repurification

of the interactome with IRAP* (see Section 4.3.3 later), there is no need to consider

all the false negative candidates. As such, we use the following heuristic approach

to consider the most possible candidates first.

First, each node vi in network G = (V, E, w−) is assigned a value hi as:

hi = 1−
∏

j∈N(vi)

(1− w−(vi, vj)) (4.6)

where N(vi) is the direct neighbor set of node vi in network G. Then, the top Υ

proteins with the highest h values are pairwise joined to form a candidate set I.

In a sparse network, where the number of the edges is linear to the number of the

nodes, the action to add α new links is of the same scale to add new links to connect

at most 2α nodes. We can thus define the Υ as: Υ = 2 × k
100

× |E|. We can then
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compute the IRAP scores for those protein pairs that are in I but not in E.

The edges in I are good false negative candidates since their associated al-

ternative paths are likely to have high IRAP values given the high neighbor edge

weights of the nodes. This heuristic is effective in reducing the candidate space—in

such a sparse network as the PPI network, the h value for a large proportion of

nodes are 0.

4.3.3 IRAP*: Iterative Refinement of Interactome

The previous chapter focused on using IRAP for false positive detection. In this

chapter, we extend IRAP to also detect false negatives by using a different network

topological metric as the initial scoring scheme. Next, we will describe IRAP*, an

iterative application of IRAP for increasing the confidence of protein interactomes by

computationally “repurifying” the interactomes from its experimental errors. This

is achieved by iteratively removing false positive and false negative interactions from

the interactomes using IRAP. In each iteration, we remove top k% of the pseudo-

false positive interactome. Then, we add an equal number of new interactions that

have been identified as top pseudo-false negatives into the interactome. In other

words, each iteration consists of the following steps:

• Step 1: False Positive Detection. Compute the reliability index for all the

interactions in G = (V, E, w+) using IRAP. Replace E with E ′, the set of

(1− k
100

)|E| interactions that have the highest IRAP values.

• Step 2: False Negative Detection. Compute the IRAP-based reliability index

for all the putative interactions in I derived from G′ = (V, E ′, w−) as described

above (Section 4.3.2), and determine the new edge set E ′′, the set of k
100
|E|

new interactions that have the highest IRAP values in G′.

• Step 3: Set E = E ′ ∪ E ′′ for the next iteration.
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4.3.4 Step-by-Step Example of IRAP*

We illustrate here how IRAP[CHLN04, CHLN05b] and IRAP* works using real PPIs

from our Saccharomyces cerevisiae dataset. For clarity, we only show the subset of

PPIs between 14 proteins. The original interaction (sub)network between these

proteins, as detected by Y2H screens, is shown in the figure below.

Figure 4.1: The subset of PPIs between 14 proteins.

4.3.5 IRAP - Single-Pass False Positive Detection

The previous chapter on IRAP only does a single-pass evaluation on the interactome

to detect potential false positives. First, it ranks the various detected interactions

with an IG1-based initial weight as follows:

We then perform the IRAP algorithm (see [CHLN04, CHLN05b] for details)

to compute the interaction reliability values for the various interactions based on

their alternative paths. The IRAP ranking of the interactions are as follows:

The above IRAP ranking can then be used as a reliability index to filter

potential false positives (those with low IRAP values) from the detected interactome.

The previous chapter reports biological evidence based on functional homogeneity,
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Figure 4.2: The subset of PPIs with IG1 weight.

cellular co-localization, and gene co-expression that the IRAP-ranking is superior to

corresponding rankings by IG1 and IG2.

4.3.6 IRAP* - Iterative Removal of False Positives and False

Negatives

With IRAP*, we built on IRAP to formulate an iterative framework for removal of

both false positives as well as false negatives. Removal of false positives is carried

out in a similar fashion as the above - using IRAP with IG1-based initial weights.

Removal of false negatives is carried out by computing a similar weight—in this

case, it is IRAP with common neighbor counting instead of reversed IG1—for each

of the undetected interactions in the interactome. Potential false positives are iden-

tified amongst the detected interactions as those with very low computed confidence

values, while potential false negatives are discovered as the undetected interactions

with high computed confidence values. Figure 4.4 shows the differences in IRAP

and IRAP*:

To continue with our previous example, in IRAP*, the interactions are first
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Figure 4.3: The subset of PPIs with IRAP (bold) and IG1 weight.

ranked as before. The bottom 1 interaction in the entire interactome is removed

from the interactions. In our example, the interaction 〈Fus1,Ste11〉 belonged to the

bottom spectrum and were removed from the network as false positives.

Next, IRAP* computes the confidence values for the missing interactions

using a different initial weight that is based on common neighborhood counting. In

the following example, there are a total of 3 potential false negatives. The table

below shows the initial and final weights of these interactions.

Protein A Protein B initial weight final weight
Fus3 Ste5 1.0 0.0625
Far1 Ste5 0.5 0
Fus3 Ben1 1.0 0

Table 4.1: 3 potential false negatives

Since we have removed 1 interaction from the network, we replaced it with the

potential false negatives by, in our current work, inserting the top new interactions

into the network. In our example, the top interaction in the above table belonged

to the overall top interaction 〈Fus3,Ste5〉 and is thus added to the network.
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Figure 4.4: Flowcharts for IRAP and for IRAP*.

After 3 iterations of such false positive and false negative removals, we ended

up with 14 interactions for the 14 proteins in our example, 3 of the original interac-

tions were detected as false positives and hence removed from the repurified interac-

tome, while 1 new interactions that were undetected by the Y2H screen were added

to the final interactome. Our experimental evaluations reported in the manuscript

showed biological evidence that the final interactome contains more high confidence

interactions that the original interactome.

We will show, in the next section, that by iteratively removing false positives

from the interactomes and replacing them with interactions identified as false neg-

atives, the reliability of the resulting interactomes improves (based on functional
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homogeneity) after each iteration.

4.4 Evaluation

We perform various evaluation experiments to ascertain that the application of

IRAP* can improve the confidence of experimentally derived protein interactomes.

First, we validate that IRAP is effective in identifying false positives and false neg-

atives. After that, we show that the iterative refinement process in IRAP* leads to

increasingly better interactomes in terms of functional homogeneity of the protein

partners in the interactions.

4.4.1 Datasets

We perform our evaluation on experimentally derived interaction data for three

different species, namely Saccharomyces cerevisiae (yeast), Caenorhabditis elegans

(worm), and Drosophila melanogaster (fruit fly). We focus here only on interactomes

that are derived by the popular high-throughput assays such as Y2H, which are well-

known for their high experimental error rates. For Saccharomyces cerevisiae, the

experimental Y2H-derived interactome was downloaded from the BIND database

[GDC03] that comprises 7686 non-redundant Y2H interactions between 4141 of the

yeast proteins. For Caenorhabditis elegans , we obtained an interaction network

of 5025 non-redundant high-throughput PPIs between 2911 of the worm proteins

from the BIND database. For Drosophila melanogaster , we obtained a much larger

interaction network of 22437 non-redundant high-throughput PPIs between 7621 of

the fly proteins from the BIND database. The three PPI datasets used in this work

can also be found from our website.

We evaluate the quality of the interactomes by the degree of cellular func-

tional homogeneity amongst the interacting protein pairs. Under the oft-quoted

‘guilt-by-association’ principle[Oli00], we would expect that as the rate of true pos-

itive interactions increases in the resulting interactomes processed by IRAP*, the

proportion of interacting proteins with a common functional roles should also in-

crease correspondingly.

70



4.4.2 False Positive Detection

The previous chapter reported on the performance of IRAP for false positive detec-

tion on a combined set of Saccharomyces cerevisiae interaction data that included

interactions detected via both high-throughput and low-throughput methods. To

better illustrate how IRAP can be a useful computational complement to current

high-throughput experimental assays for PPIs, we report here the performance on

the Saccharomyces cerevisiae interaction data that were derived only using high-

throughput Y2H experimental assays.
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Figure 4.5: Degree of functional homogeneity increases at different rates as potential false
positives are removed from the yeast interactome under different interaction reliability
measures.

Recall that in each iteration of IRAP*, we seek to identify the most likely

false positives amongst the worst k% of the interactions in terms of their IRAP

values. We verify here that the interactions in the lower-end spectrum of the IRAP-

indexed interactome indeed contained a larger proportion of biologically unlikely

(i.e. functionally non-homogeneous) interactions than those indexed by other such

topological metrics as IG1 and IG2. Figure 4.15 shows that IRAP is the best in

detecting false positives—as more interactions that were detected as potential false

positives were removed from the interactome, the degree of functional homogeneity

in the resulting interactome increases at a faster rate than using other topological

filtering metrics.
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4.4.3 False Negative Detection

Similarly, for false negative detection, we verify whether the top new interactions

proposed with IRAP exhibit a higher degree of functional homogeneity than those

detected using other topological measures. Figure 4.6 shows that the new interac-

tions proposed by IRAP were indeed of better quality than the corresponding sets

proposed by IG1 and IG2.
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Figure 4.6: Different degrees of functional homogeneity in the various proportions of po-
tential false negative PPIs to be added to the yeast interactome under different interaction
reliability measures.

4.4.4 Iterative Refinement by IRAP*

Finally, we evaluate whether the iterative refinement process of IRAP* leads to in-

crementally improved interactomes. We perform two sets of experiments here. First,

we verify whether true “gold standard” interactions are retained in the interactome

over the iterations, while the hidden true gold standard interactions are rediscovered.

Then, we verify whether the degree of functional homogeneity of the repurified inter-

actomes consistently improves over iterations. For this, we will present the results

for interactomes of different species.

For evaluation, we ran IRAP* with parameter k for sufficient iterations to

repurify the PPI networks while keeping the number of interactions unchanged in

the procedure. To determine the value for parameter k, we tested with different

values of k on the Saccharomyces cerevisiae PPI network. Figure 4.7 shows the

72



maximal similarity scores for GO molecular function annotations within 15 iterations

for k = 1 to 15. We use k = 5 since it gives the best overall similarity score.
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Figure 4.7: Maximal increasing of functional homology in 15 iterations on the Saccha-
romyces cerevisiae interactome varies with the parameter k.

As there are currently no comparable measures that can detect both false

positives and false negatives, we compared IRAP* with a similar iterative refine-

ment process, which we will call IG1+ComNbr, that uses only those measures that

were used in IRAP* as initial weights, namely, IG1 for false positive detection1 and

ComNbr for false negative detection in each iteration. In other words, in each it-

eration of IG1+ComNbr, the initial weights of IG1 and ComNbr are directly used

for filtering the false positives and false negatives without being further refined with

IRAP. In this way, we show the effect of IRAP in the repurification process.

Persistence and Rediscovery

First, we are interested in finding out how well IRAP* retains true interactions and

also how well it can rediscover those true interactions that were hidden from the

experimentally detected interactome. We use the yeast PPIs in BIND that were

indicated as having been obtained using low-throughput experimental methods as

the set of “gold standard” interactions here. Out of 1,313 such low-throughput in-

teractions found in BIND, 410 interactions were also found in our experimentally

derived yeast interactome (using high throughput Y2H assays). We randomly hide

1We use IG1 instead of IG2 since it has comparable performance as IG2 for the Y2H dataset in
the lowest 10% interactions (see Figure reffigure:low), and IG2 is much slower to compute.
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50% of the 410 gold standard PPIs from the network, to see whether IRAP* could

rediscover these lost interactions and retaining the other 50% in its refined interac-

tome. This hiding and re-discovery process was repeated randomly for 100 times.

Figure 4.8 shows the average results of the persistent and rediscovery rates for each

iteration of IRAP*. In the final IRAP*-repurified interactome, an average of 139

out of 205 gold standard interactions were retained in the PPI network, while and

77 out of 205 hidden gold standard interactions were rediscovered. IG1+ComNbr

performed significantly less well. After iterating for 10 times, only 102 gold standard

interactions were still kept in the repurified interactomes, and a mere 21 hidden in-

teractions were rediscovered. For reference, Figure 4.8 also shows the results of a

baseline process that randomly added and removed PPIs from the network.
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Figure 4.8: Persistent and rediscovered rates for IRAP*, IG1+ComNbr, and the baseline
random process.

Functional Homogeneity

Finally, we check whether the quality in terms of functional homogeneity of the repu-

rified interactomes improves over each iteration of IRAP*. To demonstrate IRAP*’s

consistent performance across different kinds of interactomes, we show the results

of IRAP* on three different species: Saccharomyces cerevisiae, Caenorhabditis ele-

gans , and Drosophila melanogaster in Figures 4.9, 4.10, and 4.11 respectively. For

reference, we also show the degree of functional homogeneity of the “gold standard”

yeast interactions used in section 4.4.4 in Figure 4.9.
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Figure 4.9: PPI similarity score based on enriched GO terms increases at different rates
with IRAP* and IG1+ComNbr on the Saccharomyces cerevisiae interactome.
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Figure 4.10: PPI similarity score based on enriched GO terms increases at different rates
with IRAP* and IG1+ComNbr on the Caenorhabditis elegans interactome.

Figure 4.9 shows that with IRAP*, the average functional homogeneity score

of the interacting Saccharomyces cerevisiae proteins increases from the original 0.362

to 0.523 whereas with IG1+ComNbr, the similarity score in its repurified yeast inter-

actome increases to only 0.435. For the sparser Caenorhabditis elegans interactome,

the improvement with IRAP* was 0.139 to 0.310 while IG1+ComNbr obtained an

increase to only 0.189. As for the much larger Drosophila melanogaster interactome,

IRAP* improved the degree of functional homogeneity quality from 0.123 to 0.206

whereas IG1+ComNbr could only increase it to 0.158. These results show that

IRAP* is effective as a computational complement for the repurification of various

experimentally-derived interactomes with different densities and sizes. Note also
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Figure 4.11: PPI similarity score based on enriched GO terms increases at different rates
with IRAP* and IG1+ComNbr on the Drosophila melanogaster interactome.

that in all cases, only a small number of iterations was required since the quality of

the repurified interactomes tend to converge in less than 10 iterations.

4.4.5 Cross-talkers

Thus far, we have evaluated the repurified interactomes based on the degree of

functional homogeneity of the interactions. In the other related works[SSH02b,

SSH02a, PZ05], the degree of cellular co-localization in the interactions was also used

as a quality measure. However, as there are many important biological interactions

(such as those in signaling pathways) that occur across cellular localizations, we

have chosen not to use cellular co-localization in our evaluation.

In fact, we found that a number of the PPIs in our repurified interactomes that

have been assigned high confidence values actually involved protein partners from

different cellular localizations. Figure 4.12 shows that the degree of co-localization

in the protein pairs detected by IRAP* decreases in each iteration until about 7-8

iterations. Under the cellular co-localization evaluation measure, these interactions

would have been considered as errors. However, on inspecting the corresponding cel-

lular functional roles of the non co-localizing protein interaction partners, we found

that many of them actually shared the same function. For example, 32% of the non

co-localized pairs discovered by IRAP* involved functionally homogeneous protein

partners. These “cross-talkers” are thus likely to be actual biological interactions
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in pathways that occur across cellular sublocalizations. Figure 4.13 shows some

examples of cross-talkers discovered by IRAP* in Saccharomyces cerevisiae PPIs.
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Figure 4.12: Degree of co-localization decreases in each iteration.

Figure 4.13: Examples of interactions between non co-localized proteins (“cross-talkers”)
that are involved in the same cellular pathways as discovered by IRAP*.

4.4.6 IRAP* v.s. IG1/2 in each iteration

We do the experiment to compare IRAP with IG1/2 with the enriched GO term

comparison method instead of the exact GO term matching. By considering the GO

term relationships, IRAP outperforms IG1 and IG2.

We also tested the top 10% PPIs in the first 5 iterations of the repurification

process (we select 5 because IRAP* to over-fit after 5 iterations). Results are shown

in Figure 4.14. The “increase of functional homology” refers to the increase of

similarity score based on the enriched GO term in the whole network after removing

the bottom 10% interactions according to IRAP* or IG1/IG2. We see that IRAP*

is consistently better than IG1 and IG2 in detecting false positives.
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Figure 4.14: The increase of the degree of cellular functional homogeneity in the first 5
iterations at different rates as the bottom 10% protein interactions are removed from the
yeast interactome under different interaction reliability measures.

4.4.7 False Positive Detection by IRAP* v.s. PathRatio

A new path-based measure, PathRatio, has been proposed by Pei and Zhang[PZ05]

recently as an alternative to our IRAP measure. Basically, PathRatio is a topological

measure to select reliable interactions by all the length specified paths connecting

the two target proteins. PathRatio was shown to perform better than our IRAP in

the top spectrum of the indexed interactome, suggesting that PathRatio was better

in detecting true positives. Note that the PathRatio results reported in [PZ05] was

obtained using a different set of initial weights from the IG1 values used in IRAP;

as such, it is unclear whether the difference in performance was solely due to the

relative performance of the best-path approach adopted by IRAP versus the all-path

approach adopted by PathRatio.

However, in our computational repurification application, the performance of

detecting false positives is more important than detecting true positives since we are

removing a small portion of interactions that have to be confidently deemed as false

positives in each iteration. In this aspect, IRAP actually performed comparably if

not slightly better than PathRatio. In addition, unlike our IRAP which adopts an

efficient best-path approach, PathRatio uses an all-paths approach which is therefore

computationally much more intensive.
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Figure 4.15 shows the superiority of IRAP as a false positive filtering measure:

as the IRAP threshold is increased, the enriched GO term similarity increases from

0.362 to 0.402, indicating an increased rate of true positives in the filtered interaction

data. For comparison, we also show the performance of IG1, IG2 and PathRatio in

the figure. With PathRatio, the enriched GO term similarity increases from 0.362

to 0.392, with IG2, the score only increases to 0.378; and with IG1, the proportion

only increases to 0.371.
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Figure 4.15: Degree of functional homogeneity increases at different rates as potential
false positives are removed from the yeast interactome under different interaction reliability
measures.

4.5 Conclusions

Much of the recent technological advance has been focused on the high through-

put detection of PPIs in order to map the tremendously vast protein interactome.

Unfortunately, the potential benefits of these technological advances cannot be fully

realized as the PPI data generated using the high throughput technologies have very

high error rates. In this work, we have proposed a novel computational complement

for the repurification of the experimentally-derived interactomes. We iteratively re-

fine an interactome by removing interactions that are identified as false positives
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and adding interactions detected as false negatives into the interactome. The com-

putationally repurified interaction data sets were shown to contain potentially lower

fractions of false positive and false negative errors. Additionally, biologically inter-

esting interactions such as cross-talkers may also be discovered using our method.

Note that in this work, the detection of the potential experimental errors was

intentionally done using only the topological information that were mathematically

derived from the underlying interaction graphs. This is to allow us to clearly il-

lustrate the potential usefulness of such a topological approach. In practice, other

biological information (e.g. gene expression correlation and even the functional and

co-localization information that were used for evaluation here) should be incorpo-

rated to improve the quality of the repurified interactomes. As future work, it will

be thus interesting to investigate how other topological measures, as well as addi-

tional biological information, can be incorporated for interactome repurification in

practice.
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CHAPTER 5

Network Motif Discovery

It is not necessary for a true interaction to have at least one alternative path. The

strategy of the alternative path may lose some interactions which are true positives

but do not have alternative paths. For example, in the yeast PPI network, about

14% PPI pairs do not have at least one alternative paths [CHLN05b]. As a conse-

quence, many true positives will be wrongly remove by the methods IRAP or IRAP*

introduced in the previous two chapters.

Recent works in network analysis have revealed the existence of network mo-

tifs in biological networks such as the protein-protein interaction (PPI) networks.

Such topological patterns do not limited the existence of alternative paths. Hence

the recall to use network motif to validate protein interactions may be higher than

the alternative path related approaches.

However, existing motif mining algorithms are not sufficiently scalable to find

meso-scale network motifs. Also, there has been little or no work to systematically

exploit the extracted network motifs for dissecting the vast interactomes.

We describe an efficient network motif discovery algorithm, NeMoFinder, that

can mine meso-scale network motifs that are repeated and unique in large PPI

networks. Using NeMoFinder, we successfully discovered, for the first time, up to

size-12 network motifs in a large whole-genome S. cerevisiae (Yeast) PPI network.
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We also show that such network motifs can be systematically exploited for indexing

the reliability of PPI data that were generated via highly erroneous high-throughput

experimental methods.

5.1 Introduction

Recent works in network analysis [MSOI+02] have revealed that the topology of

complex natural networks such as protein-protein interaction (PPI) networks are far

from random. Many of these networks have been shown to exhibit such common

global topological features as the “small world” and “scale free” properties. It turns

out that in addition to these global topological characteristics, many local topological

patterns can also be detected in the large complex natural networks. For example,

Milo et al.[MSOI+02] discovered various significant patterns of local connections that

occurred more frequently in complex networks than in randomized networks. They

called these recurring local topological substructures as “network motifs”. While

relatively less widely studied than the global topological features, such network mo-

tifs can lead to better understanding about various classes of complex networks, as

some network motifs may be particular to specific classes of networks. For exam-

ple, certain triad or tetrad motifs are specific topological patterns that are found to

appear in biological networks rather than in other networks [MSOI+02]. The pres-

ence of such network motifs also reveals the basic structural elements that underlie

the hierarchical and modular architecture of such complex natural networks as PPI

networks.

Researchers have only recently begun to employ network motifs in exploring

the interactomes; for example, Saito et al. [SSH02b, SSH02a] used manually derived

network motifs to detect false positives in highly erroneous PPI networks, while Al-

bert et al.[AA04] used them to predict PPIs. These pioneering works have achieved

promising results even though the network motifs used in these works were rather

limited—Saito et al. had used only 5 predefined network motifs of size 3 in their

latest work on false positive detection [SSH02a], while Albert et al. had used only

4 predefined small network motifs for predicting interactions. This shows that the
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network motifs can provide a framework for the effective dissection of the complex

PPI network based on the underlying structural principles.

As many of the relevant processes in biological networks have been shown to

correspond to the meso-scale (5-25 genes or proteins) [SM03], it would be interesting

to investigate if it is advantageous to use network motifs that are of equivalent sizes.

However, existing network motif discovery algorithms [MSOI+02, KIMA04] are not

applicable as they are mostly enumeration-based and limited to extracting smaller

network motifs (up to size 8) for the following reasons:

1. The number of network motifs candidates increases exponentially with the

motif size [IWM00, KK04a].

2. Interesting network motifs are typically repeated and unique [MSOI+02], that

is, the motifs occur repeatedly in the PPI network but not in the randomized

networks. Such motifs do not have the downward closure property and Apriori

algorithms are not applicable here.

3. The graph isomorphism problem, which is the essential technique to identify

different network motifs, is an NP problem [For96].

Such limitations impact the applicability of motif discovery approach for bi-

ological applications, as meso-scale network motifs are beyond the reach of existing

exhaustive enumeration algorithms.

In this chapter, we present an efficient graph mining algorithm called NeMoFinder

[CHLN06b] to discover meso-scale repeated and unique network motifs in a large,

genome-scale PPI network for biological applications. The proposed algorithm uti-

lizes repeated trees to partition a network into a set of graphs. We introduce the

notion of graph cousins to facilitate the candidate generation and frequency counting

processes. Experiment results indicate that NeMoFinder is scalable and outperforms

existing network motif discovery methods. We also use the network motifs that are

mined from the real-life biological networks to detect false positives in the highly

erroneous PPI network obtained from biological experimental methods. The ex-

perimental results demonstrate that the actual meso-scale network motifs extracted
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from the biological interaction networks can achieve better performance than us-

ing small, predefined ones for assessing the reliability of PPIs from conventional

high-throughput experiments.

The rest of this chapter is organized as follows. Section 5.2 introduces the

basic concepts. Section 5.3 describes the related work in network motif algorithms.

In Section 5.4, we describe the proposed NeMoFinder algorithm. Section 5.5 presents

the comparative results of using NeMoFinder for discovering network motifs for S.

cerevisiae PPI networks. In Section 5.6, we show how the extracted network motifs

can be used to validate the interactions in a PPI network. Finally, we conclude in

Section 5.7.

5.2 Definitions

In this work, we model a PPI network as an undirected graph G = (V, E) where each

vertex in V represents a unique protein, and each edge in E between two vertices

vA and vB indicates that there is an interaction detected between the corresponding

proteins A and B. We exclude self-loops from G here, as we are only interested to

see the effectiveness of graph topology between proteins (see section 5.6).

By definition, a network motif is a frequently occurring subgraph pattern in

a network (in this case, a large genome-wide PPI network such as the Yeast PPI

network that consists of 4341 vertices and 10199 edges). The class of network motifs

that we are interested in extracting from the interactomes are unique non-random

subgraphs [MSOI+02] that occur repeatedly in the underlying biological network.

Let fg be the number of occurrences of a subgraph g in a PPI network G. We

say that g is repeated if fg is more than some user-specified value F .

Let fg randi
be the frequency of g in a randomized network Grandi

, for 1 ≤
i ≤ N , where N is the number of the randomized networks. Let sg be the number

of times fg is equal or greater than fg randi
, 1 ≤ i ≤ N , over the total number of

randomized networks N . We say that g is unique if its sg is more than some user

specified value S.
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Definition 4. Network Motif. A network motif g in a PPI network G is a

connected, unlabelled and undirected topological pattern of inter-connections that is

repeated and unique in G.

Note that it is common for proteins and their interactions in complex biolog-

ical networks such as PPI networks to participate in multiple biological functional

modules. It is therefore perfectly possible for multiple vertex- or edge-overlapping

subgraphs to be simultaneously active at any time. However, PPI networks contain

many highly dense clusters and high percentage of false positives. Therefore, it is

preferable to count every occurrence differing in at least one vertex, allowing arbi-

trary overlaps in edges and vertices. Hence, during the subgraph counting process,

we must consider patterns with arbitrary overlaps of vertices and edges, and at least

one vertex difference.

This results in a computationally more complex problem as the frequency of

network motifs does not have the downward-closed property in this case.

In addition, the uniqueness property of a network motif is also not downward-

closed as a result of allowing vertex- and edge-overlap in the network motifs. When

a motif g extends (or reduces) to its supergraph (or subgraph), the decrease (or

increase) of fg and fg rand is non-deterministic. This means that given a network

motif g, we cannot directly infer whether the supergraphs and subgraphs of g are

unique. In fact, even when we have found a non-unique motif, we still have to

generate its supergraphs and check for their frequencies and uniqueness. This implies

that determining the uniqueness value of a motif is also computationally expensive.

5.3 Related Work

In terms of biological network motif mining, the pioneering work by Milo et al.

employed an exhaustive search algorithm that counts all the subgraphs of a given

number of vertices. As such, they could only discover small network motifs in the

form of 3-vertex and 4-vertex subgraphs. Kashtan et al.[KIMA04] developed a more

efficient sampling method to estimate the relative frequencies of subgraphs. Their
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method was useful for analyzing very large networks and for detecting high-order

motifs since the runtime is independent of the network size. However, the sampling

approach cannot be guaranteed to discover the complete set of network motifs. It

also does not scale for large-size network motifs (the algorithm takes about 2 hours

to find a size-8 motif in the network of transcriptional regulation of E. coli with 423

vertices and 519 edges).

On the other hand, the computationally savvy graph mining community has

also been diligent in developing various algorithms to efficiently discover frequent

subgraphs. The initial algorithms, notably the AGM [IWM00] and FSG [KK04a],

were devised to find all the frequent subgraphs in a large graph database efficiently

through the extension of the market basket analysis. The algorithms utilize the

Apriori property to discover frequent subgraphs level by level. The gSpan [YH02]

algorithm discovers frequent substructures by using a DFS-based canonical repre-

sentation of graphs and enumerated the search space in a depth-first order. The

FFSM [HWP03] method improves the performance of gSpan by reducing redundant

subgraph candidates through a vertical search scheme with join and extension oper-

ations. Finally, the SPIN [HWPY04] algorithm overcomes the problem of cycles in

graph by generating the frequent substructures hierarchically in two steps: starting

from trees, and then extending the frequent trees to graphs.

All the above works have focused on mining subgraphs from a collection of

graphs, and considered only the frequency but not the uniqueness property of sub-

graphs. Furthermore, in these works, the frequency of a subgraph is determined

by the number of global graphs that the subgraph occurs in, regardless of whether

the subgraph occurs many times within a particular graph. This is computationally

easier than the network motif discovery problem where the frequency of a motif is

determined by the number of occurrences, including vertex- and edge-sharing ones,

within one large and complex graph.

Kuramochi et al.[KK04b] designed two methods hSigGram and vSigGram

to look for frequent subgraphs in a sparse graph. These methods first determine

the number of edge-disjoint occurrences of a subgraph based on approximate and

exact maximum independent set computations and then use it to prune infrequent
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subgraphs. However, the methods are not suitable for biological applications where

a protein or an interaction can participate in multiple functional modules, in other

words, the occurrences of a motif can overlap arbitrarily in a graph, which is a much

more computationally challenging counting problem.

The FPF method by Schreiber et al.[SS04] extends hSigGram and vSigGram

to find frequent subgraphs with arbitrary overlap. FPF uses the concepts of pat-

tern tree and generating parent to prune redundant subgraph candidate generation.

However, the method is expensive as it has to perform subgraph isomorphism test

for all candidates. Furthermore, it is unable to prune the non-promising subgraphs

as the frequency counting does not satisfy the downward closed property.

5.4 NeMoFinder: Network Motif

Discovery Algorithm

In this work, we propose a network motif discovery algorithm called NeMoFinder

to discover repeated and unique meso-scale network motifs in a large PPI network

(Algorithm 4). The algorithm utilizes repeated trees to partition a network into a

set of graphs, then use graph cousins (discuss later) for efficient candidate generation

and frequency counting.

The input to the algorithm is a PPI network G, a user defined frequency

threshold F , a user defined uniqueness threshold S, and a user defined maximal

network motif size K. The output of the algorithm is a set U of repeated and unique

motifs from size 3 to size K. Note that a subgraph with k vertices is said to be a

size-k subgraph. The proposed algorithm consists of three main steps. First, we find

repeated subgraphs in the PPI network (Lines 4-15). Then we check the frequency

of the repeated subgraphs in the randomized networks (Lines 16-21). Finally, we

determine the uniqueness values of the the repeated subgraphs (Lines 22-28).

We illustrate the algorithm using the example graph G in Figure 5.1. Suppose

we want to find all the motifs up to size 5 (i.e., K = 5) from G. We let the frequency
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threshold F = 2, and the uniqueness threshold S = 0.95.

Algorithm 4 NeMoFinder

1: Input: G - PPI network;
N - Number of randomized networks;
K - Maximal network motif size;
F - Frequency threshold;
S - Uniqueness threshold;

2: Output: U - Repeated and unique network motif set;
3: D ← ∅;
4: for motif-size k from 3 to K do
5: T ← FindRepeatedTrees(k);
6: GDk ← GraphPartition(G,T )
7: D ← D ∪ T ;
8: D′ ← T ;
9: i ← k;

10: while D′ 6= ∅ and i ≤ k × (k − 1)/2 do
11: D′ ← FindRepeatedGraphs(k, i,D′);
12: D ← D ∪D′;
13: i ← i + 1;
14: end while
15: end for
16: for counter i from 1 to N do
17: Grand ← RandomizedNetworkGeneration();
18: for each g ∈ D do
19: GetRandFrequency(g, Grand);
20: end for
21: end for
22: U ← ∅;
23: for each g ∈ D do
24: s ← GetUniqunessV alue(g);
25: if s ≥ S then
26: U ← U ∪ {g};
27: end if
28: end for
29: return U ;

Step 1. Discover Repeated Subgraphs.

The discovery of repeated size-k subgraphs in a PPI network, 2 < k ≤ K,

involves the following three steps:

Step 1.1 Find Repeated Size-k Trees.

Algorithm NeMoFinder starts by finding the size-2 tree t2 in G. Then the
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Figure 5.2: Size 2 to size 5 trees.

algorithm extends t2 to a size-3 tree, size-4 trees, etc., until size-K trees are obtained.

Figure 5.2 shows all the size-2 to size-5 trees. Note that we have two size-4 trees

(t4 1, t4 2) and three size-5 trees (t5 1, t5 2, t5 3).

When a size-k tree tk is formed, NeMoFinder counts its occurrences in G. If

the occurrences of tree tk is more than the user given threshold, then tk is a repeated

tree, and it is added to the set Tk.

In our example, the occurrences/frequencies of the various size trees are as

follows: ft2 = 7, ft3 = 13, ft4 1 = 6, ft4 2 = 17, ft5 1 = 1, ft5 2 = 5, ft5 3 = 7.

All frequency values except for the frequency of t5 1 are more than the user given

threshold of 2. Thus we have T2 = {t2}, T3 = {t3}, T4 = {t4 1, t4 2} and T5 =

{t5 2, t5 3}.

Step 1.2 Use Repeated Size-k Trees to Partition Graph.

Next, we use the size-k trees in Tk to partition the graph G into a set of graphs

GDk such that each graph Gk j in GDk embeds a size-k tree in Tk, 2 ≤ k ≤ K and
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Figure 5.3: Occurrences of t4 1 in G.

1 ≤ j ≤ |GDk|.
Consider the trees t4 1 and t4 2 in Figure 5.2. Figure 5.3 and 5.4 shows the

occurrences of t4 1 and t4 2 in G. We use t4 1 and t4 2 to partition the PPI network

G to obtain the set of graphs GD4 = {G4 1, G4 2, G4 3, G4 4G4 5} (Figure 5.5). Note

that each graph in GD4 embeds the tree t4 1 and/or t4 2.

Step 1.3 Perform graph join operation to find repeated size-k graphs.

For each tree t in Tk, we generate size-k subgraphs with k−1 edges (the rules

for generating the subgraphs are given in Section 5.4.1). Then we join t with each

of these subgraphs to generate size-k subgraphs with k edges. The latter are added

to the candidate set Ck.

Figure 5.6 shows the 4-vertex 3-edge subgraphs, h1, . . . , h5, generated from

the two size-4 trees t4 1 and t4 2 in T4. We join t4 1 with h1 and h2, and join t4 1 with

h3, h4 and h5 to generate 4-vertex 4-edge subgraphs. Figure 5.7 shows the subgraphs

obtained after joining t4 1 with h1, and t4 2 with h3. The non-redundant subgraphs

g1 1 and g1 2 are added into the candidate set C4.

For each subgraph g ∈ Ck, we check its occurrences in GDk. If the occurrences

of g is more than the threshold F , we add g to the set Dk. In our example, fg1 1 = 2

and fg1 2 = 5. Thus, g1 2 is a repeated subgraph and is added to the set of frequent

subgraphs D.
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Figure 5.4: Occurrences of t4 2 in G.

Next, we use the repeated subgraphs obtained to generate all the possible k-

vertex and k-edge subgraphs. These repeated subgraphs are joined with the newly

generated subgraphs to get (k + 1)-edge subgraphs. The repeated (k + 1)-edge

subgraphs are added to D. This process continues until a complete graph of k ∗ (k−
1)/2 edges is obtained, or no repeated subgraph can be found.

Figure 5.8 shows the 4-vertex and 4-edge subgraphs, h6 and h7, generated

from the repeated subgraph g1 2. We join g1 2 with h6 and h7 to get a 4-vertex and

5-edge subgraph g2 (see Figure 5.9). Since the frequency of g2 in GD4 is not more

than 2, it is not a repeated subgraph and the algorithm stops.

At the end of Step 1, the algorithm outputs the set D which contains all the

repeated trees and subgraphs from size-2 to size-K.

Step 2. Determine Subgraph Frequency in Randomized Networks.

Next, we use the Markov-chain algorithm [MS02] to generate randomized
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Figure 5.5: Set of graphs GD4; each graph in GD4 embeds t4 1 and/or t4 2.
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Figure 5.6: Generate 3-edge subgraphs from size-4 trees.

networks Grandi
(1 ≤ i ≤ N) by swapping randomly selected interactions, as was

done in [MSOI+02]. This ensures that the randomized networks have the same

single-vertex characteristics as the PPI network, i.e., each vertex in the randomized

networks has the same number of neighbors as the corresponding vertex in the PPI

network. We check the frequency of the subgraphs in D in each of the randomized

networks Grandi
(1 ≤ i ≤ N). The procedure is similar to Step 1.
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Figure 5.7: Examples of graph join operations for 3-edge subgraphs.
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Figure 5.9: Examples of graph join operations for 4-edge subgraphs.

Step 3. Compute Uniqueness of Subgraphs.

Finally, we compute the uniqueness value for each subgraph in D based on

its frequencies in the input PPI network and the randomized networks.

NeMoFinder is scalable because the repeated trees naturally partitions the

network into a set of graphs GD. Hence, the problem of counting the frequency of

a size-k subgraph g in the network is reduced to the problem of finding the number

of graphs in GD that contain the subgraph g, which is naturally downward closed.

In order to reduce the computational complexity, NeMoFinder adopts the idea

in SPIN [HWPY04] to search for repeated trees and then extend them to subgraphs.

However, NeMoFinder differs from SPIN in the following:

1. The notion of frequency in SPIN is different from our NeMoFinder. SPIN sim-

ply checks whether a subgraph occurs in a graph; it is not interested in counting

how many times the subgraph occurs in the graph. In contrast, NeMoFinder

considers occurrences of a subgraph in a network, including arbitrary overlaps.

2. SPIN uses equivalence classes to find maximal labelled frequent subgraphs in

a set of graphs. In contrast, NeMoFinder is focused on discovering repeated

unlabelled subgraphs from a single graph. Hence, our NeMoFinder is able to

utilize the symmetry property of unlabelled trees to further reduce the number

of candidate trees enumerated.
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5.4.1 Candidate Generation using Graph Cousins

Finding repeated subgraphs involves generating candidate subgraphs and frequency

counting (see Algorithm 5). The standard method to generate a subgraph candidate

gk from a tree tk is to add a new edge to tk and check whether the resulting graph is

already in the candidate set Ck. However, Ck can become very large for meso-scale

subgraphs, and checking whether a graph exists in Ck requires graph isomorphism

test which is a NP problem.

Given that the network motifs are meso-scale, we use adjacency matrices

to represent the subgraphs so as to facilitate the graph join operation to generate

candidate subgraphs. A graph g with n vertices can be modelled using a n × n

matrix M . An entry mi,j in an adjacency matrix is set to 1 if there is an edge

from vertex i to j, and 0 otherwise. The code of M , denoted as code(M), is a

sequence formed by linking the lower triangular entries of M in the following order:

m1,1m2,1m2,2...m(i, j)...mn,1mn,2...mn,n where (0 < j ≤ i ≤ n).

We can transform any adjacency matrix into a unique representation called

canonical adjacency matrix (CAM) [For96]. Then two subgraphs that are isomorphic

to each other have the same CAM, and vice versa. The canonical adjacency matrix

(CAM) of a subgraph g, denoted as CAM(g), is the adjacency matrix of g with the

maximal code. The last edge entry of CAM(g) is the rightmost non-zero edge entry

in code(CAM(g)). By removing the edge which corresponds to the last edge entry

of CAM(g), we obtain a subgraph of g. We call the adjacency matrix of such a

subgraph as subCAM(g) defined as follows:

Definition 5. subCAM of a graph. Let CAM(g) be canonical adjacency matrix

of a graph g. Then subCAM(g) is a matrix obtained by setting the last edge entry

in CAM(g) to 0.

Given two subgraphs g and h, if subCAM(g) = subCAM(h), then we say

that h is a cousin of g. There are three types of cousin relationship between g and

h:

• Type I: Direct Cousin h is isomorphic to a subgraph g′ which has the same

number of vertices and edges as g, and g 6= g′;
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• Type II: Twin Cousin h is isomorphic to subgraph g;

• Type III: Distant Cousin h is a disconnected subgraph.

Figure 5.10 shows the adjacency matrices for the size-4 trees t4 1 and t4 2 and

the generated subgraphs h1, . . . , h5 in Figure 5.6. From the above definitions, we see

that h1 is a Type I direct cousin of t4 1 since it is isomorphic to t4 2; h2 is a Type

III distant cousin of t4 1 since it is a disconnected subgraph; h3 is a Type II twin

cousin of t4 2 since it is isomorphic to t4 2; h4 is a Type I direct cousin of t4 2 since it

is isomorphic to t4 1; h5 is a Type III direct cousin of t4 2 since it is a disconnected

subgraph.
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Figure 5.10: Adjacency matrices for the graphs in Figure 5.6.

We now show how the subgraph generation and frequency counting are effi-

ciently carried out based on the cousins of a graph.

Given a repeated subgraph g of size k, we first find its set of cousins, H. Then

we join g with each graph h ∈ H to form new subgraphs of size k that have one

more edge than g. Let CAM(g) be CAM of g and CAM(h) be CAM of h, then the

adjacency matrix M of the new subgraph candidate is a k × k matrix and

mi,j =





1 if CAM(g)i,j = 1 or CAM(h)i,j = 1

0 otherwise
(5.1)

Algorithm 6 gives the pseudo code for the candidate generation procedure.

The following theorem proves that the join operation generates the complete

set of candidate subgraphs.
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Algorithm 5 FindRepeatedGraphs(k, i,D′)

1: Input: D′ - Set of repeated subgraphs with k vertices and i− 1 edges;
2: Output: D′′ - Set of repeated subgraphs with k vertices and i edges;
3: C ← CandidateGeneration(k, i,D′);
4: D′′ ← FrequencyCounting(k, i, C);
5: return D′′;

Algorithm 6 CandidateGeneration(k, i,D′)

1: Input: D′ - Set of repeated subgraphs with k vertices and i− 1 edges;
2: Output: C - Set of candidates with k vertices and i edges;
3: C ← ∅;
4: for each g ∈ D′ do
5: H ← GetCousin(g);
6: for each h ∈ H do
7: g′ ← join(g, h);
8: C ← Can ∪ {g′};
9: end for

10: end for
11: return C;

Theorem 5.4.1. Given all the subgraphs g ∈ Ck which has k vertices and l edges

(l ≥ k − 1), the join operation generates the complete set of subgraphs C ′
k, where

each g ∈ C ′
k has k vertices and l + 1 edges.

Proof: Let M be an adjacency matrix of a subgraph g ∈ C ′
k and e1 be the last

edge entry in M , such that matrix M1 = M − {e1} is a CAM of a subgraph g1. Let

e2 be the last edge entry in M1. Since M1 is a connected graph, its corresponding

subgraph g1 must be in Ck.

Let M2 = M1−{e2}+{e1} and M2 be an adjacency matrix of a subgraph g2,

we have g1 ./ g2 ⇒ g. Based on the definition of graph cousins, if g2 is isomorphic

to g1, g2 is a Type II twin cousin of g1; if g2 is connected but not isomorphic to g1,

then g2 is a Type I direct cousin of g1; if g2 is disconnected, g2 is a Type III distant

cousin of g1.

Since the join operation joins g1 with all its cousins, each g ∈ C ′
k is generated

from Ck. 2

96



Algorithm 7 FrequencyCounting(k, i, C)

1: Input: GDk - Set of graphs generated by partitioning G with size-k repeated trees;
C - Set of subgraph candidates with k vertices and i edges;
F - Frequency threshold;

2: Output: D′′ - Set of repeated subgraphs with k vertices and i edges;
3: D′′ ← ∅;
4: for each g′ ∈ C do
5: Get the join parameter of g′: g and h;
6: Lg ← set of graphs in GDk embedding g;
7: Lh ← set of graphs in GDk embedding h;
8: if fg < F or fh < F then
9: fg′ ← 0;

10: else if type of h = Type I direct cousin then
11: fg′ ← |Lg ∩ Lh|
12: else if type of h = Type III remote cousin then
13: fg′ ← |Lg ∩ Lh|
14: else if type of h = Type II twin cousin then
15: fg′ ← CheckAllOccurances(g);
16: end if
17: if fg′ > F then
18: D′′ ← D′′ ∪ {g′};
19: end if
20: end for
21: return D′′;

5.4.2 Frequency Counting

A straightforward method to count the frequency of a size-k subgraph g in a graph

G is to check all the graph in GDk. However, this is an NP-complete subgraph

isomorphism problem. Given that the discovery of network motifs requires checking

the frequency of the candidate subgraphs in both the PPI network as well as the large

number of randomized networks, it is critical for us to reduce the computational time

of the frequency counting process. This can be achieved by leveraging the properties

of the different types of cousins.

Theorem 5.4.2. Let Lx denote the set of graphs in GDk such that each graph in

Lx embeds x. Let h be a Type I direct cousin of a size-k subgraph g and g′ be the

subgraph obtained by joining g and h. Then we have Lg′ = Lg∩Lh, and the frequency

of g′ is given by |Lg ∩ Lh|.

Proof: Each graph in Lg′ must embed g and h since g′ contains all the edges of

both g and h. Thus, we have Lg′ ⊆ Lg ∩ Lh.
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On the other hand, each graph in Lg ∩ Lh embeds both g and h. Hence,

the graph must embed g′, since each edge in g′ is in either g or h. Thus, we have

Lg′ ⊇ Lg ∩ Lh.

Therefore, we have Lg′ = Lg∩Lh and the frequency of g′ is given by |Lg∩Lh|.
2

Let us consider t4 1 and h2 in Figure 5.7. We have Lt4 1 = {G4 1, G4 2, G4 3, G4 5}
and Lh2 = {G4 1, G4 2, G4 3, G4 4, G4 5} (see Figure 5.5). Then, for subgraph g1 2

which is generated by joining t4 1 and h2, the graphs in GD4 that embed g1 2 are

Lg1 2 = Lt4 1 ∩ Lh2 = {G4 1, G4 2, G4 3, G4 5}. Hence, the frequency value of g1 2 is 4.

Similarly, we can prove that if h is a Type III distinct cousin of a size-k

subgraph g, the frequency of g′ (the subgraph obtained by joining g and h) is also

given by |Lg ∩ Lh|.
However, if h is a Type II twin cousin of a size-k subgraph g, then h is

isomorphic to g. In order to determine the frequency of the subgraph obtained

by joining g and h, we have to check all the graphs in GDk that embeds g. This

frequency counting involves the NP-complete subgraph isomorphism test. Hence,

given that the same subgraph can be generated by joining g with its various types

of cousins, we choose to join g with its Type I or Type III cousin whenever possible

to avoid the subgraph isomorphism test. Algorithm 7 gives the pseudo-codes for the

frequency counting process.

For the complexity analysis of NeMoFinder, please refer to our technical re-

port TRC6/06 (June 2006) [CHLN06a].

5.5 Performance Study

We have implemented our NeMoFinder algorithm in C++ and carried out exper-

iments to compare NeMoFinder with existing network motif discovery algorithms

such as the enumeration method [MSOI+02], sampling method [KIMA04], and FPF

[SS04].

We use two real-life datasets, the Uetz dataset and the original MIPS CYGD
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dataset. The Uetz dataset [UGC+00] contains 957 PPIs and 1004 proteins of S. cere-

visiae and can be downloaded from the BRITE website. The MIPS CYGD dataset

[MFG+02] is the whole-genome PPI network of S. cerevisiae from the Munich Infor-

mation Center for Protein Sequences. After removing redundancy and orphan links,

this dataset contains 10199 PPIs involving 4341 proteins that have been detected

with high-throughout genome-wide biological experimental methods.

First, we evaluate the runtime of the four network motif discovery methods

(enumeration, sampling, FPF, NeMoFinder) in finding network motifs of varying

sizes in the Uetz dataset. We set the frequency threshold to 50, the uniqueness

threshold to 0.95, and the number of randomized networks to 100. Figure 5.11

shows that NeMoFinder consistently gives the best performance, with 20- to 100-

fold speed up. We also observe that only NeMoFinder manages to find all the motifs

within a reasonable amount of time.
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Figure 5.11: Comparison of computational times to find network motifs of varying sizes
in Uetz PPI network.

Next, we evaluate the performance of NeMoFinder under varying frequency

thresholds. We set the uniqueness threshold to 0.95, the number of randomized

networks to 100, and the maximal size of network motif to 9. The enumeration

method and sampling method have been excluded from this experiment because

they could not scale up to size-9 motifs. Figure 5.12 indicate that NeMoFinder is
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Figure 5.12: Comparison of computational times to find network motifs in Uetz PPI
network under varying frequency thresholds.

able to achieve up to 100-fold speedup over FPF.

We also compare the maximal motif size and the total number of identified

motifs by the four algorithms to find network motifs of varying sizes in the MIPS

dataset, which is much larger than the Uetz dataset. We set the frequency threshold

to 50, the uniqueness threshold to 0.95, the number of randomized networks is set to

1000. Figure 5.13 shows that NeMoFinder was able to extract network motifs up to

size 12, while the maximum sizes of the motifs discovered by FPF, sampling method

and enumeration method are 9, 8 and 5 respectively. In addition, NeMoFinder

was able to find a total of 11140 motifs, while FPF, sampling method and the

enumeration method discovered only 1112, 848 and 21 network motifs respectively.

The limited number of network motifs found by FPF, sampling and enumeration

methods was due to the limitation of the motif size that these algorithms could

handle.
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Figure 5.13: Comparison in size and number of network motifs that can be found by four
algorithms in MIPS PPI network.

5.6 A Motif Application: PPI

Validation

Previous works in biological network motifs have focused mostly on motif discovery;

there has been little or no work in showing how the network motifs can be system-

atically exploited. In this section, we describe how we can exploit the extracted

network motifs in PPI validation. Our results show that the inclusion of the larger

meso-scale network motifs indeed leads to better results.

Technological developments in high-throughput PPI detection methods such

as yeast-two-hybrid and protein chips have enabled biologists to experimentally

detect PPIs at the whole genome level for many organisms. For example, cur-

rently more than 15000 PPIs have already been detected and deposited in biological

databases for S. cerevisiae. The abundant number of PPIs enables scientists to an-

alyze these organisms at the genome level. However, a significant proportion of the

PPI networks obtained from high throughput biological experiments has been found

to contain false positives. Recent surveys have revealed that the reliability of the
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popular high-throughput yeast-two-hybrid assay can be as low as 50% [MKS+02].

These errors in the experimental data may lead to spurious discoveries that can be

potentially costly, e.g., wrong drug targets for diseases.

Positive results from the various experiments conducted by Saito et al. [SSH02b,

SSH02a] suggest that the use of even a seemingly primitive network motif in dis-

secting genome-wide PPI networks is helpful in increasing the reliability of currently

erroneous experimental interaction data. In this section, we investigate whether us-

ing the actual network motifs can indeed give better performance than using the

simple, predefined ones such as those employed in IG1 and IG2.

5.6.1 Motif Strength

We have seen how NeMoFinder is able to discover a much more comprehensive set of

network motifs as compared to the other methods (Section 5.5). For it to be useful

in practice, it is important that the set of network motifs can provide sufficient

coverage of the vast interactome. We found that 96% of PPIs in the MIPS dataset

was indeed covered by at least one network motif discovered by NeMoFinder.

First, we rank the network motifs in terms of their contribution to the PPI

network with respect to their individual sizes, frequencies and uniqueness. For sim-

plicity, we assume that the motifs are independent here. We define the strength

MSk(g) for each motif g as:

Definition 6. MotifStrength. The strength of a size-k motif g, denoted as MSk(g),

is the frequency value of the motif times its uniqueness value over maxk, where maxk

is the maximal value of s(g)× f(g) of all size-k motifs.

MSk(g) =
s(g)× f(g)

maxk

(5.2)

where s(g) and f(g) are the uniqueness value and the frequency value of subgraph

g.
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5.6.2 Evaluation based on motif strength

Having defined the MotifStrength, we score each interaction in the PPI network by

combining the strengths of the network motifs that contain the interaction (edge).

Definition 7. Reliability Index of PPI The reliability index of a PPI (A,B),

denoted as I(A,B), is the sum of the MotifStrength of all the motifs that contain

the edge (A,B).

I(A,B) =
K∑

k=2

n∑
i=0

MSk(gi)× k (5.3)

where gi, 1 ≤ i ≤ n are the motifs where edge (A,B) occurs and k is the size

of gi.

We apply our method, as well as IG1 and IG2, on the MIPS CYGD dataset

described in Section 5.5 to compute reliability indices for the 10199 S. cerevisiae

PPIs in the dataset. We then compare the quality of the various reliability indices

in the following three different aspects:

1. Function Homogeneity. The cellular functions of the protein partners in

a genuine biological interactions are likely to be similar. As such, we would

expect an interactome that has been sorted with a good reliability index to

exhibit a high degree of functional homogeneity in the interactions with high

reliability scores. We use the Comprehensive S. cerevisiae Genome Database

(dated 2005-06-20) at MIPS [MFG+02] as the ground truth for the proteins’

functional annotations. Out of the 4341 proteins in the MIPS CYGD interac-

tion dataset, 3150 proteins have functional annotations and 4743 interactions

involve the annotated proteins.

2. Localization Coherence. With the exception of the proteins involved in

cellular pathways such as the signalling pathway, the cellular localizations of

the protein partners in a genuine biological interactions are expected to be

the same. As such, a better reliability index would exhibit a higher degree of

cellular co-localization amongst the protein partners in the sorted interactions.
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We use the cellular localization annotations of the S. cerevisiae proteins in the

MIPS database as the basis for comparison in our experiment.

3. Gene Expression Correlation. Studies have shown that the average cor-

relation coefficient of gene expression profiles that corresponds to interacting

protein pairs is significantly higher than those that correspond to random pairs

[Gri01]. As such, we can also use the degree of gene expression correlation to

evaluate the relative quality of the PPI reliability indices. For gene expression

correlation analysis, we downloaded the S. cerevisiae gene expression dataset

from Eisen’s Lab [ESBB98]. The dataset comprises expression vectors from 80

experiments on 6221 genes.

Figure 5.14 shows that as the reliability index value is increased, the propor-

tion of interacting pairs with common cellular functions also increases, indicating

an increase in the number of true positives in the filtered interaction data. The re-

liability indices generated using the NeMoFinder’s network motifs show significant

increases (from 61% to 87% and 81%) than those using IG1 and IG2 (from 61% to

only 68% and 73% respectively). The reliability indices using up-to 8 vertex network

motifs has similar performance as IRAP.
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Figure 5.14: Proportion of interacting proteins with common cellular functional roles
increases at different rates under different interaction reliability measures.

Figure 5.15 shows the relative performance in terms of cellular localization
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coherence. Using the reliability indices computed by the network motifs, the pro-

portion of interacting pairs with common cellular localization increases from 85.3%

to 94.0% and 91.7% for the NeMoFinder network motifs, again outperforming IG1

and IG2 (from 85.3% to 87.0% and 90.1%). The reliability indices using up-to 8

vertex network motifs has similar performance as IRAP.
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Figure 5.15: Proportion of interacting proteins with common cellular localizations in-
creases at different rates under different interaction reliability measures.

The results based on gene expression correlation, shown in Figure 5.16, ex-

hibit a similar trend. Again, the increase in the average gene expression correlation

between the protein partners in the sorted PPIs is much more significant when us-

ing reliability indices computed with NeMoFinder’s network motifs (from 26.4% to

33.5% and 30.8%) than those generated by using IG1, IG2 and IRAP (from 26.4%

to 27.6% 29% and 29.5%).

These results show that the PPI reliability indices computed using the NeMoFinder

network motifs are more reliable than those computed using IG1 and IG2, demon-

strating the positive effect of using a more comprehensive set of actual network

motifs against a small number of simple, predefined motifs. We also found that the

reliability indices using up-to 8 vertex network motifs has similar performance as

IRAP, but clearly has more coverage than IRAP. Additionally, we also compared

the performance of using motifs of different sizes. In all three evaluation experi-

ments, the reliability indexes computed using NeMoFinder network motifs of sizes
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Figure 5.16: Overall correlation of gene expression for interacting proteins increases at
different rates under different interaction reliability measures.

up to 12 consistently show superior performance over that computed with motifs

of sizes only up to 8. This indicates that it is advantageous to include the larger

motifs, justifying the need for discovering meso-scale network motifs.

5.7 Conclusions

Existing network motif discovery algorithms are limited to extracting smaller net-

work motifs and cannot be employed to mine meso-scale level network motifs in large

biological networks. In this chapter, we have presented an efficient network motif

discovery algorithm called NeMoFinder to discover larger-sized repeated and unique

network motifs in PPI networks. The algorithm utilizes repeated trees to partition

a network into a set of graphs. We have introduced the notion of graph cousins

for efficient candidate generation and frequency counting. We use NeMoFinder to

successfully extract, for the first time, up to size-12 network motifs from the whole

S. cerevisiae PPI network. The network motifs discovered by NeMoFinder provided

a good coverage of the PPIs in the vast interactome.

In this work, we also showed an example of how the network motifs can be

systematically applied in the validation of the PPIs in an interactome. Our results
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confirmed that employing the larger actual network motifs derived from biological

networks instead of predefined small-sized network motifs can indeed achieve better

results. Future work will include directed network motif discovery and network motif

labelling.
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CHAPTER 6

Network Motif Labeling

Biological networks such as the protein-protein interaction (PPI) network have been

found to contain small recurring subnetworks in significantly higher frequencies than

in random networks. Such network motifs are useful for uncovering structural design

principles of complex biological networks. However, current network motif finding

algorithms model the PPI network as a uni-labeled graph, discovering only unlabeled

and thus relatively uninformative network motifs as a result.

Our objective is to exploit the currently available biological information that

are associated with the vertices (the proteins) to capture not only the topological

shapes of the motifs, but also the biological context in which they occurred in the PPI

networks for network motif applications. We present a method called LaMoFinder

to label network motifs with Gene Ontology terms in a PPI network. We also show

how the resulting labeled network motifs can be used to predict unknown protein

functions. Experimental results showed that the labeled network motifs extracted

are biologically meaningful and can achieve better performance than existing PPI

topology based methods for predicting unknown protein functions.

108



6.1 Introduction

Motifs in a network are small connected subnetworks that are found to be repeatedly

occurring in the network in frequencies that are significantly higher than in random

networks. Many complex networks in the real world, such as the gene regulatory

network and the protein-protein interaction network, have recently been found to

contain such topological patterns of local connections [MSOI+02]. Analysis of net-

work motifs in these naturally occurring networks has led to many interesting results.

For example, it was shown that conserved network motifs allow protein-protein in-

teraction predictions [AA04], and that they can be used to discover the underlying

network decomposition [IMK05]. As such, network motifs have been gaining increas-

ing attention as a useful concept to uncover structural design principles of complex

networks [MSOI+02, MIK04, WR06].

Current approaches in finding network motifs typically consist of two major

subtasks:

• Task 1. Find which classes of isomorphic subgraphs occur frequently in the

input network;

• Task 2. Verify which of these subgraph classes are also displayed at a much

higher frequency than in random graphs.

The first subtask discovers network motifs that are frequent or repeated in

the network, while the second subtask ensures that they are also unique. Clearly,

network motif discovery is a computationally challenging problem, but scientists

have begun to devise methods for detecting motifs in large networks. For example,

the MFINDER by Kashtan et. al [KIMA04] supported the detection of network

motifs consisting of up to eight vertices, while the latest NeMoFinder by Chen et.

al [CHLN06b] has enabled the discovery of network motifs with sizes ranging all the

way to meso-scale, since many of the relevant processes in biological networks have

been shown to correspond to the meso-scale (5-25 genes or proteins) [SM03].

However, the current PPI network motif finding methods are based on a stan-

dard graphical model of protein-protein interactions (PPI) as uni-labeled networks .
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In this model, a species’ “interactome” is defined as a network of interactions be-

tween the n proteins found in the species (i.e. its “proteome”), represented as a

graph in which all the vertices (i.e. proteins) are uniquely labeled with v1, . . . , vn.

As a result, the network motifs generated by the current motif finding algorithms

are “unlabeled”, capturing only the topological shapes of the motifs, and not the

biological context in which they occurred. While these network motifs have been

shown to be somewhat competent for certain biological applications such as protein

interaction prediction [AA04], such purely statistical patterns are not informative

enough for the more sophisticated biological applications of network motifs that

have been envisaged by researchers; for example, in protein function prediction us-

ing a dictionary of network motifs and their functional information to predict the

functions of unknown proteins [Alo03].

Since the current uni-label model treats each protein in a PPI network as a

unique and anonymous entity, it inadvertently ignores any other useful biological

information that we may have already known about some of the proteins. In reality,

the biologists usually would have performed experimental studies on some of the

proteins to determine their biological functional roles and the cellular sublocaliza-

tion. In fact, there are ongoing systematic efforts to annotate the various proteins in

a species’ proteome with the known biological information using the Gene Ontology

or GO (Section 6.2). This means that the underlying PPI network is actually a

partially labeled network, with many of the vertices (i.e. proteins) being already

annotated with known functional and cellular sublocalization labels. In order to

exploit the availability of such useful biological information associated with the pro-

teins in network motif applications, we introduce a third subtask to the problem of

network motif mining:

• Task 3. Assign biological labels to the vertices in the network motifs such

that the resulting labeled subgraphs also occur frequently in the underlying

labeled input network.

The task of labeling the network motifs (formally defined in Section 6.3) turns

out to be computationally expensive, due to the sophisticated GO scheme by which
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the proteins are annotated. There is often missing information even in the most well-

studied model organism. As a result, not all the proteins in the PPI network are

annotated with biological information. When they are, many of the proteins would

be multiply-labeled since they have complex biological roles. Moreover, the biological

labeling scheme is hierarchical, introducing a further element of complexity. As

such, even if both the motif size and the number of the motifs are small, it is almost

impossible to hand-label the motifs. In fact, the number of possible motifs’ labels

increases exponentially as we graduate to meso-scale network motifs.

In this chapter, we propose an algorithm, LaMoFinder [CHLN07], which

stands for Labeled Motif Finder , to label the network motifs discovered in a bi-

ological network (Section 6.3). Such enrichment of the network motifs enables them

to become biologically meaningful for the more sophisticated biological applications

such as protein function prediction envisaged by researchers. We apply LaMoFinder

to label network motifs mined from the large whole-genome S. cerevisiae (Yeast)

PPI network for knowledge discovery applications. Our evaluation results show that

our labeled network motifs are biologically meaningful (Section 6.4) and can achieve

better performance than existing topology-based methods for predicting unknown

protein functions using PPI (Section 6.5).

6.2 Gene Ontology

The Gene Ontology (GO) project [GO206] is a collaborative effort initiated since

1998 to construct and use ontologies to facilitate the systematic annotation of genes

and their products (e.g. proteins) in a wide variety of organisms. The resulting

GO ontologies have now been accepted as the de facto language for the description

of attributes of genes and gene products, with a rapidly growing number of model

organism databases and genome annotation groups contribute annotation sets using

GO terms to GO public repository.

The GO ontologies provide a systematic language for the description of at-

tributes of biological entities in 3 key domains that are shared by all organisms,

namely molecular function, biological process and cellular component. In each of
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these domains, the corresponding GO ontology is structured as a directed acyclic

graph (DAG) to reflect the complex hierarchy of biological terminologies. Mathe-

matically, suppose T = {t1, t2, . . . , tn} is a set of GO terms, we say term ti is a direct

child of term tj, if and only if ti is an instance (“is-a” relationship) or a component

(“part-of” relationship) of tj (ti, tj ∈ T ).

To properly model the biological information in different genomes, we also

need to take into account that not all the GO terms are equally informative within a

certain genome due to their biological differences [LSBG02]. In other words, for each

genome, we assign genome-specific weights to the GO terms based on the method

suggested by Lord et. al [LSBG02]: the weight of a GO term is defined as the ratio

of the number of occurrences of the GO term and any of its descendants’ terms in

the genome to the total number of terms occurrences in the genome. We denote it

as w(t), ∀t ∈ T . By this definition, the GO term weight value is between 0 and 1,

and the root node has a weight of 1.

w(t) =
N(t) +

∑
N(tchild)

Ntotal

where N(t) is the number of occurrences of the GO term t, tchild is the number of

the descendants’ terms of t, and Ntotal is the total number of terms occurrences in

the genome.

Figure 6.1 shows an illustrative example of a subset of GO. In addition, Ta-

ble 6.1 shows its protein annotation list. We observe that G04 is a child of G02

following the “is-a” relationship. G06 is a child of G03 following the “part-of” re-

lationship. In addition, the weight of G04 is 0.42 because 245 out of 585 proteins

are annotated with G04 or its decedents. Note that it is possible for a child term to

have multiple parents in GO. In Figure 6.1, G05 has G02 and G03 as its parents.

Zhou et al [ZKW02] define a GO term as an informative functional class (FC)

if the GO term has at least 30 proteins directly annotated with it. In Figure 6.1,

G04, G05, G06, G09, and G10 are informative FC. In this work, we are interested in

a subset of the informative FC, namely the informative FC with no ancestors that

are informative. We call them the border informative FC. Border informative FC
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Figure 6.1: Example: a subset of GO.

are used to avoid the generation of labels that would be too general. In our example,

G09 and G10 have informative ancestors G05. Hence they are not excluded from

the border informative FC.

Having introduced the background of GO annotations, we now illustrate some

of the difficulties in labeling network motifs with GO annotations. Figure 6.2 shows

an unlabelled network motif g that has been discovered in a PPI network. The

occurrences of g in the PPI network G are shown in Figure 6.3 and protein GO

annotations are shown in Table 6.2. The task is to label the vertices of g such that

the labeling scheme is consistent with some occurrences of g. In other words, the

labels must be the same, or more general than the annotation of the corresponding

vertex in the occurrence.

g


v

2


v

3


v

4


v

1


Figure 6.2: Example: network motif g.
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GO term Num. of Num of proteins GO term
t proteins annotated annotated with t weight w(t)

with t and its decedents
G01 0 585 1.00
G02 0 415 0.71
G03 20 475 0.81
G04 100 245 0.42
G05 70 280 0.48
G06 150 250 0.43
G07 10 100 0.17
G08 25 135 0.23
G09 100 100 0.17
G10 90 90 0.15
G11 20 20 0.03
SUM 585

Table 6.1: Example: Weights and the numbers of occurrences of GO terms in Figure 6.1
.
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Figure 6.3: Example: 4 occurrences (shown with thick lines) of the network motif g
(Figure6.2) in a PPI network G.

For example, suppose we label the vertices {v1, v2, v3, v4} as {G04, G08, G04, G05}
in Figure 6.3. For occurrence o1, suppose vertices {v1, v2, v3, v4} are mapped to

{p1, p2, p3, p4}. We observe that G04 is one of the annotation of p1 (see Table 2).

For p2, although G08 is not in any of the p2’s annotation, we realize that G10 is in

fact a descendant of G08. In other words, assigning G08 to v2 is appropriate since

it is more general than the annotation of p2 (G10). Similarly, p3’s annotation of

G08 is a descendant of G04 and p4’s annotation of G09 is a descendant of G05. We
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Protein GO annotation Protein GO annotation
p1 G04, G09, G10 p9 G11, G10
p2 G10, GO3 p10 G03, G05, G07
p3 G08 p11 G05
p4 G09, G07 p12 G09
p5 G03 p13 G11
p6 G10 p14 G04, G05
p7 G03 p15 G04
p8 G05 p16 G04, G09

Table 6.2: Example: GO annotations for proteins in occurrences o1, o2, o3 and o4.

can conclude that the labeling scheme {G04, G08, G04, G05} is consistent with the

occurrence o1.

From this example, we realize that the task of labeling network motifs from

biological networks needs to consider the following issues:

1. Multiple and hierarchical labeling.

Biologically, many proteins are involved in multiple cellular processes and they

are therefore labeled with more than one GO term, e.g., the proteins in yeast

are currently annotated with an average of 9.34 GO terms. Therefore, the

number of labeling schemes that are consistent with an occurrence increases

exponentially with network motif size. This leads to the scalability issue.

2. Symmetric vertices.

Symmetric vertices are vertices that can be interchanged without affecting

the topological structure of the network. For example, the network motif

g in Figure 6.2 has two sets of symmetric vertices, {v1, v3} and {v2, v4}. The

existence of these sets of symmetric vertices implies that we need to enumerate

all possible mappings between the motif vertices and the occurrence vertices

in order to obtain all the possible labeling schemes. Time complexity increases

exponentially with the size of the symmetry set. Furthermore, testing whether

a graph has any axial symmetry is an NP-complete problem [Man90]. This

also increases the complexity of the labeling work.
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The LaMoFinder method to be described in Section 6.3 is specifically devised

to address the above challenges effectively.

6.3 LaMoFinder

We model a biological network as a graph G = (V, E) where each vertex in V rep-

resents a biological entity (e.g., a protein for PPI networks, or a gene for gene regu-

latory networks), and each edge in E between two vertices vA and vB indicates that

there exists a biological relation detected between the corresponding proteins/genes

A and B. To simplify discussion, we will focus on PPI networks, although our

algorithm can be applied to any biological networks.

A network motif g is a frequently occurring non-random subgraph pattern in

a network G [MSOI+02]. By definition, g is a connected, unlabeled subgraph that

is repeated and unique in G. For each g, there exists a set of occurrences of this

network motif in G, denoted as Dg.

Let T = {t1, t2, . . . , tn} be the set of GO terms which will be assigned to the

vertices of network motifs as labels. A labeling scheme L of g is said to conform to

an occurrence o (o ∈ Dg) if the assigned labels for all vertices of g are either the

same or more general than the label of the corresponding vertices in o.

Our goal is to find all possible labeling schemes for the vertices of a network

motif g such that they conform to at least σ occurrences in Dg.

A naive approach is to pick an occurrence at random and use its labels as a

possible labeling scheme. It then proceeds to determine the number of occurrences

that conform to this labeling scheme. If the number of occurrences is less than σ,

it picks a combination of vertices at random and generalizes their labels one level

up the function hierarchy. With the generalized vertex labels, the total number of

occurrences that conforms to the labeling scheme is re-computed. If the number

exceeds σ, the scheme is output. The process is repeated till all occurrences have

participated in at least one labeling scheme. Clearly, this approach is not scalable.

As the network motif size increases, the number of possible vertices combination to

generalize increases exponentially. A better approach is needed.
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We design a heuristic network motif labeling algorithm called LaMoFinder.

Instead of enumerating all possible vertices and their sets of possible generalized

labels, we start with the set of occurrences and try to group the occurrences based

on their degree of similarity to each other. As the occurrences are grouped, we

determine the least general labeling scheme that conforms to all the occurrences in

the group. Here, the least general labeling scheme refers to selecting the lowest GO

terms that is able to encompass all the occurrences.

In Figure 6.4, suppose we group o1 and o2 and assume that {p1, p2, p3, p4} are

matched with {p12, p9, p10, p11}. The corresponding annotations for {p1, p2, p3, p4}
are {(G04, G09, G10), (G10, G03), (G08), (G09, G07)}; while the corresponding an-

notations for {p12, p9, p10, p11} are {(G09), (G11, G10), (G03, G05, G07), (G05)}. Then

the least general labeling scheme is {(G05, G09), (G08, G10), (G04, G05), (G05)}.
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Figure 6.4: Example: The labeling of two occurrences

Two issues immediately surface. The first issue concerns the computation

of similarity measures between occurrences. To address this problem, we derive a

similarity measure for occurrences based on the GO term similarities. The second

issue concerns the grouping criteria. This is dealt with in subsection 6.3.2.
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6.3.1 Similarity Measure for Occurrences

As we use GO terms as labels, we first compute the similarity value between any

two GO terms. Based on the GO term similarity, we will compute the similarity

value between occurrences.

GO Term Similarity. Given two GO terms ta and tb and their correspond-

ing weights w(ta) and w(tb), we adopt an enriched GO term comparison method

[LSBG02] to assign a term similarity score for ta and tb, denoted as ST(ta,tb).

Recall that GO allows multiple parents for each term. Two terms may share

one or more common parents via different paths. For example, in Figure 6.1, G08

and G09 have 2 common parents (G05 and G01). We denote the GO term of the

lowest common parent (in our example, this corresponds to G05) as tab. Then the

similarity between GO terms ta and tb is defined as:

ST (ta, tb) =
2× ln w(tab)

ln w(ta) + ln w(tb)
(6.1)

where w(tx) is the weight of GO term tx in T . As 1 ≥ w(tab) ≥ w(ta) and 1 ≥
w(tab) ≥ w(tb), ST (ta, tb) varies between 1 and 0.

Occurrence Similarity. The similarity between any two occurrences oi and oj

of a network motif g is determined from the similarities between the correspond-

ing vertices of oi and oj. The computation of the occurrence similarity has two

complications.

The first complication arises from the fact that each vertex of an occurrence

may have multiple labels. For any two vertices vi and vj, let Tvi
and Tvj

be the set

of GO terms annotated to vi and vj respectively, we define the similarity score SVi,j

for vertices vi and vj as:

SV (vi, vj) = 1−
∏

ta∈Tvi ,tb∈Tvj

(1− ST (ta, tb)) (6.2)

where ST (ta, tb) denotes the similarity between GO term ta and tb computed with

Equation 6.1. Note that SV (vi, vj) is close to 1 as long as there is at least one good

GO term match among the lists of GO terms in Tvi
and Tvj

. In other words, two
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vertices are considered similar if they share at least one biological feature.

The second complication arises due to the presence of two or more symmet-

ric vertices. In our example, occurrence o1 has symmetric vertices {p1, p3} and

{p2, p4} and occurrence o2 has symmetric vertices {p12, p10} and {p9, p11}. Let I1 =

{v11, v12, . . . , v1t} be one set of symmetry vertices in o1 and I2 = {v21, v22, . . . , v2t}
be the corresponding set of symmetry vertices in o2. We denote pair(I1, I2) as the

possible pairings of the vertices between the two sets I1 and I2. In our example,

pair({p1, p3}, {p12, p10}) = {{(p1, p12), (p3, p10)}, {(p1, p10), (p3, p12)}}.
Let ℘a = {Ia1, Ia2, · · · , Iak} be the set of all sets of symmetric vertices in the

occurrence oi; ℘b = {Ib1, Ib2, · · · , Ibk} be the set of all sets of symmetric vertices

in the occurrence oj. We define the similarity score of the occurrences oi and oj,

SO(oi, oj), as:

SO(oi, oj) =
1

|V |
k∑

a,b=1


max{

∑

pair(Ia,Ib)

SV (vα, vβ)}

 (6.3)

where |V | is the number of vertices in the network motif, and (vα, vβ) ∈ pair(Ia, Ib),

Ia ∈ ℘i and Ib ∈ ℘j.

For example, if we want to compute the pairwise similarity scores for the

occurrences o1 and o2, we need to find the sets of symmetric vertices. This problem

has been proven to be NP-complete by J. Manning in [Man90]. Several heuristics

are known to be polynomial in general. Here, we make use of the heuristics provided

in the graph algorithm library PIGALE (http://pigale.sourceforge.net/).

Table 6.3 shows the occurrence similarity between o1 and o2.

6.3.2 Grouping Occurrences

Having worked out the details to compute the similarity of occurrences, the next

issue concerns the grouping of the occurrences such that we can find all the possible

labeling schemes that encompass the σ number of occurrences.

One possible solution is to use the popular clustering algorithm such as the

k-means clustering algorithm to find clusters of size σ. For each cluster, we derive

the labeling scheme by assigning to the vertex of the network motif one GO term
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occurrence o1 occurrence o2 SV score
p1(G04, G09,G10) p12(G09) 1.00
p1(G04, G09,G10) p10(G03, G05,G07) 0.99

p2(G03, G10) p9(G10, G11) 1.00
p2(G03, G10) p11(G05) 0.76

p3(G08) p10(G03, G05,G07) 0.80
p3(G08) p12(G09) 0.45

p4(G07, G09) p11(G05) 0.69
p4(G07, G09) p9(G10, G11) 0.99

SO score 0.87

Table 6.3: Example: Similarity score between occurrences o1 and o2

that conforms to all the occurrences of that vertex.
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Figure 6.5: Example: Clusters and their labeling schemes.

Unfortunately, this approach does not work well due to the hierarchical struc-

ture of the GO ontology. Consider Figure 6.5. We observe that if we use k-means

clustering, all the occurrences will be grouped into non-overlapping clusters. We can

find 2 labeling schemes c1 and c2 with threshold σ = 5. However, a closer examina-

tion shows that there are in fact 3 possible labeling schemes. This example shows

that non-overlapping clusters may miss some valid and significant labeling schemes.

In order to discover all the possible labeling schemes for the unlabeled network

motifs, we adopt an agglomerative hierarchical clustering method to cluster the

occurrences based on the occurrence similarity measures in Section 6.3.1.

In the hierarchical clustering process, each occurrence is initially a cluster by
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itself. At each iteration, pairs of the most similar clusters are joined to form a new

cluster. The least general labelling scheme of the cluster is derived. If a cluster

does not have any occurrence to combine with, it proceeds to the next step. The

clustering process stops when the labeling scheme has assigned more than half of

the vertices with labels that belong to the border informative FC. If the number of

occurrences within the cluster exceeds σ, the cluster’s labels are saved as a labeling

scheme.

o1 o2 common label
G04, G09, G10 G09 G02, G09, G05

G03, G10 G10, G11 G03, G10, G08
G08 G03, G05, G07 G03, G05, G04

G07, G09 G05 G02, G05

Table 6.4: Example: The minimum common father labels of vertices in occurrence o1 and
o2

The details of LaMoFinder are given in Algorithm 1 and Algorithm 2. LaM-

oFinder continuously combines the clusters of occurrences until all the labeled net-

work motifs are obtained. In the worst case, LaMoFinder takes O(|D|2) compu-

tational time in the pairwise similarity computation, where D is the size of the

occurrence set of network motif g. In the algorithm, the unavoidable graph symme-

try process is a NP problem. In this work, we adopted an existing heuristic method

that has O(n3) time complexity, where n is the number of the vertices of g.

6.4 Experiment Results

We implemented LaMoFinder in C++ and carried out experiments on a 3.0GHz

single processor Pentium PC with 1GB memory. For evaluation, we applied LaM-

oFinder on an experimentally-derived (yeast-two-hybrid) interaction data for Sac-

charomyces cerevisiae (yeast) downloaded from the BIND database. The interac-

tome comprises of 7903 Y2H interactions between 4401 of the yeast proteins. After

removing redundant links and self-links, the resulting PPI network has 7095 edges

and 4141 vertices.
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Algorithm 8 LaMoFinder

1: Input: G - PPI network;
T - the set of GO terms;
g - a network motif of G;
D - occurrence set of g in G;
σ - Frequency threshold;

2: Output: L - Labeled network motif set;
3: L ← ∅;
4: C ← D;
5: C ′ ← ∅;
6: Υ ← getSymmetry(g);
7: while |C| 6= 1 and C 6= C ′ do
8: C ′ ← C
9: for each cluster ci, cj ∈ C do

10: Sim ← getSimilarity(ci, cj, Υ);
11: end for
12: C ← Cluster(C ′, Sim, Υ);
13: end while
14: for each cluster c ∈ C do
15: if size(c) ≥ σ then
16: L ← c;
17: end if
18: end for
19: return L;
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Algorithm 9 Cluster(C ′, Sim, Υ)

1: Input: C ′ - set of clusters of occurrences of g;
Sim - set of pairwise similarity scores of clusters in C;
Υ - Symmetry vertices set in g;

2: Output: C - the new set of the clusters;
3: C ← ∅;
4: for each ci ∈ C ′ do
5: if less than half of vertices in ci are border informative FC then
6: c′i ← ci’s closest cluster in C ′

7: C ← Combine(ci, c
′
i, Υ);

8: end if
9: end for

10: return C;

We utilized the NeMoFinder algorithm in [CHLN06b] to discover 1367 net-

work motifs from the PPI network. Motifs of sizes up to 20 were discovered by

NeMoFinder. All the motifs have frequencies of at least 100 times in the PPI net-

work, with a uniqueness value of more than 0.95 (against random networks).

The GO annotations for the yeast proteins were downloaded from the Gene

Ontology database [GO206]. 3554 out of the 4141 yeast proteins are found to have at

least one GO biological annotation. There are 3 different branches of GO annotations

(function, process and location). We call LaMoFinder 3 times to label the network

motifs based on the 3 branches of GO annotations before using them for protein

function prediction (Section 6.5).

6.4.1 Meso-scale labeled network motifs

We set the labeled network motif frequency threshold to 10, requiring each labeled

network motif to have at least 10 occurrences in the PPI network.

Out of the 1367 unlabeled network motifs, LaMoFinder is able to extract a

total of 3842 labeled network motifs from the PPI network. Figure 6.6 shows that

the number of labeled network motifs varies with motif size. We observe that the

majority of the labeled network motifs are meso-scale. For example, 18.5% labeled

network motifs have 16 vertices, and 15.6% labeled network motifs have 17 vertices.

This is in accordance to the observation that many relevant processes in biological

networks are at the meso-scale (5-25 genes or proteins) level [SM03].
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Figure 6.6: Labeled network motif distribution.

6.4.2 Biologically meaningful motifs

We asked a biologist to peruse the different classes of labeled network motifs to

verify if there are any motifs discovered by LaMoFinder that would be biologically

meaningful.

We first check whether LaMoFinder is able to discover biologically meaning-

ful uni-labeled network motifs, since scientists have observed a notable functional

homogeneity in large motifs [WOB03]. Figure 6.4.2 shows a uni-labeled motif g1

discovered by LaMoFinder that is indeed verified to be commonly found in protein

splicing complexes.

Next, we verify whether LaMoFinder is able to discover non-uni-labeled mo-

tifs where the vertices have different but biologically related labels. An example is

shown in Figure 6.4.2. Unlike g1, the network motif g2 is labeled with 3 different

function labels. Our biologist has ascertained that g2 is indeed a biologically mean-

ingful motif because it depicts a interesting biological possibility that a protein with

function “carbohydrate utilization” can be regulated (via “mRNA transcription”) by

its indirect neighbor with function “regulation of carbohydrate utilization”.

Finally, since we have labeled our motifs with both functional labels as well
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as cellular localization labels in this work, we test the biological validity of some of

those network motifs that are labeled with these two classes of GO terms at the same

time. In fact, just like we have shown in the above non-uni-labeled example, the

more complex network motifs can reveal interesting biological insights. For example,

the third labeled motif g3 shown in Figure 6.4.2 illustrates how a parallel-labeled

motif can reveal from the PPI network such insightful information as how proteins

with different functions may operate in different cellular localizations. The upper

triangle of g3 shows a protein triplet labeled with the same function, suggesting that

they are likely to form a protein complex for the purpose of, in this case, rRNA

transcription. The other two vertices in the motif depict its functional neighbors

that are necessary for this biological process to occur. On closer examination at

the parallel cellular sublocalization labels of this motif, we can postulate the various

locations in which this complex biological process typically take part.

The above findings illustrate that using LaMoFinder to label network motifs

can reveal interesting insights to help biologists better understand the underlying

biological processes.

6.5 Application: Protein Function Prediction

Determining protein functions experimentally is an expensive process. As such,

even in yeast, the historically most well-studied model organism, only about 60%

of yeast proteins have been functionally annotated to-date. Scientists have recently

envisaged the accurate prediction of protein functions using a dictionary of network

motifs and their functional information [Alo03]. In this section, we describe how

this can be achieved with network motifs that have been functionally labeled by

LaMoFinder.

6.5.1 Prediction with Labeled Motifs

Suppose we have a labeled network motif glabeled and its set of occurrences O in a

PPI network G. We observe that
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Figure 6.7: Example labeled network motifs.

1. Any protein p in an occurrence oi ∈ O is topologically similar to its corre-

sponding proteins in the occurrences O − {oi}; and

2. All the proteins in oi other than p are functionally similar to their correspond-

ing proteins in the occurrences in O − {oi}.

Therefore, we propose to predict unknown protein functions by using labeled

network motifs as follows:

Given a protein p whose function is unknown, and p is located in an occurrence

of a labeled network motif glabeled, we can predict the functions of p by using the

functions of proteins that are topologically similar to p in the occurrences of glabeled.

For example, Figure 6.8 shows an unknown protein p in occurrence op. The

occurrence op is in the cluster of occurrences c1 which has the labeled motif g1. We
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Figure 6.8: Example: predicting function of protein p from labeled motif g1.

can actually predict that protein p has the function B from the corresponding vertex

in the labeled motif g1.

A straightforward method to predict protein functions using network motifs is

to build a dictionary of network motifs and their functions, as suggested in [Alo03].

However, a network motif is likely to have multiple functions, as we have seen in the

many non-uni-labeled motifs discovered by LaMoFinder. In order to measure the

relation between network motif and protein function more precisely, we define the

concept of labeled network motif strength (LMS).

Let g be a network motif, glabeled be a labeled network motif of g. Let

Dglabeled
= {o1, . . . , om} be the set of occurrences of glabeled. We say that glabeled is the

labeled network motif for a protein p if and only if p is a vertex in oi (oi ∈ Dglabeled

and 1 ≤ i ≤ m).

We can rank the labeled network motifs in terms of their contribution to

the PPI network with respect to their individual frequencies and uniqueness. For

a labeled network motif glabeled, the frequency value is the number of occurrences
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in G that conforms to glabeled. The uniqueness of glabeled is the number of times g’s

frequency is equal or greater than its frequency in randomized networks, over the

total number of randomized networks [MSOI+02]. For simplicity, we assume that

the labeled network motifs are independent of each other. For a labeled network

motif glabeled, we define the labeled network motif strength LMS(glabeled) as:

LMS(glabeled) =
s(glabeled)× |glabeled|

maxk

(6.4)

where |glabeled| is the frequency of glabeled; s(glabeled) is the uniqueness value of glabeled;

maxk is the maximal value of s(glabeled)×|glabeled| of all size-k labeled network motifs.

Given a set of labeled network motifs for protein p, denoted as LGp, let v be

the corresponding vertex of p in a labeled network motif glabeled (glabeled ∈ LGp), and

x1, . . . , xk be the k functions of v. Then the likelihood that protein p has function

x is given by:

fx(p) =
1

z

∑
glabeled∈LGp

(δglabeled(v, x)× LMS(glabeled)) (6.5)

where δglabeled(v, x) returns the frequency of function x on vertex v in glabeled. δglabeled(v, x)

is 0 if x is not a function of v. z is a normalization parameter to ensure that fx(p)

is between 0 and 1.

6.5.2 Results

Previous works have shown that simple topological methods [SUF03, DSC03] could

outperform sequenced-based methods, especially in the case of functional similar-

ity without sequence homology. Hence, we expect that using topologically similar

proteins will further improve the precision of function prediction. We compare our

method with some of the well-known topological associative analysis methods that

have been recently shown to be useful in the inference of unknown protein function:

1. The neighbor counting (NC) approach [SUF03] labels a protein with the func-

tion that occurs frequently in its neighbors. The k most frequent functions are

assigned as the k most likely functions for that protein.
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2. Chi-Square (Chi2) approach is a statistical approach proposed by Hishigaki et

al [HNO+01] that makes use of Chi-Square statistics to take into account the

frequency of each function in the dataset.

3. PRODISTIN [BCM+03] uses the Czekanowski-Dice distance between each pair

of proteins as a distance metric and clusters the proteins using the BIONJ

algorithm.

4. The MRF approach proposed by Deng et. al [DZM+03] is a global optimization

method based on Markov Random Fields and belief propagation to compute

a probability that a protein has a function given the functions of all other

proteins in the interaction dataset.

All the above prediction methods are based on the functional information of

nearby proteins in the network. The proposed use of meso-scale labeled network

motifs will enable, for the first time, the exploitation of remote but topologically

similar proteins for the functional prediction of unknown proteins.

To facilitate comparison, we use the same PPI dataset employed by the other

methods. The PPI dataset was download from MIPS and it comprises 1877 proteins

and 2448 physical interactions after removing 120 pairs of self-interactions. We apply

NeMoFinder followed by LaMoFinder to discover a set of labeled network motifs for

this MIPS dataset. Then, we use a leave-one-out strategy to recognize 13 functional

categories of yeast proteins. Figure 6.9 shows the precision and recall of the various

methods. The proposed labeled network motif prediction method shows improved

accuracy.

6.6 Conclusion

Many biological networks such as the PPI network have been found to contain small

recurring subnetworks in significantly higher frequencies than in random networks

[MSOI+02]. Scientists have believed that such overabundant topological modules in

the network can be useful for uncovering the structural design principles of complex

biological networks. However, current network motif finding algorithms invariably
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Figure 6.9: Precision vs. Recall for labeled network motif functional prediction

models the PPI network as a uni-labeled graph, limiting themselves to only dis-

covering unlabeled (and uninformative) network motifs. As a result, the currently

available biological information that are associated with the vertices (the proteins)

cannot be exploited for further knowledge discovery applications.

In this work, we have proposed a method called LaMoFinder to annotate

network motifs with the biological information associated with the proteins in the

PPI network. Our method was specifically devised to handle the large labeling space

as well as the sophisticated scheme (GO) in which the proteins were annotated. As

a result, we have captured not only the topological shapes of the motifs, but also

the biological context in which they occurred in the labeled network motifs.

We also demonstrated how the network motifs labeled by LaMoFinder can

be used to predict the functions of unknown proteins in the PPI network. Our

superior performance against other current prediction methods confirmed that the

network motifs have indeed been adequately enriched by LaMoFinder for the more

sophisticated biological applications such as protein function prediction. For further

work, we plan to look into mining labeled and directed network motifs, as many

real-world networks can also be modelled with directed graphs.
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CHAPTER 7

Discussion

The dissection of the protein interactome is important for extracting invaluable bio-

logical knowledge for understanding the molecular mechanism of our cellular system,

and eventually leads to the discovery of new drugs and drug targets for various hu-

man diseases. Thus far, most of the recent technological advance in this field has

focused on the high-throughput detection of protein interactions in order to map

the tremendously vast protein interactome. Unfortunately, the protein interaction

data that have been generated in large-scale experimental studies using the high

throughput technologies have very high error rates, and a large proportion of protein

functions are unknown. In this work, we therefore focused on tackling the problem

of high false positive rates in high-throughput experimental protein interaction data,

and predict unknown protein functions as well using network topologies.

7.1 Review of main findings

We proposed the use of a novel measurement—Interaction Reliability by Alterna-

tive Path (IRAP)—to computationally assess the reliability of candidate protein

interactions by using the topological properties of the underlying protein interaction

network. We developed an algorithm called alternative path finder to compute the
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IRAP values efficiently in large, interconnected, and loopy protein interaction net-

works. Given the expensive computational requirement of the algorithm, we then

devised a heuristic IRAP algorithm that selects the most promising paths via an

estimation function. This estimation function was designed to capture the concept

of “hub” nodes – a widely recognized scale-free behavior in the protein interaction

network.

Results from our extensive experiments showed consistently that the IRAP

measure is an effective way for discovering reliable protein interactions in large

datasets of error-prone experimentally-derived protein interactions, and the heuris-

tic IRAP is able to achieve remarkable speedup while maintaining a high degree of

accuracy. Our results also indicated that IRAP is better than IG2, and markedly

better than the more simplistic IG1 measure. The outstanding performance of IRAP

showed that a global, system-wide approach—such as our IRAP measure that con-

siders the entire protein interaction network instead of only local neighbors—is a

much more promising approach for assessing the reliability of protein interactions.

Beside the high error rates of the high-throughput PPI networks, the false

negative rate of the networks have also been estimated to be as high. In this the-

sis, we have proposed a novel computational complement for the repurification of

the experimentally-derived interactomes. We iteratively refine an interactome by

removing interactions that are identified as false positives and adding interactions

detected as false negatives into the interactome. The computationally repurified

interaction data sets were shown to contain potentially lower fractions of false posi-

tive and false negative errors. Additionally, biologically interesting interactions such

as cross-talkers may also be discovered using our method. Note that in this work,

the detection of the potential experimental errors was intentionally done using only

the topological information that were mathematically derived from the underlying

interaction graphs. This is to allow us to clearly illustrate the potential usefulness

of such a topological approach.

We also presented a network motif model to find frequent and unique net-

work motifs in the protein interaction networks, and to evaluate protein interactions

with these motifs. By discovering network motifs, protein interaction networks were
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broken down into simple units that can help researchers discover unknown principle

of complex network. Overcoming the drawbacks of existing algorithms for detecting

unique network motifs, The algorithm NeMoFinder could rapidly scale to meso-size

network motifs. In the algorithm NeMoFinder, a new framework was designed with

the ability to directly scale to motifs with certain size. In the framework, frequent

trees were firstly discovered, because tree is a simper topological structure than

graph and the number of distinct trees is much less than the number of graphs with

the same size. By finding frequent trees, graph G was naturally divided into a set of

graphs GD, in which each graph was an embedding of a frequent tree. Then, three

kinds of join operations were introduced to reduce the computational time of motif

candidate generation and frequency counting in GD. Experimental results showed

that NeMoFinder was able to discover meaningful network motifs from the yeast

protein interaction network successfully. While running NeMoFinder on yeast data,

we discovered about 100 times more network motifs than existing ones. The protein

interaction evaluation based on meso-scale network motifs are more reliable than

small local motifs (c.f. “IG2”).

The performance of meso-scale network motif is similarly accurate as IRAP,

but has advantages if network is sparse (i.e., where few alternate paths are present).

The results suggest that the two approaches, alternative path and network motif, can

facilitate the rapid construction of protein interaction networks that help scientists in

understanding the biology of living systems and unknown behaviors of real networks.

Current network motifs are unlabeled (and uninformative). As a result, the

currently available biological information that are associated with the vertices (the

proteins) cannot be exploited for further knowledge discovery applications. In this

thesis, we have proposed a method called LaMoFinder to annotate network motifs

with the biological information associated with the proteins in the PPI network.

Our method was specifically devised to handle the large labeling space as well as the

sophisticated scheme (GO) in which the proteins were annotated. As a result, we

have captured not only the topological shapes of the motifs, but also the biological

context in which they occurred in the labeled network motifs. We also demonstrated

how the network motifs labeled by LaMoFinder can be used to predict the functions
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of unknown proteins in the PPI network. Our superior performance against other

current prediction methods confirmed that the network motifs have been adequately

enriched by LaMoFinder for the more sophisticated biological applications such as

protein function prediction.

7.2 Recommendations

The IRAP and IRAP* measures are currently based on the “strongest alternative

path” model. A candidate interaction that is not accompanied by a strong alterna-

tive path of interactions in the overall protein interaction network is considered to be

unreliable. While this may not be true for all the biologically relevant protein inter-

actions, we have performed an analysis on our yeast-two-hybrid protein interaction

datasets and found that more than 80% of interactions in our experiments do have

at least one alternative path. With a significant proportion of interactions captured

by the current IRAP and IRAP* measures, it is acceptable that the measure cannot

evaluate the other 20% of protein interactions.

The other measure, network motif, is based on the frequent and unique sub-

graphs that are found solely in the current protein interaction network. Protein

interactions that are captured by at least one significant network motif are consid-

ered to be reliable. As this work focuses on the topological significant interactions

which are thought to be the most biologically important, the protein interactions

with no network motifs involved are lost. The labeled network motifs cover even less

protein interactions. The number of the lost interactions varies with the threshold

of frequency and uniqueness given by users. Generally, for S. cerevisiae, about 96%

protein interactions are involved in at least one network motif; for E. coli, about

80% protein interactions are involved in at least one network motif.

Therefore, while both of the two approaches capture a large part of protein in-

teractions with distinct approaches, there are still a certain proportion of the protein

interactions that cannot be evaluated by current IRAP/motif model. The next step

is to develop further network models to capture protein interactions associated with

more sophisticated topological characteristics than alternative paths and network
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motifs. New models could be developed in the following ways.

7.2.1 Combine IRAP/motif model with other existing mod-

els

Besides the IRAP/motif model, there are some existing protein interaction eval-

uation methods based on the protein interaction network topology. For example,

Bader et al [BCC04] developed a quantitative method which treated pairs of proteins

close together in multi-networks as positive examples, and proteins connected in one

network and far apart in the second network as negative examples.

By combining the existing protein interaction evaluation methods with the

IRAP/motif model, detection of more protein interactions in the protein interaction

data may be possible.

7.2.2 Disconnected Network Motifs

In our network motif model, we focused on finding the simplest topological units

that are connected. A network motif is connected if there is a path between every

pair of vertices in the motif. However, the current protein interaction network is

not only with many false positives but also has a high ratio of false negatives. The

false negative problem is critical by the fact that the combination of independent

datasets results in a low overlap rate[HF01, MKS+02]. With the missing interac-

tions, an interesting network motif could be separated. Consequently, a disconnected

network motif will be overlooked by our network motif model since it focuses only

on connected motifs.

Therefore, it would be interesting to develop an algorithm to discover discon-

nected network motifs with gaps (missing nodes or missing edges). The disconnected

motifs could be generated by glue smaller connected motifs that often occur in the

protein interaction network with a close distance, or could be discovered directly in

a similar way as finding discrete subgraphs or subtrees in a complex network.
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7.2.3 Incorporate with protein functional interaction net-

works

The linkage in the protein functional interaction network indicates that the two

connected proteins have the same function. Naturally, the functional network is

much larger than the physical protein interaction network that we focused on.

An alternative path that does not appear in the physical interaction network

but appears in the functional network may indicate two possibilities. First, the two

target proteins are strongly correlated in functional annotations but not physically

connect with each other. Second, there exist a physical alternative path, but the

path does not exist in the current physical protein interaction network due to the

high error rate. Therefore, the interacting pair with only functional alternative path

could be assigned a weight based on the number of missing edges in the path. With

this approach, we hope to detect more protein interactions in the physical interaction

data.

It is also reasonable to assume that there are no false negatives in the func-

tional network, which means the physical protein interaction data is a subset of the

functional protein interaction data. Hence, in the disconnected network motif dis-

covery approach introduced in section 7.2.2, a gap in physical network should have

its corresponding edge in the functional network. Therefore, the disconnected motif

discovery approach could be more effective since the search space is dramatically

reduced.

7.3 End note

There is no better way to end the thesis by relating some “history” [CCH+06].

Professor Limsoon Wong first learned, at GIW 2002, of the possibility of ranking the

reliability of protein-protein interactions reported in high-throughput Y2H assays

from Dr. Rintaro Saito, who was showing a poster of his works on IG1 [SSH02b]

and IG2 [SSH02a]. Professor Limsoon Wong was so impressed with the poster that,

upon returning to Singapore, he told his colleagues Dr. See-Kiong Ng and Mr.
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Soon-Heng Tan about it. Dr. See-Kiong Ng subsequently followed up on the idea

with his collaborators A/P Wynne Hsu, Dr. Mong Li Lee and me; and developed

improvements including IRAP [CHLN04, CHLN05b, CHLN05a], IRAP* [CHLN06c],

and NeMoFinder [CHLN06b, CHLN07]. Mr. Soon-Heng Tan did not follow up

on the idea, though he was inspired to work on identification of protein-protein

binding motifs [LLTN04]. Professor Limsoon Wong followed up on the paper, and

co-authored with Haiquan Li and Jinyan Li a paper on binding motifs [LLW06].

He also co-authored with Dr. Wing-Kin Sung and Mr. Hon Nian Chua a paper

on using indirect neighbours to infer protein function [CSW06]. As we can see, the

discussion of professor Limsoon Wong and Dr. Rintaro Saito at GIW 2002 has lead

to a fruitful chain of results.
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