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Summary
This thesis addresses the problem of de novo peptide sequencing. Specifically, the issue

addressed here is the sequencing of charge 3 and above spectra, called multi-charge spectra, on

CID based mass spectrometer machines. We show in this thesis that integrating higher charge

ion-types (charge 3 and above) for multi-charge spectra and introducing a novel algorithm for

denovo sequencing can help in obtaining better sequencing results.

Current algorithms mainly focus on sequencing peptides for charge 1 and 2 data, but do

not directly handle multi-charge spectra. This is because of the additional challenges posed by

including them. These challenges includes the increase in problem size (number of pseudo-peaks

to be considered), the increase in the noise level caused by these additional pseudo-peaks, and

also the increase in the complexity of the resulting sequencing problem. These challenges to

sequencing multi-charge spectra lead to two questions being posed by Pavel Pevzner. Namely,

are there higher charged peaks and if so do they increase the percentage of recoverable peptides

(portions of the peptides that are “supported” by peaks), and can we devise better sequencing

algorithms that consider these higher charge peaks?

In this thesis, we answer both these questions. To answer the first question, we first did a

characterization study that showed higher charge peaks either increases the upperbound on the

percentage of recoverable peptides by explaining fragmentation points which are not explained

by lower charge peaks, or by becoming supporting peaks for fragmentation points already ex-

plained by lower charge peaks.

In order to properly model higher charge peaks, we extend the notion of the extended

spectrum to include pseudo-peaks of ion-types with higher charges. For a given spectrum,

this step properly models the higher charge peaks, but it increases the number of pseudo-

peaks to be considered and also increases the noise level. With this extended spectrum model,

our characterization study of annotated spectra from the GPM-Amethyst dataset (charge 1-5)

shows that there is an increase in the upperbound of the percentage of recoverable peptide by

including higher charge peaks. Although the characterization study on ISB and Orbitrap data

(both having charge 1-3 data) did not show much increase to the recoverable peptide when



using charge 3 ion-types, we cannot conclude that they are useless since they can still act as

supporting ions. This has shown to be true from our sequencing result where using charge 3

ion-types for ISB/ISB2 data results in an improvement in recoverable amino acids of around

1-2% as compared to not using charge 3 data.

While the characterization study shows that considering higher charge peaks can potentially

increase the percentage of recoverable peptide, the problem of actually recovering the peptide

is still very challenging (the second question). To settle this question, we design a de novo

peptide sequencing algorithm called MCPS that considers multi-charge peaks and strong pat-

terns associated with contiguous fragmentation points explained by peaks of the same ion-type.

MCPS has been shown to give better or comparable sequencing results with other state-of-the-

art algorithms for some sets of multi-charged spectra. Our algorithm makes use of several key

ideas: (i) the use of the extended spectrum graph, (ii) filtering of the extended spectrum graph

using mono ion-type tags to reduce noise and bring down the size of the problem while still

maintaining a good upperbound on the amount of peptide recoverable (iii) using a scoring func-

tion that highlight the importance of mono ion-type tag support for a given peptide tag, (iv)

a post-processing step that handles problems with competing mono ion-type tags of different

ion-types.

Comparing against current state-of-the-art de novo sequencing algorithms PEAKS, PepNovo

and Lutefisk, MCPS does the best for charge 3 ISB data and second best for charge 3 ISB2

data. In particular, it can recover 7% more amino acids in the peptide than the second best

algorithm, PepNovo, for charge 3 ISB data. We find that the results of MCPS can be used as

peptide tag for database search since it includes correctly predicted tags of length ≥ 3 more

than 40% of the time for charge 3 ISB and ISB2 data.
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Chapter 1

Introduction

Proteins form the very basis of life. They govern a variety of activities in all known organisms,

from replication of the genetic code to transporting oxygen, and are generally responsible for

regulating the cellular machinery and consequently, the phenotype of an organism. Studying

what proteins are present in different organisms and their structure and interactions will help

to identify how the body work. Moreover many illnesses and diseases happen due to changes

in the proteins and their interactions. Thus studying proteins are an essential part of the life

sciences today.

Proteomics is this large-scale study of proteins – their sequences, structures and functions.

In proteomics, the identification of protein sequences is very important. However directly iden-

tifying proteins is computational complex due to their size. Instead proteins are usually broken

down into smaller and more manageable fragments called peptides and these are sequenced.

Thus peptide sequencing is essential to the identification of their parent proteins. Currently,

peptide sequencing is largely done by tandem mass spectrometry. In a nutshell, peptides are

fragmented in the mass spectrometer machine and these fragments are detected and output as

a MS/MS spectra. The analysis of the MS/MS spectra in order to identify the peptide present

is by itself a non-trivial problem. This is, in part, because the spectra usually contain lots of

noise peaks introduced by impurities or by inaccuracies of the machines. The problem becomes

more difficult because many of the peptide fragments do not have corresponding peaks in the

spectrum. Deducing peptide sequences from raw MS/MS data is therefore slow and tedious
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when done manually. Instead, computational approaches have been developed to help identify

peptide sequences. As the volume of data output from mass spectrometers keeps increasing -

current machines can generate thousands to hundreds of thousands of spectra in a single within

an hour - the need for more accurate and efficient computational methods to peptide sequencing

becomes even more essential. Moreover, most of the current algorithms deals with the sequenc-

ing of peptide from charge 1 or 2 mass spectrum, but do not do that well for charge 3 and above

spectra.

1.1 Brief History of Peptide Sequencing Using Tandem Mass

Spectrometry

Protein sequencing had its beginning with the discoveries of Pehr Edman in 1949 and Frederick

Sanger in 1955 whereby chemical reagents were used to determine the amino acid sequence of

a protein by cleaving each individual amino acid away from the main protein chain. Edman’s

method especially gained popularity and became known as the now famous Edman Degradation.

Mass Spectrometry was already used as a tool for analyzing individual molecules many years

before either Edman or Sanger began their work on protein sequencing. From a fairly obscure

beginning in the 1800’s, mass spectrometry have gone through major evolution in its technology

- both hardware and software - and have now become a cornerstone in the field of sequencing.

Its first use in protein sequencing was in 1966 when Biemann and his collegues successfully

sequenced several oligopeptides containing glycine, alanine, serine, proline, and several other

amino acids using a mass spectrometer machine (Biemann et al. [5]).

As mass spectrometers became more robust and more common place in the laboratories

during the 80s, sequencing using mass spectrometry began to take off. The advent of tandem

mass spectrometry which allowed multi-stage fragmentation of the target peptide as well as the

development of the two main ionization technology - ESI (electrospray ionization) and MALDI

(Matrix-assissted laser desorption/ionization) in the 90s improved the dynamic range of mass

spectrometry greatly and established it has the dominant tool for protein sequencing. All

2



this led to an explosion of protein sequencing results in the 00’s, for example, in 2002 Gavin

et al. [25] used mass spectrometry to characterize multiprotein complexes in Saccharomyces

cerevisiae. Their analysis of these 589 protein assemblies revealed 232 distinct multiprotein

complexes. Cellular roles were proposed for 344 proteins, out of which 232 had previously

no known functional annotation. In the same year Ho et al. [31] used a method called high-

throughput mass spectrometric protein complex identification (HMS-PCI) to systematically

identify proteins in Saccharomyces cerevisiae. Starting with 10% of the predicted proteins, they

were able to cover 25% of the yeast proteome. Since then many more breakthroughs have been

made in protein sequencing using mass spectrometry.

1.2 Overview of Entire Process in Peptide Sequencing

We briefly explain the entire process in which peptides are sequenced using tandem mass spec-

trometry. Figure 1.1 explains the whole process. First a complex mixture containing the protein

of interest is fractionated using 2D gel electrophoresis so as to separate out the protein of inter-

est. The protein is then digested using an enzyme, usually trypsin, which will cleave the protein

at the carboxyl end of either the lysine or argnine amino acid. This will break the protein into

small pieces called peptides. The peptide of interest is then further fractionated using HPLC

(high performance liquid chromatography).

This final peptide mixture is then put through the tandem mass spectrometer, where a two

stage process occurs. In the first stage, the peptides are ionized (given one or more charge)

using ESI (Electrospray ionization), MALDI (matrix-assisted laser dissociation/ionization) or

other ionization methods. These ionized peptides called ions are then detected, registering a

peak at the particular mass-to-charge ratio (m/z) value they were detected. Depending on the

peptide mass and the number of charges deposited, peaks are generated at different m/z values.

The height of the peaks produced indicate the abundance of ions at that particular m/z value.

A mass spectrum of such peaks is then output.

In the second stage, peptides within a specific narrow mass range is selected based on the 1st

mass spectrum output. This is ensure that contaminants and other chemical molecules are not
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present in the final output. These peptides then undergo fragmentation through CID (Collision

Induced Dissociation), EDT (Electron Transfer Dissociation) or other fragmentation methods

in a collision cell, where the peptide is usually broken into 2 fragments by bombardment with

chemically inert gas like Argon or Helium. One of the fragments is ionized when one or more

proton are deposited on them during fragmentation, while the other becomes uncharged.

The mechanism in which a peptide fragments and its fragment becomes ionized in the mass

spectrometer using CID is also known as the Mobile Proton Hypothesis (Wysocki et al. [68]). In

short, the hypothesis states fragmentation of a peptide involves a proton at the cleavage site.

Properties like the basicity of the peptide and the amino acid content will affect the way in which

the fragmentation occurs, which fragment will get the charge and how much charge is deposited.

All this results in different types of ions being produced (discussed in more details in Chapter

2) with different probabilities. Due to many possible competing chemical pathways leading to

fragmentation based on the mobile proton hypothesis, much research has gone into discovering

exactly how fragmentation occurs in the mass spectrometer by lab experiments (Dongre et al.

[15], Tabb. et al. [59], Polce et al. [54], Cox et al. [11], Tang et al. [62]) and machine learning

methods (Kapp et al. [33], Elias et al. [16], Sun et al. [57]). (McCormack et al. [45], Zhang

[74, 75]) even studied the fragmentation using a quantum mechanical model.

After fragmentation, the fragment ions are detected at a specific m/z value depending on

the mass and the amount of charge on the ions as in the 1st stage. This produces the final mass

spectrum output. An actual output which has been pre-processed is given in Figure 1.2. This

final output is then analyzed using various computational methods (database search, de novo

peptide sequencing etc) in order to reconstruct and identify the peptide which produced it.

Bakhtiar and Tse [2] provides a comprehensive introduction and overview to the field of

biological mass spectrometry.

1.3 Computational Problems in Peptide Sequencing

Computational methods for peptide sequencing has mostly be concerned with 3 major problems.

The first is the sequencing of unknow peptides, the second is the sequencing of known peptides,
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Figure 1.1: Pipeline involved in Peptide Sequencing using Tandem Mass Spectrometry.

Figure 1.2: Example of a Mass Spectrum
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and the third is the sequencing of peptides that have undergone PTM (post-translational mod-

ifications).

The first problem, de novo peptide sequencing or simply peptide sequencing tackles the

problem of sequencing unknown peptides, that is those peptides which are not already discovered

and cataloged. De novo sequencing is used in order to predict full or partial sequences. However,

the prediction of peptide sequences from MS/MS spectra is dependent on the quality of the data,

and this result in good predicted sequences only for very high quality data, while the results

for mid to low quality data can sometimes be very bad. PepNovo (Frank and Pevzner [21]) and

PEAKS (Ma et al. [41]) are currently two of the best de novo sequencing algorithms. Others

include Lutefisk (Taylor and Johnson [66]) and Sherenga (Dancik et al. [13]). However, many

of these algorithms do not explicitly handle higher charged ions (+3 and above) for higher

charge spectra (one notable exception is PEAKS which does conversion of multi-charge peaks

into their singly-charge equivalent before sequencing). Older versions of Lutefisk worked with

singly-charged ions only, but the recent version (Lutefisk 1.0.5) have been updated to work with

higher charged ions. Sherenga and PepNovo works with singly- and doubly-charged ions.

The second problem, peptide identification deals with the problem of sequencing or iden-

tifying peptides which are already cataloged. This approach is to perform a database search of

such known peptide sequences with the un-interpreted experimental MS/MS data. Even though

de novo peptide sequencing can also be applied in this case, database search is usually much

more effective for known peptides. A number of such database search algorithms have been

described, the most popular being Mascot (Eng et al. [17]) and Sequest (Perkins et al. [49]) .

Others include Beavis and Fenyö [4], Pevzner et al. [53], Nathan and Ross [46], Zhang et al.

[73].

Database search methods are effective but often give false positives or incorrect identifica-

tions. Recently there has been research into a hybrid approach into peptide identification called

tag-based peptide identification which first uses de novo sequencing to get short candidate pep-

tide fragments called peptide tags, then use these tags for searching databases. This approach

have proven to give a higher hit rate then solely relying on database search (Mann and Wilm
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[44]). The state-of-the-art softwares based on this approach includes InSpecT (Tanner et al.

[63]) and Spider (Han et al. [29]).

The third problem, is the sequencing of peptides which have undergone PTM (Post-

Translational Modification). This is a variation of the above two problems, where a peptide

(known or unknown) has its amino acid chemically modified after translation, so that the actual

peptide sequence is different from its canonical sequence. Some of these modified amino acids

have been cataloged, but many have not, and the identification of such peptides and the modified

amino acids have been attempted mainly using database (Pevzner et al. [52], Tsur et al. [67])

and tag-based approaches (Tabb et al. [58], Tanner et al. [63]).

1.4 Focus of Thesis and Key Contributions

The focus on this thesis is on solving the first problem, that is de novo peptide sequencing.

Specifically, the issue addressed here is the sequencing of charge 3 and above spectra, called

multi-charge spectra, on CID based mass spectrometer machines. We show in this thesis that

integrating higher charge ion-types (charge 3 and above) for multi-charge spectra and intro-

ducing a novel scoring function for denovo sequencing can help in obtaining better sequencing

results. Sequencing of multi-charge mass spectra is also highly relevant since CID fragmentation

can generate up to charge 5 spectra and there are datasets available like GPM-Amethyst (Craig

et al. [12]) dataset which contains spectra up to charge 5. As the throughput of mass spectrum

generation increases so will the amount of multi-charge spectra produced.

As mentioned in the introduction, current algorithms mainly focus on sequencing peptides

for charge 1 and 2 data, but do not directly handle multi-charge spectra. This is because of

the additional challenges posed by including them. These challenges includes: (i) increase in

problem size (number of pseudo-peaks to be considered), (ii) increase in the noise level caused

by these additional pseudo-peaks, and (iii) increase in the complexity of the resulting sequencing

problem. In fact, these challenges had led Pevzner Pevzner [51] to pose the following questions:

Q1: Are there higher charged peaks and if so, do they increase the percentage of recoverable

peptides (portions of the peptides that are “supported” by peaks)? Q2: Can we devise better
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sequencing algorithms that consider these higher charge peaks?

In this thesis, we answer both these questions. We first did a characterization study that

showed higher charge peaks either increases the percentage of recoverable peptides by explaining

fragmentation points which are not explained by lower charge peaks, or by becoming supporting

peaks for fragmentation points already explained by lower charge peaks. This work has been

published in [8, 9].

We next designed a de novo peptide sequencing algorithm called MCPS (mono-chromatic

peptide sequencer) that considers higher charge peaks and strong patterns associated with

contiguous fragmentation points explained by peaks of the same ion-type. MCPS has been

shown to give better or comparable sequencing results with other state-of-the-art algorithms

for multi-charged spectra. MCPS has been based on ideas on strong tags published in [8, 9] as

well as [48]which is a joint work with the first author Ning Kang. The work on MCPS has led

to a paper [7] submitted to RECOMB Satellite Conference on Computational Proteomics 2011,

and is still pending review.

In our characterization study, we show that higher charge peaks increases the percentage

of recoverable peptides. To properly model higher charge peaks, we extend the notion of the

extended spectrum to include pseudo-peaks of ion-types with higher charges. For a given spec-

trum, this step properly models the higher charge peaks, but it increases the number of pseudo-

peaks to be considered and also increases the noise level. With this extended spectrum model,

our characterization study of annotated spectra from the GPM-Amethyst dataset (charge 1-5)

shows that there is an increase in the percentage of recoverable peptide by including higher

charge peaks. Furthermore, this increase is more significant for spectra with bigger charges.

For example, on charge 3 GPM spectra, we observed an increase of 12.5% (from 75% to 87.5%)

by considering peaks of charge 1-3 as opposed to the traditional method of considering only

peaks of charge 1 and 2. On charge 4 GPM spectra, the increase is 27% (from 61% to 88%)

by considering peaks of charge 1-4 vs only considering peaks of charge 1 and 2. Although the

characterization study on ISB (Keller et al. [34]) and Orbitrap (Tang [61]) data (both having

charge 1-3 data) did not show much increase to the recoverable peptide when using charge 3
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ion-types, we cannot conclude that they are useless since they can still act as supporting ions.

This has shown to be true from our sequencing result where using charge 3 ion-types for ISB

data results in an improvement in recoverable amino acids of around 1-2% as compared to not

using charge 3 data.

While the characterization study shows increase in the percentage of recoverable peptide

by considering higher charge peaks, the problem of actually recovering the peptide is still very

challenging. To settle this question, we design a de novo peptide sequencing algorithm called

MCPS that considers higher charge peaks and that gives better sequencing results. Our algo-

rithm makes use of several key ideas: (i) the use of the extended spectrum graph, (ii) filtering of

the extended spectrum graph using mono ion-type tags to reduce noise and bring down the size

of the problem while still maintaining a good upperbound on the amount of peptide recoverable

(iii) using a scoring function that highlight the importance of mono ion-type tag support for

a given peptide tag, (iv) a post-processing step that handles problems with competing mono

ion-type tags of different ion-types.

Comparing against current state-of-the-art de novo sequencing algorithms PEAKS, PepNovo

and Lutefisk, MCPS does the best for charge 3 ISB data and second best for charge 3 ISB2

data. In particular, it can recover 7% more amino acids in the peptide than the second best

algorithm, PepNovo, for charge 3 ISB data. We find that the results of MCPS can be used as

peptide tag for database search since it includes correctly predicted tags of length ≥ 3 more

than 40% of the time for charge 3 ISB and ISB2 data.

We briefly describe the ideas presented in MCPS in the following:

We introduce the extended spectrum graph (ESG) that properly represents the (very noisy)

extended spectrum. The ESG generalizes the notion of the spectrum graph (introduced by

Bartels [3]). In our extended spectrum graph, we represent as a distinct vertex, each pseudo-

peak (corresponding to each ion-type annotation/interpretation of a given peak). Thus, each

peak “generates” more vertices in the ESG (compared to the traditional spectrum graph) and

the ESG also has a higher level of noise.

To deal with the increased noise level, we use the ESG to find monochromatic tags (short
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contiguous sequences of pseudo-peaks of the same ion-type annotation) of the more abundant

ion-types. Thus, our key idea is that the presence of a sequence of consecutive pseudo-peaks

of the same ion-type is a much stronger signal than a sequence of consecutive pseudo-peaks

made up of mixed ion-types. We then retain in ESG only those pseudo-peaks that belong

to monochromatic tags of a certain minimum length. This preprocessing step allows us to

effectively filter off a large proportion of the noise pseudo-peaks from further consideration.

This does not mean that vertices of less abundant ion-types are ignored. They are used in a

subsequent bridging step to act as a link between monochromatic tags that otherwise cannot

be linked together.

A novel scoring function that takes into consideration the stronger signals represented by

monochromatic tags by boosting their score (through a multiplicative factor based on length)

is then used in the sequencing step to sequence candidate peptides.

After the sequencing, a post-processing step was introduced due to certain situations where

monochromatic tags of different ion-types residing in different paths in the extended spectrum

graph compete with each other, thus bringing down the quality of the sequencing result. This

post-processing step normalizes the score on such tags so as to remove the competition.

1.5 Organization of Thesis

In Chapter 2, we give some background on proteins, then define the problem of peptide se-

quencing. We next introduce the major class of algorithms used to solve peptide sequencing,

called spectrum graph methods. We review some of the major algorithms involved in this class

as well as others who use a different technique. We also present algorithms which tackle certain

specific sub-problems encountered in peptide sequencing.

In Chapter 3, we define a generalized model for studying multi-charge mass spectra where we

introduce the new notion of an extended spectrum, and extend the definition of the theoretical

spectrum and the spectrum graph.

In Chapter 4, we use the generalized model defined in Chapter 3 to do a characterization

study of 3 dataset, the ISB dataset (Keller et al. [34]), the Orbitrap dataset (Tang [61]), and
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the GPM-Amethyst dataset (Craig et al. [12]). The ISB and Orbitrap dataset consists of charge

1-3 spectra, while the GPM dataset consists of charge 1-5 data.

In Chapter 5, we present our new algorithm MCPS (mono-chromatic peptide sequencer)

for performing de novo sequencing, especially of multi-charge spectra. We first present a novel

scoring function that we have developed based on initial ideas of strong tags in Ning et al. [48].

Then we present the major steps in the algorithm, before delving into the details of each step.

In Chapter 6, we first present how we tweaked the parameters involved in MCPS using

training sets from the ISB, GPM and ISB2 (Klimek et al. [37]) datasets.

In Chapter 7, we present experimental results comparing between MCPS and 3 other state-

of-the-art algorithms - PEAKS (Ma et al. [41]), PepNovo (Frank and Pevzner [21]) and Lutefisk

(Taylor and Johnson [66]).

In Chapter 8, we give a conclusion our thesis as well as future work.
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Chapter 2

Peptide Sequencing and Literature

Survey

In this chapter, we formally define the peptide sequencing problem and give an overview of the

various algorithms that has been developed to tackle the problem.

2.1 Background on Proteins

A chain of amino acids is known as a peptide. A protein is basically made up of multiple

peptides linked together, and is also known as a polypeptide chain. The amino-acids are the 20

naturally occurring acids, Valine, Leucine, Isoleucine, Methionine, Phenylalanine, Asparagine,

Glutamic Acid, Glutamine, Histidine, Lysine, Arginine, Aspartic Acid, Glycine, Alanine, Serine,

Threonine, Tyrosine, Tryptophan, Cysteine and Proline. The molecular masses of these amino

acids are given in Table 2.1. A protein’s amino acid sequence is usually written in the single

alphabet amino acid string format. For example in Figure2.1, a protein consisting of the amino

acid sequence methonine, aspartic acid, leucine and tyrosine from left to right is represented as

MDLY.

Amino acids can be further categorized into 2 category. The first are the hydrophilic or

polar residues which are residues that interact favourably with the solvent that the protein is

in, and thus are found more often on the surface of the protein protruding outwards into the
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Amino Acid (Single Alphabet - 1st 3 Letters - Full Name) Mono-Isotopic Mass (daltons Da)
A - Ala - Alanine 71.037

C - Cys - Cysteine(unmodified/carboxymethylated) 103.009/161.05
D - Asp - Aspartic Acid 115.027
E - Glu - Glutamic Acid 129.043
F - Phe - Phenylalanine 147.068

G - Gly - Glycine 57.021
H - His - Histidine 137.059
I - Iso - Isoleucine 113.084
K - Lys - Lysine 128.095
L - Leu - Leucine 113.084

M - Met - Methionine 131.040
N - Asp - Asparagine 114.043
P - Pro - Proline 97.053

Q - Glu - Glutamine 128.059
R - Arg - Arginine 156.101
S - Ser - Serine 87.032

T - Thr - Threonine 101.048
V - Val - Valine 99.068

W - Try - Tryptophan 186.079
Y - Tyr - Tyrosine 163.063

Table 2.1: Mono-isotopic Masses of Naturally Occurring Amino Acids. An amino acid can be
referred to by its first 3 letters or a single alphabet. The mono-isotopic mass we give here is calculated
based on the standard atomic makeup of the amino acid HNCHRCO where R is the side-chain (refer to
Figure 2.1). Note that Cysteine is usually modified during the preparation process for mass spectrometry
so that its mono-isotopic mass defers from the unmodified version.

solvent. The second are the hydrophobic or non-polar residues which interact unfavourably with

the solvent and thus are tightly packed together in the interior of the protein. These residues

also form what is known as the core of the protein. Amino acids are further composed of 2

parts, the backbone fragment and the side-chain fragment. The chemical makeup and schematic

representation of a protein is given in Figure 2.1.

2.2 The Peptide Sequencing Problem

Peptide Let A be the set of amino acids. For an amino acid a ∈ A, m(a) denotes its molecular

mass. A peptide ρ = (a1, a2..., an) is a sequence of amino acids where aj is the jth amino acid

in the sequence. The parent mass of the peptide ρ is given by M = m(ρ) = ∑l
j=1m(aj). A

peptide prefix fragment ρk = (a1, a2, ..., ak), for k ≤ n is a partial peptide formed from a prefix
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Figure 2.1: Chemical makeup and schematic of a protein. A protein is made up of 20 basic amino
acids. In the example a short protein consisting of the amino acid sequence methonine (Met), aspartic
acid (Asp), leucine (Leu) and tyrosine (Tyr) is shown. This protein is also referred to by the sequence
MDLY (Single alphabet representation of the amino acid). The standard atomic make-up of an amino
acid is HNCHRCO, where R is the side-chain residue or simply the side-chain, the part which is different
for different amino acids and gives each amino acid its unique property. The other atoms make up the
backbone portion of the amino acid. A protein is terminated at the left end by an N-terminal (amino
terminus) amino acid which has an extra H atom. It is terminated on the right by the C-terminal
(carboxyl terminus) amino acid which has an extra OH atoms.
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of ρ. The mass of the peptide prefix fragment is m(ρk) = ∑k
j=1m(aj), and is also known as the

prefix residue mass or PRM. A peptide suffix fragment ρk = (an−k+1, ..., an−1, an), for k ≤ n is

a partial peptide formed from a suffix of ρ that has mass m(ρk) = ∑n
j=n−km(aj). The mass

of a suffix fragment is also known as the suffix residue mass or SRM. The set of all possible

prefixes of a peptide forms the PRM ladder or prefix ladder and similarly the set of all suffixes

forms the SRM ladder or suffix ladder of the peptide. The prefix and suffix ladder forms the

“full ladder” of the peptide. Since each position (1, 2...n) in the peptide string can define either

a prefix or suffix fragment, we call each position a fragmentation point. The peptide from which

an experimental spectrum is generated is known as the canonical peptide denoted as ρ∗.

Peptide Fragmentation. An ion in our context is basically a charged fragment of the peptide.

A peptide is usually fragmented into 2 pieces, one making up the prefix fragment and the other

the suffix fragment. Either the prefix or the suffix fragment will be charged but not both. In

an experiment, since there are millions of peptide copies, both the suffix and prefix ions will be

generated with different probabilities.

Depending on the way the fragmentation occurs, and the terminal on which the charge is

deposited, ions of different types are generated. The number of ions of each mass-to-charge

ratio can be measured by a detector. The measurement is more intense if there are more ions of

that mass-to-charge ratio. A plot of these intensities against the mass-to-charge ratio gives us

a spectrum of many peaks, each corresponding to the ions of each mass-to-charge ratio. Figure

2.2 shows the different fragmentations that result in 6 basic ion-types.

Ion-formation. In Figure 2.2, we have a peptide ρ consisting of 4 amino acids represented

by the side-chain R, R’, R” and R”’ and the associated atoms. Fragmentation leading to the

formation of all the 6 basic ion-types are shown in the figure. This is due to the possibility

of fragmenting at the C-C, C-N and N-C boundaries. The 6 basic ion-types are a-ion, b-ion,

c-ion, x-ion, y-ion and z-ion. The a,b,c ion-types are the N-terminal/prefix ions, while the x,y,z

ion-types are the C-terminal/suffix ions. The former is formed by the prefix fragments being

charged and the latter is formed the suffix fragments being charged. Each prefix ion-type has

its counterpart suffix ion-type since the fragmentation is at the same boundary, and only the
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deposition of the charge is different. Thus we have a-ion with x-ion, b-ion with y-ion, and c-ion

with z-ion.

As an example, the charge 1 (+1) a-ion shown is formed by breaking the peptide-bond

between the C-C boundary and deposition of a charge on the prefix fragment. We see that this

fragment consists of 2 amino acids. We also see the mass of this fragment is exactly the sum of

the mass of the 2 amino acids plus 1 extra H atom (at the N-terminal amino acid) minus the

mass of OC (lost to the suffix fragment). In short the PRM of this prefix fragment is m(ρ2),

but the actual mass of the a-ion detected is m(ρ2) + 1− 12− 16 = m(ρ2)− 27. We say that the

mass of the detected fragment is shifted from its PRM by -27 Da. The x-ion on the other hand

receives the OC atoms and has an extra OH at its C-terminal end. From Figure 2.2, we see that

the suffix fragment also has two amino acids. The x-ion thus causes a shift of the SRM m(ρ̄2)

by the addition of OCOH which is +45Da. In the example even though the fragmentation was

at the 2nd fragmentation point, the shifts will be the same regardless of which position of the

peptide is being fragmented.

There are variations on these ion-types based on neutral losses (additional loss of a water

and/or ammonia molecule) and different number of charges deposited on the ions. A list of the

+1 ion-types are shown in Table 2.2 together with the resultant shift away from the PRM or

SRM (rounded off to the nearest integer). Note that in the table we give the resultant mass

shift. Neutral losses like water and ammonia contribute a shift of -18 Da and -17 Da respectively

in addition to the mass shift contributed by the basic ion-type.

We can see that in some cases, e.g b and c-NH3, the same mass shift is observed, making

these ion-types hard to differentiate between each other merely based on their mass shifts, since

the same peak in the experimental spectrum can refer to either ion-types. It should be noted

that these ions types and their neutral losses are not equally likely to be formed. For example,

the presence of z ion-types in low energy CID is questionable and usually not considered in

peptide sequencing. The peptide sequencing program PepNovo by Frank and Pevzner [21] for

example considers only the ion-types shown in the first column of Table 2.3. The second column

shows their probability of being observed in the experimental spectrum.
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Figure 2.2: Peptide ion formation for the basic ion-types. We see that depending on where frag-
mentation occurs along the backbone of the peptide, and where the charge is deposited, ions of different
can be generated. For example, if the fragmentation occurs at the C-C boundary, it will generate a prefix
and a suffix fragment. If the prefix fragment is where the charge was deposited, it generates an a ion.
On the other hand if the suffix fragment is where the charge was deposited, it generates an x ion.

Ion-type Resultant Mass Shift
a -27

a−H2O -45
a−H2O −H2O -63

a−NH3 -44
a−NH3 −H2O -62

b +1
b−H2O -17

b−H2O −H2O -35
b−NH3 -16

b−NH3 −H2O -34
c +18

c−H2O 0
c−H2O −H2O -18

c−NH3 +1
c−NH3 −H2O -17

x +45
x−H2O +27

x−H2O −H2O +9
x−NH3 +28

x−NH3 −H2O +10
y +19

y−H2O +1
y−H2O −H2O -17

y−NH3 +2
y−NH3 −H2O -16

Table 2.2: +1 Ion-types with variation based on neutral losses and their associated resultant
mass shift. −NH3 and −H2O refers to the ammonia and water loss respectively.
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Ion-type Probability of Observation
b 0.83

b−H2O 0.39
b−NH3 0.36

b−H2O −H2O 0.13
b−NH3 −H2O 0.12

b+2 0.13
a 0.34

a−H2O 0.17
a−NH3 0.20

y 0.87
y−H2O 0.26
y−NH3 0.24

y−H2O −H2O 0.11
y−NH3 −H2O 0.13

y+2 0.23

Table 2.3: Ion-types used by PepNovo. The +2 superscript, e.g b+2 indicate charge 2 ions of the
given ion-type

Figure 2.3: Fragmentation resulting in an internal ion

Fragmentations is however usually not so clean and other types of fragments occur. These

contribute to peaks in the spectrum and complicate the detection of the N-terminal and C-

terminal ion-types. One example of such fragmentations is internal fragmentation where frag-

mentation occurs at two fragmentation points instead of one, and the resulting middle fragment

or “internal” ion is detected. Another example are immonium ions which are internal ions that

have lost a CO molecule. Schematics showing the formation of internal fragments and immo-

nium ions are shown in Figure 2.3 and Figure 2.4 respectively. Noise and contaminants can also

cause a peak in the experimental spectrum.

Experimental Spectrum. We call the spectrum generated by a mass spectrometer an exper-

imental spectrum. A peak in the experimental spectrum S corresponds to the detection of some

charged prefix or suffix peptide fragment that results from peptide fragmentation in the mass
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Figure 2.4: Fragmentation resulting in an immonium ion

spectrometer. Each peak pi in the experimental spectrum S is described by its intensity(pi)

and mass-to-charge ratio mz(pi). Most experimental spectrum S will give the precursor ion

mass M ′ which is the detected parent mass of the ion fragments found in the spectra. In most

cases the precursor ion mass M ′ ≈M the canonical peptide mass, but can sometimes be off by

a large margin.

Ion Type. An ion-type is specified by (z, t, h) ∈ (4z ×4t ×4h), where z is the charge of the

ion, t is the basic ion-type and h is the neutral loss incurred by the ion. The (z, t, h)-ion of the

peptide fragment q (prefix or suffix fragment) is detected by the mass spectrometer and will

produce an observed peak pi in the experimental spectrum S that has a mass-to-charge ratio

of mz(pi). We say that peak pi is a support peak for the fragment q with ion-type (z, t, h) and

we also say that the fragment q is explained by the peak pi. An ion-type set is shorted-formed

as 4.

The mass of a fragment q given its corresponding peak pi and ion-type (z, t, h) can be

computed using the shifting function, Shift defined as follows:

m(q) = Shift(pi, (z, t, h)) = mz(pi) · z − (δ(t) + δ(h))− (z − 1) (2.1)

where δ(t) and δ(h) are the mass difference associated with the ion-type t and the neutral-

loss h, respectively. When an ion has a charge greater than 1, the extra charges come from

protons of Hydrogen atoms being deposited on the ion. This increases the mass of the ion by

+1 Da for each proton deposited. Thus we need the (z-1) term when considering higher charged

ions, in order to discount the mass of the extra protons.

Given an ion of a particular ion-type δ generated for fragmentation point k of peptide ρ, we
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can calculate the m/z value of the peak pkδ registered by the spectrometer by using the Shift

function which can be obtained from an algebraic manipulation of the Shift function and is

defined as

mz(pkδ) = Shift(ρ̂k, (z, t, h)) = m(ρ̂k) + (z − 1) + (δ(t) + δ(h))
z

(2.2)

where ρ̂k is the prefix fragment ρk if δ is an N-terminal ion-type and the suffix fragment ρk

if δ is an C-terminal ion-type.

Theoretical Spectrum. The theoretical spectrum is the spectrum of all possible true peaks

for a given peptide ρ. The set of true peaks for each prefix fragment ρk in the prefix ladder of

ρ is the set of ions generated for ρk given each ion-type (z, t, h) ∈ 4 (calculated using Shift

function). The set of all true peaks is the union of all the ions generated for the entire prefix

ladder.

We define TS(ρ) to be the set of all possible observed peaks that may be present in an

experimental spectrum for peptide ρ. Namely, TS(ρ) = {p: p is an observed peak for the

(z, t, h)-ion of the peptide fragment ρk, for all (z, t, h) ∈ 4 and k = 1, .., n}.

In peptide sequencing, we are given an experimental spectrum with true peaks and noise and

the problem is to try to determine the original peptide ρ that produced the spectrum. Formally

the peptide sequencing problem can be defined as

Peptide Sequencing Problem. Given a spectrum S, a set of ion-types (4z ×4t ×4h) and

the precursor mass M ′, find a peptide ρ′ of mass M ′ with the best match to spectrum S.

Dancik et al. [13] addressed the above problem using a simple matching criteria called the

shared peaks count or SPC. In this matching, the theoretical spectrum TS(ρ′) for a candidate

peptide ρ′ is compared with the experimental spectrum S. The number of matching peaks

between TS(ρ′) and S is the SPC.

An example of SPC is given as follows. Figure 2.5 shows the PRM ladder of AGFAGDDAPR.

Figure 2.6 shows an experimental spectrum generated from the canonical peptide AGFAGDDAPR.

Assuming an ion-type set of only +1 b- and y-ions gives rise to the theoretical spectrum as shown

in Figure 2.7(b). We only annotate the peaks (dotted lines) that matches with those in the
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Figure 2.5: PRM ladder for peptide AGFAGDDAPR
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Figure 2.6: Experimental Spectrum for AGFAGDDAPR

experimental spectrum as shown in Figure 2.7(c). These peaks corresponds to fragmentation

points of the peptide given the associated ion-type interpretations indicated between 2.7(a) and

2.7(b). These peaks corresponds to the subsequence [128]F[243]DA[253] (values in [] indicates

the fragment masses which are not explained, IE not matched to any amino acid sequence).

Any candidate peptide including this subsequence will be maximally matched to the canonical

peptide.

Using the SPC however does not guarantee that a candidate peptide with a higher SPC score

over another candidate will mean that it matches more of the canonical peptide. An example is

given as follows. A candidate peptide fragment or a peptide tag (explained in detail in Section

2.3.2.1)containing the subsequence [128]F[243]DA[253] would be [41]SFNEDA[253] as shown in

Figure 2.8. Dotted peaks in the experimental spectrum corresponds to the peaks which are

interpreted to get [41]SFNEDA[253]. There are 7 such peaks making the SPC 7. Another

candidate peptide fragment [35]SQGNPDA[257] given in Figure 2.9 matches 8 peaks in the

experimental spectrum which gives an SPC of 8, which is higher than that of [41]SFNEDA[253].
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Figure 2.7: The PRM ladder of the peptide shown in (a) generates the theoretical spectrum
shown in (b). All of the peaks in the theoretical spectrum (5 of them) matching with peaks in the
experimental spectrum show in (c) are indicated by dotted lines. We also show the fragmentation points
in the peptide and the ion-types generated which led to these peaks. An example would be the suffix
fragment FAGDDAPR (mass = 957-128 = 829Da) which generated a +1 y-ion. This causes a shift of
+19 (refer to Table 2.2) and resulted in the peak in both the theoretical and experimental spectrum at
848 m/z.
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Figure 2.8: PRM ladder for peptide fragment [41]SFNEDA[253] and the matching peaks in the
experimental spectrum

However it only matches the subsequence [518]DA[253] in the canonical peptide as indicated,

recovering less of the peptide than [41]SFNEDA[253].

In fact currently any objective function used to measure the goodness-of-fit of a candidate

peptide with a given experimental spectrum will not necessary mean that a peptide with a

better score is the one closer to the canonical peptide. An on-going research problem is to

find better objective functions which can give proportionally better match between candidate

peptide and canonical peptide with increasing scores. An example of an improved objective

function is the weighted SPC where different weights are given to different peaks based on the

ion-type of the peak (given in the theoretical spectrum) and the intensity of the peak (given

in the experimental spectrum S). More sophisticated functions will be discussed in section 2.4

which is a literature survey of current peptide sequencing algorithms.

In general we call the function that measures the goodness-of-fit of a candidate peptide with

the given experimental spectrum the PSM (peptide-spectrum match) function.
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Figure 2.9: PRM ladder for peptide fragment [35]SQGNPDA[257] and the matching peaks in
the experimental spectrum

2.3 Major Approaches to De Novo Sequencing

2.3.1 Exhaustive Search

Early approaches to peptide sequencing adopted an exhaustive search framework which was

pioneered by Sakurai et al. [56]. This approach involves generating all peptides with peptide

mass M = M ′, the precursor ion mass, along with their theoretical spectrum. The goal is then

to find the peptide with a theoretical spectrum that best matches the experimental spectrum S

given some objective/scoring function. However this approach quickly becomes intractable since

the length of a peptide is proportional to its mass and the number of peptide sequences grows

exponentially with the length of the peptide. Hamm et al. [28], Johnson and Biemann [32], and

others like Zidarov et al. [77] and Yates et al. [70] attempted to alleviate this problem using

prefix pruning which restricts the solution space to sequences whose prefixes match spectrum

S well. A drawback with this approach is that the spectrum information is used only after the

candidate peptides are generated. Moreover, the correct peptide sequence is often discarded if

its prefixes are not as well matched to spectrum S as compared to the prefixes of other candidate
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peptides.

2.3.2 Spectrum Graph

The spectrum graph approach is a way to avoid generating all possible peptides by restricting

the solution space of candidate peptides to those that can be generated from S itself, and

an advantage is that spectrum information is used before any candidate peptide is generated.

In this approach, the experimental spectrum S is mapped to a DAG (directed acyclic graph)

representation called the spectrum graph. Every peak in S generates several vertices in the

graph based on the ion-type interpretation it is given. Vertices are linked by a directed edge if

they differ by the mass of some amino acid, with the edge pointing from the vertex with the

smaller mass vertex with the larger mass. This approach has been used in many algorithm

(Bartels [3],de Cossío et al. [14],Taylor and Johnson [65],Dancik et al. [13],Taylor and Johnson

[66],Frank and Pevzner [21],Chong et al. [9],Ning et al. [48]). Some of these will be discussed in

the following sections. A path in the DAG then represents a candidate peptide, and the peptide

sequencing problem becomes a problem of finding the longest or best scoring path in the DAG.

Efficient algorithms have been developed to find the longest or optimal path in a DAG (Cormen

et al. [10]), and also variants to find the set of top k paths Pollack [55], Yen [71]. Thus in

additional to restricting the solution space, searching for one solution is also computationally

efficient using the spectrum graph approach.

The main difference between algorithms using this approach is in the way the nodes and

edges are weighted. In almost all such algorithms, a path representing a peptide is scored by

summing the weights of the nodes and edges along the path. We call this the simple scoring

of a path and is defined as follows,

Simple Scoring of a Path. Given a path P = (v0e1v1e2v2...ekvk) of length k, and weights

on the edges and nodes in P , we define the Simple Score, SScore(P ) of P as follows:

SScore(P ) =
k∑
j=1

w(ej) +
k∑
j=0

w(vj) (2.3)

There are also variations. For example, in Pepnovo [21], the score of a node also depends on
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flanking edges (amino acids) in the path P (will be discussed in more detail in Section 2.4).

2.3.2.1 Spectrum Graph Definition

Spectrum Graph G(S) Given an ion-type set ∆ and an experimental spectrum S, the

spectrum graph G∆(S) or short-formed as G(S), is defined as follows.

Let each ion-type δ ∈ ∆ be arbitrarily numbered from 1 to |∆|. Each peak pi in the

experimental spectrum S given an ion-type interpretation δj is mapped to a vertex vijwhere

the PRM of the vertex mass(vij) = {
Shift(pi, δj) if δj is ann− terminal ion

M ′ − Shift(pi, δj) if δj is a c− terminal ion

. The start node v0 representing mass = 0 and end node vM ′ representing the precursor parent

mass are special nodes added to G(S).

A directed edge e(u, v) is generated when mass(v) − mass(u) is the mass of some amino

acid within a given tolerance. A spectrum S of a peptide ρ is complete if S contains at least

one ion-type corresponding to a prefix fragment ρk for every 1 ≤ k ≤ n. That is we can find at

least 1 path from v0 to vM ′ in G(S) which corresponds to ρ.

However in most cases, fragmentation of the peptide in the mass spectrometer is not complete

and thus we might not be able to find a path from v0 to vM ′ . In view of this, many spectrum

graph algorithms allow for mass edges between vertices, where the mass difference does not

correspond to any of the amino acids. This is especially used to link v0 to the other vertices,

and the other vertices to vm, since CID fragmentation in ESI based mass spectrometers usually

have much fewer fragmentation near the right and left end of the peptide (especially low-energy

CID), resulting in low peak support given for sequenced amino acids near the two ends of the

peptide. The resulting candidate peptides can possibly be flanked on the left and right or even

anywhere in the middle by some unexplained masses. These peptides are known as peptide tags

and gapped peptides.

Peptide Tags. A contiguous section of the peptide, with a left mass and a right mass rep-

resenting unexplained masses. An example is [169]GDAP[356]. A whole peptide is simply a

peptide tag with 0 mass at the two ends.

Gapped Peptides. A generalization of peptide tags, where the unexplained masses can be
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anywhere in the sequenced peptide. Example [169]G[186]P[356].

These representation allow for cases where we only want highly confident subsequences to be

reflected in the sequenced peptides or when there is no way to explain certain fragment masses.

Merged Spectrum Graph Gm(S) Many of the mass spectrometry machines are not very

high precision, having resolutions of about 50-200ppm which translates to a precision of about

0.1-0.5 Da on an average sized ion (1000 Da). In order to deal with the precision issue, the

masses represented by the nodes are usually rounded off to the nearest integer or mapped to a

limited number of possible masses. Because of this there can be many nodes having the same

mass. These nodes are then collapsed or merged into one node. The resulting graph is called

the merged spectrum graph Gm(S).

Figure 2.10 shows an example 2 paths in the merged spectrum graph generated for the

experimental spectrum in Figure 2.6. The two paths represent the candidate peptide tags

[41]SFNEDA[253] and [35]SQGNPDA[253] mentioned in Section 2.2.

2.3.3 Tag-Based Approaches

2.3.4 Others

Other approaches includes DP algorithms which do not rely on building a spectrum graph, and

machine learning approaches like HMM (Hidden Markov Models) algorithms. These will be

discussed in more details in the literature review (Section 2.4).

2.4 Literature Review

We give an overview of some of the state-of-the-art algorithms used in de novo sequencing. We

split them into algorithm which are based on the spectrum graph (Section 2.4.1) and those

which are not (Section 2.4.2). Aside from the de novo sequencing algorithms to be discussed,

there are others like PRIME (Yan et al. [69]), AuDens (Grossmann et al. [27]) and many more

(Bafna and Edwards [1], Malard et al. [43], Yergey et al. [72] etc) which have been developed

and are being used for de novo sequencing. The survey paper by Lu and Chen [40] provides
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Figure 2.10: Example of two path in a merged spectrum graph Gm(S) for the given experimental
spectrum. The numbers beneath each peak represent the node that the peak is mapped to given the
ion-type interpretation beneath it. Nodes 12 and 13 are merged nodes formed from 2 peaks, each with a
different ion-type interpretation mapping to the same prefix residue mass. The two paths represent the
tags [41]SFNEDA[253] and [35]SQGNPDA[253] respectively.
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a good starting point to the peptide sequencing problem and gives an overview of some of the

algorithms.

2.4.1 Spectrum Graph Algorithms

2.4.1.1 Sherenga

Sherenga developed by Dancik et al. [13] is one of the first commercial de novo sequencing pro-

grams using the spectrum graph method, and also one of the first to use a probabilistic scoring

function based on the probability of an observed peak being noise or a real peak generated by

some ion-type.

Scoring Function Sherenga evaluates a path in the spectrum graph as follows. Each ion-

type δ has a certain probability p(δ) of occurring. This is calculated by finding the frequency of

peaks in the training set matching annotated peaks in the theoretical spectrum of the peptide.

Since the spectrum graph they use is the merged spectrum graph, each node contains multiple

peaks each intepreted by some ion-type in order to map to the node. The scoring function

makes use of the probability of these ion-types to score each node in a “premium for present

ions, penalty for missing ions” scoring. In this scoring, missing ion-types (corresponding to

those missing peaks) are “penalized”, while present ion-types (corresponding to those present

peaks) are given a “premium” in the following way

score_ions(vi) =
∑

∀δεpresent ions
p(δ) ∗

∑
∀δ′εabsent ions

1− p(δ′) (2.4)

this scores all the ion-types considered in the ion-type set 4 regardless if they are absent

or present, since peaks corresponding to abundant ion-types should be observed and thus not

being present will penalize them negatively as 1 − p(δ) < p(δ), while peaks corresponding to

ion-types which are rare being absent will be penalize positively as 1 − p(δ) > p(δ), and vice

versa. This scoring gives a fairer weightage to a node than simply considering present peaks.

The next part of the scoring considers the possibility that the observed peaks are noise

peaks. Noise peaks have a fixed probability q of occurring (empirically computed). In the same
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way as before, both absent and present noise peaks are considered. The absent noise peaks

refers to those ion-type which are not observed possibly being noise. The scoring of noise is as

follows

score_noise(vi) =
∑

∀δεpresent ions
p(q) ∗

∑
∀δ′εabsent ions

1− p(q) (2.5)

Finally the scoring function gives a score for vi as follows

score(vi) = score_ions(vi)
score_noise(vi)

(2.6)

this scoring gives a value greater than 1 when score_ions(vi) > score_noise(vi) , less than

1 when score_ions(vi) < score_noise(vi) and equals to 1 when both has the same value. The

scoring basically compares the hypothesis that the peaks corresponding to the fragmentation

point are true peaks against the hypothesis that the peaks are noise peaks which resulted in a

spurious fragmentation point. In fact this scoring function is a form of hypothesis testing

which are used in most of the recent algorithms like PepNovo [21], PEAKS [38], NovoHMM [18]

and others like [30]and [16]. The score of a full path is then the summation of all the nodes

scores along the path.

Ion-Type Learning In developing Sherenga, Dancik et al. also developed an semi-automated

process for learning the ion-type set to be used given a training spectrum set. This process is

still widely used to learn specific ion-type sets for different spectrum sets generated by different

mass spectrometry machines.

The most important part this ion-type learning process is the offset frequency function

H(δ, S). This function computes for ion-type δ, the frequency that all peaks generated from δ

in the theoretical spectrum TSδ(ρ) are matched with peaks in the experimental spectrum S, for

all peptides ρ in a training set. Mathematically the offset frequency function for an ion-type δ

is defined as
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Figure 2.11: Example of offset frequency for intensity rank cutoff = 1 and 2. The graph shows
the total frequency of different ion-type (represented by their offset or shift from the partial peptide mass
on the x-axis). The top part shows the total frequency for rank ≥ the cutoff and the bottom part shows
the total frequency for rank ≥cutoff. For rank 1 since there are no peaks better than intensity rank=1,
there are no peaks on the bottom part, and the top parts represent the total frequency count for the
ion-type. For rank 2 we see that the (+1,b-ion) (offset = +1) has the largest peak both in the top part
and bottom part followed by (+1,y-ion) (offset = -19). There is a obvious ranking of the ion-types and
this can be used to guide the selection of the ion-type set to use.

H(δ, S) =
∑
∀ρ
TSδ(ρ) ∩ Sρ (2.7)

Due to overmatching if peaks of all intensity are counted, the offset frequency function is

often computed for different level of intensity ranking. That is, the peaks are binned into the

top K peaks and called rank 1 then the next K peaks are binned and called rank 2 and so on.

The total frequency of an ion-type above a certain intensity rank compared with its total

frequency below or equals that rank will give a good idea of how to select the ion-types. This is

because high occurrence ion-types will have high frequency for high intensity rankings and low

frequency for low intensity rankings and vice versa. Choosing an appropriate intensity ranking

cut-off allows us to determine the ion-types to use. Figure 2.11 shows an example of the offset

frequency for intensity rank cutoff = 1 and 2 as given in [13].

2.4.1.2 Lutefisk

Lutefisk is another de novo program developed by Taylor and Johnson [66]. The approach

adopted by Lutefisk is to first build a spectrum graph in the same manner as [3], then quickly
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generate tens of thousands of sequences without scoring them. Different error tolerances are

used for different mass spectrometers and a relatively small ion-type set is used, which is also

dependent on the mass spectrometer used. Mass edges corresponding to the mass of up to 2

amino acids are allowed between nodes, but only 2 of such edges are allows in the generated

sequence. Mass edges up to the mass of 3 amino acids are also allowed at the terminals of

the sequence, since fragmentation does not occur frequently near the terminals of the peptide.

Nodes in the spectrum graph are scored by the relative probability of the ion-types of the peaks

represented by the node. This scoring can be changed based on the spectrometer which the

mass spectrum comes from.

The generated candidate sequences are then filtered. The main filtering criteria is to remove

all sequences derived from alternating b- and y-ions (mixed paths - described in Section 5.1).

This removes 90% of all the generated sequences. The remaining sequences are then scored by

summing their node probabilities and ranked.

One observation in [66] is that the m/z error of ions of different types from the correct m/z

value is linear with respect to the m/z value. With larger error occurring at higher m/z values.

This is in line with the accuracy of the instruments. Using this observation, a novel enhancement

was made to Lutefisk. At the start of the sequencing, many candidates are generated using a

loose error tolerance (±0.25u for Qtof machines). A linear mass correction is determined using

least-squares method applied to difference between the y- and b-ions of the same fragmentation

point and their observed m/z value. This mass correction is applied to the sequences and a

tighter mass tolerance is then used to filter away sequences. The algorithm then proceeds as

described previously.

2.4.1.3 PepNovo

PepNovo is a recent de novo peptide sequencing algorithm developed by Frank and Pevzner

[21] for CID based mass spectrometers. This algorithm uses the hypothesis testing approach.

First the probability of observing a set of peak intensities Ī in the spectrum S given that their

ion-type interpretation maps them to a fragmentation point with mass m is computed using
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a probabilistic network that models the fragmentation rules in the mass spectrometer. This is

defined as PCID = (Ī|m,S).

The competing hypothesis is the random peak hypothesis which assumes that the peaks in

the spectrum are caused by random process. This is defined as PRAND = (Ī|m,S)

Finally the score of a fragmentation point with mass m is the log-likelihood ratio of these

two hypothesis.

Score(m,S) = log
PCID = (Ī|m,S)
PRAND = (Ī|m,S)

(2.8)

Probabilistic network. The first novel approach in PepNovo is the probabilistic network

which is used to compute the probability of a set of peaks with intensities I generated from a

mass m by modeling the fragmentation process in the mass spectrometer machine (CID process

in this case). Instead of the simple probabilistic scoring of earlier algorithms which assumes

that the ion-types are independent from each other, the network models 3 types of dependencies

and causal relationships.

The first type of dependency is the correlation between the peak intensities of the different

ion-types. The more correlated ion-types (whether positively or negatively) are represented by

edges going from one to the other in the network (direction of edge is arbitrary). An example

of positively correlated ion-types would be the b-ion and y-ion. The second type of dependency

is the ion intensities and the region of the peptide where the ion was generated. Ions generated

from the middle of the peptide usually have a higher intensity then ions generated from regions

to the left and right terminal ends. This is because fragmentation mostly occurs in the middle

while the ends are rarely fragmented. The third type of dependency is the influence of the

flanking amino acids (amino acids to the left and right of the fragmentation point) to the

ion-types produced and their peak intensities. For example proline, glycine and serine has an

N-terminal bias in their fragmentation, thus leading to higher intensity b-ions rather than y-ions

(Kapp et al. 33).

In order to simplify the network model, not all possible sets of dependencies are taken into

account, since the network will be too large if that is the case, and there will not be enough
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training cases to train the network. Also the peak intensities are discretized to 4 levels, and the

mass regions are discretized into 5 regions. By doing so, the final trained network can be used

as a lookup table in order to get the probability of PCID = (I|m,S).

Random peak hypothesis. The second novel approach in PepNovo is the random peak

hypothesis used. This hypothesis does not assume a constant probability for noise as in earlier

algorithms like Sherenga (Dancik et al. [13]). Instead, it computes the probability of observing a

random peak in a bin of width 2ε centered around the fragmentation point of mass m, by using

an empirical estimate of the peak intensity distribution in the vicinity of m using the uniform

distribution. This vicinity is represented by a window of width w around m. Thus given that

there are n1, n2, n3, n4 peaks of intensity level 1, 2, 3 and 4 (only 4 intensity levels are used

in PepNovo as explained) respectively in the window, the probability that a peak of intensity t

being the highest peak to be randomly placed in the bin around m has the probability

PRAND(I = t|n1, n2, n3, n4) = (1− αnt) · α
∑4

i=t+1 ni (2.9)

where α = 1 − (2ε
w ) is the probability of uniformly selecting a random location for a peak

in a window of width w and having it fall outside a specified bin of width 2ε. (1 − αnt) then

defines the probability that at least 1 peak of intensity t by random chance falls into the bin.

α
∑4

i=t+1 ni defines the probability that all peaks of intensity larger than t misses the bin. The

multiplication of the two terms is the desired probability.

The probability that no peak falls into a bin is given by

PRAND(I = 0|n1, n2, n3, n4) = α
∑4

i=1 ni (2.10)

Equation 2.9 and 2.10 then defines a probability density function where

4∑
i=0

PRAND(I = i|n1, n2, n3, n4) = 1 (2.11)

Assuming that randomly generated peaks are independent of each other, the probability of

randomly observing a combination of the k peaks intensities in the bin around m is

34



PRAND(Ī|m,S) =
k∏
i=1
PRAND(Ii|ni1, ni2, ni3, ni4) (2.12)

This random model ensures that in regions where the peaks have high intensities (indicating

a lot of noisy peaks), finding a peak with a high intensity in the bin around m results in a

relatively high PRAND score, and thus Score(m,S) is lower compared to a situation where

we find a high intensity peak in a vicinity with very few peaks or where most peaks are low

intensity. In the same way, detecting a low intensity peak in a region with very few peaks can

in fact indicate that that peak was not by chance (low PRAND ) and thus can positively impact

Score(m,S).

2.4.1.4 GBST and GST-SPC

GBST and GST-SPC are a suite of de novo sequencing algorithm developed by Ning et al.

[48], based on a preliminary version in [8]. GBST and GST-SPC are based on the idea of

“strong tags” in building the spectrum graph. A strong tag T is defined here as a maximal

path T = (v1, v2, ...vr) in the spectrum graph formed exclusively from either the b-ion or y-

ion (frequently observed ion-types). The tags are called strong, as they consists entirely of

frequently observed ion-types.

GBST. In the GBST (Greedy Best Strong Tag) algorithm, the extended spectrum graph G1(Sα1 )

(this is defined in Chapter 3) is built, and nodes are linked by an edge only if they differ by the

mass of some amino acid. This graph may then consist of disjoint components since usually not

all possible fragmentations occur and some nodes cannot be bridged. Next each component of

G1(Sα1 ) is traversed to obtain all tags of type (1, b, φ) and (1, y, φ) of length at least 2. This set

of tags are then each scored by summing up the weights of the nodes in the tag. The weight of

a node is defined by the following function

w(v) = fsup(v) + floss(v) + fint(v)
ftol(v) (2.13)

where
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• fsup(v) is a function of the number of v′ where v′ is a node where |PRM(v)−PRM(v′)| < ε

the mass tolerance, meaning that v and v′ represent the same fragmentation point but

are of a different basic ion-type z. We consider such v′ a supporting ion of v.

• floss(v) is a function of the number of v′ where v′ is similarly another node representing

the same fragmentation point as v, but where the basic ion-type z is the same, and differs

from v by the neutral losses (water, ammonia, 2*water, water+ammonia). We consider

such v′ as the neutral loss ions of v.

• fint(v) is a function of the log of the intensity of the ion represented by v.

• ftolerance(v) = 1
N (

∑
∀(v′,v)∈inedge,(v,v′)∈outedge

|PRM(v′)− PRM(v)−mass(ak)|), where N

is total number of inedges and outedges of v, and ak is the amino acid represented on each

of these edges.

The function basically takes into account all supporting ions and ions representing neutral

losses of v which can be observed from the spectrum. It also takes into account the discrepancy

between the actual mass difference of the edges coming into and going out of v, and the amino

acids represented by them. Larger discrepancy will result in a greater reduction of the score.

The scored tags are then ranked and the best tags are retained. The best tags of each ion-type

from each component is retained and called the BST (best strong tag) set.

After finding the BST, the algorithm proceeds to find the best candidate peptide by linking

the tags in a tail (last vertex in tag) to head (first vertex in tag) fashion, where head vertex v

of tag t is linked to the tail vertex u of tag t′ if they differ by the mass of d amino acid (d = 2

is used in the algorithm). The resulting graph is called the strong tag graph G(BST ). This

graph which will be smaller than G(S) due to the filtering away of tags is then used to find the

optimal peptide using the same score function 2.13 and a DFS algorithm.

GST-SPC. This is an improvement to GBST, where firstly, higher charges of the b-ion and

y-ion type is considered when computing the strong tags, instead of just the charge 1 versions.

Moreover, instead of 1 best strong tag per ion-type per component, the set of multi-charge best

strong tag are retained. That is the best strong tag corresponding to each of the different charge
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version of the ion-type is retained. The score function used to compute the set of multi-charge

best strong tags is the same as for GBST. The set of best strong tags are then linked in the

same manner as before resulting in the graph G(GST − SPC). Finally instead of computing

the best peptide using the function 2.13, we use the SPC(share peaks count) , as it is a more

objective criterion for determining the quality of de novo peptide sequencing.

2.4.2 Other Algorithms

2.4.2.1 PEAKS

PEAKS is another commercial de novo sequencing software developed by Ma et al. [41]. This

method does not use the spectrum graph method since low-energy CID usually does not allow

for full fragmentation of the peptide, introducing significant mass gaps which cannot be bridged

in the spectrum graph or might not be practical to bridge (masses equivalent to 3 or more

amino acids) without introducing too many edges and thus too many spurious paths into the

spectrum graph.

Instead the main idea behind behind PEAKS is a DP algorithm Ma et al. [42] (a preliminary

version of the algorithm was used in Ma et al. [41]) which generate candidate peptides based

on the following scoring.

H(M ′) =
∑

(x,h)∈M ′
h (2.14)

where M ′is the peak list in the given experimental spectrum S which corresponds to the

candidate peptide P ′. (x, h) are peaks in M ′, where x is the m/z ratio of the peak and h is the

intensity of the peak. Basically the score of a peptide is the sum of the intensities of all the

peaks explaining each fragmentation point in P’. The above is the basic scoring function with

more complex variation that have empirically proven to result in better sequences being used.

The novel idea in the DP is the use of “chummy pairs”, which are pairs of prefix and suffix

masses R and Q which overlap by some amino acid a ∈ A where R = R′a and Q = aQ′ and

mass(R′aQ′) ≤M ′ the precursor ion mass. The score of chummy pairs H(M ′R′aQ′) is recursively
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computed from those of the smaller chummy pairs present in R′ and Q′. The optimal solution

is then a series of chummy pairs giving the best score.

Since PEAKS does not make use of the spectrum graph, it takes into consideration all

possible masses from 0 to the precursor ion mass subdivided into individual mass units of a

suitable size. For all such masses, even when there are no peaks from S which can interpret

it, a nominal peak of very small intensity is placed there. This ensure that all possible masses

differences that amount to some amino acids can be found by the DP. Chummy pairs then

restrict the mass pairs to look at, reducing the size of the solution space.

The full pipeline used by PEAKS to perform peptide sequencing for a spectrum S is as

follows

1. Pre-processing - Performs noise filtering and peak centering as well as deconvolution of

charge 2 and 3 peaks to charge 1 peaks.

2. Candidate computation - Uses the DP algorithm to compute the top 10000 candidate

peptides

3. Re-evaluation of the top 10000 peaks - Uses a more stringent scoring function to score the

candidate peptide (described in Section 2.4.2.2)

4. Re-calibration of the data - Recalibration of the mass tolerance is performed in a way that

is similar to that described for Lutefisk (Section 2.4.1.2).

5. Compute confidence score for top candidate peptides

2.4.2.2 PEAKS-ETD

Liu et al. [38] developed a log likelihood scoring function for measuring the quality of match

between a peptide and a given experimental mass spectrum especially for machines that uses

ETD rather CID fragmentation. This scoring function has proven to be better than the original

PEAKS scoring function when replacing it in the PEAKS software to sequence ETD data.

The scoring function is basically another hypothesis test that compares the hypothesis that a

fragmentation point is a real fragmentation point against the hypothesis that it is a random
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fragmentation point (random hypothesis). The novelty in this scoring function is in the way

that both hypotheses are computed. We will refer to this new scoring function as PEAKS-ETD

(it was not given a name in the paper).

Peak Significance Level. The intensity values of the peaks given in the mass spectrum is not a

good metric for distinguishing between noise and signal peaks. This is because not all ions form

strong peaks, but instead the intensity of the peaks are dependent on the ion-type. Moreover,

different regions of the mass spectrum have different noise and signal levels. Thus instead of

using the intensity values in computing the probability that an observed ion corresponds to a

real fragment, PEAKS-ETD uses the peak significance level.

The peak significance level is a measure computed for each peak using the following four

features:

1. Global Rank rg - Numerical ranking of considered peak among all peaks in the mass

spectrum according to non-increasing intensity value. A higher ranking means a more

significant peak.

2. Local Rank rl - Numerical ranking of considered peak among all peaks within a ±57Da

window centered around the considered peak.

3. Global Intensity Ratio tg - Ratio between the global reference intensity hg and the intensity

h of the considered peak. If the ratio is smaller than 1, it is set to 1.

4. Local Intensity Ratio tl - Ratio between the minimum of hg and the intensity hl of the

highest intensity peak in the local window, and the intensity h of the considered peak. If

ratio is smaller than 1, it is set to 1. This is defined as max(1, min(hg ,h1)
h ).

The global reference intensity hg was taken to be the average intensity of the 3rd to the 10th

highest intensity peaks. The highest intensity peak was not used as the reference since some

peptides are hard to fragment, resulting in mass spectrum consisting of only a few high intensity

peaks and many low to mid intensity peaks. Hence the high intensity peaks should be considered

as outliers and should not be used as a reference.
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The four features are combined in a linear equation as follows to compute the significance

level of a peak p,

siglvl(p) = cgrlog(rgp) + clrlog(rlp) + cgtlog(tgp) + cltlog(tlp) (2.15)

where cgr,clr,cgt and clt are coefficients for the features. By fixing the local rank coefficient

clr to be 1.0, the best combination of values for the other coefficients were found through an

exhaustive search, by using the set of values {0.01, 0.02 .. 1.0} for each of them. For each

combination the ROC curve for distinguishing the signal peaks and the background noise in the

training data is computed. The combination that gave the best ROC curve was used.

Distribution of peak significance level for different ion-types. Different ion-types have

a different peak significance level distribution. PEAKS-ETD computes the distribution of the

log likelihood ratio of the two hypothesis for each ion-type. The first hypothesis that an ion of

the given ion-type with a given significance level is a real fragmentation point, and the random

peak hypothesis, that is the ion is a random peak.

Since the significance level is a continuous value, they are partitioned into a set of inter-

vals for each δ. Given that there are n ions of δ in the training set, and m of these ions

matches fragmentation points in the canonical peptides, the range of significance levels are di-

vided into 4 intervals I1, I2, I3, I4 with each containing m
4 matched peaks. Thus the probability

Prreal(siglvl(pp) ∈ Ij) of an ion pp having significance level falling into any of the four interval

for j = 1, 2, 3, 4 is a constant m
4n .

The random peak hypothesis Prrandom(siglvl(pp) ∈ Ij) which is the probability that ion pp

is a random peak is computed by simple counting. Since the interval ranges are not the same

for the 4 intervals, this probability will vary for each interval and thus the likelihood ratio of

the two event

Prreal(siglvl(pp) ∈ Ij)
Prrandom(siglvl(pp) ∈ Ij)

(2.16)

will possibly be different for each interval.
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A 5th interval is defined for the largest 10% significance levels. All ions with significance

levels falling into this interval are considered as not matching any peaks, since matching will be

a very insignificant event.

Denoting the centroid of each interval as cj , the log likelihood ratio is

f(cj) = log( Prreal(siglvl(pp) ∈ Ij)
Prrandom(siglvl(pp) ∈ Ij)

) (2.17)

for j = 1, 2, 3, 4 and

f(c5) = log(Prnomatch(siglvl(pp) ∈ I5)
Prrandom(siglvl(pp) ∈ I5) ) (2.18)

for j = 5. For ion having significance level x, f(x) = f(c1) for x < c1 and f(x) = f(c5) for

x < c5. f(x) for the other x values are defined by linear interpolation.

For each δ, a set of 5 log likelihood ratio functions f1 to f5 are computed by considering the

different regions of the peptide.

Scoring of a peptide. Since a fragmentation point Pk of a peptide P can be fragmented into

a set of ions of different types {pp1...ppk}, where siglvl(ppj) is the significance level of the ion if

it matches a peak and siglvl(ppj) =∞ if it doesn’t match any peaks in the spectrum. The log

likelihood score of a fragmentation point assuming the ion-types are independent of each other

is then simply

ffrag(Pk) =
k∏
i=1

log( Pr(siglvl(ppij))
Prrandom(siglvl(pp))) (2.19)

where Pr can be either Prreal if siglvl(ppj) < c5 or Prnomatch otherwise.

The score for the whole peptide P is then

Score(P ) =
|P |∑
i=1

ffrag(Pi) (2.20)
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2.4.2.3 NovoHMM

NovoHMM is a Hidden Markov Model based de novo sequencing method developed byFischer

et al. [18]. It is a generative method which aims to simulate the fragmentation of the peptide in

the mass spectrometer, and thus generate the most likely mass spectrum that will result from

a given peptide.

To this end, it adopts the view that the fragmentation process of a peptide in the mass

spectrometer is a random process. In order to derive a model for the generation of the mass

spectrum using the HMM, 2 simplifying assumptions are made. First, breaks occur only at

amino acid boundaries and second, the probability of observing a fragmentation to the left of

an amino acid depends only on the amino acid itself. These assumptions allow the modelling of

the generative process as a Markov process on a finite state machine. The process of generating

the mass spectrum of a given peptide P is then a path through the machine in 1 Dalton steps

until the constraint on the mass of the precursor ion M ′ given in the experimental spectrum is

fulfilled.

The finite state machine of the HMM for generation of the most likely mass spectrum of a

peptide is given in Figure 2.12. For each amino acid a ∈ A, there is an associated list of M(a)

states sa1, .. ,saM(a), where M(a) is the mono-isotopic mass of a. The machine starts at state

s0 and has 2 end states s−and s+. The bold edges in the graph corresponds to state transition

probabilities a(s, s′) from state s to state s′. Once the machine is in state sa1 of an amino acid a,

it must pass through all the states in its associated list, thus the state transitition probability

a(s, s′) = 1 for s = sax and s = say for 1 ≤ x ≤M(a)− 1 and x ≤ y ≤M(a). It mimics the fact

that once an amino acid is selected, it must be fully generated, before moving on to another

amino acid. Once the machine reaches saM(a), it can reach sa
′

1 of another amino acid a′ with

state transition probability pa′ .

The state transition probability from start state s0 to any sa1 is just the probability pa. In

order to ensure that the peptide mass constraint is satisfied, the state transition probability

changes from a(s, s′) to a′(s, s′) at step M ′ (mass of the precursor ion). a′(s, s′) gives a prob-

ability of 1 of transiting to s− if s is not some saM(a), otherwise it gives a probability of 1 of
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Figure 2.12: Finite State Machine of the HMM for mass spectrum generation. For each amino
acid a, there are M(a) states.

transiting to s+. This ensures that all mass spectra output that ends in s+ are generated from

valid candidate peptides, since their mass is the same as the precursor ion mass given in the

experimental spectra.

At each state, an ion count value (a signal generated at a specific m/z value related to

the current mass described by the state) is emitted with a certain probability of emission.

Since the fragmentation of a peptide can result in either prefix (N-terminal) ion-types or suffix

(C-terminal) ion-types, one forward Markov chain and one backward Markov chain is used to

simultaneously process peaks generated from either ion-types of either groups. The forward

Markov and backward Markov chains are then extended to hidden Markov models to describe

the ion counts in the spectra. Since ion counts can be generated at all possible states, random

peaks are also generated (ion counts emitted by non saM(a) states for any a).

Since the actual canonical peptide mass M can vary from the given precursor ion mass M ′,

the best canonical peptide mass estimate M̂ can be computed using a maximum likelihood

approach. Using M̂ , the maximum posterior of the best sequence matching the experimental

spectrum is then found using the viterbi algorithm.

2.4.3 Anti-Symmetric Longest Path

One problem associated with de novo sequencing is the fact that it is possible for candidate

sequences to use the same peak for different fragmentation points in the sequence. This is due

to different ion-type interpretations of the same peak giving rise to different masses that can
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ultimately be linked in a candidate sequence. This should not be the case since each of the

interpretations still refer to the same fragmentation point in the peptide. Thus all paths which

contain multiple instances of the same peak are invalid.

This is the anti-symmetric longest path problem associated with de novo sequencing.

Here only paths where no peak is assigned to multiple fragmentation points are valid paths,

and we are to find the best among these paths. The general problem has been shown to be

NP-Complete Cormen et al. [10], and there is no known efficient algorithm to solve it. However,

Chen et al. [6] observed some special properties associated with the anti-symmetric longest path

problem when applied to peptide sequencing, that makes the problem solvable in polynomial

time.

First they observe that a peak p can only appear at most twice in a path in the spectrum

graph, and they corresponds to an N-terminal ion and a C-terminal ion. This is because the

smallest amino acid has a mass of 57 Da, but the maximum difference between ions from the

same terminal is only 45 Da (discounting a−H2O − H2O and a−H2O − NH3 which are very

rare ions and usually not included into the ion-type set) and thus a peak given the two different

ion-type interpretations which comes from the same terminal can never be found in the same

path as they cannot be linked by an edge.

Therefore since a peak can appear at most twice in a path, the vertices are called forbidden

pairs vpn (vertex given N-terminal ion interpretation) and vpc (vertex given C-terminal ion

interpretation) respectively.

The next property of forbidden pairs in a path is that given peaks p and p’ and the ion-type

interpretations n and c, the forbidden pairs vpn,vpc and vp′n,vp′c are non-interleaving. This is

because mass(vpn) +mass(vpc) = M ′ the precursor mass, since one is the PRM and the other

the SRM of the same fragmentation point. Similarly, mass(vp′n) + mass(vp′c) = M ′. Thus if

mass(vpn) < mass(v′pn), then mass(v′pc) < mass(vpc) and vice versa.

Assuming an ion-type set of charge 1 b-ion and y-ion, vertices can be generated for each of

the ion-type. The b-ion vertices are called N vertices and the y-ion vertices, C vertices. This

is called the NC-spectrum graph. Vertices are linked as usual, and they are then placed
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on a real line at positions corresponding to their masses. The vertices are then renamed in

order from left to right (b0,b1,.., bk, yk, yk−1, ..y0), where every pair bi and yi corresponds to the

different ion-type interpretation of the same peak, that is mass(bi) +mass(yi) = M ′.

A DP was developed to find the path with the maximum score from x0 to y0 which contains

the edge e(xi, yj) where i 6= j. Lu and Chen [39] further developed the algorithm to include

more ion-types and also find all sub-optimal solutions instead of just the optimal solution, since

the optimal solution is not always practical.

Many current de novo sequencing algorithms use this algorithm for solving the anti-symmetric

longest path problem. Others do not disallow forbidden pairs, since there are situations where

two different fragmentation points can possibly coincide at the same peak due to different

ion-type generation. PEAKS for example allow for forbidden pairs, but only score one of the

interpretations of the peak. In fact a study (Ning and Leong [47]) shows that strictly disallowing

peptides with peaks given multiple assignments may affect the sequencing result adversely.

2.4.4 Post-processing candidate peptides

Most sequencing methods score candidate peptides using local information (current fragmen-

tation points or flanking amino acids of current fragmentation points). Paths representing

candidate peptides are then a simple sum of such local scoring. This is to be expected since

this scoring allows for efficient algorithms such as DP to be used to generate top x candidate

peptides.

After sequencing however, the generated candidate peptides can be rescored based on more

detailed scoring functions that exploit global information present in the peptides. PepNovo+

(Frank [20]) is an improvement to the PepNovo software which seeks to improve the ranking of

the generated candidate peptides by using a machine learning ranking algorithm called Rank-

Boosting. A discriminative model instead of the usual probabilistic models for scoring peptides

against the experimental spectrum is generated using RankBoosting. To train this discrimina-

tive model a variety of features that capture the quality of a PSM (Peptide Spectrum Match)

between a candidate peptide and the experimental spectrum is used. These include the original
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score of the peptide’s path in the spectrum graph, the ions generated for each fragmentation

point in the peptide, intensity ranks for each ion peak based on how a novel peak ranking algo-

rithm (Frank [19]), features examining the amino acid makeup of the peptide etc. The trained

model is then applied to candidate peptides generated from PepNovo to rescore and re-rank

them. Improvements of 22% in pepide identification was noted when applying the top peptide

tag after post-processing for database search.

Spectral Profiles (Kim et al. [35]) is another post-processing algorithm developed for

re-evaluating candidate peptides. The main idea behind spectral profiles is that full peptide

sequencing is usually not attainable since 1.) highly similar peptides have highly similar spectra

which makes disambiguation difficult without additional information, and 2.) variable local

quality along peptide makes some regions not amenable to sequencing. Thus instead of using

the full candidate peptide, spectral profiles seek to re-evaluate the peptide and generate a gapped

version, where portions of the candidate peptide which is of low quality is replaced by a mass

tag. This gapped version is then re-scored and re-ranked. The advantage of the gapped peptide

over the full peptide is that it is almost as accurate as short sequence tags and it generates more

unique hits when used with database search as opposed to short sequence tags.

The method generates these gapped peptide using the spectral profile for a mass spectra.

A spectral profile in this context is a compact representation of all high scoring de novo re-

constructions (a spectral dictionary [36]) for the spectra even when there are billions of such

reconstructions.

More specifically, in this method, a peptide can be represented as a k-mer boolean vector

P = x1...xk where k = M
min. unit of mass . Thus xi = 1 if i

min. unit of mass represents a prefix mass

of the peptide and 0 otherwise. A spectral dictionary D = {P1..Pm} is the set of “high” scoring

candidate peptides. A spectral profile is then Profile(D) = 1
m

m∑
j=1

Pj .

Generating a spectral dictionary can be prohibitive especially for long peptides since there

could be billions of such recontructions. The method uses a forward-backward DP solution

to generate the spectral profile without having to generate the spectral dictionary. Spectral

profiles are usually generated by setting a threshold such that total probabilities of peptides
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in the spectral dictionary do not exceed a predefined probability called the spectral probability.

For de novo sequencing, the top x generated candidates can be also be used as the spectral

dictionary.

Now given a candidate peptide P = x1..xk, Profile = f1...fk and a parameter minprob,

the gapped peptide for P is GappedPeptide(P, Profile,minprob) = g1...gk where gi = xi if

fi ≥ minprob, 0 otherwise. The gapped peptide can then be rescored and re-ranked. In

experiments done where spectral profile was generated from the top x ranking peptide generated

from PepNovo, the top ranking gapped peptides after applying the spectral profile led to a 90%

hit rate when used in database search compared to 26% when simply using the candidates tags

from PepNovo. The average number of false matches were 1.6 for gapped peptides and 80.3 for

tags from PepNovo.
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Chapter 3

Generalized Model for Multi-Charge

MS/MS Spectra

In this chapter, we discuss peptide sequencing on multi-charge tandem mass (MS/MS) spectra,

that is, peptide sequencing on spectrum with charges from +1 to higher than +3. Here we

introduce a generalized model of peptide sequencing that accommodates higher charges. We

also redefine the concept of supporting ions and extend this to the concept of supporting edges.

Our extended spectrum and extended spectrum graph model allows us to first of all include

the higher charged spectra (>+3) in our characterization of multi-charge MS/MS spectra in

Chapter 4. Our extended spectrum graph model also allows us to also discuss the development

of a new peptide sequencing algorithm in Chapter 5.

3.1 Extended Theoretical Spectrum

We define the extended theoretical spectrum TSαα(ρ) for peptide ρ for precursor charge (or

maximum charge) α to be the set of all possible observed peaks that may be present in an

experimental spectrum for ρ with maximum charge α. More precisely, TSαα(ρ) ={p: p is an

observed peak for the (z, t, h)-ion of the peptide prefix fragment ρk for all (z, t, h) ∈ 4 and

k = 1, ..., n}.

Some peptide sequencing algorithms consider only ion-types of charge up to 2 even when the
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spectrum is of a higher charge (namely, α > 2). To take this into account, we introduce a new

parameter β and we extend the definition of extended theoretical spectrum to TSαβ (ρ) which is

defined to be the set of observed peaks with charge z ∈ {1, 2, ..., β}. More precisely, TSαβ (ρ) =

{p : p ∈ TSαα(ρ) and z ∈ {1, 2, ..., β}}. Namely, TSαβ (ρ) only accounts for peaks of ion-types

with charge 1, 2, . . ., β and does not account for peaks that correspond to ion-types with

charge β + 1, . . ., α. The case β = 1 reflects the assumption that all peaks are assumed to be of

charge 1, and the peaks in an experimental spectrum are compared against TSα1 (ρ). We use β =

2 for algorithms that consider ion-types of charge up to 2 and thus, the corresponding extended

theoretical spectrum used is TSα2 (ρ). Clearly, the more charges that an algorithm takes into

account, the higher will be the recovery rate (how much of the canonical peptide can be recovered

from the candidate peptide) that can be attained — since TSα1 (ρ) ⊆ TSα2 (ρ) · ·· ⊆ TSαα(ρ). We

denote TS0(ρ) to be the set of all “uncharged” prefix fragment masses of the peptide ρ (the

prefix ladder). That is TS0(ρ) = {m(ρ1),m(ρ2), ...m(ρn)}.

3.2 Extended Spectrum

Conversely, in an experimental spectrum S = {p1, p2, ..., pn} of maximum charge α, the real

peaks may be from different ion-type of different fragments (prefix or suffix fragment, depending

on the ion-type). We do not know, a priori, the ion-type (z, t, h) ∈ 4 of each peak pi. Therefore,

we “extend” each peak pi ∈ S into |4| pseudo-peaks (or guesses) — one pseudo-peak for each of

the different ion-type (z, t, h) ∈ 4. More precisely, the extended spectrum Sαα = {(pi, (z, t, h)) :

pi ∈ S and (z, t, h) ∈ 4}, where (pi, (z, t, h)) denotes the pseudo-peak for the peak pi and ion-

type (z, t, h) and has an “assumed” (uncharged) fragment mass computed by the Shift function

in Equation 2.1. For each pi, at most one of these pseudo-peaks is a real peak, while the others

are noise “introduced” by the extension process. We denote ppi(δ) as the pseudo peak (pi, δ)

for some δ ∈ 4.

To account for algorithms that only uses charges 1 and 2, we generalize our definition of

extended spectrum to Sαβ = {(pi, (z, t, h)): (pi, (z, t, h)) ∈ Sαα and z ∈ {1, ..., β}}. Many current

algorithms uses Sα2 , even for higher charge spectra — ions of higher charge (≥ 3) are ignored.
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We always express a fragment mass in the extended spectrum using its PRM representation,

which is the mass of the prefix fragment (PRM). For suffix fragments, we use the mass of its

corresponding prefix fragment. Mathematically, for a fragment q with mass m(q), we define

PRM(q) = m(q) if q is a prefix fragment, and we define PRM(q) = M−m(q) if q is a suffix

fragment. By calculating the PRM for all fragments, we can treat all fragment masses uniformly.

Example 1. We have a peptide ρ = GAPWN, with parent mass M = m(ρ) = 525.2 and

an experimental spectrum S = 113.6, 412.2, 487.2 with maximum charge α = 2. For simplicity,

we only consider ion-types Δt = {b-ions, y-ions} and Δh = {φ} in this example. The first peak

p1 = “113.6” is a (2, b-ion,φ)-ion of the prefix fragment GAP; the peak p2 = “412.2” is a (1,

b-ion,φ)-ion of the prefix fragment GAPW; and p3 = “487.2” is a (1, y-ion, φ)-ion for the

fragment G.

Figure 3.1 illustrate the use of extended spectrum for Example 1. If only charge 1 is con-

sidered, then we have the extended spectrum S2
1 = {112.6, 430.6, 411.2, 132, 486.2, 57} (we

give the m/z ratios fo the peaks), as shown in Fig. 1(a). In S2
1 , the peak p1 extends to two

pseudo-peaks v1 = (p1, (1, b-ion,φ)) with PRM value of 112.6, and v2 = (p1, (1, y-ion, φ))

with PRM value of 430.6. Both pseudo-peaks are not true peaks. The peak p2 extends to

two pseudo-peaks v3 = (p2, (1, b-ion,φ)) with PRM value of 411.2, and v4 = (p2,(1, y-ion,φ))

with PRM value of 132. The first pseudo-peak is a true peak while the second is a noise peak.

However, the true peak p1 cannot be captured if we use only S2
1 since it is a charge 2 peak.

z mz(p1) = mz(p2) = mz(p3) =
113.6 412.2 487.2

1 B Y B Y B Y
v1 v2 v3 v4 v5 v6

112.6 430.6 411.2 132 486.2 57

z mz(p1) = mz(p2) = mz(p3) =
113.6 412.2 487.2

2 B Y B Y B Y
v7 v8 - - - -

225.2 318 - - - -
(a) The spectrum S2

1 (only B and Y ions considered). (b) Extending the peaks for charge 2 ions.
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Figure 3.1: Example of extended spectrum graph for mass spectrum generated from peptide
GAPWN. The parent mass is M = m(ρ) = 525.2

However, if charge 2 is also considered, then we have the extended spectrum S2
2 = {112.6,

430.6, 411.2, 132, 486.2, 57, 225.2, 318} as shown in Fig. 3.1(b) and it captures all the true
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peaks in S. In S2
2 , the peak p1 extends to two new pseudo-peaks of charge 2, namely v7 = (p1,

(2, b-ion,φ)) with PRM value of 225.2, and v8 = (p1, (2, y-ion, φ)) with PRM value of 318.

However, some extensions are clearly infeasible, such as the extension (p2, (2, b-ion, φ)) with a

putative PRM value of 822.4, which is larger than the parent mass, M = 525.2.

3.2.1 Supporting Ions.

In a CID or similar process, different ions from the ion-type set Δ can arise for the same

fragmentation point. In this case, we say that they are supporting ions of one another. These

supporting ions have the same prefix residue mass (PRM), but have different mass/charge ratios

and so they appear as different peaks in the experimental spectrum S.

Formally, for any pseudo-peak pp1(δ) called the main peak or main ion, another pseudo-peak

pp2(δ′), δ 6= δ′ is said to a supporting peak or supporting ion if they have the same prefix residue

mass (subject to an error tolerance ε), i.e., |pp2(δ) − pp1(δ′)| ≤ ε. For any pseudo-peak pp1(δ),

we let SI(pp1(δ)) denote the set of supporting pseudo-peaks for pp1(δ).

The number of the supporting pseudo-peaks is an indication of the likelihood that the main

ions are real peaks corresponding to real fragmentation points of the peptide, and not just

a collection of independent random noise peaks. For example, in Figure 3.2, pseudo-peaks

(p1, y − ion) and (p4,b-ion) are supporting ions of each other since their PRM=635, while

pseudo-peaks (p2,y-ion) and (p3,b-ion) are supporting ions of each other since their PRM=706.

The notion of supporting peaks have been used in scoring of nodes in a spectrum graph in many

de novo algorithms such as PEAKS (Liu et al. [38]), PepNovo (Frank and Pevzner [21]), and

Sherenga (Dancik et al. [13]).

3.2.2 Duality between extended spectrum and extended theoretical spec-

trum

We now describe a duality relationship between the extended spectrum Sαβ and the extended

theoretical spectrum TSαβ (ρ). Given an experimental spectrum S of a known peptide ρ, the set

RPαβ (S, ρ) of real peaks in the spectrum S is given by:
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Figure 3.2: Example of Supporting Ions. The pseudo-peaks (p1,y-ion) and (p4,b-ion) represents
PRM = 635 and are supporting ions for each other. On the other hand, the pseudo-peaks (p2,y-ion)
and (p3,b-ion) represents PRM = 706 and are supporting ions for each other.

RPαβ (S, ρ) = TSαβ (ρ) ∩ S (3.1)

This relationship is used by many database search algorithms to compare an experimental

spectrum S against a putative peptide ρ generated from the protein database. Clearly, consider-

ing higher charge increases the set of real peaks obtained, namely, RPα1 (S, ρ) ⊆ RPα2 (S, ρ)··· ⊆

RPαα (S, ρ) . For Example 1, when β = 1, we have RPα1 (S,GAPWN) = {p2(1, b-ion,Ø), p3(1,

y-ion,Ø)}. For β = 2, we have RPα2 (S,GAPWN) = {p1(2, b-ion,Ø), p2(1, b-ion,Ø), p3(1,

y-ion,Ø)}.

The set EFαβ (S, ρ) of explained fragments in the peptide ρ, namely fragments that are

supported (“explained”) by peak(s) or pseudo-peak(s) in Sαβ , is given by:

EFαβ (S, ρ) = TS0(ρ) ∩ PRM(Sαβ ) (3.2)

where, we recall that TS0(ρ) is the set of prefix fragment masses for the peptide ρ. This
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relationship is implicitly used by many de novo sequencing algorithms. Clearly, considering

higher charge increases the set of explained fragments, namely, EFα1 (S, ρ) ⊆ EFα2 (S, ρ)··· ⊆

EFαα (S, ρ) . For Example 1, when β = 1, we have EF 2
1 (S,GAPWN) = {GAPW, G}, supported

respectively by the pseudo-peaks (p2,(1,b-ion,Ø)) and (p3(1,y-ion,Ø)). For β = 2, we have

EF 2
2 (S,GAPWN) = {GAP, GAPW, G}, supported by (p1,(2, b-ion,Ø)), (p2,(1, b-ion,Ø)) and

(p3(1, y-ion,Ø)). Some algorithms such as Lutefisk and PepNovo consider only charges 1 and 2

(namely, β = 2) and their set of explained fragments is bounded by EFα2 (S, ρ). Consequently,

we expect them to perform less well on higher charge spectra. In the set RPαα (S, ρ), there

may be several real peaks that are support peaks for the same fragment. Similarly, in the set

EFαα (S, ρ), there may be multiple pseudo-peaks in S that helps to “explain” the same fragment.

This is more formally stated in the following duality theorem.

Theorem 1 (Duality Theorem). For any experimental spectrum S of a known peptide

ρ with a maximum charge of α, we have

EFαα (S, ρ) = PRM(Shift(RPαα (S, ρ))) (3.3)

3.3 Extended Spectrum Graph

We also introduce an extended spectrum graph, denoted by Gd(Sαβ ), for the extended spectrum

Sαβ , where d is the “connectivity”. For simplicity, we first define G1(Sαβ ), the extended spectrum

graph for Sαβ with connectivity 1. Each vertex v = (pi, (z, t, h)) in this graph represents a pseudo-

peak (pi, (z, t, h)) in the extended spectrum Sαβ , namely, the (z, t, h)-ions for the peak pi. Each

vertex represents a possible peptide fragment mass given by PRM(Shift(pj , (z, t, h))). Two

special vertices are added — the start vertex v0 corresponding to the empty fragment with mass

0 and the end vertex vM corresponding to the parent mass M . There is a directed edge (u, v)

from vertex u to vertex v in the graph G1(Sαβ ) iff PRM(v) is larger than PRM(u) by the mass

of a single amino acid. We note that our graph extends the more “standard” spectrum graph

G(S) by taking into account pseudo-peaks with higher charges.

In the extended spectrum graph of connectivity d, Gd(Sαβ ), we further extend the definition
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of an edge to mean “a directed path of up to d amino acids”. Thus, we connect vertex u and

vertex v by a directed edge (u, v) if the PRM(v) is larger than PRM(u) by the total mass of

d′ amino acids, where d′ ≤ d. In this case, we say that the edge (u, v) is connected by a path of

length up to d amino acids. Note that the number of possible paths to be searched is 20d and

increases exponentially with d.

For Example 1, Figure 3.1(c) shows the extended spectrum graph G2(S2
1) for S2

1 with

connectivity 2. We can see that only the edges (v0, v6) for amino acid G and (v3, vM ) for amino

acid N can be obtained. The subsequence APW is longer than two amino acids long and so

G2(S2
1) is unable to elucidate this information. For β = 2, we use the extended spectrum S2

2

and the corresponding extended spectrum graph G2(S2
2) shown in Figure 3.1(d). New edges

can be obtained, edge (v6, v7) for path AP of length two amino acids and (v7, v3) for amino

acid W. This gives a full path from v0 to vM and the full peptide can now be elucidated (as

shown in Figure 3.1(d)). This example illustrates the advantage of considering higher charges.

We also note that in G2(S2
2), fictitious edges may also be introduced due to the introduction

of noise pseudo-peaks. In Figure 3.1(d), the fictitious edge (v4, v8) is shown using dashed line.

Many such fictitious edges can result in fictitious paths from vb to ve, thus giving a higher rate

of false positives. Indeed, one challenge with higher charge spectra is that of dealing carefully

with false positives.

Example 2. To further illustrate the ability to extract more of the peptide by considering

higher charge ion-types, we consider a charge 4 spectrum from the GPM-Amethyst dataset

(Craig et al. [12]). The peptide that generated the spectrum is AGFAGDDAPRAVFPSIV-

GRPR and the data file is shown on the left of Figure 3.3. The real peaks are colored, with

ion-type, and corresponding prefix fragment indicated on the right. The full peptide ladder is

given on the far right and the fragments which are present in the spectrum are also shown in

italics (and underlined) and annotated with the peaks which were generated from them. The

Figure on the left of Figure 3.4 shows that if we only consider charge 2 (namely, use β = 2),

then only 10 of the 21 different prefix fragments and six of the 21 amino acids can be obtained

from the extended spectrum graph G1(S4
2). However, if all the charges are considered (using β
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Peak No. M/Z Intensity Ion Types

1 177.105 2.0 (4, b, ∅); (4, x,−2 ∗H2O)
2 191.12 2.0
3 205.103 2.0
4 219.121 3.0 (2, x,−NH3)
5 231.125 6.0
6 248.166 3.0
7 276.161 48.0 (1, b, ∅)
8 302.203 1.0
9 319.213 19.0
10 347.211 61.0 (1, b, ∅)
11 376.196 1.0
12 404.199 4.0 (1, b, ∅)
13 441.279 2.0 (2, y, ∅)
14 485.338 2.0 (1, y, ∅)
15 508.045 47.0
16 514.829 1.0 (2, y, ∅)
17 519.235 2.0 (3, b,−NH3)
18 522.28 7.0
19 541.673 2.0
20 543.723 1.0 (3, x,−2 ∗H2O)
21 546.94 7.0 (2, y,−2 ∗H2O)
22 585.324 8.0
23 604.331 100.0 (2, x,−NH3)
24 609.59 1.0
25 628.0 83.0
26 634.242 2.0 (1, b, ∅)
27 676.689 23.0 (3, y, ∅)
28 696.036 17.0

-

A
AG (p27)
AGF (p7)
AGFA (p10)
AGFAG (p12)
AGFAGD (p20)
AGFAGDD (p26)
AGFAGDDA (p1)
AGFAGDDAP
AGFAGDDAPR (p23)
AGFAGDDAPRA (p21)
AGFAGDDAPRAV (p16)
AGFAGDDAPRAVF (p13)
AGFAGDDAPRAVFP
AGFAGDDAPRAVFPS (p1)
AGFAGDDAPRAVFPSI (p17)
AGFAGDDAPRAVFPSIV (p14)
AGFAGDDAPRAVFPSIVG (p4)
AGFAGDDAPRAVFPSIVGR
AGFAGDDAPRAVFPSIVGRP
AGFAGDDAPRAVFPSIVGRPR

Figure 3.3: A charge 4 spectrum from the GPM-Amethyst dataset. The real peaks are colored,
with ion-type, and corresponding prefix fragment indicated on the right.

= 4), then 15 of the 21 prefix fragments and 12 of the 21 amino acids can be obtained using

G1(S4
4).

3.3.1 Supporting Edges

We extend the idea of supporting ions (described in Section 3.2.1) to that of supporting edges

in the extended spectrum graph Gd(Sαβ ). In order to do so, we first associate a color to each of

the different ion-type in (z, t, h) ∈ 4. Then each vertex v in G has a color that represents the

ion-type (z, t, h) of the corresponding pseudo-peak.

An edge (u, v) is called a mono-chromatic edge if both vertices u and v have the same color

(i.e., of the same ion-type). If u and v have different colors (different ion-types), then the edge

(u, v) is called a mixed edge.

For any mono-chromatic edge (u, v), another mono-chromatic edge (u′, v′) is a supporting

edge of (u, v) if

1. |PRM(u)− PRM(u′)| < ε′
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Figure 3.4: Progression in amount of peptide that can be elucidated, if higher charges were to
be considered. The colored fragments are those obtainable. Here only single amino acid differences are
considered. On the left, when considering up to charge 2 for the charge 4 spectra, we can obtain only 6
out of 21 of the amino acids. On the right, by considering up to charge 4, we can obtain 12 of the amino
acids.

2. |PRM(v)− PRM(v′)| < ε′

3. |(PRM(v)− PRM(u))− (PRM(v′)− PRM(u′))| < ε′

Condition 1 and 2 ensures that supporting edges are not too far off from each other, and

condition 3 ensures that they represent the same mass difference or amino acid. Thus for any

mono-chromatic edge e = (u, v), let SE(e) be its set of supporting edges.

The idea behind supporting edges is that instead of supporting ions for one fragmentation

point, we find the supporting ions for a consecutive pair of fragmentation points (represented

by an edge in the graph). In order to retain the concept of main ion and supporting ions in

this extension, we can apply it to pairs of fragmentation points with the same main-ion, that is

mono-chromatic edges, and the supporting edges will also have to be mono-chromatic. Thus a

mixed edge e′ will never have any supporting edges, and SE(e′) = φ.

Just as the number of supporting ions are an indication of the likelihood that the main ions

are real peaks, the number of supporting edges are an indication that the main edge represents

a pair of real fragmentation points.
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3.3.2 Advantage of Extended Spectrum Graph over Merged Spectrum Graph

Extended Spectrum Graph has no merged nodes. An aspect of the extended spectrum

graph Gd(Sαβ ) is that we do not merge the nodes that are close in mass as opposed to merged

spectrum graph (described in Section 2.3.2.1) algorithms like Sherenga (Dancik et al. [13]) and

PepNovo (Frank and Pevzner [21]). Even though node merging will help to reduce the size of

the graph and thus the solution space, it has 2 disadvantages.

1. Merged nodes causes “gaps” in the merged spectrum graph. The center of mass

of merged nodes is usually the average mass of the nodes collapsed to form them. However,

regardless of how the mass is calculated, the full spread of masses as represented by the

peaks in the experimental spectrum S is not encoded in the graph when the nodes are

merged. This can cause problem by introducing “gaps” in the spectrum graph. Two

unmerged nodes can be bridged by some amino acid, but after merging, the difference

between the center of masses of the merged nodes exceeds the error tolerance and this

causes a gap to appear. This is illustrated in Figure 3.5, where the amino acid A (mass

= 71) can no longer be bridged in the merged graph if an error tolerance of ε = 0.5Da is

used. This is because the merged node has an average mass of 385.5 resulting in a mass

difference of 71.7 (error tolerance exceeded). This artifact of merging causes a drop in the

amount of peptide recoverable

2. Main ions and supporting ions are no longer distinguishable in the merged

spectrum graph. In the unmerged spectrum, the concept of pseudo peaks ppi(δ) is trans-

lated to the nodes in the graph, and the concept of the supporting peaks set SI(ppi(δ))

is translated to the set of nodes which each sp ∈ SI(ppi(δ)) is translated to. However in

a merged spectrum, the main pseudo peak or ion and the supporting peaks are no longer

distinguishable. In algorithms such as Sherenga and PepNovo this is not an issue, since

their scoring does not depend on separating out the main ions and supporting ions, but

only need to know what is the set of ions explaining a given fragmentation point. However

this separation will become useful information in a new scoring scheme to be introduced
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385.8

385.6

386.1

385.7

Mass Diff = 71.7

Mass Diff = 71.4 = A

457.5

Figure 3.5: Example of Merged node causing gaps. Node with mass = 386.1 can be linked to node
with mass = 457.5 with the amino acid A (Alanine) (mass=71) as the difference 71.4 is within error
tolerance ε = 0.5. However in the merged node, where the average mass is taken as the center of mass
(385.8), the error exceeds 0.5 and can no longer be linked (represented by the dashed edge).

in Chapter 5.

Throughout the thesis, G will be used to refer to the extended spectrum graph, unless

explicitly stated, and for all practical purposes, we only use d = 1 for our experiments.
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Chapter 4

Characterization Study of

Multi-Charge MS/MS Spectra

In the last chapter, we have introduced generalized models for higher charged peaks. In this

Chapter, we address the first question raised in this thesis: namely, whether there are higher

charged peaks and if so, do they help to increase the percentage of recoverable peptides. We do

this by analyzing anotated multi-charge spectra (with charges up to 5) from the GPM database

(Craig et al. [12], ftp://ftp.thegpm.org/quartz), as well as spectra (with charges up to 3) from

the ISB (Keller et al. [34]) and Orbitrap (Tang [61]) database.

4.1 Impetus for Characterization Study of Multi-Charge MS/MS

Spectra

As mentioned in Chapter 1, current de novo sequencing methods work well on good quality

spectra of charges 1 and 2. However, they do not do well on spectra with charges 3 to 5

since they do not explicitly handle multi-charge ions (one notable exception is PEAKS by Ma

et al. [41] which does conversion of multi-charge peaks into their singly-charge equivalent before

sequencing). Older versions of Lutefisk by Taylor and Johnson [66] worked with singly-charged

ions only, but the recent version (Lutefisk 1.0.5) have been updated to work with higher charged

ions. Sherenga by Dancik et al. [13] and PepNovo works with singly- and doubly-charged ions.
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Therefore, some of the higher charge peaks are mis-annotated, leading to lower recovery rates.

We therefore seek to do a systematic study of multi-charge spectra to first evaluate false

positive levels on multi-charge spectra due to consideration of multi-charge peaks, and other

artifacts of the mass spectrometry process. We then evaluate whether considering multi-charge

ions can potentially help in improving sequencing results. The sequencing models proposed in

Chapter 3 facilitates the evaluation of the quality of MS/MS spectra with respect to PSpec(α, β)

(ratio of real peaks in the spectra) and Comp(α, β) (ratio of the prefix peptide fragments

recovered from the spectra). The Comp(α, β) measure we define is also an upper bound on the

sensitivity result obtained by any algorithm that consider charge up to β. These measures will

be defined in Section 4.3.

4.2 Effect of Measurement Error, Random Peaks and Multi-

charge Peaks on False Positive levels

The models described in the previous chapter is based on the ideal case in which all the masses

(both theoretical and experimental) are precise. However, in reality, mass spectra contain errors.

First, there is measurement error in mass of the peaks — this error depends on the machine

and process used to generate the spectra. Second, there is an error due to the presence of noise

peaks. Third, as more ion-types are considered in 4 (especially with multi-charge spectra), the

extended theoretical spectrum becomes more dense and there may be multiple interpretations

for a given experimental peak. Next, we consider these errors in turn.

False positives due to measurement error. To account for measurement error, we let ε

be the error tolerance associated with peak measurements in the experimental spectrum. This

parameter depends on the machine and process used to generate the mass spectrum. Given this

error tolerance ε , we say that an experimental peak pe in S matches a theoretical peak pt in

TSαβ (ρ) when their mass difference is at most ε . In that case, we say that the pt is a possible

interpretation of the experimental peak pe. We also say that pe is a real peak. We extend

the definition of real peaks in an experimental spectrum S to account for the error tolerance
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as follows: RPαβ (S, ρ, ε) = TSαβ (ρ) ∩ε S. Here, we generalize the set intersection operation to

ε-intersection (denoted by ∩ε) which is defined as follows: A∩εB = {b ∈ B: ∃a ∈ A, |a−b| ≤ ε}.

The standard set intersection operation corresponds to the case where ε = 0.

False positives due to random noise peaks. We first estimate the rate of false positives

due to random noise peaks. Given an experimental spectrum S with n peaks, assume there

are γn(0 ≤ γ ≤ 1) random noise peaks. We want to estimate how many of these noise peaks

will match some theoretical peaks, that is how many of them are false positives. Unfortunately,

we do not know which are the true peaks in S, and which are the noise peaks. We consider

a workaround where we generate a random spectrum SR with γn peaks. Each peak in SR

is a randomly generated noise peak with mass that is uniformly distributed between (0,M),

where M = m(p) is the parent mass of some assumed peptide ρ. Then, we match SR with

the extended theoretical spectrum for ρ (with tolerance ε) to get the set of false positive noise

peaks. Namely, the set PRαβ(SR, ρ, ε) is precisely the set of peaks in SR that are false positives

— those that match (with tolerance ε) with some theoretical peak.

We run this simulation on 2250 random spectra of charge 1, 2, 3, 4, and 5 (450 each), using

an assumed peptides ρ taken from the ISB dataset (see Section 4.3.2), with an error tolerance

from 0.1 to 1.0 mz unit (at 0.1 unit intervals), and with γ = 0.2, 0.4, 0.6, 0.8. We have used

the full ion-type set 4 = (4z × 4t × 4h), where 4z = {1, 2, . . ., α}, 4t = {a-ion, b-ion,

c-ion, x-ion, y-ion} and 4h = {φ,−H2O,−NH3,−H2O−H2O,−H2O − NH3}. The ratios of false

positive due to random peaks obtained from our simulation are shown in Figure 4.1. Only those

for charges 3 and 5 are shown — the ones for 2 and 4 are similar and are omitted. We have

also highlighted the relevant ranges (for γ and ε) for the three datasets we used1. From these

simulation, we expect that the ratio of false positive due to random peaks to be (a) less than

0.15 for the GPM and ISB datasets, and (b) less than 0.1 for Orbitrap datasets.

False positives due to multiple interpretations. Multiple interpretations of a peak

can lead to the anti-symmetric longest path problem as given in Section (2.4.3). However it
1 The relevant ranges for γ and are obtained from the peak specificity results presented in Section 4.3. For the

GPM-Amethyst dataset, ε = 0.5, 0.1 ≤ γ ≤ 0.4; for the ISB dataset, = 1.0, 0.2 ≤ γ ≤ 0.3; and for the Orbitrap
dataset, = 0.1, 0.5 ≤ γ ≤ 0.8.
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Figure 4.1: Ratio of false positive due to random noise peak matching spectra of charges 3 and
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is to be noted that there are situations where two different fragmentation points can possibly

coincide at the same peak due to different ion-type generation, and not all cases of multiple

interpretations are necessarily wrong.

To study the extent of the problem due to multiple interpretation, we define the set of possible

interpretation PI where PI(pe) = {pt ∈ TSαβ (ρ) : |m(pe)−m(pt)| ≤ ε} for an experimental peak

pe ∈ S. Hence PI(pe) is the set of theoretical peaks that matches with pe within tolerance ε.

If |PI(pe)| = 0, then the peak pe is a noise peak. (Note that the proportion of noise peaks in

a spectrum S depends on the machine and the process.) If |PI(pe)| = 1, then the peak pe is a

matched peak with a unique interpretation. If |PI(pe)| > 1, then the peak pe is a matched peak

with multiple interpretations. Let S be the subset of S that contains all the matched peaks.

We want to measure the average number of possible interpretations per matched peak, denoted

by API(S′), defined as

API(S′) =
∑
pεS′ |PI(p)|
|S′|

(4.1)

We note that API(S) depends on the tolerance ε, and the set of ion-types 4 considered

in the definition of the extended theoretical spectrum. We computed API(S′) using spectra of

charge 1, 2, 3, 4, 5 from the GPM-Amethyst dataset (see Section 4.3.1), with an error tolerance

from 0.1 to 1.0 mz unit (at 0.1 unit intervals). Figure 4.2 shows API(S′) over the relevant ranges

for γ and ε. For the ISB dataset, with ε = 1.0, the API(S′) increased from 1.5 to 2.0 when

α goes from 2 to 3. For the GPM dataset with ε = 0.5, there are 2.5 possible interpretations

per matched peak for charge 5 spectra. Thus, for the GPM dataset, it might be important for

sequencing algorithms to be able to disambiguate the interpretations of these matched peaks.

4.3 Increase in Recoverable Peptides in Multi-Charge Spectra

We now use our new model to analyze multi-charge spectra with known peptides. By matching

the peaks in each spectrum S with our extended theoretical spectrum of the peptide, we can

evaluate the abundance of the various ion-types (including higher charge ions-types), as well as
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the different prefix fragments that are represented in the spectrum S. One important aim of

this study is to evaluate the significance of higher charge ions in these multi-charge spectra.

Evaluation measures for mass spectra. We define two measures, the peak specificity

(denoted by PSpec(α, β)), and completeness (denoted by Comp(α, β)), for evaluating multi-

charge spectra from known peptide. Each measure is defined with respect to the precursor

charge (or maximum charge) α, and the maximum charge considered β.

• PSpec(α, β)(S, ρ) = |TSαβ (ρ)∩εS|
|S| = |RPαβ (S,ρ,ε)|

|S|

• Comp(α, β)(S, ρ) = |TS0(ρ)∩εPRM(Sαα)|
|ρ| = |EFαβ (S,ρ,ε)|

|ρ|

Peak specificity measures the proportion of true peaks in the experimental spectrum S. It

can also be considered as a measure of the signal-to-noise ratio of S. The higher the peak

specificity, the better the quality of the spectrum S. However, having high peak specificity does

not necessarily mean that more of the peptide can be recovered. This is because for a given

PRM, there may be multiple support peaks in RPαβ (S, ρ), which lead to “double counting”. The

completeness measure avoids this by taking into account only the explained fragment masses

— multiple support peaks for the same fragment are not double-counted.

The annotated datasets used. For our spectrum characterization study, we have selected

multi-charge spectra from three sources: (a) the Amethyst data set from GPM (Craig et al.

[12])(b) a dataset from the ISB (Keller et al. [34]) and (c) two datasets based on Orbitrap (Tang

[61]). These spectra are annotated with their corresponding peptides that we use to generate

the extended theoretical spectra for comparison.

Setup of our analysis. For each dataset (GPM and ISB), we separate the spectra into

groups of different charges α = 1, 2, 3, 4, 5. For each group, we compute the group average

for PSpec(α, β) and Comp(α, β) for β = 1, 2, . . ., α. In these computations, we use the

annotated peptide ρ for each mass spectrum S and the full ion-type set 4 to generate the

extended theoretical spectrum for ρ and use it for comparison with the spectrum S. The error

tolerance ε used is different for each dataset.
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4.3.1 Analysis of the GPM-Amethyst dataset

The GPM-Amethyst dataset are MS/MS spectra obtained from QSTAR mass spectrometers,

from both MALDI and ESI sources. The entire Amethyst dataset consists of a total of 12,558

spectra of different charges from 1 to 5. We exclude spectra for which the difference between

the parent ion mass and the mass of the annotated peptide exceeds a threshold of 3 Da. After

this filtering, the GPM-Amethyst dataset consists of a total of 6890 spectra — consisting of

2281, 2881, 1231, 411, 86 spectra with charges α = 1, 2, 3, 4, and 5, respectively.

Normally, QSTAR datasets are highly accurate and usually it is possible to determine the

charge state of the peaks by examining the isotope peaks. However, the Amethyst dataset that

is publicly-available from the GPM web-site are preprocessed datasets — each spectrum has

between 20–50 peaks (usually high quality peaks). The average number of peaks per spectrum is

about 40. The processed spectra have low resolution thus making it impossible to do charge state

determination using isotopic peaks. (We do not have access to the corresponding unprocessed

spectra.) To analyze the GPM-Amethyst dataset, we use error tolerance ε= 0.5.

Peak specificity results for GPM dataset. The average peak specificity results for

this dataset are shown in Figure 4.3. There are five curves corresponding to different precursor

charge α = 1, 2, 3, 4, 5. For a fixed α, the peak specificity increases significantly as more higher

charge ions are considered (as β increases). For example, when α = 5, the peak specificity

increases from 0.53 when β = 2, to 0.90 when β = 5. For higher-charge spectra, the peak

specificity are high — between 0.72 to 0.90.

The significance of higher charge ions is measured by the difference between PSpec(α, α)

and PSpec(α, 2). An algorithm that uses β = 2 is limited to a peak specificity of PSpec(α, 2)

while an algorithm that considers all the charge ions (β = α) can potentially achieve a higher

peak specificity of PSpec(α, α). Figure 4.3 clearly shows that this difference is significant, and

the gap increases with α.

We note that this impact is preserved even in the presence of false positive due to noise

peaks. To see this, we observe that for a given spectrum with charge α, the expected rate of

false positive is the same for all values of β. Thus, if the rate of false positive is ψ, then the
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real peak specificity is (PSpec(α, β)−ψ). Thus, false positive merely lower the absolute values

of the PSpec(α, β), but not their relative order. In particular, the impact due to higher charge

ions (PSpec(α, β) − PSpec(α, 2)) is independent of the rate of false positive due to noise peaks,

ψ.
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Figure 4.3: Peak specificity results for the GPM-Amethyst dataset. The five curves in the Figure
on the left shows PSpec(α, β) for α = 1 to 5. The graph on the right shows the impact of considering
higher charged ions. The lower curve, PSpec(α, 2) considers only charges 1 and 2 (β = 2). The upper
curve, PSpec(α, α) considers all charges (β = α).

Completeness results for GPM dataset. The completeness results for the GPM-

Amethyst dataset are shown in Figure 4.4. For a fixed α, the completeness also increases sig-

nificantly with β, showing that more fragments can be recovered by considering higher charges.

To highlight the impact of the higher charge ions on the completeness, we also plot Comp(α, α)

and Comp(α, 2) against α as shown in the right of Figure 4.4. For each α = 3, 4, 5, this dispar-
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ity is shown by the difference between the top and bottom curves. We note that the disparity

increases with α as seen from the widening gap. For example using β = 4 for charge 4 (α = 4)

data compared to using β = 2 is an improvement of about 27% in completeness.
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Figure 4.4: Completeness results for the GPM-Amethyst dataset. The five curves in the left Figure
show Comp(α, β) for α = 1 to 5. The graph on the right shows the impact of considering higher charge
ions on completeness — by plotting Comp(α, 2) and Comp(α, α).

4.3.2 Analysis of the ISB dataset

The ISB dataset are Iontrap data generated using an ESI source from a mixture of 18 proteins

and consists of 5334 spectra with charge α = 1, 2, and 3. For each multi-charge spectrum, the

machine outputs two spectra (one for charge 2 and one for charge 3) because there is not enough

resolution to determine the precursor charge. Both spectra are then searched using SEQUEST
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to find the best matching peptide among them — based on a better SEQUEST XCorr score

(Keller et al. [34]).

We further exclude spectra with low XCorr scores (≤ 2.0) or if the the difference between

the parent ion mass and the mass of the annotated peptide exceeds a threshold of 3 Da. After

this filtering, the ISB dataset consists of a total of 2267 spectra — consisting of 50, 1329, 888

spectra with charge α = 1, 2, and 3, respectively. The ISB dataset have between 200–700 peaks

per spectrum and an average of 400 peaks per spectrum. There are, generally, more noise peaks

and ISB spectra generally have lower peak specificity. To analyze the ISB dataset, we use error

tolerance ε = 1.0.

Peak specificity results for ISB dataset. The average peak specificity results for the

ISB dataset are shown in Figure 4.5. The three curves correspond to different precursor charge

α = 1, 2, 3. The peak specificity for multi-charge spectra is a little lower than those for the

GPM dataset — between 0.63 and 0.77. For α = 3, the peak specificity increases only slightly

when charge 3 ions are included. This seem to indicate that relatively few charge 3 fragments

are produced.

Completeness results for ISB dataset. The completeness results for the ISB datasets

are shown in Figure 4.6. The results show that the ISB spectra have very high completeness

values — close to 1 even when β = 2. This means that for the ISB dataset, almost all of the

fragments are supported by some peaks in the spectrum even when β = 2. Thus, there is almost

no increase in the completeness when charge 3 ions are included. However, the slightly larger

peak specificity for β = 3 means these fragments are supported by more peaks — which gives

rise to higher scores for these spectra.

4.3.3 Analysis of the Orbitrap dataset

While the GPM datasets are true multi-charge datasets, the spectra have been preprocessed.

Ideally, our analysis should have been done on the original unprocessed spectra, but these are

not available to us. The ISB datasets are unprocessed, but they have low resolution (ε = 1.0)

and so are not ideal for our study.
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Figure 4.5: Peak specificity of the ISB dataset. The three curves show PSpec(α, β) for α = 1, 2, 3.
Considering charge 3 ions improves the peak specificity slightly.
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To complement this study, we also obtained two sets of annotated mass spectra (of charge

α = 1, 2, 3) that are produced using a high resolution Orbitrap mass spectrometry process —

Orbitrap-FT (with 122 spectra) and Orbitrap-LTQ (with 252 spectra). We filter these datasets

using the same conditions for the ISB dataset. After filtering, our Orbitrap-FT dataset consists

of a total of 103 spectra, consisting of 4, 78, 21 spectra with charge α = 1, 2, and 3, respectively;

and our Orbitrap-LTQ dataset contains 240 spectra, with 32, 165, 43 spectra with charge α =

1, 2, and 3, respectively. The Orbitrap-FT dataset has several hundred peaks per spectrum,

while the Orbitrap-LTQ dataset has several thousand peaks per spectrum. Since these are high

resolution datasets, we use an error tolerance ε = 0.1 to analyze the Orbitrap datasets.

Peak specificity results for Orbitrap datasets. The average peak specificity results

for the two Orbitrap datasets are shown in Figures 4.7 and 4.8. The peak specificity for the

multi-charge Orbitrap-FT datasets are between 0.43 and 0.49, while those for Orbitrap-LTQ

is even lower, between 0.11 and 0.18. Similar to the ISB datasets, there is a slight increase in

peak specificity when charge 3 ions are included.

Completeness results for the Orbitrap datasets. The completeness results for the

two Orbitrap datasets are shown in Figures 4.9 and 4.10. The Orbitrap-FT datasets has com-

pleteness of between 0.70 and 0.78, and those for Orbitrap-LTQ is even higher, between 0.98

and 0.99. Thus, there are sufficient real peaks in these spectra to explain most of the peptide

fragments, even in the presence of a lot of noise peaks. Considering β = 3 does not improve

the completeness by much from β = 2 (about 3% for Orbitrap-FT data and about 1% for

Orbitrap-LTQ data).

4.4 Discussion and Conclusion on the analysis of multi-charge

spectra

Our analysis of multi-charge mass spectra suggest that for true multi-charge GPM dataset, there

are higher charged peaks/ions and they have significant impact on both the peak specificity and

completeness, therefore potentially improving the amount of peptide recoverable. However, for
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Figure 4.7: Peak specificity of the Orbitrap-FT dataset. The three curves shows PSpec(α, β) for α
= 1, 2, 3. Ions of charge 3 gives slight improvement.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  1  2  3

P
S

pe
c(

α,
β)

β

Peak Specificity (α,β) vs β for Orbitrap LTQ

α=1
α=2
α=3

Figure 4.8: Peak specificity of the Orbitrap-LTQ dataset. The three curves shows PSpec(α, β) for
α = 1, 2, 3. Ions of charge 3 gives slight improvement.
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Figure 4.9: Completeness for Orbitrap-FT dataset. The three curves shows Comp(α, β) for α = 1,
2, 3. Considering ions of charge 3 improves slightly the completeness.
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Figure 4.10: Completeness for Orbitrap-LTQ dataset. The three curves shows Comp(α, β) for α =
1, 2, 3. Considering ions of charge 3 improves slightly the completeness.
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the charge 3 spectra from the ISB and the Orbitrap datasets, charge 3 ions give only very slight

increase in completeness. The slightly better improvement in peak specificity suggests that

charge 3 ions may be useful as supporting ions.

Specifically, for GPM data, the improvement in PSpec(α, β) when considering β ≥ 3 is in

spite of the presence of false positive due to noise peaks. This leads to the conclusion that

there are higher charged peaks in GPM data. We also show that the Comp measures for

GPM dataset are low for β = 1 and β = 2. This imply that any algorithm that considers

only charge 1 or 2 ions will suffer from low sensitivity. The results also show that the Comp

measure increases significantly with largerβ. This implies that considering higher charged ions

improves the amount of peptide recoverable, and therefore it is important for peptide sequencing

algorithms to consider higher charge ions for QSTAR multi-charge data.

For ISB and the Orbitrap datasets, charge 3 ions give only very slight increase in peak

specificity and completeness of charge 3 spectra. This seems to indicate that for these charge

3 spectra, relatively few charge 3 fragments ions are produced from the charge 3 precursors.

However this does no indicate that charge 3 ions are useless since the support they give to

existing charge 1 and 2 ions can help to determine the correct sequence during sequencing. This

issue will be addressed in Chapter 5.

The number of multiple matching for peaks is low for all datasets except for GPM charge 5

spectra.
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Chapter 5

MCPS (Mono-Chromatic Peptide

Sequencer) for Multi-Charge Mass

Spectra

We have shown, in the last chapter, that there are higher charged peaks in multi-charge spec-

tra and they contribute to sequencing results by increasing the potential amount of peptide

recoverable. In this Chapter, we address the second question on whether it is possible to devise

better de novo sequencing algorithms that considers these higher charged peaks.

We present a new algorithm MCPS (Mono-Chromatic Peptide Sequencing) for peptide se-

quencing which gives better sequencing result especially for higher charged spectra (> 5% better

peptide recovery compared to the next best algorithm PepNovo for charge 3 ISB data), using

the generalized model developed in Chapter 3.

The main idea of MCPS is to isolate and identify mono ion-type tags which are peptide

tags supported by consecutive peaks of the same ion-type. MCPS uses mono ion-type tags in

two ways: (i) to define a novel mono-chromatic score function MCScore(P ) that amplifies the

weight of mono ion-type tags in putative peptide P , and (ii) to effectively prune away noise

peaks. MCPS finds the peptide P that maximizes the mono-chromatic scoreMCScore(P ). We

show that this problem is equivalent to that of find a suffix-k path-dependent longest path in
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a DAG (directed acyclic graph) which can be solved using a dynamic programming algorithm.

(In practice, we use k=1,2,3.)

We will first define the Mono-Chromatic Scoring function which is the heart of the MCPS

algorithm, and then we will show the steps that MCPS uses to sequence a peptide.

5.1 New Scoring Scheme - Mono-Chromatic Scoring Function

In this section, we present our new mono-chromatic scoring function for putative peptides that

amplifies sub-paths of the same ion-types. When we refer to the color of a vertex, we are

referring to its ion-type. These two terms will be used interchangeably throughout the rest of

the thesis.

Mono-Chromatic Scoring of a Path. We introduce a novel scoring, MCScore(P ) of a

path P which differentiates between mono-chromatic sub-paths (of the same ion-type) and

mixed edges (supported by different ion-types) in P . To formally define MCScore(P ), we need

several definitions.

A path P = (w0, e1, w1, e2, w2, ..., ek, wk) is called a mono-chromatic path if each edge ej =

(wj−1, wj) in P is mono-chromatic (defined in Section 3.3.1) for j = 1, 2, ..., k. Otherwise, the

path is called a mixed path. Note that in a mono-chromatic path P , all the vertices in P are of

the same ion-type.

In de novo sequencing, we search the extended spectrum graph G for paths. Each path P

in G represents a putative peptide given by the sequence of amino-acid labels on the edges in

the path P .

The significance of using the extended spectrum graph lies in the fact that each path P

can be uniquely decomposed into maximal mono-chromatic sub-paths or tags. More precisely,

the path P = (w0, e1, w1, e2, w2, ..., ek, wk) in G can be uniquely decomposed into maximal

monochromatic sub-paths that are linked by mixed edges and is given by

P = ([P0]em1[P1]em2...emr[Pr])
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each [Pj ] is a maximal mono-chromatic sub-path for j = 0, 1, ..., r and consecutive monochro-

matic tags [Pj−1] and [Pj ] are linked via mixed edge emj . (Note that if two consecutive edges,

ej−1 and ej are mixed edges, then the intervening sub-path [Pj−1] is the empty sub-path).

A mono-chromatic path of length k represents a strong signal consisting of (k + 1) consec-

utive pseudo-peaks of the same ion-type. Therefore, we believe that mono-chromatic sub-path

represents stronger signals compared to mixed sub-path of the same length.

As an example we have two alternate fictitious paths in the graph shown in Figure 5.1,

both representing the peptide tag GFGGED. Even though both represents the same peptide

tag, the top path P1 = (v0, v1, v2, v3, v4, v5, v6, v7, ve) consists of stronger signals than the bot-

tom path P2 = (v0, v8, v9, v10, v11, v12, v13, v14, ve). This is because in P1, the sub-path P ′1 =

(v1, v2, v3, v4, v5) representing the tag GFGG is a maximal mono-chromatic sub-path made up

of y-ions. This sub-path when compared to a similar mixed sub-path P ′2 = (v8, v9, v10, v11, v12)

in P2 should reflect a stronger signal for GFGG. If for example we boost the score of the sub-

path P ′1 by multiplying SScore(P ′1) (the simple scoring of a path defined in Section 2.3.2)

by the length of the tag GFGG as shown in the figure, the score of P ′1 (22) will be greater than

that for the P ′2 (5.5), even though their edge weights are the same. In the end, P1 will have a

higher score (26.5) than P2 (8.5).

Hence, the novel idea is to amplify the score of mono-chromatic sub-paths in P based on

their lengths. Our mono-chromatic scoring function, MCScore(P ) is defined as follows:

MCScore(P ) =
r∑
j=0

λ(lj) ∗ SScore([Pj ]) +
r∑
j=1

w(ej) (5.1)

lj is the length of the [Pj ]. The λ function takes into consideration the length of Pj to

amplify the score of Pj . We remark that in our score function MCScore(P ), the actual weight

contribution of an edge e is not fixed, but changes depending on the length of the maximal

mono-chromatic sub-path that contains e via the multiplier λ(lj).

This however does not mean that a strong signal pertaining to an ion-type that is rarely

see will have a higher score, since the original weights of the edges for the mono-chromatic tag

is low, the strong signal will not increase by much even when boosted. Worse, for ion-types
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Figure 5.1: Example of mono-chromatic path vs a mixed path. Top path P1 consists of 2 mono-
chromatic maximal sub-paths, one belong to y-ion, the other belonging to b-ion. The bottom path P2

is a mixed path consisting of all mixed edges. Even though they represent the same tag GFGGED,
the top path has a higher score due to the fact that the two maximal mono-chromatic sub-paths give a
strong signal for the fragment they represent.
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with negative weights (rare ion-types), the boosting implies a bigger drop in the score of the

tag. Thus in our scoring function we only boost ion-types which have a high probability of

observation in the mass spectrum.

In general, a function such as MCScore(P ) violates the optimality principle which is the

basis of many shortest path on a DAG algorithms. As an example, given 2 paths P ′ =

(v0, v1, v2, v3, v7) and P ′′ = (v0, v4, v5, v6, v7) connecting to P = (v7, v8, v9, ve) in Figure 5.2,

we see that MCScore(P ′′) = 18.5 and this is a better score than MCScore(P ′) = 7.5. For

the optimality principle to work, at node v7, using P ′′ should be the optimal sub-path, and

the score of P ′′ + P should be better than that for P ′ + P . However due to the exten-

sion of the mono-chromatic y-ion sub-path to (v3, v7, v8, v9) as shown by the bolded nodes,

MCScore(P ′ + P ) = 31.5 which is better than MCScore(P ′′ + P ) = 31. This violates the

optimality principle since we cannot determine whether to use P ′ or P ′′ until we have gone

through both the paths P ′ + P and P ′′ + P .

Using our mono-chromatic scoring of a path, the peptide sequencing problem will then

become one of finding the path-dependent longest path in a DAG that was previously study in

Tan and Leong [60]. In general, path-dependent optimal path is an NP-Hard problem Tan and

Leong [60].

In practice, we can limit this dependence to a suffix of length at most k. Thus, mono-

chromatic sub-paths of length greater than k will be amplified by the same factor as that for

those of length k. Mathematically, this means that λ(h) = λ(k) for all h ≥ k. We call this the

suffix-k path-dependent longest path in a DAG. This can be solve in polynomial time Tan and

Leong [60].

In the next section we will give the MCPS algorithm that uses the Mono-Chromatic Scoring

function (MCScore) to sequence a peptide.

5.2 MCPS (Mono Chromatic Peptide Sequencer)

Given the above mono-chromatic scoring function, MCPS (Mono-Chromatic Peptide Sequencer)

takes the following steps to sequence a peptide.
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Figure 5.2: MCScore violates optimality principle. MCScore(P ′) = 7.5 < MCScore(P ′′) = 18.5.
In order for the optimality principle to work, at node v7, P ′′ should be the optimal sub-path to use, and
score of P”+P should be better than P’+P. However, MCScore(P ′+P ) = 31.5 > MCScore(P ′′+P ) =
31 due to the extension of the mono-chromatic y-ion sub-path in P’+P to (v3, v7, v8, v9) (bolded nodes).
This violates the optimality principle that many shortest path algorithms depend on.
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MCPS

1. Peak filtering

2. Build extended spectrum Sαβ from spectrum S

3. Build extended spectrum graph G(Sαβ ) given extended spectrum Sαβ

4. Prune off noisy vertices in G(Sαβ ) to get pruned spectrum graph Gp(Sαβ )

5. Bridge vertices in Gp(Sαβ ) to get final spectrum graph Gb(Sαβ )

6. Scoring edges in Gb(Sαβ )

7. Sequence peptide

8. Post-process candidate peptides

Step 1-5 seeks to generate a subgraph of the extended spectrum graph Gb(Sαβ ) which is

small in size, thus making it manageable for de novo sequencing and also filters away a lot of

the noisy paths (false candidate peptides). Step 6-7 uses the new score function to generate

good candidate peptides (eliminates more noisy paths) and Step 8 seek to improve the ranking

of the candidate peptides generated.

5.2.1 Peak Filtering

For our experiments, we have used ISB Keller et al. [34], ISB2 Klimek et al. [37]and GPMCraig

et al. [12] datasets (refer to Chapter 6 for more details). ISB and ISB2 spectrums consists on

the average ~250 peaks. These consists of a few high intensity peaks among many low intensity

peaks. Since ISB data is usually not very heavily pre-processed, a lot of the peaks are noise. A

simple peak filtering method used in our pre-processing step is to take only the top 100 peaks

order by their intensity. This reduces the amount of noisy peaks selected, and reduces the size

of the final extended spectrum graph. GPM spectrums on the other hand consists of on the

average only about 40 peaks. These are heavily pre-processed spectra, and most of the time,

we will use all the peaks present in the spectra using our filtering criteria.
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Parent Mass Correction. Experiments were also done on correcting the parent ion mass

given in the spectrum. These results however are not yet included in the MCPS algorithm.

Please refer to Appendix A for more details.

5.2.2 Build extended spectrum Sαβ from spectrum S

Building the extended spectrum Sαβ from the experimental spectrum S has been described in

detail in Chapter 3. We have used a greedy ranking algorithm to obtain different ion-type sets

for use for the different spectra grouped by their maximum charge α.

An example of the ion-type set4 used for charge 1 ISB2 data is the set4 ={(+1,y), (+1,b),

(+1,y,-water), (+1,b,-water), (+1,y,-(water+ammonia)), (+1,b,-ammonia), (+1,x,-ammonia)}.

For more details on the ion-type sets used and the greedy ranking algorithm please refer to

Section 6.2.1.

5.2.3 Build extended spectrum graph G(Sαβ ) given extended spectrumSαβ

In this step we build the extended spectrum graph G(Sαβ ) given the extended spectrum Sαβ as

described in Chapter 2.

5.2.4 Prune noisy vertices in G(Sαβ ) to get pruned spectrum graph Gp(Sαβ )

Even after peak filtering, G(Sαβ ) is still a noisy spectrum graph. An important step will be

to remove noise by removing nodes in the extended spectrum graph which are unlikely to be

real fragmentation points in the canonical peptide. In order to do this, we remove all vertices

which do not participate in a mono-chromatic path of at least some length l. The rationale is

that in most sequencing results, the good candidate peptides will be paths in G(Sαβ ) containing

mono-chromatic maximal tags of at least a certain length l.

Now not all mono-chromatic maximal tags in a good candidate peptide will be long, only

those of abundant ion-types. For an analysis of the probability of observation of a mono-

chromatic tag of an ion-type δ of length l please refer to Appendix B. We split the ion-type set

into the set of top x ion-types 4x which will be considered for pruning using the above strategy.
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Vertices and the associated edges pertaining to the remaining 4 − 4x ion-types will first be

temporarily “switched off ” in this step before we begin pruning, and will be used in the next

step of the algorithm (the bridging step). We denote the extended spectrum graph obtained in

this step the pruned spectrum graph Gp(Sαβ ).

Gp(Sαβ ) is defined as the sub-graph of G(Sαβ ) which contains all vertices in the set Vp ={v

| v ∈ V (G(Sαβ )), ion_type(v) ∈ 4x, and ∃[P ] in G(Sαβ ) where length([P ]) ≥ l, and where v

is in [P ]}, and all edges in the set Epinduced by Vp. These rest of the vertices which are not

“switched off ” or not in Vp are removed along with the edge set they induce.

Note that edges linking vertices of different color in Vp remains and this is required since

it reflects the actual fragmentation process, where it is unlikely to get a peptide fragmented

by solely one ion-type, and a candidate path usually contains mono-chromatic tags of different

ion-types. In fact different mass regions of the peptide have different probability distribution of

the ion-types, since some ion-types are more abundantly found in one region and not in others.

It is to be noted that we do not perform the pruning or bridging on GPM data, since they

produce very small spectrum graphs due to the small number of peaks their spectrum contains,

and also for charge 3 and higher data, pruning severely affects the amount of peptide (refer to

Section 6.2.2) that can be sequenced. Instead for GPM data, we use G(Sαβ ) at the sequencing

step.

Performing Pruning. We can determine which are the set of such vertices by first finding

all vertices which participate in a path of at least length l. This is done by considering each

node v in G(Sαβ ) as root and doing a BF traversal until we hit a depth of l, or we have finished

traversing the subtree anchored at v. All the nodes in paths of length l are marked. After going

through all the nodes, the unmarked nodes are the ones which do not participate in any path

of at least length l. This set of vertices is correctly computed, since if any node u in this set

resides on a path of at least length l, they will have been found and marked when we perform

BF traversal on any node in that path which is ≤ l edges away from it. In all, we perform

n ∗ 20l(20 is the maximum branching factor since there are only 20 amino acids) node visits.

Since l is fixed, the computational complexity of this step is O(n). All the unmarked nodes are
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then pruned from the spectrum graph.

5.2.5 Bridge vertices in Gp(Sαβ ) to get final spectrum graph Gb(Sαβ )

In this step, we re-introduce the remaining ion-types 4 − 4x by “switching on” a vertex in

Gp(Sαβ ) whose ion-type is in 4−4x only if they can bridge two vertices of ion-type in 4x. This

is in vein with the idea that low probability ion-types found in consecutive fragmentation points

are highly unlikely (refer to Appendix B for an analysis of probability of such an occurrence)

and will usually be a bridge for high probability ion-types. We denote the final mono-chromatic

extended spectrum graph after the bridging step as Gb(Sαβ ). In Section 6.2.2.1, we show there

is a huge drop in the number of nodes and edges going from G(Sαβ ) to Gb(Sαβ ), while still

maintaining a good upper bound on the amount of the canonical peptide recoverable.

5.2.6 Scoring edges in Gb(Sαβ )

In order to provide the raw weights for the nodes, we have used the probabilistic model in Liu

et al. [38] (explained in detail in Chapter 2) to train the log likelihood ratios of observing an

ion-type at a given fragmentation point. Since each vertex in our final extended spectrum graph

Gb(Sαβ ) corresponds to a possible fragmentation point, this is equivalent to scoring each vertex

by the log likelihood of observation of its main ion.

The weights of supporting ions (described in Section 3.2.1) are factored into the final

weight of a vertex v as follows

w′(v) =
w(v) +∑|SI(v)|

j=0 w(m)
µ

(5.2)

wherem ∈ SI(n) and µ is some constant. Since the suffix-k mono-chromatic scoring function

MCScore(P ) works on the edge scores, the weights of the nodes are pushed onto the edges

by using the function w(e) = w′(in_node)+w′(out_node)
2 . Finally, weights of supporting edges

(described in Section 3.3.1) are factored into the final weight of an edge e as follows

83



w′(e) = {
w(e)+

∑|SE(e)|
j=0 w(f)
µ′ if suffix k > 1

w(e) otherwise

(5.3)

where f ∈ SE(n) and µ′ is some constant. For our algorithm we have used µ = 2 and

µ′ = 2. Note that for mixed edges w′(e) = w(e). If the suffix k = 0, no supporting edges are

taken into consideration.

5.2.7 Sequence peptide

After building the mono-chromatic extended spectrum graph Gb(Sαβ ), we proceed to perform

peptide sequencing. As stated in Section 5.1, this is equivalent to finding the suffix-k path-

dependent longest path in a DAG using the Mono-Chromatic Scoring MCScore(P, h). Details

of the DP formulation for the algorithm is given in Section 5.3.

5.2.8 Post-processing of candidate peptides

During sequencing, we usually generate the top 100 candidate peptide, using a modified version

of Yen’s algorithm (Yen [71]) that consists of disabling paths that have already been generated

in the spectrum graph and finding the next best path and so on until the top 100 is generated.

Since actually generating the top 100 currently takes too long to run for suffix-k values ≥ 3, we

generate the actual top 10 and take all remaining sequences in the pool (which may not be the

actual rank 11-100) which are then ranked by their score and appended to the top 10 to make

the top 100.

These candidate peptides then undergo post-processing to improve the sequencing result.

We tackled two problems during the post-processing stage. The first is the anti-symmetric path

problem described in Section 2.4.3. The second is the problem of Competing Sub-paths.

5.2.8.1 Anti-Symmetric Path Problem

In our experiments, we tried tackling the anti-symmetric path problem by first generating the

top 100 candidates peptides regardless of how many are requested. These 100 candidates are
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then checked if any of them give a peak multiple ion-type interpretations, that is a peak is used

to explain 2 different fragmentation point in the peptide. All candidates which do so are pushed

to the back of candidates which do not do so. The top n candidate peptides requested are then

output. This gives a soft solution to the anti-symmetric longest path problem (refer to Section

2.4.3 for more details), since we still allow for such candidates in our solution, but we do not

rank them as high as the others, instead of totally rejecting them.

However, we found that this did not impact the result of the top ranking candidate peptides

or the best ranking peptide within the top 100 candidates for the training data. Thus we con-

cluded that the anti-symmetric problem rarely occurs for good candidate sequences generated

by MCPS, and did away with this step in the final MCPS algorithm.

5.2.8.2 Competing Sub-paths

Due to the path dependent scoring and the fact that each node only represents the interpretation

of a peak given 1 ion-type, mono-chromatic sub-paths of different ion-types basically compete

against each other. This includes sub-paths that represent similar fragments of the canonical

peptide but are formed from different ion-types. The following situation exemplifies this.

Figure 5.3 shows part of the actual spectrum graph generated for an actual experimental

spectrum (LQ20060105_s_18MIX_12.1230.1230.1.dta) of the ISB2 dataset. The canonical

peptide associated with the experimental spectrum is AGFAGDDAPR. The spectrum graph

shows the paths representing the top ranked candidate peptide (score = 23.57) and the 10th

ranked candidate peptide (score = 18.12). The numbers on the edges represent the score of the

edges. Nodes representing +1 y-ions are coded red and nodes representing +1 b-ions are coded

yellow.

The top ranked candidate peptide is given by the path (v0, v1, v2, v3, v4, v5, v6, v7, v8, v9),

where edges are implicitly represented by consecutive vertices. This path represents the can-

didate peptide tag [35.0719]SQGNPDA[253.03]. The 10th ranked candidate peptide is given

by the path (v0, v10, v11, v12, v13, v14, v15, v16, v9). This represents the candidate peptide tag

[41.1905]SFNEDA[253.295].
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The top ranked peptide tag [35.0719]SQGNPDA[253.03] matches the canonical peptide at

the bolded amino acids AGFAGDDAPR (matches 2 amino acids), while the 10th ranked

peptide tag [41.1905]SFNEDA[253.295] matches that canonical peptide at AGFAGDDAPR

(matches 3 amino acids).

From the figure we can see that the sub-paths (v6, v7, v8, v9) and (v14, v15, v16, v9) represent

the same fragment DA[253.03] and are in fact competing against each other since they belong

to 2 different paths.

An alternative route to get [41.1905]SFNEDA[253.295] might be taken in order to make use

of the higher edge score of 1.9286 compared with 1.2679 (v7, v8) vs (v15, v16). This can be done

by using the edge from v14 to v7 (dashed line) and continuing from there. However, because of

a change from b- to y-ion, the score of edge (v14, v7) is 0.05 which is lower than that of edge

(v14, v15) with a score of 1.9436. We won’t be able to get the benefit of the score of the edge

(v7, v8), since the drop from 1.9436 to 0.05 is greater than the increase from 1.2679 to 1.9286.

In fact what we want is swap (v14, v15, v16) with (v6, v7, v8) which will increase the score of

[41.1905]SFNEDA[253.295] to 25.45 and this is better than the current top ranked candidate

[35.0719]SQGNPDA[253.03]. However this is not possible during the sequencing step. This

problem is due to the fact that it is hard to switch from one ion-type to the other ion-type when

you have a long substring (since the multiplier increases) and the cost to switch increases too.

In our post-processing step, we tackle this problem by first restricting the set of edges and

nodes in the spectrum graph to only those induced by the set of candidate peptides. We then

form groups out of all the edges representing the same peptide fragment (same amino acid at

the same fragmentation point). We re-assign the weights of the edges in each group to that of

the edge with the largest weight in the group. The rationale would be that since they represent

the same thing, they should have the same weight. The sequencing algorithm is then run again

for the updated spectrum graph.

The point of doing this at the post-processing step is so that spurious paths will not have

their scores boosted, since we only restrict ourselves to the good ranked candidate peptides from

the first round of sequencing.

86



 

0.05 D 

41.2  128.1  275.2  389.5  518.1  632.9  704.1 

122.4  250.8  307.6 421.2  518.2  633.3  704.335.1

0.1285 

957.4 

v9 

0.1813 

0.0426

0.0 

0.0504 

1.2679 1.9436 1.18360.02080.1021 0.0665 

1.9286 3.116 0.60680.04750.0275 0.0779 

v10  v11  v12  v13  v14  v15  v16 

v8 

v0 

S  Q  G  N  P  D  A 

v1  v2  v3  v4  v5  v6  v7 

S F N E D A

= +1 y‐ion 

= +1 b‐ion 

Figure 5.3: Example of Competing Sub-paths. Subpaths (v6, v7, v8, v9) and (v14, v15, v16, v9) repre-
sent the same fragment DA[253.03], but are of different ion-types. They basically compete with each other
since they belong to different paths in the graph. An alternative route to get [41.1905]SFNEDA[253.295]
might be taken in order to make use of the higher edge score of 1.9286 compared with 1.2679 (v7, v8) vs
(v15, v16). This can be done by using the edge from v14 to v7 (dashed line) and continuing from there.
However, because of a change from b- to y-ion, the score of edge (v14, v7) is 0.05 which is lower than the
score of edge (v14, v15) and we won’t be able to get the benefit of the score of the edge (v7, v8).

5.3 DP algorithm for Suffix-K Path-Dependent Longest Path

For every node vj , let SPj(h) be the set of all sub-paths leading into and terminating at vj of

length k for some constant k or with length < k if the sub-path starts at node v0 and hits vj

before reaching a length of k. For each sub-path p ∈ SPj(k) where p = (vi−k+1,.., vi−1, vi, vj) or

(v0, ..., vi−1, vi, vj), let SPm be the set of maximal mono-chromatic tag in p, and Emip be the set

of mixed edges in p. This is easily computed by performing a linear scan of the path, adding

edges to tags of the same color or adding mixed edges to Emip when a mono-chromatic edge or

mixed edge is encountered. Note that each edge e in p is either a mixed edge or it belongs to

exactly one maximal mono-chromatic tag. Let mctag(e, p) be the maximal mono-chromatic tag
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that e in p belongs to if e is a mono-chromatic edge. mctag(e, sp) = [] otherwise.

At any vertex vj , the computation of the MCScore of a path p = (v0, ..., vi−2, vi−1, vi, vj)

terminating at vj can be categorized into 4 cases.

1. Case 1 - edge (vi, vj) is mixed. The score of p is then MCScore(p− vj)+w′(vi, vj). This

is because (vi, vj) does not contribute to any maximal mono-chromatic tag found in the

path and thus does not affect the MCScore of the sub-path p− vj .

2. Case 2 - edge (vi, vj) is mono-chromatic and edge (vi−1, vi) is mixed. The score of p is

MCScore(p − vj)+λ(1) ∗ w′(vi, vj). In this case, (vi−1, vi) is the start of a new maximal

mono-chromatic tag of length 1 and similarly does not affect theMCScore of the sub-path

p− vj .

3. Case 3 - edge (vivj) and (vi−1vi) are both mono-chromatic. Note that both can only be

mono-chromatic if they are of the same color (same ion-type). This case can be split into

2 sub-cases

(a) mctag((vi−1, vi), p− vj)) is of length ≥ k. In this case, the maximum multiplier has

already been considered for the maximal mono-chromatic tag (vi−1vi) is a part of,

thus there is no change to MCScore(p − vj), and The score of p is MCScore(p −

vj) + λ(k) ∗ w′(vi, vj).

(b) mctag((vi−1, vi), p−vj)) is of length < k. In this case,MCScore(p−vj) has to be up-

dated, since the addition of (vi, vj) increases the length of maximal mono-chromatic

tag that (vi−1, vi) is a part of by 1. Only the score of the tag mctag((vi−1, vi), p−vj))

need be updated, as other maximal mono-chromatic tags are not affected. The up-

dated score of t = mctag((vi−1, vi), p− vj)) is

update_score(t) =
∑
∀e∈t

λ(length(t) + 1) ∗ w′(e)− λ(length(t)) ∗ w′(e) (5.4)

We minus off the original score of t in equation 5.4 so that the updated MCScore
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for p− vj is then

MCScore′(p− vj) = MCScore(p− vj) + update_score(t)

The score of p is then MCScore′(p− vj) + λ(length(t) + 1) ∗ w′(vi, vj)

DP Formulation

The above leads to a DP formulation for computing the SMCScore of the optimal sub-path

terminating at a node vj with a suffix p = (vi−k+1,.., vi−1, vi, vj) (p does not begin at the start

node v0) as follows

opt(vj , p) = max
∀p′∈SPi(k) and

p−vj⊂p′



opt(vi,p′)+w′(vi,vj) if case 1

opt(vi,p′)+λ(1)∗w′(vi,vj) if case 2

opt(vi,p′)+λ(h)∗w′(vi,vj) if case 3a

opt(vi,p′)+λ(length(mctag((vi−1,vi),p′))+1)∗w′(vi,vj)+
update_score(mctag((vi−1,vi),p′))

if case 3b

(5.5)

where p− vj ⊂ p′ means that p− vj is the k − 1 suffix of p′.

If p begins at v0,

opt(vj , p) = MCScore(p) (5.6)

Initialization: for all sub-paths of length ≤ k from v0, compute their MCScore.

DP execution: For each node in topologically sorted order, apply the DP formulation until

last node is processed.

The optimal path can be obtained by going from the last node backwards, choosing the edge

(vhvl) from the sub-path sp = (vh−k+1...vh, vl) that optimizes opt(vl, p) and then moving to vh

and repeating the process until we reach v0.

We see that for the case of k = 0, MCScore(P ) = SScore(P ). This reduces the problem to

finding the longest path in a DAG.
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5.3.1 Computational Complexity of DP algorithm

For any vertex vj , |SPj(k)| = (c+ 20)k since there are at most c+20 number of different edges

(20 different amino acids and repeated edges due to error tolerance represented by the constant

c) coming into any vertex and we only consider sub-path of length up to k.

For a given sub-path p = (vi−k+1,.., vi−1, vi, vj) in SPj(k) we go through all sub-path p′ ∈

SPi(k) where (vi−k+1, ..., vi) is the k− 1 suffix of p′, and find the one that maximizes opt(vj , p).

There are at most (c+ 20) of such sub-paths, since p′ differs from p only at its start edge. For

each p′, checking which of the four cases it falls into takes O(1) time. This is because in the

worst case we modify the score of a tag of length at most k, while the other cases is merely

a table lookup. Thus we have to process (c + 20)k+1 sub-paths in order to find opt(vj , p) for

all p. In all we process at most n ∗ (c + 20)k+1sub-paths, where n is the number of nodes in

the spectrum graph. We see that this is equivalent to processing all sub-path of length k + 1

found in the spectrum graph. Now each unique node and vertex can be found in at most a

constant c′ number of sub-paths of length k + 1. The time complexity can then be expressed

as O(c′(n+m)). The constant c′ however can be very big depending on the value of k, and in

practice can take a long time to compute when k is large.
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Chapter 6

MCPS Parameter Tuning

In this chapter, we describe how we set the parameters in the various steps involved in generating

candidate peptides by MCPS. We will first describe the datasets used in our experiments. Next

we will describe how the ion-types sets used by MCPS were obtained. After that, we will

evaluate the effect of varying different parameters in step 4-8 of the MCPS algorithm. We will

then give the final parameter settings for each dataset.

6.1 Datasets

For our experiments, we have used spectra that are annotated with their corresponding peptides

– the GPM-Amethyst dataset (Craig et al. [12], the ISB dataset (Keller et al. [34]) and the

ISB2 dataset (Klimek et al. [37]). These datasets will be split into training and testing subsets

(except for ISB which is fully used for testing). The training sets are used to determine the

ion-type sets used, the parameter setting, as well as for training the probabilistic model given

Liu et al. [38] which will provide the raw weights for MCPS’s scoring function. The test sets

are used to evaluate sequencing results of MCPS and other algorithms in Chapter 7.

GPM-Amethyst Dataset. The GPM-Amethyst dataset are MS/MS spectra obtained from

QSTAR mass spectrometers, from both MALDI and ESI sources. The entire Amethyst dataset

consists of a total of 12,558 spectra of difference charges from 1 to 5. Normally, QSTAR

datasets are highly accurate and usually it is possible to determine the charge state of the peaks
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by examining the isotope peaks. However, the Amethyst dataset that is publicly-available from

the GPM web-site are pre-processed datasets – each spectrum has between 20-50 peaks (usually

high quality peaks). The average number of peaks per spectrum is about 40. Peptides in the

GPM dataset are on average 14-15 amino acids long.

We exclude spectra for which the difference between the parent ion mass and the mass of

the annotated peptide exceeds a threshold of 3 Da. This is so as to exclude spectra of peptides

which contains PTMs (which can modify the peptides mass by a large amount), since MCPS

does not handle PTMs. We also exclude spectra having an X-correlation score (Xcorr) < 2.0

(a rule of thumb for “good” quality spectra).

After this filtering, our GPM-Amethyst dataset consists of a total of 2327 spectra – 756, 874,

453, 207, 37 spectra with charges 1,2,3,4 and 5 respectively. Out of this set, we further partition

them randomly into a test set and training set. The testing set consists of 1076 spectrum in all

- 302, 349, 181, 207 and 37 spectra with charges 1,2,3,4 and 5, respectively. For the training set,

we did not use any charge 4 or 5 spectra as they are too small in number to be used for training

puposes. Thus for charge 4 and 5 spectra we used the parameters trained for the charge 3 data.

The training set consists of 1251 spectrum in all - 454, 525 and 272 spectra of charges 1,2 and

3 respectively. We used a random 40/60 split between the testing and training sets.

To perform sequencing on the GPM-Amethyst dataset, we use error tolerance ε = 0.5Da

for joining vertices in the spectrum graph.

ISB Dataset. The ISB dataset consists of low energy CID ion-trap data generated using an

ESI source from a mixture of 18 proteins and consists of 5334 spectra with charge 1,2 and 3.

For each multi-charge spectrum, the machine outputs two spectra (one for charge 2 and one

for charge 3) because there is not enough resolution to determine the precursor charge. Both

spectra are then searched using SEQUEST to find the best matching peptide among them –

based on a better SEQUEST XCorr score. Peptides in the ISB dataset are of length 15-16 on

average.

We similarly exclude spectra with low XCorr scores (≤ 2.0) or if the the difference between

the parent ion mass and the mass of the annotated peptide exceeds a threshold of 3 Da. After

92



this filtering, our ISB dataset consists of a total of 995 spectra – consisting of 16, 489, 490

spectra with charge 1, 2, and 3, respectively. The ISB dataset have between 200-700 peaks each

and an average of about 250 peaks per spectrum. There are, generally, more noise peaks and

ISB spectra generally have lower peak specificity.

To sequence the ISB dataset, we use error tolerance ε = 0.5Da, which is the same as that

used in many other studies.

ISB2 Dataset. Recently there is a new set of data which we will call the ISB2 dataset

generated from using the same mixture of proteins as ISB data, but using many different mass

spectrometers Klimek et al. [37]. We have selected the data that corresponded to the mass

spectrometer used to generate ISB data. ISB2 was used as the training set for the weights and

ion-types for both itself and ISB data, and consists of a total of 3373 spectra – 535, 2069, 769

spectra of charge 1,2 and 3 respectively, after applying the same filtering criteria as ISB. Similar

to the GPM dataset, we use a 40/60 split between the training and testing set. This resulted

in a training set of 2024 spectra – 313, 1238, 473 spectra of charge 1,2 and 3 respectively, and a

testing set of 1349 spectra – 222, 831, 296 spectra of charge 1,2 and 3 respectively. The entire

ISB dataset was used as the testing set.

6.2 Parameter Tuning

6.2.1 Determining Ion-Type Sets

After the peak filtering step in the MCPS algorithm, we will build the extended spectrum

Sαβ from the given experimental spectrum S using an ion-type set 4, and then the extended

spectrum graph G(Sαβ ) from Sαβ . In order to obtain the best 4 to use, we perform a ranking

of all the possible ion-types based on a greedy cumulative completeness function which first

finds the ion-type giving the highest average completeness value (refer to Section 4.3) across a

training dataset. The next ion-type which gives the highest additional average completeness

values based on the unrecovered portions is listed as the next ion-type. We call this additional

average completeness comp+. This process goes on until all possible ion-types are considered.
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After normalizing the cumulative completeness value against the total completeness attainable

using all the ion-types, we pick the set of ion-types that allows us to achieve ≥ 0.85 normalized

cumulative completeness value (the 85th percentile of recoverable peptide), or when we hit a

hard limit of 15 ion-types.

We use such a scheme, instead of the offset frequency function by Dancik [13], because that

function does not take into consideration that some of the ion-types are highly correlated to

other ion-types, that is whenever we find a ion of one type, we will also find a similar ion of

the other type. In this way, considering both ions does not allow us to recover more of the

peptide (although the support for recoverable fragmentation points will be high). Our method

tries to ensure maximum recovery of a peptide. We determine a set of ion-types used for each

dataset (ISB2 and GPM) and each sub-dataset based on spectrum charge. The ion-types sets

used for ISB2 and GPM are as listed in Tables 6.1 and 6.2. The column cum. comp refers to

the cumulative completeness value up to that point. We include both the un-normalized (unor)

and the normalized values (nor). The underlined ion-types are those that are considered in the

ion-type set, with the corresponding cumulative completeness values underlined and in bold.

The last row shows the last ranking ion-type.

For GPM, we only consider up to charge 3 since the number of charge 4 and 5 data is

small, and not representative enough to be used for learning charge 4 and 5 ion-types. Thus

for charge 4 and 5 data, we will used the ion-types learned for charge 3 data. Note that the

final cumulative completeness values in the tables seem low because we used a very strict error

tolerance of ε = 0.5Da (as opposed to actual sequencing where ε = 2.5Da) when matching

recovered amino acids to the canonical peptide. This is to prevent too much over-estimation for

amount of the peptide recoverable, and also does not affect the relative ranking of the ion-types.

However we do observe that the un-normalized cumulative completeness values for GPM in

general in much lower that for ISB when considering ion-types of the same rank. Moreover,

the additional average completeness comp+ for the top ranking ion-types for GPM data is

significantly lower than that for ISB. This shows that GPM data do not have a strong preferences

for ion-types.
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Charge 1 data Charge 2 data Charge 3 data

ion-type comp+ cum. comp

unor / nor

(+1,y) 0.301 0.301/0.42

(+1,b) 0.193 0.494/0.68

(+1,y-w) 0.048 0.542/0.75

(+1,b-w) 0.041 0.583/0.80

(+1,y-(w+a)) 0.021 0.604/0.83

(+1,b-a) 0.018 0.623/0.86

(+1,x-a) 0.016 0.639/0.88

(+1,a-w2) 0.0004 0.726/1.0

ion-type comp+ cum. comp

unor / nor

(+1,y) 0.338 0.338/0.43

(+1,b) 0.145 0.483/0.62

(+2,y) 0.057 0.540/0.69

(+1,b-w) 0.031 0.571/0.73

(+2,y-w) 0.023 0.593/0.76

(+1,y-w) 0.018 0.611/0.79

(+2,x-a) 0.014 0.625/0.80

(+2,y-(w+a)) 0.012 0.637/0.82

(+1,b-a) 0.011 0.648/0.83

(+2,x-w2) 0.010 0.658/0.85

(+1,x-w) 0.010 0.668/0.86

(+2,b-w) 0.0005 0.778/1.0

ion-type comp+ cum. comp

unor / nor

(+1,b) 0.149 0.149/0.18

(+2,b) 0.102 0.251/0.31

(+2,y) 0.085 0.336/0.41

(+1,y) 0.068 0.404/0.49

(+1,b-w) 0.028 0.432/0.53

(+2,y-w) 0.026 0.458/0.56

(+2,b-a) 0.023 0.482/0.59

(+2,y-(w+a)) 0.020 0.502/0.61

(+2,x-a) 0.019 0.521/.64

(+3,y) 0.016 0.537/0.66

(+1,y-w2) 0.016 0.553/0.68

(+2,a) 0.015 0.568/0.69

(+3,y-w) 0.013 0.581/0.71

(+2,c) 0.013 0.594/0.73

(+1,c-w2) 0.0004 0.819/1.0

Table 6.1: Ion-type ranking for ISB2 data according to spectrum charge type. Column 1 represents
the ranking ion-type, column 2 is their additional completeness (comp+) value and column 3 is the
cumulative completeness value (cum. comp), both the un-normalized (unor) and normalized ones (nor).
Ion-types selected until a cumulative completeness value of ≥ 0.85 or a hard limit of 15 ion-types were
reached.
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Charge1 Charge2 Charge3

ion-type comp+ cum. comp

unor / nor

(+1,y) 0.159 0.159/0.35

(+1,b) 0.083 0.242/0.53

(+1,c-w) 0.031 0.273/0.600

(+1,y-a) 0.023 0.296/0.65

(+1,b-a) 0.018 0.314/0.69

(+1,b-w) 0.015 0.330/0.73

(+1,x-a) 0.014 0.344/0.76

(+1,y-w) 0.014 0.358/0.79

(+1,y-w2) 0.010 0.368/0.81

(+1,x) 0.010 0.378/0.83

(+1,a) 0.009 0.387/0.85

(+1,c-w2) 0.009 0.395/0.87

(+1,a-w2) 0.003 0.455/1.0

ion-type comp+ cum. comp

unor / nor

(+1,y) 0.137 0.137/0.28

(+1,b) 0.075 0.212/0.43

(+2,y) 0.023 0.234/0.48

(+2,x-w) 0.013 0.247/0.50

(+2,x-a) 0.012 0.260/0.53

(+1,y-a) 0.012 0.272/0.56

(+2,y-w) 0.012 0.284/0.58

(+1,b-a) 0.011 0.295/0.60

(+2,x-(w+a)) 0.010 0.305/0.62

(+2,x) 0.010 0.315/0.64

(+1,y-w) 0.010 0.325/0.66

(+1,b-w) 0.010 0.336/0.69

(+2,y-(w+a)) 0.009 0.345/0.70

(+2,c) 0.009 0.354/0.72

(+2,y-a) 0.009 0.363/0.74

(+1,a-w) 0.007 0.370/0.76

(+1,a-(w+a)) 0.001 0.490/1.0

ion-type comp+ cum. comp

unor / nor

(+1,b) 0.061 0.061/0.12

(+1,y) 0.025 0.086/0.17

(+2,b) 0.016 0.103/0.20

(+2,y) 0.013 0.116/0.23

(+2,a-(w+a)) 0.012 0.128/0.25

(+3,x-w2) 0.012 0.140/0.28

(+1,y-w) 0.011 0.151/0.30

(+1,c-w) 0.011 0.161/0.32

(+2,y-a) 0.010 0.172/0.34

(+2,x) 0.010 0.182/0.36

(+2,x-a) 0.010 0.192/0.38

(+3,x-w) 0.010 0.202/0.40

(+2,b-a) 0.010 0.212/0.42

(+2,y-w) 0.010 0.222/0.44

(+3,y-w2) 0.009 0.232/0.46

(+1,y-a) 0.009 0.240/0.48

(+2,x-w2) 0.002 0.505/1.0

Table 6.2: Ion-type ranking for GPM data according to spectrum charge type. The table is similar
to that for ISB2 data. However we observe that in general the un-normalized cumulative completeness
and comp+values are lower for same rank ion-types in GPM compared to ISB2. This indicates that there
are not as strong an ion-type preference in GPM compared to ISB2.
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6.2.2 Determining Parameters For Pruning and Bridging Step in MCPS

After building G(Sαβ ), we need to determine the ion-type sets 4x and tag length l used for the

pruning and bridging step in MCPS. To this end, we compute for different 4x and tag length l,

the resulting UB on the sensitivity of the best possible candidate peptide that can be obtained

from the resultant Gb(Sαβ ). We call this resultant sensitivity the UB-Sensitivity measure. It is

defined as follows

UB-Sensitivity. Let ESb be the extended spectrum induced by Gb(Sαβ ). That is, it contains

the peaks p of the extended spectrum Sαα wheremass(p) = mass(v) for some vertex v in Gb(Sαβ ).

Let F be the entire PRM ladder for the canonical peptide ρ. Let Fm = |F ∩ ESb| where there

is a match between a mass in F and ESb if they do not differ by more than εDa. We consisting

include only the mass from F into the intersection set so that there is no double counting. We

then replace the the masses in Fm by the position of the fragmentation point they represent

and sort them in ascending order. Next we perform a linear scan to count off the consecutive

fragmentation points. The resultant count m represent the number of matching amino acids in

ρ.

UB_Sensitivity = m

|ρ|
(6.1)

In our graph, the x-axis shows the normalized cumulative completeness value of using dif-

ferent 4x based on increasing rank as given in Tables 6.2 and 6.1. We run the experiments for

5 sets of 4x for each charge category, with increasing cumulative completeness ∂. Each plot

in the graph represents different tag length l used. l = 0 is the case where we do not restrict

the minimum length of the mono-chromatic tags of each ion-type in 4x. In our experiments

we let the tolerance of matching ε = 0.5Da. This will result in UB-Sensitivity values closer to

the actual sensitivity of the best possible candidate peptide, since consecutive matching frag-

mentation points are more likely to be linked with an edge in the graph. This is not the case

when ε used is big. We will refer to the normalized cumulative completeness as simply

completeness in our discussion for the rest of this chapter.
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Tuning for ISB2 Data. Figure 6.1 shows the result for For ISB2 data. For +1 and +2 data,

we observe that after the big improvement in UB-Sensitivity going from 4x with completeness

= 0.4 to that with completeness = 0.6, though the improvement is not as big in the case of

+2 data. A bigger 4x does not improve the UB-Sensitivity by much (ave. increase of 0.12 in

UB-Sensitivity going from completeness= 0.4 to 0.85 for +1 data). +3 data is different from

+2 and +1 data in this respect, in that the plots for the different l values are relatively flat for

completeness values of 0.3 to 0.5. There is then a sudden huge increase in the UB-Sensitivity

going from completeness = 0.5 to 0.6 and from 0.6 to 0.7. On average there is a 0.15 increase

in UB-Sensitivity going from completeness= 0.5 to 0.7. If we look at the Table 6.1, this could

be due to the number of extra ion-types required to go from completeness= 0.5 to 0.6 (3 extra

ion-types) and from 0.6 to 0.7 (5 extra ion-types). Even so, we can conclude that the extra

ion-types at the higher completeness values do help in recovering more amino acids.

From our observation we conclude for +1 and +2 data that the ion-types in 4x with com-

pleteness of 0.6 have the largest impact in sequencing. From Table 6.1, these are the top 1-4

ranked ion-types. The rest of the ion-types might not have much impact in recovering more

amino acids. However they are still possibly useful as supporting ion-types.

Next we see for +1 data that there is very little drop in the UB-Sensitivity value going from

l = 0 to l = 5 (on average a drop of ~0.03 in UB-Sensitivity). As opposed to +1 data, for +2

and +3 data, we observe a drop which becomes wider at higher completeness values (for +2

data at completeness = 0.85, there is a drop of 0.1 in UB-Sensitivity comparing plot for l = 0

to that for l = 5).

From this observation we conclude that for +1 data, we will find mono-chromatic tags of

such ion-types with length ≥ 5 most of the time. For +2 and +3 data, we conclude that the

extra ion-types at the higher completeness values (> 0.6) do not form as many mono-chromatic

tags of length ≥ 5 as the better ranked ion-types. This indicates that the extra ion-types

can be used in the bridging step rather than the pruning step, since they do not form long

mono-chromatic tags.

Based on our analysis, for the MCPS algorithm, we have set 4x to be the ion-types that
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gives a completeness of 0.6. We have also set l = 5 for +1 data and l = 3 for +2 and +3 data.

Tuning for GPM Data. For the GPM data, Figure 6.3 shows the UB-Sensitivity plots for

+1 to +5 data. In general comparing the UB-Sensitivity of ISB2 and GPM data, we see that

the values for GPM are low even for l = 0 and at the highest completeness value (max. of

UB-Sensitivity≈ 0.5).

For +1 and +2 data, the UB-Sensitivity does not increase much after completeness = 0.7.

This is especially so for +2 data where UB-Sensitivity are almost flat for larger l values. This

indicates we practically get no mono-chromatic tags of length> 1, since considering only such

tags does not increase the UB-Sensitivity at all even as we use more ion-types (going up the

completeness values)There is a drop in UB-Sensitivity of +1 and +2 data going from l = 1 to 5

even at low completeness values and this is especially apparent for +2 data (a drop of 50%-70%

in UB-Sensitivity between l = 0 and l = 5).

For +3 data, the UB-Sensitivity plateaus at completeness of 0.2 for l ≥ 2, while it continues

rising at higher completeness values for l = 0 and 1. Both + 4 and +5 data have the same

pattern, but with much lower UB-Sensitivity values in general. The UB-Sensitivity caps at ~0.3

for charge 3 and above data.

In general we conclude that for all GPM data, ion-types regardless of rank do not have

a strong pattern in generating mono-chromatic tags of l > 1 or 2. Moreover, instead of the

problem of noise, the major obstacle for sequencing multi-charge (≥ 3) GPM data is the fact

that a lot of information is missing in the experimental spectrum for peaks corresponding to

ion-types in 4, and we are unable even in the best case to get very good results. This is also

confirmed by the low completeness of 0.24 for the top 15 ion-type for charge 3 GPM in Table

6.2 as stated in Section 6.2.1. In order to recover most of the peptide, most of the ion-types

and not just the top 15 will have to be considered.

Based on our analysis, for the MCPS algorithm, we do not restrict 4x but instead use the

whole of 4 and skip both the pruning and bridging step when dealing with GPM data. Since

the number of peaks in the spectrum for GPM data is small to begin with (< 50 peaks), the

spectrum graph generated is of a reasonable size even though pruning is not done.
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Analysis of ISB Data. Even though we did not use ISB data for our parameter tuning, we

show the UB-Sensitivity plots as a comparison with ISB2 data. We see from the Figure 6.2 that

they have the same pattern as that for ISB2 data. Of note is that for charge 1 data, the plots

for l = 1 to 4 are exactly the same, and there is a drop in UB-Sensitivity only when going to

l = 5.

Conclusions for Pruning and Bridging Step. For ISB2 the the better ranked ion-types

(rank 1 to 4) are the ones which help in recovering the largest amount of the canonical peptide

and are usually involved in mono-chromatic tags of a significant length (≥ 3).

For GPM data, we conclude that there are not many mono-chromatic tags of length> 1.

Moreover, instead of the problem of noise, the major obstacle for sequencing multi-charge (≥ 3)

GPM data is the fact that a lot of information is missing in the experimental spectrum for

peaks corresponding to ion-types in 4, and we are unable even in the best case to get very good

results.

For ISB/ISB2 data, we set 4x to be the ion-types that gives a completeness of 0.6. We have

also set l = 5 for +1 data and l = 3 for +2 and +3 data.

For GPM data, we do not restrict 4x but instead use the whole of 4 and skip both the

pruning and bridging step.

6.2.2.1 Comparing Size of Extended Spectrum Graph G(Sαβ ) and Final Spectrum

Graph Gb(Sαβ )

After the bridging step, we build the final spectrum graph Gb(Sαβ ). We can compare the

reduction in size of Gb(Sαβ ) after step 4 to the extended spectrum graph G(Sαβ ). We only

tabulate the results for ISB and ISB2 data since GPM skips the pruning and bridging step and

builds G(Sαβ ) instead of Gb(Sαβ ). In the tables we tabulate

1. # nodes - average number of nodes

2. # edges - average number of edges

3. connectivity - Average number of out-going edges per node
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Figure 6.1: UB-Sensitivity for ISB2 Data. Graphs for +1,+2 and +3 data is shown. For each graph,
plots are made for l = 0, 1, 2, 3, 4, 5, 6. The x-axis shows the normalized cumulative completeness value
of using different 4x based on increasing rank as given in Tables 6.2 and 6.1. The y-axis shows the
corresponding UB-Sensitivity value for the given l value and completeness value. For +1 & +2 data,
greatest increase in UB-Sensitivity is going from completeness of 0.4 to 0.6. For +3 data, plots for all
l values are relatively flat for completeness = 0.3 to 0.5, with a sudden huge increase in UB-Sensitivity
for completeness = 0.5 to 0.7. For +1 data there is very little drop in UB-Sensitivity going from l = 0
to 5 at each of the completeness values plotted, while for +2 and +3, the drop in UB-Sensitivity going
from l = 0 to 5 becomes more apparent at higher completeness values.
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Figure 6.2: UB-Sensitivity for ISB Data. For +1 data, plots for l = 0 to 4 are exactly the same with
a drop in UB-Sensitivity only for l = 5. +2 and +3 data have the same pattern as ISB2 +2 and +3
data.
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Figure 6.3: UB-Sensitivity for GPM Data. For +1 data, UB-Sensitivity does not increase much after
completeness = 0.7. (average increase in UB-Sensitivity of 0.035 from completeness = 0.7 to completeness
= 0.85). There is also a noticeable drop in UB-Sensitivity going from l = 0 to l = 5, especially at the
higher completeness values. For +2 data, the plots are relatively flat for l = 2 to 5. As we go from l = 2
to 5 there is a step decrease in the UB-Sensitivity value of ~0.05. For +3,+4 and +5 data, UB-Sensitivity
value plateau at completeness = 0.2 for l > 2 (capped at UB-Sensitivity = 0.3 for +3 data, that is 30%
of the peptide can be sequenced at most).
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4. UB-Sensitivity

of G(Sαβ ) and Gb(Sαβ ), and show in a separate row, the % reduction in each of the measures

listed above when comparing Gb(Sαβ ) to G(Sαβ ).

ISB data. Table 6.3 shows the results for ISB data. We see a huge reduction of > 60% for

+1,+2 and +3 data in the size of the graph (# of nodes, # of edges, connectivity) when going

from G(Sαβ ) to Gb(Sαβ ). There is however only a small drop in UB-Sensitivity of (7%~18%).

More specifically, we see that there is a 66%-76% reduction in the average number of nodes

in the extended spectrum graph Gb(Sαβ ) when compared to G(Sαβ ). This reduction increases as

we go from +1 to +3 data. For the edges there is a reduction on average of 87%-92% when going

from G(Sαβ ) to Gb(Sαβ ). This reduces the number of edges from the thousands to the hundreds.

For the connectivity, this value goes down from around 11-12 edges per node to about 4 edges

per node.

However we see that the drop in the UB-Sensitivity due to the removal of nodes and edges

in Gb(Sαβ ) is capped at 18%, with the +1 data only suffering a loss of 7%. This allows for

potentially more than 75% of the canonical peptide to be recovered with a good sequencing

algorithm, except for the +2 data (65%) where the original UB-Sensitivity is not too high to

begin with (79%).

Note that the huge drop in the connectivity (> 60%) greatly reduces the number of possible

paths found in Gb(Sαβ ), as there are O(hc) where h is the average number of nodes in a path,

and c the average connectivity. While reducing the nodes and edges affect h, reducing the

connectivity affects c which makes a bigger impact to the reduction in the number of possible

paths.

ISB2 data. From Table 6.4, we see the same pattern as for ISB data, where there is a huge

reduction in the average number of nodes, edges and the connectivity. Even though the UB-

Sensitivity value drops by 23% for +3 data, the absolute value still allows potentially 70% of

the peptide to be recovered with a good sequencing algorithm.

Conclusions on Comparing Size of G(Sαβ ) and Gb(Sαβ ). We can conclude that Gb(Sαβ ) is a

good spectrum graph for our MCPS algorithm to work with, as there is (i) a great reduction in
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the size of the problem and the amount of noise to deal with, and (ii) there is enough information

(good UB-Sensitivity) for us to recover a good portion of the peptide. With a good sequencing

algorithm, 65% or more of the peptide can be sequenced. If the denovo sequencing results were

used as tags for database search, 65% matching amino acids is more than enough to get a unique

hit in the database (usually a tag of 3 or more matching amino acids will be sufficient to get a

unique hit 80% of the time [22]).

6.2.3 Sequencing Using Different Suffix-k

After setting the parameters for the pruning and bridging step. We now determine the param-

eters for the DP algorithm used in generating the candidate peptide in step 7 of MCPS. The

parameter to be set in this step is k, the length of the suffix to be considered in MCScore. We

have tried k = 0, 1, 2, 3. Bigger values of k did not finish in a reasonable amount of time and

were not considered. Note that the case of k = 0 reduces MCScore to SScore (with the added

constraint of not considering supporting edges) and the problem to finding the longest path

in a DAG. For λ the multiplier, we have determined empirically that λ(1) = 1, λ(2) = 2 and

λ(3) = 4 gives the best result. We tabulated the sensitivity values of the top result generated

by MCPS. The k value that gave the best sensitivity overall is selected for each dataset, and is

indicated by a * next to it in the table. We also bold and underlined the best sensitivity result

for each of the charge categories.

Tuning for GPM Data. From Table 6.5, we see that k = 1 gives the best result overall. Even

though k = 3 gave a very slight improvement for +3 data over k = 2, there is a corresponding

greater drop in sensitivity for charge 1 and 2 data. This is consistent with our UB-Sensitivity

plot in Section 6.2.2, where we note that there are rarely any mono-chromatic tag lengths of

> 1 for any of the considered ion-types. In general however we note that the sensitivity is low

for GPM data.

Tuning for ISB2 Data. We see from Table 6.6 that k = 3 gives the best result. There is a

big improvement going from k = 0 to k = 1 but only a minor improvement going from k = 1 to

k = 3.
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Spec. Graph # nodes # edges Connectivity UB-Sensitivity
G(Sαβ ) 452 4982 10.9 0.99

Charge 1 Gb(Sαβ ) 153 636 4.1 0.92
% reduction 66% 87% 62% 7%

G(Sαβ ) 673 7287 10.8 0.79
Charge 2 Gb(Sαβ ) 197 768 3.9 0.65

% reduction 71% 89% 64% 18%
G(Sαβ ) 867 10157 11.7 0.93

Charge 3 Gb(Sαβ ) 209 824 3.9 0.76
% reduction 76% 92% 67% 18%

Table 6.3: Comparing Gb(Sαβ ) and G(Sαβ ) for ISB Data. The table shows the #nodes, # edges,
connectivitiy and Ub-Sensitivity for G(Sαβ ) and Gb(Sαβ ) generated for +1,+2 and +3 data. In general
Gb(Sαβ ) shows> 60% reduction from the size of G(Sαβ ) (# edge, # nodes and connectivity), but with
only a small drop in UB-Sensitivity of (7%~18%). UB-Sensitivity of +2 data drops to 0.65, but was not
big to begin with (0.79).

Spec. Graph # nodes # edges Connectivity UB-Sensitivity
G(Sαβ ) 585 5211 8.9 0.93

Charge 1 Gb(Sαβ ) 192 648 3.4 0.78
% reduction 67% 88% 62% 16%

G(Sαβ ) 845 10003 11.9 0.88
Charge 2 Gb(Sαβ ) 248 1028 4.1 0.74

% reduction 71% 90% 66% 16%
G(Sαβ ) 1215 14812 12.2 0.90

Charge 3 Gb(Sαβ ) 298 1206 4.0 0.69
% reduction 75% 92% 67% 23%

Table 6.4: Comparing Gb(Sαβ ) and G(Sαβ ) for ISB2 Data. we see the same pattern in reduction of
the graph size going from G(Sαβ ) to Gb(Sαβ ). For +3 data, even though UB-Sensitivity drops by 23%,
the absolute value is maintained at 0.69, that is potentially we can still recover ~70% of the peptide on
average.
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Analysis of ISB Data. Even though we did not use ISB data for our parameter tuning, we

ran the experiment for ISB as a comparison with ISB2 data the From Table 6.7, yet again there

is a clear improvement going from k = 0 to k = 1 with minor improvement after that. k = 2

and k = 3 gives the same result for +1 data, with k = 2 slightly better for +3 and k = 3 slightly

better for +2.

Conclusions on using different suffix-k. In general, we note that increasing k beyond 1

does not result in much improvement (there is slight improvement for ISB and ISB2 data). For

the GPM data, this is due to the fact that the information present lack peaks which map to

long mono-chromatic tags of any ion-type.

For the ISB and ISB2 data, the reason could be the exact opposite. That is, the abundant

and high ranking ion-types dominate the spectrum graph, and even fictitious paths contains

long mono-chromatic tags. Trying to differentiate between real and false candidate peptides

then becomes more than just considering the length of mono-chromatic tags.

Based on our analysis, we have set k = 1 for GPM data, and k = 3 for ISB and ISB2 data

in order to maximize peptide recovery.

6.2.4 The Effect of Post-Processing on MCPS Results

After sequencing, we apply the last step the post-processing step to the result. We compare the

results of MCPS before performing post-processing and the results after post-processing. We

first compare the sensitivity and specificity results of the top ranked result, termed Top-1. The

change in sensitivity and specificity values after post-processing is indicated in brackets () after

their values in the tables.

We then compare among the top 100 results, termed Top-100, the average ranking of the

1st candidate peptide that gives a correctly predicted tag of length ≥ 3. We refer to such a

candidate peptide as a pep-3 candidate, and these are good quality candidates. The reason we

choose pep-3 instead of the best candidate out of the Top-100 is (i) even though the ranking

of the best candidate peptide might be high, the quality of the best prediction could be poor.

A correctly predicted tag of length ≥ 3 is good enough for use in database search to generate
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GPM Sensitivity
Charge 1 Charge 2 Charge 3

k = 0 0.087 0.092 0.035
*k = 1 0.114 0.156 0.057
k = 2 0.108 0.154 0.057
k = 3 0.096 0.145 0.058

Table 6.5: GPM Sensitivity Results For Different k Values. k=1 gives the best result. There is a
jump in the sensitivity results going from k = 0 to k = 1, but there is not much change going from k = 1
to k = 2. There is a drop in sensitivity for charge 1 and 2 for k = 3 compared to k = 1 and 2.

ISB2 Sensitivity
Charge 1 Charge 2 Charge 3

k = 0 0.186 0.157 0.075
k = 1 0.259 0.296 0.136
k = 2 0.254 0.305 0.143
*k = 3 0.267 0.310 0.145

Table 6.6: ISB2 Sensitivity Results For Different k Values. Big improvement using k = 1 compared
to k = 0. there is consistent but very small improvement going from k = 1 to k = 3.

ISB Sensitivity
Charge 1 Charge 2 Charge 3

k = 0 0.227 0.110 0.112
k = 1 0.433 0.237 0.206
k = 2 0.459 0.236 0.216
∗k = 3 0.459 0.241 0.208

Table 6.7: ISB Sensitivity Results For Different k Values. Pattern of improvement is not as clear
as ISB2 data after k = 1.
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unique hits, and thus ensures a certain quality to the candidate peptides thus ranked. (ii) Even

when there could be better candidate peptides that are lower in rank, these can be ignored if

we can find a good enough candidate higher in the rank.

If there are no candidate peptides with a correct tag of length ≥ 3, the ranking is set to 101

for that case. A higher average ranking will indicate that post-processing helped to improve the

sequencing result in ranking better candidates higher even though the sensitivity and specificity

might remain the same when considering only the top ranked result.

De novo sequencing using MCPS in the rest of the thesis after this section will henceforth

refer to that after post-processing.

6.2.4.1 Sensitivity and Specificity Results

We compare the results for Sensitivity and Specificity before and after post-processing. We

label this as Sensitivity/Specificity (before post-processing) and Sensitivity+/Specificity+

(after post-processing) respectively. We compare using Top-1, as well as the best candidate in

Top-100.

ISB Data. For the Top-1 result, we see from Table 6.8 that sensitivity for +1 data dropped

by quite a bit (0.083). This would seem strange since the sensitivity for ISB2 +1 data actually

went up (Table 6.9). When we look at the Top-100 results, there is actually a slight increase in

the sensitivity value of the best candidate peptide after post-processing by 0.007. This indicates

that post-processing was able to generate new candidate peptides which gave a better match

with the canonical peptide, but the scoring was not sensitive enough to make them the top

ranking peptide. On the other hand the top ranking candidate peptide before post-processing

suffered in their score after post-processing and was replaced by a worse candidate, resulting in

the drop in sensitivity. However, since there are only 16 +1 ISB data, it is hard to conclude if

this is indeed the case. The specificity values are similar to sensitivity values before and after

post-processing.

The sensitivity of charge 2 data after post-processing remains the same, while that for charge

3 data shows very slight improvement both for Top-1 and Top-100 results. Specificity values
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remains about the same after post-processing. Yet again we see that specificity values are

similar to sensitivity values for charge 2 and 3 data.

ISB2 Data. Table 6.9 shows the sensitivity and specificity results for ISB2 data before and

after post-processing. There is no change sequencing results for charge 2 data for both Top-1

and Top-100 results. For charge 1 and 3 data, there are improvements in both the sensitivity

and specificity for Top-1 results (> 0.025 for charge 1 and > 0.01 for charge 3). Both charge

1 and 3 data shows improvement in sensitivity and specificity even for Top-100 results. This

indicates clearly that mono-chromatic sub-paths of different ion-types representing the same

peptide fragment can sometimes compete with each other, affecting the sequencing result ad-

versely. Boosting up the scores of such mono-chromatic edges at the post-processing step helps

in improving the results, while not unnecessarily improving the scores of spurious paths if this

were to be done before the 1st round of sequencing.

GPM Data. Table 6.10 shows the sensitivity and specificity of GPM data before and after

post-processing. In general, sensitivity and specificity values are low for GPM data both before

and after post-processing (< 0.2 for sensitivity and specificity).

The sensitivity results after post-processing shows a huge improvement relative to the sen-

sitivity before post-processing for charge 1 and 2 data (improvement in Top-1 result of 0.029

for both). There is also noticeable improvement in sensitivity at the Top-100 results for charge

1 and 2 (0.026 and 0.013 respectively). There is no noticeable change in sensitivity value for

both Top-1 and Top-100 results for charge 3,4,5 data.

The specificity values for charge 1,2 and 3 data follows the same pattern as their sensitivity

values, and are in fact similar in value to their sensitivity values. An interesting pattern to note

for the specificity value of charge 4 and 5 data is that the Top-100 specificity values are 2-4

times bigger than the Top-100 sensitivity values. This indicates that the candidate sequences

generated are very short in length (in terms of the amino acid content) compared to the canonical

peptides. Values in Table 7.3 for charge 4 and 5 data corroborates this claim. This backups the

claim on GPM data in 6.2.2, that generally multi-charge (≥ 3) GPM data is missing a lot of

information in the experimental spectrum for peaks corresponding to ion-types in our ion-type
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set 4 used.

6.2.4.2 Average Ranking of First Matching Candidate Peptide

We label the ranking of pep-3 candidates before post-processing Ranking and that after

Ranking+.

ISB and ISB2 Data. Table 6.11 and 6.12 shows the ranking before and after post-processing

for ISB and ISB2 data respectively. Overall we note that the rank of pep-3 is closer to the top

1 result than the top 100 result before and after post-processing. Next we see that there is

noticeable improvement in the ranking of pep-3 for +1 and +3 data relative to their original

ranking. Both ISB and ISB2 +3 data improved their pep-3 ranking by 5 places. Thus even

though there was not much change in sensitivity and specificity for ISB +3 data (refer to Section

6.2.4.1), the ability to get pep-3 candidates have improved. This signifies that post-processing

has improved the ranking of good quality candidate peptides of multi-charge data in general.

The improvement in the pep-3 candidate ranking for ISB +1 data is contrary to the drop in

ranking of the best candidate due to the drop in the average sensitivity (refer to previous sec-

tion). This indicates that post-processing helps improve the ranking of good quality candidates

in general. Ranking of +2 data for both ISB and ISB2 does not improve much, but did not go

down either.

The above observations show that mono-chromatic sub-paths of different ion-types repre-

senting the same peptide fragment does compete with each other, affecting the sequencing

result adversely. Boosting up the scores of such mono-chromatic edges at the post-processing

step helps in improving the results (especially for pep-3 candidates), while not improving the

scores of spurious paths if this were to be done before the 1st round of sequencing.

GPM Data. Overall we see from Table 6.13 that the rankings of pep-3 candidates for GPM

data after post-processing does not improve noticeably relative to their original rankings, which

are quite bad (most > 60 except for +2 data). However ranking did not go down either. The bad

average ranking is due to the fact that there are actually very few pep-3 candidates (correctly

predicted tag length ≥ 3) generated by MCPS. This is corroborated by results in Section 7.2.2.
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ISB Data Sensitivity Sensitivity+

Charge 1 (Top-1) 0.459 0.376 (-0.083 )
Charge 1 (Top-100) 0.790 0.797 (+0.007 )
Charge 2 (Top-1) 0.241 0.241 (0.0 )
Charge2 (Top-100) 0.396 0.394 (-0.002 )
Charge 3 (Top-1) 0.208 0.216 (+0.008 )

Charge 3 (Top-100) 0.406 0.410 (+0.004 )

Specificity Specificity+

0.447 0.361 (-0.086 )
0.788 0.804 (+0.016 )
0.262 0.261 (-0.001 )
0.468 0.466 (-0.002 )
0.225 0.231 (+0.006 )
0.462 0.463 (+0.001 )

Table 6.8: Comparing Before and After Post-Processing for ISB Result. +1 sensitivity drop by
quite a bit (0.083). Sensitivity and Specificity for +2 and +3 data remains about the same.

ISB2 Data Sensitivity Sensitivity+

Charge 1 (Top-1) 0.246 0.273 (+0.027 )
Charge 1 (Top-100) 0.447 0.477 (+0.03 )
Charge 2 (Top-1) 0.310 0.312 (+0.002 )
Charge2 (Top-100) 0.469 0.466 (-0.003 )
Charge 3 (Top-1) 0.145 0.157 (+0.012 )

Charge 3 (Top-100) 0.249 0.270 (+0.021 )

Specificity Specificity+

0.225 0.253 (+0.028 )
0.434 0.468 (+0.034 )
0.337 0.337 (0.0 )
0.536 0.528 (-0.008 )
0.159 0.170 (+0.011 )
0.285 0.305 (+0.020 )

Table 6.9: Comparing Before and After Post-Processing for Top-1 ISB2 Result. Clear improve-
ment in the +1 and +3 sequencing results (improvement of Top-1 sensitivity result of 0.027 and 0.012
respectively and Top-100 sensitivity result of 0.03 and 0.021). No change to +2 sequencing results.

GPM Data Sensitivity Sensitivity+

Charge 1 (Top-1) 0.094 0.123 (+0.029 )
Charge 1 (Top-100) 0.243 0.269 (+0.026 )
Charge 2 (Top-1) 0.151 0.180 (+0.029 )

Charge 2 (Top-100) 0.268 0.281 (+0.013 )
Charge 3 (Top-1) 0.049 0.045 (-0.004 )

Charge 3 (Top-100) 0.107 0.107 (0.0 )
Charge 4 (Top-1) 0.023 0.027 (+0.004 )

Charge 4 (Top-100) 0.057 0.057 (0.0 )
Charge 5 (Top-1) 0.004 0.005 (+0.001 )

Charge 5 (Top-100) 0.034 0.034 (0.0 )

Specificity Specificity+

0.102 0.130 (+0.028 )
0.272 0.299 (+0.027 )
0.166 0.196 (+0.030 )
0.309 0.322 (+0.013 )
0.061 0.053 (-0.008 )
0.160 0.163 (-0.003 )
0.037 0.052 (+0.015 )
0.130 0.135 (+0.005 )
0.004 0.013 (+0.009 )
0.138 0.140 (+0.002 )

Table 6.10: Comparing Before and After Post-Processing for Top-1 GPM Result. Big improve-
ment to the Top-1 sensitivity values for +1 and +2 data (improvement of 0.029 for both). Slight
improvement in sensitivity for +4 and +5 data, but the actual values are bad (recovers 2.7% of +4 data
and virtually none of the +5 data for Top-1 results). Specificity results are around 4 times better than
sensitivity results for +4 and +5 data indicating that most of the candidate peptides are very short in
amino acid length compared to the canonical peptides.
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ISB Ranking Ranking+

Charge 1 17 14
Charge 2 34 33
Charge 3 25 20

Table 6.11: Ranking of Pep-3 Candidate for ISB Data. Rank of the pep-3 candidate is closer to the
Top-1 rather than the Top-100 result. Noticeable drop in ranking of +1 and +3 data after post-process.

ISB2 Ranking Ranking+

Charge 1 33 29
Charge 2 19 19
Charge 3 41 36

Table 6.12: Ranking of Pep-3 Candidate for ISB2 Data. Similar to ISB data, rank of the pep-3
candidate is closer to the Top-1 rather than the Top-100 result. There are also improvements to ranking
after post-processing for +1 and +3 data.

GPM Ranking Ranking+

Charge 1 55 53
Charge 2 49 48
Charge 3 72 72
Charge 4 72 70
Charge 5 61 60

Table 6.13: Ranking of Pep-3 Candidate for GPM Data. Very slight to no improvement in ranking
for all GPM data. In general ranking of pep-3 candidate is bad being closer to Top-100 then Top-1.
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6.2.4.3 Conclusions on sequencing results before and after post-processing

Comparing MCPS sequencing results before and after post-processing, we conclude that post-

processing did not degrade the ranking of good quality candidate peptides for all datasets in

general.

Post-processing improved the ranking of good quality candidates (pep-3) for multi-charge

data (+3) ISB and ISB2 data, even though the sensitivity of the best candidate did not improve

much. Ranking of good quality candidates improved noticeably for +1 ISB data even though

sensitivity of best candidate dropped by a lot.

Even after post-processing, the sensitivity and ranking of good quality candidates for GPM

data is bad. Most of the good candidate peptides do not have correctly predicted tags of length

≥ 3.

6.2.5 Conclusion and Parameter Settings Used

From our experiments, we have shown that GPM and ISB/ISB2 data have vastly different

characteristics which prompts us to use two sets of parameter settings for them.

We have used the following values for the different parameters for ISB/ISB2 and GPM data.

ISB/ISB2 data. For +1 data, 4x is set to be the ion-types that gives a completeness of 0.6,

l = 5 and k = 3.

For +2 and +3 data, 4x is set to be the ion-types that gives a completeness of 0.6, l = 3

and k = 3.

GPM data. For GPM data, we do not restrict 4x, but instead uses the whole of 4 and skip

both the pruning and bridging step. We use k = 1 for the lookback length of MCScore.
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Chapter 7

Comparing MCPS with Other

Algorithms

In this chapter we compare and analyze the results of MCPS against that of Lutefisk, PEAKS

and PepNovo based on various evaluation criteria set out in Section 7.1. Next we measure how

much multi-charge ions, namely +3 ions affect the results of MCPS. The datasets we have used

for sequencing are the ISB, ISB2 and GPM test sets defined in Chapter 6. Pevtsov et al. [50]

have also performed a comparison of several de novo sequencing algorithms based on QSTAR

and LCQ/ESI data, and is a good reference for further comparison among de novo sequencing

algorithms.

7.1 Evaluation Criteria

To evaluate the performance of MCPS, we need metrics that measures how much of the canonical

peptide ρ is recovered by a given candidate peptide P , and also metrics that measure the

“goodness” of the recovered portions. The following metrics are used to evaluate our algorithm.

Sensitivity. Sensitivity measures how much of the peptide ρ is matched in the candidate

peptide P . It indicates the quality of the candidate sequence with respect to the canonical

peptide sequence and a high sensitivity means that the algorithm recovers a large portion of ρ.

It is defined as
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sensitiviy = #correct
|ρ|

where #correct is the “number of correctly sequenced amino acids”. An amino acid is

correctly sequenced only if it does not differ from its position in the canonical peptide ρ by more

than ε. In our experiments, we have used ε = 2.5Da, since the precursor parent mass given in

the mass spectrum often differs by up to this amount from the canonical peptide mass (refer to

[21]).

Specificity. Specificity measures how much “noise” is present in the candidate peptide P .

Even though P can have a high sensitivity, it could also have predicted a lot of mismatching

amino acids too. This specificity measures the accuracy of our algorithm. It is defined as

specificity = #correct
|P |

(7.1)

Predictions with Correct Tags of Length ≥ x. Even though Sensitivity measures the

amount of recoverable peptide, it does not measure the quality of the recovered portions. For

example the canonical peptide AAGGDDFFQTR can have the amino acids in bold and under-

lined matched in a candidate peptide. This amount to about ~45% recovery, and is considered

quite good. However the recovered portions are very fragmented and do not give us a good idea

of the actual canonical peptide. AAGGDDFFQTR even though recovering less of the peptide

(4 amino acid compared to 5) is better, because the matching portion is a long tag which give

a good idea of ρ, and when used as a tag in database search (hybrid approach) can result in a

unique hit if the canonical peptide is found in the database. In fact Frank et al. [22] showed

that peptide tags which are correctly predicted with a tag of ≥ 3 amino acids result in an 80%

hit rate when used in database search. This quality of matching is captured by this metric,

which computes the ratio of instances, where candidate peptides matches the canonical peptide

with a tag of at least length x. The higher the ratio for larger x, the better the quality of the

predictions.
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7.2 Comparing Results of MCPS with other Algorithms

Comparing MCPS Top-1 results against Lutefisk, PEAKS and PepNovo, we find that MCPS

performs well for multi-charge spectra relative to the others. It does the best for +3 ISB data

and second best for ISB2 data (PepNovo is best). It does the best for +4 GPM data (on a

par with Lutefisk) and second best for +3 and +5 GPM data (Lutefisk is best). However even

though MCPS Top-1 does well relative to the others for GPM data, the quality of predictions

are very low, with very few peptides having correctly predicted tags of length ≥ 3.

MCPS can generate peptides with correctly predicted tags of length≥ 3 more than 50% of

the time for +3 ISB data. Moreover, it generates the most number of unique predictions (not

predicted by the other algorithms) with correct tags of length ≥ 3 other than PepNovo. This

shows that MCPS is good for generating peptide tags for database search of +3 ESI/low energy

CID-based spectra either on its own or together with PepNovo.

MCPS Top-100 results are better than the other algorithms for +2 and +3 ISB and ISB2

data. It is also on a par with PepNovo for +1 ISB2 data. It performs the best for all GPM

data, but quality of predictions for +4 and +5 data are still very low (< 10% peptide can be

recovered). This indicates that further enchancements to MCPS algorithm need only look at a

narrow band of solutions, namely the top 100.

7.2.1 Sensitivity and Specificity Results

We plot the sensitivity and specificity of MCPS Top-1, MCPS Top-100, Lutefisk, PEAKS and

PepNovo for GPM, ISB and ISB2 data based on the different charge categories.

GPM Data. Sequencing results for GPM data is given in Figure 7.1. When comparing the

MCPS Top-1 results, we observe that MCPS performs better for all data compared to PepNovo

and PEAKS and is on a par with Lutefisk for +4 data (Sensitivity of 0.026 vs 0.027). Lutefisk

performs the best on the whole.

We also observe in general that the sensitivity of the algorithms are not high on GPM data

and in fact drops as the spectrum charge goes from +3 to +5, with +2 sequences having the

best results. Sensitivity for +4 and +5 spectrum is on average 0.03-0.05 (recover 3-5% of the
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peptide).

We see however that when considering the best candidate out of the Top-100 candidates

(MCPS Top-100), there is marked improvement in MCPS over the sequencing results of the

other algorithms. This suggest that MCPS need only consider a narrow band of candidates in

order to push up the rank of the best candidate during further post-processing of the results.

The specificity results show the same pattern as the sensitivity results and have about the

same value for all algorithms except MCPS Top-100, where there is a huge difference between

the specificity and sensitivity values (specificity values are about 2-4 times that of sensitivity

values). This has been analyzed in Sections 6.2.2 and 6.2.4.1, and explains the general poor

sensitivity values for all the algorithms for GPM data.

ISB2 Data. For +3 data, MCPS Top-1 is slightly better than Lutefisk and PEAKS (by

0.01~0.02), with PepNovo better than MCPS by ~0.035 (3.5% more peptide recovered) as

shown in Figure 7.2. The sequencing result of MCPS Top-1 on ISB2 data is not as strong as

PEAKS or PepNovo especially for +2 data (difference of 0.09~0.11). For +1 data, MCPS

Top-1 is better than Lutefisk and on a par with PEAKS (0.28 for PEAKS and 0.27 for MCPS

Top-1), with PepNovo having the best result.

As with GPM data, +2 ISB2 data shows the best sequencing results for each of the algo-

rithms (Sensitivity difference of ~0.11 between GPM +2 and +3 data, and ~0.16 between ISB2

+2 and +3 data) compared to the other charges. When we compare the UB-Sensitivity values

for +2 and +3 GPM and ISB2 data, we find that they do not differ by much (UB-Sensitivity

difference of 0.08 between GPM c+2 and +3 data, and 0.01 between ISB2 +2 and +3 data,

as obtained from results in Section 6.2.2). This indicates that in most mass spectrometers, +2

data have the strongest fragmentation patterns which can be exploited by the algorithm’s

scoring function.

Once again if we consider the MCPS Top-100 results, MCPS has a better performance than

the other algorithms for all spectra. This indicates that post-processing will only once again

have to focus on a narrow band of possible candidate peptides to improve their ranking.

Specificity results shows the same pattern and values as the sensitivity results.
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ISB Data. Sequencing results for ISB is given in Figure 7.3. For +3, MCPS Top-1 has a

higher sensitivity than all of the algorithms (0.215 compared to 0.144 for PepNovo which is the

second best). This coupled with the ISB2 charge 3 results indicates that MCPS is suitable for

sequencing higher charge data (charge 3) for ESI based data.

For +2 data, MCPS Top-1 performs on par with Lutefisk (0.23) while PepNovo has the best

sequencing results (0.36). However, MCPS Top-1 results perform badly for +1 data. This is to

be expected as the other algorithms are highly tuned for +1 and +2 ESI data.

When looking at the MCPS Top-100 results, we see that MCPS is slightly worse than the

best algorithm PepNovo for +1 data and is slightly better for +2 data (~0.03 better sensitivity

than PepNovo). An interesting pattern to note is that at Top-100, the sequencing result for +3

data is slightly better than for +2 (0.02 better) which is different from that of GPM and ISB2

data (sensitivity results are always worse for +3 data compared to +2 data). This suggest that

MCPS scoring function is able to make use of +3 spectra fragmentation patterns better than

+2 spectra patterns.

We see that specificity results again follows the same pattern as sensitivity results for all

algorithms.

Conclusion on sensitivity and specificity results. From our analysis of Sensitivity and

Specificity values of the different algorithms, we see that MCPS Top-1 does the best for +3 ISB

data and second best for +3 ISB2 data. This indicates that the MCPS algorithm is well suited

for sequencing multi-charge data. Next, we conclude that due to the many missing real peaks

in the GPM data, all algorithms perform badly, with Lutefisk being the best, followed closely

by MCPS Top-1.

In general due to the similarity of the specificity and sensitivity results for ISB and ISB2

data for all algorithms, we conclude for all tested algorithms (i) that a candidate peptide that

can recover more of the canonical peptide will also contain less noise (non-matching amino

acids) and vice versa, and (ii) both candidate and canonical peptide are about the same length.

MCPS Top-100 has the best result for all data sets and charge categories except for +1 ISB2

data. Thus we conclude that in further refinements of the MCPS algorithm, we need only focus
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on a narrow band of the top 100 candidates.

7.2.2 Predictions with Correct Tags of Length ≥ x

Here we compare the ratio of predictions with correct tags of length ≥ x for the different

algorithms. In the tables generated, bold values indicate they are the best for that x value

(MCPS (Top-100) values are not bolded even when they are the best). Since tag based database

search only requires correct tags of length ≥ 3, we italicize values for x = 3. Note that when

used for database search, an algorithm A with a higher ratio of correct predictions for x = 3

compared to another algorithm B is better than B even when B has a better ratio than A at

higher x values.

ISB Data. In Table 7.1, we see the results for +1,+2 and +3 ISB data. For +3 data, MCPS

Top-1 does the best for x = 1..4, and is slightly worse than PepNovo for x = 5..10. We see that

MCPS Top-1 generates candidates with correct tags of length ≥ 3 (x = 3) more than half the

time (0.51), and this is much better than the second best PepNovo (0.31). This indicates that

MCPS Top-1 is much better than the rest for use with database search for +3 ESI data. The

ratios are generally very low for x ≥ 8.

For +2 data, PepNovo generally gives the best result for higher x values. MCPS Top-1 does

better than Lutefisk for x = 1..4, and is slightly worse for higher x values. MCPS Top-1 has

the second highest value for x = 3 and together with PepNovo would be a good candidate for

use with database search.

For +1 data, we see that PepNovo has highest ratio for all x values, and this is especially

apparent for bigger x values (≥ 5, except for 10), while MCPS (Top-1) has the worst result.

MCPS (Top-100) gives the best result overall for +2 and +3 data except at high x values,

where PepNovo and PEAKS does better. This could be due to the fact that such long tags

have a large mass. This causes the measurement of such tags to be inaccurate due to machine

precision issues and due to mass shift caused by isotopes [76]. Gaps results which cannot be

bridged in the spectrum graph due to difference in the PRMs of nodes exceeding the tolerance.

This requires a post-processing step in bridging such gaps be developed for MCPS.
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Figure 7.1: GPM sensitivity and specificity results for MCPS vs other algorithms. We plot for
data in each charge category (+1,+2,+3,+4,+5 for GPM) the sensitivity and specificity using MCPS
Top-1, MCPS Top-100, Lutefisk, PEAKS and PepNovo. For sensitivity results, comparing MCPS Top-1
result, we see that MCPS has better peptide recovery for +2,+3,+4 data except against Lutefisk. All
algorithms do badly for +4 and +5 data. Using the best result in the Top-100 candidate peptides for
MCPS (MCPS Top100), we see that MCPS has a marked improvement over all the other algorithms.
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Figure 7.2: ISB2 sensitivity and specificity results for MCPS vs other algorithms. For sensitivity
results, MCPS Top-1 does not do as well as PEAKS or PepNovo for +2 data. However, it is better or on
a par with Lutefisk in all 3 charge categories. For +3 data, PepNovo does the best (3.5% more recovered
peptide than MCPS Top-1), with MCPS slightly better than the rest (1 ∼ 2% more recovered peptide).
MCPS Top-100 does better in all charge categories compared to the other algorithms. For specificity
results, specificity values follows that for sensitivity values for all the algorithms.
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Figure 7.3: ISB sensitivity and specificity results for MCPS vs other algorithms. For sensitivity
results, we see that MCPS Top-1 has better peptide recovery for +3 data against all other algorithms.
It has comparable sequencing with Lutefisk for +2 data, but does badly for +1data. MCPS Top-100
however has a marked improvement in +1 data (comparable with PepNovo) and +2 data (~3% better
sensitivity than PepNovo). An interesting pattern to note is that for MCPS Top-100, the sensitivity
result for +3 data is slightly better than for +2 (2% better). For specificity results, again specificity
values follow the same pattern as sensitivity values.
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ISB2 Data. Table 7.2 shows the result for ISB2 data. +3 results indicate that MCPS Top-1

is on a par with PepNovo for x = 1..3, coming in second for x = 3. PepNovo does the best for

x ≥ 4.

For +2 and +1 data, PepNovo is generally the best. MCPS Top-1 is better or on a par with

PEAKS for x = 1..4, and is second to PepNovo for x = 3.

MCPS (Top-100) does the best overall for all charge categories and indicate that improve-

ment to the MCPS algorithm should focus on the top 100 candidates and study their properties

closely.

GPM Data. Table 7.3 contains the results for GPM +1,+2,+3,+4, and +5 data. We observe

that ratios are very low for + 4 and +5 data (no correct tags of length > 5). MCPS Top-1 does

better than Lutefisk for +4 data, while Lutefisk is the best for the other charges. MCPS Top-1

is the next best for +2 and +3 data. PepNovo is slightly better than MCPS Top-1 for charge

1. In general we note that PepNovo and PEAKS does badly for charge 2 to 5 (PepNovo does

no run for charge 5 data and thus could not be compared with), with PEAKS not having any

correct tags of length > 1.

Conclusion. The quality of MCPS predictions are good for +3 ISB and ISB2 data, being the

best in this category for ISB data and second best for ISB2 data. In both cases, the ratio of

prediction of correction tags of length ≥ 3 is > 40%. This implies that MCPS results can be

useful as tags for database search of charge 3 ESI based data. All algorithms do badly for GPM

data.

7.2.3 Distribution of Predictions with Correct Tags of Length ≥ 3

There are instances where using one de novo sequencing algorithm will not get the best result,

especially for generating tags for database search. In this case, it would be good to use another

sequencing algorithm which can generate hits for the cases where the former could not. It would

thus be informative to measure the distribution of cases where predictions were correct with

tags of length ≥ 3 among the algorithms.

We perform this for +3 ISB and ISB2 cases, and compare MCPS with PepNovo, where
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ISB (+1 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.82 0.63 0.50 0.31 0.25 0.25 0.20 0.09 0.11 0.20

PEAKS 0.94 0.88 0.88 0.81 0.75 0.69 0.73 0.72 0.44 0.20
PepNovo 1.0 1.0 1.0 1.0 0.88 0.88 0.73 0.72 0.56 0.0
Lutefisk 1.0 1.0 1.0 0.69 0.31 0.25 0.27 0.36 0.22 0.0

MCPS Top-100 1.0 1.0 0.94 0.88 0.88 0.63 0.53 0.45 0.44 0.20

ISB (+2 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.78 0.63 0.48 0.35 0.22 0.14 0.09 0.06 0.05 0.02

PEAKS 0.61 0.50 0.46 0.42 0.37 0.31 0.23 0.19 0.16 0.12
PepNovo 0.65 0.60 0.55 0.50 0.43 0.38 0.29 0.21 0.15 0.11
Lutefisk 0.59 0.44 0.35 0.28 0.19 0.15 0.11 0.08 0.06 0.06

MCPS Top-100 0.96 0.87 0.75 0.62 0.47 0.36 0.26 0.16 0.11 0.05

ISB (+3 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.84 0.69 0.51 0.32 0.19 0.10 0.06 0.04 0.04 0.01

PEAKS 0.40 0.23 0.16 0.11 0.06 0.04 0.03 0.02 0.01 0.0
PepNovo 0.44 0.36 0.31 0.25 0.20 0.17 0.14 0.09 0.05 0.02
Lutefisk 0.55 0.35 0.20 0.12 0.07 0.04 0.02 0.02 0.01 0.0

MCPS Top-100 0.99 0.97 0.89 0.75 0.54 0.39 0.23 0.16 0.12 0.05

Table 7.1: % of Predictions with Correct tags of Length ≥ x for ISB Data. For +3 data, MCPS
(Top-1) does best for x = 1..4, while doing slightly worse than PepNovo for x = 5..10. MCPS (Top-1)
correct tags of length ≥ 3 more than 50% of the time (0.51), which is much better than PepNovo (31%
of the time). For +1 and +2 data, PepNovo gives the best result for all x values except x ≥ 9. MCPS
Top-1 does the worst for +1 data, while MCPS Top-100 is more or less on a par with PEAKS. For +2
data, MCPS Top-1 does better than Lutefisk for x = 1..4. MCPS Top-1 has the second highest value for
x = 3 while MCPS Top-100 gives the best result overall except for x = 8..10.
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ISB2 (+1 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.89 0.69 0.44 0.27 0.15 0.10 0.05 0.03 0.01 0.0

PEAKS 0.79 0.57 0.39 0.27 0.19 0.14 0.09 0.06 0.04 0.02
PepNovo 0.85 0.72 0.55 0.40 0.28 0.22 0.11 0.07 0.04 0.01
Lutefisk 0.75 0.49 0.32 0.21 0.15 0.11 0.08 0.06 0.05 0.02

MCPS Top-100 0.99 0.92 0.80 0.64 0.48 0.33 0.23 0.15 0.10 0.05

ISB2 (+2 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.92 0.81 0.67 0.50 0.36 0.25 0.16 0.10 0.05 0.03

PEAKS 0.85 0.76 0.65 0.56 0.47 0.40 0.31 0.26 0.20 0.15
PepNovo 0.90 0.83 0.75 0.67 0.56 0.47 0.33 0.24 0.18 0.11
Lutefisk 0.78 0.56 0.41 0.30 0.23 0.17 0.13 0.08 0.07 0.05

MCPS Top-100 0.99 0.95 0.87 0.77 0.66 0.54 0.42 0.31 0.21 0.12

ISB2 (+3 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.83 0.59 0.41 0.28 0.17 0.10 0.04 0.03 0.01 0.01

PEAKS 0.67 0.46 0.32 0.23 0.16 0.10 0.06 0.03 0.01 0.01
PepNovo 0.71 0.61 0.49 0.39 0.28 0.20 0.11 0.06 0.04 0.02
Lutefisk 0.73 0.49 0.29 0.18 0.09 0.07 0.04 0.02 0.0 0.0

MCPS Top-100 0.98 0.87 0.73 0.55 0.41 0.24 0.15 0.11 0.07 0.03

Table 7.2: % of Predictions with Correct tags of Length ≥ x for ISB2 Data. For +3,+2 and +1
data, PepNovo is the best overall. For +3 data, MCPS Top-1 is on a par with PepNovo for x = 1..3 and
is second for x = 3. For +2 data, MCPS Top-1 is on a par with PEAKS for x = 1..4, and is second for
x = 3. For +1 data, MCPS Top-1 is comparable to PEAKS for x = 1..4. MCPS Top-1 comes in second
for x = 3.
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GPM (+1 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.54 0.29 0.18 0.11 0.05 0.04 0.01 0.01 0.01 0.0

PEAKS 0.12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PepNovo 0.46 0.25 0.19 0.14 0.10 0.06 0.04 0.02 0.02 0.0
Lutefisk 0.49 0.35 0.26 0.20 0.17 0.12 0.08 0.05 0.04 0.02

MCPS Top-100 0.82 0.61 0.41 0.32 0.21 0.14 0.10 0.06 0.05 0.04

GPM (+2 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.55 0.37 0.26 0.19 0.11 0.08 0.06 0.04 0.03 0.02

PEAKS 0.07 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PepNovo 0.22 0.14 0.10 0.07 0.05 0.04 0.02 0.01 0.0 0.0
Lutefisk 0.56 0.37 0.27 0.20 0.16 0.12 0.09 0.07 0.05 0.04

MCPS Top-100 0.76 0.54 0.40 0.30 0.21 0.17 0.13 0.08 0.05 0.05

GPM (+3 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.34 0.14 0.06 0.03 0.02 0.01 0.0 0.0 0.0 0.0

PEAKS 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PepNovo 0.13 0.07 0.05 0.03 0.03 0.02 0.02 0.02 0.01 0.0
Lutefisk 0.40 0.22 0.13 0.11 0.07 0.06 0.05 0.04 0.03 0.02

MCPS Top-100 0.73 0.31 0.15 0.09 0.06 0.03 0.03 0.02 0.01 0.0

GPM (+4 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.33 0.12 0.05 0.01 0.0 0.0 0.0 0.0 0.0 0.0

PEAKS 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PepNovo 0.09 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Lutefisk 0.27 0.11 0.04 0.02 0.01 0.0 0.0 0.0 0.0 0.0

MCPS Top-100 0.66 0.24 0.12 0.03 0.0 0.0 0.0 0.0 0.0 0.0

GPM (+5 data) x = 1 x = 2 x = 3 x = 4 x = 5 x = 6 x = 7 x = 8 x = 9 x ≥ 10
MCPS Top-1 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

PEAKS 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PepNovo N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Lutefisk 0.11 0.03 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0

MCPS Top-100 0.54 0.16 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7.3: % of Predictions with Correct tags of Length ≥ x for GPM Data. In general, quality
of predictions are bad for GPM data. Lutefisk being the best for GPM data, predicts < 26% of the time,
correct tags of length ≥ 3. Virtually no predictions of correct tags of length ≥ 3 for +4 and +5 data for
all algorithms excluding MCPS Top-100.
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Figure 7.4: Distribution of Predictions with Correct Tags of Length ≥ 3 between MCPS and
PepNovo: The venn diagram for +3 ISB data shows that 136 cases of predictions with correct tags of
length ≥ 3 were uniquely generated by MCPS. This covers 27.8% of the total correct predictions, while
the unique cases covered by PepNovo is 20.8%. This shows that both MCPS and PepNovo can be used
to tandem to generate tags for database search. For +3 ISB2 data, the unique cases covered by MCPS
accounts for around 8.6% of the cases.

we then draw the distribution of cases in a form of a venn diagram. We compare MCPS and

PepNovo since they are the best two algorithms for +3 ISB and ISB2 data.

From Figure 7.4, we find that for +3 ISB data, 136 cases were uniquely predicted by MCPS.

This accounted for 27.8% of all the total cases. PepNovo uniquely predicted 20.8% (102) of the

cases. They co-predicted 23.3% of the cases. The remaining 28.1% failed to have a prediction

with a correct tag of length ≥ 3.

For +3 ISB2 data, even though MCPS only uniquely covered 8.6% (19) of the cases, this is

much more than the unique cases covered by PEAKS (2%) and Lutefisk (2.7%) which is not

shown in the figure. Thus it makes sense to use MCPS in tandem with PepNovo for generation

of peptide tags for database search of multi-charge ESI data.

128



7.3 Sequencing Using +3 ion-types vs not Using +3 ion-types

In our sequencing, we have used some +3 ion-types in our ion-type sets which is currently not

used by any other algorithm. In order to confirm whether these ion-types have an impact on

MCPS, we measure the sensitivity of our sequencing result with and without using the +3

ion-types for +3 and higher data.

GPM Data. Table 7.4 shows the sensitivity with and without the +3 ion-types. We see that

there is a very slight improvement for the MCPS Top-1 results, with a slight drop for the MCPS

Top-100 results. This could indicate that +3 peaks have too low a likelihood of occurrence in

the path of good candidate peptides to affect sensitivity by much.

ISB2 Data. Table 7.5 indicates that there is an improvement in the sensitivity of MCPS Top-

1 and MCPS Top-100 results when we consider +3 ion-types. This shows that they could be

important as a bridge (used in the bridging step) between good quality mono-chromatic sub-

paths in the spectrum graph, since none of the +3 ion-types are used in the pruning step. It

could also indicate that they are useful as supporting ions to improve the score of good quality

paths in the spectrum graph.

ISB Data. ISB data also shows the same improvement in sensitivity as seen from Table 7.6.

In the characterization study (Chapter 4) we have concluded that +3 ion-type for ISB do not

help to recover additional amino acids by much. Thus most of the improvement comes from

increasing the rank of good quality paths by using these as supporting ions.

Conclusion on using +3 ions. Using +3 ions helps in improving the sequencing results for

ISB and ISB2 data. They do so mainly as supporting ions. +3 ions do not help in sequencing

GPM data, indicating they occur too infrequently in the paths of good candidate peptides to

affect sensitivity by much.
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GPM Results Sensitivity (no +3 ions) Sensitivity (with +3 ions)
Charge 3 (Top-1) 0.044 0.045 (+0.001 )
Charge 3 (Top-100) 0.109 0.107 (-0.002 )
Charge 4 (Top-1) 0.024 0.027 (+0.003 )
Charge 4 (Top-100) 0.059 0.057 (-0.002 )
Charge 5 (Top-1) 0.003 0.005 (+0.002 )
Charge 5 (Top-100) 0.035 0.034 (-0.001 )

Table 7.4: Comparison of Sensitivity between using +3 ions and not using +3 ions. Very slight
improvement in Top-1 sensitivity when using +3 ion-types compared to without using them. There is
also a very slight drop in the Top-100 sensitivity.

ISB2 Top-1 Results Sensitivity (no +3 ions) Sensitivity (with +3 ions)
Charge 3 (Top-1) 0.146 0.157 (+0.011 )
Charge 3 (Top-100) 0.249 0.270 (+0.021 )

Table 7.5: Comparison of Sensitivity between using +3 ions and not using +3 ions. Improvement
in the sensitivity results for both Top-1 and Top-100 when using +3 ion-types.

ISB Top-1 Results Sensitivity (no +3 ions) Sensitivity (with +3 ions)
Charge 3 (Top-1) 0.185 0.216 (+0.031 )
Charge 3 (Top-100) 0.406 0.410 (+0.004 )

Table 7.6: Comparison of Sensitivity between using +3 ions and not using +3 ions. Improvement
in sensitivity for Top-1, and a very slight improvement for Top-100 results when using +3 ion-types.
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Chapter 8

Conclusion

8.1 Summary

In summary, we have developed a generalized model of multi-charge spectra for sequencing

purposes. We have applied this model in a characterization study of datasets with multi-charge

spectra. We conclude that for GPM data, inclusion of multi-charge ions will affect improve the

upper bound on the amount of recoverable peptide. We conclude that for ISB and Orbitrap data,

inclusion of multi-charge ions will not improve the upper bound on the amount of recoverable

peptide but can improve the scores of good candidate peptides and this can help in better

ranking of such peptides.

We have also developed a novel de novo sequencing algorithm which makes use of multi-

charge ion-types (based on our conclusion in our characterization study) and the observation

that monochromatic tags of abundant ion-types represent strong signals. Both are exploited

in the building of our extended spectrum graph. Most importantly, the monochromatic tags

are used in a scoring function that boosts up the scores of such tags by performing a suffix-k

lookback when scoring a path that contains them.

From the sequencing result of GPM data, we conclude that all the tested de novo sequencing

algorithm suffers from a poor recovery of the canonical peptide (especially PEAKS and PepNovo

for charge 2 and above spectra). This is due to missing peaks corresponding to ion-types in the

ion-type set used. Also, a lack of strong fragmentation patterns for GPM data results in inability
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of all algorithms tested to differentiate between good and bad candidates. As a consequence,

the use of multi-charge ion-types do not have much impact to the sequencing results. However

among all algorithm, MCPS still does better than PEAKS and PepNovo, losing out only to

Lutefisk.

Sequencing results for ISB and ISB2 data suggests that MCPS is better for ISB charge 3

data than PEAKS, PepNovo and Lutefisk, and loses only to PepNovo for ISB2 charge 3 data.

The fact that > 50% of the candidate peptides generated by MCPS for charge 3 ISB data

contains correct tags of over length 3, and that it generates a good number of such predictions

not generated by the other algorithms for charge 3 ISB2 data, suggest that MCPS can be used

together with other de novo sequencing algorithms especially PepNovo to generate solutions as

tags for database search of charge 3 ESI-based spectra.

Comparing using charge 3 ion-types to not using charge 3 ion-types, we see that there is an

improvement to the sensitivity and this shows that charge 3 ion-types are useful as supporting

ions in improving the score and thus the ranking of good candidate peptides.

8.2 Future Work

For future work in improving MCPS, the parent mass correction procedure can be applied to

spectra before sequencing.

Another area that can be explored is the region based boosting of the MCScore function.

The idea here is that monochromatic tags do not have their scores boosted uniformly based

on length but depending on which region of the peptide they reside, the tags will be boosted

differently, maybe even different parts of the tag boosted with a different multiplier if those

parts lie in different regions of the peptide. This is inspired by the fact that different ion-types

are abundant in different regions of the peptide. This can also be applied to the selection of the

ion-type sets for different datasets.

Research can also be done in modifying and applying MCPS in generating of peptide tags

for database search especially for PTM peptides.
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Appendix A

A.1 Parent Mass Correction

One problem faced when doing peptide sequencing by tandem mass spectrometry is the fact that

a lot of the time, the precursor parent mass given in the mass spectrum is not accurate. There

are a few possible reasons for this. Not including PTMs which will cause the actual peptide

mass to be shifted, the accuracy of the mass spectrometry and isotopic atoms will cause the

measurement of the parent peptide mass to be inaccurate. In the case of mass spectrometer

accuracy, an instrument with an accuracy of 500 PPM (parts per million) can cause an error

in the mass measurement of 0.5 Da per 1000Da of peptide mass. However, most modern mass

spectrometers have an accuracy of 1-50 PPM, making errors by instrument inaccuracy negligible

even for peptides masses of up to 5000Da. This leaves most of the error in parent mass to be due

to the case of isotopic atoms. Zhang et al. [76] shows that at 10KDa the isotopic distribution

ranges over 16Da, and this approximates to a 4Da range at 2.5KDa which is a reasonable mass

for peptides. Moreover, based on the probability of occurrence of each of the isotopes of each

of the organic atoms making up the amino acid, it has been shown that for peptides of length

from 1-60 amino acids, the most prevalent isotopic atom will be C13, and there is a 50% chance

of getting a C13 atom every 10 amino acids. Since most peptides have lengths of up to a

max. of 40 amino acids, there is a 50% chance of a shift of up to 4Da. This concurs with

the study of Zhang et al. [76]. Gay et al. [26] also shows empirically that the intensity of the

M+1 isotopic peak for the peptide will exceed the intensity of the M+0 (mono-isotopic peak) at

peptide masses above 1500Da. M+2 will do so at masses above 2000Da, M+3 at masses above
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Figure A.1: Parent Mass Shifts for ISB2 data. We split the peptide masses into 4 range 0-1000,
1000-2000, 2000-3000 and 3000-4000 Da. The number of spectra with mass shift as indicated in the x-axis
is then plotted for each mass range. We see that for masses 0-3000 Da, the majority of the peptides are
shifted by 0.5 Da (the major peak in the diagrams). For masses 3000-4000 Da, the peptides are shifted
by 1.0 Da. The range of mass shifts is [-2.0,4.0]. This indicates that ISB and ISB2 data are relatively
accurate and error tolerances of 0.5Da will be able to deal with most spectra.

2500Da. Thus it is likely for the mass spectrometer to pick the isotopic peak instead of the

mono-isotopic one. Also dynamic exclusion by mass spectrometers can cause the instrument to

select the same peptide (possibly isotopically-enriched) for fragmentation resulting in incorrectly

reported parent/precursor mass Tanner [64]. Incorrect parent mass causes a lot of problems

when performing peptide sequencing because the calculation of the PRM from the C-terminal

ions requires a correct parent mass to be assumed. Otherwise the scoring can be drastically off

and result in poor sequencing results.

In Figure A.1, we show the parent mass shift for different parent mass ranges for ISB2

training data. We see that for mass range 0-3000 Da the majority of spectra have mass shift

of 0.5 Da, while those from 3000-4000 Da , most have a mass shift of about 1.0 Da. The range

of mass shifts is [-2.0Da, 4.0Da]. This suggest that ISB and ISB2 data are quite accurate and

error tolerances of 0.5Da will be able to deal with most spectra.
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ISB2 Top1 Top1-2 Top1-3
% of correct prediction 0.23 0.59 0.81

Table A.1: % of corrected parent masses for ISB2 using self-convolution. From the table, we see
that using only the top result (mass bin with the most number of complimentary peaks) only result in
23% of the spectra being corrected, whereas using the top1-3 results, 81% of the spectra are corrected.

ISB2 Top1 Top1-2 Top1-3
% of correct prediction 0.38 0.77 0.89

Table A.2: % of corrected parent masses for ISB2 using self-convolution 2.0. From the table, we
see that using only the top result (mass bin with the most number of complimentary peaks) only result
in 23% of the spectra being corrected, whereas using the top1-3 results, 81% of the spectra are corrected.

A.1.1 Self-Convolution

The usual method in correcting the precursor parent mass is by computing the self-convolution

of the fragments. This is done by assuming each peak to be both a y-ion and b-ion, and compute

the total mass of each unique pair of peaks. The assumption here is that the mass bin which

contains the actual peptide mass will also contain the most number of peak pairs (these peaks

pairs are complimentary peaks which add up to be the actual peptide mass) as opposed to

the mass bins which do not correspond to the peptide mass. A good bin size to work with

here would be 0.5 Da. An experiment using the above self-convolution method obtained the

following result in Table A.1 when performed on the ISB2 data. In the experiment only the

top 50 peaks were used for the self-convolution, and only those mass bins with a [-4.0,1.0] Da

range (maximum shift by isotopic atoms) from the experimental precursor mass is considered.

It is usually unlikely for the actual peptide mass to be bigger than the experimental precursor

mass. A prediction is correct when the actual mass between the correct parent mass and the

predicted mass (based on the average mass in the mass bin) is < 0.5 Da.

A.1.2 Self-Convolution 2.0

Instead of using the number of complimentary peaks, we use the total intensity contributed by

the complimentary peaks. This improves the results vastly as shown in Table A.2, especially

for the Top1 (the best) result (15% improvement) and Top1-2 (best among the top 2) result

(18% improvement).
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Figure A.2: Ratio of complimentary peaks in window around parent mass bin. In the figure,
we see that using an error range of [-4.0,4.0] Da for the fragments themselves, most of the (87%) of
the complementary peaks add up to masses that reside within the [-2.5,2.5] window around the actual
parent peptide mass, but not all in the mass bin corresponding to the putative peptide mass, which only
contributes ~11%.

A.1.3 Parent Mass Correction using Boosting Classifier

A few factors could possibly improve the results. First is the assumption that the b and y-ion

peaks themselves are mono-isotopic and thus the real complimentary peaks should add up to the

mono-isotopic parent mass itself. This assumption might not be correct. We test the hypothesis

that the fragment themselves can be shifted by allowing a sufficiently large error range of [-4.0,

4.0] Da in the mass of each real fragment. Doing this, we find the distribution of parent masses

formed by the summation of real complimentary peaks given in Figure A.2.

The second assumption that the mass bin which contains the highest number of compli-

mentary pairs will be the correct parent mass bin, might not be true. Isotopic shifts of the

individual b and y peaks as explained above, coupled with noise may cause mass bins outside of

the parent mass bin to have a higher complimentary pair count. This is clearly seen in Figure

A.2 where the bins to the right and left of the parent mass bin has a higher complimentary

peaks count.

The observation that the fragment peaks themselves might not be mono-isotopic and that

the actual parent mass bin itself might not have the highest complimentary pair count presents

us with a possible way of improving the self-convolution method. Instead of finding the mass-

bin with the most number of complimentary peak pairs, we instead find the “score” of the
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mass-bins within a window of size [−2.5, 2.5] Da centered around the candidate mono-isotopic

parent mass bin, and choose the top few mass bins in this way.

Instead of just relying on a simple complimentary pair count, a way of scoring the mass

bins within the window of a candidate parent mass bin is to use properties related to the

complimentary peaks in the mass bins within the window. In our experiments we have tried

including all the following properties:

Assuming a bin size of 0.5 Da, a window is of size n (where n is the number of bins and is

always an odd number) centered around the the candidate parent mass bin parbin,

1. Experimental parent mass range – 0-1000,1000-2000,2000-3000,3000-4000,4000-5000

2. Number of complimentary peaks/fragmentation points in binx where x ∈ [parbin −

5, parbin+ 5]

3. Number of y-ion peaks at binx with intensity level = y for y∈ [1, 6] where

(a) y = 1 is for peaks at intensity rank 1-10

(b) y = 2 is for peaks at intensity rank 11-20

(c) y = 3 is for peaks at intensity rank 21-30

(d) y = 4 is for peaks at intensity rank 31-40

(e) y = 5 is for peaks at intensity rank 41-50

(f) y= 6 is when there are no peaks in binx

4. Number of y-ion peaks at binx with intensity level = y representing SRM fragmentation

points = z for z ∈ [1, 5] where

(a) z = 1 is for SRM fragmentation mass between 0-500 Da

(b) z = 2 is for SRM fragmentation mass between 500-1000 Da

(c) z = 3 is for SRM fragmentation mass between 1000-1500 Da

(d) z = 4 is for SRM fragmentation mass between 1000-2000 Da

(e) z = 5 is for SRM fragmentation mass between 2000-2500 Da
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ISB2 Top1 Top1-2 Top1-3
% of correct prediction 0.59 0.78 0.87

Table A.3: % of corrected parent masses for ISB2 using LogitBoost. From the table, we see that
using only the Top1 result (mass bin with the most number of complimentary peaks) has improved from
Self-Convolutions 2.0’s 23% to 59%.

5. Same as 3. But for b-ion peaks

6. Same as 4. But for b-ion peaks and fragmentation points representing PRM

7. Number of fragmentation points in binx that have a consecutive fragmentation point in

binx (that is forming a mass difference corresponding to an amino acid mass)

8. Number of fragmentation points in binx without a consecutive fragmentation point in

binx.

Having determined the above attributes, we then made use of LogitBoost Friedman et al.

[23]a boosting classifier which is basically an ensemble machine learner. The advantage of using

LogitBoost is that it is resistant to redundant attributes, in fact making use of all possibly

good attributes in building the final classifier, thus there is no necessity for attribute selection.

Secondly it is an ensemble machine learner where it iteratively builds weak learners based on

some of the attributes and adds them to the final strong classifier, thus making them akin to

decision forests which have been shown to be superior to single decision trees Gashler et al. [24].

Finally, instead of simply predicting a class label, it gives a score representing the confidence of

the given sample being in the predicted class. This is useful for our case since we can sort the

confidence score for each of the candidate parent masses and pick the top few.

Result of using the boosting classifier for parent mass correction on the test data is show in

Table A.3. LogitBoost was run for 50 iterations on the training data (ISB2 and GPM) where

the accuracies asymptotes. Since we are only concerned about the score of the positive class

(the correct parent mass bin) on each data, we sort said scores and picked the Top1-3 mass

bins.
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ISB2 Top1 Top1-2 Top1-3
% of correct prediction 0.63 0.79 0.90

Table A.4: % of corrected parent masses for ISB2 using LogitBoost with improved attributes.
From the table, we see that using only the Top1 result (mass bin with the most number of complimentary
peaks) has improved from the previous attempt from 59% to 63% (an improvement of 4%). There are
also slight improvement for both Top1-2 and Top1-3 (both slightly better than using Self-Convolution
2.0).

GPM Top1 Top1-2 Top1-3
% of correct prediction 0.38 0.52 0.57

Table A.5: % of corrected parent masses for GPM using LogitBoost with improved attributes.
From the table, we see that using only the Top1 result (mass bin with the most number of complimentary
peaks) only corrects 38% of the parent masses. There is not as much improvement from Top1-2 to Top1-3
(5%) as compared to the ISB2 data.

A.1.4 Improvement to Attributes

In our prediction, we have a fixed number of possible parent mass bins to use. However, in

our attributes we do not capture the relationship among these parent mass bins. A possible

improvement can be obtained by using the rank of a parent mass bin compared to the other

potential mass bins for each of the attributes listed, instead of simply using a number that is

only associated with the bin itself. In this improvement, we first compute the attributes as

before, then sort the mass bins in non-descending order of the attribute value. Each attribute

of each mass bin will then take the rank instead of the attribute value itself. Using this change,

Table A.4 below shows the experimental results.

Results of parent mass correction for GPM data is given in Table A.5. The results are not

as good as for ISB2 (Top1 result only corrected 38% of the parent masses). This is in line with

the fact that GPM has a wider range of parent mass shifts (due to PTMs) and these are hard

to correct for.
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Appendix B

B.1 Analysis of Probability of Observation of Mono-Chromatic

Tag of length ≥ l

Given an ion-type δ with a probability of observation q, let rl be the probability of observation

of a mono-chromatic tag of length ≥ l, where l ≥ 1 can be explained as the canonical peptide

ρ being fragmented in such a way that ≥ l+ 1 consecutive fragmentation points of ρ generated

ions of type δ. This probability can be analyzed as follows.

Assuming that ρ on average has t fragmentation points, the probability of δ explaining l+ 1

of these points is ql+1. There are
(

t
l+1

)
number of ways to pick l+ 1 positions. The probability

of picking exactly one of these combination is then 1
( t
l+1 ) and the probability of δ explaining

such a combination is then ql+1

( t
l+1 ) . Out of the combinations of l+ 1 positions, t− l of them have

the positions consecutive to each other (a tag). Therefore the probability of picking either one

of these combination and having δ explain it is ql+1∗(t−l)
( t
l+1 ) , which is ql+1∗(t−l)∗(l+1)!∗(t−(l+1))!

t! . This

is exactly the probability of finding a mono-chromatic tag of δ of length = l. The probability

rl of finding a mono-chromatic tag of δ of length ≥ l is then defined by the function

rl =
x=t∑
x=l+1

ql+1 ∗ (t− (x− 1)) ∗ (x)! ∗ (t− (x))!
t!

We note that the value of the function is dominated by the first term that is x = l + 1 and

the last term x = t, since for each of these terms, the numerator has a factorial that cancels or

almost cancels the denominator. In fact the values of the term drops as x goes further away
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from l+ 1 and rises again as it approaches t. On average the length t of a peptide is around 15,

and thus t! is a huge value. We can practically ignore all terms except for x = l+ 1, and x = t.

Thus we can simply the function to

rl = (ql+1 ∗ (t− (l)) ∗ (l + 1)! ∗ (t− (l + 1))!)
t! + qt

Now for For δ with q = 0.1 (a rare ion-type), the probability r1 of observation of a mono-

chromatic tag of length at least 1 is ≈ 0.0013. As q decreases or l increases, this probability

decreases as well (exponentially as l increases). Thus we see that for rare ion-types, it is highly

unlikely to see mono-chromatic tags of any length.
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