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Abstract

Traditional similarity or distance measurements usually
become meaningless when the dimensions of the datasets
increase, which has detrimental effects on clustering per-
formance. In this paper, we propose a distance-based sub-
space clustering model, called nCluster, to find groups of
objects that have similar values on subsets of dimensions.
Instead of using a grid based approach to partition the data
space into non-overlapping rectangle cells as in the density
based subspace clustering algorithms, the nCluster model
uses a more flexible method to partition the dimensions to
preserve meaningful and significant clusters. We develop an
efficient algorithm to mine only maximal nClusters. A set of
experiments are conducted to show the efficiency of the pro-
posed algorithm and the effectiveness of the new model in
preserving significant clusters.

1 Introduction

Clustering seeks to find groups of similar objects based
on the values of their attributes. Traditional clustering al-
gorithms use distance on the whole data space to measure
similarity between objects. As the number of dimensions in
a dataset increases, distance measures become increasingly
meaningless [6]. In very high dimensional datasets, the ob-
jects are almost equidistant from each other. This is known
as the curse of high dimensionality [5].

The concept of subspace clustering has been proposed to
cope with the problems caused by high dimensionality by
discovering clusters embedded in subspaces of high dimen-
sional datasets. Many subspace clustering algorithms use a
grid and density based approach [3, 8, 13, 7, 12]. They par-
tition the data space into non-overlapping rectangular cells
by discretizing each dimension into a number of bins. A cell
is dense if the fraction of total objects contained in the cell
is greater than a threshold. Clusters are formed by merging
connected dense cells in the same subspace.

In the density based model, objects are clustered based

on the distribution of the objects in subspaces instead of
the distance between objects, so it is very likely that some
objects in a cluster are far apart from each other even in
the subspace of the cluster. In many applications, users are
more interested in finding groups of objects that are physi-
cally close to one another in subspaces. In the density based
approach, dense cells contain objects that have similar val-
ues on subsets of dimensions, so a simple approach to find-
ing clusters of similar objects in subspaces is to find the
dense cells. However, using this approach, a cluster may
be divided into several small clusters as illustrated in the
following example.

a b c
1 0 10 1
2 4 5 4
3 5 6 0
4 6 5 7
5 9 0 10
6 10 1 6

Table 1. An example missing cluster
Table 1 shows a dataset containing 6 objects and 3 at-

tributes. The value range of the three attributes is [0, 10].
Objects 2, 3 and 4 have similar values on both attributes a
and b, so object set {2, 3, 4} and attribute set {a, b} should
form a subspace cluster. If we use the grid based approach
and partition each attribute to two bins of equal length, then
for each attribute, we have two bins [0, 5] and (5, 10]. Ob-
ject 4 is in different bins with objects 2 and 3 on attribute
a, and object 3 is in different bins with objects 2 and 4 on
attribute b. We get two smaller clusters ({2, 3}, a) and ({2,
4}, {b}). Algorithms have been proposed to find the cut-
ting points adaptively based on data distribution [13, 7, 12].
However, these algorithms do not allow overlap between
different bins either, so it is still possible that objects with
similar values on an attribute are placed into different bins,
which may cause a cluster to be shattered in different cells.

In this paper, we propose a distance based subspace clus-
tering model called nCluster to overcome the problem dis-
cussed above. The nCluster model uses a more flexible
method to partition the dimensions, which allows overlap
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between different bins of an attribute. This may result in
more bins than the grid based algorithms, which increases
the complexity of the problem. To make the problem solv-
able, we consider only those clusters containing a non-
trivial number of objects and attributes, and we mine only
maximal nClusters to avoid generating too many clusters.

The rest of the paper is organized as follows. Section 2
describes the nCluster model. Section 3 presents an efficient
algorithm for mining maximal nClusters. The experiment
results are reported in Section 4. Related work is discussed
in Section 5. Finally, Section 6 concludes the paper.

2 The nCluster Model

Let O be a set of objects. Each object has a set of
attributes A and the domains of the attributes in A are
bounded. We use x, y, · · · to denote an object in O, a, b, · · ·
to denote an attribute in A, Ra to denote the value range of
an attribute a, and vxa to denote the value of an object x on
an attribute a.

The distance of two objects x and y on an attribute a
is defined as |vxa − vya|. If the distance is smaller than a
predefined threshold, then x and y are called neighbors on
attribute a. Similarly, we can define neighbors of an object
on a subset of attributes in A, and they are called subspace
neighbors. Attributes usually do not have the same value
ranges. Therefore, instead of using a constant threshold on
all attributes, we use a relative distance threshold which is
specified as the ratio of the value range of an attribute.

Definition 1 (Subspace δ-neighbors) Let x, y be two ob-
jects and D ⊆ A be a subset of attributes. If for every
nominal attribute a ∈ D, we have vxa=vya, and for every
continuous attribute a ∈ D, we have |vxa − vya| ≤ δ · Ra,
where δ is a predefined threshold, then we say that x and y
are δ-neighbors of each other in subspace D.

If a set of objects T are δ-neighbors of one another on
a set of attributes D, then these objects form a cluster on
subspace D and we call it a δ-nCluster.

Definition 2 (Subspace δ-nCluster) Let T ⊆ O be a set of
objects and D ⊆ A be a set of attributes. If for every two
objects x, y ∈ T and every attribute a ∈ D, objects x and
y are δ-neighbors on attribute a, then we say that (T , D) is
a subspace δ-nCluster, or simply δ-nCluster.

Example 1 Table 2 shows a dataset with 4 attributes and 8
objects. The value ranges of attribute a, b, c and d are [0,
20], [-50, 50], [0, 100] and [0, 30] respectively. If we set
δ to 0.1, then {1, 2, 4, 6, 8} and {a} form a δ-nCluster, and
({1, 6}, {a, b, c}) is a δ-nCluster. In Table 1, if we set δ
to 0.2, we can find the subspace cluster ({2, 3, 4}, {a, b}),
which may not be found by the grid based approach.

a b c d
1 5 0 27 0
2 6 50 75 24
3 3 -29 53 13
4 5 -2 51 30
5 0 1 100 7
6 6 4 29 19
7 20 27 23 1
8 7 -50 0 2

Table 2. An example dataset
Given two nClusters (T1, D1) and (T2, D2), if T1 ⊆ T2

and D1 ⊆ D2, then we say that (T1, D1) is a sub-nCluster
of (T2, D2), and (T2, D2) is a super-nCluster of (T1, D1).
If either T1 ⊂ T2 or D1 ⊂ D2 is true, then we say (T1, D1)
is a proper sub-nCluster of (T2, D2). The δ-nClusters have
the following property based on their definition.

Property 1 (anti-monotone property) Let T ⊆ O be a set
of objects and D ⊆ A be a set of attributes. If T and D form
a δ-nCluster, then T forms a δ-nCluster with every subset of
D, and D forms a δ-nCluster with every subset of T .

The number of subspaces of A is exponential to the num-
ber of attributes in A. It is impractical to exhaustively enu-
merate all the subspaces when A contains many attributes.
For a cluster to be meaningful and useful, the cluster has to
contain a non-trivial number of objects and attributes. We
use two thresholds mr and mc to constrain the minimum
number of objects and attributes, and we are interested in
mining only δ-nClusters containing at least mr objects and
mc attributes.

Restricting the minimum number of objects and at-
tributes filters out insignificant δ-nClusters, but there still
can be a large number of δ-nClusters, and many of them are
redundant in the sense that they can be subsumed by some
larger δ-nClusters. Based on Property 1, if a set of objects
T and a set of attributes D can form a δ-nCluster, then any
sub-nCluster of (T , D) can form a δ-nCluster. These sub-
nClusters of (T , D) provide no more information than (T ,
D). To avoid generating too many δ-nClusters, we enumer-
ate only maximal δ-nClusters.

Definition 3 (Maximal δ-nCluster) Let T ⊆ O be a set of
objects and D ⊆ A be a set of attributes, and T and D form
a δ-nCluster. If there does not exist a δ-nCluster (T ′, D′)
such that (T , D) is a proper sub-nCluster of (T ′, D′), then
(T , D) is called a maximal δ-nCluster.

Example 2 Let δ=0.1. In the example dataset shown in
Table 2, δ-nCluster ({1, 6}, {a, b}) is not maximal because
its attribute set can be extended by attribute c and its object
set can be extended by object 4. δ-nClusters ({1, 4, 6}, {a,
b}) and ({1, 6}, {a, b, c}) are maximal δ-nClusters because
neither their object sets can be extended without reducing
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their attribute sets, nor their attribute sets can be extended
without reducing their object sets.

Wang et al. [18] proposed a clustering model called
pClusters to find groups of objects that exhibit coherent
patterns on subsets of attributes. Given a set of objects
T and a set of attributes D, T and D form a δ-pCluster
if for any two objects x, y ∈ T , and any two attributes
a, b ∈ D, we have |(vxa − vxb) − (vya − vyb)| ≤ δ. If
(T , D) is a δ-nCluster, then it must be a 2δ-pCluster because
|(vxa−vxb)−(vya−vyb)| ≤ |vxa−vxb|+|vya−vyb| ≤ 2δ.
We can use the algorithm for mining 2δ-pClusters to mine
δ-nClusters. However, this approach is very inefficient for
two reasons. First, we have to use a larger threshold to mine
pClusters, which may generate many unqualified nClusters.
For example, two objects x, y satisfying vxa − vxb = 0
and vya − vyb = 2δ can be in some 2δ-pCluster containing
attribute a and b, but they cannot be in any δ-nCluster con-
taining attribute b. Secondly, the objective of the pCluster
model is to mine groups of objects that exhibit coherent pat-
terns instead of groups of similar objects, so a 2δ-pCluster
may contain many objects that are not δ-neighbors. For ex-
ample, two objects x, y satisfying vxa − vxb = 10δ and
vya − vyb = 9δ can be in some 2δ-pCluster containing at-
tribute a and b, but they cannot be in any δ-nCluster contain-
ing attribute a or b. Therefore, given the same mr and mc
threshold, mining 2δ-pClusters can produce many clusters
that are not qualified to be δ-nClusters.

3 Mining Maximal δ-nClusters

In this section, we present an algorithm for mining max-
imal δ-nClusters containing at least mr objects and mc at-
tributes. We use Property 1 to prune the search space. We
start from δ-nClusters containing one attribute, and extend
them to find δ-nClusters containing more attributes.

3.1 Finding δ-nClusters with single at-
tribute

We are interested in maximal δ-nClusters, so for every
subspace D, we find the maximal object sets that can form
δ-nClusters with D. An attribute can form δ-nClusters with
multiple maximal object sets. We identify them based on
the following observation.

Lemma 1 Given an attribute a and a set of objects T , (T ,
{a}) is a δ-nCluster if and only if max{vxa|x ∈ T} −
min{vxa|x ∈ T} ≤ δ · Ra.

Based on the above lemma, we identify the maximal object
sets of an attribute using a method similar to the method
used in [18] for finding maximal dimension sets (MDS).

We sort the objects in O in ascending order of their values
on attribute a, and then we find pairs of positions p1 and p2

(p1 < p2) in the sorted sequence such that the difference of
the values at the two positions is no larger than δ · Ra, but
the difference between values at (p1 − 1) and p2 or at p1

and (p2 + 1) is larger than δ · Ra.
If the number of distinct values of an attribute is very

large, then the number of maximal object lists generated
can be very large. This may pose a difficulty on the min-
ing algorithm. To avoid generating too many highly over-
lapped maximal object lists on the same attribute, we use
a threshold ω to control the overlap. Threshold ω is used
as follows. Let T be the current maximal object set dis-
covered on attribute a, and RT be the span of T , that is
RT = [minx∈T {vxa},maxx∈T {vxa}]. Then the span of
the next maximal object set cannot have more than ω · |RT |
overlap with RT . When ω = 0, we divide attributes into
non-overlapping bins as in the grid based approach.

attr maximal object sets
a1 {1, 3, 4}
a2 {1, 2, 4, 6, 8}
b1 {1, 4, 5, 6}
c1 {1, 6, 7}
c2 {3, 4}
d1 {1, 7, 8}

Table 3. Maximal object sets of attributes
Table 3 shows the maximal object sets of all the attributes

in Table 2. Every attribute and its maximal object set forms
a δ-nCluster containing only one attribute. We use these δ-
nClusters as starting points to find δ-nClusters containing
more attributes.

3.2 Finding maximal δ-nClusters contain-
ing more than one attribute

Given a δ-nCluster (T , D) and an attribute a /∈ D, if
there are at least mr objects in T that are δ-neighbors of one
another on attribute a, then attribute a can be added to D to
form a δ-nCluster with one more attribute. To find all such
attribute a, we maintain an attribute list for every object.
The attribute list of an object x contains all the attributes
on which x has at least mr − 1 δ-neighbors. We need to
distinguish the different maximal object sets of an attribute.
For example, in Table 3, attribute a has two maximal object
sets. If we simply add a to the attribute lists of all the objects
contained in its two maximal object sets, then we cannot tell
which objects are in the same maximal object sets.

To solve this problem, we add a subscript to an attribute
name when we add the attribute name to the attribute lists of
objects. The attribute lists of the objects in the same maxi-
mal object set receive the attribute with the same subscript.
We call a subscripted attribute name a symbol of the at-
tribute to distinguish it from the attribute itself. The number
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of symbols of an attribute is equal to the number of maximal
object sets of the attribute, and the frequency of an attribute
symbol in the attribute lists is equal to the size of the maxi-
mal object set the symbol represents. In the above example,
attribute a has two symbols a1 and a2, the attribute lists of
objects 1, 3 and 4 contain a1, and the attribute lists of ob-
jects 1, 2, 4, 6, and 8 contain a2. The attribute lists of all the
objects in Table 2 are shown in Table 4.

obj attribute lists
1 a1, a2, b1, c1, d1

2 a2

3 a1, c2
4 a1, a2, b1, c2
5 b1
6 a2, b1, c1
7 c1, d1

8 a2, d1

Table 4. Attribute lists of objects
The above transformation is lossless, that is, we can re-

construct Table 3 from Table 4.

Lemma 2 Two objects are δ-neighbors on an attribute a if
and only if the attribute lists of the two objects contain the
same symbol of attribute a.

Since the attribute lists contain the complete information,
so we use attribute lists to discover maximal δ-nClusters in
the remaining mining. Our mining algorithm is based on
the following observation.

Lemma 3 A set of attributes D forms a δ-nCluster with a
set of objects T if and only if the attribute lists of the objects
in T all contain the same symbol of every attribute in D.

If we regard attribute symbols as items, attribute symbol
sets as itemsets, and attribute lists as transactions, then min-
ing δ-nClusters can be transformed to mining frequent item-
sets from a transaction database [4]. The concept of max-
imal δ-nClusters is used in the paper to remove redundant
δ-nClusters, and it is similar to the frequent closed itemset
concept [14], which is used to remove redundant itemsets.
An itemset is closed if it is maximal in the set of transac-
tions containing it. If a δ-nCluster is maximal, then its cor-
responding attribute symbol set is a closed itemset in the
attribute lists. We can use frequent closed itemset mining
algorithms to mine maximal δ-nClusters.

LCM [17] is one of the most efficient algorithms for min-
ing frequent closed itemsets, so in this paper, we use LCM
to mine maximal nClusters and we call it LCM-nCluster.
LCM generates only attribute symbol sets, we use a post-
processing step to generate the corresponding object sets by
intersecting the maximal object sets of the attribute sym-
bols. We accelerate the intersection operation by reusing
intermediate intersection results.

Note that a closed itemset may not always yield a maxi-
mal δ-nCluster. For example, {a1, a2, b1} is a closed item-
set in Table 4, and its corresponding attribute set is {a, b}
and object set is {1, 4}, but ({1, 4}, {a, b}) is not a max-
imal nCluster because one of its super-nCluster ({1, 4, 6},
{a, b}) is also a δ-nCluster. We remove non-maximal δ-
nClusters in a post-processing step.

4 A Performance Study

In this section, we study the efficiency of the LCM-
nCluster algorithm and the effectiveness of the δ-nCluster
model in preserving significant subspace clusters. Our ex-
periments were conducted on a Windows machine with a
3.0Ghz Pentium IV CPU and 2GB memory. We used two
real datasets. One dataset is the gene expression data used
in [18], denoted as yeast. The other one named AMLALL is
used in [10] to study leukemia. It contains 72 bone marrow
samples and 7129 probes from 6817 human genes and is
available at http://research.i2r.a-star.edu.
sg/rp/.

4.1 Mining Efficiency

We compared LCM-nCluster with MaPle [15], which
improves the work of Wang et al. [18] by mining only max-
imal pClusters. We transformed the datasets to make the δ
threshold of nClusters and pClusters to be consistent. Fig-
ure 1 shows the running time of the two algorithms.
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Figure 1. Comparison with MaPle
With the mining parameters specified in the figures,

LCM-nCluster is significantly faster than MaPle. The num-
ber of pClusters generated by MaPle is orders of magnitude
larger than the number of nClusters. It indicates that it is
impractical to use the algorithms for mining pClusters to
mine nClusters.

4.2 Number of maximal δ-nClusters

We study the effectiveness of the nCluster model in pre-
serving significant subspace clusters by inspecting the num-
ber of δ-nClusters generated when varying the overlapping
threshold ω. Table 5 shows the number of δ-nClusters un-
der different ω thresholds. The mining parameters are set
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as mr=25 and δ=0.03 on yeast, and mr=10 and δ=0.01 on
AMLALL.

datasets mc 0 0.25 0.50 0.75 1
AMLALL 4 352 834 7321 28548 92724
AMLALL 6 1 2 502 3230 17889
AMLALL 8 0 0 1 36 952

yeast 4 11915 11915 12051 12052 12052
yeast 6 1721 1721 1721 1721 1721

Table 5. Number of maximal δ-nClusters
The ω threshold controls the overlap between different

bins of each dimension. With ω=0, the nCluster model par-
titions the data space into non-overlapping grids like the
grid based approach. Table 5 shows that with the increase
of ω, the number of δ-nClusters increases. It indicates that
by allowing overlap between different bins of each dimen-
sion, more δ-nClusters can be preserved. In particular, on
dataset AMLALL, no δ-nClusters containing more 8 at-
tributes can be discovered from AMLALL with ω=0, while
36 δ-nClusters are discovered with ω=0.75 and 952 are dis-
covered with ω=1.

5 Related Work

Besides the density and grid based algorithms [3, 8, 13,
7, 12, 16], there are a number of other subspace cluster-
ing algorithms that use a top-down strategy to find non-
overlapping subspace clusters [1, 2, 19, 20]. Most of them
use greedy or heuristic based approaches, which do not
guarantee to find the complete set of subspace clusters.

Jagadish et al. [11] proposed the concept of fascicles,
which is similar to δ-nClusters. Their objective is to use fas-
cicles to compress data, so instead of enumerating all fasci-
cles, they find fascicles that minimize data storage. Cheng
et al. [9] modeled biclusters as submatrices in expression
data that have low mean squared residue scores. Mean
squared residue scores do not have the anti-monotone prop-
erty, which poses difficulties on developing efficient mining
algorithms. Therefore, Cheng et al. used a randomized al-
gorithm to find biclusters.

6 Conclusion

In this paper, we have proposed a new subspace clus-
tering model called nClusters to find clusters embedded in
subspaces of high dimensional datasets. Compared with the
traditional grid based approach, the nCluster model uses a
more flexible method to partition dimensions, thus it can
find more meaningful and significant clusters.

References

[1] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf, P. S. Yu, and
J. S. Park. Fast algorithms for projected clustering. In Proc.

of the 1999 ACM SIGMOD Conference, pages 61–72, 1999.
[2] C. C. Aggarwal and P. S. Yu. Finding generalized projected

clusters in high dimensional spaces. In Proc. of the 2000
ACM SIGMOD Conference, pages 70–81, 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Au-
tomatic subspace clustering of high dimensional data for data
mining applications. In Proc. of the 1998 ACM SIGMOD
Conference, pages 94–105, 1998.

[4] R. Agrawal, T. Imielinski, and A. N. Swami. Mining associa-
tion rules between sets of items in large databases. In Proc. of
the 1993 ACM SIGMOD Conference, pages 207–216, 1993.

[5] R. Bellman. Adaptive Control Processes: A Guided Tour.
Princeton University Press, 1961.

[6] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is ”nearest neighbor” meaningful? In Proc. of the 7th
ICDT Conference, pages 217–235, 1999.

[7] J.-W. Chang and D.-S. Jin. A new cell-based clustering
method for large, high-dimensional data in data mining ap-
plications. In Proc. of the 2002 ACM symposium on Applied
computing, pages 503–507, 2002.

[8] C. H. Cheng, A. W.-C. Fu, and Y. Zhang. Entropy-based
subspace clustering for mining numerical data. In Proc. of
the 5th ACM SIGKDD Conference, pages 84–93, 1999.

[9] Y. Cheng and G. M. Church. Biclustering of expression data.
In Proc. of the 8th International Conference on Intelligent
Systems for Molecular Biology, pages 93–103, 2000.

[10] T. Golub and et al. Molecular classification of cancer: Class
discovery and class prediction by gene expression monitor-
ing. Science, 286:531–537, 1999.

[11] H. V. Jagadish, J. Madar, and R. T. Ng. Semantic compres-
sion and pattern extraction with fascicles. In Proc. of the 25th
VLDB Conference, pages 186–198, 1999.

[12] B. Liu, Y. Xia, and P. S. Yu. Clustering through decision tree
construction. In Proc. of the 9th CIKM conference, pages
20–29, 2000.

[13] H. Nagesh, S. Goil, and A. Choudhary. Mafia: Efficient and
scalable subspace clustering for very large data sets. Techni-
cal Report 9906-010, Northwestern University, June 1999.

[14] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discover-
ing frequent closed itemsets for association rules. In Proc. of
the 7th ICDT Conference, pages 398–416, 1999.

[15] J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu. Maple: A
fast algorithm for maximal pattern-based clustering. In Proc.
of the 3rd ICDM Conference, pages 259–266, 2003.

[16] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M. Murali.
A monte carlo algorithm for fast projective clustering. In
Proc. of the 2002 ACM SIGMOD Conference, pages 418–
427, 2002.

[17] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 3: Collab-
oration of array, bitmap and prefix tree for frequent itemset
mining. In Proc. of the ACM SIGKDD OSDM workshop,
2005.

[18] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by
pattern similarity in large data sets. In Proc. of the 2002 ACM
SIGMOD Conference, pages 394–405, 2002.

[19] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee. Findit:
a fast and intelligent subspace clustering algorithm using
dimension voting. Information & Software Technology,
46(4):255–271, 2004.

[20] J. Yang, W. Wang, H. Wang, and P. S. Yu. δ-clusters: Cap-
turing subspace correlation in a large data set. In Proc. of the
18th IEEE ICDE Conference, pages 517–528, 2002.

1-4244-0803-2/07/$20.00 ©2007 IEEE 1254



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveEPSInfo false
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /DetectCurves 0.100000
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /PreserveDICMYKValues true
  /PreserveFlatness true
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /ColorImageMinDownsampleDepth 1
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /GrayImageMinDownsampleDepth 2
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /CheckCompliance [
    /None
  ]
  /PDFXOutputConditionIdentifier ()
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


