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Expressiveness of database query languages remains one of the major motivations for research in �nitemodel theory. However, most of those tools developed are modi�ed Ehrenfeucht-Fra��ss�e games, whoseapplication often involves a rather intricate argument. Furthermore, most current tools are applicableonly to �rst-order logic and some of its extensions (like fragments of second-order logic [16], in�nitarylogics [4], logics with counting [23], etc.); but they do not apply to languages that resemble real querylanguages, like SQL.The goal of this paper is to give a thorough study of local properties of queries in a context that goesbeyond the pure �rst-order case, and then apply the resulting tools to analyze expressive power ofSQL-like languages.Languages like SQL di�er from the relational calculus in that they have grouping constructs (modeledby the SQL GROUPBY) and aggregate functions such as COUNT and AVG. After some initial investigationof extended relational languages was done in [29, 40], �rst results on expressive power appeared in [7].However, the results of [7] were based on the assumption that the deterministic and nondeterministiclogspace are di�erent, and thus questions on the expressive power of SQL-like languages remainedopen.In the past few years, an intimate connection was discovered between relational languages with ag-gregate functions and languages whose main data structures are bags rather than sets. There was aurry of activity in studying such languages, resulting in the thorough study of interde�nability oftheir primitives [3, 32, 21], complexity [21], optimization [6], equational theories [20] and, �nally, thelimitations of their expressive power [36, 35]. In particular, it was shown in [36] that the transitive clo-sure of a graph remains inexpressible even when grouping and aggregation are added to the relationalcalculus. For a survey of the results in this area, see [22].Since there was no tool available for studying languages with aggregate functions, the technique wetried to use in [36] was the following. We tried to �nd a property possessed by the queries in ourlanguage, which is not possessed by the transitive closure of a graph. The property we have in mindis this: Think of a query q that takes a graph as an input and returns a graph. We say that it hasthe (graph) bounded degree property if for any k, if all in- and out-degrees in an input graph G do notexceed k, then the number of distinct in- and out-degrees in the output graph q(G) is bounded bysome constant c, that depends only on k and q, and not on the graph G. It is clear that the transitiveclosure query violates this property: just look at the transitive closure of a chain graph.We have been able to prove that the bounded degree property holds for every relational calculusgraph query [36]. We have also demonstrated that it is a very convenient tool for establishing boundson expressive power, often much easier to apply than the games or other tools. However, we werenot able to prove in [36] that it extends to languages with aggregate functions. Instead, we showedinexpressibility of the transitive closure in such a language by a direct brute-force argument, analyzingthe properties of queries restricted to very special classes of inputs (multicycles).The question of whether relational calculus with grouping and aggregate functions has the boundeddegree property was the main open problem left in [36]. We also mentioned a possible approachtowards solving this problem. The proof of the bounded degree property for relational calculus wasbased on Gaifman's result that �rst-order formulae are local, in the sense as de�ned in [18]. The2



locality result in [18] has two parts, and only one was used in our proof in [36]. It says that in order todetermine if a formula �(~x) is satis�ed on a tuple ~a, one only has to look at a small neighborhood of~a of a predetermined size. (The second part deals with sentences, and is irrelevant for the discussionhere.) Thus, we thought that it is of interest to give a general study of queries that satisfy this notionof locality and, in particular, the expressiveness issues for such queries.The purpose of this paper is twofold. First, we give a general study of local queries, their expressivepower, and more general notions of the bounded degree property. Second, we prove locality of certainqueries in an SQL-like language and show that this is enough to con�rm that it has the boundeddegree property.Organization In the next section, we introduce the notations. We do this in such a way that thepresentation of the results about locality and bounded degree properties is language-independent, andcan thus be applied to a number of languages, including �rst-order logic and some of its extensions. Wegive formal de�nitions of local queries, and generalize the de�nition of the bounded degree propertyto arbitrary queries. We also note that every relational calculus query is local.In Section 3 we prove the main result about expressiveness of local queries. We show that the numberof di�erent in- and out-degrees realized in the output of a graph query on an arbitrary structure isbounded above by the number of nonisomorphic neighborhoods realized in the input structure, suchthat the radius of these neighborhoods depends only on the query. We demonstrate some expressivenessbounds that immediately follow from this result.The main result of Section 4 is that every local query has the bounded degree property. We also showhow this result can be used to establish expressiveness bounds in the presence of some auxiliary data.In Section 5 we look at some expected generalizations of the bounded degree property. One of them,saying that the output of a query q cannot have more than c di�erent in- and out-degrees, providedthe input has at most k di�erent degrees, and c depends only on q and k, was conjectured to be truefor �rst-order queries. We show that, somewhat unexpectedly, there are �rst-order queries that violatethis and even a slightly weaker property.In Section 6 we introduce our theoretical SQL-like language that extends relational calculus withgrouping and aggregate functions, and prove that it is local when restricted to unordered at relationswhose degrees are bounded by a constant. Therefore, the language has the bounded degree propertyover at relations without ordering on the domain elements. This implies that it cannot express thetransitive closure, if there is no ordering on the domain elements. It also follows that �rst-orderqueries with H�artig and Rescher (equicardinality and majority) quanti�ers [43] have the boundeddegree property.Finally, in Section 7 we apply our results to incremental maintenance of views, and show that SQLand relational calculus are incapable of maintaining the transitive closure view even in the presenceof certain kinds of auxiliary data.An extended abstract of this paper appeared in Proceedings of the 6th International Conference on3



Database Theory [9].2 NotationsWe study queries on �nite relational structures. A relational signature � is a set of relation symbolsfR1, ..., Rlg, with an associated arity function. In what follows, pi(> 0) denotes the arity of Ri.By �n we mean � extended with n new constant symbols. We use graphs in many examples. So wedenote the signature of graphs by �gr; this signature has one binary predicate, representing edges ofthe graph.A structure will be written as A = hA;R1; : : : ; Rli, where A is a �nite nonempty set called the universeof A, and Ri is the interpretation of Ri, which is a subset of Api . When it does not lead to confusion,we will write Ri in place of Ri. We use the symbol �= to denote isomorphism of structures. The classof �nite � -structures is denoted by STRUCT[� ].We would like to make our results general enough to apply to a variety of languages. To this end, weassume that a query is a formula  (x1; : : : ; xm), where x1, ..., xm are free variables. We also assumethe notion of j= between structures and formulas. (You may think of  as a �rst-order formula in thelanguage of � , and j= as the usual satisfaction relation.) Associated with a query  (x1; : : : ; xm) is amapping 	 of structures from STRUCT[� ] to STRUCT[Sm], where Sm is a symbol of arity m, de�nedby 	(A) = hA; f(a1; : : : ; am) 2 Amj A j=  (a1; : : : ; am)gi. If m = 2, the output of a query is a graph,and we speak about graph queries. For convenience, queries are denoted by lower case Greek letters;the associated mappings of structures are denoted by the corresponding upper case Greek letters.The following de�nitions are quite standard; see [12, 18]. Given a structure A, its graph G(A) isde�ned as hA;Ei where (a; b) is in E i� there is a tuple ~t 2 Ri for some i such that both a andb are in ~t. It is also called the Gaifman graph of a structure, cf. [16]. The distance d(a; b) isde�ned as the length of the shortest path from a to b in G(A). Note that the triangle inequalityholds: d(a; c) � d(a; b) + d(b; c). Given a 2 A, and r � 0, the r-sphere of a, denoted by Sr(a), isfb 2 A j d(a; b) � rg. Note that a 2 Sr(a). For a tuple ~t, Sr(~t) = Sa2~t Sr(a).Given a tuple ~t = (t1; : : : ; tn), its r-neighborhood Nr(~t) is de�ned as a �n structurehSr(~t); R1 \ Sr(~t)p1 ; : : : ; Rk \ Sr(~t)pk ; t1; : : : ; tniThat is, the universe of Nr(~t) is Sr(~t), the interpretation of the relations in � is obtained by restrictingthem to the universe, and the n extra constants are the elements of ~t.Given a structure A, we de�ne an equivalence relation a �d b i� Nd(a) �= Nd(b). Note that sinceNd(a) and Nd(b) are structures of the signature �1, any isomorphism h : Nd(a)! Nd(b) is required tosatisfy h(a) = b.We de�ne ntp(d;A) to be the number of �d equivalence classes in A. That is, ntp(d;A) is the numberof isomorphism types of d-neighborhoods in A. 4



Now we can give our main de�nition.De�nition 2.1 Given a query  (x1; : : : ; xm), its locality rank is the minimal number r 2 N suchthat, for every A 2 STRUCT[� ] and for every two m-ary vectors ~a, ~b of elements of A, it is the casethat Nr(~a) �= Nr(~b) implies A j=  (~a) i� A j=  (~b). If no such r exists, the locality rank is 1. Aquery is local if it has a �nite locality rank. A language is local if every query in it is. 2Are there any interesting examples of local queries? An answer to this is provided by Gaifman'slocality theorem [18] which implies, in our terminology, the following fact.Fact 2.2 Every �rst-order (relational calculus) query is local. 2However, even the simplest fragment of second-order logic, monadic �11, is not local. Consider a�rst-order formula  0(x) in the language of one binary relational symbol E and two unary symbolsU and X that says the following: the interpretation of U is contained in the interpretation of X, nopredecessor of an element of U (in terms of the E relation) is in X, X is closed under E-successors,and x is in X. Let  (x) be 9X 0(x); it de�nes a query on graphs with a distinguished set of nodesU . Assume that  is local, and its locality rank is r. Let G be the graph of a successor relation on delements, where d > 4r+5 is odd. Let a be its middle element, and let b be an element that precedesa and is at the distance at least r + 1 from the start node and a, and let c be an element that ispreceded by a and is at the distance at least r + 1 from the end node and a. If we interpret U asfag, then Nr(b) �= Nr(c). At the same time,  (c) holds, but  (b) does not hold, proving that  is notlocal.We shall see later that there are interesting examples of local queries, though restricted to some classesof structures. We de�ne these restricted classes of structures below. They play a central role in thepaper.For a graph G, its degree set deg set(G) is the set of all possible in- and out-degrees that are realizedin G. By deg(G) we denote the cardinality of deg set(G); that is, the number of di�erent in- andout-degrees realized in G. We also de�ne similar notions for arbitrary structures. Given a relationRi in a structure A, degreej(Ri; a) is the number of tuples in Ri whose jth component is a. Thendeg set(A) is de�ned as the set of all degreej(Ri; a) for Ri 2 A and a 2 A. Finally, deg(A) is thecardinality of deg set(A).The class of � -structures A with deg set(A) � f0; 1; : : : ; kg is denoted by STRUCTk[� ]. We shall seethat many queries in relational calculus augmented with grouping and arithmetic constructs (this isessentially plain SQL) are local when restricted to inputs from STRUCTk[� ], for any �xed k. We alsosee from this that �rst-order queries with H�artig and Rescher quanti�ers [43] are local when restrictedto the same structures.As was mentioned before, a certain notion of uniform behavior of queries on STRUCTk[�gr] wasintroduced earlier in [36]. We say that a graph query  (x; y) has the graph bounded degree5



property if there exists a function f : N ! N such that deg(	(G)) � f(k) for any G 2 STRUCTk[�gr].It was shown in [36] that every �rst-order graph query has the graph bounded degree property.3 Expressiveness of Local QueriesThe goal of this section is to prove a general theorem characterizing outputs of local graph queries.Informally, our main result says that if  is a local query, then the Gaifman graph of 	(A) cannotbe much more complex than the structure A itself. We �rst prove a theorem that states this resultfor graph queries. From this and a lemma that determines the locality rank of a query de�ning theGaifman graph, we obtain our main result.Recall that for any structure A, the parameter deg(A) shows how complex the structure looks globally,that is, how many di�erent degrees are realized in it. The parameter ntp(d;A), for any �xed d � 0,shows how many distinct small neighborhoods are realized in A. The �rst result of this section showsthe intimate connection between the parameter ntp(d; �) on an input to a local graph query and theparameter deg(�) on the output. It can also be interpreted as saying that output of a local graph querycannot be much more complex than its input.Theorem 3.1 Let  (x; y) be a graph query on � -structures of �nite locality rank r. Then for anyA 2 STRUCT[� ], deg(	(A)) � 2 � ntp(3r + 1;A)In fact, the number of distinct in-degrees in 	(A) is at most ntp(3r + 1;A), and the number of distinctout-degrees in 	(A) is at most ntp(3r + 1;A).Proof. The key to our theorem is the observation that for any m > 0, when a large neighborhood ofa �xed point a and a large neighborhood of another �xed point b are isomorphic, it is possible to �nda permutation � on a smaller sphere S around a and b such that the m-neighborhoods of a and x andof b and �(x) are isomorphic for all x 2 S. This observation is formalized in the lemma below, whoseproof is delayed until the end of the section.Lemma 3.2 Let r be an arbitrary positive integer, and let d � 3r + 1. Assume that a �d b in a� -structure A. Then there is a permutation � on Sd�r(a; b) such that for every x 2 Sd�r(a; b), it isthe case that Nr(a; x) �= Nr(b; �(x)).To show how lemma 3.2 implies the theorem, let G0 = hV;E0i be 	(A). Let d = 3r + 1. Let a �d b.For every x 62 S2r+1(a; b), Nr(a; x) �= Nr(b; x), since Nr(a) �= Nr(b) and d(a; x); d(b; x) > 2r + 1.(This follows immediately from Claims 3.7 and 3.9 in the proof of Lemma 3.2.) Thus, (a; x) 2 E0i� (b; x) 2 E0 by locality. Furthermore, by Lemma 3.2, for every x 2 S2r+1(a; b), (a; x) 2 E0 i�(b; �(x)) 2 E0 by locality and the property of �. Hence a and b have the same outdegrees. A similarargument shows that a and b have the same indegrees. Thus, the number of possible indegrees of G0 isat most ntp(d;G) and the number of possible outdegrees of G0 is at most ntp(d;G). Hence degset(G0)has at most 2 � ntp(d;G) elements. 26



Before we give the proof of Lemma 3.2, let us give two simple applications to demonstrate Theorem3.1's usefulness in establishing expressiveness bounds. The second of these will be generalized in thenext section into a powerful result that lets us \compile away" Ehrenfeucht-Fra��ss�e games from manyinexpressibility proofs.Corollary 3.3 No local query can de�ne the transitive closure of a graph.Proof. Suppose  (x; y) does de�ne the transitive closure. Consider chains, which are graphs withthe edge-set of the form Cn = f(a0; a1); : : : ; (an�1; an)g where all ais are distinct. Since  de�nes thetransitive closure, deg(	(Cn)) = n + 1. For every d � 0, there are at most 2d + 1 non-isomorphicd-neighborhoods in a chain. Thus, if the locality rank of  is r, we obtain from Theorem 3.1 thatdeg(	(G)) is at most 4(3r+1)+2 for any chain graph G. Thus,  cannot de�ne the transitive closure.2Corollary 3.4 Every local graph query has the graph bounded degree property.Proof. If all in- and out-degrees in G are bounded by k, then the maximum number of non-isomorphicd-neighborhoods depends only on k and d. Combining this with Theorem 3.1, we see that there is abound on deg(	(G)) that depends only on k and r, the locality rank of  , which implies the graphbounded degree property. 2The statement of Theorem 3.1 is not completely satisfactory, since it only deals with graph queries.To generalize it to arbitrary queries, we look at the Gaifman graphs of the outputs. Recall that G(A)denotes the Gaifman graph of A. Now we can prove the following.Theorem 3.5 Let  (x1; : : : ; xn), n � 2, be a query on � -structures of �nite locality rank r > 0. Thenthere is a number m that depends only on n and r such that, for any A 2 STRUCT[� ], the number ofdistinct degrees in the Gaifman graph of 	(A) does not exceed ntp(m;A). In fact,deg(G(	(A))) � ntp(3n�1r + 12(3n�1 � 1);A)Proof. We prove this theorem by reduction to graph queries. Given a query  (x1; : : : ; xn), n >2, let  0(x1; : : : ; xn�1) be de�ned as follows. For a structure A with universe A, we let A j= 0(a1; : : : ; an�1) i� for some a 2 A, and for some index 0 � i � n � 1, it is the case that A j= (a1; : : : ; ai; a; ai+1; : : : ; an�1). Note that i = 0 means A j=  (a; a1; : : : ; an�1) and i = n � 1 meansA j=  (a1; : : : ; an�1; a).Our key lemma is:Lemma 3.6 Let  (x1; : : : ; xn) be of locality rank r > 0. Then  0(x1; : : : ; xn�1) is of locality rank3r + 1. 7



We postpone the proof of this lemma until the end of the section, and now show how it implies thetheorem. First, note that if  (x; y) is a graph query of locality rank r, and  �(x; y) is such thatA j=  �(a; b) i� A j=  (a; b) or A j=  (b; a), then  � also has locality rank r.For an arbitrary query  (x1; : : : ; xn), n > 2, de�ne  1(x1; : : : ; xn�1) =  0(x1; : : : ; xn�1),  2(x1; : : : ; xn�2)=  01(x1; : : : ; xn�2), etc., until we obtain �0(x; y) =  n�2(x; y). Let A j= �(x; y) i� A j= �0(x; y) orA j= �0(y; x). It is easy to see that A j= �(a; b) i� (a; b) is in the Gaifman graph of 	(A). FromLemma 3.6, we see that the locality rank of � is 3n�2r+ 12(3n�2� 1). The observation we made aboveabout  � shows that the query returning the Gaifman graph of the result of an n-ary query of localityrank r has locality rank r0 = 3n�2r + 12(3n�2 � 1) for any n � 2.Now applying Theorem 3.1, we obtain that the number of di�erent indegrees in G(	(A)) is at mostntp(3r0 + 1;A). Since G(	(A)) is undirected, we obtain from this that deg(G(	(A))) is at mostntp(3n�1r + 12(3n�1 � 1);A), thus proving the theorem. 2As a side remark, note that for the case n = 2, Theorem 3.5 yields deg(G(	(A))) � ntp(3r + 1;A),while Theorem 3.1 gives deg(	(A)) � 2 � ntp(3r + 1;A). The reason for losing the factor of 2 isthat in the former case we deal with undirected graphs, for which in-degree of each node equals itsout-degree.The remainder of this section is devoted to proving Lemmas 3.2 and 3.6.Proof of Lemma 3.2. The proof requires several steps. Let us begin with a few general observationsabout neighborhoods.Claim 3.7 Let Nm(a) and Nm(b) be isomorphic and let h be an isomorphism between them. Then,for l � m, h restricted to Sl(a) is an isomorphism between Nl(a) and Nl(b).Proof. It is enough to show that this restriction of h maps Sl(a) onto Sl(b); the rest will follow fromthe fact that h is an isomorphism. Let x 2 Sl(a); then we can �nd some elements x1; : : : ; xi andtuples ~t1; : : : ;~ti+1 such that i < l; a; x1 2 ~t1; x1; x2 2 ~t2; : : : ;xi; x 2 ~ti+1 and each ~tj 2 Rs for somes. Applying h, we get b; h(x1) 2 h(~t1); h(x1); h(x2) 2 h(~t2); : : : ;h(xi); h(x) 2 h(~ti+1). Moreover, sinceh is an isomorphism between Nm(a) and Nm(b), we get that each h(~tj) 2 Rs \ Sm(b)ps for some s.From this we immediately see that h(x) 2 Sl(b). Now, applying the same argument to h�1 we obtainthat for each y 2 Sl(b), h�1(y) 2 Sl(a), and thus h restricted to Sl(a) maps Sl(a) onto Sl(b). 2Claim 3.8 Let h be an isomorphism between Nm(a) and Nm(b). Let ~x be a tuple from Sl(a). Assumethat k + l � m. Then h(Sk(~x)) = Sk(h(~x)). In particular, Nk(~x) and Nk(h(~x)) are isomorphic.Proof. The proof above applies verbatim to show that for any x with d(a; x) � l, the isomorphism hmaps Sk(x) onto Sk(h(x)) for k � m� l. Thus, h maps Sk(~x) onto Sk(h(~x)). Using this together withthe fact that h is an isomorphism and Sk(~x) � Sm(a) and Sk(h(~x)) � Sm(b) we obtain as desired thatNk(~x) and Nk(h(~x)) are isomorphic. 28



We now return to proving Lemma 3.2. First, note the following. Assume d(x; y) > 2r + 1. Then, forany � -relation in the structure Nr(x; y), and any tuple t in that relation, either all components of tbelong to Sr(x), or all components of t belong to Sr(y). Indeed, if there is a tuple with componentsa 2 Sr(x) and b 2 Sr(y), then d(x; y) � d(x; a) + d(a; b) + d(b; y) � 2r + 1. In such a case (that is,when d(x; y) > 2r + 1) we also say that Nr(x; y) is the disjoint union of Nr(x) and Nr(y). Note thatNr(x; y) is a �2-structure, but both Nr(x) and Nr(y) are �1-structures. The following claim will beused often in the proof.Claim 3.9 Assume that d(x; y) > 2r + 1 and d(x0; y0) > 2r + 1. Assume also that Nr(x) �= Nr(x0)and Nr(y) �= Nr(y0). Then Nr(x; y) �= Nr(x0; y0). 2Indeed, using the observation above, we can de�ne the isomorphism component-wise.Now, let d � 3r + 1 (so that d � r � 2r + 1) and a �d b. Fix an isomorphism h : Nd(a) ! Nd(b); inparticular h(a) = b. There are two cases.Case 1: Sd�r(a) \ Sd�r(b) = ;. Then we de�ne � as follows:�(x) = ( h(x) if x 2 Sd�r(a)h�1(x) if x 2 Sd�r(b)If x 2 Sd�r(a), then Nr(a; x) � Nd(a) and hence Nr(a; x) �= Nr(h(a); h(x)) = Nr(b; �(x)). If x 2Sd�r(b), then Nr(a; x) is the disjoint union of Nr(a) and Nr(x) and hence is isomorphic to the disjointunion of Nr(b) and Nr(h�1(x)) = Nr(�(x)), that is, to Nr(b; �(x)). This proves Case 1.Case 2: Sd�r(a) \ Sd�r(b) 6= ;. We need a few de�nitions �rst. Let Na = Sd�r(a) � Sd�r(b),N b = Sd�r(b)� Sd�r(a), and X = str(a) \ Sd�r(b). Then we de�ne the following sets:A0 = fx 2 Na j h(x) 2 XgA1 = h(A0) � XB0 = fx 2 N b j h�1(x) 2 XgB1 = h�1(B0) � XMa = Na �A0M b = N b �B0X0 = X � (A1 [B1)It is not hard to see that these 7 sets cover Sd�r(a; b) and that in fact only A1 and B1 can havenonempty intersection.We �rst note that if x 2Ma, then h(x) 2M b. Indeed, since h(x) 2 Sd�r(b), we have h(x) 2 A1[X0[B0[B1[M b. Since h(x) 62 X (otherwise we would have x 2 A0), we have h(x) 2 B0[M b. Assumingh(x) 2 B0, we get x = h�1(h(x)) 2 B1, which contradicts the assumption. Hence, h(x) 2 M b.Similarly, if y 2M b, then h�1(y) 2Ma. 9



Claim 3.10 For any x 2 A0 there is m > 1 such that hm(x) 2 B0.Proof. We have y = h(x) 2 A1. By the above remark, h(y) = h2(x) 62 M b. If h(y) 2 A1, theny 2 A0, which is impossible since A0 \ A1 = ;. Thus, for y 2 A1, we have h(y) 2 X0 [ B0 [ B1; inparticular, h2(x) 2 X0 [ B0 [ B1. If h2(x) 2 B0, we are done; if h2(x) 2 B1 then h3(x) 2 B0 and weare done. Otherwise we see that h3(x) 2 X0 [ B1; so again if we have h3(x) 2 B1, then h4(x) 2 B0.Continuing, we see that the only possible way for hm(x) to be outside of B0 is if we have hi(x) 2 X0for every i > 1. Since X0 is �nite, we have that hi(x) = hj(x) for some j > i > 1; we assume that i isthe minimal such. Then h(hi�1(x)) = h(hj�1(x)) but hi�1(x) 6= hj�1(x), which contradict injectivityof h. This shows that hm(x) 2 B0 for some m. 2Claim 3.11 For any y 2 B0 there is x 2 A0 and m > 1 such that hm(x) = y.Proof. The argument is just dual to the proof above. Apply the proof above to h�1 to get x 2 A0by a number of applications of h�1. 2Using Claims 3.10 and 3.11, we de�ne a function p : A0 ! B0 by letting p(x) be hm(x), where m isthe minimum such that hm(x) 2 B0.Claim 3.12 The function p is 1-1 and onto.Proof. It follows from Claim 3.11 that p is onto. To see that it is 1-1, assume that p(x) = p(x0) forsome x; x0 2 A0. Then for some m;m0 > 1, p(x) = hm(x) and p(x0) = hm0(x0). Assume without lossof generality that m � m0 and applying h�1 m0 times, we obtain hm�m0(x) = x0. Since no h-image ofan element of A0 can be in A0, we get m = m0 and thus x = x0. 2Claim 3.13 For every x 2 A0, Nr(x) �= Nr(p(x)).Proof. Let p(x) = hm(x) for m > 1. It follows from the proof of Claim 3.10 that x = h0(x); h(x); : : :,hm�1(x) 2 Sd�r(a). Thus, for every 0 � i � m � 1, Sr(hi(x)) � Sd(a) and hence h is de�ned onall these spheres. Applying Claim 3.8 we see Nr(hi(x)) �= Nr(hi+1(x)) for any i � m � 1. ThusNr(x) �= Nr(hm(x)) = Nr(p(x)). 2Now we de�ne the map � by cases:�(x) = 8><>: h(x) if x 2 Sd�r(a)h�1(x) if x 2M bp�1(x) if x 2 B0Claim 3.14 � is a permutation on Sd�r(a; b).Proof. It follows from the de�nition that � is de�ned everywhere on Sd�r(a; b). To see that � isinjective, note that each of its components is, so we only need to consider cases when two argumentscorrespond to di�erent cases in the de�nition of �.10



Now for the case where x 2 Sd�r(a) and y 2M b, we have �(x) = h(x) 2 Sd�r(b) and �(y) = h�1(y) 2Ma; hence �(x) 6= �(y). For the case where x 2 Sd�r(a) and y 2 B0, we have again �(x) 2 Sd�r(b)and �(y) = p�1(y) 2 A0; hence �(x) 6= �(y). For the case where x 2 M b and y 2 B0, we have�(x) 2Ma and �(y) 2 A0 and again �(x) 6= �(y).It remains to show that � is onto. First, all Sd�r(b) is covered since h is an isomorphism. Let x 2Ma.Then y = h(x) 2 M b and x = �(y) = h�1(h(x)). Finally, if x 2 A0, then for y = p(x) 2 B0 we havex = �(y). 2Claim 3.15 For any x 2 Sd�r(a) [ Sd�r(b), Nr(a; x) �= Nr(b; �(x)).Proof. We need to consider three cases, corresponding to the de�nition of �. The �rst case iswhen x 2 Sd�r(a). Then Sr(a; x) � Sd(a) and we have, by Claim 3.8, Nr(a; x) �= Nr(h(a); h(x)) =Nr(b; �(x)). The second case is when x 2 M b. Then Nr(a; x) is the disjoint union of Nr(a) andNr(x). Since �(x) = h�1(x) 2Ma, Nr(b; �(x)) is the disjoint union of Nr(b) and Nr(�(x)) and we getNr(a; x) �= Nr(b; �(x)) from Nr(x) �= Nr(h�1(x)). The third and �nal case is when x 2 B0. Here weknow that for y = p�1(x) = �(x), Nr(y) �= Nr(x). Thus, Nr(a; x) is the disjoint union of Nr(a) andNr(x), and is thus isomorphic to the disjoint union of Nr(b) and Nr(y), which is Nr(b; �(x)). 2This �nishes the proof of Case 2, and thus the lemma.Proof of Lemma 3.6. Fix A 2 STRUCT[� ]. Let ~a = (a1; : : : ; an�1) and ~b = (b1; : : : ; bn�1) besuch that N3r+1(~a) �= N3r+1(~b). Let f be an isomorphism. To prove the lemma, we must show thatA j=  0(~a) implies A j=  0(~b).Let A j=  0(~a). Then A j=  (~a0) where ~a0 is obtained from ~a by inserting a new element a as one ofthe components. Without loss of generality, we assume that A j=  (a1; : : : ; an�1; a) for some a 2 A.We now show that there exists b 2 A such that A j=  (b1; : : : ; bn�1; b).First, we consider the case when d(a; ai) � 2r + 1 for some ai; that is, a 2 S2r+1(~a). Then Sr(a) �S3r+1(~a), and from this we conclude that Nr(a1; : : : ; an�1; a) �= Nr(b1; : : : ; bn�1; f(a)). Thus, b can betaken to be f(a).Now assume that d(a; ai) > 2r + 1 for all i = 1; : : : ; n � 1. Then Nr(a1; : : : ; an�1; a) is the disjointunion of Nr(~a) and Nr(a) in the same sense as de�ned in the proof of Lemma 3.2. Now we claim thatthere exists a b 2 A such that b 62 S2r+1(~b) and Nr(b) �= Nr(a). Note that this is su�cient to concludethe lemma: for such an element b, we have that Nr(b1; : : : ; bn�1; b) is the disjoint union of Nr(~b) andNr(b) and thus, by Claim 3.9, it is isomorphic to Nr(a1; : : : ; an�1; a). Thus, A j=  (b1; : : : ; bn�1; b).To prove the existence of b, �rst notice that if a 62 S2r+1(~b), then we can just take b to be a. Thus,we assume a 2 S2r+1(~b). Therefore, Sr(a) � S3r+1(~b), and thus for b0 = f�1(a) we have Nr(b0) �=Nr(a). Notice that b0 2 S2r+1(~a) since f�1 is the isomorphism of N3r+1(~b) and N3r+1(~a). Now, ifb0 62 S2r+1(~b), then we are done. 11



Assume b0 2 S2r+1(~b) and de�ne b1 = f�1(b0). As before, Nr(b0) �= Nr(b1) (and thus Nr(b1) �= Nr(b)and b1 2 S2r+1(~a). If b1 62 S2r+1(~b), we are done; otherwise we continue this process by constructingb2 = f�1(b1); b3 = f�1(b2), etc. One possibility is that this process never ends, that is, for each i andbi 2 S2r+1(~a)\S2r+1(~b) we have that bi+1 = f�1(bi) is again in S2r+1(~b) (and also in S2r+1(~a)). SinceS2r+1(~a)\ S2r+1(~b) is �nite, we can �nd the lexicographically minimal pair (i; j) with j > i such thatbj = bi. If i = 0, then a = f(b0) = f(bj) = bj�1 2 S2r+1(~a), which contradicts a 62 S2r+1(~a). If i > 0,then bi�1 = f(bi) = f(bj) = bj�1, contradicting the minimality of (i; j).Thus, the process of constructing the sequence b0; b1; : : : eventually stops when we have bi 2 S2r+1(~a)\S2r+1(~b) such that bi+1 = f�1(~bi) 62 S2r+1(~b). Since Nr(bi+1) �= Nr(bi) �= : : : �= Nr(b0) �= Nr(a), we�nd an element b = bi+1 such that b 62 S2r+1(~b) and Nr(b) �= Nr(a). This concludes the proof. 24 Bounded Degree PropertyA very convenient form of the locality property is called the bounded degree property. It says that forstructures from STRUCTk[� ] (that is, � -structures in which no degree exceeds k), there is an upperbound on deg(	(A)) that depends only on  and k. A special case of this property is the graphbounded degree property mentioned in Section 2. This special case was established for all �rst-orderqueries from graphs to graphs in [36] (see also Corollary 3.4).De�nition 4.1 A query  (x1; : : : ; xm) is said to have the bounded degree property, or BDP, ifthere is a function f : N ! N such that deg(	(A)) � f (k) for every A 2 STRUCTk[� ]. 2This property can be used as an easy-to-apply tool for establishing expressiveness bounds of queries.Assume that it is known that every query in a language L has the BDP. To show that some query q isnot de�nable in L, one has to �nd a number k and a class C of input structures in STRUCTk[� ] suchthat q(A) can realize arbitrarily large sets of degrees on structures A from C. This is exactly the ideaof the proof of Corollary 3.3.The usefulness of BDP as a tool for proving expressiveness bounds on �rst-order graph queries wasdemonstrated in [36]. In this section we prove that every local query has the BDP. From this wecan derive generalizations of the result of [36]. For instance, we show that we can use essentially thetechnique outlined above in the presence of some auxiliary relations, such as the successor relation, orrelations of moderate degree [16].Theorem 4.2 Every local query has the bounded degree property.The proof of this result, which is a generalization of Corollary 3.4, is delayed until the end of thesection. For now let us discuss some implications of this result. As a start, we note that the graphbounded degree property result from [36] applies only to queries from graphs to graphs. One mayask what happens in the presence of auxiliary information, such as the successor relation. Since thesuccessor relation only adds 0 and 1 to the degree set, we obtain immediately12



Corollary 4.3 The graph bounded degree property of �rst-order queries continues to hold in the pres-ence of a successor relation. 2But what happens if relations more complex than the successor are allowed? For instance, whathappens if we allow auxiliary relations whose degrees are not bounded by any constant, but are stillnot very large? We can answer this question by using the (slightly modi�ed) notion of moderate degreefrom [16].Consider a class of structures C � STRUCT[� ] for some relational vocabulary � . De�ne a functionsC : N ! N by letting sC(n) be the maximal possible in- or out-degree in some n-element structureA 2 C. Given an increasing function g : N ! R such that g is not bounded by any constant, wesay that C is of g-moderate degree if sC(n) � logo(1) g(n) for all n. That is, we have a function� : N ! N such that limn!1 �(n) = 0 and sC(n) � log�(n) g(n). When g is the identity, we have thede�nition of moderate degree of [16].Proposition 4.4 Let  be a local query. Let C be a class of structures of g-moderate degree. Thenthere is N 2 N such that for any A 2 C with card(A) = n > N , we havedeg(	(A)) < g(n):Proof. According to the proof of Theorem 4.2 to be presented shortly, for any A 2 C of cardinalityn, and for appropriately chosen constants c and d,deg(	(A)) � 2c�sC(n)dSince g(n) is not bounded by any constant, for each pair of constants C,D > 0, we have logD�(n)�1 g(n) <C for large enough n. Applying this to D = d and C = 1=c we get, for large enough n,dqlogd�(n)�1 g(n) < 1dpcHence, log�(n) g(n) < 1dpc � log 1d g(n), which implies sC(n) < 1dpc � log 1d g(n). It follows that csC(n)d <log g(n) and hence 2csC(n)d < g(n). Then deg(	(A)) � 2c�sC(n)d implies deg(	(A)) < g(n). 2The transitive closure of a chain has as many distinct degrees as there are links in the chain. It is thusnot de�nable by a local query even when auxiliary data of moderate degree are available. We thushave an example of a problem complete for DLOGSPACE [28] that cannot be de�nable by a localquery even in the presence of relations of moderate degree.More applications of the BDP in the presence of auxiliary relations are given in Section 7. For now,let us provide the proof of Theorem 4.2. We need to show that given a local query  (x1; : : : ; xm),there is a function f : N ! N such that deg(	(A)) � f (k) for every A 2 STRUCTk[� ].Fix a STRUCTk[� ] structure A. Fix a local query  (x1; : : : ; xm). Assume m > 1; otherwise theoutput is a unary relation and deg(	(A)) is at most 2. Assume that each relation symbol Ri in � has13



arity pi, 1 � i � l. Let p =Pi pi. Let r be the locality rank of  (x1; : : : ; xm). Assume without loss ofgenerality that r > 0. Let sA(d) be the maximum size of Sd(a) for a 2 A. Let degree i(x) be the ithdegree of x in the output of  . Under these assumptions, we claimLemma 4.5 Let d = (2m � 2)(2r + 1). Suppose a �d b and Sd(a) \ Sd(b) = ;. Then jdegree1(a) �degree1(b)j � (2sA(d))m�1.Proof. We de�ne a permutation � on the set of (m� 1)-vectors ~t from Am�1�Sd(a; b)m�1 such thatA j=  (a;~t) i� A j=  (b; �(~t)). By  (a;~t), where t = (t1; : : : ; tm�1), we mean  (a; t1; : : : ; tm�1). If wecan �nd such �, then the maximal di�erence between degree1(a) and degree1(b) is the maximal numberof (m� 1)-tuples having all their components in Sd(a; b). Such a number is at most (2sA(d))m�1.To de�ne such a map �, we have to partition each vector ~t = (t1; : : : ; tm�1) that does not belong toSd(a; b)m�1 into two subvectors, whose respective 2r + 1-spheres do not intersect. This will allow usto give a de�nition by cases. The partition is achieved by means of the following construction thatuses a sequence of embedded spheres within Sd(a; b).Let h : Nd(a) ! Nd(b) be an isomorphism. We de�ne the map h� : Sd(a; b) ! Sd(a; b) by lettingh�(x) = x for x 2 Sd(a) and h�(x) = h�1(x) for x 2 Sd(b) (recall that Sd(a)\Sd(b) = ;). Next, de�neS1x to be S2r+1(x), and let Six = Si(2r+1)(x)� S(i�1)(2r+1)(x) for i > 1.First we consider the case when Sia = ; for some i � 2m � 2. If this is so, then S(i�1)(2r+1)(a)is the set of nodes of a connected component in G(A). From this and a �d b we conclude thatS(i�1)(2r+1)(b) is the set of nodes of a connected component in G(A), and S(i�1)(2r+1)(a) = Sd0(a) andS(i�1)(2r+1)(b) = Sd0(b) for any d0 � (i� 1)(2r + 1). Let ~t be any vector not contained in Sd(a; b)m�1.Let ~ta denote the components of ~t that belong to Sd(a), ~tb denote the components of ~t that belong toSd(b), and ~t0 denote the remaining components. Then we see that S2r+1(~ta), S2r+1(~tb) and S2r+1(~t0)are pairwise disjoint. Thus, for each such ~t, we de�ne �(~t) by applying h� on the components of ~taand ~tb and the identity function on ~t0. It is easy to see that � is a permutation, and it follows fromClaim 3.9 that Nr(a;~t) �= Nr(b; �(~t)).Now we consider the case when none of Sia and Sib is empty for i � 2m � 2. We claim that for anyvector ~t = (t1; : : : ; tm�1) that does not belong to Sd(a; b)m�1, there exists i � 2m� 2 such that no tjis in Sia [ Sib. Indeed, since ~t 62 Sd(a; b)m�1, we have that at most m� 2 of its components belong toSd(a) [ Sd(b). Since Sd(a) is the disjoint union Sj�2m�2 Sja and similarly Sd(b) is the disjoint unionSj�2m�2 Sjb , we see that at least m of Sja's do not contain any element of ~t, and at least m of Sjb 's donot contain any element of ~t. Thus, there is a j such that neither Sja nor Sjb contains an element of ~t.So we de�ne the set I~t = fj � 2m � 2 j ~t \ (Sja [ Sjb ) = ;g. Since I~t 6= ;, de�ne i~t as the minimumelement of this set.For any vector ~t, we de�ne ~t0 as its subvector consisting of those components that belong to Sj<i~t(Sja[Sjb ), and ~t1 as the vector containing the remaining components of ~t. Note that for any ~t 62 Sd(a; b)m�1,~t1 is nonempty.We are now ready to de�ne the map �. Given a vector ~t, if i~t = 1, then �(~t) is de�ned to be ~t.14



Otherwise, �(~t) is obtained by applying h� to each component of ~t0, and leaving ~t1 intact. It is easyto see that on vectors with some components not in Sd(a; b)m�1, the mapping � is injective. Since his an isomorphism and Sd(a) \ Sd(b) = ;, there exists an inverse to h�. This shows that � is onto: forany ~t = ~t0 [ ~t1, apply the inverse of h� to ~t0 to obtain a new vector ~s0. Then ~s = ~s0 [ ~t1 is mappedby � onto ~t. Indeed, since h is an isomorphism, i~s = i~t, and thus �(~s) = ~t.Finally, we show that for any ~t 62 Sd(a; b)m�1, Nr(a;~t) is isomorphic to Nr(b; �(~t)). From this bylocality we obtain A j=  (a;~t) i� A j=  (b; �(~t)). By de�nition of ~t0 and ~t1, their components are atleast at the distance 2r+1, and hence Nr(a;~t) is the disjoint union of Nr(a;~t0) andNr(~t1). Since h is anisomorphism, every element of S = Sj<i~t(Sja[Sjb ) is mapped onto an element of S. Hence, Nr(b; �(~t))is the disjoint union of Nr(b; h�(~t0)) and Nr(~t1). Let ~t01 denote the components of ~t0 in Sd(a), and ~t02denote the components of ~t0 in Sd(b). Then Nr(a;~t0) is the disjoint union of Nr(~a;~t01) and Nr(~t02),and Nr(b; h�(~t0)) is the disjoint union of Nr(~b; h(~t01)) and Nr(h�1(~t02)). Since Nr(a;~t0) �= Nr(~b; h(~t01))and Nr(~t02) �= Nr(h�1(~t02)), we obtain that Nr(a;~t0) �= Nr(b; h�(~t0)) and thus Nr(a;~t) is isomorphicto Nr(b; �(~t)). 2Under the same assumptions as Lemma 4.5, we claimProposition 4.6 Let s = sA((4m � 4)(2r + 1)). Then deg(	(A)) � m � sm � 21+m+lsp .Proof. Let d = (2m� 2)(2r + 1). It follows from Lemma 4.5 that for any a 2 A,card (fdegree1(b) j b �d ag) � 2(2sA(d))m�1 + 1 + sA(2d):Indeed, for any b �d a such that b 62 S2d(a), we have Sd(a) \ Sd(b) = ;, and thus by Lemma 4.5the di�erence between degree1(a) and degree1(b) is at most (2sA(d))m�1. Hence, elements outside ofS2d(a) contribute at most 2(2sA(d))m�1 + 1 elements to the set fdegree1(b) j b �d ag, from whichthe observation follows. Multiplying this by m, we obtain the number of di�erent degrees for eachisomorphism type of d-neighborhoods. Thus,deg(	(A)) < m � ntp(d;A) � (2(2sA(d))m�1 + 1 + sA(2d))The number ntp(d;A) is bounded above by the number of nonisomorphic structures of signature �1that have at most sA(d) elements. That is, ntp(d;A) � sA(d)Qli=1 2sA(d)pi � sA(d) � 2lsA(d)p . Lets = sA(2d). Since sA(d) � s and s � 1 (because A 6= ;), we obtain deg(	(A)) � ms2lsp(2(2s)m�1 +1 + s) � ms2lsp(2m+1sm�1) = m � sm � 21+m+lsp . 2Finally, we can complete the proof of Theorem 4.2. By assumption, deg set(A) � f0; : : : ; kg. ThussA(d) � (mkp + 1)d. Let f (k) = m � (mkp + 1)(4m�4)(2r+1)m � 21+m+l(mkp+1)p(4m�4)(2r+1) . Then weapply Proposition 4.6 and conclude deg(	(A)) � f (k) as desired.Thus, all local queries have the bounded degree property. However, the converse is not true. That is,there is a non-local query that has the bounded degree property. Indeed, let  (x; y) be a graph query15



de�ned as follows. If G is the union of disjoint chains having a unique longest chain, then G j=  (x; y)i� (x; y) is an edge in the unique longest chain in G; otherwise, G 6j=  (x; y) for all x; y. It is clearthat  has the bounded degree property but violates locality. Nevertheless, it should be pointed outthat adding this  to �rst-order logic destoys the bounded degree property of the latter.5 Stronger Bounded Degree PropertiesThe astute reader may have noticed a certain asymmetry in the statement of the bounded degreeproperty: We make an assumption about the degree set deg set(A), and give a conclusion that thereis an upper bound on the degree count deg(	(A)). So, the question arises: Can the bounded degreeproperty be strengthened? In what follows, we present two most obvious attempts to strengthen it.It was conjectured that both of them hold for �rst-order logic, but we show that this is not the case.Consequently, not all local queries possess these stronger properties.De�nition 5.1 A query  has the strong bounded degree property, or SBDP, if there exists afunction f : N ! N such that deg(	(A)) � f (deg(A)) for any structure A. 2De�nition 5.2 A query  has the interval bounded degree property, or IBDP, if there existsa function f : N ! N such that deg(	(A)) � f (k) for any structure A with max deg set(A) �min deg set(A) � k. 2It is easy to see that the SBDP implies the IBDP and the IBDP implies the BDP. It turns outsomewhat unexpectedly that there are �rst-order graph queries that do not have them.Theorem 5.3 There are �rst-order graph queries that do not have the interval bounded degree prop-erty. Consequently, they do not have the strong bounded degree property either.Thus, in contrast to Theorem 4.2, we conclude thatCorollary 5.4 There are local queries that do not possess the interval or the strong bounded degreeproperties. 2The remainder of this section is devoted to proving Theorem 5.3. We need to construct a �rst-ordergraph query that does not have the IBDP. First �x n > 3, four disjoint sets X = fx1; : : : ; xng,Y = fy1; : : : ; yng, C = fc1; : : : ; cng, D = fd1; : : : ; dng, and a permutation � : f1; : : : ; ng ! f1; : : : ; ng.De�ne the graph G� as follows. Its set of nodes N is X [ Y [C [D [ fa; b; cg. Its edges are given asfollows:� There are loops (a; a), (b; b), (c; c) and also edges (b; c) and (c; b).16



� For each i < n, there are edges (xi; xi+1) and (yi; yi+1).� For each i � n, there is an edge (xi; y�(i)).� For each i � n, there are edges (a; xi), (xi; a), (b; yi), (yi; b), (c; yi), (yi; c).� For each i � n and j � n, there are edges (xi; cj), (cj ; yi), (yi; dj), (dj ; xi).� There are no other edges.It follows straightforwardly from the construction that deg set(G�) = fn; n+ 1; n+ 2; n+ 3; n+ 4g.There is a �rst order formula A(�) in the language of graphs, which has only a binary predicate E(�; �),that is true in G� only for the node a: This is so because a is the only node with loop that does nothave an edge to another node with loop. Looking for other nodes with loops we get that there is aformula BC(�) that is only true of b and c. From this we conclude that there are formulae X(�) trueonly of xi's (these have edges to and from a) and Y (�) true only of yi's (these have edges to and fromb and c). Note that the edges of the graph of the function � are the only edges between x's and y's.De�ne the graph Gn as the disjoint union of G� for all permutations �. That is, Gn has n! connectedcomponents and (4n+ 3) � n! nodes.For any �nite number of variables z1; : : : ; zm, there is a formula samem(z1; : : : ; zm) true only if zi's arein the same component: This is true because the transitive-symmetric closure of Gn can be constructedin 4 iterations.Now de�ne the  (z; y) as follows:A(z) ^ Y (y)^(9x9x09y0:same5(z; y; x; x0; y0) ^X(x) ^X(x0) ^ Y (y0)^E(x; x0) ^E(y; y0)^E(x; y) ^E(x0; y0))and �nally de�ne the �rst-order graph query 	 as 	(G) = f(z; v) j G j=  (z; v)g. The two claimsbelow give us a family of graphs Gn such that each Gn has a degree set consisting of 5 consecutiveintegers, but deg(	(G)) � n� 3. The theorem follows immediately.Claim 5.5 deg set(Gn) = fn; n+ 1; n+ 2; n+ 3; n+ 4gProof. Immediate by construction, because taking disjoint union of G�'s we cannot introduce morein- and out-degrees. 2Claim 5.6 For any i < n� 2, i 2 deg set(	(Gn)).Proof. For each i < n � 2, consider a permutation � that does the following: for every j � i + 1,�(j) = j, and for every j > i + 1, �(j) = n� j + i + 2. Then on the nodes of G� with such a �, weget that exactly the pairs (a; yj), where j � i, can satisfy  . So in 	(Gn) for this � the node a hasoutdegree i. This �nishes the claim and thus the theorem. 217



As a closing remark, note that if we only want to show that there are �rst-order queries that do nothave the SBDP, we can simplify the construction above. Instead of G�, consider G0� with X [Y [fagas the set of nodes and edges (xi; xi+1), (yi; yi+1) for i < n, (a; xi) and (xi; y�(i)) for i � n, and (a; a).De�ne G0n as the disjoint union of G0�s. We can still test for the a, x or y nodes, and if a numberof nodes are in the same component. Now we see that deg set(G0n) = f0; 1; 2; ng, but again for eachi � n� 2 we get that i 2 deg set(	(G0n)) for the same  as before.6 Aggregation, SQL, and the Bounded Degree PropertyIn this section, we investigate locality and the bounded degree property in the context of SQL-likelanguages. We start by briey describing the syntax and semantics of the theoretical SQL-like languageto be analyzed. Two main features that distinguish (plain) SQL from the relational calculus aregrouping (the SQL GROUPBY operator) and aggregate functions (such as COUNT and AVG). Our languagesincorporate these features in a clean analyzable way. We then show how the notions of localityand bounded degree extend to queries in our language. The main result is that queries naturallyrepresenting those on STRUCTk[� ] are local for every �xed k. Consequently, such queries have theBDP, and thus many inexpressibility proofs carry over from the �rst-order case to SQL.Let us start with the syntax and semantics of our SQL-like language. The data types that can bemanipulated in the language are given by the grammar:s ::= b j B j Q j s1 � � � � � sn j fsgElements of the base type b are drawn from an unspeci�ed in�nite domain. The type B containsthe two Boolean objects true and false. The type Q contains the rational numbers. Elements of theproduct type s1� � � � � sn are n-tuples whose ith component is of type si. Finally, elements of the settype fsg are �nite sets whose elements are of type s.We present the language incrementally. We start from NRC(=), which is equivalent to the usualnested relational algebra [2, 5]. To obtain our SQL-like language we add arithmetic and a summationoperation to model aggregation. The syntax and typing rules of NRC(=) is given below, using thestandard notations of programming language theory [19].xs : s c : Qtrue : B false : B e1 : B e2 : s e3 : sif e1 then e2 else e3 : s e1 : s e2 : se1 = e2 : Be : s1 � � � � � sn�i e : si e1 : s1 � � � en : sn(e1; : : : ; en) : s1 � � � � � snfgs : fsg e : sfeg : fsg e1 : fsg e2 : fsge1 [ e2 : fsg e1 : ftg e2 : fsgSfe1 j xs 2 e2g : ftg18



We often omit the type superscripts as they can be inferred. Let us briey recall the semantics, cf. [5].Variables xs are available for each type s. Every rational constant is available. The operations forBooleans, tupling, and projections are standard. fg forms the empty set. feg forms the singleton setcontaining e. e1[e2 unions the two sets e1 and e2. Finally, Sfe1 j x 2 e2g maps the function f = �x:e1over all elements in e2 and then returns the union of the results; thus if e2 is the set fo1; : : : ; ong, theresult of this operation would be f(o1) [ � � � [ f(on). For example, Sff(x; x)g j x 2 f1; 2gg evaluatesto f(1; 1); (2; 2)g.Given a type s, the height of s is de�ned as the nesting depth of set brackets in s. For example, theusual at relations (sets of tuples of base types) have height 1. Given an expression e, the height ofe is de�ned as the maximal height of all types that appear in the typing derivation of e. For example,SfSff(x; y)g j x 2 Rg j y 2 Sg is an expression of height 1 if both R and S are at relations. Itis known [41, 44] that when restricted to expressions of height 1, NRC(=) is equivalent to the usualrelational algebra. We also write NRC(=b) when the equality test is restricted to base types b, B , andQ. We sometimes list the free variables in an expression in brackets like: e(R; x).As was mentioned, the practical database language SQL extends the relational calculus by havingarithmetic operations, a group-by operation, and various aggregate functions such as AVG, COUNT, SUM,MIN, and MAX. It is known [5] that the group-by operator can already be simulated in NRC(=). Theothers need to be added. The arithmetic operators are the standard ones: +, �, �, and � of typeQ � Q ! Q. Note that as we consider only well-de�ned queries, we will not encounter the situationof dividing by zero using �. We also add the order on the rationals: �Q: Q � Q ! B . As to aggregatefunctions, we add just the following constructe1 : Q e2 : fsgPfje1 j xs 2 e2jg : QThe semantics is this: map the function f = �x:e1 over all elements of e2 and then add up the results.Thus, if e2 is the set fo1; : : : ; ong, it returns f(o1) + � � �+ f(on). For example, Pfj1 j x 2 Xjg returnsthe cardinality of X. Note that this is di�erent from adding up the values in ff(o1); : : : ; f(on)g; inthe example above, doing so yields 1 as no duplicates are kept. To emphasize that duplicate values off are being added up, we use bag (multiset) brackets fj jg in this construct.We denote this theoretical reconstruction of SQL by NRCaggr. That is, NRCaggr has all the constructsof NRC(=), the arithmetic operations +;�; � and �, the summation constructP and the linear orderon the rationals.Let us provide two examples to demonstrate how typical SQL queries involving aggregate functionscan be implemented in NRCaggr. For the �rst example, consider the query that computes the to-tal expenditure on male employees in various departments in a company. Let EMP : fname �salary � sex � deptg be a relation that tabulates the name, salary, sex, and department of employ-ees. The query in SQL is SELECT dept, SUM(salary) FROM EMP WHERE sex = 'male' GROUP BYdept. It can be expressed in NRCaggr as Sff(�dept x; Pfjif �dept x = �dept y then if �sex y =0male0 then �salary y else 0 else 0 j y 2 EMP jg)g j x 2 EMPg. For the second example, considerthe query that computes the number of distinct salaries of male employees in various departments in19



the same company. The query in SQL is SELECT dept, COUNT(distinct salary) FROM EMP WHEREsex = 'male' GROUP BY dept. Note that in this query, duplicate salary �gures in a department areeliminated before counting. It can be expressed in NRCaggr as Sff(�dept x; Pfj1 j y 2 Sfif �dept z =�dept x then if �sex z = 0male0 then f�salary zg else fg else fg j z 2 EMPgjg)g j x 2 EMPg.In fact, it was shown in [33, 36] that all (nested) applications of SQL aggregate functions mentionedabove can be implemented in NRCaggr. It is also known [33, 36] that NRCaggr has the conservativeextension property. A language is said to have the conservative extension property if its expressivepower depends only on the height of input and output and is independent of the height of intermediatedata. Since NRCaggr has this nice property, to conform to SQL, it su�ces to restrict our input andoutput to height at most one.Before, we assumed queries to be formulae  (x1; : : : ; xm), mapping structures of some relationalvocabulary � into m-ary relations, de�ned by 	(A) = hA; f(a1; : : : ; am) j a1; : : : ; am 2 A;A j= (a1; : : : ; am)gi. Now we have to show how NRCaggr-expressions correspond to queries. After this,we shall be able to transfer the notions of locality and bounded degree to NRCaggr.First, we model � -structures as tuples of objects of types of the form fb � : : : � bg, with the aritiescorresponding to those of the symbols in � . We shall abbreviate b � : : : � b, m times, as bm. Arelational query over STRUCT[� ] in NRCaggr is an NRCaggr expression e of type fbmg, whosefree variables have types fbp1g; : : : ; fbplg, where pi is the arity of the ith symbol in � . Given such anexpression, which we write as e(R1; : : : ; Rl) or e(~R), it can be considered as a query  e as follows. Welet, for a � -structure A over the domain of type b,A j=  e(a1; : : : ; am) i� (a1; : : : ; am) 2 e(A)In other words, the 	e corresponding to the query  e is precisely e. (This is true because (a1; : : : ; am) 2e(A) implies that all ais are in the universe of A.)Now, for each relational query e, we say that it is local if  e is, and e's locality rank is that of  e.Similarly, we de�ne the bounded degree property of relational queries in NRCaggr. Finally, we saythat a query is local on a class of structures C � STRUCT[� ] if the condition in the de�nition oflocality is satis�ed on every structure from C (but not necessarily on every structure in STRUCT[� ]).Our main result is:Theorem 6.1 For any �xed k, every relational query in NRCaggr is local on STRUCTk[� ].From here, applying verbatim the proof of Theorem 4.2, we concludeCorollary 6.2 Relational queries in NRCaggr have the bounded degree property. 2Before we prove Theorem 6.1, let us state some corollaries. We immediately conclude from Corollary6.2 that 20



Corollary 6.3 (cf. [36]) NRCaggr cannot express the following queries: (deterministic) transitive clo-sure of a graph, connectivity test, testing for a (binary, ternary, etc.) tree. This continues to holdwhen a built-in successor relation or any other built-in relations whose degrees do not exceed a �xednumber k are available on the nodes. 2Recall that H�artig and Rescher quanti�ers [43] are two generalized quanti�ers for equal cardinalityand bigger cardinality respectively. Since these tests can be done in NRCaggr, and also since every�rst-order query is NRCaggr-de�nable, we obtain:Corollary 6.4 Every �rst-order query with H�artig and Rescher quanti�ers has the bounded degreeproperty. 2In the rest of the section we prove Theorem 6.1. We �x a vocabulary � , and use ~R to denote a� -structure, that is, a vector of relations of type of the form fb � � � � � bg, with the ith one havingarity pi. We �rst give some technical de�nitions. Then we develop a normal form result from whichthe desired theorem drops out readily.6.1 New de�nitionsIt is a fact that all �rst-order logic formulas can be rephrased as expressions of NRCaggr. So for thesake of convenience, in the de�nitions below we will mix notations from NRCaggr and �rst-order logic,with the understanding that the �rst-order logic formulas in such mixed notations can be replaced byequivalent expressions of NRCaggr. Also, recall that in an NRCaggr expression such as Sfe1 j x 2 Rg,the variable x ranges over objects in R. Thus, if R is a relation of arity p, then x ranges over the tuplesof arity p in R. That is, NRCaggr uses tuple variables. Note that individual components of tuples canbe accessed in NRCaggr by using the projection operation. For example, the ith component of a tuplet can be obtained as �i t. For consistency sake, we will also use tuple variables in our �rst-order logicformulas below.De�nition 6.5 Let ~R denote a vector of relations of type of the form fb � � � � � bg. Let ~x denote avector of tuples of type of the form b�� � ��b appearing in these relations. A neighborhood formulais an expression M(~R; ~x) : B of NRCaggr that is equivalent to a �rst-order formula of the form givenbelow and moreover it must be satis�able in the sense that there are sets ~R and tuples ~x such thatM(~R; ~x) is true and each tuple in ~x is in some set amongst ~R.9~y 2 S ~R: 	(~x; ~y) ^
(~R; ~x; ~y) ^�(~R; ~x; ~y) ^�(~x; ~y) ^8z 2 S ~R:�(~x; ~y; z) 21



where all of the following must be satis�ed.� 	(~x; ~y) is a quanti�er-free formula that speci�es the exact connections between the componentsin tuples in ~x and ~y. In other words, 	(~x; ~y) speci�es the equality type of tuples in ~x and ~y.That is, 	(~x; ~y) is a conjunction: For each tuple t in ~x or ~y, for each tuple t0 in ~x or ~y, for eachcomponent z in t, and for each component z0 in t0, either z = z0 is a conjunct of 	(~x; ~y) or z 6= z0is a conjunct of 	(~x; ~y). Moreover, 	(~x; ~y) has no other conjunct. (In the notations of NRCaggr,the test z = z0 can be written as �it = �i0t0, assuming that z is the ith component of t and z0 isthe i0th component of t0. The test z 6= z0 can be similarly expressed.)� 
(~R; ~x; ~y) is a quanti�er-free formula that speci�es exactly which tuples in ~x and ~y are in whichof ~R; each of ~x and ~y must be in some ~R.That is, 
(~R; ~x; ~y) is a conjunction: For each tuple t in ~x or ~y, and for each relation R in ~R,either R(t) is a conjunct of 
(~R; ~x; ~y) , or :R(t) is a conjunct of 
(~R; ~x; ~y); and for each t in ~xor ~y, there is a R in ~R such that R(t) is a conjunct of 
(~R; ~x; ~y).� �(~R; ~x; ~y) is a formula that speci�es the degrees of the components of ~x and ~y in ~R.That is, the following must be speci�ed for each tuple t amongst ~x and ~y, for each componentz of t, and for each possible combination of positions ps: the number of tuples t0 in ~x such thatt0 is equal to z at every position listed in ps, the number of tuples t0 in ~y such that t0 is equalto z at every position listed in ps, and for each relation R, the number of tuples t0 in R that isequal to z at every position listed in ps. That is, �(~R; ~x; ~y) is concerned only with the numberof connections that the components of ~x and ~y can have; it does not care about other tuples in~R.� �(~x; ~y) is a quanti�er-free formula that says tuples in ~y are distinct and that they are distinctfrom those in ~x.� �(~x; ~y; z) is a quanti�er-free formula that says z has a component di�erent from all componentsof ~x and ~y whenever z is not equal to any of these tuples. In other words, if z is not equal toany tuple in ~x and ~y, then z must contain a component that is \new." 2A neighborhood formula M(~R; ~x) can be thought of as a complete description (diagram) of a smallneighborhood of ~x in ~R. The \completeness" of the description is provided by the � part of the formulaM(~R; ~x). The components that are \new" in the z in � are those objects not in the neighborhood.De�nition 6.6 A neighborhood formula M(~R; ~x) is said to have radius r if the following two con-ditions hold:� All components of tuples in ~y are at most r connections away from some components of tuplesin ~x. The formula that expresses this fact is implied by the 	(~x; ~y) part of M(~R; ~x). Note thatthe components of tuples in ~y are not required to be close to the same tuple in ~x. (A componentof a tuple t1 is said to be r connections away from a component of a tuple tr+1 if there are tuples22



t2, ..., tr such that each pair of tuples ti and ti+1 have a common component, for 1 � i � r. Thisis a straightforward generalization of the notion of path length of between nodes in a graph. Forthis reason, we use the term \endpoint" to mean the same thing as a \component" of a tuple.)� All components of tuples in ~x and ~y that are less than r connections away from any endpointsof ~x must have as many connections in 	(~x; ~y) as their degrees speci�ed by the �(~R; ~x; ~y) partof M(~R; ~x). This condition ensures that every object within r connections away from ~x appearswithin 	(~x; ~y). 2Here are a few facts about neighborhood formulas. These facts are used implicitly in the rewritingrequired in Theorem 6.11.� If each relation in ~R has degree at most k, then for any vector of tuples ~x and for any r, thenumber of possible (non-equivalent) neighborhood formulas of these tuples having radius r isbounded.� If two neighborhood formulas of the same tuples ~x in ~R have the same radius r and are consistentwith each other, then they are equivalent. (Two such formulas are consistent with each other ifthey can be satis�ed by the same ~x and ~R.)� If two neighborhood formulas of the same tuples in ~R have di�erent radii but are consistent witheach other, then the one with the longer radius implies the one with the shorter radius.Now we de�ne topological parameters of multiple relations. These are de�ned in terms of the relationsand do not refer to any particular tuples. Note that they can be expressed in NRCaggr.De�nition 6.7 A topological parameter of a relation R in ~R with respect to a neighborhoodformulaM(~R; x) having radius r is the number of x in R satisfyingM(~R; x). It is a number expressedin NRCaggr as Pfjif M(~R; x) then 1 else 0 j x 2 Rjg. 2De�nition 6.8 A topological polynomial Q(~R) is a \polynomial" de�ned in terms of topologicalparameters of the R's in ~R. That is, it is built up from numeric constants, topological parametersfi(~R), and arithmetic operators +, �, and �. For example, Q(~R) can be 2 �f1(~R) �f1(~R)+3 �f2(~R)+4.2De�nition 6.9 A topological predicate P(~R) is a Boolean combination of polynomial (in)equationsde�ned in terms of topological parameters of the R's in ~R. For example, P(~R) can be 2 �f1(~R) �f1(~R)+3 � f2(~R) + 4 � 0. 26.2 Normal form for relational queries in NRCaggrIn this subsection we develop a normal form for SQL-like queries on unordered structures whosedegrees are bounded by a constant k. Using this normal form, we transfer many powerful results23



on relational calculus to SQL-like languages. In particular, NRCaggr is shown to be local on thesestructures and to possess the bounded degree property. To simplify the presentation, we look at thesituation of having multiple unordered input relations of arbitrary �xed arity. (The results generalizeeasily to the situation where the relations are of di�erent arities.)The normal form to be developed shortly basically says that nested use of aggregate functions can beeliminated from all queries provided the input structure has low degree. Thus to develop this normalform, we need a technique for eliminating the nested use of aggregate functions. The essence of thistechnique is captured by the following result.Lemma 6.10 Let e(~R; ~x) : Q be an expression of NRCaggr of the formXfj if M(~R; x; ~x) ^ P(~R) then Q(~R) else 0 j x 2 Rjgwhere R is one of the relation in ~R, M(~R; x; ~x) is a neighborhood formula having radius r, P(~R) isa topological predicate, and Q(~R) is a topological polynomial. Let every relation in ~R be of degree atmost k and ~x be restricted to tuples in these relations. Suppose M 0(~R; ~x) is a neighborhood formulahaving radius r0 > 2 �r that is consistent with M(~R; x; ~x). That is, there are sets ~R, tuples ~x in sets ~R,and tuple x in the set R such that both M(~R; x; ~x) and M 0(~R; ~x) are true. Then there is a topologicalpolynomial Q0(~R) such that e(~R; ~x) is equivalent to Q0(~R) �Q(~R) whenever M 0(~R; ~x) and P(~R) hold.Proof. The Q0(~R) that we need to construct is simply the number of tuples x in R that satisfyM(~R; x; ~x), given that M 0(~R; ~x) and P(~R) hold. There are four cases to consider.The �rst case is whenM(~R; x; ~x) speci�es that x is not in R. Since x comes from R by de�nition, thiscase is never true. Then necessarily Q0(~R) = 0. For the remaining cases, we assume that M(~R; x; ~x)speci�es that x is in R.The second case is when M(~R; x; ~x) speci�es that x is equal to one of the elements of ~x. ThenQ0(~R) = 1 is forced.The third case is whenM(~R; x; ~x) speci�es that x is di�erent from all of ~x but is at most r connectionsaway from some of ~x. Let M 0(~R; ~x) be 9~y:A. Suppose the vector ~y consists of these tuple variables:t1; : : : ; tm. Then x can be instantiated to any ti such that 9~y:A ^ M(~R; ti; ~x) ^ R(ti) is consistent.Then Q0(~R) is the number of such ti, which we can easily read o� from the given neighborhoodformulas.The fourth case is when M(~R; x; ~x) speci�es that x is di�erent from all of ~x and is not within rconnections of any ~x. Since M(~R; x; ~x) is a neighborhood formula of radius r, we can derive fromit a neighborhood formula M 00(~R; x) of x in R having radius r. This can be done by deleting fromM(~R; x; ~x) all subformulas involving ~x and all subformulas involving elements of ~y that are not withinr connections of x. Let f(~R) =Pfj if M 00(~R;w) then 1 else 0 j w 2 Rjg; that is, f(~R) is the topologicalparameter of ~R that tells us how many w in R satisfy the neighborhood formula M 00(~R;w) of radiusr. These w's have neighborhoods identical to that speci�ed for x and are thus potential candidatesfor x. Note that some of these w's may turn out to be \bad" candidates because they are within rconnections of some elements of ~x. Thus we cannot take Q0(~R) to be f(~R). We must �rst subtract24



from f(~R) the number of those w's that are bad. In order to compute the number of such bad w's,we do the following. Let M 0(~R; ~x) be 9~y:A. Let X � ~x denote a maximal subset of ~x satisfying thefollowing two conditions. First, for each tuple t in X, M 0(~R; ~x) says that t is in R. Second, for any twosyntactically distinct tuples t and t0 in X, M 0(~R; ~x) says that they disagree on at least one component.Let Y � ~y denote the subset of ~y that M 0(~R; ~x) speci�es to be in R. Let D denote the number ofw 2 X [ Y such that 9~y:A ^ M 00(~R;w) is consistent and that w is within r connections of some ~x.The check on w above is possible because M 0(~R; ~x) has radius r0 > 2 � r. These w's are those tuplesin R that x is not allowed to take. Note that D can be easily read o� from the given neighborhoodformulas. Then Q0(~R) = f(~R)�D. This completes the proof. 2We can now provide a normal form result: A query inNRCaggr on a structure whose degree is boundedby k can always be rewritten to a form consisting of a chain of if -then-else statements where eachcondition is a topological predicate and each branch is a relational calculus expression. Thus all usesof aggregate functions are at the outermost level of the normal form.Theorem 6.11 Let ~R denote a vector of relations of degree at most k. Let e(~R) : s be an expressionof NRCaggr with s a type of height at most 1. Then e(~R) is equivalent to an expression of the formif P1(~R) then e1(~R) ... else if Pd(~R) then ed(~R) else ed+1(~R), where each Pj(~R) is a topologicalpredicate, each ej(~R) is in NRC(=b), and d depends only on k and e.Proof sketch. Let ~R denote a structure of degree at most k. Let e(~R) : s be an arbitrary queryin NRCaggr with type s of height at most 1. We know that NRCaggr has the conservative extensionproperty [33]. So we can assume that e(~R) is a normal form with respect to the rewriting done inthe proof of the conservative extension property [33]. Thus it does not use nested sets and that allsummations in it have the form Pfje0 j y 2 �i(~R)jg and all big unions in it have the form Sfe0 j y 2�i(~R)g.So we can use Lemma 6.10 to remove summation operation from e(~R). This removal can be achievedby applying the lemma starting from summations that are innermost in e(~R) and working outwards.Note that some tedious but straightforward rewriting, similar to those used in the proof of the �nite-co�niteness of NRCaggr on multicycles [36], might be necessary before each application of Lemma6.10. Those facts about neighborhood formulas given in Section 6 are used to justify the rewritinghere. The above is done by repeating the main steps below until all summations have been eliminated.Step 1. We need to prepare, if necessary, the innermost summation in our expression so that it hasthe form required by Lemma 6.10. For example, the else-branch may not be 0. In this case we canuse the identity:� Pfjif C then E1 else E2 j x 2 Rjg =Pfjif C then E1 else 0 j x 2 Rjg+Pfjif :C then E2 else 0 j x 2Rjg.Another possibility is that the then-branch may not be a topological polynomial. In this case, thethen-branch must have a subexpression involving an if -then-else. We need to push it as far out as25



possible so that it can be absorbed using the identity given above. To do this \pushing," we can applyidentities such as:� if E1 then (if E2 then E3 else E4) else E5 = if E1 ^E2 then E3 else (if E1 ^ :E2 then E4 else E5).� E1 op (if E2 then E3 else E4) = if E2 then E1 op E3 else E1 op E4, where op 2 f+;�; �;�g.� (if E2 then E3 else E4) op E1 = if E2 then E3 op E1 else E4 op E1, where op 2 f+;�; �;�g.A �nal possibility is that the condition of the if -then-else of our innermost summation may not be ofthe form M(~R; x; ~x) ^ P(~R). Using standard identities of logical connectives, we can assume withoutloss of generality that the condition is of the form C ^ P(~R). We can exploit the fact that thesummation is innermost and thus C must be a Boolean combination whose literals are either equalityor inequality tests of the components of x and ~x. Such a C is equivalent to a �nite disjunction ofmutually exclusive neighborhood formulas M1(~R; x; ~x), ..., Mn(~R; x; ~x) of a su�ciently large radius.A simple upper bound for the radius is the number of symbols in C. Thus we can use the followingidentity to deal with the problem:� Pfjif C ^ P(~R) then E else 0 j x 2 Rjg = Pfjif M1(~R; x; ~x) ^ P(~R) then E else 0 j x 2Rjg + � � � +Pfjif Mn(~R; x; ~x) ^ P(~R) then E else 0 j x 2 Rjg.Step 2. Having made the preparation in Step 1, we can assume that we now have a a summationE(~R; ~x) in e(~R) that has the form Pfjif M(~R; x; ~x) ^ P(~R) then Q(~R) else 0 j x 2 Rjg, whereM(~R; x; ~x) is a neighborhood formula having radius r, P(~R) is a topological predicate, and Q(~R)is a topological polynomial. Let M1(~R; ~x), ..., Mn(~R; ~x) be all the neighborhood formulas of radius2r + 1 that are consistent with M(~R; x; ~x). There is only a �nite number of such (non-equivalent)neighborhood formulas. By Lemma 6.10, we know that for each Mi(~R; ~x), there is a topologicalpolynomial Qi(~R) such that E(~R; ~x) is equivalent to Qi(~R) �Q(~R) whenever Mi(~R; ~x) and P(~R) bothhold. Thus E(~R; ~x) is equivalent to E0(~R; ~x), which is the following expression: if M1(~R; ~x) ^P(~R) then Q1(~R) �Q(~R) else : : : else if Mn(~R; ~x) ^ P(~R) then Qn(~R) �Q(~R) else 0.Step 3. The application of Step 2 produces a chain of if -then-else statements in E0(~R; ~x), which isnot in a form to which Lemma 6.10 is applicable. Fortunately, the following identity can be used torewrite the expression into the appropriate form:� Pfjif C1 then E1 else : : : else Cn then En else 0 j x 2 Rjg = Pfjif C1 then E1 else 0 j x 2Rjg + � � � +Pfjif Cn then En else 0 j x 2 Rjg, if C1, ..., Cn are mutually exclusive conditions.This identity is applicable because the Mi(~R; ~x)'s above are mutually exclusive.Step 4. The above rewritings will eventually lead to summations having the form Pfjif M(~R; x) ^P(~R) then Q(~R) else 0 j x 2 Rjg, where the neighborhood formula M(~R; x) does not mention anyadditional �xed tuples. Such a summation can be rewritten immediately to if P(~R) then Q0(~R) �Q(~R) else 0, where Q0(~R) is the topological parameter de�ned asPfjif M(~R; x) then 1 else 0 j x 2 Rjg.26



The above 4-step process is repeated until all summations are replaced by topological parameters.The result of rewriting is an expression e0(~R) of NRCaggr that does not use the P operator, except inthe implementation of topological parameters of ~R. Note that all these topological parameters mustappear inside some topological predicates. We can move all topological predicates in e0(~R) as far outas possible using the identity: E1(~R) = if P(~R) then E2(~R) else E3(~R), where E2(~R) and E3(~R) areobtained from E1(~R) by replacing all occurrences of the topological predicate P(~R) with true andfalse respectively.The result of these moves is an expression e00(~R) of NRCaggr of the form if P1(~R) then e1(~R) ... elseif Pd(~R) then ed(~R) else ed+1(~R), where each Pi(~R) is a topological predicate and each ei(~R) is inNRC(=b). Note that d does not depend on the value of ~R. The theorem is thus proved. 2As an illustration of the proof of this theorem, let us consider the query Q(R) = Sfif indeg(x;R) =outdeg(x;R) then fxg else fg j x 2 Rg, where indeg(x;R) =Pfjif �2(y) = �1(x) then 1 else 0 j y 2 Rjgand outdeg(x;R) = Pfjif �1(y) = �2(x) then 1 else 0 j y 2 Rjg. This query returns those edges inthe graph R whose in-degrees equal their out-degrees. We demonstrate the theorem on the small-est interesting bound on the degree of R, namely k = 1. According to the proof, we begin on oneof the innermost summation, indeg(x;R). This �rst step is to put it into a form so that Lemma6.10 applies. It is straightforward to see that indeg(x;R) = Pfjif M11 (R; y; x) then 1 else 0 j y 2Rjg + � � � + Pfjif M1m(R; y; x) then 1 else 0 j y 2 Rjg, where M11�i�m are the �nite numberof neighbourhood formula of radius 1 and each of them speci�es that �2(y) = �1(x) and thatevery node in R has degree at most k = 1. The second step is to apply Lemma 6.10 to eachPfjif M1i (R; y; x) then 1 else 0 j y 2 Rjg above. Let M3i;j(R; x) denote a neighbourhood formula ofradius 3 that is consistent with M1i (R; y; x) and Qi;j(R) be the topological polynomial correspondingto Q0(R) given by Lemma 6.10. Since R has degree at most 1 andM1i (R; y; x) speci�es �2(y) = �1(x),it follows that Q0(R) and thus Qi;j(R) equals 1. So eachPfjif M1i (R; y; x) then 1 else 0 j y 2 Rjg aboveis replaced by (if M3i;1(R; x) then 1 else 0)+ � � �+(if M3i;mi(R; x) then 1 else 0), whereM3i;1�j�mi(R; x)are all the mutually exclusive neighbourhood formula of radius 3 that are consistent withM1i (R; y; x).Thus indeg(x;R) = (if M31;1(R; x) then 1 else 0) + � � � + if M3m;mm(R; x) then 1 else 0). Note thatindeg(x;R) now does not contain any summation. Applying similar transformations, outdeg(x;R) isalso reduced to an expression that contains no summation. We can stop at this point, as Step 3 andStep 4 of the proof of the theorem are not needed for this example: Q(R) is already in a form thatuses no summation and is in NRC(=b).This normal form theorem gets complicated aggregate functions out of the way. Using it, we can nowprove Theorem 6.1.Proof of Theorem 6.1. Let ~R denote a structure in STRUCTk[� ] whose elements are of base typeb. Let e(~R) be a relational query in NRCaggr. By Theorem 6.11, we can assume that e(~R) has theform if P1(~R) then e1(~R) ... else if Pd(~R) then ed(~R) else ed+1(~R), where each Pi(~R) is a topologicalpredicate and each ei(~R) is in NRC(=b). Since NRC(=) enjoys the conservative extension property[44], each ei can be de�ned in relational algebra. Hence, by Fact 2.2, every  ei is local and has some�nite locality rank ri. From this we immediately conclude that  e has locality rank maxi ri, thusproving the theorem. 227



7 Applications to Incremental RecomputationSince relational calculus has a limited expressive power and cannot compute queries such as transitiveclosure, one often stores the results of these queries as materialized database views. Once the under-lying database changes, the changes must be propagated to the views as well. In the case when a viewis de�ned in relational calculus, or at least in the same language in which update propagations arespeci�ed, the problem of incremental maintenance has been studied thoroughly. However, few papers[10, 8, 11, 42] addressed the issue of maintaining queries such as the transitive closure in �rst-order orNRCaggr.It was shown [8] that, in the absence of auxiliary data, recursive queries such as transitive closure andsame generation cannot be maintained in relational calculus or even in SQL. It was conjectured in[8, 11] that this continues to be true in the presence of auxiliary data. Using the results developed inprevious sections, we can address this question partially. In particular, we now show that maintenanceof some recursive queries remains impossible even if auxiliary data of moderate or low degree areavailable.In addition to the transitive closure query, we also consider the same-generation query over a graphhaving two label symbols A and B. Such a graph can be conveniently represented by two relations,one for edges labeled A and the other for B, which need not be disjoint. We use A and B to namethese two relations. Then x and y are in the same generation with respect to A and B i� there is a zsuch that there is a walk from x to z in A and a walk from z to y in B that are equal in length.Theorem 7.1 Neither transitive closure nor same-generation can be maintained in the relationalcalculus when auxiliary data of moderate degree are available.Proof sketch. The main idea of the proof of non-maintainability of both transitive closure andsame-generation [8] is essentially this: Suppose there is an expression g(I; I+; t) that, given an inputI, the result of a query (transitive closure or same-generation) I+ on I, and a tuple t in I, producesthe output of the query on I �ftg. (In the case of same-generation, one tuple is removed from A andone from B.) Then both proofs in [8] show how to use this assumption to produce an expression in�rst-order plus g that computes the transitive closure of a chain. Since the construction of [8] doesnot assume any auxiliary data, we can apply it here to obtain that, if either transitive closure orsame-generation is maintainable in �rst-order in the presence of auxiliary data of moderate degree,then with such auxiliary data the transitive closure of a chain is computable. However, this contradictsthe remark made after the proof of Proposition 4.4. 2Using essentially the same argument, but employing Corollary 6.3 we can also prove thatCorollary 7.2 Neither transitive closure nor same-generation can be maintained in NRCaggr in thepresence of auxiliary data whose degrees are bounded by a constant. 228



8 ConclusionIn the past several years, a number of papers dealing with locality in �nite-model theory answeredmost of the questions raised by the conference version of this paper. Thus, in this concluding section,we briey describe the problems posed by the ICDT'97 version of this paper [9], and give pointers tosolutions.One of the problems posed by [9] was the following: extend results that describe outputs of localqueries in terms of ntp(d;A) from graph queries to arbitrary ones. In this paper, the only extensionof this kind was for the Gaifman graph of the output. It turns out that an analog of Theorem 3.1can be proved for queries of arbitrary arity, with d depending on both locality rank and the arity. Fordetails, see [31].Another problem mentioned in [9] was to develop techniques for proving languages local. One suchtechnique was proposed in [30] which showed that queries in any reasonable logic that satis�es ananalog of Hanf's theorem [24, 16] are local. Using this, and results of [25, 38], the paper [30] showedthat �rst-order logic extended with unary generalized quanti�ers is local. In [31], a technique waspresented that allows one to prove locality without a recourse to Hanf's theorem. The same papershowed a version of in�nitary logic that can de�ne every numerical property, but expresses only localqueries when restricted to �nite relational structures.Two problems related to aggregate query languages were posed by [9]. The �rst one was to prove thatevery relational query in NRCaggr is local. This was done in [37] by using the following technique. Forevery relational query Q in NRCaggr, [37] shows how to construct another query Q0 with the followingtwo properties: (1) Q is local i� Q0 is local, and (2) Q0 can be de�ned in �rst-order logic extendedwith counting quanti�ers. Since the latter only expresses local queries, as shown in [30], the localityof relational queries in NRCaggr follows.The previous results do not seem to apply to ordered structures: indeed, by taking any input andreturning the graph of the underlying linear order, we violate the bounded degree property. Thus, itdoes not hold in NRCaggr(�b), which is NRCaggr augmented with a linear order on type b. It wasconjectured by [9] that the bounded degree property can be partially recovered for this language. Thatis, the conjecture of [9] was that every relational query in NRCaggr(�b) that is order-independent hasthe bounded degree property. This conjecture was recently disproved by L. Hella; the proof can befound in [26].Acknowledgements. We are greteful to anonymous reviewers for numerous comments and improve-ments. We thank Moshe Vardi suggesting the extension from Theorem 3.1 to Theorem 3.5. Part ofthis work was done while Wong was visiting the University of Melbourne and Bell Laboratories atMurray Hill. Wong would like to thank these organizations and fellow coauthors Dong and Libkin fortheir hospitality during this work.
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