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Abstract

Metal-ion binding proteins play important roles in biological processes. Metal-ion binding motifs 
have been identified for the common metal ions. However, some metal-ion binding proteins do not 
possess any canonical metal-ion binding motif. In this project, we investigate the hypothesis that 
there are sequence characteristics that are common to metal-ion binding proteins. Based on this 
hypothesis, we hope to develop a model for recognizing metal-ion binding proteins based on their 
sequence and physico-chemical parameters. Many metal-ion binding proteins commonly bind to 
divalent metal ions, but existing works say they possess unique motifs specific to that divalent ion. 
There is no accurate general fingerprints for metal-binding proteins. The establishment of such a 
general global fingerprint will help find novel metal-ion binding proteins.

Subject Descriptors:
 J.3 Biology and genetics
            I.5.2 Classifier design and evaluation
            I.5.2 Feature evaluation and selection
            I.5.3 Clustering

Keywords:
 Metalloproteins, KD-Tree, Correlation-based Feature Subset Selection, C4.5 algorithm,     
 Support Vector Machines

Implementation Software and Hardware:
 Swiss-Prot, JRuby, Datamapper, SQLite, WEKA, ANN
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Introduction

Throughout evolution, properties of metals have been harnessed by proteins for performing 

functions such as redox reactions which cannot be performed by using functional groups found 

amino acids.(Messerschmidt, Huber, Wieghardt and Poulos, 2001). These metalloproteins have 

many different functions in cells such as, enzymes, transport, storage, and signal transduction.

Experimental biologists use techniques such as QPNC-PAGE, ICP Mass Spectroscopy and NMR 

Spectroscopy, to isolate and classify metalloproteins from a mixture of proteins. A large amount of 

literature describing results of such experiments are now available, many of which are curated in 

protein sequence databases.

These databases show that 30% of all proteins are metalloproteins and that many pathways contain 

at least one metalloenzyme and require Mg, K, Ca, Fe, Mn and Zn to sustain life. Other elements 

like Cu, Mo, Ni, Se, and Co, are required by lesser organisms. The different metals have a range of 

affinities for most protein environments in or the order of  Mg+2/Ca+2 < Mn+2 < Fe+2 < Co+2 < 

Ni+2 < Cu+2 ∼Zn+2, an equilibrium series known as the Irving-Williams Series. (Dupont et al., 

2010).

There have been previous successful attempts (Cai, Han, Ji, Chen and Chen, 2003) to use features 

calculated from sequences in protein databases to accurately classify proteins as specific 

metalloproteins.

This experiment aims to test whether there are any signatures common to all metalloproteins. In 

order to do so, a crucial question must be answered (at least partially): How did metalloproteins 

came out to be? The answer to this question will help us design better classifiers.

Evolution of Metalloproteins

Early ocean chemistry was dramatically different from today. Oxygen was absent and trace 

elements such as iron, manganese, and cobalt were abundant. Photosynthesis resulted in an 

abundance of oxygen around 2.4 billion years ago and the oceans started to accumulate oxygen, 
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increasing the amount of zinc, copper, and molybdenum that was available. At the same time, iron 

became very rare. (Dupont et al. 2010)

The first organisms predominantly used metals that were abundant in the ancient ocean, Fe, Mn, 

and Co. This metal utilization bias is preserved to this day in the Bacteria and Archaea, which still 

predominantly use ancient protein structures. Later, as the ocean accumulated oxygen, new proteins 

evolved that bound zinc and copper. So did the Eukaryotes, which include all organisms with a 

nucleus, from single-cell plankton to humans. (Dupont et al. 2010)

It is now known that the new zinc and copper-binding proteins are only found in Eukaryotes, not in 

the Bacteria and Archaea. The nucleus houses most of the new zinc binding proteins and this unique 

utilization of zinc is one of the defining features of all Eukaryotes. A possible hypothesis is that zinc 

concentrations in the ancient ocean were too low to allow for the evolution of the Eukaryotes, at 

least until global changes in oxygen occurred. (Dupont et al. 2010)

Since evolution of metalloproteins has happened multiple times under different selection pressures 

and for different metals, it can be hypothesized that any overarching signature common to all 

metalloproteins will be very weakly predictive.

Finally it can be safely argued that each metalloprotein shares a common ancestor with a non-metal-

binding protein and that an alignment free distance metric such as Euclidean distance between k-

mer frequency vectors (Edgar, 2004) could approximate the actual evolutionary distance between a 

metalloprotein and its nearest non-metal-binding relative. This fact will be useful for creating the 

training and test sets.

General Experimental Strategy & Rationale

A protein sequence database with minimal redundancy, maximal annotation and maximum 

correspondence with reality (i.e. maximum experimental evidence) is chosen. This so as to 

minimize the amount of computation necessary to verify these aspects of each database entry.

Next each protein sequence in the database is converted to a feature vector consisting of 104 

dimensions (Han et. al, 2004). These dimensions contain encoded representations of tabulated 
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amino acid residue properties including amino acid composition, hydrophobicity, normalized Van 

der Waals volume, polarity, polarizability, charge, surface tension, secondary structure and solvent 

accessibility. (Han et. al, 2004). The exact details of this feature vector will be discussed in the 

following sections.

Since any classifier capable of identifying metalloproteins would also have to distinguish them from 

the neighboring non-metalloproteins, it is obvious that both the training set and the test set has to  

contain a set of metalloproteins and its nearest non-metal-binding neighbors in it. Furthermore since 

the part of the feature vector which describes the amino acid composition pays resemblance to k-

mer frequency vectors (Edgar, 2004) the Euclidean distance between which approximates the actual 

evolutionary distance between proteins, this implies that a training/test set would contain 

metalloproteins and its nearest non-metal-binding evolutionary relatives. This is desirable because 

this will allow any supervised classifier to derive the exact nature of the evolutionary events which 

resulted in the incorporation of the metal-ions into proteins.

So k-nearest neighbors of each metalloprotein must be calculated. This is going to be challenging 

due to the high dimensionality of the feature vector. However as we shall see in the following 

sections, this problem can be solved by resorting to approximate solutions.

Once the training/test sets have been created as described above, a Correlation-based Feature Subset 

Selection (Hall, 1999) is used to select subsets of features that are highly correlated with the class 

while having low intercorrelation.

Next, a classifier such as a C4.5 tree or a support vector machine is used to extract patterns from the 

training set. This classifier is evaluated using cross-validation and other test sets.

Experiment
Protein Sequence Database

The protein sequence database chosen for this experiment was SwissProt (Bairoch and Apweiler, 

2000). It is a manually curated, large, non-redundant sequence database available as a flat file which 
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could be accessed sequentially. So as to facilitate easy random access and manipulation, a relational 

database based on SwissProt was created with a schema such as the one shown here. 

Feature Vector Creation

First amino acids are organized into three different groups based on physio-chemical properties 

such as hydrophobicity, Van der Waals volume, Polarity and Polarizability. (Han et. al, 2004)

Property Group 1 Group 2 Group 2

Hydrophobicity RKEDQN (Polar) GASTPHY (Neutral) CVLIMFW 
(Hydrophobic)

Van der Waals Volume GASCTPD (0-2.78) NVEQIL (2.95-4.0) MHKFRYW 
(4.43-8.08)

Polarity LIFWCMVY (4.9–
6.2)

PATGS (8.0–9.2) HQRKNED (10.4–
13.0)

Polarizability GASDT (0–0.108) CPNVEQIL (0.128–
0.186)

KMHFRYW (0.219–
0.409)

Table 1: Division of amino acids into three different groups for different physicochemical properties

For each property described in Table 1, three descriptors are calculated:

• Composition (C): C is the number of amino acids of a particular property (such as hydro- 

phobicity) divided by the total number of amino acids in a protein sequence.

• Transition (T): T characterizes the percentage frequency with which amino acids of a particular 

property is followed by amino acids of a different property.

• Distribution (D): D measures the chain length within which the first, 25, 50, 75 and 100% of the 

amino acids of a particular property is located respectively.

8



Finally the 20 amino acid composition are also calculated and added to the feature vector. Together 

these properties add up to 104 dimensions, excluding class.

k-NN Calculation

Computing exact nearest neighbors in dimensions much higher than 8 seems to be a very difficult 

task. Few methods seem to be significantly better than a brute-force computation of all distances. 

However, it has been shown that (Arya et al., 1998) by computing nearest neighbors approximately, 

it is possible to achieve significantly faster running times (on the order of 10's to 100's) often with a 

relatively small actual errors.

Unfortunately even the approximate k-NN algorithm starts accumulating errors beyond 20 

dimensions. So in order to circumvent this, 20 principal components which accounted for most of 

the standard deviation among all proteins where calculated. These 20 principal components were 

used as part of the approximate k-NN calculation.

40 non-metal-binding neighbors were calculated for each metalloprotein.

Training/Test Set Creation

For each metal binding protein feature vector in the training set, and equal number of non-metal-

binding feature vectors were included.

A training set for Calcium, Copper, Magnesium, Manganese, Nickel, Sodium and Zinc were created 

containing all of the respective metal-binding proteins. An additional training file with all known 

metalloproteins and their nearest non-metal-binding proteins was also created.

Feature Selection

Since a 104 dimensional dataset is too sparse, Correlation-based feature selection was used to find 

subsets of features that are highly correlated with the class while having low intercorrelation.

Classifier Evaluation

Both C4.5 Trees and Support Vector Machines (with Polynomial Kernels) were used as classifiers. 

They were evaluated using a 10-fold cross validation.
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Results

Here are the Precision, Recall and F-Measure for classifiers of different metalloproteins after a 10-

fold cross validation:

Metal Classifier Precision Recall F-Measure

Sodium C4.5 97.3% 97.3% 97.3%

Nickel C4.5 91.9% 91.9% 91.9%

Copper C4.5 85.3% 85.3% 85.3%

Iron C4.5 83.9% 83.9% 83.9%

Manganese C4.5 83.6% 83.6% 83.6%

Magnesium C4.5 81% 81% 81%

Calcium C4.5 78.3% 78.3% 78.3%

Zinc C4.5 69.7% 69.6% 69.4%

All Metals SMO (SVM) 65% 64.9% 63.6%

The above results indicate that the Sodium ion binding proteins are the most predictable from its 

feature vector, followed by Nickel, Copper Iron, Manganese, Magnesium, Calcium and Zinc.

Conducting a 10-fold cross validation of a classifier which was trained using a training set 

containing all known metalloproteins and their nearest non-metal-binding neighbors indicates that, 

there is indeed a signature that is common to all known metalloproteins. However as indicated by 

the evolutionary history of metalloproteins, this signature has a very weak predictive power.

Conclusion

This experiment indicates that a combination of C4.5 classifier and Correlation-based feature 

selection has great potential in detecting specific metal-binding protein classes especially Sodium 

and Nickel binding proteins. Furthermore it also indicates that there exists a general fingerprint 

common to all metalloproteins. However this signature is not very useful for practical use. Instead 

an ensemble of classifiers trained to recognize specific metalloprotein signatures would in effect 

behave like a general metalloprotein classifier with higher accuracies.
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Appendix A - Program Listings

model.rb

require 'rubygems'
require 'dm-core'
require  'dm-migrations'
require  'dm-types'

DataMapper::Logger.new($stdout, :debug)
DataMapper.setup(:default, "sqlite://#{Dir.pwd}/proteins.db")

class Protein
  include DataMapper::Resource

  property :id, Serial
  property :entry_id, String, :required => true, :unique => true
  property :features, CommaSeparatedList, :default => '', :lazy => true
  property :features_csv, Text, :default => ''
  property :metals_count, Integer, :default => 0
  property :aaseq, Text, :required => true

  has n, :metals, :through => Resource
  has n, :family, :child_key => [ :a_id ]
  has n, :relatives, self, :through => :family, :via => :b
end

class Metal
  include DataMapper::Resource

  property :id, Serial
  property :name, String, :required => true, :unique => true
  has n, :proteins, :through => Resource
end

class Family
  include DataMapper::Resource

  property :a_id, Integer, :key => true, :min => 1
  property :b_id, Integer, :key => true, :min => 1
  property :nn, Integer

  belongs_to :a, 'Protein', :key => true
  belongs_to :b, 'Protein', :key => true
end

DataMapper.finalize
DataMapper.auto_upgrade!

metal_names = ["Cadmium", "Calcium", "Cobalt", "Copper", "Iron", "Lead", "Lithium", 
"Magnesium", "Manganese", "Mercury", "Molybdenum", "Nickel", "Potassium", "Selenium", 
"Sodium", "Tungsten", "Vanadium", "Zinc"]

if Metal.count == 0
  metal_names.each { |name|
    Metal.create(:name => name)
  }
end
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populate_proteins.rb

require 'rubygems'
require 'dm-core'
require 'bio'

require 'models'

metal_names = ["Cadmium", "Calcium", "Cobalt", "Copper", "Iron", "Lead", "Lithium", 
"Magnesium", "Manganese", "Mercury", "Molybdenum", "Nickel", "Potassium", "Selenium", 
"Sodium", "Tungsten", "Vanadium", "Zinc"]

metals = {}
metal_names.each { |name|
  metals[name] = Metal.first(:name => name)
}

sequences = Bio::FlatFile.auto(ARGF)
 
sequences.each do |seq|
  protein = Protein.new(:entry_id => seq.entry_id, :aaseq => seq.aaseq)
  if seq.kw.include?("Metal-binding")
    m = (metal_names & seq.kw)
    m.each { |name| protein.metals << metals[name]}
    protein.metals_count = m.count
  end
  protein.save
end

populate_features.rb

require 'rubygems'
require 'dm-core'
require  'dm-types'
require 'models' 

Features = [
  #Composition
  #Hydrophobicity
  /[RKEDQN]/,
  /[GASTPHY]/,
  /[CVLIMFW]/,
  #Van der Walls volume
  /[GASCTPD]/,
  /[NVEQIL]/,
  /[MHKFRYW]/,
  #Polarity
  /[LIFWCMVY]/,
  /[PATGS]/,
  /[HQRKNED]/,
  #Polarizability
  /[GASDT]/,
  /[CPNVEQIL]/,
  /[KMHFRYW]/,

  #Transition
  #Hydrophobicity
  /[RKEDQN][GASTPHY]/,
  /[GASTPHY][RKEDQN]/,
  /[RKEDQN][CVLIMFW]/,
  /[CVLIMFW][RKEDQN]/,
  /[GASTPHY][CVLIMFW]/,
  /[CVLIMFW][GASTPHY]/,
  #Van der Walls volume
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  /[GASCTPD][NVEQIL]/,
  /[NVEQIL][GASCTPD]/,
  /[GASCTPD][MHKFRYW]/,
  /[MHKFRYW][GASCTPD]/,
  /[NVEQIL][MHKFRYW]/,
  /[MHKFRYW][NVEQIL]/,
  #Polarity
  /[LIFWCMVY][PATGS]/,
  /[PATGS][LIFWCMVY]/,
  /[LIFWCMVY][HQRKNED]/,
  /[HQRKNED][LIFWCMVY]/,
  /[PATGS][HQRKNED]/,
  /[HQRKNED][PATGS]/,
  #Polarizability
  /[GASDT][CPNVEQIL]/,
  /[CPNVEQIL][GASDT]/,
  /[GASDT][KMHFRYW]/,
  /[KMHFRYW][GASDT]/,
  /[CPNVEQIL][KMHFRYW]/,
  /[KMHFRYW][CPNVEQIL]/
]

def distr(seq)
  l=seq.length.to_f
  dist= Hash.new(0.0)
  seq.each_char do |aa|
    dist[aa] += 1
  end
  dist.each_key do |aa|
    dist[aa]/=l
  end
  return dist.values_at("A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", 
"Q", "R", "S", "T", "V", "W", "Y")
end

def gen_vector(seq)
  c = []
  t_detail = []
  t = []
  d = []
  Features.each_index { |i|
    if i < 12
      c << seq.scan(Features[i]).length.to_f/seq.length.to_f
      matches = seq.enum_for(:scan, Features[i]).map {
! Regexp.last_match.begin(0) + 1
      }
      d << matches.first.to_f/seq.length.to_f
      d << matches[matches.length/4 - 1].to_f/seq.length.to_f
      d << matches[matches.length/2 - 1].to_f/seq.length.to_f
      d << matches[3*matches.length/4 - 1].to_f/seq.length.to_f
      d << matches.last.to_f/seq.length.to_f
    else
      t_detail << seq.scan(Features[i]).length.to_f/(seq.length.to_f - 1)
    end
  }
  t_detail.each_slice(2) { |slice|
    t << slice[0] + slice[1]
  }
  return distr(seq) + c + t + d
end
(Protein.first.id..Protein.last.id).each { |i|
  puts i
  protein = Protein.get(i)
  protein.features = gen_vector(protein.aaseq)
  protein.save
}
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populate_features_csv.rb

require 'rubygems'
require 'models' 

(Protein.first.id..Protein.last.id).each { |i|
  puts i
  protein = Protein.get(i)
  protein.features_csv = protein.features.join(",")
  protein.save
}

generate_weka_csv.rb

require 'models'

file = File.new("#{Dir.pwd}/#{ARGV.first}.csv", "w")
proteins = Protein.all(:metals_count => 1,Protein.metals.name => ARGV.first)

relatives = []
header = ["A1"]
104.times { header << header.last.succ }
file.puts header.join(",")
proteins.each { |protein|
  file.puts protein.features.join(",") + ",METAL"
  relative = protein.relatives.first
  puts protein.entry_id if relative == nil
  if !relatives.include?(relative.id)
    file.puts relative.features.join(",") + ",NONMETAL"
    relatives << relative.id
  end
}

generate_all_csv.rb

require 'rubygems'
require 'dm-core'
require  'dm-types'
require 'models' 
require 'fastercsv'

metal_file = File.new("#{Dir.pwd}/metal.csv", "w")
non_metal_file = File.new("#{Dir.pwd}/non_metal.csv", "w")
(Protein.first.id..Protein.last.id).each { |i|
  puts i
  protein = Protein.get(i)
  metal_file.puts protein.entry_id + "," + protein.features.to_csv if 
protein.metals_count == 1
  non_metal_file.puts protein.entry_id + "," + protein.features.to_csv if 
protein.metals_count == 0
}

pts2ids.rb

#Converts points returned by ANN program into Protein IDs.
require 'models'
nn = File.new("40_nn.csv", "r")
metal = File.new("metal.csv", "r")
non_metal = File.new("non_metal.csv", "r")
output = File.new("40_nn_ids.csv","w")

metal_ids = []
non_metal_ids = []
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while(metal_line = metal.gets)
  metal_ids << Protein.first(:entry_id => metal_line.split(",")[0]).id
end

while(non_metal_line = non_metal.gets)
  non_metal_ids << Protein.first(:entry_id => non_metal_line.split(",")[0]).id
end

output.puts "A_ID,B_ID,NN"
while(nn_line = nn.gets)
  nn_array = nn_line.split(",")
  m = metal_ids[nn_array[0].to_i]
  nm = non_metal_ids[nn_array[2].to_i]
  output.puts "#{m},#{nm},#{nn_array[1]}"
end

approximate_nearest_neighbor.cpp

#include <cstdlib>! ! ! ! ! ! // C standard library
#include <cstdio>! ! ! ! ! ! // C I/O (for sscanf)
#include <cstring>! ! ! ! ! ! // string manipulation
#include <fstream>! ! ! ! ! ! // file I/O
#include <ANN/ANN.h>! ! ! ! ! // ANN declarations

using namespace std;! ! ! ! ! // make std:: accessible

//----------------------------------------------------------------------
// ann_sample
//
// This is a simple sample program for the ANN library.!  After compiling,
// it can be run as follows.
// 
// ann_sample [-d dim] [-max mpts] [-nn k] [-e eps] [-df data] [-qf query]
//
// where
//! ! dim! ! ! ! is the dimension of the space (default = 2)
//! ! mpts! ! ! maximum number of data points (default = 1000)
//! ! k! ! ! ! number of nearest neighbors per query (default 1)
//! ! eps! ! ! ! is the error bound (default = 0.0)
//! ! data! ! ! file containing data points
//! ! query! ! ! file containing query points
//
// Results are sent to the standard output.
//----------------------------------------------------------------------

//----------------------------------------------------------------------
//! Parameters that are set in getArgs()
//----------------------------------------------------------------------
void getArgs(int argc, char **argv);!! ! // get command-line arguments

int! ! ! ! k! ! ! ! = 1;! // number of nearest neighbors
int! ! ! ! dim! ! ! ! = 2;! // dimension
double! ! ! eps! ! ! ! = 0;! ! // error bound
int! ! ! ! maxPts!! ! = 1000;!! // maximum number of data points

istream*! ! dataIn! ! ! = NULL;!! ! // input for data points
istream*! ! queryIn!! ! = NULL;!! ! // input for query points

bool readPt(istream &in, ANNpoint p)!! ! // read point (false on EOF)
{
! for (int i = 0; i < dim; i++) {
! ! if(!(in >> p[i])) return false;
! }
! return true;
}

void printPt(ostream &out, ANNpoint p)! ! ! // print point
{
! out << "(" << p[0];
! for (int i = 1; i < dim; i++) {
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! ! out << ", " << p[i];
! }
! out << ")\n";
}

int main(int argc, char **argv)
{
! int! ! ! ! ! nPts;! ! ! // actual number of data points
! ANNpointArray! ! dataPts;! ! ! ! // data points
! ANNpoint! ! ! queryPt;! ! ! // query point
! ANNidxArray! ! ! nnIdx;! ! ! ! // near neighbor indices
! ANNdistArray! ! dists;!! ! ! ! // near neighbor distances
! ANNkd_tree*! ! ! kdTree;!! ! ! // search structure

! getArgs(argc, argv);! ! ! ! ! ! // read command-line arguments

! queryPt = annAllocPt(dim);! ! ! ! ! // allocate query point
! dataPts = annAllocPts(maxPts, dim);! ! ! // allocate data points
! nnIdx = new ANNidx[k];!! ! ! ! ! // allocate near neigh indices
! dists = new ANNdist[k];! ! ! ! ! ! // allocate near neighbor 
dists

! nPts = 0;! ! ! ! ! ! ! ! // read data points

! //cout << "Data Points:\n";
! while (nPts < maxPts && readPt(*dataIn, dataPts[nPts])) {
! ! //printPt(cout, dataPts[nPts]);
! ! nPts++;
! }

! kdTree = new ANNkd_tree(! ! ! ! ! // build search structure
! ! ! ! ! dataPts,! ! ! // the data points
! ! ! ! ! nPts,! ! ! ! // number of points
! ! ! ! ! dim);! ! ! ! // dimension of space

  int q = 0; //Query Point Number

  cout << "METAL,ORDER,NONMETAL,DISTANCE\n";
! while (readPt(*queryIn, queryPt)) {! ! ! // read query points
! ! //cout << "Query point: ";! ! ! // echo query point
! ! //printPt(cout, queryPt);

! ! kdTree->annkSearch(! ! ! ! // search
! ! ! ! queryPt,! ! ! // query point
! ! ! ! k,! ! ! ! // number of near neighbors
! ! ! ! nnIdx,!! ! ! // nearest neighbors (returned)
! ! ! ! dists,!! ! ! // distance (returned)
! ! ! ! eps);! ! ! ! // error bound

! ! for (int i = 0; i < k; i++) {!! ! // print summary
! ! ! dists[i] = sqrt(dists[i]);! ! // unsquare distance
! ! ! cout << q << "," << i << "," << nnIdx[i] << "," << dists[i] << "\n";
! ! }
    q++;
! }
    delete [] nnIdx;! ! ! ! ! ! ! // clean things up
    delete [] dists;
    delete kdTree;
! annClose();! ! ! ! ! ! ! // done with ANN

! return EXIT_SUCCESS;
}

//----------------------------------------------------------------------
//! getArgs - get command line arguments
//----------------------------------------------------------------------

void getArgs(int argc, char **argv)
{
! static ifstream dataStream;! ! ! ! // data file stream
! static ifstream queryStream;! ! ! ! // query file stream
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! if (argc <= 1) {! ! ! ! ! ! ! // no arguments
! ! cerr << "Usage:\n\n"
! ! << "  ann_sample [-d dim] [-max m] [-nn k] [-e eps] [-df data]"
! !    " [-qf query]\n\n"
! ! << "  where:\n"
! ! << "    dim      dimension of the space (default = 2)\n"
! ! << "    m        maximum number of data points (default = 1000)\n"
! ! << "    k        number of nearest neighbors per query (default 1)\n"
! ! << "    eps      the error bound (default = 0.0)\n"
! ! << "    data     name of file containing data points\n"
! ! << "    query    name of file containing query points\n\n"
! ! << " Results are sent to the standard output.\n"
! ! << "\n"
! ! << " To run this demo use:\n"
! ! << "    ann_sample -df data.pts -qf query.pts\n";
! ! exit(0);
! }
! int i = 1;
! while (i < argc) {! ! ! ! ! // read arguments
! ! if (!strcmp(argv[i], "-d")) {!! ! // -d option
! ! ! dim = atoi(argv[++i]);!! ! ! // get dimension to dump
! ! }
! ! else if (!strcmp(argv[i], "-max")) {!// -max option
! ! ! maxPts = atoi(argv[++i]);! ! ! // get max number of points
! ! }
! ! else if (!strcmp(argv[i], "-nn")) {! ! // -nn option
! ! ! k = atoi(argv[++i]);! ! ! ! // get number of near neighbors
! ! }
! ! else if (!strcmp(argv[i], "-e")) {! ! // -e option
! ! ! sscanf(argv[++i], "%lf", &eps);! ! // get error bound
! ! }
! ! else if (!strcmp(argv[i], "-df")) {! ! // -df option
! ! ! dataStream.open(argv[++i], ios::in);// open data file
! ! ! if (!dataStream) {
! ! ! ! cerr << "Cannot open data file\n";
! ! ! ! exit(1);
! ! ! }
! ! ! dataIn = &dataStream;!! ! ! // make this the data stream
! ! }
! ! else if (!strcmp(argv[i], "-qf")) {! ! // -qf option
! ! ! queryStream.open(argv[++i], ios::in);// open query file
! ! ! if (!queryStream) {
! ! ! ! cerr << "Cannot open query file\n";
! ! ! ! exit(1);
! ! ! }
! ! ! queryIn = &queryStream;! ! ! // make this query stream
! ! }
! ! else {!! ! ! ! ! ! ! ! // illegal syntax
! ! ! cerr << "Unrecognized option.\n";
! ! ! exit(1);
! ! }
! ! i++;
! }
! if (dataIn == NULL || queryIn == NULL) {
! ! cerr << "-df and -qf options must be specified\n";
! ! exit(1);
! }
}
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