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Summary

One of the important problems in molecular biology is to understand the mech-

anisms that regulate the expressions of genes. A crucial step in this challenge is

the ability to identify cis-regulatory motifs, e.g. binding sites in DNA sequences.

Studying them can give us important clues in unraveling regulatory interactions

of genes. The prediction of such regulatory elements is a problem where compu-

tational methods offer a great hope.

This thesis presents a new class of algorithms for in silico discovery of regula-

tory elements. Firstly, we address the problem of motif finding for generic spaced

motifs. Spaced motifs, an important class of transcription factors, consists of

several short segments separated by spacers of different lengths. Existing motif

finding algorithms are either designed for monad motifs or have assumptions on

the spacer lengths or can handle at most two segments. To address this issue, we

propose a new method called SPACE. They key idea is to obtain the motif as

an integration of the submotifs as defined by the frequent pattern.

Our method makes use of a novel scoring technique to measure the statis-

tical significance of generic spaced motifs. With this measure we overcome the

difficulty in handling biased samples by incorporating background sequence from

various species. Based on experiments on real biological datasets and Tompa’s
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benchmark datasets, we show that our algorithm outperforms the existing tools

for spaced motifs in both sensitivity by 20.3% and specificity by 76%. And for

monads, it performs as good as other tools.

Secondly, although many tools have been developed for motif finding, they

vary in their definitions on what constitute a motif and in their methods for

finding statistically overrepresented motifs. There is no clear way for biologist to

choose the motif finder that is most suitable for their task. There is an immediate

need for a more effective method that allows the biologist to make use of these

diverse motif finders for finding novel transcription factor accurately. However

there are two main difficulties in this direction. First, multiple motif finders

may report similar spurious motifs. The challenge lies in how to distinguish

these spurious motifs from the real overrepresented motifs. Second, even if the

reported motif can approximate the real motif, they still contain false positive

that have high similarity with the real binding sites. For this reason, we propose

a method called MotifVoter to identify regulatory sites by integrating results

found by multiple motif finders. It applies a variance based statistical measure to

remove the spurious motifs and then refines the prediction by filtering the noisy

binding sites from using a novel voting scheme. We show that these two steps help

to overcome the two difficulties by removing spurious predictions at both motif

and binding site level. Validation of our method on Tompa’s benchmark, real

metazoan and E. Coli datasets (186 datasets in total) show that it can improve

the sensitivity by 120% and precision by 77% over stand alone motif finders.

MotifVoter can locate almost all the binding sites found by the individual motif

finders used and is able to distinguish the real binding sites from noise effectively.

We conclude that our integrative approach towards motif finding offers a prac-

tical alternative for biologists to study novel regulatory sites.
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CHAPTER 1

Introduction

Since the dawn of 21st century, genomic research has entered a new era, due

to the introduction of high-throughput experiments in molecular biology [72].

Large scale genomics became an important tool for understanding the organisms.

Access to these genomic sequences helps biologists to define and test hypotheses

about how genomes are organized and evolved, as well as how a genome encodes

the observed properties of a living organisms. The major questions being pursued

include: what parts of our genome encode the mechanisms for major cellular

function like metabolism, differentiation, proliferation, and programmed death?

How do multiple genes act together to perform specialized functions? How is our

non-protein coding DNA organized, and which parts are functionally important?

How do selective pressures act on the random processes of gene duplication and

mutation to give rise to complex organs like eyes, wings and brains? Why do

humans appear so different from worms and flies, despite sharing so many of the

same genes?

Nevertheless, the task of discovering the function of these genomic sequences

is expensive and time consuming. Given the wealth of sequence data nowadays,

functional analysis in the wet lab can only be applied to a small percentage of
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new data.

On the other hand since genomic sequence data has been accurately repre-

sented in a database, this provides an opportunity for computer scientists. Com-

putationally aided analysis can provide insight into the function to the genes,

both by analyzing the genes themselves or by comparing similarities of genes of

other organisms. Computational analysis of genomic sequence may never replace

the wet lab techniques of the molecular biologist. However, by mining statis-

tically significant trends from genomic data, the computer scientists can direct

the attention of molecular biology, uncovering biologically significant functional

information that might otherwise remain undiscovered.

It is within this framework of genomic sequence analysis our thesis work is

situated.

1.1 Biological Background

1.1.1 Gene Regulation

Most cells of a multi-cellular organism contain all genetic information at all times,

but only a fraction of it is active. We are only beginning to understand how do

cells determine the active state of its component [28, 104]. About 10% of human

and fruitfly genes are estimated to be used only to control the expression of

other genes [1,135]. Understanding the regulation of gene expression is therefore

undoubtedly one of the most interesting challenges in molecular biology today.

To express a gene, control mechanisms appear at many different levels. The

most important control level is the first step of gene expression, which transcribe

a gene into the messenger-RNAs. The transcriptional machinery of the cell that

binds to regulatory DNA sequences called promoters of genes. It is intuitively
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clear that errors occurring in this machinery leading to false-expression of genes

that are important link to genetically based diseases [72]. It is thus important

to find exact regulatory regions to be able to examine in detail, either computa-

tionally or by experiments, and learn the mechanism that control the expression

of genes.

1.1.2 Cis-Regulatory Elements

Regions of DNA or RNA that regulate the expression of genes located on that

same strand are called cis-regulatory elements [26,104]. These elements are often

binding sites of one or more trans-acting factors. There exist many categories of

cis-regulatory elements [93].

• The most important is the class of transcription factor binding sites

(TFBS). These are short DNA sequence patterns that are targeted by spe-

cific auxiliary proteins called transcription factors [72].

• A related regulatory element is the so-called TATA-box, which is a site of a

general transcription factor to be identified with AT-rich sequence around

position -30 [20].

• Another is called microRNA (miRNA). It is single-stranded RNA molecule.

And its main function is to downregulate gene expression [113].

• Downstream promoter element (DPE) is a regulatory element that is as

widely used as TATA-box, but is less well conserved [66]. Its core motif is

located exactly from 28 to 33 base pairs downstream of the TSS.

There are many other examples of motifs including motifs in enhancers, ribo-

some and splicing sites [67]. For a more complete discussion on cellular regulatory
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mechanism, we refer to standard books on this topic, e.g. [19, 72]. For illustra-

tion, we consider the transcription factor binding sites (TFBS) as an exemplar of

regulatory motifs, in the next subsection.

1.1.3 Role of Transcription Factor in Gene Regulation

The study of transcriptional regulation is crucial to our understanding of the cell.

Whether it is a routine function which controls a cell to grow and replicate, or

the information processing and response mechanism that are deployed by the cell

to deal with external stimulus, transcriptional regulation is heavily utilized as the

building block of elaborate cellular mechanism [137].

Figure 1.1: A transcription factor binds upstream of a gene and activates the
RNA polymerase, thereby promoting transcription initiation.

The most common mechanism to regulate the gene expression operates at

the stage of transcription. For a mRNA transcript to be produced from a gene

template, the RNA polymerase complex first needs to be recruited near the 5‘

end of the gene, at a position called TSS. In some cases, a protein molecule binds

to the DNA near the TSS, and then interacts with the RNA polymerase complex,

either inducing or inhibiting the latter’s DNA-binding capacity (See Figure 1.1).

It is easy to see that such DNA-binding molecule would then have the ability

to either promote or suppress gene expression, by affecting the recruitment of

RNA polymerase. These molecules are called transcription factors, and there are
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many distinct proteins that serve as transcription factors in the cell. Sometimes,

a transcription factor interacts with other proteins (including other transcription

factors), influencing transcription indirectly. It has two important domains in its

structure - the DNA binding domain, which is often specialized to recognize a

very specific DNA specific sequence, and the activation domain, which interacts

with the RNA polymerase or other proteins. The DNA binding domain can

recognize and bind specific target sites that are located near a gene, “switching”

the gene on or off, without directly affecting the expression of other genes. The

regulated gene may itself code for another transcription factor, which in turn

regulates another gene.

The DNA-binding domain of a transcription factor is specialized to recognize

a very specific target sites in the DNA. These transcription factor binding sites

(or “regulatory elements”) range between 6 and 25 bp in length. Usually the

bases at all positions in the site are not equally important for binding specificity.

A motif is a characterization of the binding sites of a transcription factor. For

example, a well known transcription factor CTCF has CCGCGnGGnGGCAG as its

motif [65] (see Figure 1.2). The transcription factor has high affinity for sequences

that exactly or approximately match the motif while relatively low affinity for

sequences different from the motif.

Figure 1.2: CTCF motif.

The study of transcription factor binding sites can give us important clues

in unraveling regulatory interactions of genes. Once the motif of the binding



1.1 Biological Background 6

sites of a transcription factor is known, it enables one to look for occurrences of

this motif in promoters of other genes. The presence of motif is circumstantial

evidence that the gene is regulated by the transcription factor.

1.1.4 Challenges in the Discovery of Regulatory Motifs

We outline the motif discovery problem from the setting of the transcription factor

binding sites. We start with the hypothesis that a set of genes is regulated by

the same transcription factor (co-regulated). We can then look at the interesting

motifs that are shared by promoters of these genes. If any such motif is found,

we can experimentally verify if there exist a transcription factor that has high

specificity for the motif, and if so, that transcription factor is a potential regulator

of the set of genes that we started with. This kind of paradigm is the most relevant

application scenario for the work we are presenting.

Motif-finding in general is a difficult problem, and the one that is not yet

well-solved [100,131]. There are several reasons for the difficulty:

1. As shown by Ming Li [73] and Akutsu [41] the motif finding problem is

inherently NP-hard.

2. There can be a great variability in the binding sites of a single factor, and

the nature of the allowable variations is not well understood. Depending on

the model of variability that we assume binding sites, the space for motif

to be searched can be very large.

3. There may be multiple binding sites for a single factor in a single gene’s reg-

ulatory region. The regulatory elements are not always the same orientation

as the coding sequence or each other.
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Figure 1.3: An investigative paradigm to infer regulatory interaction. (a) Begin
with a set of potentially co-regulated genes, (b) Extract the promoter sequences
of these genes, (c) Identify interesting motifs shared by promoters, (d) Exper-
imentally verify if detected motifs are specifically bound by any transcription
factor

1.2 Literature Review

In this section we will first describe two general classes of motif models used

by existing motif finders. Subsequently, we will elaborate representative motif

finders for the respective models.

1.2.1 Motif Models

Consensus Model

The consensus model is a simple combinatorial description of a motif. In this

model, the motif is represented as consensus sequence. Each occurrence (instance)

of the motif is a copy of the consensus sequence, perhaps with a few substitutions.

The consensus at each position of multiple sequences is defined as the base which
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occurs most often at the position. In the case that two or more bases have equal

highest occurrence, the consensus will be represented by IUPAC symbol. Figure

1.4. below illustrate the example of consensus model.

5 occurrences of a motif


CATCAAT

TGCTAAT

TGTACAT

TGGCACT

TGTTGAT


Consensus Sequence


TGTwAAT


Figure 1.4: A consensus model inferred from five occurrences of a motif. The
most frequent base in each position of the occurrences becomes the base of the
consensus at the position. If two or more bases appear equally often in a given
position, as with T and C in the fourth position, the consensus is represented with
IUPAC symbol w.

One could measure the conservation of a motif by the number of substitutions

between each occurrence and the consensus sequence.

Consensus model is somewhat a simpler model. Given multiple occurrences,

it extract a single pattern - consensus sequence. In most cases, it is effective in

the sense that the base that appears most frequently in each position has the

highest likelihood to be original base of the motif. However, consensus model

risks missing the actual motif. This happens in the situation that the base at any

position of the motif is weakly conserved.

Position Weight Matrix (PWM) model

The consensus model is not informative, because it does not reveal either how

strongly the consensus base in each position is conserved or the distribution of

non-consensus bases. However, all this information are described in the weight

matrix model (PWM), also called profile model. PWM is a probabilistic model.

It models a motif of length l as a 4 × l matrix M , where the entry at position
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M [p, q] gives the probability that an occurrence of the motif contains a base q (q

= {A,T,C,G}). in its p-th position. Each column of the matrix therefore sums to

one as illustrated in Figure 1.5. The distribution of bases in different positions

are independent of each other. Given a length-l sequences, let s[i] denotes the

base at its i-th position. Based on the weight matrix, the probability that M

produces a particular length-l instance m is: Pr[m|W ] =
l

∏

i=1

W [m[i], i]. Given a

set of motif occurrences M , the weight matrix W [M ] can be easily computed by

calculating the frequency of each base in each position.

5 occurrences of a motif


CATCAAT

TGCTAAT

TGTACAT

TGGCACT

TGTTGAT


Position Weight Matrix


1
 2
 3
 4
 5
 6
 7

A
 0
 0.2
 0
 0.2
 0.6
 0.8
 0

C
 0.2
 0
 0.2
 0.4
 0.2
 0.2
 0

G
 0
 0.8
 0.2
 0
 0.2
 0
 0

T
 0.8
 0
 0.6
 0.4
 0
 0
 1


Figure 1.5: Unlike the consensus model, the PWM captures the frequencies of
both consensus base and non-consensus bases, and it remains well-defined even
when the consensus base is ambiguous at 4-th position.

The matrix W [M ] is the best description of M in the sense of maximum like-

lihood. It is the weight matrix W that maximized the likelihood L[W [M ]|M ] =
∏

m∈M

Pr[m|W ]. And the likelihood L[W [M ]|M ] is also a useful score by which to

measure the extent of conservation of the motif. If the motif occurs in random

background sequences with a base distribution P , then the scoring function for

the set M of motif occurrences is the likelihood ratio LR(M), defined as:

LR(M) =
L[W [M ]|M ]

L[P |M ]

where
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L[P |M ] =
∏

m∈M

Pr[m|P ]

The likelihood ratio, while is not strictly a measure of conservation, is a prin-

cipled way to account for the background base distribution when scoring a motif.

Since PWM motif model captures the frequency of each base in each position.

It will best describe the motif (M) in the sense of maximum likelihood. In

addition, the impact of the background distribution can be taken into account

for measuring the conservation.

Instead of extracting a specific motif PWM provides only information to infer

the likelihood that any length l-string is the actual motif. It is possible that

the model is biased on wrong bases in some positions in the situation that the

mutations occur preferentially on a small subset of positions of its occurrences.

To overcome this issue, some works have tried to makes use of mixture of several

PWMs that capture different information sources [4, 49] or incorporating some

forms of weighted measure into the base counting procedure [120]. Finally, to

get the model that best reflect the actual motif, the initial model need to be

refined using one of the following probabilistic methods derivatives: Expectation-

Maximization, Gibbs Sampling and Hidden Markov Model.

1.2.2 De novo Motif Finders

In this section we describe de novo methods that use the above motif models.

Although the division is clear for most algorithms, there also exist methods that

try to combine both methodologies. Figure 1.6 depicts the general overview of

the classification for de novo motif finders.
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Figure 1.6: Classification table for stand alone de novo motif finders.

Consensus Based Approaches

In this approach the algorithm starts from the representation of a motif as

a string. These methods begin from basic counting, where the frequency of

the motif in a given sequence set is compared to the expected number of

occurrences. The advantage of these approaches is that it can guarantee to find

the best pattern (motif). However they are not expressive, i.e. they cannot

differentiate between conserved and unconserved positions, also they cannot

represent positions where multiple bases can occur.

Graph Based Methods Among the class of string based methods,

graph-based approaches are the most popular among computational biologists.

Pevzner and Sze [99] proposed two methods using this approach called Winnower

and SP-STAR. Winnower represents motif instances as vertices in a graph

and the edges represent similarity between the instances. It then try to delete

spurious edges and recover the motif with the remaining vertices. A variant of

this approach is CWinnower [74]. It imposes a consensus constraint enabling it

to detect weaker signals compare to Winnower. SP-STAR is a greedy algorithm

which iteratively improves the sum of pair score of the motif generated by

Winnower.
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Figure 1.7: Similarity between instances is modeled using graph. The vertice
AGATGCCA is a motif with AGCTACAA, ACATTCTA, ACAAGCCA as its instances. Note
that the distance (edges) between the motif and instances is at most d mismatch
(where d = 2).

Another recent approaches that use graph-theoretic framework are MotifCut

[42] and Trawler [37]. The main idea of MotifCut is to search for a best motif

based on its maximal density subgraph, which is a set of k-mers that exhibit a

large number of pairwise similarities. Trawler’s approach is to cluster subgraphs

based on their density. Graph based method has also been extended to find RNA

motif [106] and network motifs e.g. the works of Grochow [46] and Przytycka

[103].
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Enumeration Based Methods The most basic approach in this string

based approach is to search for overrepresented strings in a set of co-regulated

genes. Using such approaches, over-representation is typically measured by ex-

haustive enumeration of all oligonucleotides of a specific length without allow-

ing any mismatches. The observed number of occurrences of a given motif is

compared to the expected number of occurrences. The expected number of oc-

currences and the statistical estimate is done in many ways. Here we give an

overview of the different methods.

It was van Helden et.al [133] who provided an initial version of the enumeration

methods. They presented a simple and fast method for the identification of DNA

binding sites in the upstream regions from families of co-regulated genes in yeast

(S. Cerevisiae). First, for each oligonucleotide of a given length, the expected

frequency is computed from all non-coding, upstream regions in the genome of

interest. Based on this frequency table, the expected number of occurrences of

a given oligonucleotide in a specific set of sequences can be estimated. Then, a

significance coefficient is computed taking into account the distinct number of

all possible oligonucleotides. Finally the retrieved oligos are grouped together

to extend the motifs. Later work by Apostolico [7] improved this approach to

enable the finding protein motifs by allowing extensible wildcard in their motif

model. The most crucial parameters here is the choice of probabilistic model for

the significant occurrences. Their method is limited to searching short motifs of

five to seven base pairs long. The following are some other approaches that follow

this direction.

Consensus [53] is an algorithm that uses greedy enumeration method to first

find pairs of sequences that share motif with greatest information content, then

finding the third sequence that can be added the motif resulting in greatest in-
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formation content and so on.

Tompa [130] proposed an exact method to find short motifs in DNA sequences.

In principle it computed the statistical significance of motifs exhaustively. First

for each k-mer s with certain number of mismatches, the number of sequences

containing s is calculated. Next the probability of ps of finding of at least one

occurrences of s in a sequence drawn from a random distribution is estimated.

Then the associated z-score is computed as follows:

zs =
Ns − Nps

√

Nps(1 − ps)

zs gives a measure of how unlikely it is to have Ns occurrences of s given the

expected number of occurrences Nps. They proposed an algorithm to estimate the

expected frequency of ps of a word from a set of background sequences based on

a Markov chain. This method was later enhanced by YMF [123] and Quickscore

[107].

Enumeration method is also applied for finding spaced dyads. Spaced dyads

are motifs consisting of two short conserved boxes separated by a region of

fixed size and variable content. The earliest work on this extension is by van

Helden [134]. In his approach the length of the conserved box is fixed to 3 nu-

cleotides but the length of the spacer is different for each motifs. Different spacer

lengths are systematically examined. MITRA [36] improves this approaches by

allowing box length to be greater than 3bp (monad segments). MITRA relies on a

specially designed data structure (mismatch tree data structure) to quickly iden-

tify possible monad segments. Another approach that aims to speed-up finding

dyads is TEIRESIAS [109], by using convolution strategy to stich the monads.

The greatest shortcoming of these methods is that they only handle spaces with
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only two segments.

Another approach to overcome the computational cost of enumeration meth-

ods (for both monad and dyads) is using suffix tree as a data structure. Weeder

[97] is the primary example of monad motif finders that uses suffix tree. SMILE

[83] is the example of motif finder that uses suffix tree to find dyad motifs.

PWM Based Approaches

Instead of the string based approaches, the problem of motif finding can also

be tackled by learning a matrix model that describes the binding sites [90].

There exist three main implementations for this approach, namely Expectation-

Maximization, Gibbs Sampling and Hidden Markov Model.

Expectation Maximization Based Methods Within the maximum

likelihood estimation framework, Expectation Maximization (EM) is the primary

choice of optimization algorithm. EM is a two-step iterative procedure for

obtaining the maximum likelihood parameter estimates for a model of observed

data and missing values [86].

EM for motif finding was first introduced by Lawrence and Reilly [69]. Al-

though it was primarily intended for searching motifs in related proteins, the de-

scribed method could also be applied in DNA sequences. Their proposed model

conforms to the assumptions outlined above. Each sequence contains exactly one

instance of the motif. The starting position of each motif instance is unknown

and is considered as being a missing value from the data. If the motif positions

are known then the observed frequencies of the nucleotides at each position in

the motif are the maximum likelihood estimates of model parameters. To find

the starting positions each subsequence is scored with the current estimate of
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the motif model. These updated probabilities are used to re-estimate the motif

model. this procedures is repeated until convergence. EM often suffers badly

from local minima for short DNA motifs.

Since assuming there is exactly one copy of the motif per sequence does not

hold for binding sites in DNA sequences, Bailey and Elkan proposed an advance

EM implementation for motif finding called MEME [8,9]. To overcome the prob-

lem of initialization and getting stuck in local minima, MEME proposes to ini-

tialize the algorithm with a motif model based on a contiguous subsequence that

gives the highest likelihood score. Therefore, each substring in the sequence set

is used as a starting point for one-step iteration of EM, then the computed motif

models are ordered in decreasing order of likelihood. The best motif is retained

and used for further optimization steps. After the convergence the corresponding

motif positions are masked and the procedure is restarted with the next motif

model in the list.

Apart from MEME, many algorithms have been proposed to tackle the ini-

tialization problem in EM. They include Random Projection [21], Improbizer [5],

Ortho-MEME [102] and Dragon Motif Builder [56].

Gibbs Sampling Based Methods The applicability of Gibbs sam-

pling to solve missing value problem [127] has lead to the implementation of

a Gibbs sampler for motif finding. The derivation of the exact algorithm was

presented by Lawrence et.al [68]. Subsequently we observed that there are

several works that proposed methods to fine-tune the Gibbs sampling algorithm

for motif finding. Here we will give short description of these methods.

A version of Gibbs sampling algorithm that was especially tuned towards

finding motif in DNA sequence are AlignACE [57, 111]. The modification on
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Gibbs sampling is done in two ways. First, one motif at the time was retrieved

and the positions were masked instead of simultaneous multiple motif searching.

Second, they were implemented with a fixed single nucleotide background model

based on base frequency in the sequence set. Finally, the maximum a posteriori

likelihood score was used to judge the quality of different motifs.

ANN-Spec [142] has its origin in the Gibbs sampling framework but ap-

proaches the representation of the motif model rather differently. It models the

DNA binding specificity of a transcription factor using weight matrix. And uses

Gibbs sampling to fit the parameter with gradient descent method. MotifSam-

pler [129] uses Gibbs sampling to find the position probability matrix that repre-

sents the motif. The probabilistic framework is further exploited to estimate the

expected number of motif instances in the sequence. BioProspector [75] modifies

the motif model used in classical Gibbs samplers motif finder to allow for the

modeling of gapped motifs and motifs with palindromic patterns. Frith, et.al [43]

implemented GLAM that uses Gibbs sampling to automatically optimizes the

alignment width and evaluates the statistical significance of its output. Gibb-

sILR [89] uses Gibbs Sampling to produce a motif that exhibits locally optimized

ILR (incomplete data likelihood ratio) score. Finally there is SeSiMCMC [38]

which is a modification of Gibbs sampling algorithm to find structured motifs

of symmetric types, as well as motifs without any explicit symmetry, in a set of

unaligned DNA sequences.

The main goal of these algorithms is to get a generative probabilistic repre-

sentation of the overrepresented motifs. The major advantages of this framework

are: it is able to represent the motif in a very powerful way and the scoring func-

tion is motivated by the underlying probabilistic model. Additional information

in the motif search like: background statistic, expression data, aligned genomes,
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functional categories and position information can easily be incorporated. A ma-

jor drawback is that finding the best matrix or profile is difficult (not guaranteed).

Hidden Markov Model Based Methods One of the current imple-

mentation that uses Hidden Markov Models (HMMs) for extracting motif in

DNA is by Yada [6, 143] called YEBIS, even though the conceptual application

of HMMs in this area has begun much earlier [58]. HMMs is used as a model for

a family of sequences. There are three aspects which need to be addressed here.

First is the Topology of HMM, it specifies the layout of the model which we use

to represent a sequence family.

The model consist of three kind of states. Match states model conserved

parts of sequences (motifs). It specify probability distribution of characters on

each conserved position. There can be any number of match states, which is

normally given by the user. Insert states model possible gaps in between match

states. Gaps can be arbitrarily long. Probability assigned to a self-loop in an

insertion state models probability distribution of possible gap length. Finally,

delete states allow to bypass some of the match states. For detailed description

of HMMs and related algorithms we refer to [33].

Figure 1.8: Three different states of HMM to model a set of instances. Match
states model the conserved position in these instances. Insert states aims to
capture the possible insertion these instances. Finally, deletion states models the
deletion in the 3rd instance.
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Hybrid Approaches

There also exists approaches that use the combination of the above two ap-

proaches. One of the most important tool that follows this path is MDScan [76].

Using consensus based approach, MDScan first search for motif candidates ap-

pearing in the subset of input sequences that are more likely to contain the

motif (highly ChIP-enriched sequences). Subsequently, motif candidates in each

similarity group are used find initialization PWM matrices. Then matrices is

evaluated using maximum a posteriori scoring function. The highest ranking

matrices (seed) is then used to scan the remaining input sequences to update the

motif candidates.

HMD [140] algorithm consists of a sequence filtering component that uses a

probabilistic strategy, and a graph-theoretic motif finding component that uti-

lizes a deterministic algorithm. Sequence filtering uses the idea of locality sensi-

tive hashing from computational geometry. This is based on the idea that simple

hashing functions can be used to map objects in multidimensional space to buck-

ets that have high probability of containing objects close to each other than those

which are far apart. The aim of this step is to filter out corrupted sequences. For

motif finding it applies CMF algorithm that is based on the concept of constraint

rules [31].

Ensemble Motif Finders

In machine learning terminology, ensemble learning is a method that combines in-

dividual classifiers in some way to classify new instances. It has been theoretically

shown that ensemble methods often perform better than any single classifier [30].

The difficulty in general is how to determine the suitable classifier. Inclusion of
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bad performing classifier will degrades the performance. The central challenge

of ensemble method therefore is how to combine the individual classifiers when

their predictive quality is unknown.

In bioinformatics, ensemble methods have been applied in several prediction

methods such as gene prediction [2], protein tertiary structure prediction [40,44,

78], protein domain prediction [114] and protein secondary structure prediction [3,

91]. The success of ensemble method in these areas has been attributed to several

factors. Albrecht et.al [3] referred their success to the noise-filtering properties

of the ensemble approach, which damp the training errors of single methods.

Lundström et.al [78] discussed that the key reason for the success of an ensemble

approach is to properly measure the similarity between the different models.

Furthermore, works by Harbison [50], Kihara [54], and MacIsaac [79] hinted that

possible improvement can be made in motif discovery by combining output of

several programs.

Ensemble methods in motif finding refers to the method of combining de novo

motif finders for discovering regulatory motifs. In the literature, there are three

existing directions for performing ensembles for motif finding:

1. Re-rank collection of motifs returned by individual motif finders using some

form of scoring function and finally report one motif.

2. Cluster collection of motifs returned by individual motif finders, find rep-

resentative motif from the cluster and re-score them.

3. Cluster motifs from the same rank and select sites from the cluster.

Below we describe in details of the methods for each approaches.
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Approach 1 is taken by SCOPE [24] and cBEST [32, 59]. The distinctive

difference between them is on the scoring function they use.

SCOPE uses BEAM, PRISM, and SPACER for its component motif finders.

First motif reported by these component motif finders are filtered out based on

its redundancy, subsequently the filtered motifs are scored and ranked based on

SCOPE’s scoring function.

In principle SCOPE uses p-value as the basis of its scoring function. It mea-

sures the motif significance based on probability of a motif m will have the suffi-

cient occurrences within a particular null hypothesis. Let M be a random variable

over the full space of IUPAC word. The p-value of a particular motif m denoted

by p(M = m) determines the significance of the occurrence of motif m over some

random motif M in background sequence of the given species. Hence, the final

scoring function of SCOPE is to find a motif that maximize:

Sig = −log(p(M = m).N)

where a normalization factor N is the total number of length |m| oligos in the

input sequence.

The main intuition behind this scoring function is that the higher the Sig

score, the probability of accepting the hypothesis that motif m is more significant

than any random motif M in background sequence is also higher.

cBEST uses AlignACE, BioProspector, CONSENSUS, and MEME as its com-

ponent motif finders. In principle cBEST employ Bayesian model to improve the

motif score from any generic motif finders. The main hypothesis is that if motif

M is good it will have several similar-looking motifs – from all the motif finders’

output – present within input sequence S. Hence, the idea is to maximize the
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probability of motif M having such unknown number of similar-looking motifs.

Given an input sequence S, motif M , an unknown motif matrix Φ, motif’s ma-

trix θ (i.e. motif’s nucleotide composition), and known parameters θ0 (vector of

nucleotide composition of background) and a pre-specified parameter p0 (a priori

probability that a particular string being a motif site), the Bayesian model that

describe the probability of motif M occurs together with some unknown motif is

described as: p(Φ, M |S, θ0, p0). The final scoring function of BEST is to maximize

posterior distribution of the probability.

Approach 2 This approach is taken by Webmotifs [45, 110], it uses Alig-

nACE, MDScan, MEME, and Weeder as its component motif finders. Initially

set of motifs returned by these component motif finders will be clustered with

k-medoids clustering method using the inter-motif distance metric:

D =
1

w

w
∑

i=1

1√
2

∑

L∈{A,C,G,T}

(ai,L − bi,L)2

where w is the motif width, and ai,L and bi,L are the estimated probabilities of

observing base L at position i of motifs a and b respectively. The centroid motif

for each cluster is then scored using enrichment score formulated as:

p =

min(B,g)
∑

i=b

(

B

i

)(

G−B

g−i

)

(

G

g

)

where B is the number of input sequences and G is the total number of

sequences represented in microarray or genome. The quantities b and g represent

the subset of B and G that match the motif.

The advantage of these two approaches is that they can select the best motif

out of all the motif finders. However, similar to Approach 1, these methods only

select correct binding sites of one motif predicted by one individual motif finder.
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It will fail to discover correct binding sites found by more than one motif finders.

Approach 3 Finally, EMD [55] follows this last approach. It uses AlignACE,

BioProspector, MDScan, MEME and MotifSampler as its component motif find-

ers. Initially, each motif finder Mi report top K scoring motifs. Subsequently

the motifs will be clustered into K-groups based on its ranking. For each of the

K-groups, it computes the number of times each position of a site occurs (this

count is denoted as Vp). These sites is further smoothen by only selecting those

falls within 8-15bp length. The final stage is to select sites that has the highest

Vp count in each of the cluster.

The benefit of this approach is that it can find more binding sites from multiple

motif finders. However, it will miss the true binding sites that come from motifs

of different ranking since true binding sites most likely come from different motifs

of different rank.

From these three approaches we observe that two key issues in ensemble

method are not addressed. Firstly, among the motifs reported by multiple mo-

tif finders, there are many false motifs. How do we filter those false motifs?

Secondly, even for a motif which can approximate the true motif, some of the in-

stances (sites) of the motif are real while the rest are noise. How can we remove

those false sites?

In our thesis we propose a novel methods that aim to overcome the limitation

of existing ensemble methods. Specifically we believe that an effective integration

of results is necessary at both motif level and sites level.

1.2.3 Methods Using Genomical Data

There are methods that exploits domain knowledge for motif finding. This domain

knowledge can provide a powerful information to improve the performance of de
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novo methods. Some works that follow this path include: PhyME [124], it exploits

the comparative sequence analysis by combining interspecies overrepresentation

and interspecies conservation for motif finding.

It consists of two steps: alignment and motif finding step. In alignment step

PhyME extract blocks of high sequence similarity between reference species and

each of the other species. Its main assumption is that the motif that occurs in

such locally conserved region are deemed orthologous. At the end of this step we

obtain a regulatory regions of potentially co-regulated genes along their orthologs

from other species. This region (sequences) is then used for the motif finding step.

In motif finding step, PhyME uses an Expectation Maximization (EM) algo-

rithm to search for motif that best explain the data. When evaluating the motif,

its orthologous occurrences are assumed related to each other by a probabilistic

model of evolution that takes into account the varying phylogenetic distances

among the species. The other algorithm that uses this information are Phy-

loGibbs [119] and EMnEM [87].

REDUCE [112] uses microarray (expression) data to find cis-regulatory el-

ements. This method takes into account the combinatorial nature of gene ex-

pression regulation. REDUCE works by fitting a multivariate predictive model

to a single genome-wide expression pattern. The expression level of a gene is

modeled as a sum of independent contributions from all transcription factors for

which binding sites occur in promoter region. Finally a forward parameter selec-

tion strategy is used to select motifs from a large set of candidate motifs. Other

algorithms that uses gene expressions but differs in their method of using corre-

lations statistics include MARS [27,125], RankMotif++ [25], MEDUSA [85], and

RegTREE [101].

Other external genomic data has been used for motif finding include nucleo-
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some occupancy [51], protein-DNA interactions [63,88] and familial binding pro-

files [81].

1.2.4 Motif Evaluation and Benchmarks

Due to the large number of available tools, robust assessment of motif discovery

methods becomes important, not only for validation but also for pointing out the

most promising directions for future research in the field.

Tompa [131] published an important and timely contribution to the field by

providing a benchmark dataset. Up to then there have been only a few small-scale

assessment of some of these motif discovery tools [99, 122]. Tompa’s assessment

is the first large-scale effort to measure the performance of 13 motif discovery

tools. These tools do not use auxiliary information such as comparative sequence

analysis, mRNA expression levels or chromatin immunoprecipitation results.

Tompa’s benchmark dataset has been constructed based on real transcription

factor binding sites drawn from four different organisms yeast, fruitfly, human and

mouse. It consists of 56 datasets in total. Each dataset consists of 1-35 sequences

and each sequence is of length up to 3000 bp. The datasets are constructed

from three different types of background sequences. They are (i) real promoter

sequences, (ii) randomly chosen promoter sequences from the same genome (called

generic), and (iii) sequences generated by Markov chain of order 3 (called markov).

The performance of motif discovery tools is measured according the follow-

ing statistics: sensitivity (SN), positive predictive value (PPV ), specificity,

performance coefficient (nPC), average site performance (ASP) and correlation

coefficient (CC). They are formulated as follows:
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Sensitivity = TP/(TP + FN)

(Recall)

PPV = TP/(TP + FP )

(Precision)

Specificity = TN/(TN + FP )

PC = TP/(TP + FN + FP )

ASP = (SN + PPV )/2

CC =
TP.TN − FN.FP

√

(TP + FN)(TN + FP )(TP + FP )(TN + FN)

The following abbreviations are used to specify how the scores are calculated:

TP (true positive) is the number of the overlapped nucleotides both in real and

predicted sites, FP (false positives) the number of the overlapped nucleotides

not in known sites but in predicted sites, TN (true negatives) the number of the

overlapped nucleotides neither in known sites or in predicted sites, and FN (false

negatives) the number of the overlapped nucleotides neither in known sites and

but not in predicted sites.

This thesis uses Tompa’s datasets for benchmarking. We also adopt the above

statistical measures for evaluation.
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1.3 Motivations

Our thesis is primarily motivated by two factors. First is the challenges faced

while dealing with real biological data, and second is the challenge from the

current practice in biological domain.

1.3.1 Challenges from Real Biological Data

An inspection of transcription factor database such as TRANSFAC [141], or rel-

evant literature like [35, 62], reveals that there is significant variation among

binding sites of any single transcription factors. Here are some important issues

in dealing with real biological data.

1. Many motifs are known to be composite patterns which are groups of monad

patterns (short contiguous patterns with some mismatches) that occur rela-

tively near each other [50]. For example, the binding site for ArcA-P, a tran-

scription factor for regulating gene related to the respiratory metabolism

in E.coli [77], can be regarded as two conserved segments, separated by a

spacer of length approximately 6 [84]. Another example is Mcm1 [64] or

often called as the early cell cycle box (ECB) [128] which has 3 segments

and two spacers. Note that a spacer does not necessarily mean that the

characters in the spacer are completely random and arbitrary, but these

characters are not very conserved in different instances.

In fact, in some regulatory mechanisms, a single transcription factor may

bind to two or more sites that are relatively close to each other – as is fre-

quently the case, for instance, of RNA polymerase [105]. Identifying these

sites is similar to finding a spaced motif. Spaced motifs may also be asso-
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ciated with co-regulated genes that share two or more transcription factors

and the binding sites are often recognized by different macromolecular com-

plexes that make contact with one another [94,138]. Our focus in this thesis

is to find such complex motifs that could contain spacers.

2. Real samples may contain biased nucleotide. This type of samples has a

functional significance. For example Bernardi [12] have demonstrated that

the genomes of warm-bodied animals (mammals, birds, etc.) are organized

heterogeneously, with G + C- and gene-rich ”isochores” interspersed with

regions of lower G + C content. The motif finding problems becomes more

difficult if the background nucleotides composition in the sample is skewed.

3. One of the fundamental issues in identifying TFBS is the determination of

its biological significance. It is difficult to quantify them. Sometimes the

signals that have low statistical significance, still can have real, biological

significance. For example some of the TFBS for activating protein Hap1 is

dictated by its structural environment [70].

1.3.2 Challenges from Current Practice

Though a lot of tools have been developed, little knowledge is known on which

motif finder should be used for a particular dataset. Individually, these motif

finders perform unimpressively overall based on Tompa’s benchmark datasets

[131] (see Figure 1.9).

Moreover, these motif finders vary in their definitions of what constitute a

motif, and in their methods for finding statistically overrepresented motifs. This

makes different motif finders perform well for identifying binding sites of certain

types of datasets only. There is no clear ways for biologists to choose the motif
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Figure 1.9: Performance of motif finders in Tompa’s benchmark dataset is unim-
pressive overall with sensitivity <= 0.086 and precision <= 0.300 [131].

finder that is most suitable for their task. Hence, we can see that there is an

immediate need for a more effective and efficient methods that allows the biol-

ogist to make use these diverse motif finders for finding novel regulatory sites

accurately.

1.4 Contributions of the Thesis

This section describes the significant contributions of the thesis:

1. We address the problem of motif finding for generic spaced motifs. Spaced

motifs, an important class of transcription factors, consists of several short

segments separated by spacers of different lengths. existing motif finding

algorithms are either designed for monad motifs or have assumptions on the

spacer lengths or can handle at most two segments [18,130,133]. To address

this issue, we propose a new method called SPACE. We introduce the notion

of submotifs to capture the ungapped segments in the spaced motifs and

formulate the motif finding problem as frequent submotif mining problem.
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2. We also propose a novel scoring technique to measure the statistical sig-

nificance of generic spaced motifs. With this measure we overcome the

difficulty in handling biased samples by incorporating background sequence

from various species. Based on experiments on real biological datasets and

Tompa’s benchmark datasets, we show that our algorithm outperforms the

existing tools for spaced motifs in both sensitivity by 20.3% and specificity

by 76%. And for monads, it performs as good as other tools.

3. We address two main difficulties in performing ensemble methods in motif

finding. First, multiple motif finders may report similar spurious motifs.

The challenge lies in how to distinguish these spurious motifs from the real

overrepresented motifs. Second, even if the reported motif can approximate

the real motif, they still contain false positive that have high similarity with

the real binding sites.

To address these difficulties we propose MotifVoter. It applies a variance

based statistical measure to remove the spurious motifs and then refines

the prediction by filtering the noisy binding sites from using a novel voting

scheme.

Validation of our method on Tompa’s benchmark, real metazoan and E. Coli

datasets (186 datasets in total) show that it can improve the sensitivity by

120% and precision by 77%. MotifVoter can locate almost all the binding

sites found by the individual motif finders used and is able to distinguish

the real binding sites from noise effectively.
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1.5 Organization of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 We present our method for detection of generic spaced motifs us-

ing submotif pattern mining. Then, we describe the efficient methods for

generation of motif candidates, refining motif candidate into spaced motifs,

and finally scoring method to measure the statistical significance of generic

spaced motifs. We perform experiments that shows the results for both

spaced and monad motifs on Tompa’s benchmark dataset, real biological

data and synthetic datasets.

Chapter 3 In this chapter we present our ensemble method for integrating

generic motif finders. We also show our study of the performance of in-

dividual motif finders when we include lower rank of motifs, as well as

our discovery that every motif finders finds different binding sites. For

this method we perform extensive experiments on 186 datasets (Tompa’s

benchmark, real metazoan and E.coli datasets) examining the performance

of MotifVoter: 1) in comparison with individual motif finders and other en-

semble methods, 2) on different background sequence and species, 3) time

complexity, and 4) its robustness.

Chapter 4 In this final chapter we will provide discussion and give our prelim-

inary conclusion. Then we propose our future work that target at solving

limitations of our approaches as well as looking at other important issues

for handling real biological data.



CHAPTER 2

Detection of Generic Spaced Motifs

Using Submotif Pattern Mining

This chapter describes a novel approach for identifying spaced motifs with any

number of spacers of different lengths. We introduce the notion of submotifs

to capture the segments in the spaced motif and formulate the motif finding

problem as a frequent submotif mining problem. We provide an algorithm called

SPACE to solve the problem. Based on experiments on real biological datasets,

synthetic datasets and the motif assessment benchmarks by Tompa et al., we

show that our algorithm performs better than existing tools for spaced motifs

with improvements in both sensitivity and specificity and for monads, SPACE

performs as good as other tools.

As pointed out by Eisen in a recent survey [35], regulatory motifs could be

highly complex in the biological context. Many motifs are known to be com-

posite patterns which are groups of monad patterns (short contiguous patterns

with some mismatches) that occur relatively near each other [50]. For example,

the binding site for ArcA-P, a transcription factor for regulating gene related
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to the respiratory metabolism in E.coli [77], can be regarded as two conserved

segments, separated by a spacer of length approximately 6 [84]. Another exam-

ple is Mcm1 [64] or often called as the early cell cycle box (ECB) [128] which

has 3 segments and two spacers. Note that a spacer does not necessarily mean

that the characters in the spacer are completely random and arbitrary, but these

characters are not very conserved in different instances.

In fact, in some regulatory mechanisms, a single transcription factor may bind

to two or more sites that are relatively close to each other – as is frequently the

case, for instance, of RNA polymerase [105]. Identifying these sites is similar to

finding a spaced motif. Spaced motifs may also be associated with co-regulated

genes that share two or more transcription factors and the binding sites are often

recognized by different macromolecular complexes that make contact with one

another [94, 138]. Our focus in this paper is to find such complex motifs that

could contain spacers.

Most of the existing algorithms are mainly designed for monad motifs. Ap-

plying these algorithms to locate spaced motifs may not be effective. By treating

a spaced motif as a single monad pattern, the motif instances may not be very

similar, i.e., the signal may not be strong to be detected, due to the many random

(non-conserved) characters in the spacers. Or if we try to locate the individual

segments of a spaced motif using these algorithms, some of the segments may be

too short and may not be easily detected.

On the other hand, there are algorithms designed for spaced motifs. The

methods used by existing algorithms can be classified into the following ap-

proaches. The first and the most common approach is to assume that all the

spacers in the same motif are all of the same fixed length (e.g. SesiMCMC [39],

OligoDyad [134]). However, in real cases, this is not the case. Another approach
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to handle spacers is to enumerate all possible spacer lengths between two com-

posite segments (e.g. YMF developed in [121] and BioProspector [75]). Although

this approach can find motifs with spacers of varying length, it is inherently in-

efficient and is difficult to extend to more than two segments. And it may not be

practical for long motifs. The third approach to locate spaced motifs is to find the

monad segments first (e.g. MITRA in [36]), then based on the locations of monad

segments, locate a set of possible dyads (spaced motifs with two segments). The

algorithm of MITRA relies on a specially designed data structure (mismatch tree

data structure) to quickly identify possible monad segments. There are other

methods (e.g. [23, 83]) that make use of data structures such as suffix tree to

store the regularly spaced motif before finally identifying the motif pairs to speed

up the process. Almost all existing approaches only handle spaced motifs with

two segments.

In this chapter we propose a new approach for finding spaced motifs, and

develop a novel motif-finding algorithm that offers flexibility in handling spacers

with different lengths, the number of segments, and variations in segment lengths.

We formulate the motif finding problem as a frequent itemset mining and present

an algorithm called SPACE for finding these motifs. Experimental results show

that the approach is promising.

M=CAGTTCAnACGTCnnGACGT

I1=TAGTTTAtATGTCcgGACAT

I2=CACTTTAtATGTCcgCACGT

Figure 2.1: Consider L = 20, ℓ = 5, and d = 1. M is an example of length-
20 spaced motif with three segments separated by two spacers. Then, I1 is an
instance of M since all length-5 submotifs in the three segments of M have less
than 1 mismatches when comparing with I1. On the other hand, I2 is not an
instance of M since M [2..6] and I2[2..6] have two mismatches.
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Our approach is similar to TEIRESIAS [109] in building longer motif from

shorter blocks. Yet, TEIRESIAS is computationally expensive. It uses a convolu-

tion strategy to stitch the shorter blocks exhaustively to find maximal patterns.

It also does not handle mismatches. On the other hand our novel approach pro-

vide further advantages. We allow flexibilities in terms of allowing mismatches

and provide an efficient method to find the pattern.

In this section, we provide the formal definition of a generic spaced motif and

discuss the notion of submotif which is the core concept of our approach. We

generalize the string representation of motifs as follows.

Definition 2.1 For some pre-defined coverage ratio r ≤ 1, a spaced motif (or

simply a motif) is a length-L string formed by characters of {A, C, G, T, n } with

at least ⌊r×L⌋ characters in {A, C, G, T}. Each maximal substring of consecutive

“n” represents a spacer and each maximal substring of other characters represents

a segment.

Figure 2.1 shows an example of a spaced motif M which is of length 20 and

has three segments separated by two spacers. Note that the segments, as well as

the spacers, can be of different lengths. The number of segments is also not fixed.

Let Z[i..j] be the substring of Z starting at position i and ending at position

j. Any length-ℓ substring M [i..i + ℓ − 1] within any segment of M is called its

submotif. Below, using submotifs, we define an instance of a spaced motif (see

Figure 2.1 for an example).

Definition 2.2 Consider a length-L spaced motif M and any length-L string I

formed by characters of {A, C, G, T}. I is called an instance of M if, for every

submotif M [i..i + ℓ − 1] and I[i..i + ℓ − 1] have at most d mutations, for some

pre-defined constant d.
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Now, we define the spaced motif finding problem. Let S = {s1, s2, . . . , st} be

a given set of DNA sequences. Our task is to identify spaced motifs with at

least q instances in S, for some predefined constant q (we call this the minimum

support). Figure 2.2 shows an example.

TTGATACCGAAGATACCGATTAGAAATCACTCA

ACTACAGAAAAGCAGTAGTAAAAACGTACAGTC

GAAGACCGTCATGAGAAATCGCATACACGAGCA

TTCACCCGATAAAAATAAGGCTGTCTGGACTAA

TCGGAACAATTACGAAGAAAAGCAGTAGAAAAA

Figure 2.2: Consider L = 20, r = 0.5, ℓ = 5, d = 1, and q = 4.
GAAGAnnnnnnnTAGAAAnn is a spaced motif of the above 5 sequences. All its in-
stances are underlined.

By formulating the motif finding problem in this way, we have the following

advantages:

1. The lengths of the segments in the motif need not be known even if we pre-

fix the length of the submotif. This follows because union of an overlapping

set of submotifs can represent an arbitrary length segment. This property

implies that motifs with segments of arbitrary lengths could be found. Note

that this does not depend on whether the motif has spacers or not.

2. The spaced motif uses multiple segments to model the functional parts,

which are more conserved, and the spacers to model the non-functional

parts. However, monad motif (or dyads) only has one segment (or two

segments) for modeling both conserved and non-conserved regions. Hence,

spaced motif can fit the conserved regions better. In other words, it yields

higher specificity. We confirm this in our experiments on several datasets in-

cluding the Motif Assessment Benchmark and some real biological datasets.
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3. It provides a natural extension for finding motifs with multiple spacers, in

which neither the spacer length nor the number of spacers (and segments)

is known.

However, there could be too many submotifs (many of them are spurious) and

the challenge is in how effectively the submotif-compositing can be done to return

“good” motifs. To tackle this situation, we formulate this task as a constrained

frequent submotif mining problem and propose a new algorithm for solving it.

Let S = {s1, s2, . . . , st} be the given set of t sequences. Our solution for

finding spaced motifs is called SPACE. It consists of three main steps. Step 1

finds motif candidates, which is defined below. Step 2 refines the motif candidates

into spaced motifs. Lastly, Step 3 computes the significance of the spaced motifs

based on our scoring function and reports the ranked list of motifs.

We do not assume any knowledge about the number and the locations of the

spacers in the motif. To identify a possible candidate for the motif, we look at

each length-L substring u in S, based on the definition of a spaced motif, we

define an occurrence of u as follows. Let hd(x, y) be the Hamming distance of

two equal-length strings x and y.

Definition 2.3 Let u be a length-L substring in S. Consider another substring

w of the same length in S. For some pre-defined constants d and r ∈ [0, 1], for

every i, the substring w[i..i+ℓ−1] is called a submotif occurrence of u[i..i+ℓ−1]

if hd(u[i..i + ℓ− 1], w[i..i + ℓ− 1]) ≤ d. The number of characters spanned by all

submotif occurrences is called the coverage of w on u. The substring w is called

an occurrence of u if the coverage of w on u is at least ⌊r × L⌋.

The length-L substring u is called a motif candidate if there exist at least q

occurrences of u in S. Fig. 3 shows an example of a motif candidate.
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TTGATACCGAAGATACCGATTAGAAATCACTCA

ACTACAGAAAAGCAGTAGTAAAAACGTACAGTC

GAAGACCGTCATGAGAAATCGCATACACGAGCA

TTCACCCGATAAAAATAAGGCTGTCTGGACTAA

TCGGAACAATTACGAAGAAAAGCAGTAGAAAAA

Figure 2.3: Consider L = 20, r = 0.5, ℓ = 5, d = 1, and q = 4. For the same set
S of 5 sequences in Figure 2.2, GAAGATACCGATTAGAAATC has 5 occurrences. All
its occurrences are underlined. Since the number of occurrences is at least q, it
is a motif candidate.

Step 1 tries to find all motif candidates. A straight-forward implementation

is given in Section 2.1. Note that a spaced motif is highly correlated with a motif

candidate. For a motif candidate that is a real spaced motif, the locations of sub-

motif occurrences in each occurrence of the motif candidate define the locations

of the segments for the candidate. A different occurrence may define a different

set of segments for the same candidate. By finding the set of common segments

defined by the occurrences, we can generate a spaced motif. The refinement

process is done in Step 2 based on frequent itemset mining, which is detailed in

Section 2.2. Step 3 and our scoring function is discussed in Section 2.3. The

naive implementation shown in Section 2.1 is a bit slow, Section 2.4 shows how

to speed up the process.

2.1 Generation of Motif Candidates

To find all motif candidates and their occurrences, a straight-forward implemen-

tation is as follows. Fix a constant L for the motif length, for each sequence Si,

for each substring u of length L in Si, check the coverage of all other substrings

in S of length L on u. If there are q occurrences of u, report u and all its oc-

currences. This naive procedure runs in O(Ln2) time where n is the length of
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a sequence. The actual running time is about 2 minutes for a dataset of 5K bp

with 10 sequences on a 3.6Ghz Xeon Linux workstation with 4 processors and

8GB RAM.

At the end of this step we have a set of motif candidates, each associated

with a set of occurrences. Recall that some of these occurrences may be noise or

some of the submotif occurrences in them may be spurious. Our next step is to

eliminate these noise to identify the spaced motifs.

2.2 Refining Motif Candidate into Spaced Motif

Given a motif candidate u and its occurrences w1, w2, . . . , wc, this section discusses

the way to refine u into a spaced motif. Our idea is to transform the problem

into frequent itemset mining [60].

Before describing the transformation, recall that, by Definition 2.3, u and wi

share a set of submotif occurrences.

Definition 2.4 Suppose that w is an occurrence of u. Then, {j | 1 ≤ j ≤

L − ℓ + 1, hd(w[j..j + ℓ − 1], u[j..j + ℓ − 1]) ≤ d} is called the itemset of w with

respect to u.

Figure 2.4 demonstrates the itemset concept. For an itemset J , we can con-

struct a spaced motif Mu,J of length L such that Mu,J [i] = u[i] if 0 ≤ i− j < ℓ for

some j ∈ J ; otherwise, Mu,J [i] = n. An itemset is called a frequent pattern if it

has at least q occurrences. The following lemma states the relationship between

frequent itemset and spaced motif. Note that there is an assumption behind

this transformation. While we allow different gaps to have different lengths in

the same motif, for a gap in the motif, the length of this gap is the same in all

instances.
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GAAGATACCGATTAGAAATC:

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}

GAAAAGCAGTAGTAAAAACG:

{1, 13, 14}

GAAGACCGTCATGAGAAATC:

{1, 11, 12, 13, 14, 15, 16}

CCCGATAAAAATAAGGCTGT:

{3, 4, 12}

GAAGAAAAGCAGTAGAAAAA:

{1, 2, 13, 14}

Figure 2.4: Consider L = 20, r = 0.5, ℓ = 5, d = 1, and q = 4. With re-
spect to the sequence set S in Figure 2.3, this figure shows the 5 occurrences of
GAAGATACCGATTAGAAATC and their corresponding itemsets. Note that {1, 13, 14}
is the frequent itemset which appears 4 times. Hence, GAAGAnnnnnnnTAGAAAnn is
a spaced motif of the set S.

Lemma 2.1 Let J be a frequent pattern of u with at least q support. If Mu,J has

coverage at least ⌊r × L⌋, Mu,J is a spaced motif.

Proof 2.1 Since J is a frequent pattern with at least q support, Mu,J has at least

q instances. Also, Mu,J has coverage at least ⌊r × L⌋, so Mu,J is a spaced motif.

�

Hence, given a motif candidate u and its occurrences, we can refine u as a

spaced motif as follows.

1. Generate the itemsets for all occurrences of u.

2. Find the frequent itemsets F which appear at least q times.

3. Report the spaced motif corresponding to F with sufficient coverage.

Algorithm 1 shows the complete scheme of the algorithm.
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Algorithm 1 SPACE
Require: ls, d, e, q, r,S

Ensure: Ranked motifs
1: from S generate the set of motif candidates (D), each associated with a set of

occurrences
2: for each motif candidate u in D do

3: Let W be the set of occurrences of u

4: Find all frequent patterns that appear in W

5: for each frequent pattern do

6: construct the corresponding spaced motif M

7: If M has enough coverage, keep and score M

8: end for

9: end for

10: return ranked spaced motifs

2.3 Significance Testing and Scoring

We adapt the motif scoring technique introduced in Weeder [96] to compute the

significance of spaced motifs. Intuitively, a motif is significant if (1) the total

number of its occurrences in all input sequences is a lot more than expected

with respect to the background and (2) the pattern is either very conserved or

occurs in quite a number of the input sequences. So, Weeder’s scoring mechanism

computes two values to capture these two properties.

Let M be the motif, E(M, e) be the expected frequency of M with at most e

mutations based on a set of background sequences (we will show how to compute

E later in this section). Then, E(M, e) ·
∑

len(si), where len(si) denotes the

length of i-th sequence si, represents the expected frequency of M with at most

e mutations in all input sequences. To capture property (1), we count the total

number of observed occurrences of M (with at most e mutations), Occs(M, e), in

all input sequences and compute the occurrence score, β(M) as follows.



2.3 Significance Testing and Scoring 42

β(M) = log
Occs(M, e)

E(M, e) ·
∑

len(si)
(2.1)

To capture property (2), for a sequence s′i with an occurrence of M , we con-

sider the most conserved pattern of M and let ei be the number of mutations

of this best pattern. The value of E(M, ei) · len(s′i) represents the expected fre-

quency of the occurrences of this motif in s′i. This value is smaller if the motif is

more conserved. Then, we compute the sequence-specific score, σ(M) as follows.

If the pattern is very conserved and/or occurs in many sequences, σ(M) is large.

σ(M) =
∑

i

log
1

E(M, ei) · len(s′i)
(2.2)

Finally the score of each motif, MotifScore(M), is σ(M) + β(M).

The value of E(M, e) is computed by summing the expected frequency E(M ′)

of M ′ in the background sequences for all M ′ with at most e mutations from

M . When M ′ contains no spacer and is of length shorter than or equal to 8,

the expected frequency value E(M ′) is pre-computed from background sequences

obtained from Regulatory Sequence Analysis Tool (RSAT) database site 1 [132].

These background sequences of the organisms are taken from 1000bp upstream

regions of all their annotated genes.

When M ′ contains spacers and is of length shorter than or equal to 8, E(M ′)

equals the sum of E(M ′′) among all possible M ′′ with the spacers n’s replacing

by {A, C, G, T}.

When M ′ is of length longer than 8 and with or without spacers, we are

unable to precompute the frequency values since it is long. Instead, the expected

frequency of M ′ is modeled using seventh order Markov chain. Suppose M ′ =

1http://rsat.ulb.ac.be/rsat
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p1p2 . . . pk with k greater than 8. E(M ′) can be computed as follows:

E(M ′) = E(p1p2 . . . p8)
k

∏

i=9

P (pi|pi−7 . . . pi−1)

The conditional probability P (pi|pi−7 . . . pi−1) of having nucleotide pi preceded

by nucleotides pi−7 . . . pi−1, is computed by using the expected frequency of 8-

mers:

P (pi|pi−7, . . . , pi−1) =
E(pi−7 . . . pi)

E(pi−7 . . . pi−1n)

2.4 Efficient Generation of Motif Candidates

This section shows how to speed up Step 1, the motif candidate generation step.

The observations that lead to the speed up are as follow. Recall that ℓ is the

length of a submotif.

Lemma 2.2 Let the coverage of Sa[b..b + L − 1] on Si[j..j + L − 1] be C. Then,

the coverage C′ of Sa[b + 1..b + L] on Si[j + 1..j + L] can be computed as follows.

C′ =























C + 1 if α = 0 and β = 1

C if α = β = 0 or α = β = 1

C − 1 if α = 1 and β = 0

where α = 1 if the prefix Si[j..j+ℓ−1] of Si[j..j+L−1] is a submotif occurrence,

that is, hd(Si[j..j + ℓ− 1], Sa[b..b+ ℓ− 1]) ≤ d, otherwise α = 0. Similarly, β = 1

if the suffix Si[j + L − ℓ + 1..j + L] of Si[j + 1..j + L] is a submotif occurrence,

that is, hd(Si[j + L− ℓ + 1..j + L], Sa[b + L− ℓ + 1..b + L]) ≤ d, otherwise β = 0.

Proof 2.2 Note that when considering all length-ℓ substrings of Si[j + 1..j + L]
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and Si[j..j + L− 1], the only substrings that they are different are Si[j..j + ℓ− 1]

which is in Si[j..j +L− 1], but not in Si[j +1..j +L], and Si[j +L− ℓ+1..j +L]

which is in Si[j + 1..j + L], but not in Si[j..j + L − 1].

If α = 1, it means that Si[j..j + ℓ − 1] is a submotif of Si[j..j + L − 1] with

respect to Sa[b..b + L− 1]. This submotif will not be in Si[j + 1..j + L]. If β = 1,

then Si[j + L − ℓ + 1..j + L] is a submotif of Si[j + 1..j + L] with respect to

Sa[b + 1..b + L] which is not in Si[j..j + L − 1].

So, the result follows. �

Based on Lemma 1, once we have calculated the coverage of Sa[b..b+L−1] on

Si[j..j + L− 1], to calculate the coverage of Sa[b + 1..b + L] on Si[j + 1..j + L], it

only takes O(1) time. To calculate the coverage of all substrings on one sequence

against all potential motif candidates in another sequence, the time complexity

can then be reduced to O(n2).

Since we are only interested in the substrings that can have a coverage at least

⌊r×L⌋, we can further prune the computation according to the following lemma.

Lemma 2.3 Let the coverage of Sa[b..b+L−1] on Si[j..j +L−1] be C. Let y be

the length of the longest suffix of Si[j..j +L− 1] that is not covered by a submotif

occurrence. The coverage C′ of Sa[b + p..b + p + L− 1] on Si[j + p..j + p + L− 1]

is upper bounded by C + min{y, ℓ − 1} + p for any p > 0.

Proof 2.3 We try to upper bound the value of C′ as follows. Comparing Si[j +

p..j + p + L − 1] with Si[j..j + L − 1], There are p new characters. Assuming

that all these characters are covered by submotifs, the coverage can be increased

at most by p. For the suffix of Si[j..j +L− 1] that is not covered by any submotif

occurrence. If y < ℓ − 1, then when considering Si[j + p..j + p + L − 1], these

y characters may all be covered by a submotif, so the coverage can be increased
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by at most y. On the other hand, if y ≥ ℓ − 1, then at most the last ℓ − 1

characters, which can form a submotif with one new character, can be covered by

a submotif occurrence when considering Si[j + p..j + p + L − 1], so the coverage

can be increased by at most ℓ − 1. So, the result follows. �

By Lemma 2, after computing the coverage of Sa[b..b+L−1] on Si[j..j+L−1],

based on the upper bound calculation, we can skip the computation of coverage

for some substrings and jump to the substrings Sa[b + p..b + p + L − 1] and

Si[j+p..j+p+L−1] with the smallest p such that C+min{y, ℓ−1}+p ≥ ⌊r×L⌋.

From our experiments, we found that the running time for generating the motif

candidates and their occurrences have been reduced from 2 minutes to less than 1

second on the same dataset of 5K bp with 10 sequences on a 3.6Ghz Xeon Linux

workstation with 4 processors and 8GB RAM. So, it is feasible for large datasets.

2.5 The Final Ranking of Motifs in SPACE

We follow a similar idea as Weeder in producing the final ranked list of motifs

based on the intuition that the real motifs will constantly have higher rank-

ing compared to spurious motifs even on different parameter settings. For each

dataset, we run SPACE using 12 parameter settings:

• L = 8, r = 0.5, q = t, ℓ = 5, d = 1

• L = 8, r = 0.5, q = 0.5t, ℓ = 5, d =1

• L = 8, r = 0.8, q = t, ℓ = 5, d = 1

• L = 8, r = 0.8, q = 0.5t, ℓ = 5, d = 1

• L = 15, r = 0.5, q = t, ℓ = 5, d = 1
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• L = 15, r = 0.5, q = 0.5t, ℓ = 5, d =1

• L = 15, r = 0.8, q = t, ℓ = 5, d = 1

• L = 15, r = 0.8, q = 0.5t, ℓ = 5, d = 1

• L = 20, r = 0.5, q = t, ℓ = 5, d = 1

• L = 20, r = 0.5, q = 0.5t, ℓ = 5, d =1

• L = 20, r = 0.8, q = t, ℓ = 5, d = 1

• L = 20, r = 0.8, q = 0.5t, ℓ = 5, d = 1

Where L is the motif length, r the coverage ratio, q the minimum support, ℓ

the submotif length, d number of substitution of submotif, and t is total number

of input sequences.

We collect the top 10 motifs based on their significant scores from each run.

By the observation that if a motif is real, it will have more related redundant

motifs in the output list, we make use of a redundancy measure to give the final

ranking of the motifs.

A motif M ′ is said to be a redundant motif of M if:

align(M, M ′)

|M | ≥ 0.6

where align(M, M ′) is the maximum number of matched bases in an ungapped

alignment between M and M ′. Two aligned n characters are considered as

matched.

For each run, we select the motifs that have at least 2 other redundant motifs

in the same run. The motifs that are not selected in this round will be discarded

from the list. For the remaining motifs, we further discard those that do not
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have 2 other redundant motifs in different runs. Then, the motifs are ranked in

decreasing order of the total number of its redundancy motifs in all the lists of

all runs. In case of a tie, the motif with higher significant score will be reported

first.

2.6 Experimental Results

We perform experiments on four classes of datasets namely, 1) 9 biological

datasets that are known to contain spacers, and 2) 4 synthetic test cases consist-

ing of different variations of spaced motifs, and 3) The datasets from 4 different

species, proposed by [131] for the assessment of motif discovery algorithms and

4) 10 real biological datasets consisting monad motifs. The assessment results

are reported below.

For performance evaluation, we use the same four measures proposed in [131]

namely, sensitivity (nSn), positive predictive value (nPPV), performance coeffi-

cient (nPC), and correlation coefficient (nCC). Index n is used to denote that the

assessment is done at the nucleotide level instead of site level2. All experiments

have been performed on a 3.6Ghz Xeon Linux workstation with 4 processors and

8GB RAM.

For each dataset, we run SPACE using 12 parameter settings: motif length L

= 8, 15, 20; submotif length ℓ = 5; maximum number of mismatches allowed in

each submotif instance d = 1; the minimum support q = t or 0.5t where t is the

number of input sequences; the coverage ratio r is set to be 0.5 or 0.8. Similar to

what Weeder does, we collect the top 10 motifs from each run. For each motif,

we count the number of related redundant motifs in the collection.

2Note that the consensus of the motifs reported may be the same for different algorithms,
but the predicted binding sites may be different, thus yielding a difference in the performance
measures
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2.6.1 Results on Datasets with Spaced Motifs

We first evaluate the performance of SPACE for spaced motifs, that is, motifs

with at least one spacer.

Real Biological Datasets

In the literature, we found 9 transcription factor binding sites whose motifs have

gaps. They are: GAL4P [61], ARCA-P [77], MCM1 [64] or ECB [128], and 6

transcriptional regulators of C6 Zinc cluster family [117].

Comparison is done with MITRA3 [36] and BioProspector4, both of which

can handle motifs with spacers. We let MITRA search for motifs up to 12bp

(the maximum possible) and we require it to find the motif on the given strands

only. For BioProspector we allow the algorithm to search for motifs with block

size ranging from 4 to 10 and gap size ranging from 0 to 12. In the comparison,

instead of picking the first motif among the top 20 that can give a better nSn

and nPPV than the motif of rank 1. Table 2.2 summarizes the comparison

results. From the table, we see that the selected motifs of SPACE are usually of

higher rank than the other two and the averaged performance is better across all

measures.

3http://fluff.cs.columbia.edu:8080/domain/mitra.html
4http://ai.stanford.edu/~xsliu/BioProspector/
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TF Motif RANK nSn nPPV nCC nPC

GAL4P Actual CGGRnnRCYnYnCnCCG

[61] SPACE CGGAnGACTnnnnTCCG 1 0.80 0.55 0.48 0.65
MITRA AGCGGnnGACTC 1 0.68 0.40 0.34 0.51
BioProspector TCCGGnnnnnnnnnnnCCGT 1 0.63 0.26 0.23 0.39

ARCA-P Actual GTTAAnnnnnnGTTAA

[77] SPACE GTTAnnnnnATGTTA 1 0.80 0.59 0.52 0.68
MITRA GTTAACT 15 0.60 0.32 0.26 0.42
BioProspector GTTATnnnnnnnTAAA 4 0.66 0.25 0.22 0.38

ECB Actual TACCnAATTnGGTAA

[64, 128] SPACE TTACnnAATTnGGAA 1 0.70 0.58 0.46 0.61
MITRA CCAAnTTGnGAA 2 0.61 0.48 0.36 0.51
BioProspector TCCTAnnnnGGAAA 2 0.72 0.33 0.30 0.47

CAT8 Actual CGGnnnnnnGGA

[134] SPACE CGGAnnnnnGGAAT 1 0.74 0.52 0.44 0.62
MITRA CCGTnGTTCGGA 5 0.57 0.31 0.25 0.40
BioProspector CGGAnnnnCGGG 1 0.64 0.40 0.33 0.50

HAP1 Actual CGGnnnTAnCGGnnnTA

[117, 126] SPACE CCGGnVTTTnCGGH 2 0.67 0.67 0.50 0.66
MITRA CGGATnTnCCGG 1 0.67 0.18 0.17 0.33
BioProspector GCGGnnnnnnCGGA 5 0.85 0.15 0.14 0.34

LEU3 Actual RCCGGnnCCGGY

[126] SPACE CCGGnnCCGGCT 1 0.85 0.28 0.27 0.48
MITRA CGGnACCGAnGC 2 0.46 0.13 0.11 0.22
BioProspector CCGGnnCCGG 1 0.71 0.19 0.17 0.35

LYS Actual WWWTCCRnYGGAWWW

[10] SPACE AATTCCGnnGGAA 4 0.62 0.59 0.43 0.60
MITRA TCCACnGGAA 4 0.75 0.33 0.30 0.48
BioProspector ATTTCnAGCGG 3 0.56 0.27 0.22 0.37

PPR Actual WYCGGnnWWYKCCGAW

[117] SPACE TCGGnnnnnGCCGAAG 1 0.88 0.75 0.68 0.81
MITRA CGGGnTTCTnCG 9 0.67 0.36 0.30 0.47
BioProspector TCGGCnnTCTCCGA 1 0.78 0.52 0.45 0.63

PUT3 Actual YCGGnAnGCGnAnnnCCGA

[117] SPACE TCGGGAnnnnnnnTCCG 1 0.89 0.76 0.69 0.81
MITRA TCGGnAnCCGAA 2 0.75 0.62 0.52 0.66
BioProspector TCGGAnnnnnnnnnCCGGA 2 0.64 0.64 0.47 0.62

AVERAGE SPACE 0.77 0.59 0.50 0.66

MITRA 0.64 0.35 0.29 0.44

BioProspector 0.69 0.33 0.28 0.45

Table 2.1: Comparison of SPACE, MITRA and BioProspector on spaced motifs
in real biological datasets (the first motif among the top 20 that gives a better
nSn and nPPV than motif of Rank 1 is used for comparison).
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In the following figures, we exhibit the conservation of the binding sites

found by MITRA, BIOPROSPECTOR and SPACE on the above real biologi-

cal datasets:
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We also compare the performance of monad motif finders MEME and Weeder

on the above real datasets.

TF Motif RANK nSn nPPV nCC nPC

GAL4P Actual CGGRnnRCYnYnCnCCG

[61] SPACE CGGAnGACTnnnnTCCG 1 0.80 0.55 0.48 0.65
MEME GGCGGACTCTCGTCCGTGCG 1 0.89 0.76 0.70 0.82
Weeder TTTTTTTTTTTA 20 0.00 0.00 0.00 0.00

ARCA-P Actual GTTAA-(6n)-GTTAA

[77] SPACE GTTA-(5n)ATGTTA 1 0.80 0.59 0.52 0.68
MEME AAGCAGGC 20 0.00 0.00 0.00 0.00
Weeder TTAACA 1 0.30 0.23 0.15 0.25

ECB Actual TACCnAATTnGGTAA

[64] SPACE TTACnnAATTnGGAA 1 0.70 0.58 0.46 0.61
[128] MEME GAAATTTCCTAATTAGGAAA 1 0.63 0.55 0.41 0.26

Weeder TTTTTT 1 0.26 0.87 0.25 0.46

CAT8 Actual CGG-(6n)-GGA

[134] SPACE CGGA-(5n)GGAAT 1 0.74 0.52 0.44 0.62
MEME CGGATAAAATCGG 5 0.62 0.31 0.26 0.42
Weeder ATTATTATTATT 20 0.00 0.00 0.00 0.00

HAP1 Actual CGG-(3n)-TAnCGG-(3n)-TA

[117] SPACE CCGGnVTTTnCGGH 2 0.67 0.67 0.50 0.66
[126] MEME GCGGCCGGGATTTACCGGG 3 0.67 0.25 0.22 0.39

Weeder TTTTTTTC 20 0.00 0.00 0.00 0.00

LEU3 Actual RCCGGnnCCGGY

[126] SPACE CCGGnnCCGGCT 1 0.85 0.23 0.22 0.43
MEME GCGGAAAA 20 0.00 0.00 0.00 0.00
Weeder AGAAAAAG 20 0.00 0.00 0.00 0.00

LYS Actual WWWTCCRnYGGAWWW

[10] SPACE AATTCCGnnGGAA 4 0.62 0.59 0.43 0.60
MEME TTTTCCAGCGGAATT 3 0.50 0.42 0.29 0.43
Weeder TATATAAA 20 0.00 0.00 0.00 0.00

PPR Actual WYCGGnnWWYKCCGAW

[117] SPACE TCGG-(6n)-GCCGAAG 1 0.88 0.75 0.68 0.81
MEME TCGGCATTCGCCGA 1 0.78 0.68 0.57 0.72
Weeder AAATTTT 14 0.12 0.07 0.04 0.07

PUT3 Actual YCGGnAnGCGnAnnnCCGA

[117] SPACE TCGGGA-(7n)-TCCG 1 0.89 0.76 0.69 0.81
MEME GCTAACTGGGAACCTAAC 1 0.51 0.50 0.34 0.48
Weeder ACTCCAGAAG 7 0.42 0.73 0.36 0.52

AVERAGE SPACE 0.77 0.59 0.50 0.66
MEME 0.51 0.39 0.31 0.39
Weeder 0.12 0.21 0.09 0.14

Table 2.2: Comparison of SPACE, MEME and Weeder on real spaced biological
data where motif contain spacers (the first motif among the top 20 that gives a
better nSn and nPPV than motif of Rank 1 is used for comparison).
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In the following figures, we exhibit the conservation of the binding sites found

by MEME, Weeder and SPACE on the above real biological datasets:
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Synthetic Datasets

We consider 4 synthetic test cases for spaced motifs using randomly created se-

quences with the base pairs uniformly distributed. For each case, we create 3

datasets, each containing 10 sequences of length 300bp. We run SPACE and

report the averaged performance. For each dataset the motifs are implanted in 5

of them at random positions. And the motifs are as follow:

1. A 7bp length motif with no spacer and 1 mismatch.

2. A 15bp length motif containing 2 segments of length 5 and 7 with a spacer

of length 3, with 1 mismatch for each segment.

3. A 21bp length motif containing 3 segments of length 5 with spacers of length

3, with 1 mismatch for each segment.

4. A 15bp length motif containing 2 segments of length 4 and 5 bp with a

spacer of length 6, with 1 mismatch for each segment.
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Figure 2.5: Comparison of MITRA, BioProspector (denoted BP) and SPACE
averaged performance on 4 motif finding problems.

Figure 2.5 shows the averaged performance of SPACE, MITRA, and Bio-

Prospector on the synthetic datasets with Table 2.3 giving the detailed statistics
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on one particular dataset of each test case. It also shows that SPACE performs

better than the other tools over all four measures. The result is consistent with

the one for real biological datasets.

Problem Motif RANK nSn nPPV nPC nCC
1. Actual TGGGTAC

SPACE GGGTACC 3 0.83 0.72 0.75 0.82
MITRA GGTACCCn 5 0.57 0.64 0.33 0.57
BP GGGTACC 1 0.62 0.32 0.27 0.44

2. Actual CCTGTnnnAGTTGTC

SPACE CCTGTnnTAGTTG 1 0.81 0.76 0.65 0.78
MITRA CnTGTACTnGTT 2 0.67 0.68 0.29 0.44
BP CCTGTnnnACTTGTT 2 0.67 0.31 0.27 0.44

3. Actual ATCGTnnnTGACCnnnCTTTC

SPACE TCGTnnnTGACnnnnnTTTC 1 0.76 0.66 0.55 0.69
MITRA ATCCTnGnTGAC 1 0.49 0.38 0.27 0.39
BP ATCGTnnnnnnnnnnnCTTTC 1 0.71 0.38 0.33 0.50

4. Actual CGGCnnnnnnTCTAA

SPACE TTCGGYnnnnTGTC 1 0.71 0.39 0.33 0.50
MITRA CGGCnAAGnGTC 3 0.50 0.24 0.13 0.20
BP CGTAnnnnnnTCTAA 1 0.33 0.18 0.13 0.22

Table 2.3: Performance of SPACE, MITRA and BioProspector (denoted BP) on
4 types of synthetic data (one dataset each).
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The averaged evaluation statistics for both MITRA and SPACE can be in the

table below.

MITRA SPACE
Datasets

nSn nPPV nPC nCC nSn nPPv nPC nCC

Test Case 1 0.58 0.61 0.24 0.41 0.77 0.69 0.74 0.78
Test Case 2 0.65 0.53 0.33 0.48 0.81 0.74 0.64 0.76
Test Case 3 0.48 0.34 0.25 0.37 0.73 0.73 0.57 0.71
Test Case 4 0.47 0.30 0.20 0.30 0.70 0.40 0.34 0.51

Table 2.4: Comparison of SPACE and MITRA averaged performance on 4 motif
finding problems.

The averaged evaluation statistics for both BIOPROSPECTOR and SPACE

can be in the table below.

BIOPROSPECTOR SPACE
Datasets

nSn nPPV nPC nCC nSn nPPv nPC nCC

Test Case 1 0.57 0.30 0.23 0.37 0.77 0.69 0.74 0.78
Test Case 2 0.64 0.33 0.26 0.38 0.81 0.74 0.64 0.76
Test Case 3 0.66 0.35 0.31 0.46 0.73 0.73 0.57 0.71
Test Case 4 0.52 0.26 0.21 0.35 0.70 0.40 0.34 0.51

Table 2.5: Comparison of SPACE and BIOPROSPECTOR averaged performance
on 4 motif finding problems.

The detailed statistics for 3 datasets in each motif-finding problems can be

found in the following tables.
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MITRA SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 TGGGTAC GGTACCCn (5) 0.57 0.64 0.33 0.57 GGGTACC (3) 0.83 0.72 0.75 0.82
2 CCGAACG GAACGnn (7) 0.50 0.57 0.16 0.28 mCGAACGT (2) 0.80 0.70 0.78 0.81
3 TGTTTCC TTTCCA (4) 0.67 0.63 0.23 0.39 GTTTCCA (2) 0.67 0.66 0.70 0.71
A Average 0.58 0.61 0.24 0.41 Average 0.77 0.69 0.74 0.78

Table 2.6: Detailed comparison of SPACE and MITRA performance on 3 motif finding Test Case 1.

MITRA SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 CCTGTnnnAGTTGTC CnTGTACTnGTT (2) 0.67 0.68 0.29 0.44 CCTGTnnTAGTTG (1) 0.81 0.76 0.65 0.78
2 GTTGTnnnAATACTC GTTGTTGTTATA (1) 0.60 0.59 0.42 0.56 TGTTGT-5n-TACT (1) 0.80 0.71 0.61 0.74
3 CCCCCnnnACATTCC CCGCCnATAnAT (8) 0.67 0.33 0.28 0.44 CCCCCnnnACATT (1) 0.83 0.74 0.65 0.77
B Average 0.65 0.53 0.33 0.48 Average 0.81 0.74 0.64 0.76

Table 2.7: Detailed comparison of SPACE and MITRA performance on 3 motif finding Test Case 2.

MITRA SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 ATCGTnnnTGACCnnnCTTTC ATCCTnGnTGAC (1) 0.49 0.38 0.27 0.39 TCGTnnnTGAC-5n-TTTC (1) 0.76 0.66 0.55 0.69
2 GAAGCnnnCGAGGnnnGATCC GAAnCTATCGnG (4) 0.47 0.32 0.24 0.35 AwGCGAGGnnnGATC (3) 0.62 0.73 0.50 0.65
3 GCCCAnnnGTTTAnnnGATGA ATTTAnnGGATG (1) 0.48 0.32 0.24 0.36 GCCC-4n-GTTT-4n-GATG (1) 0.80 0.80 0.67 0.79
C Average 0.48 0.34 0.25 0.37 Average 0.73 0.73 0.57 0.71

Table 2.8: Detailed comparison of SPACE and MITRA performance on 3 motif finding Test Case 3.

MITRA SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 CGGC-6n-TCTAA CGGCnAAGnGTC (3) 0.50 0.24 0.13 0.20 TTCGGy-4n-TGTC (1) 0.71 0.39 0.33 0.50
2 CAGT-6n-TAGAT ACAGTCGAGCnT(6) 0.52 0.40 0.29 0.42 CAGT-5n-GTAG (1) 0.67 0.44 0.36 0.52
3 GGCA-6n-GGGTC CAnTAGTTGGTT (5) 0.40 0.26 0.19 0.28 GGCA-6n-GGGT (2) 0.71 0.38 0.33 0.50
D Average 0.47 0.30 0.20 0.30 Average 0.70 0.40 0.34 0.51

Table 2.9: Detailed comparison of SPACE and MITRA performance on 3 motif finding Test Case 4.
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BIOPROSPECTOR SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 TGGGTAC GGGTACC (1) 0.62 0.32 0.27 0.44 GGGTACC (3) 0.83 0.72 0.75 0.82
2 CCGAACG ACCAAAG (3) 0.60 0.30 0.24 0.37 mCGAACGT (2) 0.80 0.70 0.78 0.81
3 TGTTTCC ATTTGTT (1) 0.50 0.29 0.19 0.29 GTTTCCA (2) 0.67 0.66 0.70 0.71
A Average 0.57 0.30 0.23 0.37 Average 0.77 0.69 0.74 0.78

Table 2.10: Detailed comparison of SPACE and BIOPROSPECTOR performance on 3 motif finding Test Case 1.

BIOPROSPECTOR SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 CCTGTnnnAGTTGTC CCTGTnnnACTTGTT (2) 0.67 0.31 0.27 0.44 CCTGTnnTAGTTG (1) 0.81 0.76 0.65 0.78
2 GTTGTnnnAATACTC GTTGTnnnAATACTC (5) 0.51 0.30 0.24 0.37 TGTTGT-5n-TACT (1) 0.80 0.71 0.61 0.74
3 CCCCCnnnACATTCC CGCCCnnnACATTC (1) 0.74 0.38 0.27 0.34 CCCCCnnnACATT (1) 0.83 0.74 0.65 0.77
B Average 0.64 0.33 0.26 0.38 Average 0.81 0.74 0.64 0.76

Table 2.11: Detailed comparison of SPACE and BIOPROSPECTOR performance on 3 motif finding Test Case 2.

BIOPROSPECTOR SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 ATCGTnnnTGACCnnnCTTTC ATCGT-11n-CTTTC (1) 0.71 0.38 0.33 0.50 TCGTnnnTGAC-5n-TTTC (1) 0.76 0.66 0.55 0.69
2 GAAGCnnnCGAGGnnnGATCC GAACC-11n-CCTCC (1) 0.43 0.21 0.17 0.27 AwGC-4n-GAGGnnnGATC (3) 0.62 0.73 0.50 0.65
3 GCCCAnnnGTTTAnnnGATGA GCCCA-11n-GATGA (8) 0.83 0.45 0.42 0.60 GCCC-4n-GTTT-4n-GATG (1) 0.80 0.80 0.67 0.79
C Average 0.66 0.35 0.31 0.46 Average 0.73 0.73 0.57 0.71

Table 2.12: Detailed comparison of SPACE and BIOPROSPECTOR performance on 3 motif finding Test Case 3.

BIOPROSPECTOR SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 CGGC-6n-TCTAA CGTA-6n-TCTAA (7) 0.33 0.18 0.13 0.22 TTCGGy-4n-TGTC (1) 0.71 0.39 0.33 0.50
2 CAGT-6n-TAGAT CAGT-6n-TCGTT (1) 0.62 0.36 0.29 0.45 CAGT-5n-GTAG (1) 0.67 0.44 0.36 0.52
3 GGCA-6n-GGGTC GACA-6n-GGGCC (1) 0.60 0.25 0.21 0.37 GGCA-6n-GGGT (2) 0.71 0.38 0.33 0.50
D Average 0.52 0.26 0.21 0.35 Average 0.70 0.40 0.34 0.51

Table 2.13: Detailed comparison of SPACE and BIOPROSPECTOR performance on 3 motif finding Test Case 4.
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We also examine the performance comparison between SPACE and monad

motif finders MEME and Weeder.The averaged evaluation statistics for both

MEME and SPACE can be in the table below.

MEME SPACE
Datasets

nSn nPPV nPC nCC nSn nPPv nPC nCC

Test Case 1 0.10 0.54 0.10 0.21 0.77 0.69 0.74 0.78
Test Case 2 0.07 0.56 0.07 0.14 0.81 0.74 0.64 0.76
Test Case 3 0.07 0.68 0.07 0.12 0.73 0.73 0.57 0.71
Test Case 4 0.04 0.33 0.04 0.10 0.70 0.40 0.34 0.51

Table 2.14: Comparison of SPACE and MEME averaged performance on 4 motif
finding problems.

The averaged evaluation statistics for both WEEDER and SPACE can be in

the table below.

WEEDER SPACE
Datasets

nSn nPPV nPC nCC nSn nPPv nPC nCC

Test Case 1 0.37 0.36 0.25 0.35 0.77 0.69 0.74 0.78
Test Case 2 0.19 0.56 0.15 0.26 0.81 0.74 0.64 0.76
Test Case 3 0.15 0.65 0.13 0.25 0.73 0.73 0.57 0.71
Test Case 4 0.15 0.30 0.11 0.14 0.70 0.40 0.34 0.51

Table 2.15: Comparison of SPACE and WEEDER averaged performance on 4
motif finding problems.

The detailed statistics for 3 datasets in each motif-finding problems can be

found in the following tables.



2.6
E

x
p
erim

en
tal

R
esu

lts
63

MEME SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 TGGGTAC CACACCC (19) 0.12 0.62 0.11 0.24 GGGTACC (3) 0.83 0.72 0.75 0.82
2 CCGAACG CCGAACC(20) 0.18 1.00 0.18 0.40 mCGAACGT (2) 0.80 0.70 0.78 0.81
3 TGTTTCC GGCACGA (20) 0.00 0.00 0.00 0.00 GTTTCCA (2) 0.67 0.66 0.70 0.71
A Average 0.10 0.54 0.10 0.21 Average 0.77 0.69 0.74 0.78

Table 2.16: Detailed comparison of SPACE and MEME performance on 3 motif finding Test Case 1.

MEME SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 CCTGTnnnAGTTGTC GCCTGCGAGTG (13) 0.05 0.25 0.04 0.04 CCTGTnnTAGTTG (1) 0.81 0.76 0.65 0.78
2 GTTGTnnnAATACTC TACCCAACGAC (1) 0.06 0.42 0.06 0.10 TGTTGT-6n-TACT (1) 0.80 0.71 0.61 0.74
3 CCCCCnnnACATTCC CCCCCCC (3) 0.10 1.00 0.10 0.29 CCCCCnnnACATT (1) 0.83 0.74 0.65 0.77
B Average 0.07 0.56 0.07 0.14 Average 0.81 0.74 0.64 0.76

Table 2.17: Detailed comparison of SPACE and MEME performance on 3 motif finding Test Case 2.

MEME SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 ATCGTnnnTGACCnnnCTTTC CGCACCC (9) 0.10 1.00 0.10 0.29 TCGTnnnTGAC-5n-TTTC (1) 0.76 0.66 0.55 0.69
2 GAAGCnnnCGAGGnnnGATCC CCCCCCA(2) 0.08 0.60 0.08 0.00 AwGC-4n-GAGGnnnGATC (3) 0.62 0.73 0.50 0.65
3 GCCCAnnnGTTTAnnnGATGA CCCCGCCC (1) 0.04 0.44 0.04 0.07 GCCC-4n-GTTT-4n-GATG (1) 0.80 0.80 0.67 0.79
C Average 0.07 0.68 0.07 0.12 Average 0.73 0.73 0.57 0.71

Table 2.18: Detailed comparison of SPACE and MEME performance on 3 motif finding Test Case 3.

MEME SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 CGGC-6n-TCTAA TAGCCGC (20) 0.00 0.00 0.00 0.00 TTCGGy-4n-TGTC (1) 0.71 0.39 0.33 0.50
2 CAGT-6n-TAGAT AAGACCC (20) 0.00 0.00 0.00 0.00 CAGT-5n-GTAG (1) 0.67 0.44 0.36 0.52
3 GGCA-6n-GGGTC GCCCCCC (15) 0.11 1.00 0.11 0.30 GGCA-6n-GGGT (2) 0.71 0.38 0.33 0.50
D Average 0.04 0.33 0.04 0.20 Average 0.70 0.40 0.34 0.51

Table 2.19: Detailed comparison of SPACE and MEME performance on 3 motif finding Test Case 4.
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WEEDER SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 TGGGTAC GTACCC (1) 0.50 0.57 0.36 0.52 GGGTACC (3) 0.83 0.72 0.75 0.82
2 CCGAACG GCAGAGGCTACT (11) 0.61 0.52 0.39 0.54 mCGAACGT (2) 0.80 0.70 0.78 0.81
3 TGTTTCC TGGTGC (1) 0.00 0.00 0.00 0.00 GTTTCCA (2) 0.67 0.66 0.70 0.71
A Average 0.37 0.36 0.25 0.35 Average 0.77 0.69 0.74 0.78

Table 2.20: Detailed comparison of SPACE and WEEDER performance on 3 motif finding Test Case 1.

WEEDER SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 CCTGTnnnAGTTGTC AGAAGTGTCCTA (2) 0.12 0.69 0.11 0.23 CCTGTnnTAGTTG (1) 0.81 0.76 0.65 0.78
2 GTTGTnnnAATACTC AATACTCA (2) 0.35 0.56 0.27 0.42 TGTTGT-5n-TACT (1) 0.80 0.71 0.61 0.74
3 CCCCCnnnACATTCC ACAATCCT (2) 0.09 0.44 0.08 0.12 CCCCCnnnACATT (1) 0.83 0.74 0.65 0.77
B Average 0.19 0.56 0.15 0.26 Average 0.81 0.74 0.64 0.76

Table 2.21: Detailed comparison of SPACE and WEEDER performance on 3 motif finding Test Case 2.

WEEDER SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 ATCGTnnnTGACCnnnCTTTC CCCGGGTGAC (3) 0.15 1.00 0.15 0.36 TCGTnnnTGAC-5nTTTC (1) 0.76 0.66 0.55 0.69
2 GAAGCnnnCGAGGnnnGATCC TTTTGA (1) 0.14 0.55 0.12 0.23 AwGC-4n-GAGGnnnGATC (3) 0.62 0.73 0.50 0.65
3 GCCCAnnnGTTTAnnnGATGA GGTCAT (1) 0.17 0.39 0.13 0.17 GCCC-4n-GTTT-4n-GATG (1) 0.80 0.80 0.67 0.79
C Average 0.15 0.65 0.13 0.25 Average 0.73 0.73 0.57 0.71

Table 2.22: Detailed comparison of SPACE and WEEDER performance on 3 motif finding Test Case 3.

WEEDER SPACE
Set Known Motif Predicted (Rank) nSn nPPV nPC nCC Predicted (Rank) nSn nPPV nPC nCC
1 CGGC-6n-TCTAA GAAGTG (19) 0.10 0.18 0.07 0.07 TTCGGy-4n-TGTC (1) 0.71 0.39 0.33 0.50
2 CAGT-6n-TAGAT GTACAC (4) 0.19 0.38 0.14 0.21 CAGT-5n-GTAG (1) 0.67 0.44 0.36 0.52
3 GGCA-6n-GGGTC GCCGGCGTGT (2) 0.15 0.35 0.12 0.15 GGCA-6n-GGGT (2) 0.71 0.38 0.33 0.50
D Average 0.15 0.30 0.11 0.14 Average 0.70 0.40 0.34 0.51

Table 2.23: Detailed comparison of SPACE and WEEDER performance on 3 motif finding Test Case 4.
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2.6.2 Results on Datasets with Monad Motifs

We are also interested in the performance of SPACE for motifs without spacers.

We have performed two sets of experiments, one on Tompa’s benchmark datasets

and the other on 10 real biological datasets.

Tompa’s Benchmark Data

Tompa’s benchmark dataset has been constructed based on real transcription

factor binding sites drawn from four different organisms [131]. It consists of 56

datasets in total. The number of sequences ranges from 1-35 and the sequence

lengths are up to 3000 bp. In this assessment, following Tompa’s approach, the

motif ranked number 1 by the algorithm is used for comparison.
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Figure 2.6: Comparison between SPACE with 13 other motif discovery tools.

The performance of SPACE averaged over all datasets is shown in Figure 2.6.

SPACE performs better than other tools based on the comparison measures 5.

5In our comparison, we did not include the new motif finder, MotifSeeker [98]. The ex-
periments in their chapter are based on a different subset of Tompa’s datasets, so a direct
comparison is not appropriate.
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As an example, we show the binding sites (see Figure 2.7) identified (in green)

by our algorithm and Weeder on the dataset hm17g together with the actual

binding sites (in blue). Weeder is reported to perform the best among other tools

in this dataset [131]. Similar to Weeder, SPACE is able to identify almost all

actual binding sites.

Figure 2.7: Binding sites without gaps reported by SPACE in hm17g (human),
with nSn = 0.90, nPPV = 0.72, nPC = 0.67 and nCC = 0.80. Weeder with
nSn = 0.61, nPPV = 0.89, nPC = 0.57 and nCC = 0.73.

We also analyzed the performance of SPACE across the four organisms. Figure

2.8 shows the average performance of SPACE for each organism, compared with

the best algorithm among the other tools for the respective organism. The figure

shows that the performance of SPACE is similar to that of the best performing

algorithm for each organism. On the other hand, the averaged performance of

SPACE for all four organisms is better than other tools (Figure 2.6), indicating

that SPACE is more robust and organism independent.
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Figure 2.8: Comparison of SPACE and best performing algorithms on 4 types of
organisms.

Real Biological Datasets

We also performed experiments on 10 real biological datasets whose binding sites

are known to be monads from literature. Comparison is done with Weeder [96]

and MEME [8], both of which are well known monad motif finding algorithms.

We set MEME to use Two-Component mixture mode and find motifs of length

ranging from 8 upto 20 bp. And for Weeder we use the large mode. Table 2.24

summarizes the comparison results. From the table, for sensitivity, MEME shows

a better performance than Weeder while SPACE is better than MEME. The

reason for SPACE to have a higher sensitivity is due to the submotif modeling.

Since the measure nSn focuses on predicting the binding sites, if there is a region in

the motif that is not strongly conserved over all binding sites, the use of submotifs

may still be able to identify most of these binding sites based on the regions that

are strongly conserved, thus predicting more true binding sites. However, it does

not mean that missing these binding sites, the software will predict a wrong motif

pattern.

The real biological datasets of the spaced and monad motifs are constructed
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from -1000 to -1 upstream region of all the genes co-regulated by respective

transcription factor, truncating the region if it overlaps with an upstream open

reading frame (ORF). They are obtained from RSAT [134] and ABS [14] database

respectively.

Unlike the case for spaced motifs, SPACE is not a clear winner for all the mea-

sures except sensitivity. But, the experiments indicate that for monads, SPACE

is as good as other tools. This shows that SPACE can be used as a standard tool

for finding monads as well as spaced motifs.

Figures below exhibit the binding sites conservation from the motif found by

MEME, Weeder and SPACE.
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TF Motif RANK nSn nPPV nCC nPC

AP2A Actual GCCGGGGKSG

[29, 71] SPACE CCAGGGAG 1 0.75 0.50 0.43 0.60
MEME GCCCCCCC 5 0.38 0.56 0.29 0.45
Weeder CCCCACCC 3 0.38 0.33 0.21 0.34

CAAT Actual AAGCCAATTAGGCCC

[136] SPACE GAAGCCAATTAG 1 0.51 0.60 0.38 0.54
MEME CGAAGCAA 2 0.08 0.67 0.08 0.20
Weeder GCCAAT 1 0.63 0.78 0.54 0.70

CJUN Actual ATTATTCACHTCATC

[48] SPACE CATTWCCTCA 1 0.64 0.73 0.52 0.68
MEME CATTACCTCA 2 0.62 0.81 0.55 0.71
Weeder CATTACCTCA 3 0.62 0.81 0.55 0.71

CMYC Actual CACGTG

[52] SPACE CACGTGCC 1 1.00 0.60 0.60 0.77
MEME GGTCACGTGGGATAGCAACA 1 1.00 0.27 0.27 0.71
Weeder TCACGT 1 0.71 0.71 0.56 0.71

E2F Actual TTTCGCGC

[144] SPACE TTTCGCGCC 1 0.91 0.81 0.80 0.88
MEME TTGTCGCGCC 4 1.00 0.82 0.82 0.90
Weeder TTTCGCGC 2 0.64 0.91 0.60 0.75

ETS1 Actual KAGGAAGT

[29] SPACE AGGAAGTA 1 0.76 0.65 0.54 0.70
MEME GGTATTCA 3 0.62 0.56 0.42 0.58
Weeder AAGTAG 1 0.40 0.48 0.28 0.43

GC Actual GGGCGGCC

[29] SPACE GCCCCTGCC 1 0.56 0.60 0.41 0.57
MEME AAGGCTGCGTGGAC 1 0.57 0.27 0.22 0.38
Weeder ACCCAC 5 0.62 0.71 0.50 0.66

MTF1 Actual GGGTGCACTCG

[13] SPACE GCACACTGGC 3 0.71 0.36 0.31 0.50
MEME TGCAAACCCTTTGCGCCC 6 0.65 0.29 0.25 0.42
Weeder CTCGTA 9 0.38 0.43 0.25 0.39

MYB Actual GAACGTTA

[71] SPACE CGTTACG 1 0.71 0.50 0.42 0.59
MEME ACGTTACGAA 9 1.00 0.55 0.55 0.73
Weeder GTTACG 1 0.57 0.57 0.57 0.40

MYF Actual GGGCCAGTTGTCCC

[71] SPACE GGGGCCAGG 2 0.54 0.71 0.44 0.61
MEME GGCAAGCAG 5 0.39 1.00 0.39 0.62
Weeder CTGGGTCGAC 1 0.47 0.64 0.37 0.53

AVERAGE SPACE 0.71 0.61 0.49 0.64

MEME 0.63 0.58 0.38 0.46

Weeder 0.54 0.64 0.43 0.58

Table 2.24: Comparison of SPACE, MITRA and Weeder on monads in real bi-
ological datasets (the first motif among the top 20 that gives a better nSn and
nPPV than motif of Rank 1 is used for comparison).
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We also compare the performance of MITRA and BioProspector on these

monads datasets.

TF Motif RANK nSn nPPV nCC nPC

AP2A Actual GCCGGGGKSG

[71] SPACE CCAGGGAG 1 0.75 0.50 0.43 0.60
[29] MITRA TnAAGnG 1 0.12 0.22 0.09 0.13

BioProspector AAGGAGACAG 1 0.50 0.20 0.17 0.30

CAAT Actual AAGCCAATTAGGCCC

[136] SPACE GAAGCCAATTAG 1 0.51 0.60 0.38 0.54
MITRA CAnGCGGA 1 0.36 0.21 0.15 0.26
BioProspector GAGGGGCGCG 1 0.75 0.16 0.15 0.33

CJUN Actual ATTATTCACHCATC

[48] SPACE CATTWCCTCA 1 0.64 0.73 0.52 0.68
MITRA ACGTGAGC 1 0.11 0.16 0.07 0.09
BioProspector TAAAAATCA 1 0.38 0.38 0.23 0.35

CMYC Actual CACGTG

[52] SPACE CACGTGCC 1 1.00 0.60 0.60 0.77
MITRA AGGTnACGT 1 1.00 0.29 0.29 0.53
BioProspector GGTCACGTGG 1 1.00 0.32 0.32 0.56

E2F Actual TTTCGCGC

[144] SPACE TTTCGCGCC 1 0.91 0.81 0.80 0.88
MITRA CnCAGATn 2 0.22 0.13 0.09 0.15
BioProspector TTGTCGCGCC 2 1.00 0.47 0.47 0.68

ETS1 Actual KAGGAAGT

[29] SPACE AGGAAGTA 1 0.76 0.65 0.54 0.70
MITRA GGAAGTAn 1 1.00 0.38 0.38 0.60
BioProspector TGGGAAAACA 1 0.67 0.24 0.21 0.38

GC Actual GGGCGGCC

[29] SPACE GCCCCTGCC 1 0.56 0.60 0.41 0.57
MITRA AAGGnTACG 4 0.57 0.20 0.17 0.32
BioProspector AAGGCTGCGT 1 0.65 0.20 0.18 0.35

MTF1 Actual GGGTGCACTCG

[13] SPACE GCACACTGGC 3 0.71 0.36 0.31 0.50
MITRA ACACGTCCCACG 1 0.44 0.17 0.14 0.26
BioProspector CTACAGAGAG 1 0.57 0.21 0.18 0.33

MYB Actual GAACGTTA

[71] SPACE CGTTACG 1 0.71 0.50 0.42 0.59
MITRA nGTTACn 4 1.00 0.32 0.32 0.55
BioProspector GCCAATGAGG 2 0.43 0.16 0.13 0.24

MYF Actual GGGCCAGTTGTCCC

[71] SPACE GGGGCCAGG 2 0.54 0.71 0.44 0.61
MITRA TnAAGCTGnATG 1 0.13 0.09 0.06 0.08
BioProspector TGCTCCCGGC 1 0.49 0.38 0.27 0.41

AVERAGE SPACE 0.71 0.61 0.49 0.64
MITRA 0.50 0.22 0.18 0.30
BioProspector 0.64 0.27 0.23 0.39

Table 2.25: Comparison of SPACE, MITRA and BioProspector on real monad
biological data (the first motif among the top 20 that gives a better nSn and
nPPV than motif of Rank 1 is used for comparison).
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2.7 Conclusions

In this chapter we have proposed a new approach for finding spaced motifs based

on the notion called submotifs. We developed a novel motif-finding algorithm

SPACE that detects the target motif by first finding submotifs and then strate-

gically compositing them using an efficient frequent submotif pattern mining ap-

proach. In finding motif with generic spacers, this framework provides the follow-

ing novelties : the spacers could appear in more than two parts of the motif and

their lengths need not be fixed. In experiments on real biological datasets, syn-

thetic datasets and Tompa’s motif assessment benchmarks, we observed that our

algorithm performs better than existing tools for spaced motifs with improve-

ments in both sensitivity and specificity and for monads, SPACE performs as

good as other tools.

However, based on the submotif notion we define, we implicitly assume that

the mismatches are uniformly distributed in the motif instances. If that is not the

case, SPACE may fail to capture these instances, and thus may miss the motif

or the regions of the motif that contain these mismatches. On the other hand,

in real biological datasets, it seems that mismatches are usually not clustered for

most of the motif instances. Hence, SPACE can perform well in most cases.



CHAPTER 3

Variance Based Ensemble Method for

Integrating Generic Motif Finders

Although many tools have been developed, little knowledge is known about which

motif finder should be used for a particular data set. This posits a real challenge

for practitioners and biological researchers because of two reasons. Firstly, the

performance of individual motif finders is unimpressive overall as shown in Tompa

et.al.’s evaluation [131] where even the best performing algorithm has sensitivity

< 0.13 and precision < 0.35. The same study also shows that no motif finder

performs consistently well for all datasets. It is not clear how to select the correct

motif finder given a particular dataset. Secondly, even for a specific motif finder,

it is not straightforward to decide how many motifs one should consider in the

output list, since motifs of lower rank may be useful to reveal real binding sites.

For these reasons, some works have hinted the possible improvement made by

combining the results from different motif finders [50, 54, 79] and consequently

several ensemble methods have been developed (e.g. SCOPE [24], EMD [55],

BEST [32,59], WebMotifs [45,110]). Most of these methods (referred as classical
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ensemble methods) use the principle of picking one motif based on some forms

of scoring function from the collection of motifs returned by the individual motif

finders. This however, suggests that their performance is bounded above by the

performance of the best individual motif finder in the respective data set.

In fact, since different motif finders have different limits in their methods

of finding statistically overrepresented motifs and different definitions of what

constitute a motif [79,131] it is unlikely that a single motif finder can predict all

true binding sites correctly. Covering most of the true binding sites requires the

predictions of multiple motif finders. Hence, selecting only the best motif may

not be sufficient to get the best accuracy. A refined integration of motifs is crucial

to significantly improve the predictive power in motif discovery.

Following this line of research, we have developed a novel ensemble method,

called MotifVoter (Figure 3.1), that identifies the best motif by integrating the

sites reported by several generic motif finders. The idea of MotifVoter is to select

a subset of high confidence motifs given my multiple motif finders. And from

these motifs we further refine their instances to form final motif. MotifVoter

consists of two stages. Firstly, a novel discriminative clustering method is used

to determine a cluster of motifs with the highest density. In other words, we

identify the cluster which maximizes the density measure while at the same time

minimizes this measure for its complement cluster. We expect the true sites will

be identified by more than one motif finders. Thus, we also ensure the cluster

of motifs should be contributed by as many motif finders as possible (constraint

attribute). Secondly, among the motifs in the selected cluster, we select a subset

of high confidence sites to form the final the motif.

MotifVoter improves sensitivity of the predictions since the final motif is gen-

erated from all the high confidence sites given by multiple motif finders. The
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previous approaches only generate motif given by one motif finder only. It also

improves specificity because the two clustering attributes (discriminative and con-

straint) effectively filters out all the false motifs. Furthermore, the second stage

ensure MotifVoter to retain high confidence sites by removing false sites.

Figure 3.1: MotifVoter’s approach.

Figure 3.1 depicts the procedure involved in MotifVoter. Figure 3.1 (a) We

apply M motif finders on the input sequences. Each motif finder reports a set

of motifs and their respective sets of instances. The pairwise similarities among

predicted motifs can be visualized in a graph where each node represents a motif

and the similarity between two motifs is represented by a weighted edge (we use

a shorter edge to represent a pair of motifs that are more similar). We expect

the clustered motifs to approximate the real motif while the rest of the motifs are

spurious. Hence, Stage 1 aims to find a cluster such that (1) motifs predicted by

multiple motif finders and (2) the motifs are close (similar) to one another, but

far away (different) from other. We employ a variance-based statistical approach
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to achieve this effect. (b) The diagram shows the ideas behind the second stage of

MotifVoter. Binding sites in blue are real binding sites. The remaining colors are

used to illustrate the binding sites predicted by 4 other motif finders. As shown

by the framed binding sites, MotifVoter can discover more true binding sites

compare to individual motif finders. Furthermore, using a confidence measure,

MotifVoter is also able to detect the true binding site which can only be discovered

by one motif finder. (c) In this figure we exhibit the weblogos of real bindings

sites, binding sites predicted by MotifVoter and other 4 stand alone motif finders.

Although the weblogos of the 4 stand alone motif finders are similar to the real

ones, the binding sites predicted by those 4 stand alone motif finders still contain

false binding sites (see Figure 3.1b). However, MotifVoter can effectively filter

the spurious binding sites and give a better approximation of the true motif.

We have evaluated MotifVoter and compared it with other 17 motif finders

and four most recent ensemble methods. The results show that MotifVoter sig-

nificantly outperforms all of them in term of both sensitivity and precision. For

example, on Tompa’s benchmark datasets, MotifVoter improves the sensitivity

by 215% and the precision by 45.5%. More importantly, MotifVoter can locate

almost all binding sites that are found by its basic motif finders. It can distinguish

the real binding sites from the false positives in the aggregation of outputs from

the multiple motif finders. We also show that MotifVoter works well across differ-

ent species and different types of background sequences. In particular, MotifVoter

gives the biggest improvement in real background sequences (see description on

Tompa’s benchmark dataset in the next section) and higher organisms (H. Sapi-

ens and M. Musculus). Finally, we show that as long as some good motif finders

are included in MotifVoter, then even if there are a few motif finders with poor

performance, the performance of MotifVoter is still substantially better.
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In practice we might not always be able to run a lot of motif finders. Hence,

we have studied the performance of MotifVoter by only including the fastest N

(N = 3, 4, 5) motif finders. The results show that MotifVoter is stable.The results

show that the performance of MotifVoter is still significantly better than the best

motif finder in terms of sensitivity and precision when we run only the 5 fastest

motif finders.

3.1 Performance of Individual Motif Finders with

the Inclusion of Lower Rank Motifs

Tompa et al.’s study [131] assessed rank 1 motifs predict by various motif finders.

However, this assessment did not address whether using motifs of lower rank will

improve the overall performance of individual motif finders. This section shows

that even by including motifs of lower ranks, the performance of individual motif

finders cannot be improved substantially. Figure 3.2a shows the sensitivity of

the predicted binding sites by the top-n motifs of each motif finder. The best

individual motif finder has sensitivity 0.130 if we just consider the predicted

motifs of rank 1. When we consider the sites predicted by top-30 motifs of the

best individual motif finder, the sensitivity is improved to 0.175. This suggests

that, even if we consider motifs of rank 2 or above, the sensitivity of individual

motif finder is improved by at most 25%. Moreover, the precision decreases

significantly since a lot of noise exists in the motif list of rank 2 or above (Figure

3.2b).

The black curve in Figure 3.2a shows the sensitivity of the predicted sites

by all 10 motif finders. If we just consider the predicted rank 1 motifs of the
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Figure 3.2: This figure shows the performance of 10 individual motif finders (color
curves) and the combined result of all 10 motif finders (black curve). Figures (a)
and (b) show the cumulative sensitivity (nSN) and precision (nPPV ), respec-
tively, of these 11 motif finders when we include more motifs with lower rank.
The figure shows that the combined result of all 10 motif finders has a much
higher sensitivity than any individual motif finder. However, it also reduces the
precision a lot.

10 motif finders, the sensitivity is 0.177. The sensitivity is improved to 0.439

when we consider the top-30 motifs of all 10 motif finders. This suggests an

improvement of 148% in sensitivity. This observation suggests that rank 2 or

above binding sites predicted by all 10 motif finders are useful.

Though rank 2 or above motifs predicted by various motif finders may help

to improve sensitivity, majority of them may be noise. For instance, in Tompa’s

dataset, among all sites predicted by the rank 2-30 motifs of the 10 motif finders,

only 0.47% of them are real binding sites. On the other hand, 6.27% of the sites

predicted by the rank 1 motifs of the 10 motif finders are real binding sites (see

Figure 3.2b). Hence, there is more noise in rank 2 or above motifs. This suggests

that inclusion of motifs from lower rank can only be effective if we consider

ensemble methods.
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3.2 Different Motif Finders Discover Different Bind-

ing Sites

In general, motif finders can be divided into two major types, namely PWM model

(profile based) and (l, d) model (consensus based). There is no general agreement

on which model is better. Figure 3.3a gives a comparison of the binding sites

predicted by the two types of motif finders. We divide the motif finders into two

groups depending on the model they are based on. The first group consists of

3 motif finders based on (l, d) model, which are MITRA [36], Weeder [96], and

SPACE [139]. The second group consists of 7 motif finders based on PWM model,

which include AlignACE [57], ANN-Spec [142], BioProspector [75], Improbizer [5],

MDScan [76], MEME [8], and MotifSampler [129]. It shows the number of sites

correctly predicted by (i) both groups, (ii) (l, d) model group only, and (iii) PWM

model group only. The figure showed that 45.3% of the correctly predicted sites

are predicted by either (l,d) model or PWM model. This implies that (l, d)

model and PWM model may be suitable for discovering motifs for different types

of datasets.

Even for motif finders of the same type, the individual motif finders may be

based on different heuristics and use a different set of parameters, and so may

be suitable for discovering motifs from different types of datasets. For instance,

consider the three motif finders SPACE, Weeder, and MITRA which are based on

(l, d) model. Figure 3.3b shows the correctly predicted sites by them. We observe

that, even by using the same (l, d) model, different motif finders are suitable for

finding different types of motifs. And it also provides evidence that combining

results from motif finders of the same model may still provide a better motif.
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3.3 MotifVoter - A Method That Utilizes the Sites

Predicted by Multiple Motif Finders

Combining results from multiple motif finders and considering motifs of lower

rank will obviously include more binding sites, but it will also include more false

positives. To develop a robust ensemble method, we need an effective way to

distinguish real binding sites from noise based on the outputs from the various

motif finders.

Most existing methods (e.g. SCOPE [24], BEST [32, 59] and WebMotifs [45,

110]) are based on integration at the motif level rather at the binding site level.

The issue of how to distinguish a real binding site from false binding sites is not

Figure 3.3: Our study has 3 motif finders based on (l, d) model and 7 motif
finders based on PWM model. Using their top-30 motifs, the 10 motif finders can
discover 243 binding sites in Tompa’s benchmark dataset. (a) shows the numbers
of sites that can be found by (i) both groups, (ii) (l, d) model group only, and (iii)
PWM model group only. (b) focuses on the three (l, d) motif finders and shows
the number of sites that can be found by various combination of 3 (l, d) motif
finders.
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adequately addressed in the previous ensemble methods. A naive approach is to

report the binding sites that are covered by more than 2 motifs. However, our

experiments show that the improvement is only limited. (For instance, though

this naive approach improves sensitivity (nSN) by 68% over the current best

motif finder (SPACE), this method looses in precision (nPPV ) as much as 17.3%

over SPACE in Tompa’s benchmark dataset). More importantly, it is not trivial

to define whether a binding site reported by multiple finders is real or noise.

We developed a novel ensemble method MotifVoter, which integrates the re-

sults of 10 motif finders that performed reasonably well on Tompa’s benchmark

and were easily obtainable from public domain: AlignACE [57], ANN-Spec [142],

BioProspector16, Improbizer [5], MDScan [76], MEME [8], MITRA [36], Motif-

Sampler [129], SPACE [139], and Weeder [96]. It may be noted they are also

some of the widely used motif finders in the community of biologists. Appendix

A describes the characteristics and parameters used in each of these motif finders.

In the evaluation, we have used three datasets (Tompa’s benchmark dataset, the

metazoan dataset, and the E. coli dataset). Below we describe the method detail

of MotifVoter.

3.4 Pairwise Similarity Between Motifs

We measure the similarity of two motifs x and y based on their instances. Let

I(x) be the set of instances (or the regions covered by the instances) of x. Let

I(x) ∩ I(y) be the set of regions covered by at least one instance in x and one

instance in y. Let I(x) ∪ I(y) be the set of regions covered by any instance of x

or y. We denote the total number of nucleotides of all the regions in I(x) ∩ I(y)

and I(x) ∪ I(y), by |I(x) ∩ I(y)| and |I(x) ∪ I(y)| respectively. The similarity of
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x and y, denoted sim(x, y), is expressed as |I(x)∩ I(y)|/|I(x)∪ I(y)|. Note that

0 ≤ sim(x, y) ≤ 1 and sim(x, x) = 1.

Consider m basic motif finders, each reporting n motifs. Each motif corre-

sponds to its list of predicted binding sites. MotifVoter aims to integrate the

information and to give an accurate prediction of the binding sites. The main

assumption behind the method is that the true binding sites have a higher chance

to be predicted by more than one motif finders.

There are three stages in MotifVoter: (1) Motif filtering: this stage filters

away the spurious motifs from all the candidate motifs predicted by the m motif

finders (see Figure 3.1a). (2) Instance refinement: based on the candidate motifs

retained in Stage 1, we identify a set of instances with high confidence that they

are real binding sites (see Figure 3.1b). (3) PWM generation: from the instances

computed in Stage 2, we generate the PWM of the motif (see Figure 3.1c).

3.5 Motif Filtering

MotifVoter uses a variance-based statistical measure [16, 116] to identify cluster

of highly similar motifs based on similarity function as described above. Given m

motif finders and each motif finder reports its top-n candidate motifs, there will

be a set P of mn candidate motifs. Among all the candidate motifs in P , some

of them will approximate the real motif while the other will not. We would like

to identify the subset X of P such that the candidate motifs in X are likely to

approximate the real motif. Our basic idea is that if the candidate motifs in X

can model the real motif, they should have high similarity. Below, we define a

score function which allows us to identify X.

Let X be some subset of candidate motifs of P . The mean similarity among
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the candidate motifs in X, denoted as sim(X), is defined as:

∑

x,y∈X

sim(x, y)

|X2| (3.1)

The w score of X, denoted by w(X), is defined as:

|X|2 · sim(X)
√

∑

x,y∈X

((sim(x, y) − sim(X))2

(3.2)

Note that w(X) measures how similar among the candidate motifs in X. If

many of the candidate motifs in X approximate the real motif, we should expect

to have a high w(X). On the other hand, we expect the complement of X, that is

P −X, should have a low w(P −X). Thus w(P −X) constitute a discriminative

attributes in the clustering procedure. In other word, if X is the set of candidate

motifs which approximate the real motif, we expect to have a high A(X) score,

where:

A(X) =
w(X)

w(P − X)
(3.3)

In addition, we also assume that most of the motif finders are effective. In

other word, for each motif finder, if we select its top n candidate motifs for some

n, we expect at least one of these top n candidate motifs approximates the real

motif. Based on this assumption, we have an additional criterion that X must

contain candidate motifs predicted by at least t motif finders for some pre-defined

threshold t. In our experiments, we set n = 30 and t = m.

In summary, this stage aims to find X ⊆ P which (1) maximizes A(X) and (2)

X contains the candidate motifs predicted by at least t motif finders. The naive
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method to identify X is to consider all possible X as a subset of P that satisfies

the above two criterion. However, this approach is computationally infeasible. In

the next section we describe our proposed heuristics to identify X to overcome

this difficulty.

3.6 Heuristics Used in MotifVoter

Here we describe the heuristic method used in the MotifVoter algorithm to iden-

tify X, the set of similar candidate motifs in the first stage. Let P be all the

motifs found by m motif finders, where each motif finders return n motifs.

Algorithm 2 MotifVoter
Require: P ; |P | = k

Ensure: Refined Instances
1: for each z ∈ P do

2: for each y ∈ P do

3: compute sim(z, y)
4: end for

5: end for

6: for each z ∈ P do

7: sort p1, p2, ..., pk such that sim(z, pi) ≥ sim(z, pi+1);∀i = 1..k
8: consider sets Xz,j = {z, p1, . . . , pj}; ∀j = 1, . . . , k
9: compute A(Xz,j) for all such Xz,j

10: Score(z) = max {A(Xz,j)}
11: end for

12: Find z with maximum Score(z)
13: return z with corresponding Xz,j (final X)
14: refine instances of X

Note that it is a heuristics as for every z, we do not consider all possible X.

We only consider those Xz,j based on the sorted ordering in Step 7. The rationale

behind the heuristics is as follows.

For a given z, to find the optimal X we need to try all combination of subsets.

However, such method takes exponential time. In our algorithm, we do not try

all combinations. Let a and b be motifs such that sim(a, z) ≤ sim(b, z). Suppose
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motif z is the centroid and a also belongs to X, since motif b is more similar to z

compare with motif a, then it is likely that A(X + b) > A(X). By sorting all pi

according to sim(pi, z) and considering only the subsets (z, p1, p2, ..., pi) for all i,

we ensure that motifs in X will have high degree of similarity.

In Step 8, for each set Xz,j, we know the number of different motif finders,

denoted as n(Xz,j), that contribute the motifs. Let q be the maximum of this

value. We only consider those Xz,j with n(Xz,j) = q. In other words, we hope to

obtain a set of motifs which are contributed by as many different motif finders as

possible.

In Step 12, when there are two z’s with the same score, we pick the one with

larger q value. If there is still a tie, we pick one randomly.

3.7 Instance Refinement

Given X, we obtain the list of instances using two criteria. First, we accept all

regions which are covered by instances of at least two motifs x and y in X where

x and y are predicted by two different motif finders. The reason behind is that

it is unlikely that several motif finders predict the same spurious binding sites.

Second, we accept all the instances of the motif in X that have the highest

confidence to approximate the real motif the best. To rank the candidate motifs

x in X, we use a confident score defined as follows. Let B(x) be the total number

of nucleotides covered by the instance of x. Let O(x) be the total number of

nucleotides covered by the instances of x and also the instances of the motif y

where y is a motif in X predicted by some other motif finder. The confident score

of x is defined as O(x)/B(x).

For the selected instances that are covered by more than one motif finder, we
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further apply a post-processing procedure to refine each instance by removing the

nucleotides that are only covered by a single finder to increase the precision of

our prediction as these nucleotides are likely to be noise.

There are two cases in this post-processing procedure for instances in X.

1. If there exist only two instances overlap with each other, we perform inter-

sections for these two instances. Example below shows that the final in-

stances given by MotifVoter is the intersection of instances given by MEME

and AlignACE:

2,-309,CAGGGTAGGGACA,MEME

2,-305,GTAGGGACAGAGC,ALIGNACE

2,-305,GTAGGGACA,MOTIFVOTER

2. If there are more than two instances overlap with each other. In this case we

first take intersection of two adjacent instances, then perform a join/union

of the previous intersection. Example below shows that we would first

take intersection of instances from BP and MITRA, followed by MITRA

and MEME. Union of these two intersection gives the final instances of

MotifVoter.

0,-286,AGGAAAATTT,BP

0,-283,AAAATTTGTTTCATACAGAAGG,MITRA

0,-283,AAAATTTGTTTCA,MEME

0,-283,AAAATTTGTTTCA,MOTIFVOTER

Intersection of the first two adjacent instances (BP and MITRA) gives:

0,-283,AAAATT
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Intersection of the second two adjacent instances (MITRA and MEME)

gives:

0,-283,AAAATTTGTTTCA

Finally the union of the two above intersection gives:

0,-283,AAAATTTGTTTCA,MOTIFVOTER

3.8 Position Weight Matrix (PWM) Generation

Given all the instances predicted by MotifVoter, Stage 3 generates a PWM motif

to model the instances. This stage has two steps: First, a multiple sequence

alignment of those instances are computed using MUSCLE [34]. Second, a PWM

is generated from the alignment to model the motif. Figure 1c provides an illus-

tration of Stage 3.

3.9 Experimental Results

3.9.1 The performance of MotifVoter versus individual

motif finders

We compare the performance of MotifVoter with individual and ensemble motif

finders on Tompa’s benchmark datasets. Figure 3.4 shows the results. MotifVoter

improves the sensitivity (nSN) by 215% (from 0.13 to 0.41) when compared

with the best performing stand-alone motif finder while the precision (nPPV ) is

improved by 45.5%.

More importantly, MotifVoter can locate almost all binding sites that are

found by any existing finders (see Figure 3.5). As MotifVoter uses 10 basic motif
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finders as its components, if the basic motif finders cannot find a particular real

binding site, MotifVoter cannot find it too. Thus the highest possible sensitivity

that can be achieved by MotifVoter (or any ensemble method) is the fraction of

real binding sites that can be found by at least one basic motif finder. Evaluation

in Tompa’s benchmark datasets shows that the highest possible sensitivity that

can be achieved is 0.44. MotifVoter, on the other hand, can achieve a sensitivity

of 0.419.

We also evaluate the performance of classical ensemble methods that uses the

principle of picking one motif based on some forms of scoring function from the

collection of motifs returned by the individual motif finders (e.g. WebMotifs,

SCOPE, cBEST). We observe that even if they can pick the most sensitive motif

per data set, their sensitivity is at most 0.282 (refer to the performance of the

”Best Motif Finder” in Figure 3.4.), which is 48.6% lower than the sensitivity of

MotifVoter. This implies that the principle of integrating motifs at the sites level

gives significant improvement in performance.
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Figure 3.4: Comparison of MotifVoter with individual and ensemble motif finders
on Tompa’s Benchmark dataset.
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Figure 3.5: The sensitivity of MotifVoter versus the maximum possible sensitivity
(using 10 selected motif finders). The blue curve shows the fraction of nucleotides
that are found by at least 1 motif finder. The pink curve shows the corresponding
nucleotide sensitivity of MotifVoter. Note that the x-axis refers to the top-N
number of motifs we use from each basic motif finder in MotifVoter. For example,
top-10 means we use the top 10 motifs from each finder. It is not the number of
motifs returned by MotifVoter per se. MotifVoter only returns rank-1 result.
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3.9.2 Performance of MotifVoter on Different Back-

ground Sequences and Species.

This section discusses the performance of MotifVoter on different species and

background sequences. Figure 3.6 shows the performance of MotifVoter on var-

ious background sequences in Tompa’s benchmark datasets. In this evaluation,

the major improvement is on real datasets (275%), followed by generic dataset

(128%). Since modeling the background sequences of real type is more difficult,

individual motif finders usually perform worse in real datasets when compared

with markov and generic datasets. On the other hand, MotifVoter combines both

PWM and (l, d) models from different motif finders, and hence it is able to recover

more binding sites in real datasets.
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Figure 3.6: Performance of MotifVoter on various types of background sequences
when compared with the best individual motif finder on Tompa’s Benchmark
dataset.

We obtain consistent results in the evaluation based on species also (Figure

3.7). MotifVoter achieves the highest nSN and nPPV in datasets on all four
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species namely human, mouse, fruitfly and yeast. But MotifVoter made major

improvement on human dataset (314%) followed by fruitfly (263%) while the

least improvement is made on yeast dataset (84%). One possible explanation

is that the binding sites in human, mouse, and fruitfly are much less conserved

than yeast. By making use of various modeling capability of different basic motif

finders, MotifVoter has a higher chance of capturing more diverse binding sites

model on human, mouse, and fruitfly.
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Figure 3.7: The performance of MotifVoter on various species when compared
with the best individual motif finder on Tompa’s Benchmark dataset.

3.9.3 Time Complexity of MotifVoter

The time complexity is an important issue for MotifVoter. Running all 10 mo-

tif finders for MotifVoter is not always practical. We investigated whether Mo-

tifVoter can improve the sensitivity and precision compared to the best individual

motif finder, if we only execute the fastest N (N=3, 4, 5) motif finders in Mo-

tifVoter. Note that the total running time to execute the fastest 5 motif finders
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is still smaller than the running time of MEME. Figure 3.8 shows the detailed

running time of 10 programs on 1.5K bp datasets based on both Tompa and

Metazoan dataset. It is measured on a 3.6Ghz Xeon Linux workstation with

4 processors and 8GB RAM. The mean running time is 111.59 secs, and the

standard deviation is 110.89 secs.
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Figure 3.8: Running time of 10 motif finders on 1.5KB dataset

.

Figure 3.9 shows the performance of MotifVoter if we only run the fastest N

finders (where N = 3, 4, 5). The results show that the performance of MotifVoter

is still significantly better than the best motif finder in terms of sensitivity and

precision.
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Figure 3.9: The performance of MotifVoter when we use 10 motif finders together
with 1-5 random motif finders on Tompa’s Benchmark dataset.

3.9.4 Robustness of MotifVoter

MotifVoter relies on individual motif finders. So, a natural question is whether the

performance of MotifVoter will degrade a lot if we include some motif finders that

do not perform very well. To study this aspect, we included 1-5 motif finders that

predict motifs randomly (to represent motif finders with poor performance) in

addition to the 10 motif finders. Each random motif finder picks a random length-

l string in the input sequences as a motif. The corresponding motif instances are

generated using the (l, d) motif model (that is, length-l substring with at most d

mutations from the motif), where the parameter used for (l, d) are: (8,1), (10,2),

(10,3), (15,2), (15,3).

Figure 3.10 shows the evaluation results on this experiment. The performance

of MotifVoter does degrade as more random motif finders (representing motif

finders with poor performance) are included. However, even if we include 5

random motif finders (that is half of the real motif finders we used), the sensitivity
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(0.357) of MotifVoter is still significantly greater than that of the best individual

motif finder (0.126). A similar observation is obtained for precision. In other

words, MotifVoter is robust even if some of the component motif finders perform

unsatisfactorily.
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Figure 3.10: Performance of MotifVoter based on all 10 motif finders (MV), the
fastest 5 motif finders (MV-5), the fastest 4 motif finders (MV-4), and the fastest 3
motif finders (MV-3). The fastest 5 motif finders we considered are BP, MDScan,
Weeder, ANN-Spec, and Improbizer. (Note that the total running time of these
5 motif finders is faster than MEME.) on Tompa’s Benchmark dataset.

3.9.5 Validation on Metazoan Datasets

We also examine the performance of MotifVoter on the metazoan datasets that

have been drawn from real genomic sequences. The metazoan datasets are taken

from ABS database [14] (http://genome.imim.es/datasets/abs2005/index.

html), and consist of 68 datasets. The number of sequences ranges from 3-39

and the sequence lengths are up to 500 bp. The binding sites are gathered from

the literature where they have been experimentally verified. The sites and the

promoter sequences have been manually curated to ensure data consistency. They

come from three different organisms: human, rat and mouse.
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When we repeated the same experiments on metazoan datasets, we observed

similar results. MotifVoter outperforms the best motif finder in this dataset by

103% and 35% in nSN and nPPV respectively (Figure 3.12). We also validate

the performance of MotifVoter on individual species of the metazoan dataset.

MotifVoter also performs better in each case (Figure 3.13). The highest possible

sensitivity for this dataset is 0.650, and the sensitivity of MotifVoter is 0.632

which is again close to the upper bound. Please refer to Figure 3.11 below for

the detailed evaluation of MotifVoter on the upper bound analysis.
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Figure 3.11: Upper bound analysis on Metazoan datasets

For Metazoan dataset, the maximum possible sensitivity is 0.668 while Mo-

tifVoter has a sensitivity of 0.650 by missing only a few binding sites.
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Figure 3.14 shows several example binding sites from metazoan datasets. It

illustrates that MotifVoter finds more binding sites than stand-alone motif finders.

Also, in general the predicted motif models are similar to the actual motifs.
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Figure 3.12: Comparison of MotifVoter and individual motif finders on metazoan
dataset.
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Figure 3.13: Performance of MotifVoter on various species compared to the best
performing individual motif finders.
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Figure 3.14: Examples of the binding sites found by MotifVoter and stand-alone
motif finders on real metazoan datasets. For each of these datasets, we report
the result from the best performing stand-alone motif finder.
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3.9.6 Comparison of MotifVoter with Other Ensemble

Methods

In the literature, there are two existing directions for performing ensembles, they

are: motif-based and site-based methods. The motif-based methods includes

SCOPE [24], BEST [32, 59], WebMotifs [45, 110] ensemble methods. Their prin-

ciple is to identify the highest confident motif (under certain criteria) out of all

predicted motifs. Although they can improve the accuracy of motif finding, they

will fail to report a good motif when none of the reported motifs is approximates

the true motif.

The second group tries to identify good sites to generate the final motif.

EMD [55] belongs to this group. EMD assumes the sites reported by higher

ranking motifs have higher accuracy. Based on the motif score, the predicted

sites are grouped. Then, a motif is generated from each group of sites. This

method will give good result if majority of the high ranking sites are similar to

the true motif. However, when the good sites are distributed in motifs of different

ranks, the performance of EMD will be reduced.

We compare MotifVoter with these four most recent ensemble methods

SCOPE, EMD, BEST and WebMotifs. For comparison with SCOPE, EMD,

and BEST we perform experiments on E.Coli datasets. For comparison with

Webmotifs we use yeast ChiP dataset, since WebMotifs only take probe names

as input.

E.Coli datasets are taken from RegulonDB [115] (http://regulondb.ccg.

unam.mx/). They are generated from the intergenic regions of E.Coli genome.

In total they contain 62 datasets. The average number of sequences is 12 and

the average sequence length is 300bp. We are unable to perform the evaluation
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on Tompa’s benchmark and the metazoan datasets since EMD is not available

for public use. Hence we make the comparison using E.Coli datasets alone, the

results for which are obtained from EMD’s publication.

SCOPE is a motif finder which integrates the motifs predicted by BEAM,

PRISM and SPACER while EMD is a motif finder which uses the motifs predicted

by AlignACE, BioProsPector, and MDScan. To make a fair comparison, we run

a version of the MotifVoter that uses the same three motif finders used by EMD1.

Figure 3.15 shows the evaluation results.

In this dataset, SCOPE is better than EMD in terms of nPPV but has a

slightly lower nSN . We believe that this is because SCOPE only reports instances

from 1 motif, unlike EMD which also considers instances from other motifs of the

same rank. Nevertheless, even with 3 motif finders, MotifVoter can improve

the nSN to 0.448 and nPPV to 0.509. For further analysis of SCOPE and

EMD, please refer to the discussion section. In Figure 3.15, we also include the

performance of the best two individual motif finders (SPACE and Weeder) for

reference.

Please refer to Figure 3.16 for the detailed evaluation of MotifVoter and other

stand-alone motif finders on E.Coli dataset.

1We cannot create a MotifVoter which uses BEAM, PRISM, and SPACER since these three
stand-alone motif finders are not available. Also, note that the motif finder SPACER used by
SCOPE is different from SPACE used by MotifVoter.
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Figure 3.15: Comparison of MotifVoter with SCOPE and EMD. MotifVoter per-
forms consistently better in both nSN and nPPV . We also include the perfor-
mance of the best two individual motif finders (SPACE and Weeder) for reference.
It shows that both SCOPE and EMD improve the performance. However, the
improvement is not as significant as MotifVoter. In particular, SCOPE is better
than SPACE in terms of nPPV only. EMD, on the other hand, can only improve
the nSN of SPACE and Weeder marginally.
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Figure 3.16: Evaluation of MotifVoter with other stand-alone motif finders in
E.Coli dataset.



3.9 Experimental Results 107

We further perform comparison with BEST [32], WebMotifs [110] and SCOPE

[24], the using yeast ChiP [50] experiments dataset. They are obtained from

(http://fraenkel.mit.edu/Harbison/). The performance comparison can be

found at Figure 3.17. MotifVoter identified 56 out of 65 motifs previously found

(86.2%).

BEST uses AlignACE, BioProsPector, CONSENSUS, and MEME as its com-

ponent motif finders, SCOPE uses BEAM, PRISM and SPACER, Webmotifs

uses AlignACE, MDScan, MEME. Comparing with the best performing ensemble

method, the improvement is 40% over YPD media, and 10% on overall datasets.
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Figure 3.17: Comparison on yeast ChIP [50] experiments, with BEST, Webmotifs
and SCOPE in terms of predicting percentage of correct motifs

The detail of the motif found by MotifVoter on these datasets and the com-

parison with the actual sites, can be found in the following Figure 3.18.
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Figure 3.18: Binding sites comparison of MotifVoter on yeast ChiP experiments.
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We also assessed MotifVoter on publicly available large-scale ChiP experiment

data sets from mammals. MotifVoter can find 9 PWMs that is in agreement

with the known canonical site of immunoprecipitated transcription factor. These

motifs are E2F [108], HNF4/HNF6 [92], SOX [17], MYOD [22], MYOG [22],

NFKB [118], CREB [145], NOTCH [95]. MotifVoter found more specific binding

sites compare to the existing ensemble method BEST and SCOPE (Figure 3.19).

Since WebMotifs only take probe names as input and there are no probe

informations for these datasets, evaluation for Webmotifs on these dataset, are

not available. Also we do not compare the performance with EMD since the

source code is not available.

Figure 3.19: Binding sites comparison of MotifVoter on mammalian ChiP exper-
iments.

The detail of dataset for each factors are as follows. CREB: The first 200

genes recorded in [145] Supplementary Table 6 were used. The 750bp upstream
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and 250bp downstream sequences of the annotated TSS were repeat and exon

masked.

E2F: We retrieved 700bp upstream and 200bp downstream sequence from

the annotated genes start site were repeat and exon masked. The sample se-

quences correspond to promoter region of genes in their Table 3 of [108] and the

background sequences correspond to the promoter region of genes in their supple-

mental data: (http://www.genesdev.org/cgi/content/full/16/2/245/DC1).

MYOD/MYOG: The 750bp upstream and 250bp downstream sequences of the

annotated transcription start site (TSS) [22] are extracted from genes targeted

by either MYOD or MYOG in both MDER and C2C12 cells found in this url:

(http://www.nature.com/emboj/journal/v25/n3/extref).

HNF4/HNF6: the dataset are downloaded from (http://jura.wi.mit.edu/

young_public/autoregulation/downloaddata.html). The 750bp upstream

and 250bp downstream sequences of the annotated TSS [92] were repeat and

exon masked.

SOX: First the exact loci where the transcription factor has been bound were

extracted from MacIsaac et.al [80]. Secondly, entire promoter regions (10kb) that

include the bound loci are used using the data from [17].

NOTCH: The target genes were taken from the supporting Table 1 of [95] and

the 3 kb upstream of human sequences were retrieved from EnsEMBL 41 (repeat

masked sequences).
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3.10 Effect of Discriminative and Constraint At-

tributes

In this section we assess the importance of discriminative measure and constraint

that the motif in the cluster should be contributed by at least t motif finders. We

perform experiments on E.Coli dataset and drop each of these two attributes at a

time. MotifVoter uses same component motif finders as EMD, namely AlignACE,

BioProspector, and MDScan.
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Figure 3.20: Importance of discriminative measure and constraint.

Hence, overall we evaluate four possible scheme:

1. MotifVoter contain both discriminative and constraint attributes.

2. MotifVoter contain only discriminative attributes.

3. MotifVoter contain only constraint attributes.
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4. MotifVoter does not contain both discriminative and constraint attributes.

We observe that both of these two attributes are equally important in their

own right. As can be seen in Case 2 and Case 3, by dropping any of them

reduce the precision of MotifVoter. And without both of them the performance

of MotifVoter is reduced greatly in terms of sensitivity and precision.

3.11 Observations on the Binding Sites Missed by

MotifVoter

In Tompa’s benchmark dataset, out of 56 datasets there are 22 datasets in which

less than 50% binding sites can be found. Having analyzed those 22 datasets, we

suspect that most of these binding sites are highly unconserved. Precisely, out

of 22 datasets, 15 datasets are unconserved (70%). For the remaining 7 datasets

out of 22 datasets (30%), the density of binding sites (that is the ratio of total

length of binding sites over the total size of dataset) is relatively low. Under the

low signal to noise ratio, it is harder to discover the binding sites.

Below we show three examples of the actual binding sites in Tompa’s bench-

mark dataset. Observe that in each of these datasets, we only find a short con-

served region in the binding sites. The majority of the binding sites are highly

unconserved. Since none of the current motif finders can capture such motif

model, without any extra information, MotifVoter is bound to miss the binding

sites.

The highlighted regions are the ones found by MotifVoter. For example in

hm03r dataset, out of 15 true binding sites MotifVoter could identify all the

conserved parts in 6 binding sites. The remaining 60% of the binding sites missed



3.11 Observations on the Binding Sites Missed by MotifVoter 118

by MotifVoter are highly unconserved.

hm03r, percentage of missed binding sites 0.60

CCATTTCTTTATG--------------------------ATTTGATAGTCTGAG-----

ACTGAAA
AGCTTAG
GAAATGGTA-----------------TTGAGAAATCTGGGGC---

A---------------------A-----------------TTACGAAAT----GGA---

T--------------------------------------CTCCTGCAGTAAGGTAGGT-

---------------------------------------TTTG-GAAGTCAATATTTTG

---------------------------------------TTGGAAAAGTCAAGGTTTTG

TATTTGCAGTG-------------------------------ATGTAATCAGC------

GAC------------------------------------CTTTTGCAATCCTGG-----

CACACTTGGAATT-----AGCAATAG----------------ATGCAATTTGGGACTTA

----CCTTTTATC------------------------TGTTTTGACAGTCTGGG-----

----AAGTGTG------AAGCAAGA----------------------------------

-----CGGGTGTTATTCAAGCAAAAAAAATAAATAAATACCTATGCAATAC--------

------GGATGTTACACAAGCAAACA----AAATAAATATCTGTGCAATAT--------

-----TGGGTGTTATATGAGCAAACA----AAATAAATACCTGTGCAACAT--------

----------------------------------GGGCGATTGGGCAACCCGG-----C


hm05r, percentage of missed binding sites 0.64

------------------------T------------AAC--------------------

------------------------T------------AAC--------------------

----------------------ATT------------GAA--------------------

------------------------TGGTGAGTGGAGAAGG--------------------

-------------------------------------AGCCAAGCTGTCAACTTCCAGTT

--ACCG--------------GCAGTTAGGATACTCCTAAG--------------------

----CA--AAAAAGGGGCGTGAACTTGG-----------A--------------------

----CG--GAAAAAGCG------TTTCG-----------C--------------------

GGGGCG--------GGGCGCGCGGCAGGGTCGTTACGAAG--------------------

G-AGCGATATAAACGGGCGC----------------------------------------

----CTTTCCAACTGCCCGCTAATTCCG--------------------------------


mus12m, percentage of missed binding sites 0.57

GGAAAAA---CAAAGG-----------------------TAATG

AAAGAAATTCCAGAGAGTCAT------------------CAGAA

TGAAAATATGTG---------------------------TAATA

GCACTGGAAACCCTGAGTTTC------------------AGGAC

------------CTCATTTTCCCTTGGTTTCAGCAACTTTAACT

------------TT-ATTTTT------------C------CA--

---------------ATTTTC------------CAATGTAAA--
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We also observe that the density of binding sites (ratio of total binding sites

length over the total size of dataset) does increase the difficulty of the dataset.

In Tables 3.11 and 3.11, we show some examples in which we compare the per-

formance of MotifVoter on the basis of the binding site density.

Dataset Total Binding Sites Length Total Sequence Length Ratio %Missed
(a) (b) (a/b) Sites

dm02r 36 2000 0.024 0.80
dm03m 105 6000 0.017 0.78
dm06r 36 3000 0.012 0.86
hm01g 157 36000 0.004 0.56
hm06g 81 4500 0.018 0.56
hm10m 48 3000 0.016 0.55
yst03m 72 4000 0.018 0.57

Table 3.1: Low binding sites density will have higher percentage of missed binding
sites

Dataset Total Binding Sites Length Total Sequence Length Ratio %Missed
(a) (b) (a/b) Sites

hm23r 143 2000 0.071 0.20
mus09r 41 1000 0.041 0
yst05r 74 1500 0.049 0.25
yst06g 160 3500 0.050 0.29

Table 3.2: Higher binding sites density will have lower percentage of missed
binding sites

3.12 Conclusion

This chapter argues that all current motif models can only approximate the cor-

rect motif. To maximize the sensitivity, we should integrate the outputs dis-

covered by multiple motif finders. We proposed Motifvoter, which can effectively

retain almost all the correct binding sites discovered by the given individual motif

finders while removing significant amount of false binding sites. It also works well

across different species and different types of background sequences. We hope Mo-
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tifVoter can offer a practical alternative for biologist to study novel transcription

factors.

Despite of its effectiveness, our ensemble method MotifVoter is still unable

to fully model the true binding sites. Since the underlying biology of regulatory

mechanism is very incompletely misunderstood, exploitation of additional infor-

mation such as microarray data [15] or phylogenetic footprinting [124] may help

us to recover more binding sites which cannot be found with de novo method.

In order to improve the performance of MotifVoter, we plan to implement

it as a parallel system. We also plan to extend MotifVoter for finding protein

motifs. And also currently the MotifVoter assumes that all its component motif

finder are equally good, we plan to develop a weighted version on this aspect.



CHAPTER 4

Conclusion and Future Directions

4.1 Conclusion

Discovery of transcription factor binding sites plays an important role in gene

regulation. There is a need from biologist to have a method that can help them

in identifying novel transcription factors as automatic as possible. There are chal-

lenges given by the nature of real biological data and also from current practice

from biologist.

In real biological data many motifs are known to be composite patterns which

are groups of monad patterns (short contiguous patterns with some mismatches)

that occur relatively near each other with one or more gaps [11].

For example, the binding site for ArcA-P, a transcription factor for regulat-

ing gene related to the respiratory metabolism in E.coli contains two conserved

segments, separated by a gaps of length approximately 6 [84]. Another example

is Mcm1 [64, 128] or often called as the early cell cycle box (ECB) which has 3

segments and two gaps.
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In the current practice many motif finding tools have been developed. Little

knowledge is known on which motif finder should be used for a particular dataset.

Individually, these motif finders perform unimpressively overall based on Tompa’s

benchmark datasets [131]. Moreover, these motif finders vary in their definitions

of what constitute a motif, and in their methods for finding statistically overrep-

resented motifs. This makes different motif finders perform well for identifying

binding sites of certain types of datasets only. There is no clear ways for biolo-

gists to choose the motif finder that is most suitable for their task. Hence, we

can see that there is an immediate need for a more effective and efficient methods

that allows the biologist to make use these diverse motif finders for finding novel

transcription factors accurately.

In my thesis we have presented three contributions in the area of de novo

identification of regulatory sites in response to the challenge above, they include:

1. We have addressed the problem of motif finding for generic spaced motifs

by proposing a new method called SPACE. They key idea is to obtain the

motif as an integration of the submotifs as defined by the frequent pattern.

Submotif model provide a better modeling power compare to monad model.

First, since the union of overlapping set of submotifs can represent an ar-

bitrary length segment, submotif model can find the longest motif which

fit the dataset. Hence it yield better sensitivity compare to fixed-length

monad model. Additionally, it also gives better specificity. It can fit con-

served region better when compare to monads model. Because spaced motif

uses multiple segments to model the conserved functional part and spacer

to model the non-functional parts.

2. For evaluating the biological significance of generic spaced motifs, we have
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proposed a method to overcome the difficulty in handling biased samples by

incorporating background sequence from various species. It is based on the

idea that a motif is significant if: 1) the total number of its occurrences in

all input sequences is a lot more than expected with respect to background

sequence, and 2) the pattern is either very conserved or occurs in quite a

number of the input sequences. Based on experiments on real biological

datasets and Tompa’s benchmark datasets, we show that SPACE outper-

forms the existing tools for spaced motifs in both sensitivity by 20.3% and

specificity by 76%. And for monads, it performs as good as other tools.

3. We have proposed a novel ensemble method to identify regulatory motifs

by integrating the results found by motif finders of different models. It

applies a variance based statistical measure to remove the spurious motifs

and then refines the prediction by filtering the noisy binding sites from

using a novel voting scheme. Validation of our method on the 186 datasets

(Tompa’s benchmark), metazoan, and E.Coli) shows that we can improve

the sensitivity to 0.487 and precision to 0.542. This is 120% improvement

in sensitivity and 77% in precision over stand alone motif finders.

We conclude that our integrative approach towards motif finding offers a prac-

tical alternative for biologists to study novel regulatory sites.

4.2 Future Directions

In this section, we discuss the possible improvements in the performances and

usability of the methods in the previous chapters.

Firstly, for our SPACE algorithm, we are enhancing our algorithm to han-

dle motifs for which the same gap may have different lengths across different
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instances. Our idea is to allow tolerances in the gap lengths across different

instances during the mining process. Other directions include applying our ap-

proach for motif-finding on fruitfly regulatory regions where the sites maybe

overlapping and with fluctuating positions [82], discovery of motif modules (co-

operating binding factors) [47].

Secondly, in order to improve the speed performance of MotifVoter, we plan to

implement it as a parallel system. Furthermore, we plan to extend MotifVoter into

larger framework by allowing joint learning with multiple types of genomic data.

Especially since the underlying biology of regulatory mechanism is very incom-

pletely misunderstood, exploitation of additional information such as microarray

data [15] or phylogenetic footprinting [124] may help us to recover more binding

sites which cannot be found with de novo method. From such joint exploration

of systems we hope to obtain a comprehensive knowledge on the functioning of

life.
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Appendix: Basic motif finders with

their parameters used by MotifVoter

Below we describe the characteristics of the component motif finders used by

MotifVoter.

• Motif Finder: AlignACE

Description and Parameters: AlignACE is a profile based motif discov-

ery algorithm based on Gibbs Sampling method. Running parameters for

AlignACE we set as the default, except the expected motif width was set

to 15 upper bound. The major statistical score in AlignACE is maximum

a posterior (MAP) score, being the larger the better.

URL: http://atlas.med.harvard.edu/

• Motif Finder: ANN-Spec

Description and Parameters: ANN-Spec is a profile based method. It

uses Gibbs sampling for training positive examples. The scoring function

is based on log likelihood that a binding sites binds at least once in the

each sequence of positive training data versus the background sequence.

Running parameter for ANN-Spec is set as default.

URL: http://www.cbs.dtu.dk/~workman/ann-spec/
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• Motif Finder: BioProspector

Description and Parameters: BioProspector is another variant of Gibbs

Sampling algorithm. We used the default values for the running parame-

ters, except for the motif width, which was set to 15 upper bound. The

background frequency model was generated using the whole genome of the

species and the third order Markov model was used. BioProspector also

uses maximum a posterior (MAP) to score the motifs.

URL: http://robotics.stanford.edu/~xsliu/BioProspector/

• Motif Finder: Improbizer

Description and Parameters: Improbizer uses expectation maximiza-

tion to determine the profile of binding sites that occur improbably often

in the input sequence. Running parameter for Improbizer is set to default.

URL: http://www.soe.ucsc.edu/~kent/improbizer

• Motif Finder: MDScan

Description and Parameters: MDScan is an enumerative deterministic

greedy algorithm. Among its ten parameters, we only specified the following

parameters. The motif width is set to maximum 15. The background

frequency model was generated using the whole genome of the species and

the third order Markov model was used. MDScan uses maximum a posterior

(MAP) to score the motifs.

URL: http://ai.stanford.edu/~xsliu/MDscan/
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• Motif Finder: MEME

Description and Parameters: MEME is an algorithm based on expec-

tation maximization (EM) technique. MEME does not require user input

like motif widths, because MEME can estimate by itself. And we set it to

use two component mixture mode, in which it assume that the binding sites

may appear more than once in a sequence. MEME uses p-value to score

the motifs.

URL: http://meme.sdsc.edu/

• Motif Finder: MotifSampler

Description and Parameters: MotifSampler is another algorithm that

uses Gibbs Sampling. It has seven major parameters. We use default values

for all of them except motif widths is set to maximum 15. The background

frequency model was generated using intergenic region sequences of the re-

spective species genome and the third order Markov model was used. We

use the information content score as the statistical measure to rank the

motifs.

URL: http://homes.esat.kuleuven.be/~thijs/Work/MotifSampler.

html

• Motif Finder: MotifSampler

Description and Parameters: MotifSampler is another algorithm that

uses Gibbs Sampling. It has seven major parameters. We use default values

for all of them except motif widths is set to maximum 15. The background

frequency model was generated using intergenic region sequences of the re-

spective species genome and the third order Markov model was used. We

use the information content score as the statistical measure to rank the
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motifs.

URL: http://homes.esat.kuleuven.be/~thijs/Work/MotifSampler.

html

• Motif Finder: MITRA

Description and Parameters: MITRA is a consensus based motif-finder

which is designed to find highly degenerate binding sites (weak signals). It

uses specially designed data structure called mismatch tree. We let MITRA

to search for maximum possible motif length which is 12. For the rest of two

other parameters we use default values. MITRA uses information content

score as the statistical measure to rank the motifs.

URL: http://www.calit2.net/compbio/mitra

• Motif Finder: SPACE

Description and Parameters: SPACE is also a consensus based motif

finders. As a novel motif finding algorithm SPACE is based on a notion

called submotifs. It aims to find a generic spaced motif by first finding

submotif and then strategically compositing them using an efficient frequent

submotif pattern mining approach. This framework provides the following

novelties: the spacers could appear in more than two parts of the motif

and their lengths need not be fixed. From the three running modes, we

have chosen the large as the default parameter setting. The background

frequency model uses seventh order Markov chain for the respective species

intergenic sequence. For scoring it uses sequence specific and background

score to rank the final motifs.

URL: http://www.comp.nus.edu.sg/~bioinfo/SPACE

• Motif Finder: Weeder
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Description and Parameters: Weeder is a consensus based motif finders

that uses exhaustive search. To speed-up the process it uses suffix tree as

their data structure. From the three running modes, we have chosen the

large as the default parameter setting. The background frequency model

uses seventh order Markov chain for the respective species intergenic se-

quence. For scoring it uses sequence specific and background score to rank

the final motifs.

URL: http://159.149.109.16:8080/weederWeb/


