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Advances in high-throughput technologies, such as ChIP-chip and ChIP-PET (Chromatin Immuno-
Precipitation Paired-End diTag), and the availability of human and mouse genome sequences now 
allow us to identify transcription factor binding sites (TFBS) and analyze mechanisms of gene 
regulation on the level of the entire genome. Here, we have developed a computational approach 
which uses ChIP-PET data and statistical modeling to assess experimental noise and identify reliable 
TFBS for c-Myc, STAT1 and p53 transcription factors in the human genome. We propose a mixture 
probabilistic model and develop computational programs for Monte Carlo simulation of ChIP-PET 
data to define the background noise of the sequence clustering and to identify the probability 
function of specific DNA-protein binding in the eukaryotic genome. Our approach demonstrates 
high reproducibility of the method and not only distinguishes bona fide TFBSs from non-specific 
TFBSs with a high specificity, but also provides algorithmic and computational basis for further 
optimization of experimental parameters of the ChIP-PET method. 

Keywords: ChIP-PET, transcription factor binding sites, human genome, mixture probabilistic model,  
Kolmogorov-Waring process, Monte Carlo simulation 

1.  Introduction 

Identification of gene regulatory elements for a given transcription factor is an important 
problem of computational genomics. The function of promoters, enhancers and other 
regulatory elements is mediated by DNA/protein interactions. The protein transcription 
factor binding sites (TFBS) serve as the basic units of gene functional activity. 
Computational prediction and high-throughput experimental validation of genome-scale 
sets of binding sites demands integrated approaches. Recently, great success has been 
achieved in the identification of TFBS for several essential regulators (p53 [9], c-Myc 
[2,11], STAT1 [3], p63 [10]) in human and Oct4, Sox2 and Nanog transcription factors 
(TFs) in mouse [6]. However, it has been difficult to identify all specific TFBS for 
several reasons. Currently available experimental information about the specificity of TF 
binding is essentially incomplete due to the difficulty of measuring the entire dynamical 
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range of avidities of large (and actually unknown) numbers of DNA binding sites for a 
given TF and high level background noises vs. signals.  

A recent development of sequencing-cloning technology [8] entails the possibility of 
highly efficient and unbiased coverage of mammalian genome for large-scale identification 
of regulatory elements (Chromatin ImmunoPrecipitation Paired-End diTag, or in brief, ChIP-
PET method). ChIP-PET provides a new powerful technique for localization of the most 
physically specific mammalian TF binding regions at a resolution of up to a few base pairs 
[6,9,11]. The software suite for comprehensive processing and managing of raw Paired-End 
diTag (PET) sequence data were recently described in [1]. 

Most unexpectedly, all studies using ChIP-PET data have shown that the TFs bind 
specifically to a surprisingly large number of genomic regions (extrapolated to 5,000-20,000 
depending on the protein) [6,9,10,11]. Due to a large data volume, the major fraction of these 
TFBSs would not be validated by traditional experimental methods. Our knowledge about 
optimization of the relationship between the specific and noise events are still limited. 
Therefore, new mathematical and computational models are required in order to analysis of 
raw ChIP-PET data and correctly identify and predict specific TF binding regions and to 
optimize parameters of ChIP-PET method.  

In this work, we present a probabilistic model of protein-DNA binding and 
computational simulations that model the ChIP-PET experiment concerned with specificity 
and sensitivity issues of TFBSs detection. We study the performance of a new analytical 
approach using ChIP-PET data for human p53, c-Myc, IFN-α induced STAT1 and IFN-γ 
induced STAT1 [9,11]. Finally, we discuss some problems that arise with the avidity function 
of TFBS when applied on the scale of the entire genome and with the functionality of 
revealed TF binding sites. 

2. Data, Methods, Models, Algorithms and Software 

2.1. Transcription factors 

Transcription factor p53 regulates the expression of genes involved in a variety of 
cellular functions including cell cycle arrest, DNA damage repair, and apoptosis. ChIP-
PET analysis of p53 binding in human colon cancer cells HCT116 was carried out as 
described in [9]. c-Myc is a proto-oncogene that regulates cell growth, cell proliferation, 
cell differentiation, and apoptosis [2]. In the ChIP-PET, we used human cell line that 
expresses high levels of exogenous c-Myc under the control of tetracycline [11]. STAT1 
(signal transducer and activator of transcription) regulates proliferation by promoting 
growth arrest and apoptosis in response to interferon (IFN) signals [3]. ChIP-PET 
analysis of human cancer cells HelaS3 was carried out after treatment of these cells by 
IFN-α and INF-γ, as described in [3]. 

2.2. Basic Concept of ChIP-PET Method  

Paired-End diTag (PET) method extracts a pair of 16-18 bp sequences from 5’ end and 
3’ end of each cDNA clone, concatenates the PETs for efficient sequencing, and maps 
the resulting PET sequences to the genome. Such PET sequences characterize the ChIP 
enriched DNA fragments. Figure 1 shows a flow chart of ChIP-PET sequences 
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processing, mapping and clustering to the genome (using c-Myc library obtained from 
human P493 cells as the example) [11]. 

Figure 1. ChIP-PET. Top panel: Outline of the chromatin immunoprecipitation Paired-End diTag (ChIP-PET) 
method. Bottom panel: ChIP-PET analysis of c-Myc binding sites in human P493 cells. See details in [11]. 
Overlapping PET clusters define a more precise BS. 

2.3. Definitions of DNA Fragment Cluster and Cluster Overlap 

Let us define a DNA fragment cluster (or a cluster) as the overlapping PET DNA 
sequence fragments mapped to the genome (Figure 2A). More specifically, a PET 
sequence belongs to a cluster if it overlaps by at least 4 bp with any other sequence of the 
cluster in chromosome coordinates (Figure 2A). The number of PET sequences in a 
cluster is the cluster size. A total cluster span is defined as the genome region span 
covered by the cluster (Figure 2A). The cluster overlap is the most common PET DNA 
fragment in overlapping PETs in the given cluster. The cluster member overlap count 
(the peak) is the number of the overlapping PETs in a given cluster. The distribution of 
PET sequences within the cluster of sizes 3 and larger could be complex due to several 
cluster peaks (i.e., multimodal distribution of PET sequences). In this work, first, we 
count the highest peak (major mode) in the overlapping PET sequence cluster (Figure 
2A). By examining the peaks observed for the rest of PET sequences in the cluster, we 
define the next highest peak and so on. To identify separate peaks in the given cluster, 
we use a strict definition of the cluster: every PET sequences in a cluster should overlap 
one another. To count the abundance of second peaks, we count the number of 
overlapped PET sequences excluding PET sequences from the first peak. If there are still 
sequences in the cluster, then we repeat the same procedure for third peaks and so on.  

The number of cluster peaks occurrences is counted as the number of unique sequences 
containing at least one common nucleotide in a local PET sequence peak within a cluster. A 
cluster peak is more specific definition than a cluster overlap, because one cluster could 
contains more than one peak (local maximum of the sequence overlaps) and the peaks within 
a multimodal cluster could map the true protein-DNA interaction loci (Fig. 2A). 
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Figure 2. Two types of PET-clusters: definitions and statistical background of formation. A) Schematic example 
of sequence cluster, singleton, and cluster overlap. Cluster size is 5 (PET-5), and cluster member overlap is 4. 
Using strict criteria we define two clusters (peaks) by size 4 and 3. B) Schematic model of ChIP-PET sequences 
cluster overlaps on chromosome. q1, q2, q3, q5 are the binding probabilities for specific binding sites with avidity 
1,2,3 and 5, respectively.  r1,r2,r3 are the  probabilities of occurrence of sequence overlaps for non-specific PET 
sequences.  

2.4. Characteristics of the ChIP-PET Libraries 

In general, larger clusters (or peaks) often represent more specific binding sites [9,11] 
(see also Figure 2B). This correlation was observed for p53, ERE, c-Myc binding loci 
due to a concordance of the cluster (or picks) size with direct gene target expression data, 
direct qPCR-PET measurements and motif search analysis [9,11]. Nevertheless specific 
loci for the TFs could also be found in the smallest clusters (PET-2 peaks) and even in 
some singletons [11]. 

The number of PET sequences in the studied ChIP-PET libraries varied from 60 
thousands (for p53 ChIP-PET library) to ~1 MB (for IFN-α activated STAT1 ChIP-PET 
library). The mean length of PET DNA sequences was in a range from ~400 bp to ~1700 bp 
(396 bp for c-Myc data; 623 bp for p53 data, 1385 bp for STAT1 data). Non-specific distinct 
PET DNA sequences represent a vast majority of PET sequences ranging from 75% to 95% 
of the total number of distinct sequences of ChIP-PET library. 

2.5. Performance of ChIP-PET Data and Statistical Tasks  

Significant amount of non-specific (background) genomic DNA is always present in the 
inmmunoprecipitated DNA material of ChIP-PET library. Some non-specific DNA might 
be easily filtered out after computer mapping of the DNA fragments on the genome [9]. 
Nevertheless background genomic DNA fragments that are uniquely mapped onto the 
genome still remain. With a larger sampling of DNA pool, the DNA fragments can be 
enriched by specific ChIP DNA sequences, and a larger number of true overlapping 
clusters might be observed. This sample size issue is related to the optimization of 
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performance of the method. We have preliminary analyzed an influence of variation of 
several parameters  of the method (e.g, frequency distribution of the lengths of PET 
sequences, derived after sonication and fragmentation of DNA-protein complexes, 
avidity of specific immuno-precipitation binding, etc.) on quality of ChIP-PET libraries.   
We have recognized that, sampling and erroneous sequence are essential issues in the 
analysis and validation of ChIP-PET data. 

Due to background noise and sampling errors, the following basic statistical tasks are 
becoming imperative: i) to estimate specificity of the ChIP-PET experiment, i.e. to predict the 
number of reliable TFBSs; ii) to assign quantity measure of reliability to every PET cluster 
overlap peak that forms a putative TF binding site; iii) to predict the total number of specific 
binding sites presented in the PET library. 

Using several data sets on PET sequence mapping onto human genome presented in 
T2G database [1], we analyze these problems via probabilistic modeling and computational 
simulation of non-specific and specific binding sites loci for a given TF.  

2.6. Distributions of PET Cluster Overlaps and Clusters 

The number of PET sequences covering specific genome sites should roughly relate to 
site avidity of binding protein (Figure 2B). We assume that the distribution function of 
distinct cluster size (observed by number of PET sequences in a peak) could be modeled 
as a sum of distributions of specific and non-specific (background noise) clusters 
(peaks): 

 Pobs(X=m) = α*Psp(X=m) + (1−α) *Pns(X=m), (1) 

where Pobs is the probability distribution function of occurrence of a PET sequence 
cluster, X is the size of a given PET sequence cluster, m=1,2,3,... is the number of 
sequences in a cluster, Psp is the probability distribution function of specific PET cluster 
occurrence, 0<α<1  is the fraction of specific clusters in the cluster population, Pns is the 
probability distribution function of occurrences of the non-specific (background noise) 
cluster in the cluster population. 

Based on ChIP-PET data, we could construct an empirical frequency distribution 
function of occurrence of PET clusters and corresponding PET cluster peaks. Psp is related to 
the specific avidity of   DNA-protein binding. We can estimate Psp using the Generalized 
Pareto probability function [4,5], which can be derived from the Kolmogorov-Waring 
distribution function as an asymptotic solution [5]. We could estimate Pns by a computer 
simulation of the non-specific sequence clustering model. We will discuss this model in the 
next section.  

2.7. A Data-driven Model of Background Noise Sequence Overlapping 

To simulate non-specific component Pns, we propose a physical model dependant on the 
chromosome size, in particular, virtual PET sequences of the observed length randomly 
drop down into an interval equal to the chromosome size. The algorithm is as follows: 1) 
Virtual random sequences mapped on a given chromosome randomly drop down into 
sequence domain that equals to available sequence domain of the chromosome; 2) 
Virtual position in the chromosome was selected by a random number generator; 3) The 
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length of the virtual sequence is taken from the pool of observed PET sequences (we use 
empirical distribution of sequence lengths for our simulations (Figure 3)); 4) Virtual 
clusters are counted from overlapping virtual sequences (by at least 1 nt in the most 
common PET sequence overlap); 5) Y and M chromosomes and centromere regions of 
other chromosomes together PET sequences mapping these genome territories  were 
excluded from modeling process.  
       The use of the observed length distribution is an important for modeling since longer 
sequences have a larger chance to form false clusters. An example of observed PET 
sequence length distribution can be found in Figure 3. It is possible to use a predefined 
fixed length for all virtual PET sequences (average length of observed PET sequences) 
[9]. We observed that such a model is oversimplified real data; in particular, it skips a 
number of large clusters (PET3+) which are important for unbias estimation of sensitivity 
of the method (Figure 3). Our data-driven noise model predicts a higher number of 
random clusters than the simplified model predicts.  
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Figure 3. Observed PET sequence length distribution for p53, c-Myc and STAT1 libraries. The left size of the 
distributions could be fit well by the gamma distribution, however, the right long tail assumes more complex 
(mixture) distribution.  

For the next step of estimation of model Eq (1), we performed a subtraction of the 
simulated distribution of  random cluster size from the observed distribution of the cluster 
size. We estimated also a fraction (1-α) of non-specific sequences of model Eq (1) as a 
parameter to fit the observed frequency distribution of cluster size, assuming that frequencies 
of the non-specific clusters should be smaller than the one observed for each cluster size. 
Notice. To overcome the problem of stochastic behavior, we fulfilled the simulation of 
random cluster formation many times (from 1 to 1000). Special attention was paid to 
quality of software for random number generation (RNG) [7].  

2.8. A Model of Avidity Function of Specific Binding Site 

We model the specific avidity distribution function using the truncated Generalized 
Discrete Pareto (GDP) function, which can be considered as a good limiting approximation 
of many random processes [4,5]: 
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where the f(m) is the probability that a randomly chosen specific BS has an avidity value 
m. The f involves two unknown parameters, k, and b, where k>0, and b>1; the 
normalization factor ζJ is the generalized Riemann zeta-function [5], truncated in the 
interval [2, 200]. Eq(2) can be considered as  asymptotic distribution function derived from 
Kolmogorov-Waring (KW) probability function [5]. This KW model could be used as 
possible exploratory model of aggregation TF on a DNA binding site. In particular, we could 
model the evolution of TF-DNA interaction as the random the random linear 
Kolmogorov process [5] of binding and detachment of TF on specific DNA binding sites 
taken to account at least two binding transition probabilities:  due to specific “binding 
potential” (preferential attachment mechanism [5]) and “non-specific potential”  (Poisson 
process mechanism [5]). Similar two processes but with different intensities are assumed 
for detachments transitions.    

2.9. Analysis of Empirical Avidity Function of Specific Binding Sites 

Due to our findings, the shape of the avidity probability function of TF-DNA binding on 
the genome scale should be described as skewed function of avidity (Figure 4). An 
example of observed avidity function for c-Myc binding sites defined by ChIP-qPCR 
method is presented in Figure 4A. We have also found that the distribution of avidity 
measured by qPCR as well as the tail of the empirical probability functions of cluster 
overlaps (Figure 4A, Figure 5) follow the GDP and correlate to each other (Figure 4B). 
One can see skewed distribution approached by the power law. 
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Figure 4. A) Avidity distribution function of PET sequences defined by ChIP-qPCR for c-Myc TFBS data. 
B) Correlation between ChIP-qPCR avidity and the number of sequences in specific cluster overlaps of c-Myc 
ChIP-PET library. 

We argue that it is indeed a Pareto-like distribution. We have observed a similar avidity 
function for p53 [9] and Nanog transcription factor BS (not presented). Figure 4B shows a 
relation between the number of the sequences in cluster overlaps and the avidity value of c-
Myc binding sites defined with ChIP-qPCR [11]. For 76 specific c-Myc binding sites in 
clusters, we found that the avidity of BS correlates with the number ChIP-PET sequences in 
cluster overlaps. The correlation coefficient between two data sets equals to 0.51 (p<0.01). 
Thus, we could use Eq. (2) as an empirical model of true avidity function of TF-DNA 
binding. 
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The avidity function of the ChIP-qPCR defining the specific TF binding sites can range 
from 2 to 200 fold enrichments [2]. Similar dynamical range was observed in our study of c-
Myc mapping on the human genome [11].  

Using this estimate, we calibrated enrichment fold from 2 to 200 and fitted the avidity 
function by the GDP function using the method presented in [5]. We constructed avidity 
function distribution for proposed number of binding sites that best fit the observed data 
based on minimal assumptions of statistical parameters of the distribution (data are not 
shown). For example, parameters k and b for f(m) function from Eq. (2) for c-Myc binding 
sites are equal to 3.4 and 1, correspondingly. 

3.  Results of Numerical Modeling  

3.1. Goodness of Fit Analysis of Mixture Model and Estimations 

To analyze the observed PET cluster peaks distribution, we parameterized the specific 
(Eq. 2) and nonspecific probability functions in Eq. (1) and estimated the parameter α. 
To accomplish that, we first used a goodness of fit analysis method presented below. 
Figure 5 shows an example of our tail-fitting and extrapolation method. We fit the 
theoretical (power law) function using only right (specific) part of the cluster size 
distribution (Figure 5A), and fit the proposed exponential function using only left (non-
specific) part of the same distribution (Figure 5B).  

 
Figure 5. Decomposition of observed frequency distribution of the number of PET sequences in peaks in  the 
STAT1 IFN-gamma activated library using (A) tail-fitting and extrapolation method and (B) noise peaks 
simulation and subtraction method. Red point: observed data; empty circles: restored background noise data; 
black circles data for the noise (nonspecific) peaks. Solid line on panel A: best-fit power law distribution with 
exponent parameter k=2.2 +/- 0.82 (p<0.01). Dashed lines: exponential function with slope parameter 1.75+/-
0.144 (p=0.02) and 2.32+/-0.010 (p<0.01) on panel A and panel B, respectively. 
 

This figure shows the decomposition of the observed frequency distribution of the 
number of PET cluster peaks in the PET library for IFN-γ activated STAT1 (Lib016). To fit 
the parameters, we used Sigma-Plot software. In our model (Eq.1), best-fit power law 
distribution (Eq. 2) has exponent parameter k=2.2; the exponential function having a slope 
parameter 1.75 fits well to the non-specific (noise) component of the Eq.1. We assumed that 
all the cluster peaks of size greater than the cut-off value (3 or 4) are specific. By counting the 
total number of PET sequences associated with entire best-fit power distribution and the total 
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number of PET sequences associated with peaks of the observed distribution, we can also 
estimate the fraction of specific PET sequences in the library, α (Eq.1). For instance, for 
STAT1 data, α  equals to 0.26 (Table 1). 

For STAT1 IFN-γ activated ChIP-PET library, we used goodness of fit analysis [5]( 
Figure 5) and computer simulations (Figure 6). Starting with a simulation model of  

Figure 6. Observed and simulated noise distributions of cluster peak size for STAT1 library (Lib016). 
Specific cluster peak size distribution is estimated by subtracting the averaged simulated number of cluster 
peaks from observed number of cluster peaks. The noise distribution function was estimated by averaging of 
20 Monte Carlo simulations. The fraction of noise PET sequences in our simulation was 75% of the STAT1 
library size. 

background noise distribution function, we can carry out a decomposition of the specific and 
non-specific components in Eq. (1). Figure 6 presents the noise peaks simulation and 
illustrates our subtraction method. To do that, we can calculate the distribution of non-
specific (noise) cluster peaks and then after subtracting this distribution from observed 
distribution we could reconstruct the specific probability distribution function (Figure 6).  

The both our fitting methods provide similar frequency distributions of the number of 
nonspecific (noise) PET sequence cluster peaks. Given the simulated and observed frequency 
distributions of the number of specific PET sequences within cluster peaks and subtracting 
one distribution from another, we can derive the true frequency distribution of the number of 
specific peaks, reporting here as the true TFBS loci (Figure 6). Thus, our results support the 
suggestion that the probability distribution of an avidity of specific binging sites follows a 
Pareto-like law while the non-specific components would be well approximated by 
exponential function.  

We constructed also truncated cumulative function of the number of specific clusters 
(sum of number of clusters of size larger than given count). We used this cumulative function 
to estimate a fraction of specific TFBS loci for a given PET peak (Table 1). Due to estimated 
background cut-off value, this fraction equals to 1.0 for STAT1 PET6+ clusters (Table 1), 
that means that a fraction of non-specific cluster peaks larger than six is a negligibly small. 

3.2. Specificity of PET Clusters 

Based on our models, we estimate a cut-off critical value of cluster size which 
discriminates non-specific binding sites (noise) from specific binding sites in a given 
ChIP-PET library. The degree of reliability of every cluster in the library could be 
assigned  
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Table 1. Observed and simulated cluster peak size distribution for 
STAT1 IFN-γ activated library (Lib016).  

PET count 1 2 3 4 5 6 7 8 9+ 

#Observed peaks 212447 39025 7103 1444 400 157 113 66 198 

#Non-specific peaks 193528 22432 1565 75 1 0 0 0 0 

Cumulative # observed peaks 260953 48506 9481 2378 934 534 377 264 198 

Cumulative # specific peaks 43352 24433 7840 2302 933 534 377 264 198 

Cumulative specific fraction 0.166 0.504 0.827 0.968 0.999 1 1 1 1 

Table 2. Cut-offs of PET cluster size (95% level) and number of 
putative specific BS estimated by  observed distributions. 

TF 
Total % of 
spec. PET 

Cut-off 
value 

% Spec. at 
cut-off 

#BS at 
cut-off 

% Spec. in 
PET2+ 

#BS in 
PET2+ 

#BS in 
PET1+ 

p53 5 3 98.6 284 53.2 936 1659 

STAT1(IFN-γ) 25 4 96.8 2302 50.3 24433 43352 

STAT1(control) 13 5 96.2 52 32.5 11735 18743 

c-Myc 5 4 93.6 44 28.1 3683 9295 
based on the probability that a cluster of the given size contains a binding site. Thus we 
can annotate every region in the clusters either as reliable (the probability that it contains 
BS is more than 99%), or probable (probability >95%), or potential (>70%).  

We simulated background noise distribution by varying the number of specific PET 
sequences in the experiment from 0% to 30% and by selecting the best fit parameters. For 
p53 data we estimate the total percent of specific PET sequences in the ChIP-PET library to 
be at 5% (Table 2, second column). Comparing simulated and observed distributions of PET 
sequence cluster peak size, we can estimate the number of specific BS at any fixed cut-off 
value. For p53 data, for example, the cut-off value for cluster peak size equals 3 (third 
column) while specificity at this cut-off (number of specific BS in PET3+ cluster peaks) 
equals 284 (Table 2, fourth column). The cut off value of cluster peak size defines the 
specificity to be greater than 95%. The 6-th and 7-th columns in Table 2 demonstrate the 
specificity in PET2+ cluster peaks. The specificity is much lower for p53 BSs (53.2%), but 
the estimated total number of BSs in PET2+ cluster peaks is much higher (936 BSs for p53, 
Table 2). The total number of putative BS predicted by the PET singletons and clusters is 
estimated to be 1659. This is an estimate of the low limit of the total number of specific p53 
BSs in the human genome. Our extrapolation of the GDP model predicts >5000 p53 BSs, 
most of which, however, should be very low-avidity BSs and therefore should be not 
functional in a cell.  

The cut-off values of cluster peak size are relatively large for STAT1 and c-Myc 
libraries (Table 2). The total number of specific binding sites in the human genome is 
estimated to be as large as up to 43000 for IFN-γ induced STAT1 TF. By our computational 
simulations, the smallest number of specific BS estimated represented by the c-Myc library is 
~ 9000. Base on extrapolation of the best-fit model (1), however, the total number of specific 
c-Myc BSs in the human genome should about 20000 or even larger [11].  
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4. Discussion and Conclusion 

We have developed a computational method to estimate the number of specific binding 
loci in the genome for transcription factors studied in ChIP-PET experiments. Our 
probabilistic model of ChIP-PET clusters permits an accurate estimation of parameters of 
TFBS avidity function based on ChIP-PET experiment. The model explicitly uses 
information about the length of the ChIP-PET DNA fragments, the number of PET 
sequences in the library and the chromosome length. The summary is as follows: 
1. We developed a statistical method for selecting specific a component in observed 

PET cluster sites distribution based on a novel mixture distribution model. 
2. We developed a Monte Carlo simulation model and a program for non-specific 

binding events (background noise) in ChIP-PET cluster size distribution.  
3. This computational model provides cut-off values for specific TFBS and supports 

estimates obtained by the goodness of fit method [9,11]. 
4. We have shown that the true and noise probability distributions of loci avidity are 

scale-dependent skewed functions: when the library size and/or the average 
sequence span become larger, the shape of each distribution changes. In particular, 
the tail of the distributions of occurrence of true BSs becomes longer. 

5. The probability distribution of specific avidity of DNA-protein interactions for 
different TFs in mammalian cells can be described by a generalized Pareto function, 
while the random probability distribution is fitted by the exponential function. 
Significant correlation between ChIP-qPCR avidity and the number of sequences in 

specific cluster overlaps of ChIP-PET data suggests that the size of specific PET sequence 
clusters could indeed reflect of DNA-TF avidity. Validation of predicted “true” BS was 
shown for p53 and c-Myc binding sites in PET3+ clusters and verified by qPCR experiments 
[9,11]. We note that the binding specificity of TF sites defined by our model does not mean 
that the functionality of the BS in a given cell.  The DNA-TF avidity is really very complex 
and skewed function (Eq (2), Figure 4) of many factors. Other factors such as the state of 
chromatin remodeling, epigenetic factors (acetylation and methylation of histones and DNA) 
may affect both ChIP-PET and ChIP-qPCR outcomes. Recently, Abcam ChIP Grade 
antibodies in combination with the new Solexa 1G sequencing technology have been used to 
identify the patterns of histone methylations on the human genome scale [13]. We assume 
that the computational modeling of binding avidity of specific TF BSs and mapping histone 
methylation regions could provide better understanding of TF binding and epigenetic control 
of  DNA-TF avidity. It is interesting to note that recent ChIP-seq (ChIP-sequencing) methods 
have revealed 41582 putative STAT1-binding regions in IFN-γ stimulated HeLa S3 cells 
[12]. However, avidity of the vast majority of these BSs due to our model should be very low 
and perhaps these low-avidity BSs are unlikely functional. The addition of sequence 
information (consensus or weight matrix for given protein binding site) and genome 
information (as proximity to promoter regions, CpG islands) could significantly improve the 
quality of estimations for the binding sites [9,11,12]. ChIP-PET technology as well as ChIP-
on-chip, ChIP-seq and STAGE (Sequence Tag Analysis of Genomic Enrichment) 
technologies [3,12] in combination with simulation analysis will allow us to identify 
thousands of novel  binding sites in the human genome. A challenging statistical problem of 
estimation of specificity and sensitivity of these methods could be solved using the approach 
suggested in this work.  
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