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Prediction of protein functional sites from 3D structure is an important problem, particularly as 
structural genomics projects produce hundreds of structures of unknown function, including novel 
folds and the structures of orphan sequences. The present paper shows how computed protonation 
properties provide unique and powerful capabilities for the prediction of catalytic sites from the 3D 
structure alone. These protonation properties of the ionizable residues in a protein may be computed 
from the 3D structure using the calculated electrical potential function. In particular, the shapes of 
the theoretical microscopic titration curves (THEMATICS) enable selection of the residues involved 
in catalysis or small molecule recognition with good sensitivity and precision. Results are shown for 
169 annotated enzymes in the Catalytic Site Atlas (CSA). Performance, as measured by residue 
recall and precision, is clearly better than that of other 3D-structure-based methods. When compared 
with methods based on sequence alignments and structural comparisons, THEMATICS performance 
is competitive for well-characterized enzymes. However THEMATICS performance does not 
degrade in the absence of similarity, as do the alignment-based methods, even if there are few or no 
sequence homologues or few or no proteins of similar structure. It is further shown that the 
protonation properties perform well on open, unbound structures, even if there is substantial 
conformational change upon ligand binding.  
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1. Introduction 

Structural genomics efforts are revealing the 3D structures of hundreds of proteins of 
unknown function, including the structures of orphan sequences and structures with 
novel features or novel folds. A recent search of the Protein Data Bank (PDB) [4] 
returned 3108 structures listed as “hypothetical” or “unknown function” or “putative.” 
This number is constantly increasing at a rapid pace as techniques for high-throughput 
expression and crystallization are further developed and refined. However, knowledge of 
the three-dimensional structure does not necessarily imply knowledge of function. In 
fact, the inference of functional information from the 3D structure has proved to be far 
more difficult than anticipated. Computational methodologies for the prediction of 
functional information about these proteins are therefore important and timely. 
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An additional challenge posed by structural genomics proteins is that nearly all of 
them are unbound structures, since their natural substrates and other ligands are generally 
not present or even known. Ligand binding is usually accompanied by some structural 
change. While these binding-induced structural changes are often small and involve only 
rotation of the side chains of adjacent residues, significant change in backbone 
conformation does occur for some proteins. Thus it is desirable to develop predictive 
structure-to-function methods that are successful for these unbound, apo structures. 

Many methods have been reported to date for the prediction of functional sites in 
proteins. Some of these methods utilize only the 3D structure of the query protein as 
input [1, 3, 12, 13, 16], and thus are applicable to proteins with few or no sequence 
homologues, while other methods require both the 3D structure and a sequence 
alignment [6, 15, 17, 18, 23]. These methods report high success rates in functional site 
prediction, although often the precision is low, with only a small fraction of the selected 
residues corresponding to annotated functional residues. Achieving high recall with good 
precision is a challenge but yields more useful results. 

The reliability of computed protonation properties for the identification of 
interaction sites in protein 3D structures was first reported in 2001 [16]. The method was 
named THEMATICS (Theoretical Microscopic Titration Curves) and has since been 
automated using statistical metrics [12, 21]. In the present paper it is shown how 
computed protonation properties can predict the interaction sites in open, unbound 
structures for systems undergoing a large conformational change upon ligand binding. It 
is also shown that these properties alone return low false positive rates, in addition to 
high site success rates and good residue recall, for the enzymes in an annotated dataset. 
Examples of the precise, highly localized, predictions are given, including cases with 
large apo-holo conformational change.  

2. Method  

Protein structure coordinate files are downloaded from the PDB. The 3D structure files 
are pre-processed as described by Wei [21]. From the atomic coordinates, the electrical 
potential function of the protein is calculated with a Finite Difference Poisson–
Boltzmann (FDPB) procedure. The FDPB component of the University of Houston 
Brownian Dynamics (UHBD) program [14] is used for this purpose. The theoretical 
titration curves are calculated for each ionizable species in the protein (each Arg, Asp, 
Cys, Glu, His, Lys, and Tyr, plus the N- and C- termini) using a hybrid procedure [10]. 
Each of these chemical groups in a protein structure can gain or lose an H+ ion, a proton. 
For each of these ionizable groups, the hybrid procedure computes the fraction of all the 
protein molecules in a large ensemble that have this group occupied by a proton at a 
given pH. These data are expressed as the proton occupation Ο as a function of the pH. 
These O(pH) curves constitute theoretical analogues of an experimental titration curve. 
We have argued that catalytic residues have special properties in their proton transfer 
chemistry that can be observed in the shapes of the computed O(pH) curves [16]. 
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An extension of Ko’s analysis [12] is used to select the residues that are most likely 
to be involved in catalysis and/or recognition. We define the first derivative function f of 
the Ο(pH) curve as: 

 f = − dΟ/d(pH)                                       (1) 

These f functions are essentially proton binding capacities [8, 9, 22], which measure the 
change in concentration of a bound proton per unit change in its chemical potential. Note 
that these f functions are automatically normalized so that the area under the f curve is 
unity. This is because O always runs from 1 to 0, so that −ΔO is always unity over the 
full range of pH values; this is true for both perturbed and normal ionizable residues. 

The f functions may be treated as distributions and characterized by their moments 
[8, 12]. Hence we define the nth central moment μn as: 

 μn = ∫ (pH – M1)n · f · d(pH)                                    (2) 

where M1 is the first raw moment, defined by the expression for the nth raw moment as: 

 Mn = ∫ (pH)n· f · d(pH)                                   (3) 

Integrals in (2) and (3) are over all space (−∞ to +∞). Equations 1-3 for each ionizable 
residue are evaluated numerically from the computed theoretical titration curve of each 
residue.  

If there were only one ionizable residue in the protein, that residue would obey the 
Henderson-Hasselbalch (H-H) equation. For such a residue that obeys the H-H equation, 
the first raw moment is the pKa and all the odd-numbered central moments are zero. The 
second and fourth central moments have the values 0.620 and 1.62, respectively, for an 
H-H acid or base. However, interactions between ionizable residues in a protein will lead 
to asymmetry and broadening of the f functions and thus the odd-numbered central 
moments will be non-zero and the even-numbered moments will be larger. The 
underlying premise of THEMATICS is that these interactions are strongest for the active 
site residues and therefore the active site residues are identifiable as those with the most 
deviant curve shapes and particularly the largest third and fourth moments [12].  

We define the Z score for the nth central moment as: 

 Zn  =  (|μn| − <|μn|>)/σn                     (4) 

Here <|μn| > is the mean of the absolute value of the nth central moment, averaged over all 
of the ionizable residues in the protein. Generally only the odd-numbered moments can 
be negative, so the absolute value sign really is needed only for the odd moments. σn is 
the standard deviation of the (absolute) values of the nth central moment for the set of all 
ionizable residues in the protein. The Z score represents the deviation from the mean 
value in units of the standard deviation. The f functions are peaked functions for ordinary 
residues, but the active site residues deviate the most from the sharply peaked H-H form. 
The central moments are natural metrics to characterize the width and the shape of these 
peaked functions and their Z scores provide a way to identify the most deviant curves.  
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The mean and the standard deviation in Equation (4) are obtained using a specified 
cut-off fraction of the complete set of ionizable residues in the protein of interest. In 
particular, the set of ionizable residues in the protein is rank-ordered according to the nth 
central moment, then the only the lowest, specified fraction is used to obtain the mean 
and the standard deviation. Thus extremely large values for the central moments, which 
can have large impact on the mean and standard deviation, are excluded for this part of 
the calculation. For instance, if the cut-off fraction is 0.98, all of the central moment 
values that are above the 98th percentile are excluded when the mean and standard 
deviation are computed. A cut-off fraction of 1.0 is therefore equivalent to Ko’s analysis 
[12]. Z scores are computed for all of the ionizable residues, but the mean and the 
standard deviation are computed using the smaller, cut-off population.  

The criterion Z3>1 or Z4>1 is used to select the positive residues, since most active 
site residues have either a large third central moment or a large fourth central moment. 

Once the THEMATICS positive residues are identified, these residues are grouped 
into clusters based on spatial proximity. The distance between two positive residues is 
defined as the distance between their charge centers. A residue is placed into a cluster if 
it is within 9Å of any other positive residue in the cluster. A one-member cluster is called 
an isolated positive and it is not considered predictive. Clusters containing two or more 
positive residues constitute predictions and are termed THEMATICS predictive clusters.  

3. Results  

3.1  Performance in Site Prediction 

The method was tested on 169 annotated enzymes, essentially the entire CatRes database, 
with updated annotations from the Catalytic Site Atlas (CSA) database [2, 19]. 
Performance is measured by the recall (fraction of residues annotated in the database as 
catalytically important that are identified by the method), precision (fraction of identified 
residues that are annotated in the database as catalytically important), and false positive 
(FP) rate. We note that precision rates should be considered as lower bounds, because the 
database annotations are incomplete. In other words, not all of the important residues are 
annotated as such in the database. Recall, precision, FP rate, and Matthews Correlation 
Coefficient (MCC) for 169 CatRes enzymes, computed using CatRes/CSA annotations 
only, are shown in Table 1 for different values for the cut-off fraction. Recall rates for 
residues annotated as catalytically important range from 41% to 63%. Nominal precision 
rates range from 19% to 14%; this represents the fraction of predicted residues that are 
annotated in the database as catalytically important. FP rates are low, ranging from 2.0% 
to 4.7%, depending on the cut-off. Note that the lower cut-off values result in more 
residues selected, so as the cut-off value is reduced the residue recall rate rises but at 
some expense in precision.  

While Table 1 presents performance in the prediction of catalytic residues, the 
success rate for the prediction of catalytic sites is higher. Table 2 shows the percentages 
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of the 169 test proteins for which correct or partially correct predictions are made by 
THEMATICS. Success in site prediction is defined according to designations used in 
previous work [11]. A site prediction is considered correct if it includes half or more of 
the annotated catalytic residues. A prediction is considered partially correct if it contains 
at least one, but less than half, of the annotated catalytic residues. The total success rate 
for the prediction of sites is the sum of the correct plus partially correct predictions. In 
columns 2 through 4 of Table 2, the correct and partially correct predictions are 
determined with the CatRes/CSA annotations only. In column 5, an expanded set of 
annotations, including information from the SITE fields of the PDB files and from 
protein-specific literature references, is used. For cases where a bound structure is 
available, the residues in direct contact with the bound ligand(s) were added to the list. 
The CatRes/CSA annotations thus constitute a subset of this expanded list. All methods, 
including THEMATICS, perform better against this expanded list.  
 

Table 1. Average recall, precision, false positive rate, and MCC for THEMATICS 
predictions of catalytic residues as functions of the cut-off fraction for the test set of 169 
enzymes. Here only the CSA annotations are used as the reference set.  

Cut-
off Recall   Precision FP rate MCC 

 1.00 41.1% 19.4% 2.07% 0.255 
 0.99 50.4% 17.9% 2.76% 0.272 
 0.98 54.2% 16.4% 3.24% 0.270 
 0.97 58.0% 15.5% 3.74% 0.270 
 0.96 61.0% 14.6% 4.23% 0.268 
 0.95 62.8% 13.6% 4.72% 0.262 

 
Table 2. THEMATICS success rates for site prediction for the 169 enzymes in the test 
set. Success rate is expressed as correct, partially correct, and total, using a cut-off of 1.00, 
0.99 and 0.98. In columns 2-4, only the CSA annotations are used as the reference set. In 
column 5, the total success rate is obtained using an expanded set of annotations. 

Cut-off 
Correct Site Rate 

versus CSA 
Partially Correct Site 

Rate versus CSA 
Total Success Rate 

versus CSA 

Total Success 
Rate versus 

Expanded Set 
1.00 48.5% 29.0% 77.5% 89.9% 

0.99 59.8% 26.0% 85.8% 92.9% 

0.98 66.9% 21.3% 88.2% 94.1% 

 
For cut-off values of 1.0, 0.99, and 0.98, THEMATICS makes correct site 

predictions for 49%, 60%, and 64%, respectively, of the proteins in the CatRes test set, 
according the CSA annotations only. Total success rates, the sum of the correct and 
partially correct rates for site prediction, are 90%, 93%, and 94%, for the same three 
respective cut-off values, according to the expanded annotation set.  
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These performance data shown in Tables 1 and 2 compare very favorably with other 
methods that are based solely on the 3D structure of the query protein. Structural 
Analysis of Residue Interaction Graphs (SARIG) [1] is a graph theoretic approach that 
calculates residue contacts and identifies the residues that have the highest closeness 
scores to all other residues. SARIG successfully predicts 46.5% of the annotated catalytic 
residues for the enzymes in the CatRes database. The reported precision, however, is 
low; only 9.4% of the predicted residues are known catalytic residues [1]. Thus 
compared to THEMATICS with a cut-off of 0.99, the residue recall rates are similar but 
the THEMATICS precision rate is about two-fold better.  

Another approach to the prediction of sites from the structure alone involves docking 
of small solvent molecules onto the protein surface and searching for clusters of energy 
minima for these molecules [7, 20]. Q-SiteFinder is a simple, fast version of this method 
developed by Laurie [13] and uses only a methyl group as a probe. For 90% of proteins 
in the test set, Q-SiteFinder returns a correct site prediction within its top three predicted 
sites. While precision was not reported, selectivity clearly is low. We estimate that the 
precision rate for residue prediction by Q-SiteFinder is only about 5%, corresponding to 
an average of about 60 predicted residues per protein; these estimates are based on a 
combination of the top three sites as the prediction, which was the basis for the reported 
success rates [13]. Thus THEMATICS gives comparable success rates in site prediction 
but with substantially better precision and lower false positive rates.  

THEMATICS also performs quite well compared with methods that require 
sequence alignments and structural comparisons. While there are variations in the 
annotated sets, one can get some idea of the relative performance. One method based on 
sequence and structural alignments reports a catalytic residue recall rate of 47% with an 
FP rate of 5% [17]; THEMATICS with a cut-off of 0.99 has a similar recall rate (53%) 
but the FP rate is lower by almost one half (2.8%). Another study using Support Vector 
Machines (SVM) to predict catalytic residues from sequence conservation and structural 
properties reports an MCC of 0.23 [18], slightly less than the MCC for THEMATICS 
(0.27). Another very recent paper [23], also using SVM with features obtained from 
sequence alignments and structural properties, reports 57.0% catalytic residue recall with 
18.5% precision, slightly better than THEMATICS; however these data were obtained on 
a test set of enzymes that possess sequence homologues and structural family members. 
As the authors point out, there will be a cost in the recall and in the precision when 
applied to novel folds or remote sequences. THEMATICS performance is roughly the 
same as that of the SVM-based sequence/structure methods, but without any sequence or 
structural alignments needed.  

3.2  Predicting Holo Binding Sites from Apo Structures 

For proteins that undergo a small conformational change upon ligand binding, it has been 
shown already that THEMATICS performs equally well for apo (unbound) structures as 
it does for holo (bound) structures [21]. In this section we examine pairs of structures 



7 

that exhibit significant change in backbone conformation going from the apo to the holo 
form. For such a pair of structures, the Root Mean Square Deviation (RMSD) of the 
alpha carbon framework may be calculated using the expression: 

 
2
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Where di represents the distance between the alpha carbon atoms of equivalent residues 
in the apo and holo forms and N is the number of residues in both structures. 

The RMSD itself is not a good measure of the relative change in conformation when 
one compares pairs of proteins with a wide range of sizes because it depends on the 
number of residues. To obtain a better sense of the degree of conformation change within 
the set of proteins studied, we also include the RMSD100 [5] value defined as:  
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Where RMSD is given in equation (6). RMSD100 is a size-normalized RMSD that 
allows a better comparison across sets with large variations in size. 

To assess how these changes affect the region specifically around the binding site, 
the RMSD and RMSD100 values for the alpha carbon atoms of “core residues” are 
reported. These are defined as the set of residues with any atom located within 8 Å of any 
bound ligand in the holo form. Comparison of the RMSD values for the whole protein 
and for core residues provides a quantitative description of the effect of the 
conformational change on the binding site. Ten illustrative examples are given in Table 
3.  

These are examples from a set of 24 proteins for which apo and holo structures are 
available for the same species and for which the apo-holo RMSD is 1.5A or greater. 
RMSD values range from 1.5 to 14.7 in the full set and from 3.7 to 14.7 in the Table 3 
examples. The first column gives the species and protein name. The number of residues 
N in the protein is given in the second column, with the number of residues in the active 
site core, as defined above, in parentheses. The next two columns give the RMSD and 
RMSD100 values for the apo-holo pair, with the corresponding values for the core 
residues shown in parentheses. 

THEMATICS predictions for the apo and holo structures for the Table 3 examples 
are given in Table 4. In Table 4, the PDB code and the THEMATICS predictions are 
given for the apo form first for each protein, then for the holo form. Residues that belong 
to the same cluster are shown together in square brackets. Clusters of two or more 
residues constitute predictions. Clusters with only one member are reported but are not 
considered predictive. Known catalytic residues and residues in direct contact with the 
bound ligand of the holo form are shown in boldface.  

Table 4 demonstrates how THEMATICS is able to predict binding sites in the 
unbound apo structures. In some cases, for example yeast guanylate kinase, E. coli 
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dipeptide binding protein, and human serum transferrin, the binding residues are divided 
into different, spatially separated clusters in the apo structure. Upon ligand binding, these 
clusters come together to form a single cluster in the holo form; these predicted residues 
surround the bound ligand in the holo structure.  

 
Table 3. Ten proteins with significant conformational change upon ligand binding. 
Number of residues N in the protein and the apo-holo RMSD and RMSD100 are given. 
Corresponding values for the active site core residues are shown in parentheses. 

 
Species and 
Protein Name 

 N 
(N Core) 

RMSD 
(Core) 

RMSD100 
(Core) 

Yeast Guanylate Kinase 

 
 
 186 

(45) 
4.4 

(3.4) 
5.5 

(9.2) 
E. coli Dipeptide Binding 
Protein 

 
507 
(51) 

12.3 
(10.3) 

6.8 
(15.6) 

Human Serum Transferrin 

  
 328 

(33) 
14.7 
(6.7) 

9.3 
(15.1) 

Human Glucokinase 

 
 424 

(58) 
10.9 
(9.5) 

6.3  
(13.0) 

Human Lactoferrin 

 
 

691 
(73) 

8.2 
(5.8) 

4.2 
(6.9) 

E. coli L-Leucine Binding 
Protein 

 
 

345 
(51) 

14.4 
(9.3) 

8.9 
(14.1) 

E. coli D-Ribose Binding Protein 

 
 

271 
(47) 

8.7 
(5.6) 

5.6 
(9.0) 

Emericella nidulans 3-
Dehydroquinate Synthase 

 
 

 762 
(189) 

3.7 
(2.3) 

1.8 
(1.7) 

E. coli Ribokinase 
 

610 
(115) 

9.8 
(6.4) 

5.1 
(5.9) 

Limulus polyphemus Arginine  

 
 
 
 
 

Figure 1 shows the active site region of the aligned apo and holo structures of human 
serum transferrin with the THEMATICS predictions for both structures. Transferrin is 
the generic label for a group of proteins found in a wide range of organisms. Their main 
function is the sequestration of iron either for storage or for transport to the cell interior. 
The backbones are shown as ribbons and the THEMATICS predicted residues are shown 
explicitly in stick form. The apo form is in light gray, the holo form dark. Upon binding 
of iron, there is a large displacement of the binding residue H249. The two clusters 
predicted by THEMATICS for the unbound apo structure, [E83, H249] and [Y95, Y188, 
K206] come together to form a single cluster, [Y85, Y95, Y188, K206, H249, D292, 
K296], in the holo structure. Note that the predicted residues surround the bound iron in 
the holo form, and that THEMATICS is able to identify them even in the apo form.  

In the full set of 24 pairs, THEMATICS predicts correct sites for 23 of them (96%). 
For one case, threonine synthase from Thermus thermophyllus, the correct site is 
predicted for the holo form but not for the apo form. Somewhat surprisingly, this 
particular case does not have one of the larger conformational changes (RMSD=2.6; 

344 
(71) 

3.8 
(3.1) 

2.4 
Kinase (3.7) 
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RMSD100=1.6). Three annotated catalytic residues, [K61, K116, R160], fall above the 
cut-off for the holo form but fall short of the cut-off for the apo form.  

 
Table 4. THEMATICS predictions for apo and holo structures of the 10 proteins listed in 
Table 3. The PDB codes for the apo and holo forms are given in the second column, with 
the apo form given first. Predictions are given in clusters, with members of the same 
cluster shown together in square brackets. The known binding residues are shown in 
boldface. Clusters of two or more residues constitute predictions.  

Species and  
Protein Name 

PDB ID 
Apo 
Holo 

THEMATICS Predicted 
Clusters 

1EX6 [Y25, Y175, K179] [Y50, Y78] [E69, D100, D98, E153,  
H162, Y156] [C95] [R135] [D170] Yeast Guanylate Kinase 

1EX7 [K14, Y50, D98, E153, R38, R41, Y78, D100, H162, R146]  
[Y175, K179] 

1DPE [D26, E38, D153, E482, D494, K498, H499, H500] [D89]  
[E143, D149, D408, D411, D413] [Y269]  [Y357, Y431] E. coli Dipeptide  

Binding Protein 
1DPP [Y25, D26, Y114, D153, Y239, R355, Y357, D408, H499]  

[D149, D413] 
1BP5 [E83 , H249]  [Y95 , Y188 , K206] Human Serum  

Transferrin 1A8E [Y85 , Y95 , Y188 , K206 , H249 , D292 , K296] 

1V4T [E40A] [C213A , C220A , C233A , C252A]  
[C230A , C382A] [D274A] [E339A] Human Glucokinase 

1V4S [C213A , C220A , C233A , C252A] [C230A , C382A] 

1CB6 [Y92, Y192, R210] [Y93, R249] [E413 , Y435 , Y528 , K546,  
H597] Human Lactoferrin 

1LFG [Y82 , Y92 , Y192 , R210 , H253] [Y398] [Y435 , Y528 ,  
H597] 

1USG 
[E22 , D51 , H76 , Y89] [Y72] [E90 , H113] [D121, Y150 ,  
Y198 , E226] [H145 , D146 , E152 , E205]  
[K250 , Y252 , D330] [D321 , D325] E. coli L-Leucine  

Binding Protein 
1USK [E22, D51, H76] [Y72] [E90, H113] [D121, H145, D146,  

Y150, E152, E205, E226] [D321, D325] 
1URP [E26] [D89, H100, D215, E140, D191, E192] E. coli D-Ribose  

Binding Protein 2DRI [D89, D215, E140, D191, E192] 

1NUA 
[Y25, C34, K172]* [K84A, K161A, E194A, K197A, K250A,  
H271A, E278A, H287A, R130B]* [K89A, K89B] [Y134A]*  
[D176A] [E181B] Emericella nidulans  

3-Dehydroquinate  
Synthase 

1NVF 
[K89A] [R130A, K152B, K250B, H271B, H275B, E278B,  
H287B, K356B] [K152A, K250A, K356A, R130B,  H271A,  
E278 , H287A] 

1RKA [D16A, H17A, D67A, H113A, D16B, H17B, D67B, H113B]  
[E143A , D255A]* 

E. coli Ribokinase 
1RKS [D16A, H17A, E143A, D255A, D16B, H17B, E143B, D255B]  

[E188A]* [E190A]* 

1M80 [Y68, R126, C127, Y134, Y145, K151, R208, E224, E225, D226, 
H227, R229, C271, R280, R330] [D71] Limulus polyphemus  

Arginine Kinase 
1BG0 [Y89, R126, C127, R208, E224, E225, D226, R229, R28, R309, 

E314, H315, R330, E335] [H185] 
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Figure 1. Detail of the active site of human serum transferrin showing the rearrangement that occurs upon 
binding of iron (unlabeled sphere). The apo form (PDB 1BP5) is shown in light gray; the holo form (PDB 
1A8E) is in dark gray. Side chains of the THEMATICS predictions for the unbound apo form (in white), [E83, 
H249] and [Y95, Y188, K206] and for the bound holo form (in black), [Y85, Y95, Y188, K206, H249, D292, 
K296] are shown in stick form. Note that the two clusters in the apo structure become a single cluster in the 
holo form, reflecting the large displacement of H249. Figure prepared with Yasara.  

4. Discussion and Conclusions  

THEMATICS requires only the 3D structure of the query protein as input and therefore 
its performance is not affected by the degree of sequence or structural similarity to other 
proteins. THEMATICS performs significantly better than other 3D-structure-based 
methods. THEMATICS, using only the protonation properties computed from the 
structure, also performs quite well against the latest SVM-based methods that do utilize 
sequence alignments and structural similarity; THEMATICS returns competitive recall 
and precision with no cost for lack of similarity. THEMATICS thus holds advantages 
and is effective for novel folds, for engineered structures, and for proteins that do not 
possess a sufficient set of homologues to obtain meaningful conservation scores. 

THEMATICS predicts the binding residues in apo structures, even when there is 
substantial change in the backbone conformation upon ligand binding and even when 
these binding residues are physically separated in the apo form. THEMATICS is 
effective because it utilizes the special electrostatic properties of active site residues. At 
these sites, there tends to be large interaction between protonation events on the ionizable 
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species. These special electrostatic properties of the catalytic and binding residues are 
sufficiently preserved in the open form, although diminished compared to the closed 
form, such that the residues that constitute the two halves of the interaction site may be 
identified by statistical analysis in an open, unbound structure.  

One of the difficulties in catalytic site prediction is that not all of the important 
residues are included in the annotated database and some have not been studied. Hence 
some of the “false positives” really are not false. Actual precision and MCC values for 
each method therefore are really higher and actual false positive rates are really lower 
than reported. The true quality and effectiveness of THEMATICS and the other top-
performing methods is better than that reflected in the precision and MCC values; the 
relative performance of the different methods is also apparent from these values.  

While computed protonation properties give excellent performance when used alone, 
they show tremendous potential in combination with other, complementary methods. A 
beta version of a simplified form of the THEMATICS site predictor is now available at: 
http://pfweb.chem.neu.edu/thematics/submit.html . 
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