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Peptide identification by tandem mass spectrometry (MS/MS) is one of the most 

important problems in proteomics. Recent advances in high throughput MS/MS experi-

ments result in huge amount of spectra. Unfortunately, identification of these spectra is 

relatively slow, and the accuracies of current algorithms are not high with the presence of 

noises and post-translational modifications (PTMs). In this paper, we strive to achieve 

high accuracy and efficiency for peptide identification problem, with special concern on 

identification of peptides with PTMs. This paper expands our previous work on PepSOM 

with the introduction of two accurate modified scoring functions: Sλ for peptide identi-

fication and Sλ* for identification of peptides with PTMs. Experiments showed that our 

algorithm is both fast and accurate for peptide identification. Experiments on spectra with 

simulated and real PTMs confirmed that our algorithm is accurate for identifying PTMs. 

1. Introduction 

Peptide identification by tandem mass spectrometry (MS/MS) is a very challenging 

problem that receives wide attention by computational biologists. Huge amount of 

MS/MS spectra generated requires the most taxing of resources to process. With the 

presence of noises and post-translational modifications (PTMs) that further complicate 

the problem, current algorithms for peptide identification are not very accurate. 

Approaches for peptide identification can be categorized into database search 

algorithms [1-3] and de novo algorithms [4-7]. The former return peptide sequences that 

match the parent mass of the experimental spectrum via some scoring functions. Their 

accuracies largely depend on the completeness of the database, and the process is usually 

slow. Additionally, they generally do not perform well for peptides sequences not already 

known as well as peptides with PTMs. On the other hand, de novo algorithms interpret 

peptide sequences from spectrum data purely by analyzing the intensity and correlation of 

the peaks in the spectrum data. They can retrieve tags from spectrum with high accuracy 

[3], and the process is very fast (always within a minute). However, their performance 

quickly deteriorates in the presence of noises and PTMs. 

Striving for high efficiency and identification accuracy for peptide identification by 

MS/MS with the presence of PTMs is an essential issue, which is especially important for 

experts in the analysis of results in the “wet laboratory”. This paper focuses on this issue. 

Recently, the InsPecT algorithm [8] was proposed, which first generates a set of 

highly accurate tags from spectrum, and then use these tags to filter peptide sequences in 

database. As de novo is imperfect, multiple tags are produced for each spectrum. The 

accuracy of InsPecT depends on the quality of the tags but even in the context of up to a 

dozen modifications, it performs reasonably well. Another interesting aspect of InsPecT 

is that it uses automata to search for peptide sequences. For a batch of spectrum data, the 

process can be very quick (about 10 ms per spectrum). 

For algorithms based on tags for coarse filtering, though using tags can achieve 



reasonable efficiency, the quality of candidates is very dependent on the quality of tags 

which in turn are highly dependent on the quality of the spectra.  

Identification of the PTMs is another important problem. Most of current algorithms 

that are able to identify PTMS [1-3] first define a set of possible PTMs before peptide 

identification. This approach is limited by the number of predefined PTMs. The InsPecT 

algorithm takes another approach, which allows blind PTM search (no specified PTM).  

This approach can discovery virtually every possible PTMs in the peptides, but may has 

high false positive rate. 

Previously, we proposed the PepSOM algorithm [9] which can achieve high 

efficiency for peptide identification by database search based on SOM and MPRQ. 

However, the accuracies of the PepSOM results are not very satisfactory. This is because 

after candidate peptides are retrieved from database, they are scored and ranked by SPC, 

which is not an accurate scoring function especially on noisy spectra and spectra with 

PTMs. Apparently, comparing candidate peptides with experimental spectrum alone is 

not enough, so in this paper candidate peptides are also compared with highly-reliable 

tags generated from experimental spectrum by our de novo algorithm. 

2.  Computational Model and Algorithm 

In this section, we briefly formulate the problem of peptide identification by MS/MS, and 

describe a de novo algorithm to generate multi-charge strong tags, and mention PepSOM. 

Due to space constraints, refer to [9-11] for more details. Then we introduce the scoring 

functions to score and rank candidate peptides (with PTMs). 

Problem Formulation and Multi-charge Strong Tags 

To introduce multi-charge strong tags, we first define some general terms. In tandem 

mass spectrometry, a peptide sequence ρ will be fragmented into a spectrum S, which is 

composed of many peaks {p1, p2, …, pn}. Each of the peaks pi is represented by its 

intensity(pi) and mass-to-charge ratio mz(pi). If peak pi is not noise, then it will represent 

a fragment ion of ρ. We say that peak pi is a support peak for the fragment q and we say 

that the fragment q is supported by the peak pi. A peak pj is a support peak for the peak pi 

if both of them are support peaks for the same fragment q. 

In the problem of peptide identification by MS/MS, the input is the mass spectrum S, 

and the output is the putative peptide sequence P from which the spectrum is generated. 

The theoretical spectrum completely characterizes all possible peaks for a peptide by 

considering all ion types. On the contrary, experimental spectrum seldom completely 

characterizes all possible peaks for peptides, and it contains many noises. 

Recently, we proposed the GST-SPC algorithm [11] which was shown to generate 

high quality tags (called multi-charge strong tags, or simply tags). In the first phase, 

GST-SPC computes a set of all tags. Then GST-SPC tries to link these tags by their mass 

differences, and computes a peptide sequence that is optimal with respect to shared peaks 

count (SPC) from all peptides derived from tags. Since previous results show that the tags 

generated by GST-SPC are accurate, in this paper we use multi-charge strong tags 

generated by the first phase of GST-SPC in scoring the candidate peptides. 

Binning of Peaks 

Binning is performed to convert peptides (transformed to theoretical spectra) in database 

to high-dimensional vectors in vector space. 

A spectrum is divided into fixed intervals by mass-to-charge ratios; within each 

interval the peak with the highest intensity is chosen. To further improve the performance 

of binning, we incorporated noise removal and scoring of bins after binning. For the full 

details, refer to [9]. Proper values of tolerance used in binning can preserve accuracies, 



while decreasing the computational cost greatly, especially for noisy spectra. For the ion 

trap datasets in this paper, mass tolerance mt* is set to be 0.5 Da and the mass range of 

bin mbin is set to be 0.25 Da. With the process of binning and noise removal, only those 

significant bins (peaks) are kept, resulting in better accuracy and efficiency. 

SOM and Multi-Point Range Query 

Self-organizing map (SOM) [12] is used to transform high-dimensional vectors to 2D 

points on a plane. In our algorithm, spectrum similarity could be transformed to vector 

similarity and then to 2D metric similarity. Subsequently, MPRQ [13, 14] is used for 

multi-point similarity query on the plane to efficiently identify candidates. 

For peptide identification, once the theoretical spectra for the peptide sequences in 

the database are mapped as 2D points on a plane by SOM, we transform the query 

(experimental) spectra into query points in plane and proceed to query. MPRQ algorithm 

also accepts as input a parameter d that controls the radius of the search distance. The 

larger the value of d, the more candidate peptides will be returned. MPRQ can efficiently 

process multiple input points simultaneously during query, effectively performing 

configurable multi-spectra similarity search on database of known peptides. 

Scoring and Ranking 

To achieve high accuracy in peptide identification, the most important step is the scoring 

and ranking of candidate peptides results from database search. We had shown in [9] that 

by using SPC alone for scoring of candidate peptides results in low identification 

accuracy. Therefore, here we also compared the candidate peptides with tags generated 

by GST-SPC. This approach combines the comparison of candidate peptides with experi-

mental spectrum and also with tags. 

We now introduce SPC score and Stag score. SPC score is computed as the number 

of peaks of the same mass-to-charge ratios (within tolerance) between experimental and 

theoretical spectrum of the candidate peptide, over the number of peaks in experimental 

spectrum. The Stag score, which measures the similarity of candidate peptide to tags, is 

computed as the ratio of candidate peptide that can match one or more tags at the correct 

position (within the range of [0,100] Da), over the length of the candidate peptide. For 

example, given the candidate peptide “VAQLEQVYIR” and two tags “VAK” and 

“IVYLR” starting from mass of 0 Da and 550 Da, respectively. If we do not allow 

mismatch, then Stag is computed as (3+4)/10=0.7; if we allow up to one mismatch, then 

Stag is computed as (3+5)/10=0.8. To score and rank candidate peptides, we define and 

use a scoring function Sλ which is a weighted sum of SPC and Stag scores. 

Sλ = w1
.
SPC + w2

.
Stag (1) 

The weights are derived empirically. We selected a large amount of (experimental 

spectrum, peptide) pairs with high confidence (Xcorr ≥ 2.5) from the ISB dataset (details 

in Table 1). We then compute their SPC and Stag scores and tried different combinations 

of these two scores. We found that w1 = 0.1 and w2 = 0.9 give discriminative results 

(details omitted due to space limit), and the results were normalized this way. 

For PTM identification, it is observed that because of peptide fragmentation such as 

loss of water and ammonia, PTMs such as phosphorylation, as well as the errors 

introduced by the mass spectrometer ion detector, mass shifts in spectra are very common. 

Specifically, each PTM corresponds to a set of shifted peaks in experimental spectrum. 

And highly possible PTMs should have strong support represented by such a set of mass 

shifts. Here, we use a modified SPC scoring function (SPC*) that can better handle sets of 

mass shifts in spectra for identification of peptides with PTMs. 

To illustrate the mass shifts by PTMs, Fig. 1 shows an example of an experimental 

spectrum which is identified to be I
+43

TFYEDR (with PTM) by [15]. We compared it 

with theoretical spectra (with ∆
R
) for two peptides, I

+43
TFYEDR and ITFYEDR. The 



intensity of the peaks in theoretical spectrum in not known, and we assume b-ion and y-

ion peaks to have higher intensity than peaks of other ion types. 

Comparison between theoretical spectrum of I
+43

TFYEDR and that of ITFYEDR 

clearly shows a set of peak shifts, corresponding to the PTM on amino acid “I”. It is hard 

to see from Fig. 1 which theoretical spectrum is similar to experimental spectrum without 

computation of SPC score. The SPC score for I
+43

TFYEDR is 0.287, while that for 

ITFYEDR is 0.154. A big difference is observed between them. Using the above 

spectrum example, we performed database search, and the top candidate peptides are 

ITFYEDR and LTFYEEV. The tag generated by GST-SPC algorithm is “TFYED”. We 

computed the Sλ score for these two peptides as Sλ = 0.1*0.154 + 0.9*0.71 =0.654 for 

ITFYEDR, and Sλ = 0.1*0.021 + 0.9*0.57 = 0.515 for LTFYEEV. 

 
(a) 

 

 
(b) 

 
(c) 

Fig. 1. Example of mass shift caused by PTMs. (a) Experimental spectrum for I+43TFYEDR, (b) Theoretical 
spectrum for ITFYEDR, (c) Theoretical spectrum for I+43TFYEDR. The shifted b-ion peaks are 

indicated with arrows in (b) and (c). 

At each cleavage site, we assume each of i*mbin Da for all –60 ≤ i*mbin ≤ 60 (60 Da 

was determined empirically) as a putative mass shift. We define SPCi,j as the SPC score 

between experimental and theoretical spectrum of candidate peptide P, where we assume 

a mass shift of i*mbin Da at cleavage site j of P. It is easy to see that SPC0,j is the SPC 

score of experimental and theoretical spectrum without mass shift at cleavage site j. If the 

largest SPCi,j for cleavage site j is obtained with i > 0, then this cleavage site j is a 

putative PTM site with mass shift of i*mbin Da, with the PTM score of 

SPTM(j) = (SPCi,j – SPC0,j) (2) 

If SPTM(j) is greater than a threshold TPTM (determined empirically to be 0.1), then we say 

that this putative PTM site is significant, and we identify this as a PTM in the peptide. In 

SPTM(j) function, a series of mass shifts introduced by a single PTM is regarded as a 

whole event, which is more realistic. 

Take the same example above, we computed the SPTM score at cleavage sites for 

I
+43

TFYEDR. Since “TFYED” is a tag, only the cleavage sites after “I” (j = 1) and before 

“R” (j = 5) were analyzed. Results are that SPTM(1) = 0.133 with mass shift of 43 Da, and 

SPTM(5) = 0 with mass shift of 0. Since SPTM(1) is above TPTM while SPTM(5) is below it, 

we thus identify this PTM correctly. 

We further define }..{},..{ 11
SPC

qq jjii as the SPC score between experimental and 

theoretical spectrum of identified peptide P, where a mass shift of {i1*mbin…iq*mbin} Da 

matches with cleavage site {j1…jq} of P, in which each SPTM(j) is greater than TPTM. The 

corresponding SPTM* is defined as 

∑
=

>−=
K

j

iijjii j
qqq

1

PTMPTM}0..0{},..{}..{},..{PTM )T)((S|)SPC(SPC*S
111

 (3) 



in which K is the length of the peptide. SPTM* indicates the significance of PTMs in a 

spectrum. Though we have considered multiple PTMs in
}..{ 1

SPC
qjj

, experiments show 

that there is usually not more than one PTM per spectrum. Taking PTMs into 

consideration, the modified Sλ score is then defined as 

Sλ* = w1
.

}..{},..{ 11
SPC

qq jjii + w2
.
Stag (4) 

which can be used for identification of peptides with PTMs. The weight w1 and w2 are 

again determined empirically. To derive the weights, we selected a large amount of 

(experimental spectrum, peptide) pairs of peptides with PTMs of high confidence (p-

value of 0.05 or better, computed the same way as in InsPecT [3]) from ISB datasets. We 

then computed their }..{},..{ 11
SPC

qq jjii and Stag scores and tried many different 

combinations of these two scores. Similar to that used for Sλ scoring function, the results 

(details not shown) indicate that w1 = 0.3 and w2 = 0.7 give discriminative results. 

Take the same example as illustrated above; we have computed the Sλ* score for the 

spectrum against the two candidate peptides ITFYEDR and LTFYEEV. Results show 

that ITFYEDR has score Sλ* = 0.3*0.154 + 0.7*0.71 = 0.543 while I
+43

TFYEDR has 

score Sλ* = 0.3*0.287 + 0.7*0.71 = 0.583; and LTFYEEV has score Sλ* = 0.3*0.021 + 

0.7*0.57 = 0.405 while L
+43

TFYEEV (the best PTM identified on sequence LTFYEEV) 

has score Sλ* = 0.3*0.144 + 0.7*0.57 = 0.442. These results show that I
+43

TFYEDR has 

the best Sλ* score, indicating that Sλ* score is discriminative. 

Apparently, Sλ* is much more expensive in terms of computation than Sλ. However, 

after coarse filtering, we only need to consider a small number of candidate peptides; 

computing Sλ* on these limited set of candidate peptides is still acceptable. 

Our Algorithm 

In this paper, we use a peptide identification algorithm that is a combination of database 

search technique and de novo technique. It has the following steps: (i) both peptides in 

database and experimental spectra are first converted to high-dimensional vectors via 

binning; (ii) the vectors are mapped to 2D plane with SOM; (iii) candidate peptides are 

then selected from database with MPRQ; and (iv) these candidate peptides are scored and 

ranked (fine filtered) by a scoring function that compares them with the experimental 

spectrum as well as multi-charge strong tags generated by a de novo algorithm [11]. Steps 

(i)-(iii) are coarse filtering steps, in which spectra similarity is transformed to vector 

similarity and then to 2D points metric distance similarity. These steps are similar to 

those in PepSOM [9]. Step (iv) is a fine filtering step in which the candidate peptides are 

scored and ranked by comparing them with experimental spectrum and tags generated by 

the GST-SPC algorithm. At the end of step (iii), if we assume that there is no PTM in the 

spectrum and want to perform fast peptide identification, then Sλ scoring function is used. 

Otherwise Sλ* scoring function is used for identification of peptides with PTMs. 

3. Experiments 

Experiments were performed on a 3.0 GHz PC with 1.0 GB main memory running Linux. 

Our algorithm is implemented in C++ and Perl. SOM_PAK [16] was the SOM imple-

mentation used. For analysis and comparison, we had selected established algorithms 

with freely available software: two database search algorithms, Sequest [1] and InsPecT 

[3]; as well as two de novo algorithms, Lutefisk [7] and PepNovo [5].  

Spectrum datasets (query datasets) were obtained from Open Proteomics Database 

[17], PeptideAtlas [18] and Institute for Systems Biology [19]. All of the experimental 

mass spectra were ion trap data having low mass resolution. As the statistical evaluation 

of the correlation of spectrum and peptide is still a difficult open problem, we treated 



Sequest result with Xcorr ≥ 2.5 as ground truth, which is considered reliable. 

The PeptideAtlas spectrum dataset A8_IP were obtained from Human 

Erythroleukemia K562 cell line. Electrospray ionization source of an LCQ Classic ion 

trap mass spectrometer (ThermoElectron, San Jose, CA) was used, and DTA files were 

generated from MS/MS spectra using TurboSequest. All 44 spectra that were identified 

with Xcorr ≥ 2.5 were chosen. For OPD, the spectrum dataset used was 

opd00001_ECOLI, Escherichia coli spectra 021112.EcoliSol 37.1(000). The spectra 

were obtained from E. coli HMS 174 (DE3) cell, which is grown in LB medium until 

~0.6 abs (OD 600). The spectra were generated by the ThermoFinnigan ESI-Ion Trap 

“Dexa XP Plus” and the sequences for these spectra were validated by Sequest. The ISB 

dataset was generated using an ESI source from a mixture of 18 proteins, obtained from 

ion trap mass spectrometry, and consists of spectra of up to charge 3. Most importantly, 

these ISB datasets were annotated by a few algorithms [8, 15] to be free of PTMs (refer 

to http://www.systemsbiology.org/extra/protein_mixture.html). 

The databases that we have used contain peptides from the respective protein 

sequences dataset. Specifically, E. coli K12 protein sequences for OPD datasets, IPI 

HUMAN protein sequences for PeptideAtlas dataset and human plus control protein 

mixture for ISB dataset were used. As the number of protein sequences were very large 

for PeptideAtlas (60,090) and ISB (88,374) datasets, we used only the protein sequences 

corresponding to spectra identified with Xcorr ≥ 2.5 (our ground truth). However, the 

sizes of databases were still very large because of many peptides. The parameters for the 

generation of databases, the query datasets and theoretical spectra are shown in Table 1. 

Table 1.  Parameters for the generation of databases and theoretical spectra. 

Parameters Values 

 PeptideAtlas OPD ISB 

No. of protein sequences 31 4,279 3,553 

Total database size 9,421 494,049 1,248,212 

Query size 44 202 995 

Fragments mass tolerance 0.5 Da 
Parent mass tolerance 1.0 Da 

Modifications – 

Charge +2, +3 
Ion type a, b, y, –H2O, –NH3 

Missed cleavages 0 

Protease Trypsin 
Mass range 0-5000 Da 

To compare the different algorithms, the following accuracy measures were used: 

Recall = 
# correct

 | ρ |
   (5) 

Precision = 
# correct

 |P|
  (6) 

where #correct is the number of correctly identified amino acids. For two amino acids in 

the correct peptide ρ and the respective identification result P, only if their positions do 

not have a difference of more than 100 Da (determined empirically) and they are of the 

same amino acids (except (I, L), as well as (K, Q)), do they contribute one count to 

#correct. A high Recall being that the algorithm recovers a large portion of the correct 

peptide. For a fair comparison with algorithms like PepNovo that only outputs the highest 

scoring tags (subsequences), we also use a Precision measure, which measures how many 

of the results are correct. Note that these recall and precision measures are different from 

sensitivity and specificity measures used in PepSOM paper, since there is a position 

constraint on amino acids in recall and precision measures, rather than only using LCS to 

measure #correct in sensitivity and specificity in PepSOM. 



Experiments on Peptide Identification 

In this subsection, we performed experiments using peptides without PTMs. Firstly, we 

analyzed the quality of the tags generated by the GST-SPC algorithm. We measured the 

ratio of completely correct tags in the results, as well as recall and precision of the tags. 

Results are shown in Table 2. Note that we had only analyzed the quality of tags on ISB 

spectra in our previous study [11]. By also measuring OPD and PeptideAtlas datasets, we 

empirically proved the accuracy of tags on a variety of datasets. 

Table 2. Statistical results on the quality of the generated tags. “No. of tags per spectrum” shows the average 
number of tags generated per spectrum. “No. of complete correct per spectrum” measures the average number 

of tags identified that are completely correct (i.e. identified with 100% precision). “Complete correct accuracy” 

is the ratio of “completely correct tags” to number of tags on average. The recall and precision results are 
obtained from tags by the GST-SPC algorithm. 

Datasets 
Query 

Size 

Average 

Peptide 

length 

No. of 

Tags per 

Spectrum 

No. of Complete 

Correct per 

Spectrum 

Complete 

Correct 

Accuracy 

Recall Precision 

OPD 202 10.14 7.42 6.01 0.81 0.43 0.43 

PeptideAtlas 44 10.02 9.76 6.83 0.70 0.40 0.36 

ISB 995 19.37 6.19 4.61 0.74 0.36 0.32 

From Table 2, we observed that more than 1/3 of the amino acids in real peptide 

sequences (recall) can be correctly identified by tags. Also, when the tags are generated, 

more than 70% of the tags are completely correct, meaning that the tags generated are 

reliable. Since each tag is at least one amino acid in length, it can also be observed that a 

significant amount of tags are overlapping. For more reliable results in the following 

experiments, only non-overlap tags with high scores (determined by GST-SPC) are used. 

Secondly, we investigate the quality of candidate peptides identified by MPRQ and 

SOM. We analyzed the search distance d on the accuracy of search results on datasets of 

different sizes. Note that similar spectra that overlap on the same 2D point can be 

losslessly retrieved by our algorithm since it has built an index for these overlapping 

spectra. The candidate peptides are scored and ranked by SPC score only. First-rank 

peptide represents the peptide with theoretical spectrum that has the highest SPC score 

against the experimental spectra. Best-match peptide is the peptide among all candidates 

that match with the “real” peptide with the highest precision (recall). 

 
(a) 

 
(b) 

Fig. 2. The effects of increasing distance d on recall and precision on (a) PeptideAtlas dataset (b) ISB dataset. 

Analysis of the search distance d (Fig. 2) show that the recall and precision of best-

match peptides are much higher that those for first-rank peptides, indicating that (i) SPC 

score alone is not a good scoring function; and (ii) a properly designed scoring function 

can improve the identification accuracies significantly. The PeptideAtlas, OPD and ISB 

datasets are datasets of increasing sizes. Results also indicate that for larger datasets, the 

search distance should also be bigger to achieve high recall and precision. Therefore, for 

datasets of large sizes, we used larger search distances. Specificly, we used d=1.0 for 

PeptideAtlas datasets, d=2.5 for OPD datasets and d=3.5 for ISB datasets. Fig. 2(b) also 

shows that as search distance d increases, more candidate peptides are returned increasing 

both recall and precision. However, when d grows beyond the similarity clusters in the 



SOM, not so relevant candidates returned bring down the recall and precision values. 

The average search time per spectrum is less than 11 ms. This is comparable to 

InsPecT (which average 10 ms per spectrum with default settings, but based on smaller 

database), one of the fastest database search algorithms. 

Another important question is, among the candidate sequences, what is the ratio of 

them being identical to the real peptide sequences. We have found hat when we consider 

all of the candidates, the “complete correct accuracy” is much higher; for OPD dataset it 

is 69.5%, PeptideAtlas 63.1% and ISB 65.3%. And if we allow up to two amino acids 

difference from real peptide sequences, the ratios increase to 80.1%, 85.3% and 78.6% 

respectively. Therefore, given a good scoring function, the peptide identification 

accuracy can be significantly increased. As the size of the candidate sequences generated 

by our algorithm is rather small (refer Table 6), we believe these high ratios indicate good 

performance of the SOM and MPRQ as coarse filtering. 

Table 3. Comparison of different algorithms on the accuracies of peptide identification. 
In each column, the “Precision / Recall” values are listed. 

Datasets 
Database 

Size 

Query 

Size 
InsPecT Lutefisk PepNovo 

Our 

Algorithm 

OPD 494,049 202 0.580 / 0.542 0.101 / 0.006 0.232 / 0.186 0.582 / 0.603 

PeptideAtlas 9,421 44 0.801 / 0.389 0.149 / 0.057 0.275 / 0.128 0.521 / 0.457 

ISB 1,248,212 995 0.584 / 0.621 0.011 / 0.022 0.548 / 0.561 0.594 / 0.695 

Subsequently, we compared our algorithm with other algorithms. For our algorithm, 

Sλ scoring function is used, and the results are based on peptides with the best score. The 

results with first rank given by these algorithms were used for analysis. 

We observe from Table 3 that both precision and recall of our algorithm are better 

than Lutefisk and PepNovo (both de novo algorithms). This is reasonable since de novo 

algorithms do not utilize any information from databases. But even when comparing their 

results with the quality of tags generated by our algorithm (Table 2), we notice that the 

quality of tags generated by our algorithm is better than peptide identification results by 

Lutefisk, and comparable with that by PepNovo. Although InsPecT has higher precision, 

our results outperform InsPecT in recall. Specifically, for the OPD dataset, both the 

algorithms have precision of about 0.58, but our algorithm has higher recall. For the 

PeptideAtlas dataset, the precision of our algorithm is much worse than that of InsPecT, 

but the recall is 17% better. For the ISB dataset, both InsPecT and our algorithm have 

similar precision, but recall of our algorithm is higher. This means that our algorithm can 

identify more portion of the real peptide. 

We have also observed that by scoring peptide candidates using Sλ, both precision 

and recall consistently increase (last column of Table 3), compared with only using SPC 

score (Fig. 2). This proves the superiority of Sλ scoring function. 

Experiments on PTM Identification 

PTM identification is of great importance to current mass spectrum analysis. To analyze 

PTMs, we first performed experiments on experimental spectra in silico with artificially 

added PTMs (we call these simulated PTMs). We selected spectra from ISB datasets that 

are annotated to be free of PTMs. For every peptide, the PTM that we had artificially 

added is phosphorylation for every amino acids involved. In the corresponding 

experimental spectrum, we shifted every peak that corresponds to the respective peptide 

fragment according to the restricted ion types ∆
R
. Summary of modifications: 

Modification Amino acid involved Context Mass difference (Da) 

Phosphorylation T,S,Y  PTM +79.97 

Our algorithm is not designed specifically for phosphorylation per se, but can also be 

easily applied to detect other types of PTMs. These can be shown in experiments on the 

detection of PTMs on real datasets, using ISB spectra [19] that contain PTMs but are 



distinct from the “ISB dataset” we used above which do not. It was found that there are 

PTMs in these ISB datasets [15], and their identifications (called UCSD annotation) are 

found at http://www.systemsbiology.org/extra/UCSD_supplemental_identifications.txt. 

There are 551 spectra with at least one PTM identified by InsPecT from a total of 2,799 

ISB spectra. The results of the “UCSD annotation” were treated as ground truth, since 

they are annotated by InsPecT with an annotation of p-value 0.05 or better, indicating 

reliability. 

The UCSD datasets contains those ISB spectra with PTMs identified by InsPecT. 

However, for analysis and comparison purpose, we have also applied different algorithms 

on other ISB datasets for possible identification of new PTMs in these spectra. ISB 

spectra that are different from previously described datasets were selected; we refer to 

this dataset and our annotations as “NN annotation” dataset. This dataset contains 3,000 

spectra. Again, we treat PTMs identified with p-value 0.05 (computed the same way as in 

InsPecT) or better as ground truth. 

Sλ* was used to identify peptides with PTMs. Peptide identification accuracy is 

measured as the percentage of candidate peptides that contain the exact original 

(unmodified) peptide. PTM identification accuracy is measured as the percentage of 

results in which the best-score PTM (Eq. 3) identification is correct, where PTM identifi-

cation is defined as correct if (i) the original peptide is identified correctly and (ii) the 

PTM site and the value of mass shift are identified correctly. For instance, a peptide (with 

PTM) “AS
+80

RK” is identified correctly, if “ASRK” is identified correctly, and the PTM 

site and PTM mass shift (+80 Da) after “S” are identified correctly. 

Firstly, we have analyzed the accuracies of PTM identification on simulated PTMs. 

We used tags of specific lengths for analysis. The results on ISB spectra with simulated 

PTMs are shown in Table 4. 

Table 4. Accuracies (%) of PTM identification from simulated spectra by tags of different lengths. The columns 

with Top k = 1, 2, 3, 4 represent the (peptide / PTM) identification accuracies for top-k. “No limit” means that 
the best-score tags are used without any length limit. “Filtration ratio” is computed as the number of candidates 

after tag filtration over the number of candidates after MPRQ. “Time” is the total time to identify the peptides 

and PTMs for 995 spectra. Results without using tags are also shown. 

Database 

Size 

Query 

Size 

Tag 

length 
Top 1 Top 2 Top 3 Top 4 All 

Filtration 

Ratio 

Time 

(s) 

3 46.7 / 30.2 50.1 / 36.3 62.6 / 40.5 69.2 / 46.5 71.3 / 60.1 0.0148 65.6 

4 56.9 / 34.6 40.5 / 25.6 44.4 / 32.6 51.0 / 39.0 63.3 / 50.0 0.0021 67.5 
No limit 46.8 / 32.9 52.0 / 36.1 58.3 / 43.3 64.4 / 50.1 72.8 / 59.1 0.0491 66.6 

1,248,212 995 

No tag 31.7 / 26.4 35.5 / 26.6 41.1 / 35.2 46.9 / 39.5 56.7 / 40.8 – 70.7 

From the results above, it can be observed that sequence tags of length 3 and 4 are 

able to further filter out candidates from the results of SOM and MPRQ. With reduced 

candidates, the accuracy for PTM identification increased. Compared with results without 

tags, the percentages of search results that contain the exact correct peptide are 

significantly higher. For example, for filtration with tags of length 3, about 46.7% to 

71.3% of original peptides are identified correctly. Increase filtration tags length to 4 

decreases peptide identification accuracies, but using best-score tags without any length 

limit do not show such decrease. PTM identification accuracies show similar patterns. 

These indicate that although longer tags may have lower recall, the best-score tags are of 

high recall, regardless of their length. 

We notice that the process time based on tags of length 4 is greater than that on tags 

of length 3. We think that though longer tags may filter out more candidates, which 

makes later scoring faster, the filtering step itself is more time consuming than those 

based on tags of length 3, so that the total time is longer. Also, we notice that the 

processing time of tags without length limit is shorter than that of the processing time of 

tags with length 4. Since we have observed that the best-score tags are of average length 



> 4 (details not shown), this indicates that the best-score tags (without any length limit) 

can filter out even more candidates, which makes the scoring step faster. 

The InsPecT algorithm (with blind PTM search) is also applied on these spectra with 

simulated PTMs. Results show that both the peptide and PTM identification accuracies 

are not as high as our algorithm. In all of the results (10 identifications per spectrum) 

given by InsPecT, the peptide identification accuracy is around 50%, while the PTM 

identification accuracy is approximately 33%. 

We observed that by comparing candidate peptides with tags, a large ratio of 

candidate peptides that do not match with any tags will be filtered. We have also 

observed that the filtration ratio is small. For instance, the filtration ratio for tags with 

length 3 is 0.0148; for length 4 is 0.0021. This indicates that tags can further reduce the 

number of candidate peptides for further careful examination by Sλ*. 

Experiments on the identification of PTMs on real ISB spectra with “UCSD 

annotation” were also performed (Fig. 3(a)). Since experiments on simulated PTMs 

(Table 4) show that best-score tags with no length limits have the best accuracies, we 

used them here. Again, we treated PTMs identified with p-value 0.05 or better as ground 

truth. Results show that the filtration ratio of our algorithm is 0.062. The peptide 

identification accuracies are 42.0%, 45.7%, 48.2%, 50.6% and 55.5% for Top 1, 2, 3, 4 

and all candidates, respectively; and the PTM identification accuracies are 31.6%, 33.1%, 

34.8%, 40.2% and 41.8% for Top 1, 2, 3, 4 and all candidates, respectively. These values 

are slightly smaller than those on simulated spectra, and we think this is due to the 

different PTM types in real spectrum. 

 

(a)                                                                    (b) 
Fig. 3. The number of PTMs identified by our algorithm (no length limit on tags, Top 1 result) and InsPecT on 

“UCSD annotation” and “NN annotation” datasets. (a) There are 230 PTMs that both algorithms identified on 
“UCSD annotation”. (b) There are 10 PTMs that both algorithms identified on “NN annotation”. 

Apart from the “UCSD annotations” on 2,799 spectra, we have also examined other 

ISB spectra in “NN annotation” on 3,000 spectra (Fig. 3(b)). Again, note that the UCSD 

datasets contains those ISB spectra with PTMs identified by InsPecT. On the other hand, 

the NN datasets contains spectra that are not subject to PTM identification by any 

algorithms before. We applied our algorithm and InsPecT algorithm (with blind PTM 

search) on these spectra; PTMs identification with p-value 0.05 or better are treated as 

ground truth. On these “NN annotation” spectra, InsPecT has identified 51 PTMs (among 

78 peptide identifications with or without PTMs of p-value 0.05 or better) while our 

algorithm (using tags with no length limit) has identified 186 PTMs. Among those 

identified PTMs, 10 are identified by both algorithms. Interestingly, though InsPecT 

algorithm has identified 321 more PTMs in the UCSD annotation, in the NN annotation, 

135 more peptides were identified using our algorithm. We think that this is because of 

the variance of the “UCSD annotation” and “NN annotation” datasets. Even though “NN 

annotation” dataset is selected randomly from ISB dataset, the complex nature of the ISB 

data itself makes such a big difference. 

Listed below are some novel PTMs annotated (predicted) by our algorithm with high 

PTM scores (and low p-values) in “NN annotation” ISB spectra. Some of these annota-

tions have experiment support (see References column), others are completely novel 

annotations. A full list of these novel PTM annotations will be provided upon request. 
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Table 5. Some representative novel PTMs identified by our algorithm. 

Spectra 

(sergei_digest) 
Peptides with PTMs SPTM p-value Notes and References 

A_full_01.3541.3553.2 NFYFQCFNSG-37LDSVLIADVPIEES 0.254 0.0207  

A_full_02.2185.2189.3 G-40IIWGEDTLMEYLENPKK 0.197 0.0148  

A_full_03.3951.3951.2 DVPDARKC+53ACASHVAKVA 0.563 0.0059 Also annotated by Unimod 
[20] without verification 

A_full_05.1020.1020.2 LLKF+1GQEV 0.349 0.0001 [21] 

A_full_07.1737.1741.3 A-16TAQADVVMMETPDELQAAVWEK 0.197 0.0062  

B_full_03.0832.0834.2 NALS+8GNQNLEVWQLRLY 0.333 0.0007  

Efficiency 

One of the most important aspects of our algorithm is that it is very fast. Table 6, repro-

duced from [9], explains. The coarse filtering rate is very low as we only need to compare 

each spectrum against the candidate peptides identified by MPRQ. Compared to the 

tandem cosine coarse filter used in [22] that filters to around 0.5% of the database, our 

algorithm has a better filtering efficiency. 

Table 6. Candidates size, average candidate size and coarse filtering rate. “Candidates size” is the combined 

total results from coarse filtering of the database using the query size as input query points for the MPRQ 
algorithm. “Average Candidate Size” is the average peptide sequence candidates for each spectrum (query). 

“Coarse Filtering Rate” is computed by “average candidate size” over the database size. 

Database Database Size 

(peptides) 

Query 

Size 

Candidates 

Size 

Average 

Candidate Size 

Coarse 

Filtering Rate 

OPD 494,049 202 68,610 339.7 0.069% 

PeptideAtlas 9,421 44 654 14.9 0.158% 

ISB 1,248,212 995 101,443 102.0 0.008% 

After database search, the scoring of candidate peptides by Sλ scoring function is 

approximately 5 seconds per spectrum, while Sλ* scoring function needs about 20 

seconds for each spectrum. As comparison, for InsPecT the running time of blind search 

of PTMs is approximately 1 second per spectrum per megabyte of database (as stated in 

InsPecT documentation, and verified by our experiments). Relatively, our algorithm is 

very efficient on PTM identifications. 

The program for our algorithm is available upon request. 

4. Conclusion and Future Work 

This paper focused solely on the peptide identification problem, striving to achieve high 

identification accuracy and efficiency for peptide identification, especially for peptides 

with PTMs. An algorithm that transforms spectra similarity to similarity of vectors, and 

then to metric similarity (distance) of 2D points on a plane was used. The vectors are 

input to SOM to produce an indexable map in which MPRQ could use to find candidate 

peptides efficiently. Candidate peptides are fine-filtered with proposed scoring functions 

(Sλ for peptide identification and Sλ* for identification of peptides with PTMs), which 

compare each of them with experimental spectrum and highly reliable tags generated by 

our GST-SPC algorithm. 

Experiments lent strong support to the fact that by using Sλ scoring function that take 

into consideration score based on tags, the accuracies (precision and recall of the results) 

of our algorithm are high, yet still maintaining efficiency, especially for large batch 

processes. By using Sλ* scoring function that take into consideration of mass shifts 

caused by PTMs, our algorithm can accurately identify peptides with PTMs. The novel 

PTMs that are predicted by our algorithm with high scores are interesting for manual 

verifications later in wet laboratories. 

Recently, we noticed an algorithm Popitam (http://www.expasy.org/tools/popitam) 

that has similar scheme as ours. In Popitam, the scoring function is based on genetic 



programming (machine learning), which are quite different from our scoring function. 

Comparison of the two algorithms may be of interest in the future. 
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