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Motivation.
Although protein structure prediction has made great progress in recent years, a

protein model derived from automated prediction methods is subject to various errors.
As methods for structure prediction develop, a continuing problem is how to evaluate
the quality of a protein model, especially to identify some well predicted regions of the
model, so that the structure biology community can benefit from automated structure
prediction. It is also important to identify badly-predicted regions in a model so that
some refinement measurements can be applied to.
Results.

We present a novel technique FragQA to accurately predict local quality of a
sequence-structure (i.e., sequence-template) alignment generated by comparative mod-
eling (i.e., homology modeling and threading). Different from previous local quality as-
sessment methods, FragQA directly predicts cRMSD between a continuously aligned
fragment determined by an alignment and the corresponding fragment in the native
structure. FragQA uses an SVM (Support Vector Machines) regression method to per-
form prediction using information extracted from a single given alignment. Experimental
results demonstrate that FragQA performs well on predicting local quality. More specif-
ically, FragQA has prediction accuracy better than a top performer ProQres [18]. Our
results indicate that (1) local quality can be predicted well; (2) local sequence evolution-
ary information (i.e., sequence similarity) is the major factor in predicting local quality;
and (3) structure information such as solvent accessibility and secondary structure helps
improving prediction performance.

Keywords: Local quality assessment; SVM regression; sequence-structure alignment.

1. Introduction

The biennial CASP (Critical Assessment of Structure Prediction) [12–15] events
have demonstrated that the three-dimensional structures of many new target pro-
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teins can be predicted at a reasonable resolution, although in most cases, the pre-
dicted models are still not accurate enough for functional study. In particular, com-
parative modeling methods can generate reasonably good models for approximately
70% of target proteins in recent CASP events. Even for those FM (free modeling)
targets, a structural model generated by protein threading usually contains some
good local regions, although the overall conformation of the model is incorrect [21].

As methods for structure prediction develop, a continuing problem is how to
evaluate the quality of a protein model in details. The challenge is to distinguish
a good model from a bad one (as referred to global quality assessment) as well as
correctly-predicted residues from badly-predicted ones (as referred to local quality
assessment). To make automated structure prediction really useful for the structure
biology community, a reliable model quality evaluation program is indispensable
when hundreds of models are predicted for a single target protein. There are a vari-
ety of global quality prediction methods [3, 5, 10, 17, 19]. This kind of programs can
be used to pick up the best few from a bunch of models generated by different struc-
ture prediction programs, which enables structure biologists to focus on the most
possible models. In addition, a common practice taken by some human predictors or
consensus-based automatic predictors to further improve the accuracy of structure
prediction is to identify correctly-predicted regions from each structural model and
then assemble them together to obtain a better overall model for the target protein;
for example, 3D-SHOTGUN [4] and TASSER [21] are two such top-scoring methods.
This kind of refinement methods often perform better than the classical threading-
based protein structure prediction methods. The key factor underlying the success
of these refinement methods is identifying the correctly-predicted regions in a struc-
tural model. Besides being used to examine and improve the accuracy of a protein
model, local quality prediction methods can also be used to recognize functional
residues in a protein model [1, 16].

Local quality assessment methods are either structure-based or alignment-based.
ERRAT [2] is a program that uses only structure information. This program em-
ploys a Gaussian error function based on the statistics of non-bonded interactions to
predict incorrect regions in a protein model. These methods can recognize incorrect
structural regions which obviously deviate from their natives. There are also some
programs using alignment information to predict local quality. Tress et al developed
a method to evaluate local quality of a given alignment and tested the method on
alignments generated by five comparative modeling methods [16]. The results in-
dicate that an alignment position with high profile-derived alignment score often
has good quality. Wallner et al developed four neural network-based methods [18]
to identify correct regions in a protein model, using either structure information
or alignment information: ProQres, ProQprof, ProQlocal and Pcons-local. ProQres
uses structure information in a protein model; while ProQprof uses alignment infor-
mation such as profile-profile scores, information scores, and gap penalty. ProQlocal
combines ProQres and ProQprof together to achieve a better performance. Pcons-
local is a consensus-based local quality predictor, taking as input protein models
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generated by different structure prediction programs.
Our contribution. In this paper, we present a novel method FragQA to accu-

rately predict local quality of a sequence-structure alignment. Distinguishing itself
from its peers, FragQA predicts the quality of an ungapped region (referred to as
fragment) in the alignment. The quality is measured using the cRMSD (i.e., Cα-
based RMSD) between two fragments corresponding to the ungapped region: one is
the native structure of the region and the other is the predicted structure. Further-
more, statistical significance is introduced to improve FragQA’s performance. As op-
posed to cRMSD, statistical significance can cancel out the impact of region length.
FragQA utilizes only information in a single alignment. Structure information in
the alignment-derived protein model is not directly used. However, in calculating
features from an alignment, we use structure information in the template.

2. Methods

2.1. Problem description

This paper studies the following problem: Given a sequence-structure alignment,
what is the quality of an ungapped region in this alignment? The quality is de-
fined as the cRMSD between the native and the predicted local conformations of
the ungapped region, denoted as “cRMSD of an ungapped region”, after they are
optimally superimposed. Please note that the two conformations are superimposed
without taking into consideration other parts of the alignment. The reason to do
this local superimposition is to eliminate the impact by some badly predicted re-
gions of the model, and evaluate how truly similar a region in a model is to the
native one. The alignment is cut into ungapped regions at gap positions.

2.2. Development of FragQA

Our SVM regression model uses only features extracted from a single sequence-
template alignment, generated by any threading program. To exploit the evolu-
tionary information of proteins, we utilize sequence profile of both target protein
and template protein in calculating features. The sequence profile of the template,
denoted by PSSMtemplate (position specific mutation matrix), is generated by PSI-
BLAST with five iterations; PSSMtemplate(i, a) encodes mutation information for
amino acid a at position i of the template. We also apply PSI-BLAST with five iter-
ations to generate position specific frequency matrix, PSFMtarget, for each target
protein; PSFMtarget(j, b) encodes occurring frequency of amino acid b at position
j of the target. Let A(i) denote the aligned sequence position of template position
i, and Ttemp denote the set of template positions belonging to an aligned region. We
studied a variety of features extracted from the alignment and later we will discuss
their relative importance. In summary, we tested the following features in FragQA:

(1) Mutation score: Mutation score measures the sequence similarity between two
segments of an aligned region: one corresponds to the target protein and the
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other to the template. The mutation score (Sm) of a region is calculated as:

Sm =
∑

i∈Ttemp

∑
a

PSFMtarget(A(i), a) × PSSMtemplate(i, a) (1)

(2) Environmental fitness score: This score measures how well to align one target
protein region to the environment where the template protein region lies in.
The environment consists of two types of local structure features.

• Three types of secondary structure are used: α-helix, β-strand, and loop.
• Solvent accessibility: There are three levels: buried (inaccessible), interme-

diate, and accessible. The Equal-Frequency discretization method is used
to determine boundaries between these three levels. The calculated bound-
aries are 7% and 37%.

Thus, there are nine environment combinations (denoted as env) in total. Let
F (env, a) denote the environment fitness potential for amino acid a and environ-
ment combination env, which is taken from PROSPECT-II [9]. The environment
fitness score (Se) for an aligned region is calculated as:

Se =
∑

i∈Ttemp

∑
a

PSFMtarget(A(i), a) × F (envi, a) (2)

(3) Secondary structure score: In addition to secondary structure information en-
coded in environmental fitness score, we also use SS(i, A(i)), the secondary
structure difference between position i in template and position A(i) in tar-
get, to measure the quality of an ungapped region from another aspect. We
use PSIPRED [7] to predict the secondary structure of the target protein.
Let α(j), β(j) and loop(j) denote the predicted confidence levels of α-helix,
β-sheet and loop at sequence position j, respectively. If the secondary struc-
ture type at template position i is α-helix, then SS(i, A(i)) =α(A(i)) −
loop(A(i)). If the secondary structure type at template position i is β-sheet,
then SS(i, A(i)) =β(A(i)) − loop(A(i)). Otherwise, we set SS(i, A(i)) to be 0.
The secondary structure score (Sss) of an ungapped region is calculated as:

Sss =
∑

i∈Ttemp

SS(i, A(i)) (3)

(4) Contact capacity score: Contact capacity potentials describe the hydrophobic
contribution of free energy, measured by the capability of a residue making a
certain number of contacts with other residues in the protein. Two residues
are in physical contact if the spatial distance between their Cβ atoms (Cα for
glycine) is smaller than 8Å. Let CC(a, k) denote the contact potential of amino
acid a having k contacts. CC(a, k) is calculated by statistics on PDB as:

CC(a, k) = −log
N(a, k)N
N(k)N ′(a)

(4)

where N(a, k) is the number of amino acid a with k contacts; N(k) is the number
of residues with k contacts; N ′(a) is the number of amino acid a; and N is the
total number of residues in PDB. Let C(i) denote the number of contacts at
template position i. The contact capacity score (Sc) is calculated as:
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Sc =
∑

i∈Ttemp

∑
a

PSFMtarget(A(i), a) × CC(a, C(i)) (5)

(5) Aligned region length: The cRMSD between two fragments of an ungapped
region is relevant to its length. The longer the ungapped region is, the more
likely larger the cRMSD is.

(6) Z-score: Z-score measures the overall quality of a sequence-structure alignment.
An alignment with a good Z-score likely contains more good ungapped regions.
In this paper, Z-score is predicted alignment accuracy normalized by target
protein size, and calculated by Xu’s SVM module [19].

(7) Alignment topology: We test 3 separate topology features: template protein size,
target protein size, alignment length (i.e., the number of aligned positions).

(8) Sequence identity: We use the fraction of identical residues in the whole align-
ment to measure the sequence identity.

Meanwhile, feature (1)-(5) are specific to the ungapped region; while feature (6)-(8)
are for the whole sequence-structure alignment.

3. Results

3.1. FragQA Training

Training and Test Data. Choosing good training and test sets is one of the key
steps in objectively evaluating the performance of a machine learning method. We
test our method on several threading methods, such as RAPTOR [20] (with three
different threading algorithms), PROSPECT-II [9], and GenTHREADER [8]. The
results are similar. In this paper, we only show the results on alignments generated
by RAPTOR default threading algorithm (with NoCore option). Our training and
test data is from recent CASP7 event. There are 104 target proteins in CASP7 while
only 92 of them have native structures published after the event. Ninety-one target
proteins are left after we removed redundancy at 40% sequence identity level using
CD-HIT [11]. Only T0346 is removed because it shares 71% sequence identity with
T0290. To do a cross validation, the 91 target proteins are randomly divided into
four sets. Here, we took top 10 alignments generated by RAPTOR for each target
protein. If one target protein belongs to a set, then all of its 10 alignments belong
to this set. Each alignment is cut into a set of ungapped regions with cutting points
being at the gap positions. The ungapped regions containing less than 5 residues
are not considered in our experiments. Table 1 shows the statistics on the four sets.
It is clear that the four data sets are very similar.
Training. We used the software SVM-light [6] with RBF (radial basis function) ker-
nel to train FragQA. The parameter gamma in the RBF kernel function is trained
using the leave-one-out error estimation method. Other parameters are set to their
default values or calculated automatically by SVM-light. Experimental results in-
dicate that the RBF kernel with its gamma parameter set to 0.2 can yield the best
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Table 1. Statistics on the four data sets. Column 2-5 show the number of target
proteins, the number of fragments, the average cRMSD of the fragments, and the
standard deviation of cRMSD of each set, respectively.

Set Name # of proteins # of fragments Average cRMSD Deviation

1 23 1347 2.93Å 1.50Å

2 22 1108 2.57Å 1.46Å

3 23 1519 2.86Å 1.47Å

4 23 1461 2.73Å 1.49Å

training performance. Other kernel functions such as linear kernel and polynomial
kernel are also tested, but they cannot yield as good performance as the RBF kernel.

We executed a 4-fold cross validation. Each time we used three of the four data
sets as the training set, and the other one for testing.

3.2. Performance of FragQA

After studying the relative importance of the 8 features, which will be discussed
later, we encoded following features into FragQA: (1) length of the ungapped re-
gion; (2) Z-score of the whole alignment; (3) mutation score of the region; (4) en-
vironmental fitness score of the region; and (5) secondary structure score of the
region.

3.2.1. Comparing to ProQres

As far as we know, FragQA is the first method to directly predict the local fragment
quality. Thus, there is no existing method for us to compare with. However, there are
some well-known methods that predict local quality for each residue. So it is possible
to convert the prediction on residues by such methods to a prediction of a fragment.
Since the objective function of FragQA is cRMSD, to fairly evaluate FragQA, we
compared FragQA to a top-notch method ProQres [18], which uses a residue-based
cRMSD-related objective function. We tested all three available methods by ProQ-
group in terms of the ability to predict fragment quality : ProQlocal, ProQres,
and ProQprof. ProQres yielded the best results (slightly better than ProQlocal and
ProQprof in terms of fragment cRMSD prediction). Thus, in this paper, we will
compare FragQA to ProQres. The objective function of ProQres is Di = 1/(1+ (di)

2

(d0)2
)

[18], where di denotes the cRMSD at position i, and d0 is set to
√

5. From the
prediction of ProQres, we can calculate di from Di for each residue of a fragment,

then use cRMSD =

√
1
n

n∑
i=1

di
2 to compute the predicted cRMSD by ProQres for

the fragment, where n is the length of the fragment. Note cRMSD calculated by
this way has a slightly different meaning to the one used by FragQA, because this
cRMSD is based on the optimal superposition between the whole target and the
template on all similar regions, while FragQA’s cRMSD is based on the optimal
superposition between two fixed regions. However, the superposition between two
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aligned regions determined by the optimal superposition of the whole target and
template is usually very similar to the optimal one between the two regions, because
aligned regions are usually very similar. Thus, FragQA and ProQres are comparable
from this point of view.

3.2.2. Prediction Error and Correlation Coefficient of FragQA

The prediction error is defined as the difference between the predicted cRMSD
values and the real ones. Table 2 lists the average prediction errors of FragQA
and ProQres, under different cRMSD thresholds on the four test sets, together
with average fraction of fragments with real cRMSD under such thresholds, and
the correlation coefficient between the predicted and real cRMSD by FragQA and
ProQres on the four test sets. As shown in this table, the prediction error of FragQA
ranges from 0.9Å to 1.6Å, while the error of ProQres ranges from 0.9Å to 2.4Å. In
most cases, the prediction error of FragQA is much smaller than that of ProQres.
In fact, when there is no restriction on cRMSD, the error of FragQA is on average
0.5Å smaller than that of ProQres. The smallest error of FragQA happens when
cRMSD threshold is set to 3Å, which means FragQA is most accurate when dealing
with fragments with cRMSD to native smaller than 3Å. However, when the real
cRMSD is very small (≤ 1Å), the prediction error tends to be big. In other word, it
is hard to obtain an accurate prediction when cRMSD is very small. As indicated in
Table 2, the correlation coefficient between predicted cRMSD by FragQA and the
real cRMSD is about 0.5 for each test set, while that of ProQres is at most 0.22.

Table 2. The prediction error of FragQA (denoted as FQA) and ProQres (denoted as PQr),
under different cRMSD thresholds on the four test sets, average fraction of fragments with real
cRMSD under such thresholds, and the correlation coefficient of FragQA and ProQres.

cRMSD Test Set 1 Test Set 2 Test Set 3 Test Set 4 Ave. Fraction
FQA PQr FQA PQr FQA PQr FQA PQr

≤1Å 1.36 1.50 1.57 1.10 1.41 1.35 1.54 1.30 14%
≤2Å 1.11 1.06 1.28 0.90 1.08 1.01 1.18 1.01 42%
≤3Å 1.00 1.84 1.16 1.12 0.94 0.98 1.04 1.01 69%
≤4Å 1.03 1.79 1.12 1.23 0.97 1.21 1.04 1.13 85%
≤5Å 1.12 1.88 1.14 1.34 1.06 1.37 1.09 1.34 92%
≤6Å 1.20 1.98 1.19 1.46 1.16 1.50 1.20 1.51 95%
≤7Å 1.33 2.13 1.26 1.57 1.22 1.58 1.25 1.62 97%
≤8Å 1.41 2.20 1.32 1.68 1.29 1.67 1.31 1.72 98%
≤9Å 1.48 2.27 1.36 1.73 1.37 1.78 1.36 1.77 99%
≤10Å 1.57 2.37 1.39 1.77 1.41 1.84 1.41 1.83 99%

Correlation
Coefficient 0.51 0.07 0.46 0.22 0.50 0.22 0.48 0.16 -

3.2.3. Sensitivity and Specificity

Given a cRMSD threshold, sensitivity is calculated as the fraction of ungapped
regions with real cRMSD smaller than the threshold, that are also predicted to be
smaller than the threshold. Specificity measures the fraction of ungapped regions
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with predicted cRMSD under a given threshold, that indeed have cRMSD smaller
than the threshold. Figure 1 illustrates the sensitivity and specificity of FragQA
and ProQres under various cRMSD thresholds on the four test sets.
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Fig. 1. Comparison of sensitivity and specificity between FragQA and ProQres under different
cRMSD thresholds on the four test sets. Circle dotted line: sensitivity of FragQA, cross dotted
line: sensitivity of ProQres, circle solid line: specificity of FragQA, cross solid line: specificity of
ProQres. Please see Section 3.2.3 for the definition of sensitivity and specificity.

As shown in Figure 1, there is no obvious difference between sensitivity or speci-
ficity of FragQA and ProQres when cRMSD is larger than 4Å. When cRMSD is
smaller than 4Å, the sensitivity of ProQres is higher than that of FragQA for most
cases, while the specificity of FragQA is higher than that of ProQres. In particular,
when cRMSD threshold is 2.5Å, approximately 70% of ungapped regions with pre-
dicted cRMSD by FragQA under 2.5Å indeed have cRMSD less than 2.5Å, while
70% of ungapped regions with real cRMSD under this threshold are predicted by
FragQA correctly. However, the sensitivity of ProQres on cRMSD 2.5Å is about
80%, while the specificity is only 50%. This implies that ProQres has a strong trend
to predict the cRMSD of a fragment to be smaller than the real value. This makes
ProQres to have a high sensitivity while having a low specificity. As shown in Figure
1, the specificity curve of ProQres is not smooth sometime, nor it is monotonous.
It is clear that for both FragQA and ProQres, the sensitivity curve increases much
more quickly than the specificity curve. However, all curves are quite low when
cRMSD is small. A possible explanation is that when the ungapped region is short,
a small cRMSD does not necessarily mean that this region has good quality. There-
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fore, it is hard for FragQA to predict cRMSD accurately under such cases. Later
in this paper, we will replace cRMSD with its statistical significance and show that
when statistical significance is high, even as high as 1, FragQA can still yield a good
prediction.

3.2.4. Feature Selection for FragQA

It is important to detect which features are closely relevant to the prediction ca-
pability of FragQA since unrelated features may introduce extra noise. We studied
the importance of each feature by excluding it from the feature set, training a new
FragQA, and then testing the performance of this new predictor. Thus, we can com-
pare the performance resulting from different sets of features and then detect the
important features.

Table 3. Sensitivity of FragQA with different feature sets. The 2nd column lists the sensitivity of FragQA
with all features. Starting from the 3rd column, each column lists the sensitivity when one feature is
removed. Len: region length, Sz : Z-score, Sm: mutation score, Se: environmental fitness score, Sc: contact
capacity score, Sss: secondary structure score, Topo: topology features, SeqId: sequence identity.

cRMSD All No Len No Sz No Sm No Se No Sc No Sss No Topo No SeqId

≤1Å 0.12 0 0.04 0.09 0.11 0.13 0.13 0.12 0.12

≤1.25Å 0.16 0.01 0.08 0.15 0.14 0.22 0.18 0.15 0.16

≤1.5Å 0.25 0.04 0.16 0.19 0.22 0.27 0.26 0.25 0.25

≤1.75Å 0.35 0.12 0.27 0.27 0.29 0.34 0.36 0.35 0.34

≤2Å 0.42 0.21 0.38 0.35 0.39 0.48 0.42 0.42 0.43

≤2.25Å 0.50 0.42 0.52 0.46 0.48 0.58 0.51 0.51 0.51

≤2.5Å 0.62 0.61 0.64 0.55 0.56 0.65 0.63 0.62 0.62

≤2.75Å 0.70 0.74 0.73 0.65 0.67 0.74 0.71 0.69 0.69

≤3Å 0.76 0.82 0.79 0.74 0.75 0.81 0.77 0.76 0.76

≤3.25Å 0.83 0.90 0.86 0.82 0.80 0.85 0.84 0.83 0.83

≤3.5Å 0.88 0.94 0.90 0.88 0.84 0.89 0.89 0.88 0.88

Table 4. Specificity of FragQA with different feature sets. The 2nd column lists the specificity of FragQA
with all features. Starting from the 3rd column, each column lists the specificity when one feature is
removed. Len: region length, Sz : Z-score, Sm: mutation score, Se: environmental fitness score, Sc: contact
capacity score, Sss: secondary structure score, Topo: topology features, SeqId: sequence identity.

cRMSD All No Len No Sz No Sm No Se No Sc No Sss No Topo No SeqId

≤1Å 0.19 0 0.10 0.17 0.16 0.32 0.17 0.18 0.18

≤1.25Å 0.28 0.22 0.20 0.27 0.22 0.43 0.27 0.28 0.28

≤1.5Å 0.42 0.23 0.37 0.35 0.36 0.49 0.41 0.41 0.42

≤1.75Å 0.52 0.41 0.51 0.46 0.47 0.57 0.51 0.52 0.52

≤2Å 0.59 0.48 0.58 0.53 0.57 0.65 0.56 0.59 0.60

≤2.25Å 0.64 0.56 0.64 0.60 0.62 0.68 0.63 0.64 0.64

≤2.5Å 0.72 0.63 0.70 0.66 0.69 0.73 0.70 0.72 0.72

≤2.75Å 0.78 0.67 0.75 0.73 0.76 0.78 0.77 0.77 0.78

≤3Å 0.79 0.70 0.77 0.77 0.80 0.79 0.79 0.79 0.79

≤3.25Å 0.82 0.75 0.80 0.81 0.83 0.82 0.80 0.82 0.82

≤3.5Å 0.86 0.79 0.84 0.83 0.85 0.86 0.84 0.86 0.86

Tables 3 and 4 list the sensitivity and specificity of FragQA with different sets
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of features under different cRMSD thresholds on test set 1. The results are similar
on other test sets. There is no obvious difference among different sets of features
when cRMSD threshold is larger than 3.75Å. As shown in these two tables, if we
remove the aligned region length, the performance of FragQA will drop obviously,
except for cRMSD threshold larger than 2.75Å, the sensitivity of FragQA without
fragment length is a little higher than that with all features. This complies with
a fact that cRMSD itself is closely related to the length of an ungapped region.
Removing mutation score or the overall Z-score will also have an obvious reduction
on the performance of FragQA, except for cRMSD larger than 2.25Å, removing
Z-score will increase sensitivity slightly and have no obvious influence on speci-
ficity. This also makes sense: mutation score measures the sequence similarity in
the aligned region and Z-score evaluates the overall quality of the alignment. An
alignment with good overall quality often contains good aligned regions. However,
when the overall quality of an alignment is poor (Z-score is low), the fragments can
be either good or bad. In such case, Z-score will not be an influential factor any
more. Removing environmental fitness score will decrease both the sensitivity and
specificity. Surprisingly, removing contact capacity score will increase both sensitiv-
ity and specificity. This implies contact score is a noise feature. On the other hand,
removing secondary structure score will decrease the specificity but increase the sen-
sitivity slightly. Removing any other features, such as alignment topology features
and sequence identity feature, does not obviously deteriorate either sensitivity or
specificity. Thus, the final version of FragQA uses the following features: (1) aligned
region length; (2) overall alignment Z-score; (3) mutation score; (4) environmental
fitness score; and (5) secondary structure score. Meanwhile, mutation score, Z-score
and the region length are the most important factors in quality prediction.

3.2.5. Statistical Significance

The cRMSD between the predicted structure of an ungapped region and its native is
closely relevant to the length of the region. Thus, a 5-residue ungapped region with
3Å cRMSD may not be better than a 15-residue region with 4Å cRMSD. To better
evaluate the quality of a region, we calculate the statistical significance of its cRMSD
to reduce the bias introduced by region length. To calculate statistical significance,
statistical distribution of cRMSD for a given region length is empirically calculated
as follows. For a given region length, we randomly sampled 10,000 pairs of fragments
of this length from PDB30 and then calculated their cRMSDs. PDB30 is a subset of
PDB, in which any two proteins share no more than 30% sequence identity. As shown
in Figure 2(a), the mean of cRMSD increases clearly with respect to the length, but
the standard deviation increases much more slowly. The cRMSD distribution looks
like a normal distribution (figure not shown). For a given ungapped region with
length l and (real or predicted) cRMSD r, its statistical significance (denoted as
StatSig) is calculated as follows:
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StatSig =
#random pairs of length l with cRMSD ≥ r

10, 000
(6)

Thus, the smaller the cRMSD is, the larger its statistical significance is.

We calculated the sensitivity and specificity of FragQA in terms of statistical
significance in a way similar to that calculates them in terms of cRMSD. For each
statistical significance threshold varying from 0 to 1, the sensitivity is defined as the
percentage of ungapped regions with real statistical significance larger or equal than
the threshold, that also have predicted values larger or equal than the threshold. The
specificity is defined as the percentage of ungapped regions with predicted signifi-
cance larger or equal than the threshold, that have real statistical significance better
or equal than the threshold. Figure 2(b) illustrates the sensitivity and specificity of
FragQA in terms of statistical significance on test set 1. Results are similar on other
three sets. As shown in this figure, when statistical significance is 0.8 (about 81%
fragments in our test sets have such values), both the sensitivity and specificity is
around 90%. Even when statistical significance threshold is 1 (about 48% fragments
in our test sets have this value), the sensitivity is 78%, and the specificity is 88%.

We also studied the prediction error and correlation coefficient of FragQA in
terms of statistical significance. The prediction error increases from 0.02 to 0.16
when the statistical significance threshold decreases from 1 to 0. Recall that it is hard
for FragQA to predict cRMSD accurately when cRMSD is small, this result implies
that FragQA is able to predict statistical significance well on high-quality fragments.
On the other hand, the correlation coefficient of FragQA on each set in terms of
statistical significance is higher than 0.60. This means statistical significance is
probably a better way to measure quality of a fragment. We further compared
FragQA to ProQres in terms of statistical significance. FragQA also outperforms
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Fig. 2. (a) Mean (circle solid line) and standard deviation (point dotted line) of cRMSD for
random region sets with length from 5 residues to 50 residues. (b) FragQA’s sensitivity (circle
solid line) and specificity (cross dotted line) in terms of statistical significance on test set 1. Please
see Section 3.2.5 for the definitions of sensitivity and specificity.
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ProQres on prediction error, correlation coefficient, and specificity, but is not as
good as ProQres on sensitivity (data not shown here).

4. Discussion

To the best of our knowledge, FragQA is the first program that directly predicts
the quality of an ungapped region in an alignment. Currently FragQA utilizes only
alignment information in a single alignment, although some structure information
from the template is also taken into consideration. We plan to further improve the
method along the following avenues: 1) Combine structure information in a protein
model with alignment information; and 2) Utilize various alignments generated by
independent threading programs so that consensus information can be used to boost
prediction performance.

Although our experiments used alignments generated by RAPTOR as data
source, FragQA can take as input alignments generated by any comparative model-
ing methods, since FragQA is totally independent of threading methods. We bench-
marked FragQA using RAPTOR’s results in CASP7 because CASP7 target protein
structures were published only recently. Most CASP7 target proteins have low se-
quence similarity with proteins in PDB. The template database used by RAPTOR
for CASP7 was generated before any CASP7 target structures were deposited into
PDB. This can reduce bias introduced by template database to its minimum level.

A potential application of FragQA is to identify high-quality regions in an align-
ment. These regions can often cover a large portion of the target protein even if
it is a hard target and thus, they can be re-assembled to obtain a better overall
structural model. For example, Zhang-server [21] is the best automated server in
CASP7. It first cuts a threading-generated alignment into some ungapped regions
and then rearranges the physical orientations of these regions. Zhang-server uses
all the ungapped regions without considering their quality. A further improvement
over Zhang’s method is to first predict the quality of each region and then refold
only those high-quality regions to obtain a better structural model.

5. Conclusion

This research develops a novel local quality predictor, FragQA. Experimental re-
sults on the CASP7 data set demonstrate that FragQA performs well, better than a
top-notch predictor ProQres. Our experimental results indicate that local sequence
evolutionary information is the major factor in predicting local quality. Other infor-
mation such as secondary structure and solvent accessibility also helps improving
prediction accuracy.
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