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A conservative parametric approach to motif significance analysis
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We suggest a novel, parametric, approach to estimating the significance of the output of
motif finders. Specifically, we rely on the good fit we observe between the 3-parameters
Gamma family and the null distribution of motif scores. This fit was observed across
multiple motif finders, background models and scoring functions. Under this parametric
assumption we compute and show the utility of a conservative confidence interval for the
p-value of the observed score. Since our method relies on the 3-parameters Gamma fit it
should be applicable to a variety of finders.

1. Introduction

The identification of transcription factor binding sites, and of cis-regulatory el-
ements in general, is an important step in understanding the regulation of gene
expression. To address this need, many motif-finding tools have been described that
can find short sequence motifs given only an input set of sequences. The motifs
returned by these tools are evaluated and ranked according to some measure of sta-
tistical over-representation, the most popular of which is based on the information
content or entropy [19] (see [3] for a recent comparative review).

Unfortunately, the area of motif significance analysis has lagged considerably be-
hind the extensive development of tools for motif finding. Consider for example the
popular profile or PWM (position weight matrix) based finders such as MEME [2],
CONSENSUS [5] and the various approaches to Gibbs sampling (e.g. [8], [12], [6]).
Many of these tools do not offer any significance evaluation at all ∗ while others, no-
tably MEME and CONSENSUS, rely on the E-value. Introduced originally in this
context as the “expected frequency” [5] it is the expected number of random align-
ments of the same dimension that would exhibit an entropy score, or information
content [19], that is at least as high as the score of the given alignment.

While a step in the right direction the E-value has significant shortcomings.
First the E-values are currently only computed for the entropy score. The lat-
ter tacitly assumes the somewhat unrealistic, albeit popular, iid (independent and
identically distributed) model for the background. The problem is that if the back-
ground sequences are generated using a more realistic model one quickly encounters

∗Note that this problem differs from that of scanning sites with a known PWM, e.g., [20].
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examples where ranking by the entropy score, or equivalently by the E-value, con-
sistently yields sub-optimal motifs. Second, even when computed correctly [10] it
can at times be conservative to the point where it is of no value [13]. This paper
offers an alternative, parametric, approach to evaluate the significance analysis. Un-
like the E-value, which only works for the entropy score assuming an iid model, our
method works reasonably well for all combination of scores and background models
we looked at.

Following the recommendation of [13] our new significance estimation takes into
account the finder’s specific performance. It hinges on an observation we previously
made that the 3-parameter Gamma†, or 3-Gamma for short, appears to fit very
well Ff , the empirical distribution of the entropy score (under an iid background
model) of several finders f . Here we first verified that this good fit extends to
every combination of motif finder (MEME, CONSENSUS, many versions of Gibbs
including Markov aware ones) and background model (iid or genomic samples) that
we looked at.

Once we identify the parametric family of the null distribution of the score, Ff ,
we can use a parametric approach to evaluate the significance of the score. More
precisely, by running our finder f on, say n = 20, random datasets (of the same
dimension as the original input but from the assumed null distribution) we get a
sample of size n from Ff . We can then fit a 3-parameter Gamma to this sample of
scores and use the estimated parameters to obtain an estimation of the p-value of the
observed score s. For the kind of parameters we are looking at (the shape parameter
a > 1) this point estimator can be shown to be consistent [18] (i.e. it converges to
the estimated p-value as n →∞). However this consistency is an asymptotic result
and for small a sample size such as n = 20 this statistic can grossly over-estimate
the significance of the observed score. One might be tempted to simply increase
n to get a more reliable estimate, however that would increase the runtime of the
finder by a factor of n. Thus in many cases we cannot realistically assume that we
have access to a much larger sample size.

Here we complement the naive estimator by providing a conservative confidence
interval for the estimated p-value. Conceptually we do so by first finding Θ, a 3-
dimensional confidence set of the three estimated parameters of the distribution.
We then maximize 1−Fθ(s) over all θ ∈ Θ where Fθ(s) is the distribution function
of a 3-Gamma with parameters θ and s is the observed score. While the idea itself is
rather straightforward its implementation faces several difficulties which we had to
overcome. In particular, how does one finds such 3-dimensional confidence sets and
how can one guarantee a reasonably good maximization. These issues are discussed
in more details below. The bottom line is that our significance evaluation is quite

†The distribution function of a 3-parameters Gamma with θ = (a, b, µ) is a given by Fθ(s) =
FΓ(a,b)(s− µ) where FΓ(a,b) is the Gamma distribution with it usual shape and scale parameters.
We previously referred to it as a shifted-Gamma but a more standard definition is a 3-parameters
Gamma where µ is the location parameter [7].



July 24, 2007 23:27 WSPC - Proceedings Trim Size: 9.75in x 6.5in paper

3

robust and should be applicable to many other combinations of scoring functions,
motif finders and background models. To date no such general method is available
except for a naive Monte Carlo estimation of the significance by directly comparing
the observed score s to a random sample generated the same way we generate it. In
the Section 7 below we compare our method with this as well as other significance
evaluation methods.

2. The parametric family of the distribution of a motif finder’s
score

In [13] we showed that, especially in twilight zone motif searches, taking into account
the performance of the specific motif finder that is considered yields a more reliable
significance analysis. Thus, our new significance analysis attempts to estimate the
distribution of the optimal score reported by the specific finder f which we denote
Ff (or simply F ). While in principle F can be estimated through extensive Monte
Carlo simulations it is not in general a feasible solution. In particular F is not really
a single distribution but rather an infinite number of distributions Fα, one per each
set of values α of several relevant parameters such as: the size of the input sample,
the finder’s search parameters and the background model (whose parameters might
be estimated from the sample). In practice this could mean we need to estimate
from scratch a different Fα every time we run our finder which would present a
generally unacceptable cost. However, if you know all the different distributions Fα

belong to some parametric family then you only need to estimate the parameters
of Fα rather than the entire distribution.

We previously mentioned that under the iid background model the null dis-
tribution of the optimal entropy score reported by several motif finders follows a
3-Gamma curve [13]. Interestingly, additional experiments we conducted using other
scores‡ as well as using the fairly realistic genomic background§ indicate this result
is fairly general: for all combinations of finders/scores and samples that we tested
we found that the 3-Gamma family provides a fairly good fit to the empirical data.
A couple of those fits are displayed in Figure 1.

At this point we do not know why the 3-Gamma family offers such good fits to
these finder-specific distributions. Regardless, in what follows we assume these dis-
tributions do indeed belong to the 3-Gamma family. This is somewhat analogous to
BLAST’s assumption of a Gumbel distribution when analyzing gapped alignments.
For while there exists an asymptotic theory for ungapped alignments no such theory
can fully explain the observed Gumbel distribution in the gapped case [1]. Never-
theless, people rely on that assumption when assessing the significance of a gapped
local alignment.

‡Specifically, ILR [13] and a generalization of the entropy score that adjusts for a Markov back-
ground.
§Where sequences were sampled out of a filtered human chromosome 22.
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Fig. 1: Probability plots of 3-Gamma fits to the empirical score distribution
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(a) GibbsMarkov
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(b) MEME

The data was generated by running the mentioned program on 104 randomly generated

datasets. In the case of MEME these were 20 sequences of each made of a block of 750

nucleotides sampled from a random location of a filtered human chromosome 22 whereas for

GibbsMarkov we used 30 such sequences of length 1000 each

3. 3-Gamma based point estimator of the p-value

We previously showed that the parameters of the null distribution of CONSENSUS’
entropy score can be reasonably grouped based only on two parameters of the
finder [13]. In general however it is not clear how the parameters of the fitted
distribution vary with the parameters of the problem (mentioned above as α). We
therefore explore a different approach here relying on our ability to generate a small
random sample X = (X1, . . . , Xn) from F . Technically we generate this sample
by first using the assumed background model to generate n independent random
datasets of the same dimensions as the input dataset. We then run our finder on each
of these n random datasets using the same settings as in the original application.
Since this increases the runtime by a factor of n there is clear incentive to keep n

as small as we can get away with.
Using this sample we can, for example, find p̂(s), the MLE (maximum likelihood

estimator) of the p-value of the observed score s as follows. First we find θ̂ = θ̂(X),
the MLE of the parameters of the 3-Gamma¶, then we plug θ̂ into the definition of
the p-value:

p̂(s) = p̂(s,X) = 1− Fθ̂(s). (1)

One problem is that with a small sample such as n = 20 one can only expect
so much from fitting 3-parameters and indeed p̂(s) can badly over-estimate the
significance of s (see Figure 2a). A standard way to account better for the variability
of the sample is to introduce confidence intervals (e.g. [17]). For example, a 90%

¶In [13] we suggested fitting a 3-Gamma relying on our ability to fit the standard Gamma distri-
bution. Here we adopt a different strategy relying on our ability to express the location parameter
µ in closed form in terms of the shape and scale parameters at a critical point (calculation not
shown).
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confidence interval for the p-value is a random interval that contains the real p-value
p(s) with probability ≥ 0.9. We next construct such a confidence interval.

4. Confidence set for θ0, the 3-Gamma parameters

Conceptually we construct our confidence interval for p(s), the p-value of the ob-
served score s in two steps. First, as described next, we use a generalization of the
profile likelihood method (e.g., [14]) to construct a 3-dimensional confidence set for
the 3-Gamma parameters θ0. We then scan this confidence set to maximize the
p-value of s at the prescribed confidence level.

Let X = (X1, . . . , Xn) be our random sample and let θ̂ = θ̂(X) be the 3-
Gamma MLE, so θ̂ is a 3-dimensional random vector. Let L(X; θ) be the 3-Gamma
log-likelihood of the sample given the parameter θ ∈ Ω, where Ω ⊂ R3 is the set of
feasible parameters which would generally be a subset of (a > 1‖, b > 0, µ ∈ R).

According to a general asymptotic result if the sample X is drawn according to
the 3-Gamma distribution Fθ0 then

∆L(X; θ0) = 2
[
L(X; θ̂)− L(X; θ0)

]

converges in distribution to a χ2(3) distribution as n, the size of the sample X,
goes to infinity (e.g., [17]). Assume for now that this asymptotic result holds for
our finite sample and define

Θγ(X) =
{

θ ∈ Ω : ∆L(X; θ) ≤ F−1
χ2(3)(γ)

}
, (2)

where F−1
χ2(3)(γ) is the γ-quantile of the χ2(3) distribution. Thus, Θγ(X) is random

subset of Ω ⊂ R3.

Claim 4.1. Assuming ∆L(X; θ0) is distributed under θ0 as χ2(3), Θγ(X) is a γ-
confidence set for θ0.

Proof. We need to show that for any θ0 ∈ Ω, Pθ0 (θ0 ∈ Θγ(X)) ≥ γ. This follows
immediately from the definitions:

Pθ0 (θ0 ∈ Θγ(X)) = Pθ0

[
∆L(X; θ0) ≤ F−1

χ2(3)(γ)
]

= Fχ2(3)

[
F−1

χ2(3)(γ)
]

= γ.

When constructing confidence intervals it is a standard practice to assume as
we did in the last claim, that an asymptotic distribution holds for a finite sample.
Nevertheless, we would like to test what kind of errors does this assumption in-
troduce in our case. This is particularly important since for practical reasons we
restrict Ω, the set of feasible parameters, so that the shape parameter (coordinate)
is restricted to a certain interval. We therefore conducted the following experiment.

‖We need a > 1 to guarantee the success of the estimation process as well as for the asymptotic
result below [18]. Fortunately this is not a real restriction in our case as the distributions we are
interested in have a À 1.
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We first generated 44 different large sets of empirical scores. In this case all the
scores came from one finder, GibbsMarkov, which is our version of Gibbs Sampler
that uses a variant of the entropy score that accounts for a higher order Markov
background model. GibbsMarkov will be described in detail in a following paper
but for now it suffices to say it is similar to BioProspector [9]. Each such set of
empirical scores contained 104 applications of GibbsMarkov on that many randomly
generated datasets (with fixed dimensions per set). The sequences were randomly
sampled from a filtered human chromosome and the dimensions ranged from 10
sequences of length 750 to 30 sequences of length 1000 each. Similarly, the width of
the motif searched by GibbsMarkov varied from 8 to 28.

We then estimated the 3-Gamma parameters θ0 for each of these 44 sets of
empirical scores and defined Ω = {(a, b, µ) : a ∈ [10, 100], b > 0, µ ∈ R}. This range
for the shape parameters was determined by taking a slightly larger interval than
necessary to contain all 44 estimated shapes. Finally, we forget about the original
sets and simply generate a large number (104) of random 3-Gamma samples of size
n = 20 for each of these 44 estimated parameters θ0. Since we know θ0 in this case
we can readily determine the proportion of times θ0 ∈ Θγ(X) and compare it to
the theoretical rate of γ. The results of this test are summarized in Table 1.

Table 1: Actual confidence coefficients of parameter sets

γ in (2) set to: 0.85 0.90 0.95 0.99
actual confidence (%): 89.4-90.7 92.9-94.0 96.6-97.3 99.3-99.6

Range reported is of the percentage of time θ0 ∈ Θγ(X) for the specified γ observed across

the 44 tests. Note how stable the observed ranges are, allowing us to correct for the slight

conservative bias of the original χ2(3) derived thresholds.

The table demonstrate our confidence sets are consistently slightly conservative.
Consulting this table we can however adjust for the conservative nature of these
confidence sets: for example, a nominal 85% confidence set is in fact a 90% one.
Regardless of whether or not we adopt this adjustment we next show how we use
our confidence set to generate a confidence interval for our real object of interest:
the p-value of s, p(s) = 1− Fθ0(s),.

5. 3-Gamma based confidence interval for the p-value

Let

p̂c = p̂c(s,X) = max {1− Fθ(s) : θ ∈ Θγ(X)} , (3)

where Fθ is the 3-Gamma distribution with parameter θ.

Claim 5.1. The random interval [0, p̂c(s,X)] is a confidence interval for the p-value
of s, p(s), with confidence coefficient ≥ γ.
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Proof. Since Θγ(X) is a γ-confidence set, θ0 ∈ Θγ(X) with probability ≥ γ. In
this case we clearly have

Fθ0(s) ≥ min {Fθ(s) : θ ∈ Θγ(X)} (4)

and therefore

p(s) = 1− Fθ0(s) ≤ 1−min {Fθ(s) : θ ∈ Θγ(X)} = p̂c(s,X).

Thus, p(s) ∈ [0, p̂c(s,X)] with probability ≥ γ.

Comment. Note that this estimate is conservative in nature as (4) might often
hold even when θ0 /∈ Θγ(X).

While conceptually our method for generating the confidence interval for p(s)
works as described above, we found that technically it is better to combine the two
steps into one. More precisely, we define a target function for maximization:

ϕ(θ; X, s) =

{
1− Fθ(s) ∆L(X; θ) ≤ d

−∆L(X; θ) ∆L(X; θ) > d
,

where d = dγ = F−1
χ2(3)(γ). The following claim guarantees it suffices to maximize

ϕ(θ;X, s):

Claim 5.2. maxθ∈Ω ϕ(θ;X, s) = p̂c(s,X)

Proof. Immediate from the fact that ϕ(θ; X, s) < 0 for θ /∈ Θγ(X).

Mathematically, maxθ∈Ω ϕ(θ; X, s) = p̂c(s,X) is a well defined statistic which, as-
suming the validity of the χ2 approximation, defines a γ-confidence interval for the
p-value, p(s). However, in practice maximizing ϕ over Ω turned out to be somewhat
tricky as the landscape of ϕ defined on Ω ⊂ R3 is apparently quite complicated.
This means that the actually computed version of p̂c(s,X)∗∗ might yield a confi-
dence interval that would be smaller than it should be, i.e., its confidence coefficient
would be < γ. In this case we would fail to achieve our goal here to get a confidence
interval for p(s) (we already have a reasonable point estimate in p̂(s) defined in (1)
above).

In practice we used the Nelder-Meade [11] simplex based optimization procedure
(implemented in the constrOptim function in R [15]) to maximize ϕ(θ; X, s) over
θ ∈ Ω. Using Monte Carlo simulations for which we know the correct p-value we
learned that simply relying on multiple random restarts is not satisfactory with this
as well as with gradient based optimizations.We therefore used a pre-defined lattice
of “reasonably good” starting points next to the boundary of Ω. Figure 2 shows a
typical histogram of the computed conservative p̂c(s, X) compared with the point
estimator p̂.

∗∗We abuse the notations by not distinguishing between the mathematically defined statistic and
its computed version.
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Fig. 2: Comparing the estimators p̂ and p̂c(s, X) of p = 10−3
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(b) p̂c(s, X) is mostly conservative

Histograms of 104 independent evaluations of the point estimator p̂ of s = F−1
θ0

(10−3) and

of the conservative p̂c(s, X). The necessary 104 samples of size n = 20 were drawn with

repetitions from a large set of empirical scores of the finder. In this case the set was made of

104 runs of GibbsMarkov on that many randomly generated datasets, each of which consisting

of 30 sampled genomic sequences of length 1000. Since θ0 is the 3-Gamma MLE of the set of

empirical scores from which the samples of size n were taken, by definition, the real p-value

of s = F−1
θ0

(10−3) is essentially 10−3.

6. The fidelity and utility of the confidence interval for the p-value

It was reassuring to see above that our confidence sets for θ0 attain their prescribed
confidence level. However, especially in light of the difficulty in maximizing ϕ over
Ω, the more important question is whether or not our computed confidence interval
[0, p̂c(s, X)] contains p(s) with probability ≥ γ. To test that we conducted the
following experiment based on our 44 sets of empirical scores described above.

We chose a set of p-values ranging from 10−9 to 0.1 and computed the values
s = s(θ0, p0) for which Fθ0(s) = p0

††. Again, θ0 is the 3-Gamma MLE obtained by
fitting a 3-Gamma to each of these 44 empirical scores sets. For each of these s0

(one per p-value and empirical score set) we computed p̂c(s0, X) for 104 samples
X of n = 20 scores drawn independently, with repetitions, from the appropriate
empirical set of scores. Note that when computing p̂c(s0, X) one assumes a specific
confidence coefficient γ. We could then find the percentage of time p0 ∈ [0, p̂c] and
test whether or not it is bigger than the prescribed γ. Table 2 gives the positive
summary for all the cases we looked at.

By construction p̂c(s,X) is a conservative estimate of p(s) so we should not
be surprised that, as observed above, it tends to underestimate the significance
of s. We should however expect that it would not loose all the information. To
demonstrate the utility of p̂c(s,X) we conducted two tests as extensions of the

††Except for p0 ≥ 0.005 for which we could fairly reliably estimate s0 directly from the empirical
distribution of scores.



July 24, 2007 23:27 WSPC - Proceedings Trim Size: 9.75in x 6.5in paper

9

Table 2: Fidelity of confidence coefficient of estimated p-values

p0 0.1 0.01 10−3 10−4 10−6 10−9

median % 1.70 1.69 1.23 1.36 1.16 0.85
minimum % 1.00 0.65 0.30 0.40 0.28 0.23
maximum % 2.55 5.22 3.50 3.77 4.38 4.67

γ in (2) was set to 0.85 which per Table 1 should really be a 90% confidence coefficient. The

first row gives the prescribed p-value p0. Rows 2-4 give the median, minimum and maximum

of the percentage of samples for which p0 /∈ [0, p̂c] among all 44 sets (a percentage for each

set was computed as described in the text). Note that the even the worst case scenarios still

attain the prescribed γ. The results for γ = 0.9 were qualitatively the same.

previously described test. In the first of these tests we asked for the percentage of
samples X above for which p̂c(s, X) ≤ 0.05. The latter represent an analogue of the
canonical 5% significance threshold. More interesting is the actual value of p̂c(s, X)
so we looked at its median value across all 104 samples X. Table 3 summarizes
the fluctuations of these statistics across all 44 empirical sets as a function of the
actual p-value. Note how, especially for small p-values, p̂c conveys significantly more
information than simply “I passed the 5% significance threshold”. For example, for
p0 = 10−6 the median value (over all 44 sets) of the median (over all samples X) of
p̂c is roughly 6e-4.

Table 3: The utility of the confidence interval for the p-value

p0 0.1 0.01 10−3 10−4 10−6 10−9

median % 0.10 32.33 86.67 99.40 100.00 100.00
minimum % 0.03 23.05 81.53 98.55 99.97 100.00
maximum % 0.30 47.60 92.90 99.85 100.00 100.00
median p̂c 0.25 0.068 0.022 0.0067 0.00059 1.2e-05

minimum p̂c 0.24 0.052 0.015 0.0035 0.00017 1.4e-06
maximum p̂c 0.26 0.079 0.027 0.0094 0.0012 3.9e-05

γ in (2) was set to 0.85 (90% in practice). The first row gives the prescribed p-value p0. Rows

2-4 give the median, minimum and maximum of the percentage of samples for which p̂c ≤ 0.05

among all 44 sets. Rows 3-6 yield the median, minimum and maximum among all 44 medians

of p̂c. The results for γ = 0.9 were qualitatively the same.

One should keep in mind that with larger n the accuracy of p̂c(s,X) can improve
significantly. For example we compared using a sample of size n = 20 to n = 40 for
p0 = 10−6. We found that while n = 20 yields a median (of medians) of roughly
5.9e-4, using a sample of size n = 40 cut the median to roughly 1.6e-4.

For a final practical test we went back to the Gibbs Sampler results on the COMBO
experiment from [13] for which the E-value assessment failed miserably: the median
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of the positive examples was ≈ 1012. Using a set of 1600 runs on null iid datasets
of the same dimension as in the original experiment we generated samples of size
n = 20 and computed p̂c(s,X) for each of the 400 scores s (each s is the entropy
score of the Gibbs Sampler applied to a different, implanted dataset; see [13] for
details).

We predicted a run as positive or successful if p̂c(s,X) ≤ 0.05 and negative, or
failure otherwise. We labeled a run as positive if the overlap between the reported
and implanted alignment was ≥ 30% and negative otherwise. Thus, we could count
the number of TPs and FPs. To smooth out the results we repeated this process 100
times and averaged the number of TPs and FPs. Using γ = 0.85 our classifier defined
above averaged 140.1 TPs and 6.3 FPs and an average of 55.6 of the scores s had
a much more significant p̂c(s,X) ≤ 0.01. Moving to a larger sample size of n = 40
we averaged 168.4 TPs and 8.5 FPs and an average of 80.6 had p̂c(s,X) ≤ 0.01.

7. Discussion

We presented a novel approach for evaluating the significance of a motif finder re-
sults. It is important to keep in mind that as long as the fit of the finder’s empirical
scores distribution to a 3-Gamma is a reasonable one our method should be appli-
cable to that finder. Since we have yet to see a case where that fit is not good we
believe our method should apply to a wide variety of combinations of motif finders
and scores and thus offer a unified parametric approach to estimating a finder’s
specific performance‡‡.

We should point out that while our method suffers from a time penalty factor of
n (the sample size), computing p̂c(s, X) can be readily executed in parallel so that
if sufficient additional CPU cores are available the effective time penalty reduces to
only a factor of 2.

What are alternative significance evaluations? The authors of GLAM [4] assume
that a scoring function they derive has a Gumbel distribution. They then try to
evaluate its parameters analogously to BLAST. In particular, similarly to the E-
value calculation they do not require the costly “on-the-fly” generation of a sample
of null scores. While their method works reasonably well for a small number of
sequences (≈ 5) it seems that the Gumbel assumption fails for a larger, more typical,
number of sequences.

A more general alternative to the 3-Gamma distribution is the generalized ex-
treme value (GEV) distribution [16]. While both of these distribution families offer
fairly close fits and are difficult to distinguish at times, we found that typically the
3-Gamma offers a more reliable prediction of the right tail which is the one we are
interested in. Additionally the 3-Gamma family was easier to handle in terms of

‡‡Technically, adjusting our method to a new finder would typically require some crude charting
of the space of plausible values for the parameters: the more restrictive the range of feasible
parameters Ω is, the more accurate will p̂c(s, X) be.
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fitting and predicting confidence sets. Finally, while the GEV might sound attrac-
tive as it is known to be the only possible asymptotic limit of a maximum of an iid
sequence one should keep in mind that the motif finding problem is very different
from the alignment problem where such extreme value theory applies.

Although we could not find any trace of this in the program itself, the Bio-
Prospector paper [9] suggests an approach which is similar in spirit to the compu-
tation of our point estimator p̂ (1). One major difference is they suggest that the
normal approximation should be used. We found no evidence supporting the use
of a normal approximation and no such convincing evidence is presented in that
paper. In all our studies the 3-Gamma family offered significantly superior fits at a
cost of only one more parameter to estimate.

Alternatively we can resort to non-parametric tests. For example, we can use
the generated sample to construct confidence intervals for the p-value the same way
we estimate p of a binomial B(n, p) distribution. The problem is these tend to be
quite conservative so for n = 20 the best confidence interval for the p-value would
be [0, 0.11] while for n = 40 it would be [0, 0.06].

A different kind of non-parametric test is to test, for example, if s is bigger than
all the entries in a random sample of size n = 20 (this can be generalized using
the Mann-Whitney statistic). As described this is a reliable test at the (roughly)
5% significance level whose main down side is that it offers very little information
about the quality of significant results. In particular, it will not provide any more
information about a score whose real p-value is 10−6 than it would about any
other score s that passes the 5% test: all you learn is that you are 95% confident
that the observed dataset is not a random one. Our method on the other hand,
though conservative, does respond to differences between scores which among other
things would make it more appropriate to compare motifs of different widths where
the scores cannot be compared directly against one another. Moreover, this non-
parametric method has a high “false positive” rates for scores s whose p-value is
close to 0.05. For example, if p(s) = 0.1 then 12% of the time s will be declared
significant at the 5% level and if p(s) = 0.06 this will happen 29% of the time.

There are many directions and questions that our paper opens up including:
applying our significance analysis method to other finders and making them an
integral option of GibbsMarkov as well as other finders, developing a better theo-
retical understanding of why the 3-Gamma offers such good fits to the optimal score
distributions, and testing how good a fit remains once we start adding additional
information such as ChIP-chip or phylogeny data to our motif finders. We plan on
exploring these issues in future research.
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