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We propose a statistical method based on graphical Gaussian models for estimating large
gene networks from DNA microarray data. In estimating large gene networks, the number
of genes is larger than the number of samples, we need to consider some restrictions for
model building. We propose weighted lasso estimation for the graphical Gaussian models
as a model of large gene networks. In the proposed method, the structural learning for
gene networks is equivalent to the selection of the regularization parameters included in
the weighted lasso estimation. We investigate this problem from a Bayes approach and
derive an empirical Bayesian information criterion for choosing them. Unlike Bayesian
network approach, our method can find the optimal network structure and does not re-
quire to use heuristic structural learning algorithm. We conduct Monte Carlo simulation
to show the effectiveness of the proposed method. We also analyze Arabidopsis thaliana
microarray data and estimate gene networks.
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1. Introduction

The interest in theoretical structure and constructive methodology for large-scale
graphical models has been invigorated by problems of inferring gene networks from
microarray gene expression data. Various reverse engineering methods for large gene
networks have been proposed in the literature, and graphical Gaussian model has
received a lot of attention recently as one of promising approaches for achieving the
purpose [4, 14, 16, 19].

Several studies have used regression-based approaches to estimate structures of
undirected graphs. The main idea is to apply regression analysis for each variable on
the rest of the variables and the regression coefficients with relatively large absolute
values correspond to edges in the graph. Meinshausen and Bühlmann [14] considered
neighborhood selection as a subproblem of covariance selection and applied least
absolute shrinkage and selection operator, called lasso [17], to estimate undirected
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graph structures and showed theoretical properties in high-dimensional situations,
and Gustafsson et al. [6] also used the similar approach to estimate large gene
networks from DNA microarray data.

However, recent works suggest that the lasso is not consistent for variable se-
lection [11, 14, 21, 22]. That is, the sets of variables selected are not consistent at
finding the true set of important variables. Meinshausen and Bühlmann [14] showed
that the optimal regularization parameter for prediction accuracy does not lead to
a consistent neighborhood estimate by giving an example in which the number of
variables grows to infinity and in which the regularization parameter chosen ac-
cording to prediction accuracy leads to the wrong model with probability tending
to one. As the result, some noisy and irrelevant neighborhoods tend to be selected
and the resulting graph is less sparse even if we use the lasso in the neighborhood
selection problem.

We propose a new method for improving neighborhood selection in the graphical
Gaussian model and define weighted lasso that allows different amount of penalty
on each regression coefficient. We show that, by using the ridge estimator, the
originally (p−1) regularization parameter selection problem of each node j reduces
to a univariate regularization parameter selection problem for λj . For choosing an
optimal graph structure, we derived a new information criterion from an empirical
Bayes viewpoint.

The rest of this paper is as follows. In Section 2, we describe our method. Espe-
cially, we review a class of graphical Gaussian graphical model and neighborhood
selection for estimating sparse graph structure, and define a new neighborhood se-
lection approach, in Section 2.1 and 2.2, respectively. In Section 2.3, we also derive
a new criterion for choosing an optimal neighborhood for each node. In Section 3,
we present the performance of the proposed method through numerical examples.
In Section 3.1, We compare the performance of the proposed method with that
of conventional graphical modeling approach through Monte Carlo simulation. We
also apply our approach to Arabidopsis thaliana microarray data and estimate gene
networks in Section 3.2. We provide concluding remarks in Section 4.

2. Method for Estimating Large Gene Networks

2.1. Graphical Gaussian Model and Neighborhood Selection

In this section, we present a class of graphical Gaussian model and review the
neighborhood selection problem introduced by Meinshausen and Bühlman [14] that
is a subproblem of covariance selection. A graphical Gaussian model or covariance
selection model for the Gaussian random vector X is represented by an undirected
graph G = (V,E) with vertex set V = {1, . . . , p} and edge set E = {eij}, where
eij = 1 or 0 according to whether vertices i and j are adjacent in G or not.

Let X be a p-dimensional random vector which consists of the p elements,
X(1), . . . , X(p). We assume that X ∼ Np(0,Σ) where Σ is a variance-covariance
matrix. Our interest is to estimate the underlying graph of the distribution, that is
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to identify zero entries of the concentration matrix C = Σ−1 = (cij), because C

satisfies the following linear restrictions:

eij = 0 ⇒ cij = 0. (1)

The graphical Gaussian model also can be defined in terms of the pairwise condi-
tional independence determined by the Markov properties of G. If X ∼ Np(µ,Σ),
then

cij = 0 ⇔ X(i) |= X(j)| XV \{i,j} ⇔ ρij = 0, (2)

where

ρij =
−cij

√
ciicjj

, (3)

denotes the ij-th partial correlation, that is the correlation between the i-th variable
and the j-th variable, say X(i) and X(j), conditional on the rest of the variables
XV \{i,j}.

Given n random samples, x1 . . . xn, of X where xi = (xi1, . . . , xip)′, the log-
likelihood for C = Σ−1 is

n

2
log |C| − 1

2

n∑

i=1

(xi − µ)′C(xi − µ), (4)

up to a constant not depending on µ and C. The unbiased estimator for the covari-
ance matrix Σ is

Σ̂ =
1

n− 1

n∑

i=1

(xi − x̄)(xi − x̄)′, (5)

where x̄ is the sample mean. Then, the concentration matrix C can be estimated
by Σ̂−1. In general, the maximum likelihood estimator Ĉ = Σ̂−1 contains no zero
entry, and the network corresponding to Ĉ is thus the complete graph. However,
the structure of the gene networks is known as a ‘sparse’ structure.

To achieve ‘sparse’ structure, edge selection is usually carried out by the following
steps.

(1) Compute the sample concentration matrix Ĉ via Σ̂−1.
(2) Compute the sample estimates of partial correlation ρij via equation (3).
(3) Determine which ρij is 0 or not.

However, the sample covariance matrix Σ̂ is singular in large gene network estima-
tion from microarray data, and we cannot compute the partial correlation coeffi-
cients directly. To solve this problem, Meinshausen and Bühlmann [14] proposed
the neighborhood selection method.

The neighborhood selection problem is introduced as a subproblem of covariance
selection. Let the neighborhood nea of a node a be the smallest subset of V \{a} so
that, given all variables Xnea in the neighborhood, X(a) is conditionally independent
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of all remaining variables. Denote the closure of node a ∈ V by cla = nea ∪ {a}.
Then

X(a) |= {X(k); k ∈ V \ cla}|Xnea . (6)

Given n×p data matrix of X, X = (x(1), . . . , x(p)) where x(j) = (x(j)
1 , . . . , x

(j)
n )′

is the n-dimensional sample vector of node j, the purpose of neighborhood selection
is to estimate the neighborhood of any given node individually. We assume that the
each column x(j), j = 1, . . . , p is centered and standardized such that

∑
i x

(j)
i /n = 0

and
∑

i{xj
i}2/n = 1. Meinshausen and Bühlmann [14] cast the neighborhood se-

lection problem into a standard linear regression problem. The idea is to apply
regression analysis for each variable on the rest of variables and the regression coef-
ficients with nonzero values correspond to edges in the graph. They also show that
this problem can be solved efficiently with the lasso [17]. For each node j = 1, . . . , p

on the rest of nodes, the lasso estimator θ̂[−j] = (θ̂(1)
j , . . . , θ̂

(j−1)
j , θ̂

(j+1)
j , . . . , θ̂

(p)
j )′

is given by

θ̂[−j] = arg min
θ[−j]





1
n
‖x(j) −X [−j]θ[−j]‖2 + λ

∑

k 6=j

|θ(k)
j |



 , (7)

where X [−j] is the n× (p−1) matrix resulting from the deletion of the j-th column
from the data matrix X and λ is a non-negative regularization parameter. Then,
the neighborhood estimate of node j is defined by

n̂ej = {k ∈ V ; θ̂(k)
j 6= 0}. (8)

Note that it is possible that θ
(k)
j = 0 but θ

(j)
k 6= 0, or θ

(j)
k = 0 but θ

(k)
j 6= 0. They

suggest that the nodes j and k are connected by the undirected edge if θ̂
(k)
j 6= 0 or

θ̂
(j)
k 6= 0.

2.2. Improving Neighborhood Selection with Weighted Lasso

In this section, we show a solution to overcome the drawback in the neighborhood
selection of the graphical Gaussian model with the lasso. The major reason for the
inconsistency of variable selection with the lasso comes from the fact that the lasso
imposes the same amount of penalty on each regression coefficient, regardless of their
relative significance [5, 22]. As a simple approach for allowing different amount of
penalty on each regression coefficient, we consider the following problem for node
j, j = 1, . . . , p:

θ̂[−j] = arg min
θ[−j]





1
n
‖x(j) −X [−j]θ[−j]‖2 +

∑

j 6=k

λ
(k)
j |θ(k)

j |


 . (9)

Here λ
(k)
j , k = 1, . . . , (j − 1), (j + 1), . . . , p, are (p− 1) non-negative regularization

parameters. Obviously, this problem depends on (p− 1) regularization parameters.
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In practice, the choices of these regularization parameters are time-consuming, since
we have to choose (p− 1) regularization parameters for each node j, which leads to
the p × (p − 1) regularization parameter selection problem for all nodes. To solve
this problem, we propose to replace λ

(k)
j by

λ
(k)
j =

λj

(θ̃(k)
j )τ

, (10)

where τ is a constant and θ̃
(k)
j is a weight for the significance of the k-th

regression coefficient θ
(k)
j . Let a (p − 1)-dimensional weight vector by θ̃j =

(θ̃(1)
j , . . . , θ̃

(j−1)
j , θ̃

(j+1)
j , . . . , θ̃

(p)
j )′. We estimate θ̃j by

θ̃j = (X [−j]′X [−j] + γIp−1)−1X [−j]x(j), (11)

where γ is a pre-specified regularization parameter, which is equivalent to the ridge
estimate. Even if the data matrix X [−j] is rank-deficient, so that X [−j]′X [−j] is sin-
gular, the regularized matrix (X [−j]′X [−j] + γIp−1) is not singular for any nonzero
value of γ. The regularization parameter γ also controls the number of neighbor-
hoods. Although γ can be selected by some criteria such as cross-validation or our
proposed criterion discussed in next section, we set γ a large value such as 1010.
Then, neighborhood selection proceeds by taking a node j to be a neighbor of node
k if and only if θ̂

(k)
j 6= 0. In inferring network structure, the nodes j and k are

connected by the undirected edge if θ
(k)
j 6= 0 or θ

(j)
k 6= 0. We call the successive

procedure weighted lasso.

2.3. A New Criterion for Regularization Parameter Selection

The regularization parameters λ1, . . . , λp for all nodes in (10) should be chosen in a
reasonable manner. We investigate this problem from a statistical model evaluation
point of view, and derive a new information criterion for neighborhood selection for
each node j. We can choose the optimal neighborhoods for each node by using the
derived information criterion.

It is known that the most of regularization approach have Bayesian interpreta-
tion, such that the loss function is interpreted as the negative log-likelihood, the
penalty term as the negative log-prior density, the regularization parameter as the
hyperparameter, and the regularized estimate corresponds to the maximum pos-
teriori estimate. For node j, the loss function can be interpreted as the negative
log-likelihood of the following Gaussian distribution

f(x(j)|x[−j]; θ[−j], σ2
j ) =

(
1

2πσ2
j

)n/2

exp

{
− 1

2σ2
j

‖x(j) −X [−j]θ[−j]‖2
}

, (12)

and the prior density as the independent Laplace prior as

π(θ[−j]|λ[−j], σ2
j ) =

∏

k 6=j

π(θ(k)
j |λ(k)

j , σ2
j ) =

∏

k 6=j

(
λ

(k)
j

2σ2
j

)
exp

{
−λ

(k)
j |θ(k)

j |
σ2

j

}
. (13)
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From an empirical Bayesian point of view, one can choose λ
(k)
j by maximizing

the marginal likelihood [1, 8, 9]. For node j, the marginal likelihood is computed
by integrating over the unknown parameter values θ[−j] and is defined by

ML =
∫

f(x(j)|x[−j]; θ[−j], σ2
j )π(θ[−j]|λ[−j], σ2

j )dθ[−j]. (14)

The marginal likelihood often contains a complicated integral for the parameters,
which can be usually approximated by some approximation methods, for example,
Laplace’s method [18]. However, in situations where the some components of θ̂[−j]

are exactly to zero with L1-regularization approaches such as the lasso, the func-
tional in the integral (14) is not differentiable at the origin and thus the above
approximation cannot be applied directly.

Let Aj = {k; θ̂(k)
j 6= 0} be active set of θ̂[−j]. To overcome such a problem, we

define the following partial marginal likelihood given active set Aj by

PML =
∫

f(x(j)|x[−j]; θ[−j], σ2
j )π(θ[−j]|λ[−j], σ2

j )dθAj . (15)

This quantity is computed by integrating over the unknown parameters θAj included
with the set Aj . Suppose that PML = O(n) and λ depends on the number of sample
n. Applying the Laplace method, we have

PML ≈
(

2π

n

)|Aj |/2

|H|−1/2 × f(x(j)|x[−j]; θ̂Aj , σ2
j )× π(θ̂Aj |λ[−j], σ2

j ), (16)

with O(n−1) where θ̂Aj = (θ̂(k)
j )k∈Aj and H is a Hessian matrix given by

H = − 1
n

∂2

∂θAj ∂θAj
′
[
log

{
f(x(j)|X [−j]; θ[−j], σ2

j )× π(θ[−j]|λ[−j], σ2
j )

}]
θ[−j]=θ̂[−j]

.

Denote the right part of equation (16) by APML. Then, the estimator of σ̂2
j is given

by the equation
∂

∂σ2
j

log(APML) = 0. (17)

Approximating −2 log PML and substituting σ̂2
j for σ2

j , we define an empirical Bayes
criterion for neighborhood selection, called neighborhood empirical Bayes criterion
(NEBC), as

NEBC = (n + |Aj |)
{
log(2σ̂2) + 1

}− (n− |Aj |) log π

−2
∑

k∈Aj

log λ
(k)
j + log |XAj

′
XAj |, (18)

where

σ̂2
j =

‖xj −X [−j]θ̂[−j]‖2 + 2λj

∑
k∈Aj

|θ̂(k)
j |

n + |Aj | . (19)

For neighborhood selection problem for node j, we can choose λj by minimizing
NEBC in (18) and estimate neighborhood n̂ej with θ̂[−j].
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3. Numerical Examples

3.1. Monte Carlo Simulation

We perform simulations to evaluate the performance of the proposed method and
compare our method with the graphical Gaussian model approach with the lasso by
Meinshausen and Bühlmann [14]. Considering finds on the topology of metabolic
and protein networks [7, 13], we simulate a scale-free-like graphical model and gen-
erate data based on the model by the following steps.

(1) Generate a set of 20 scale-free networks by Barabäsi and Albert [3]. For each scale-
free network, we start with a single node and no edges in the first time step. In
each time step, one node is added and the new vertex initiates some edges to old
nodes. The probability of node l, say Probl, that an old node is chosen is given
by Probl ∝ kα

l where kl is the in-degree of node l in the current time step, i.e.,
the number of adjacent edges of node l which were not initiated by l itself. We set
kl = 1 and α = 1. The node size of each scale-free network is set to 50. Then the
total-node size of the simulated network is 20× 50 = 1000.

(2) Generate a random variable from the resulting scale-free networks. As an initial
value of the parent nodes of the 20 scale free-networks, we sample from N20(0,Σ)
where Σii = 1 and Σi(i+1) = Σ(i+1)i = 0.5 if {i; i = 1, . . . , 19 ∩ i 6= 4, 8, 12, 16}.
From the j-th scale free network, we generate a random sample x based on

x ∼ N(
∑

l

wlpl(x), σ2), (20)

where pl(x) is the observation of the l-th parent of x and wl is the coefficient. We
sample wl from the uniform distribution over the interval [−1, 1] and set σ so that
the signal-to-noise ratio is 0.1.

We simulate 100 observations with 1000 variables from the above process. The true
graph and the estimated graph by the proposed method through the simulation are
shown in Figure 1.

The performance of the graphical modeling approaches is evaluated by count-
ing true positives (TP; correctly identified true edges), false positives (FP; spurious
edges, that is not recognized as zero-edges), true negatives (TN; correctly identified
zero-edges) and false negatives (FN; spurious zero-edges, that is not recognized as
true edges). We perform 100 Monte Carlo simulations and calculate the means and
standard deviations of TP, FP, TN and FN over these simulations. The result of
comparison with the proposed method and the lasso-based neighborhood selection
approach by Meinshausen and Bühlmann [14] is shown in Table 1. It can be seen
from Table 1 that the neighborhood selection approach with the lasso [14] produces
the larger number of false positives and identifies many unrelated edges as impor-
tant edges. The proposed method reduces the false positives dramatically with a
reasonable degree of true positives and succeeds in achieving the high proportion of
true-edges within the small number of selected edges.
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Fig. 1. The left figure is the true graph generated for the Monte Carlo simulations. This network
consists of 1000 nodes and 995 edges. The right figure is an example of the estimated network
by the proposed method. The black lines describe the true-positive edges and the gray lines the
false-positive edges.

Table 1. Comparison of the averages and standard deviations of the true positives (TP), false nega-
tives (FN), true negatives (TN) and false positives (FP) with the lasso-based neighborhood selection
[14] and the proposed approach over the 100 simulations. The standard deviations are in parentheses.

Method TP FN TN FP

Lasso-based Method [14] 909.47 (6.01) 85.53 (6.01) 966630.22 (459.04) 32374.78 (459.04)
Proposed Approach 818.74 (6.29) 176.26 (6.29) 998894.65 (5.87) 110.35 (5.89)

3.2. Example from Experimental Data

We analyze the isoprenoid biosynthetic pathway data in Arabidopsis thaliana dis-
cussed by Wille et al. [20]. Wille et al. [20] reported a data set including the
gene expression patterns monitored under various experimental conditions using
118 GeneChip microarrays.

It is known that plants contain two pathways, the mevalonate (MVA) path-
way and the methylerythritol 4-phosphate (MEP) pathway, for the synthesis of the
structural precursors of isoprenoids. To gain insights into the cross-talk between
the MVA and MEP pathways at the transcriptional level and construct the gene
network, Wille et al. [20] focuses on 39 genes where 15 genes were assigned to the
cytosolic MVA pathway, 19 to the plastidal MEP pathway, and 5 genes encoding
proteins located in the mitochondria.

We first estimate the undirected graph based on the 118 observations of these 39
gene expression profiles by the weighted lasso. Using NEBC in (18) for neighborhood
selection, the proposed approach selects 26 gene-gene interactions. These 26 pairs
are shown on the true network in Figure 2. We find there is a module with strongly
connected genes in each of MVA pathway and MEP pathway. In the MVA pathway,
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DPPS3

DXPS1
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DXPS3

DXR
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GGPPS1

GGPPS2

GGPPS3
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GGPPS10

GGPPS11

GGPPS12
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IPPI1

IPPI2
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MPDC1

MPDC2

PPDS1
PPDS2

UPPS1

Fig. 2. Pathways identified by the proposed method for the 39 genes in the isoprenoid pathway,
where the grey color edges are the true pathways, and black curved edges are the estimated edges
by the proposed method. The black nodes also represent a subgraph of the gene module in the
MEP pathway, the gray nodes in the MVA pathway, and the white nodes in the Mitochondrion.

DXR, MCT, CMK and MECPS are connected as the known isoprenoid pathway. In
the MEP pathway, AACT2, HMGR2, MK, MPDC1, FPPS1 and FPP2 are closely
connected. Furthermore, several genes in the MEP pathway are linked to proteins
in the mitochondria.

Wille et al. [20] also incorporated 795 additional gene expressions from 56
metabolic pathways and investigated which pathways attach significantly well to
the MVA and MEP pathways. Among these were genes from pathways downstream
of the two isoprenoid biosynthesis pathways, such as phytosterol biosynthesis, mono-
and diterpene metabolism, porphyrin/chlorophyll metabolism, carotenoid biosyn-
thesis, plastoquinone biosynthesis, for example. We applied our approach to the 118
observations of these total 835 gene from the 56 metabolic pathways, Mitochondrion,
and the MVA and MEP pathways. Then we count the number of pathway-pathway
interactions from the estimated graph and generate a “metabolic-pathway relevant
network” shown in Figure 4. In the metabolic-pathway relevant network, nodes rep-
resent pathways, and two pathways are connected to each other if and only if they
share at least 30 interactions.

We find that there are strong connections between the MEP pathway and the
8 other metabolic pathways; calvin cycle, carotenoid, citrate cycle, fatty acid, gly-
colysis, inositol phosphate, porphyrin chlorophyll, and sucrose pathways. On the
other hand, the fatty acid, glycolysis, phytosterol, and sucrose pathways appear to
be closely related to the genes of the MVA pathway. By comparing with the results
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MVA

MEP

Abscisicacid biosynthesis

Berberine metabolism

Calvin cycle

Carotenoid biosynthesis

Chorismate metabolism

Citratecycle (TCAcycle)

Ethylene biosynthesis

Fatty acid biosynthesis

Fatty acidoxidation

Flavonoid metabolism

Folate metabolism

Gibberellin biosynthesis

Glutamate Glutamine metabolism

Glycerolipid metabolism

Glycolysis Gluconeogenesis

Glycoprotein biosynthesis

Inositol phosphate metabolism
Jasmonicacid biosynthesis

Pentosephosphate cycle

Phenyl prpanoid metabolism

Phytosterol biosynthesis

Polyamine biosynthesis

Porphyrin Chlorophyll metabolism

Purine metabolism
Pyrimidine metabolism

Riboflavin metabolism

Serine Glycine Cysteine metabolism

Starchandsucrose metabolism

Synthesis of UDP−sugars

Threonine metabolism

Tryptophan metabolism

Fig. 3. The metabolic-pathway relevant network identified by the proposed method on 118 mi-
croarray data with 835 genes. The network contains the 56 metabolic pathways, mitochondrion,
and the MVA and MEP pathways. Nodes represent pathways, and two pathways are connected to
each other if and only if they share at least 30 interactions. The diameter of a circle is proportional
to the number of genes participating in the corresponding pathways. The black edges represent
the edges associated with the MVA and MEP pathways.

in Wille et al. [20], some of them are experimentally supported by [2, 10, 12, 15].
It is interesting that our method identifies the fatty acid pathway as a significant
one related with both of the MVA and MEP pathways which was not recognized
by Wille et al. [20].

4. Conclusion

We proposed the new method for improving neighborhood selection in the graphical
Gaussian model by the weighted lasso that allows different amount of penalty on
each regression coefficient. We showed that, by using the ridge estimator, the origi-
nally (p−1) regularization parameter selection problem of each node j reduces to a
univariate regularization parameter selection problem for λj . For choosing an opti-
mal graph structure, we derived a new criterion from an empirical Bayes viewpoint.
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We conducted Monte Carlo simulation and showed examples from microarray data
in Arabidopsis thaliana to compare the proposed method with the other graphi-
cal Gaussian modeling approach with the lasso [14]. We found that our proposed
method was superior to it.
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graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana,
Genome Biology, 5:1-13, 2004.

[21] Yuan, M. and Lin, Y., On the nonnegative garrote estimator, J. R. Statist. Soc., B,
69, 143–161, 2007.

[22] Zou, H., Adaptive lasso and its oracle properties, J. Am. Statist. Assoc., 101:1418–
1429, 2006.


