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Abstract

Identifying lethal proteins is important for understanding the intricate mechanism gov-
erning life. Researchers have shown that the lethality of a protein can be computed based
on its topological position in the protein-protein interaction (PPI) network. Performance
of current approaches has been less than satisfactory as the lethality of a protein is a
functional characteristic that cannot be determined solely by network topology. Further-
more, a significant number of lethal proteins have low connectivity in the interaction
networks but are overlooked by most current methods.

Our work reveals that a protein’s lethality correlates more strongly with its “func-
tional centrality” than pure topological centrality. We define functional centrality as
the topological centrality within a subnetwork of proteins with similar functions. Eval-
uation experiments on four Saccharomyces cerevisiae PPI datasets showed that NFC
performed significantly better than all the other existing computational techniques. Our
method was able to detect low connectivity lethal proteins that were previously unde-
tected by conventional methods. The results and an online version of NFC is available
at http://lethalproteins.i2r.a-star.edu.sg

Keywords: Lethal proteins; Functional centrality; Protein similarity; Protein-protein in-
teraction

1. Introduction

A lethal (or essential) protein is one that renders the cell unviable on its removal.
From a theoretical point of study, lethal proteins play an intricate role for cell
survival and development. Studying of lethal proteins will open opportunities to
understand other species and identification of potential drug targets [1]. While lethal
proteins can be detected from gene knockout experiments, large-scale systematic
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detections can still be time-consuming and cost-prohibitive. As Jeong [2] noted,
lethality profiles of a substantial number of genes are still unknown.

Alternative approaches to detect potential lethal proteins is thus required. One
common hypothesis is that lethal proteins are strategically located within the
protein-protein interaction (PPI) network such that their absence would create an
adverse disruption to the topological stability of the network, thereby leading to bi-
ological lethality. Jeong [3] were one of the first to establish that there indeed exists
a correlation between lethal proteins and their topological feature (connectivity)
in the underlying PPI network. This led to a series of similar works unveiling new
topological characteristics related to a protein’s lethality (see Section 2).

However, the performance of many topological-based approaches had been less
than satisfactory as the biological lethality of a protein is a functional characteristic
that is unlikely to be adequately determined solely by network topology. Moreover,
many current approaches were based on the assumption that a protein’s lethality is
correlated with high connectivity in the PPI network. This may not be always true
as it is possible for a low-connectivity protein to be lethal. We found a substan-
tial number of known lethal proteins with low connectivity (number of interaction
partners ≤ 5) in the yeast PPI network (see Table 1).

In this work, we combine the topological-based concept for protein lethality with
the notion of functional modules [4, 5], which are groups of interconnected proteins
performing discrete functions in the PPI network. Multimeric protein complexes
(such as the ribosome that synthesize polypeptides from amino acids) and biological
pathways are instances of functional module. We reasoned that lethal proteins are
the key players or coordinators within functional modules and their removal will
maximally disrupt the operations of the modules which impact cell fitness. We
hypothesized that these key proteins should also be centrally positioned within
functional modules to carry out their roles effectively and their removal will cripple
the modules more easily than the removal of proteins lying at the peripheral.

Thus in this paper, we introduce a novel neighborhood functional centrality
(NFC) measure to quantify the extent in which a protein is surrounded by func-
tionally consistent neighboring proteins in the PPI network. We also devised a
Neighborhood Functional Centrality (NFC) algorithm to mine lethal proteins in
PPI networks based on this concept. Evaluation on four Saccharomyces cerevisiae
PPI datasets showed that NFC performed significantly better than all other existing
computational techniques. Given that many lethal proteins can be of low connec-
tivity, we also verified that our NFC method can detect low-connectivity lethal
proteins undetected by conventional methods.

2. Related Works

Jeong [3] first reported that the lethality of a protein is positively correlated to
its connectivity (or degree) in the protein interaction network—the number of in-
teracting partners a protein has. This has led to numerous subsequent works that
attempted to infer a protein’s lethality in baker’s yeast using various other net-
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work topological characteristics such as clustering coefficient [6], betweenness [7],
damage [8], and subgraph centrality [9]. The clustering coefficient quantifies the
probability of two interacting proteins are also interacting with a similar third pro-
tein. The betweenness score quantifies a protein’s topological centrality based on
number of shortest paths that pass through it in the underlying PPI network. The
damage score measures the disintegration of the underlying PPI network resulting
from the removal of a protein. The subgraph centrality score quantifies the number
of subgraphs a node participate in with emphasis on shorter closed paths.

All the above methods used solely topological measures that are directly or in-
directly dependent on the high connectivity of proteins within the PPI network. As
such, they will not work very well when the underlying PPI network is a sparse net-
work. In the four PPI datasets that we have used for our evaluation experiments, we
found an average of 67.0% of lethal proteins exhibited low connectivity (number of
interaction partners ≤ 5) in the underlying PPI networks (see the bracketed figures
in Table 1). Furthermore, a substantial amount (54.7%) of the high-connectivity
proteins (number of interaction partners ≥ 6) were not known to be lethal, sug-
gesting that the biological lethality of a protein cannot be adequately determined
solely by network topology. In this paper, we propose a new method that incor-
porates functional information with topological information to better detect lethal
proteins, including those with low connectivity in PPI networks.

3. Method

We model the protein interaction data as a large undirected graph GPPI =
(VPPI, EPPI), where VPPI represents the set of interacting proteins and EPPI denotes all
detected pairwise interactions between two proteins from VPPI. Our NFC algorithm
consists of two steps. First, for each protein in the interaction graph, we construct
a local neighborhood graph to compute a nfc score (Section 3.1). Then, we assess
the significance of nfc(u) by computing its corresponding Znfc (Section 3.2).

3.1. Computing the Neighborhood Functional Centrality

To compute the neighborhood functional centrality score nfc for each protein in the
interactome, we define the neighborhood graph for each vertex u in GPPI as follows:

Definition 1. For each vertex u ∈ VPPI, its neighborhood graph is defined as
Gu = (Vu, Eu), where:

Vu = {v | v ∈ VPPI ∧ dist(u, v) ≤ θ},

Eu = {(vj , vk) | (vj , vk) ∈ EPPI ∧ vj , vk ∈ Vu}, and

dist(u, v) is a function that returns the shortest distance between u and v.

The neighborhood graph Gu of a vertex u is the subgraph in GPPI induced by the
vertices that are within a radius of θ from u. θ is a user-defined variable to control
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the radius (or size) of the neighborhood graph of vertex u and we will investigate
its effect on the prediction results later (Section 5.4).

Next, we evaluate whether a protein is functionally central in its neighborhood
graph. This involves measuring the functional similarities among the proteins in
the neighborhood graph. This is achieved by incorporating functional information
associated with each protein into our analysis.

Biological functions are typically organized in a hierarchical structure—generic
biological functions (such as transcription) can be progressively broken down into
more specific functions (such as transcription termination, and transcription from
RNA polymerase II promoter). Each protein in an interactome is annotated (if
at alla) with functions at various levels of specificity depending on the state of
functional knowledge on the individual proteins. Currently, the most commonly
used structure for functional annotation is the Gene Ontology—GO [10].

To compute the functional centrality of the proteins, we take into consideration
that the proteins’ functional annotations are in ancestor/descendent relationships.
As such, we adopted the Relative Specificity Similarity (RSS) method that Wu [11]
have developed which is a quantitative measure of the similarity between two GO
functions (Definition 2) taking into account the hierarchical structure of GO:

Definition 2. Relative Specificity Similarity (RSS)

RSS(termi, termj) =
maxDepthGO

maxDepthGO + γ
· α

α + β

where maxDepthGO is the maximum depth of the GO, α measures the maximum
number of common ancestor terms shared between termi and termj in a single
path, β is the value of the longer distance between termi and termj to their closest
leaf nodes, and γ measures the shortest distance between termi and termj . Refer
to Wu [11] for details.

Definition 2 defines the functional similarity between two individual functions.
However, a protein could be involved in different biological processes and associated
with multiple GO annotations. Suppose Fu and Fv are the function annotations
of proteins u and v respectively, we define the functional similarity between the
proteins u and v as follows:

Definition 3. The protein functional similarity between two proteins u and v is
defined as

protein funsim(u, v) =

∑|Fu|
i=1

∑|Fv|
j=1 RSS(F(u,i), F(v,j))

(|Fu| ∗ |Fv|) ∗ dist(u, v)

where F(u,i) and F(v,j) denote protein u’s i-th and protein v’s j-th’s functions re-
spectively, and |Fu| denotes the number of functions protein u is annotated with.

aWe will discuss strategies to handle proteins without functional annotations and their prediction
in Section 5.3.
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Definition 3 quantifies the extend of functional similarity between two proteins
which may have multiple functions. The denominator dist(u, v) is included here to
give higher weightage for protein pairs that are closer together in the underlying
interaction graph—this takes into account the implicit functional similarity between
the two proteins based on their distance in the interactome.

We are now ready to define the neighborhood functional centrality score for each
protein based on its functional similarity with proteins in its neighborhood graph:

Definition 4. The neighborhood functional centrality nfc(u) of a protein u is
defined as

nfc(u) =
∑

v∈Vu,v 6=u

protein funsim(u, v)

Definition 4 quantitates the degree of functional consistency between protein
u and all the other proteins in its neighborhood graph Gu = (Vu, Eu). The value
nfc(u) indicates the functional centrality of protein u in Gu.

3.2. Computing the Corresponding Z-scores

Depending on the underlying functional distribution of the proteins in the interac-
tome, it is possible that protein u is more likely to be assigned a higher nfc(u) when
located in a larger neighborhood graph Gu, or vice versa due to the summation used
in Definition 4. In other words, given an interactome, the statistical distributions
of nfc(u) in smaller neighborhoods may be different from those in bigger neighbor-
hoods (i.e. different means and/or different standard deviations). The significance
of a particular nfc(u) value is therefore dependent on the underlying distribution
with respect to the size of the local neighborhood chosen for u.

In this work, we assess the significance of each protein’s nfc(u) value by com-
puting its Z-Score (or “standard scores”) Znfc as follows:

Definition 5. Znfc(u, s) is defined as

Znfc(u, s) =
nfc(u)− µs

σs

where µs and σs are the mean and standard deviation of the distribution of nfc(u)
values computed from neighborhood graphs of size s.

Definition 5 requires computation of the distributions of neighborhood func-
tional centrality values for differently-sized neighborhood regions. In fact, we only
need to compute distributions for neighborhood sizes actually used in our nfc(u)
computation which we stored in set US. We estimate the distributions of neigh-
borhood functional centrality values for each neighborhood size in US by randomly
fetching same-sized neighborhood graphs for each vertex (if possibleb) to determine

bIt is possible that we are unable to fetch from u, a neighborhood of an intended size if the protein
is in a small isolated partition. However, θ can be set small enough such that it is possible to find
some neighborhoods of the intended size with some other vertices in the PPI network.
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the corresponding neighborhood functional centrality values.

4. Experimental Data

For evaluation, we performed comparative experiments to show that our neigh-
borhood functional centrality (NFC) approach performs better than other existing
computational techniques. We used PPI datasets for Saccharomyces cerevisiae as it
is currently the only organism with fairly complete knockout analysis (which forms
our core lethal protein list).

4.1. PPI Datasets

We used four publicly available Saccharomyces cerevisiae protein interaction
datasets for our evaluation experiments: FYI [12], Nature [2], Bu [13] and DIPS [14].
Each dataset was named after the source from which we have acquired them—details
about each dataset are shown in Table 1. We have elected to use four different
datasets so as (a) to facilitate direct comparisons with previous work and (b) to
verify the performance against datasets of varying quality. The first dataset FYI
is a high-quality (reliable) but sparse yeast interaction dataset with minimal false
positives [12]. Another sparse network is Nature—included as it was employed by
Jeong [3] whom first used the connectivity measure (which we will be comparing
against) to detect the lethal proteins. The third dataset Bu is a relatively dense net-
work with 3 times as many interactions as the previous two datasets. It was compiled
by Bu [13] for function prediction, and subsequently used by Estrada [9] whom in-
troduced the Subgraph Centrality (SC) measure which we will also be comparing
against. The fourth dataset DIPS was obtained from the Database of Interaction
Proteins (Nov 2005), giving rise to another dense network with interactions derived
from various biological experiments. We pre-processed all four datasets by removing
self-interacting interactions and isolated protein pairs from the networks.

Table 1. Details of the four Saccharomyces cerevisiae protein interaction datasets used in
our evaluation experiments.

FYI Nature Bu DIPS

# Proteins 1210 (958) 1638 (1490) 2224 (1531) 2406 (1773)

# Lethal 464 (333) 369 (312) 670 (349) 695 (414)

# Unknown (No Function) 12 (10) 94 (84) 18 (17) 23 (23)

# Interactions 2400 2201 6609 5665

Note: Italicized numbers in brackets represents proteins with connectivity ≤ 5.

Since our NFC method incorporates the functional information of the proteins
for evaluation, we used function annotations classified as biological process by GO
[10] (27-Oct-2006). Functional annotation has not yet reach the stage where we
can expect all the proteins to be annotated (see “# Unknown” in Table 1) and we
address this and the function prediction mechanisms in Section 5.3.
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4.2. Reference List and Evaluation Metric

For evaluation, we used a benchmark lethal protein list (the Core list) consisting
of 1106 known lethal proteins for Saccharomyces cerevisiae determined by PCR-
based gene deletion strategy [15]. This set of lethal proteins was derived experimen-
tally using PCR-based gene deletion strategy [16, 17]. We plot the corresponding
ROC (Receiver Operating Characteristic) curves to compare the performance of
the various prediction methods. Quantification of the significance of each prediction
technique’s ROC curve is done using the AUC (Area Under the Curve) values.

5. Experimental Results

In this section, we first compare our NFC method against other existing methods
for predicting lethal proteins from PPI datasets to see whether NFC can perform
better than the current methods (Section 5.1). We also check on the performance of
our NFC to see if it can better detect low connectivity lethal proteins (Section 5.2).

We next investigate the performance of NFC in the absence of functional infor-
mation and how function prediction mechanism can help in addressing this issue
(Section 5.3). Finally, we investigate how the performance of NFC may be affected
by different values of θ which controls the neighborhood radius (Section 5.4).

5.1. Performance Comparisons

We compare the performance of NFC against three other existing methods, namely,
connectivity [3], subgraph centrality (SC) [9] and cluster coefficient (CC) [6]. For a
fair evaluation, we use the same four protein interaction datasets, core lethal protein
list, and function annotation for all the methods. We have omitted here the damage
score method proposed by Schmith [8] and the betweenness score method by Joy [7].
This is because the damage score was already known to have a lower correlation
to lethality as opposed to connectivity in PPI datasets [8], while betweenness have
been outperformed by SC [9].

Table 2. AUC comparisons of NFC, Connectivity, SC, and CC.

FYI Nature Bu DIPS

NFC 67.8 (67.7) 71.2 (73.2) 74.9 (72.0) 75.3 (74.3)

Connectivity 60.8 (58.1) 61.0 (58.6) 66.0 (58.3) 65.8 (60.9)

SC 57.1 (54.2) 56.8 (53.4) 65.4 (56.7) 63.9 (58.7)

CC 55.2 (56.0) 59.0 (59.1) 58.8 (59.1) 56.9 (58.9)

Note: Italicized numbers in brackets represents AUC values for detecting
proteins with connectivity ≤ 5.

In Figure 1, we show the ROC curves of the four prediction methods on our
experimental datasets. The AUC values for all four datasets are shown in Table 2
which clearly depicts the generality of NFC when used in datasets of varying size
and quality. The results also shows that NFC can better detect lethal proteins from
PPI datasets than other existing techniques due to its larger AUC values.
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Fig. 1. ROC charts of NFC, Connectivity, SC, and CC for each evaluation dataset.

5.2. Low Connectivity Proteins

As from Table 1, a significantly large proportion (78.2% on average) of proteins
in the datasets are of low-connectivity (i.e. number of interaction partners ≤ 5),
even in dense PPI networks such as Bu and DIPS. Furthermore, a high average
of 67.0% of the lethal proteins in our core reference list also has low connectivity
in the underlying PPI networks. This means that the connectivity-based detection
methods would have missed out a significant number of lethal proteins if we rely
solely on detecting high-connectivity proteins. The bracketed numbers in Table 2
confirms that NFC can detect low connectivity lethal proteins much better than the
other existing methods in all four datasets.

5.3. Protein Function Annotation: Absence and Prediction

The incorporation of biological knowledge in addition to topological information
have vastly improved lethal proteins detection. However, this implies that our NFC
method is dependent on the amount of biological knowledge available, and its per-
formance is expected to decrease with a higher number of unknown proteins (i.e.
proteins without known functions).

We tested this on the datasets by generating the situation where 50% of the
proteins have an unknown function through a random selection process of marking
a protein as having unknown functionc. As expected, a decline was observed in the

cHere, we set the upper limit at 50% as a statistical study shows the largest percentage of unknown
proteins on other species was 46.0% (Caenorhabditis elegans).
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AUC values. We then follow this up with the utilization of function prediction mech-
anism. For simplicity, we chose the Majority measure proposed by Schwikowski [18].
By using the Majority method in the same situation (50% unknown), the improve-
ments in AUC values for each dataset are from 54.8% to 62.5% for FYI, 57.4% to
62.2% for Nature, 60.0% to 69.1% for Bu, and 58.8% to 69.7% for DIPS (Table 3).
Even with a basic method, NFC is still able to obtain AUC values better than
existing methods. By coupling with more sophisticated protein function prediction
methods [19–21], we certainly expect NFC performance to be more robust than
illustrated.

Table 3. AUC values with different percentages of unknown proteins.

Normal 10% 20% 30% 40% 50%

FYI 67.8 64.5 (67.8) 60.7 (66.8) 58.7 (65.4) 56.6 (64.2) 54.8 (62.5)

Nature 71.2 68.4 (70.6) 64.6 (68.8) 61.7 (66.9) 59.9 (64.8) 57.4 (62.2)

Bu 74.9 70.9 (73.8) 67.1 (72.4) 63.4 (71.5) 61.0 (70.4) 60.0 (69.1)

DIPS 75.3 70.9 (74.6) 66.9 (73.4) 64.3 (72.2) 60.9 (70.9) 58.8 (69.7)

Note: Italicized numbers in brackets represents AUC values with the Majority measure used.

5.4. Varying the Neighborhood Radius Threshold θ

Recall that our NFC method employed a user-defined threshold θ (Section 3.1) that
controls the radius of the neighborhood graphs to compute the functional centrality
valuesd. It is therefore possible that the performance of NFC may be affected by
choice of θ used. Further evaluation experiments where we computed the various
AUC values for each dataset when θ = 1 to θ = 5 has the mean deviation of 0.3%
(FYI), 1.2% (Nature), 1.1% (Bu), and 1.3% (DIPS) (Table 4). These values are a
clear indication that NFC’s performance is not affected by θ. During our investiga-
tion, we also found that by using the Z-score instead of the raw nfc(u) values, our
NFC method has effectively adjusted for the effects of different neighborhood sizes
and improved the accuracy of its predicted lethal proteins. Compared to using only
the raw nfc(u) values in the computation, Znfc improved the AUC values by 6.2%,
7.1%, 5.8%, and 7.3% for FYI, Nature, Bu, and DIPS respectively.

Table 4. AUC values for different θ.

θ = 1 θ = 2 θ = 3 θ = 4 θ = 5 Mean Deviation

FYI 67.0% 67.8% 67.1% 66.6% 66.6% 0.3%

Nature 67.4% 71.2% 70.8% 69.4% 68.5% 1.2%

Bu 72.2% 74.9% 73.5% 72.0% 71.7% 1.1%

DIPS 73.2% 75.3% 73.6% 71.9% 70.9% 1.3%

dResults presented above are obtained with θ = 2.
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6. Discussions and Conclusions

The detection of lethal proteins is useful for various aspect of biological study. To
complement the costly experimental approaches such as PCR-based gene deletion
strategy [15], and to exploit the large datasets of protein-protein interactions that
have become available, researchers have proposed numerous computational meth-
ods using topological properties associated with high connectivity to infer protein
lethality. However, we have shown in this paper that the lethality of a protein is
a functional characteristic that cannot be determined solely by network topology.
Furthermore, a significant number of lethal proteins have been found to have low
connectivity (less than 5 interaction partners) in the interaction networks.

A protein’s lethality should also be determined using additional non-topological
information such as its functional grouping within the cell. We reasoned proteins
that are the key players or coordinators within functional modules are likely to be
lethal as their removal will drastically disrupt the effective operations of the mod-
ules. In this paper, we proposed a novel neighborhood functional centrality (NFC)
approach that incorporated the conventional topological concept for protein lethal-
ity with the notion of functional modules [4, 5] to better detect protein lethality.

NFC was shown to discover both lethal proteins with high connectivity as well
as those with low connectivity. In the top 100 lethal proteins detected by NFC from
the FYI dataset, 27 bind to 5 or less proteins (low connectivity), 40 bind between
6 to 9 proteins, and 33 bind to 10 or more proteins. On average, NFC was able to
detect three times more low-connectivity lethal proteins within the top 100 positions
as compared to the connectivity method [3].

A functional distribution analysis of the top ranking lethal proteins reveal that
NFC favors lethal proteins involved in basal cell activities. For example, the top
100 lethal proteins detected by NFC in each of the four datasets have GO functions
that can be broadly grouped under “translation”, “replication”, and “transcription”
categories. In contrast, the connectivity method by Jeong [3] favored the discovery
of lethal proteins with “mitotic cell cycle and cell cycle control” and “fungal and
other eukaryotic cell type differentiation” functions. Our preliminary take on the
differences is that NFC’s functional centrality assumption led to the tendency to
find the cores of protein complexes common in some biological pathways, whereas
the connectivity method favored the discovery of lethal proteins associated with
different functions because such lethal proteins would need to interact with multiple
proteins in order to coordinate the global cellular activities needed for cell growth
and differentiation.

When a protein has functional annotations, an intelligent guess may be made
with regards to its lethality based on the biological understanding of its annotated
functions. For example, we would expect many proteins involved in translation to
be lethal as the process is a basal cellular activity. However, only 12.7% of all
the proteins with translation function are actually lethal. This could stem from
our current incomplete understanding of the exact roles played by each protein in
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translation. On average, GO terms identified in our top 100 NFC proteins are found
to associate with lethal proteins 27.3% of the time. On the other hand, 70.0% of
the top 100 NFC are lethal where we made use of functional consistency between
proteins rather than functional understanding. Thus, integrating PPI network with
functional grouping of proteins enable us to better detect lethal proteins than just
using functional information alone.

Interestingly, we also found 12 (FYI), 13 (Nature), 18 (Bu), and 12 (DIPS)
instances of high-confidence (top 100) predicted lethal proteins that are not in the
current reference lethal protein lists, but each has at least one homologous sequence
(BLAST’s e-value ≤ 1e−99). The presence of homologous copies of a protein within
the same genome could potentially buffer the protein deletion which would otherwise
lead to lethality. It is conceivable that these predicted proteins require the removal
of its associated homologous for lethality to take effect.

Given that the core lethal protein set we used is an incomplete reference list,
those highly ranked non-lethal proteins could be novel lethal proteins. We found
numerous high-ranked proteins by NFC that turned out to be true lethal proteins
listed in other lethal protein reference sets. For example, the proteins YLR268W
and YFL017W-A, respectively ranked at the top 16th and 38th positions by NFC
in the DIPS and Bu datasets, were absent from our core lethal protein list but
found in another lethal protein list used by Jeong [3]. Further comparison of NFC’s
predictions with two other reference sets used by Jeong [3], and list compiled by
MIPS [22], found that out of the top 500 ranked proteins, an additional 15 (FYI),
11( Nature), 18 (Bu) and 16 (DIPS) were recorded in these alternative lethal sets.

Regardless of the improved accuracy of our predictive models over time, biolog-
ical validation of predictions is always necessary. Our hope is that the predictions
from this and the future works on computational lethal protein detection can be-
come a useful tool for focusing further experiments that can lead to a shorter time
frame required for lethal protein discovery and understanding.
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