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Reconstruction of signaling pathways is crucial for understanding cellular mechanisms.

A pathway is represented as a path of a signaling cascade involving a series of proteins to
perform a particular function. Since a protein pair involved in signaling and response have
a strong interaction, putative pathways can be detected from protein-protein interaction
(PPI) networks. However, predicting directed pathways from the undirected genome-

wide PPI networks has been challenging. We present a novel computational algorithm
to efficiently predict signaling pathways from PPI networks given a starting protein and
an ending protein. Our approach integrates topological analysis of PPI networks and
semantic analysis of PPIs using Gene Ontology data. An advanced semantic similarity

measure is used for weighting each interacting protein pair. Our distance-wise algorithm
iteratively selects an adjacent protein from a PPI network to build a pathway based
on a distance condition. On each iteration, the strength of a hypothetical path passing

through a candidate edge is estimated by a local heuristic. We evaluate the performance
by comparing the resultant paths to known signaling pathways on yeast and worm. The
results show that our approach has higher accuracy and efficiency than previous methods.

Keywords: Protein-protein interaction networks; Signaling pathways; Gene Ontology;

Semantic similarity.
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1. Introduction

Understanding signal transduction processes is a central step to elucidate functional

mechanisms of cellular molecules and agents that surround them. Over the past

decade, systematic approaches using high-throughput experimental techniques1,2

have attempted to reconstruct signaling pathways. A signaling pathway is defined

as a linear path of the signaling cascade involving a series of genes to perform a par-

ticular function. It generally starts with a membrane-bound receptor gene, contains

a series of genes which cause signal transduction, and ends with a transcription

factor gene. Since a protein pair involved in signaling and response typically have a

strong interaction, signaling pathways can be detected from protein-protein inter-

action (PPI) networks given starting and ending proteins. Various high-throughput

methods have recently generated PPI data on the scale of entire genome3. Subse-

quently, signaling pathways have been predicted computationally from the genome-

wide PPI networks. A general idea of the computational approaches is to assign

each PPI an edge weight and search for the strongest path which is considered as a

putative signaling pathway.

Previously, Scott et al.4 used the idea of color-coding to assign each vertex in

a PPI network a random color between 1 and k and search for paths with distinct

colors instead of searching for the strongest paths. The complexity of the dynamic

programming algorithm is thereby reduced. However, a path fails to be discovered

if any two of its vertices receive the same color, so many trials of random colorings

are required to ensure that all desired paths are considered. The running time of

the color-coding algorithm is exponential in k and linear in n, number of nodes in

the graph, and the storage requirement is exponential in k and linear in n. Since

k also limits the possible discovered path length, the algorithm is exponential in

maximum path length. Moreover, because this method uses summation of edge

weights to compute path strength, it is biased towards longer paths.

Gitter et al.5 defined the Maximum Orientation (MEO) problem as searching for

edge orientation of the undirected PPI network, which would maximize the sum of

strengths of all satisfied paths from given sources to targets. However, because MEO

is a typical NP-hard problem, they suggested several approximation algorithms.

Their first suggestion is random orientation of edges. Second, they used known

approximation algorithms by reducing the problem to MAX-k-CSP and MIN-k-

SAT. Finally, they proposed adding local search to further optimize the results.

The local search iteratively finds an edge whose orientation can be flipped that

benefits the optimization the most. However, each additional constraint is a trade-

off between runtime and approximation accuracy. We found that the runtime of this

method for any paths longer than 5 becomes problematic, nevertheless the memory

requirement was a more serious and limiting issue.

In this paper, we present a novel computational approach to discover signaling

pathways from the genome-wide PPI networks integrated with Gene Ontology (GO)

annotation data. A key assumption in this approach is that we can place confidence
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values on interactions between different proteins. Recent research6 has suggested

that PPIs can be validated by ontological analysis of interacting proteins. We thus

quantify the confidence of PPIs as their weights by semantic similarity7, a function

that returns a numeric value reflecting closeness in meaning between two ontological

terms to which the proteins are annotated. Gene Ontology (GO) annotation data8

are used to measure semantic similarity because GO is currently the most complete

repository of biological ontologies and annotations over various model organisms.

We propose a distance-wise algorithm to predict pathways from weighted PPI

networks given a starting protein (a source), an ending protein (a target) and the

maximum path length. Recall that searching for the strongest (or longest) path

under such conditions is an NP-complete problem and its efficient (however, subop-

timal) solutions must introduce at least some level of approximation. Our approach

aims at not only collecting all proteins involved in a particular signaling cascade,

but also ordering them to form a directed signaling pathway. The algorithm itera-

tively adds an edge into an already discovered path based on a distance condition.

On each iteration, the algorithm selects the set of candidate edges and estimates

the path strength of a hypothetical path passing through each candidate edge using

a local heuristic. The combination of the distance condition and our local heuristic

approach achieves superior results of pathway discovery in terms of space and time

complexity, even for long pathways, than previous methods.

2. Method

2.1. Pathway detection algorithm

The path finding problem is to find the strongest simple paths between a source

and a target in an undirected weighted graph. The strength of a path p is defined

as S(p) = Πe∈pw(e) where w(e) is the weight of an edge e in p. Here, we state that

w(e) must be in the range of [0, 1] where 1 means we are the most confident of the

interaction. It is important to note that the path strength function forces longer

paths to have smaller values than shorter paths basically giving preference to shorter

paths. Since real pathways are predictably short because biological responses are

usually controlled shortly, this is a reasonable model for pathway prediction.

Our algorithm searches for a path while traveling from a source to a target on

a PPI network. The most determining idea behind the proposed algorithm is the

restriction of search space only for the paths of given maximum length or shorter.

By setting an upper bound of total path length, we are simultaneously restricting

search space of the next candidate nodes. Any node participating in the discovered

paths must hold on the following distance condition.

(Distance Condition) For any node v, the sum of minimum distances from the

source to v and from v to the target must be lower than or equal to the given

maximum path length.

To efficiently meet the distance condition, we use breadth-first search (BFS) to
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Fig. 1. Distance labeling by breadth-first search (BFS) from source A to target B. The first number
in node labels refers distance to source, and the second to target. Dotted lines show the waves of
BFS from A. Grey area indicates the restricted search space by maximum path length of 5.

label minimum distances for each node with respect to the source and target pair

(see Figure 1 for details). Once all necessary labels are computed, the query on

satisfiability is just constant-time summation of distances to the source and target.

2.1.1. Use of distance bounding condition

Our algorithm, starting from the source, iteratively selects an edge towards the

target and consequently builds a path. At each node, an edge is chosen based on

a local heuristic and strategy (see the next two subsections), the edge is added to

the path, and the search continues at the recently added edge towards the target.

However, searching for all possible edges is not necessary. Only the edges which

meet the distance condition are chosen – we call these candidate edges. Here, we

define the extended distance condition which is more restrictive. As a consequence

of this definition, “source minimum distance labels” on each node are not necessary

anymore. For all paths to the same target, we thus need only a single BFS run.

(Extended Distance Condition) The sum of minimum distance to target and

distance already traveled by the algorithm (the number of edges currently added

for each path) must be lower than or equal to the given maximum path length.

In Figure 1, suppose we are currently atD, we are looking for a path of maximum

length 5 from A to B, and we have come through node C. This setup means that

we have already traveled two hops. We will need another hop for the edge we are

about to choose, thus the remaining possible number of hops is 2. Therefore, we

may consider only the edges whose connecting nodes have the “target minimum

distance label” lower than or equal to 2. Due to this reasoning, the edge connecting

to the node E will be excluded from the set of candidate edges.

2.1.2. Local heuristic for candidate edge ordering

At the point of the algorithm when we are about to add a new edge to the already

discovered path segment, we need to make a choice from candidate edges – the set
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of edges holding on the extended distance condition minus the set of edges that

make cycles (see a following subsection on how to modify the set of candidate edges

to achieve simple paths). First, we order the candidate edges by a local heuristic.

Second, we select one of them, but not necessarily the best edge, e.g. in case we

want to introduce randomness. A naive approach to the local heuristic would use the

edge weights that are already given. However, remember our path strength scheme.

The path strength is given by the product of all edge weights. Such a simple greedy

strategy, i.e. repeated selection of the edge having the highest weight, behaves as

computing the path strength by rather a sum of weights and definitely does not

give any preference to shorter paths. We thus need a more sophisticated approach

for edge selection.

To evaluate a candidate edge e, we use the overall path strength of a path

leading through the edge e. We know the strength of the already discovered path

segment and the weight of the next edge e. We also know the minimum distance lr
we yet have to travel after selecting e. What we do not know are the edge weights

on the undiscovered portion of the path. For this remaining part of the potential

pathway, we use a weight estimate ŵr. We compute ŵr in two different ways. One is

the average of edge weights in the search area. This computation requires two BFS

runs but the result is a constant value reusable for the entire pathway discovery.

The other is the average of edge weights on the already determined path (including

w(e)). We will refer to them in the rest of the paper as Average and Experience

heuristics, respectively. The path strength estimate Ŝe of a possible path going

though an edge e is computed as

Ŝe = Sd · w(e) · ŵr
lr (1)

where Sd is the strength of the already discovered path as part of the potential

pathway, and lr is the minimum remaining path length after adding e.

2.1.3. Strategies for edge selection

Once we have the candidate edges evaluated and ordered, we need to select one of

them. Selecting the edge with the highest path strength estimate (as computed in

the previous section) does not have to yield the best results. In this way, first, we

would be able to return only a single path between a source and a target. Second,

one very strong edge might lead the algorithm astray. To avoid this phenomenon,

we introduce probabilistic selection.

We propose several different strategies to select an edge from ordered candi-

dates. Top Random Maximum takes a fixed portion of top edges and selects one

edge according to a discretized Gaussian probability distribution, where the highest

ranking edge receives the highest probability of being selected. The fixed percentage

is a parameter value. Smooth Random Maximum also takes a portion of top

edges, but instead of using a percentage of their ranks, it uses a percentage of the

estimated path strength value range. Also, a value from that range is selected by the
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probability distribution, rather then an edge ranking, so the edge winner becomes

the edge with the closest value.

While both previous two strategies need the parameter of a fixed percentage,

Variable Smooth Random Maximum uses a variable percentage which are

changed during different stages of discovery. At the beginning of pathway discovery,

we are more likely to make an incorrect decision because the vast majority of the

path strength is guessed. Thus, at the beginning of the path, we need more random-

ization in order to explore more possibilities. As the target approaches, our path

estimates are becoming more precise and we can rely on them more. Therefore, the

ratio of top edges that are to be included in the randomization process is propor-

tional to the remaining path length and inversely proportional to the traveled path

length. Since our edge selection has a randomization mechanism, we can now run

the whole algorithm multiple times and discover several possibly strong paths. We

can also combine different strategies and heuristics to improve the results.

2.1.4. Cycle Avoidance

Note that the proposed algorithm enables us to perform distance-wise search with-

out explicitly selecting the search area (the gray area on Figure 1. Moreover, apart

from keeping the path only in the search area, this mechanism also prevents the

path from unnecessary walking in spirals. In other words, the output path will never

be longer than the maximum path argument and a simple path (i.e., a path with

no cycles) will always be found if exists. Here a cycle avoidance mechanism comes

in handy. When selecting candidate edges, all edges that would lead to completing

a cycle (edges with the target node already on the discovered path) are omitted. In

this approach, we could encounter a situation where no candidate edges are avail-

able. In this case, the last edge from the discovered path is dropped and handled

as an edge that completes a cycle (thus omitted from the set of candidate edges).

It indicates that we will backtrack by one step since we reach an impasse on the

previously chosen edge. This mechanism guarantees that a simple path of given

length or shorter will be discovered if exists.

2.1.5. Time and space complexity

The random nature of the algorithm makes it hard to put meaningful upper bounds

on time complexity. Let n be the number of nodes in the PPI network, m number

of edges and l the maximum path length between the source and target. In the

worst, however non-realistic, case that the PPI graph is a clique, all edge weights

are equal to 1 and we are searching for a very long path (l = m), the algorithm could

have time complexity as high as O(n ·m). For an optimistic case (no backtracking

occurs) with a typical PPI network, time complexity is about O(l · b), where b is the
maximum degree of the PPI graph, if we reasonably implement cycle detection. A

large number of nodes in the typical PPI networks have sufficient degrees and thus
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the backtracking is quite rare. Sorting edges adds log(b) for each selected edge, but

it doesn’t change the asymptotic bound O(l · (b + log(b)) = O(l · b). BFS search

(once or twice) adds extra O(m+ n), nevertheless that computation can be reused

for several runs of the algorithm according to the selected heuristic and strategy.

The space complexity is driven by necessity to store distance labels. Although some

additional memory will be needed for each step of the algorithm (at most b), the

total bound is about 2n+ b.

2.2. Edge weighting method

We compute edge weights of PPI networks by semantic similarity measurement.

Various semantic similarity measures have been introduced to quantify functional

similarity between proteins. Previous studies6,9 showed the semantic similarity met-

rics based on information contents such as Resnik’s and Jiang’s methods10, node-

based methods such as simUI11, and integrative methods such as simGIC12 have

relatively high accuracy. Resnik’s method measures the semantic similarity using

the information content of the most specific common ontology term. Jiang’s method

measures the differences of information contents between the most specific common

ontology term and the two terms of interest. Node-based methods explore the over-

lap of two sets of ontology terms having the annotation of two proteins of interest,

respectively. simUI is the normalized version of this method by the union of the two

sets. simGIC is a typical integrative method of simUI with information contents.

In this study, we use another type of integrative methods, called simICND13,

which has a great performance on assessing functional consistency of interacting

protein pairs. This is the normalized version of Resnik’s method by the distance of

the information content between two ontology terms (used in Jiang’s method).

simICND(C1, C2) =
− logP (C0)

1− logP (C1)− logP (C2) + 2 · logP (C0)
, (2)

where C1 and C2 are the ontology terms having the annotation of interacting pro-

teins, respectively, and C0 represents the most specific common ontology term of

C1 and C2. In order to have the similarity of an interacting protein pair, we need

to aggregate the simICND scores between pairwise combinations of two ontology

term sets having the annotation of the interacting proteins, respectively. It has been

examined that the best-match average (BMA) approach14 which takes the average

of all pairwise best-matches has the best performance on aggregating term-to-term

semantic similarities. We thus apply the BMA score of simICND of each PPI to the

edge weight so as to build a weight PPI network.

3. Experimental Results

3.1. Data source and experimental setting

We tested our approach using the genome-wide PPI data set of S. cerevisiae from

BioGRID15. To quantitatively evaluate the performance of our pathway discovery
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approach, we compare the predicted results to well-studied signaling pathways in

S. cerevisiae such as MAPK signaling pathways. This known pathway information

was extracted from KEGG16. Since our approach takes the given source, target and

maximum path length as input parameters, we selected the proteins having trans-

membrane signaling receptor activities as sources and the proteins having nucleic

acid binding transcription factor activities as targets. We then made all distinct

combinations of each source protein and target protein, and measured the maxi-

mum length between them.

Since our approach and other previous methods generate a possibly large set

of paths, we order the predicted paths by their strength and select the particular

number of top ranked paths. We use absolute ordering, where we just order all

paths decreasingly by their strength. We also deploy path-wise ordering, where

we order paths of each source-target pair separately in a decreasing manner. We

then merge them into a single path list one by one from each source-target list.

To evaluate prediction results, we used two metrics – recall and precision for

nodes, edges and oriented edges, respectively. For node recall and node precision,

we compare the set of proteins in predicted pathways with that in known signaling

pathways. Similarly, for edge recall and edge precision, the set of undirected edges

(i.e., protein pairs connected with each other) in predicted pathways is compared

to that in known signaling pathways. Finally, oriented edge recall and oriented edge

precision compare between two sets of directed edges in predicted pathways and

known signaling pathways. Note that, in a pathway, all edges are oriented from the

source towards the target. All these metrics will be computed for increasing sets of

the best pathways predicted (for every 10 pathways up to 100).

Achieving high precision or recall can be done by sacrificing the other metric,

thus we also present the Receiver Operating Characteristic (ROC) that pro-

vides a combined view on the prediction. Because of a very large number of negative

examples for edges or oriented edges, we present the ROC curve for nodes only.

3.2. Assessment of semantic similarity measures

First, we assessed the effect of semantic similarity measures on the proposed ap-

proach. We used the PPI data set of S. cerevisiae, which includes 5,590 distinct

proteins and 92,906 interactions. To weight each PPI, we implemented five different

semantic similarities – Resnik’s method, Jiang’s method, simUI, simGIC, and sim-

ICND. We then used the five weighted PPI networks for pathway discovery. Since

path strength is computed by the product of all edge weights on the path, each

edge weight should be bounded by 0 and 1. Resnik’s method and simICND, how-

ever, generate the scores between 0 and ∞. We thus apply the linear transformation

of Resnik’s and simICND scores. We statistically found the upper and lower bounds

of the semantic similarity scores and projected them into the range between 0 and

1. All outlier values greater than the upper bound were assigned 1.

The predicted pathways by our approach using five different semantic similari-
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Fig. 2. Performance comparison of five semantic similarity methods. (a) Precision and (b) Recall
were measured for oriented edges on up to 100 predicted paths in path-wise order using yeast PPI

data weighted by five different semantic similarities.

Fig. 3. Evaluation of five semantic similarity methods by ROC curves which were plotted for nodes

on predicted paths in absolute order using yeast PPI data weighted by five semantic similarities.

ties were compared to MAPK signaling pathways of S. cerevisiae for four different

functions: pheromone response, high osmolarity, filamentous growth and cell wall

integrity. For both absolute and path-wise ordering, simICND reaches the best pre-

cision and best recall for nodes, edges and oriented edges likewise. Figure 2 (a) and

(b) show oriented edge precision and recall, respectively, by path-wise ordering. The

results demonstrate that the annotation-based semantic similarity methods, such

as Resnik’s, Jiang’s and simICND, perform better than the other types, and sim-

ICND outperforms the other two in the same category. It confirms the advantage

of combining two orthogonal approaches: Resnik’s method to measure commonal-

ity between interacting proteins and Jiang’s method to measure their difference.

The same result is confirmed by the ROC curves in Figure 3. We will therefore use

simICND to weight PPIs for all following experiments.

3.3. Validation of pathway discovery – Local heuristics comparison

To compare and evaluate local heuristics for candidate edge ordering, we used a par-

ticular strategy setting for edge selection (more-or-less randomly, but empirically),
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Fig. 4. Performance comparison of local heuristics. (a) Precision and (b) Recall were measured for
oriented edges on up to 100 paths in path-wise order. Three different local heuristics for candidate
edge ordering were compared.

and tested three different settings of local heuristics – Average heuristic, Experi-

ence heuristic and combination of both. For each combination of local heuristics

settings and source-target pairs, the algorithm was launched 10 times to obtain a

larger set of output paths. Figure 4 (a) and (b) show oriented edge precision and

recall, respectively, of predicted pathways in path-wise order. The difference of re-

sults between two metrics was quite subtle. However, it can be observed that the

combined heuristic might be considered as better than the other two, especially for

recall while improving precision.

If we investigate the heuristics closely, we know that the Experience heuristic

uses the average of edge weights on discovered paths as a future edge weight esti-

mate. Since we try to select strong edges, the estimate is likely to be high as opposed

to the average of all edges in the search area of Average heuristic that will proba-

bly be lower. From the definition of path strength, a higher estimate will tolerate

discovery of longer paths whereas a lower estimate will force shorter paths. By intu-

ition, the combined heuristic should provide a better result because it offers variety

in length of pathways discovered, i.e., it has strength to predict both short and long

pathways. We will thus use the combined heuristic for all future experiments.

3.4. Validation of pathway discovery – Edge selection strategy

comparison

For edge selection strategy comparison, we tested five different settings – Top Ran-

dom Maximum, Smooth Random Maximum, Variable Smooth Random Maximum,

combination of all three strategies (Combined - All) and combination of two smooth

strategies (Combined - Smooth). For Smooth Random Maximum, we used top 40%

of the estimated path strength value range by the Gaussian probability distribution.

For Top Random Maximum, we also used 40% of top ranked edges ordered by their

estimated path strength and selected one by the discretized Gaussian probability

distribution. Changing the percentage for the Smooth Random strategy does not

affect the results greatly (except for extreme values) and 40% for the Top Random
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Fig. 5. Performance comparison of edge selection strategies. (a) Precision and (b) Recall were
measured for oriented edges on up to 100 paths in path-wise order. Five different strategies for
edge selection were compared.

strategy is based on the distribution of estimated path strength.

Figure 5 (a) and (b) show oriented edge precision and recall, respectively, of

predicted paths by path-wise ordering. Results from this strategy comparison give

more broad distinction between the best and worst settings than those from local

heuristic comparison. Top Random Maximum by itself does not work well at all.

Smooth strategies, each one separately and combined together, give very similar

results. Combination of all strategies clearly outperforms the others in precision but

is slightly loosing recall, especially on top 20 paths. Thus, for later experiments, we

will use both strategies of Combined – Smooth (called Distance-wise Approach (1))

and Combined – All (called Distance-wise Approach (2)).

Why is precision of Top Random Maximum (40%) by itself the worst but signif-

icantly improves when cooperating? The key to this question is in the distribution

of estimated path strength. Typically, among candidate edges, there are a few with

very high path strength estimated, then the value drops off rapidly and majority of

the candidate edges have values below 0.1. The Top Random Maximum strategy,

even for a small percentage value, will include low value edges. This makes the re-

sultant pathways more random and the output might contain less strong paths. On

the other hand, semantic similarity methods do not always correctly quantify the

relationship of signaling and response between two proteins, and even some edges in

real signaling pathways have extremely low weights, e.g. w(MID2, RHO1) = 0.05 by

simICND. In this case, larger randomness is essential in order to boost the algorithm

forward. Combining different strategies is thus obviously efficient.

3.5. Validation of pathway discovery – Method comparison

We compared the performance of our approach with that of two previous methods:

the color-coding algorithm4 and the edge orientation method5. The previous meth-

ods require confidence values for edges in PPI networks. In order to avoid bias to

edge weighting and to make a fair comparison, we use identical semantic similarity

values (i.e., simICND) of PPIs for all previous methods compared.
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Both time and space complexity of the edge orientation method is extremely

large, significantly increasing with the maximum path length. We were not able to

run the edge orientation algorithm for the paths of length greater than 5 with effec-

tive 12GB memory dedicated to JVM (on 16GB up-to-date machine). This method

ran out of heap space even for single random orientation to predict long pathways.

Thus, to predict significantly short paths, it easily achieves high precision (less op-

portunity to make mistakes) but hardly gets the maximum recall (less opportunity

to cover all). To represent the best results achieved by the edge orientation method,

we limit the maximum path length by 5 across all MAPK signaling pathways. A

significant drawback of the color-coding algorithm is that particular colorings of a

graph can prevent certain paths to be found. To avoid this, we ran the color-coding

algorithm 100 times, each time with different random graph coloring and combined

all the discovered paths. Of course, the space of paths that can be found always

compromises with running time of the algorithm.

Figure 6 depicts precision and recall of the strongest paths predicted by the

color-coding algorithm, edge orientation method with maximum length 5 on the

entire list of MAPK signaling pathways, and our distance-wise approach using both

setups of combining all smooth strategies (distance-wise (1)) and combining all

strategies (distance-wise (2)). For this comparison, we were forced to use absolute

ordering, since the Edge Orientation algorithm presents more source-target pairs

as viable results, selecting only paths from real pathways by path-wise ordering

would give the Edge Orientation algorithm unfair advantage by discarding some of

its results. When comparing to the color-coding algorithm, both strategy settings

of our distance-wise approach have better precision and comparable recall for edges

and oriented edges, whereas our method is always better for node precision and

recall. In particular, when we focus on the top ranked paths, e.g. top 30 paths

generated, our distance-wise approach achieves significantly better results on all

evaluation metrics than the previous methods. Note that the generated paths in this

test were listed by absolute ordering. That is why the oriented edge precision and

recall plots of our approach in Figure 6 are slightly different from those in Figure 5.

Overall, the proposed approach outperforms the competing computational methods

of pathway discovery. We also present the ROC curve for this comparison in Figure

7 (for nodes only, using absolute ordering). Judging by the area under the curve

(AUC) analysis, both setups of our distance-wise algorithm significantly outperform

the previous methods.

4. Conclusion

We proposed a novel distance-wise computational approach of pathway discovery

from weighted PPI networks. In order to find optimal settings, we took into con-

sideration three factors: (1) semantic similarity measures for edge weights, (2) local

heuristics for candidate edge ordering, and (3) strategies for edge selection. For each

factor, we tested several different options. Among semantic similarity measures, we
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Fig. 6. Performance comparison of pathway prediction methods. (a) Node precision, (b) node

recall, (c) edge precision, (d) edge recall, (e) oriented edge precision, and (f) oriented edge recall
on up to 100 paths in absolute order generated by two different settings of our distances-wise
algorithm ((1) Combined - All Smooth, (2) Combined - All), the color-coding algorithm and the

edge orientation method. For the edge orientation method, we used maximum path length of 5 for
all reference MAPK signaling pathways.

concluded that a combined measure, simICND, is superb beyond question. For lo-

cal heuristics and edge selection strategies, we also argued that the combinations

of proposed options yield the best results. We also compared the proposed algo-

rithm to two previous competing methods: the color-coding algorithm and the edge

orientation method. Not only that our approach is unbeatable in case of time and

memory requirements whereas runtime of the color-coding algorithm is acceptable

and that of the edge orientation method even cannot be fully run, our approach also

has the best precision and recall when predicting known pathways, i.e. well-studied

MAPK signaling pathways, of S. cerevisiae.

Among the three factors tested in this experiment, selecting a semantic similarity

measure was the most sensitive to the pathway prediction accuracy. For calculating
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Fig. 7. Evaluation of three pathway prediction methods by ROC curves. The ROC curves were
plotted for nodes on predicted paths in absolute order, generated by two different settings of
our distances-wise algorithm ((1) Combined - All Smooth, (2) Combined - All), the color-coding
algorithm and the edge orientation method.

semantic similarity scores as PPI weights, we use GO annotation data which already

includes the specific information of cell signaling. Therefore, the results from the

proposed approach might be over-optimistic. For example, to predict MAPK sig-

naling pathways, its result can be biased towards the inclusion of proteins which are

already annotated to MAPK in GO. It thus might lead to high recall. In contrast,

predicting the pathways that are not annotated to any GO terms might result in

lower accuracy.
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