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Abstract—The rapid development of high-throughput technologies enables researchers to sequence the whole
metagenome of a microbial community sampled directly from the environment. The assignment of these sequence reads
into different species or taxonomical classes is a crucial step for metagenomic analysis, which is referred to as binning
of metagenomic data. Most traditional binning methods rely on known reference genomes for accurate assignment
of the sequence reads, therefore cannot classify reads from unknown species without the help of close references.
To overcome this drawback, unsupervised learning based approaches have been proposed, which need not any known
species’ reference genome for help. In this paper, we introduce a novel unsupervised method called MCluster for binning
metagenomic sequences. This method uses N-grams to extract sequence features and automatic feature weighting to
improve the performance of the basic K-means clustering algorithm. We evaluate MCluster on a variety of simulated
datasets and a real dataset, and compare it with three latest binning methods: AbundanceBin, MetaCluster 3.0 and
MetaCluster 5.0. Experimental results show that MCluster achieves obviously better overall performance (F-measure)
than AbundanceBin and MetaCluster 3.0 on long metagenomic reads (> 800bp); while compared with MetaCluster 5.0,
MCluster obtains a larger sensitivity, and a comparable yet more stable F-measure on short metagenomic reads (<

300bp). This suggests that MCluster can serve as a promising tool for effectively binning metagenomic sequences.

Index Terms—Metagenomics; Binning; N-grams; Feature weighting; Algorithms.

1 BACKGROUND

S a rapidly developing research area, metage-
Anomics [1] refers to the genomic analysis of mi-
crobial communities sampled directly from their natu-
ral environments without prior culturing. It provides
valuable insights into the identities, composition, dy-
namics, functions and interactions of diverse microbial
communities, especially those cannot be cultured in the
laboratory. For example, the metagenomics research of
human gut microbial communities revealed the asso-
ciation between gut microbial composition and human
health [2]; soil metagenomics researches discovered the
influences of different environments on microbe com-
munities [3]. With the development of high-throughput
Next Generation Sequencing (NGS) technologies [4],
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researchers are able to directly sequence the genomes
of multiple microorganisms obtained from an environ-
mental sample, which greatly facilitates metagenomics
researches in many areas [2], [5], [6], [7], [8]. Among
the sequencing technologies, 454 Roche Pyrosequencing
has been the most widely used one in metagenomics
research for its ability to generate much longer reads
than other technologies [9]. 454 technology can output
reads of about 1000bp while Illumina and SOLID mainly
output reads of less than 300bp.

Metagenomic data generated by Next Generation
Sequencing contain a large number of short se-
quences (i.e. reads) from multiple species. To analyze
these data, a crucial step is to group reads of the
same species or taxonomic class together in order to get
the taxonomic composition of the microbial community,
which is also called binning [10]. Most existing binning
methods can be roughly classified into two categories:
similarity based methods and composition based meth-
ods.

Similarity based methods such as MEGAN [11] first
align sequence reads to known reference genomes, then
group the reads based on the alignment result. Reads
aligned to the same genome or taxonomic class are
grouped together. However, the successful application
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of similarity-based methods relies heavily on the avail-
ability of known microorganism genomes. As a matter
of fact, up to 99% of bacteria found in environmen-
tal samples are unknown or cannot be cultured and
separated in laboratories [12], therefore may have no
genome sequences available. In a coral metagenomic
dataset, only 12% of the reads can be aligned to known
genomes [13]]. It was reported that the accuracies of
similarity based methods drop sharply when related
known genomes are not provided [10], which becomes
a major bottleneck for applying this kind of methods
to the rapidly increasing amount of metagenomic data.
On the other hand, composition based methods use
supervised or unsupervised techniques to assign reads to
different groups. The features are directly extracted from
the nucleotide sequences, which include oligonucleotide
frequencies, GC-content, codon usage etc.

For supervised composition based methods, the se-
quence features are used to train classifiers for a certain
number of species or taxonomic classes. For example,
existing methods used SVM [14], Naive Bayes [15],
KNN [16], Interpolated Markov Model [17] to train
classifiers for taxonomic assignment of metagenomic
sequences. However, the performance of these methods
still relies substantially on the availability of known
genomes, used as training samples.

To resolve or alleviate the problem of reference or
training genome unavailability, in the past years com-
position based binning methods using unsupervised or
semi-supervised techniques were proposed to deal with
metagenomic data from unknown species. This kind of
methods often uses k-mers (also called N-grams in natu-
ral language processing area) to generate the features of
sequences for unsupervised or semi-supervised binning.
For instance, Abe et al. [18], [19] showed the feasibility to
classify environmental genomic fragments with minimal
length of 5 Kbp using a self-organizing map (SOM).
Chan et al. [20] developed a semi-supervised method
to cluster metagenomic sequences by a seeded growing
self-organizing map (S-GSOM).

Recently, Wu et al. [21] proposed the Abundance-
bin method that extracts k-mers from sequence reads
and models the distribution of reads from each species
by Poisson distribution, which can effectively separate
the reads from species with different abundance ratios.
However, Abundancebin does not work well when the
datasets consist of reads from different species with
identical abundance ratio. Leung et al. [12] developed
the MetaCluster 3.0 method that uses 4-mers to build the
feature vectors, and clusters them using the classical K-
median algorithm, then merges close clusters. MetaClus-
ter 3.0 achieved better performance than Abundancebin
in both evenly and unevenly distributed datasets with
read length of 1000bp. Later, Wang et al. introduced two
improved versions of MetaCluster 3.0, which are Meta-
Cluster 4.0 [22]] and MetaCluster 5.0 [23]. MetaCluster 4.0
can deal with short reads by employing a preprocessing

stage to concatenate short reads to longer ones based on
sequence overlapping of the short reads. MetaCluster 5.0
advances MetaCluster 4.0 to handle short reads from
species with different abundance ratios. The series of
MetaCluster algorithms stand for the state of the art
unsupervised binning techniques. An outstanding fea-
ture of the MetaClusters is that they can automatically
determine the number of species hidden in the sequence
reads. However, our experiments (refer to Sec. 4] for the
detail) show that the number of species output by the
MetaCluster algorithms is often inaccurate when the real
number of species hidden in the sequences is relatively
large (> 3).

All the existing unsupervised methods for metage-
nomic sequence bining take the weights of different k-
mers equally in the clustering process. However, differ-
ent k-mers may actually have divergent influences on
the identification of each species according to a previous
research [24]. The incorporation of the k-mer preference
information can improve the performance of sequence
clustering, which has been validated by one of our
previous works on grouping miRNA sequences [25]. In
this paper, we develop a new unsupervised binning
approach called MCluster for metagenomic sequences,
which is based on the N-grams representation of se-
quence reads and an improved version of the classical
K-means algorithm with an automatic feature weighting
mechanism. When applied to 31 simulated datasets and
a real dataset sampled from Acid Mine Drainage, MClus-
ter achieves better overall performance than Abundance-
Bin and MetaCluster 3.0 on long metagenomic reads (>
800bp); while compared with MetaCluster 5.0, MCluster
obtains a larger sensitivity, and a comparable yet more
stable F'-measure on short metagenomic reads (< 300bp).
This demonstrates that MCluster is a promising method
for effectively binning metagenomic sequences.

The rest of this paper is organized as follows. Sec-
tion | presents the MCluster method. Section 3] gives
the evaluation results. Section {4] discusses the proposed
method and the empirical results as well as future work.
Section [5 concludes the paper.

2 METHOD

Metagenomic sequence binning using the MCluster
approach consists of three main phases: (1) each metage-
nomic sequence is represented by a feature vector using
the N-grams scheme; (2) sequences are grouped using a
clustering algorithm with automatic feature weighting;
(3) the clustering result is evaluated by three metrics, pre-
cision, sensitivity and F-measure. The pipeline of MCluster
is shown in Fig. [l In what follows, we present the
implementation techniques of MCluster in detail.

2.1 Feature extraction using N-grams

Metagenomic data contain a large number of sequence
reads coming from different species. In our method, we
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Metagenomic sequences

Feature extraction using N-grams

Sequence vectors of
N-gram frequencies

Clustering with the SKWIC
algorithm

Clustering result
Evaluation of the clustering result

Fig. 1: The pipeline of MCluster. Here, the parallelograms indicate
input/output modules, the rectangles stands for functional modules.

use the N-grams scheme to represent each read as a
feature vector. An N-gram (also called a k-mer in the
literature) is a subsequence consisting of N spatially
consecutive characters extracted from a given sequence.
In the context of DNA sequence, each character can
be one of the four bases: A, T, C or G. Therefore,
to represent DNA sequences, the total number of N-
grams is 4V. Concretely, we use the sliding window
approach to count the frequency of each N-gram in the
whole sequence [12]. Assume that f, is the number of
occurrences of an N-gram w, then the total number of
all N-grams in the sequence is ) f,=M-N+1, where M
is the length of the sequence. Here, for each N-gram, its
complementary sequence in the other chain of the DNA
sequence is also counted. Some existing works (e.g. the
MetaCluster methods) use one N-gram to stand for each
pair of complementary N-grams in the feature vectors,
we give a discussion on this issue in Section [4}
According to the works of Chor et al. [26] and Zhou
et al. [27], 4-gram is the best choice to extract features
from metagenomic sequences. Therefore, in our method,
we choose 4-grams to represent each sequence read as a
256-dimension vector used for clustering.

2.2 Clustering by Automatic Feature

Weighting

Clustering is the process of automatically grouping
a set of data objects into different groups (i.e. clusters),
without any prior knowledge to which group each data
object belongs. The target is to assign the data objects
from the same category into the same cluster. In the con-
text of metagenomic sequence binning, the data objects
refer to short sequence reads and the task is to assign
them into different clusters (i.e. the genomes of bacteria)
without knowing the true taxonomic class of each read.

There are various clustering methods proposed for
different applications. Among them, K-means is one of
the most-widely used, which is an effective method to
automatically group a set of data objects into clusters
in an iterative manner. The basic algorithm of K-means
is as follows: first, specify the number K of clusters to
be obtained and select K initial centroids (the centers
of clusters); after that, iteratively distribute data objects
to the clusters whose centroids are nearest to them, and
update the centroids according to the current data as-
signments. Such a process is performed iteratively until
the centroids do not change or the amount of changes is
under a specified threshold.

The basic K-means algorithm treats each dimension
or feature as equally relevant to each cluster. However,
actually in many circumstances, different clusters differ
largely in their best feature sets, and the relationships be-
tween clusters and their respective feature sets need to be
discovered in the clustering process. To solve this prob-
lem, an improved version of the K-means algorithm—the
SKWIC clustering algorithm—was proposed by Frigui
et al. [28] for clustering text documents with different
weight for each word. The main advantage of the SKWIC
algorithm over the basic K-means algorithm is that the
former tunes the weight of each feature in each cluster
when doing clustering. The SKWIC algorithm achieves
considerable better performance than the traditional K-
means algorithm when applied to text document clus-
tering.

According to the research of Karlin et al. [24], N-
grams (or k-mers) have different frequencies in different
species, therefore they should have specific weights in
defining the cluster consisting of reads from a specific
species. By assigning different weights to different N-
grams in different cluster during the clustering process,
we implement the SKWIC algorithm and integrat it into
MCluster to carry out metagenomic sequence binning.

As an improved version of K-means, SKWIC tries
to minimize the following objective function [28] (the
following equations are mainly from [28] after correcting
some typos and errors in the original formulae. we
present them here so that the readers can understand
the SKWIC algorithm and the MCluster method well):

K n K n

JE Vi)=Y > > waDie, +Y 6> v (1)

=1 x;Ex: k=1 =1 k=1

subject to

vin €(0,1] Vi,k and Y v =1 Vi 2)
k=1

where K is the number of clusters, n is the number of
dimensions; X=Ufi1 x; and y; indicates the set of data
items in cluster i; V is a K xn matrix, V=[Vq, V5, ---,
Vi 1" and Vi=[vi1,via, - - -, Vin], vik is the weight of dimen-
sion k for cluster i; Dfmij means the distance between
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data item j and the center of cluster i along dimension
k. This objective function is different from that of the
classical K-means algorithm. Specifically, the first compo-
nent is very much like the objective function of K-means
except that its distances along individual dimensions are
weighted with a positive value. Dimensions with larger
weights are more relevant to that cluster than those with
smaller weights. The second component in the objective
function is a weighted sum of squares of all weights. ¢;
is for balancing the two components.

The first component in Eq. () is the sum of weighted
distances between data points (read vectors here) and
their corresponding cluster centroids, which is used to
obtain compact clusters. It is minimized when only one
dimension in a cluster is very relevant and all the other
dimensions are irrelevant. The second component in
Eq. (1) is to control the weights v;,. It is minimized when
all dimensions are equally weighted. By combining these
two components and selecting an appropriate parameter
0;, the resulting clusters will have their within-cluster
weighted distances minimized, while the feature weights
of each cluster are optimized.

Given a set of centroids and a partitioning, the La-
grange multiplier method is adopted to solve the con-
strained optimization problem about J with respect to
dimension weight v;;,. The objective function Eq. (1)) and
the constraint Eq. can be turned into the following
Lagrange function:

3
=
3

K
JAV) =) vinDle Y 0> vR

i=1x;Ex: k=1 i=1 k=1
K n (3)
- Z /\i(z vk — 1)
=1 k=1

where A=[A1, X, -+, Ak] is the Lagrange multipliers.
Since the rows of V is independent of each other, we can
reduce the optimization problem into K independent
sub-problems:

)\1,‘/7/ Z Z Lkac” +5 Z

T;EX: k=1
—Ai(z vik — 1)
k=1

where V; is the i-th row of V. Evaluating the gradients
of J; with regard to v;; and A;, and set the gradients to
zero, we obtain

LA, Vi)
OV

(4)

= Y ex, Dhe, + 2000k — Xi = 0;

= (X h=yvik — 1) =0.

Solving the above group of equations for v, we
obtain

©)

9Ji (/\L,V)

1 1 E:z 1 wc k
= — i _pk .
Uik n =+ 2(51 [ n wc,ij] (6)

Through this equation above, the dimension weights
of clusters can be updated to reflect the current dimen-
sion relevance to each cluster, given a set of centroids,
a set of weights of the last iteration, and a partitioning
based on the centroids and weights. The first part of
Eq. (6) is £, which is the default weight if all dimensions
are treated equally in a cluster. The second part, which is
the sum of differences between the average of individual
dimension distances and the individual distances of
dimension k, is the bias that takes into account the
differences between dimensions. This part can be either
positive or negative. A positive value increases that
weight, which means that the corresponding dimension
is associated with the cluster more closely, for the sum
of individual distances of dimension k is less than the
sum of the average of all individual distances. Similarly,
a negative value of that part means less relevant to the
cluster for a dimension. The parameter §; in the above
equations is important because it is used to weight the
relative importance of the second component in Eq. ().
If 0; is too small, then the contribution of the second
part in Eq. will be negligible, and one dimension in
cluster ¢ will have a relatively larger weight compared to
the other dimensions, which would have a quite small
weight or even a zero weight. On the other hand, if J;
is too large, then almost all dimensions in cluster ¢ will
be equally weighted by 1 approximately. Consequently,
d; is updated iteratively as follows:

t—1 -

6(t) _ K§ ijexgtfl) Zk 1 f )(Dfucu)(t 2 (7)
4 n (t=1)\9
r=1(Vir )?
where the superscripts (t) and (¢-1) are used to indicate
the values of the current iteration ¢ and the previous
iteration (¢-1), respectively, and K; is a constant. Af-
ter updating, we can calculate the weighted aggregate
distance between data point z; and the center of class

, denoted as ch], and assign the data point to a
nearest cluster. Subsequently, the updated clusters can

be defined as:
Do, Vk # i}, ®)

After partitioning, a centroid-updating step is carried
out, as in the classical K-means. In SKWIC, this is done
through the following equation:

0 Zf Vi — 0
Cik = wiex; Tik ©)
{Zzix’k if v >0

Xi = {xj|5wcij <

where ¢;;, is the value in the k-th dimension of the new
centroid C; of cluster 3.

2.3 Distance Measures

When using SKWIC in document clustering, Frigui et
al. concluded that Cosine distance is the most suitable
distance measure. However, since documents and DNA
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2 sequences have some different characteristics, we try 2.5 Summary of the MCluster Method
2 three distance megsureg Manhattan distance, Eu.cl}d'ean We summarize the MCluster method in Algorithm
: distance and C(?s1ne distance for MCluster. Definitions 1, Algorithm [T} Line 1 is for vectorizing the reads; Lines
6 of these three dlstance measures are as follows: 2 — 21 describe the clustering process; Line 22 is for
7 Manhattan distance: evaluating the clustering result.
8 ﬁj% = v X abs(xjr — Cik). (10)
9 where abs() is the function that returns the absolute Algorithm 1 the Metagenome Clustering algo-
10 value. rithm MCluster
11 Euclidean distance: Input:
12 k N;.: the number of reads; NN,: the number of species hidden
D = Vi X [ 0 — Ci ). 11 T 7 4Vs P
13 ' e Vi X (k= cin) (T = Cin) (11) in the sequences; K: the number of clusters; n: the number
14 Cosine distance: of dimensions;
15 koo 1 . 4 Output:
16 Diye,; = vik X (ﬁ = Cik * Tjk)- (12) The cluster centroids {C;|i=1 — K}, reads partitions, and
17 ) ) the values of 3 performance metrics;
18 2.4 Performance Evaluation Metrics 1: transform each read into a vector of N-gram frequencies
19 To evaluate the clustering results, we consider three 2: initialize K centroids randomly; . L
. . e 3: initialize the partitions using Eq. , with all v, set to =;
20 performance metrics, namely, precision, sensitivity and F- - repeat n
21 measure. .Assume that a metagenomic dataset comes from 5. ol eachie [1.K] do
22 N, species, and finally is grouped into K clusters, R;; ¢ for each j € [1..N,] do
23 represents the number of reads in the i-th cluster that 7 for each k € [1..n] do
24 are from species j. 8: compute the k-th dimension distance waij
25 Precision is defined as [23]: using one of Egs. - ([@12);
26 3 K (Ri») 9: end for
1 max;(R;; .
27 precision = zi_(l NJ ij) (13) 10: end for
S > Ry 11: end for
28 =1 =1 1] . ] . .
P . 12:  update every v;x with Eq. (6);
29 Sensitivity is defined as [23] 13:  for each i € [1..K] do
30 sensitivity = 14 for each j € [1..n] do _
31 N, 15: update the weighted aggregate distance Dic,;;
32 Zj:l maz;(Rij) 16: end for
33 K Ns R + th b l . L d d 17: end for
> Doic 2ojon R e number of wunclassifie 7"??4; 18:  update the cluster partitions using Eq. (8);
35 19:  update the centroids using Eq. (9);
36 where “unclassified reads” denotes the outliers that are 20:  update &; using Eq. (7);
excluded from the final clustering result by the clustering 21: until (centroids stabilized)
37 algorithm. 22: Evaluate the performance with 3 performance metrics de-
gg F-measure is defined as [29]: scribed in Egs. -
40 F — measure — 2 x pr?cz"sion * sentsi.ti?)ity (15)
41 preciston + sensitivity
42 ’ Preczszon represents the purlty of each cluster; sensi- 3 RESULT
43 tivity means the concentration of the reads from each . . )
44 species, while F-measure gives the overall performance In this sectlpn, we evaluate the effectiveness of MClus-
45 of the clustering method. There are two extreme cases ter on both snnulatt?d and real datasets. We also com-
46 of the clustering result: one is that all reads are grouped Pare our method with MetaCluster 3.0, Abundance].Sm
47 into one single cluster, another is that each read form a and th? latest MetaCluster 50 For a comprehensive
48 single cluster. In the first occasion, sensitivity is 1 while evaluation and a fair comparison, we use both long
49 precision is very small; in the second occasion, precision sequences (1000bp on average) and short reads (128bp
50 is 1 while sensitivity is very small. So neither precision On average).
o1 nor sensitivity can be used solely to represent the perfor-
52 mance of a Cluste%‘ing algOITithm. On the other }'@nd, only 34 Datasets
53 when the clustering algorithm perfectly classifies reads )
54 from each species exactly into a unique cluster, F-measure 3.1.1  Simulated Datasets
55 is 1. In this sense, F-measure is used as a comprehensive Since there are no commonly used benchmark
56 measure to compare the performances of different clus- datasets for NGS metagenomic sequence binning so far,
57 tering algorithms, and it is independent of the number of in order to evaluate the performance of our algorithm,
58 output clusters. Therefore, in our experiments, we use F- we simulate 31 datasets using MetaSim [30] — a tool
28 measure to measure the overall performances of different designed for metagenomic sequences simulation. The 31

clustering algorithms.

datasets are selected to represent metagenomic datasets
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Leptospirillumsp. Group Il

Bacteria: Leptospirillum genus

Leptospirillum sp. Group ||
R1 — Ferroplasma acidarmanus

Type |
Ferroplasma genus

Archaea Ferroplasma sp. Type Il

Thermoplasmatales archaeon Gpl

Fig. 2: The taxonomic classification of R1.

of different species numbers, different abundance ratios,
different read numbers and lengths. Among them, 16
datasets, denoted by from D1 to D16, are long reads of
low abundance, with an average length of 1000bp and
read number of 5k and 50k; the other 15 datasets denoted
by from S1 to S15 are of relatively-high abundance,
where S1 - 510 contain long reads of 1000bp on average,
their read numbers are 50k and 500k, S11 - S15 consist
of short reads of 128bp on average, their read numbers
are 8000k. More details of the 31 datasets are presented
in [Table 1| and [Table 2| respectively.

3.1.2 Real Dataset

We download an Acid Mine Drainage meta-
genomic dataset from NCBI (http://www.ncbinlm.nih.
gov/books/NBK6860/), denoted as R1, to test the per-
formance of MCluster. R1 incorporates 2534 contigs with
an average length of 5000bp, which are assembled from
103,462 high-quality trimmed reads [8]. The dataset in-
cludes annotated sequences from 5 known species: Lep-
tospirillum sp. Group II, Leptospirillum sp. Group III,
Ferroplasma acidarmanus Type I, Ferroplasma sp. Type
II and Thermoplasmatales archaeon Gpl, as well as
some sequences from unknown species. The taxonomic
classification of the five species is showed in
which can be classified into two superkingdoms and
three genera. Since the original reads do not have species
annotations, we use the 2534 annotated contigs to test the
clustering performances of our method and two existing
methods (AbundanceBin and MetaCluster 3.0).

3.2 Effect of Distance Measure

Since distance measure may affect the performance of
clustering algorithms, before performing clustering eval-
uation, we conduct experiments to select an appropriate
distance measure for MCluster. We test the performance
of MCluster on D9, D10, D12 and D13 datasets using
different distance measures, and the results are presented
in The results show that Manhattan distance
achieves the best overall performance among the three
distance measures. Although Cosine distance performs
very well when applied to document clustering using
the original SKWIC algorithm [28], and achieves the best

sensitivity in our experiments, its precision and overall
performance in metagenomic sequence binning is the
worst among the three distance measures. Therefore, in
the following experiments, we use Manhattan distance
as the distance measure in MCluster to cluster metage-
nomic reads.

3.3 Experimental Results on Simulated

datasets

For a comparative evaluation, we compare our
method with three state of the art unsupervised binning
methods: AbundanceBin, MetaCluster 3.0 and MetaClus-
ter 5.0. MetaCluster 3.0 and AbundanceBin work well
with only long reads. In addition, AbundanceBin works
better with high-abundance datasets. MetaCluster 5.0
is the latest one of the series of MetaCluster meth-
ods, it was designed for binning short pair-end reads
from species with different sequence abundance ratios.
So we compare our method with AbundanceBin and
MetaCluter-3.0 on long reads, and with MetaCluster 5.0
on short reads.

3.3.1 Experiments on Long Reads Datasets

We first test and compare the performances of MClus-
ter and MetaCluster 3.0 on the 16 simulated datasets
with long reads. Since both MCluster and MetaClus-
ter 3.0 are based on the K-means algorithm, which
randomly initiates the cluster centers, we repeat each
experiment 50 times and compute the average perfor-
mance.

To evaluate the performances of MCluster and Meta-
Cluster 3.0 on datasets with balanced abundance ratio,
we compare their performances on four evenly dis-
tributed datasets: D1, D8, D11 and D13. Experimental
results are shown in[Fig. 4, Each of the four datasets con-
tains the same number of reads from different species.
As showed in when applied to the 4 evenly
distributed datasets with different numbers of species
ranging from 2 to 10, MCluster achieves larger precision
and better overall performance than MetaCluster 3.0
in all the four datasets. It can also be observed that
the performances of MetaCluster 3.0 and MCluster are
influenced by the number of species in the datasets.

Unevenly distributed datasets with different abun-
dance ratios pose a serious challenge to metagenomic se-
quence clustering, because algorithms such as K-means
tend to group the data into similar-size clusters [12].
MetaCluster 3.0 tries to solve the problem by first set-
ting a large K value and then merging similar small
clusters. In order to evaluate MCluster’s ability to deal
with unevenly distributed data, we compare MClus-
ter with MetaCluster 3.0 by using datasets from D1
to D7 with abundance ratios of 1:1, 1:2, 1:4, 1:6, 1:8,
1:10 and 1:12, where the minority genome’s DNA frag-
ments are about from 8% to 50% of the total sequences.
The results are showed in On these 7 datasets,

Page 6 of 14


http://www.ncbi.nlm.nih.gov/books/NBK6860/
http://www.ncbi.nlm.nih.gov/books/NBK6860/

Page 7 of 14

©CoO~NOUTA,WNPE

e
[Ny

U OO AR DMBEMDRAMDIMBAEADIAEMDIMNDMNWOWWWWWWWWWWNDNNDNNNNNNNRPRPRERREREREPR
QOO NOURRWNRPOOO~NOUORRWNPRPOOONOUOPRARWNRPOOONOODURAWNRPOOO~NOOODWN

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, XXX 2013 7
TABLE 1: Simulated long-read datasets of low abundance
Dataset #Reads Read length #Species Abundance ratio Species makeup
D1 5k 1000bp 2 1:1 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1
D2 5k 1000bp 2 1:2 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1
D3 5k 1000bp 2 1:4 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1
D4 5k 1000bp 2 1:6 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1
D5 5k 1000bp 2 1:8 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1
D6 5k 1000bp 2 1:10 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1
D7 5k 1000bp 2 1:12 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1
D8 5k 1000bp 3 1:1:1 Legionella_pneumophila_str._Lens, Ni-
trosococcus_oceani_ATCC_19707, Fran-
cisella_tularensis_subsp._tularensis_SCHU_S4
D9 5k 1000bp 3 1:3:9 Pseudomonas_aeruginosa_PAO1, Le-
gionella_pneumophila_str._Lens, Cycloclasticus_sp._P1
D10 5k 1000bp 4 1:3:3:9 Pseudomonas_aeruginosa_PAO1, Le-
gionella_pneumophila_str._Lens, Nitrosococ-
cus_oceani_ATCC_19707, Cycloclasticus_sp._P1
D11 5k 1000bp 5 1:1:1:1:1 Pseudomonas_aeruginosa_PAO1, She-
wanella_baltica_0S155, Legionella_pneumophila_str._Lens,
Nitrosococcus_oceani_ATCC_19707, Fran-
cisella_tularensis_subsp._tularensis_SCHU_S4
D12 5k 1000bp 5 1:1:3:3:9 Pseudomonas_aeruginosa_PAO1, Marinobacter_sp._BSs20148,
Legionella_pneumophila_str._Lens, Nitrosococ-
cus_oceani_ATCC_19707, Cycloclasticus_sp._P1
D13 5k 1000bp 10 1:1:1:1:1:1:1:1:1:1  Pseudomonas_aeruginosa_PAO1, Marinobacter_sp._BSs20148,
Chromohalobacter_salexigens_DSM_3043, Le-
gionella_pneumophila_str, Nitrosococcus_oceani_ATCC_19707,
Cycloclasticus_sp._P1, Salmonella_typhimurium_LT?2,
Xanthomonas_oryzae_pv._oryzae_KACC10331,
Aeromonas_salmonicida_subsp._salmonicida_A449, Vib-
rio_cholerae_0395
D14 50k 1000bp 3 1:3:9 Pseudomonas_aeruginosa_PAO1, Le-
gionella_pneumophila_str._Lens, Cycloclasticus_sp._P1
D15 50k 1000bp 4 1:3:3:9 Pseudomonas_aeruginosa_PAO1, Le-
gionella_pneumophila_str._Lens, Nitrosococ-
cus_oceani_ATCC_19707, Cycloclasticus_sp._P1
D16 50k 1000bp 5 1:1:3:3:9 Pseudomonas_aeruginosa_PAO1, Marinobacter_sp._BSs20148,
Legionella_pneumophila_str._Lens, Nitrosococ-
cus_oceani_ATCC_19707, Cycloclasticus_sp._P1
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Fig. 3: The effect of distance measure on the performance of MCluster.



©CoO~NOUTA,WNPE

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. X, NO. X, XXX 2013 8

TABLE 2: Simulated datasets of relatively-high abundance

Dataset #Reads Read length #Species Abundance ratio Species makeup

S1 50k 1000bp 2 1:2 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1

S2 50k 1000bp 3 1:3:9 Pseudomonas_aeruginosa_PAO1, Legionella_pneumophila_str._Lens
Cycloclasticus_sp._P1

S3 50k 1000bp 3 1:1:1 Legionella_pneumophila_str._Lens,Nitrosococcus_oceani_ATCC_19707,
Francisella_tularensis_subsp._tularensis_SCHU_S4

S4 50k 1000bp 5 1:1:3:3:9 Pseudomonas_aeruginosa_PAO1,Legionella_pneumophila_str._Lens,
Nitrosococcus_oceani_ATCC_19707, Cycloclasticus_sp._P1

S5 50k 1000bp 10 1:1:1:1:1:1:1:1:1:1  Pseudomonas_aeruginosa_PAO1, Marinobacter_sp._BSs20148,
Chromohalobacter_salexigens_DSM_3043, Le-
gionella_pneumophila_str, Nitrosococcus_oceani_ATCC_19707,
Cycloclasticus_sp._P1, Salmonella_typhimurium_LT?2,
Xanthomonas_oryzae_pv._oryzae_KACC10331,
Aeromonas_salmonicida_subsp._salmonicida_A449, Vib-
rio_cholerae_0395

S6 500k 1000bp 2 1:2 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1

S7 500k 1000bp 3 1:3:9 Pseudomonas_aeruginosa_PAO1, Le-
gionella_pneumophila_str._Lens, Cycloclasticus_sp._P1

S8 500k 1000bp 3 1:1:1 Legionella_pneumophila_str._Lens,Nitrosococcus_oceani_ATCC_19707,
Francisella_tularensis_subsp._tularensis_SCHU_S4

S9 500k 1000bp 5 1:1:3:3:9 Pseudomonas_aeruginosa_PAO1, Le-
gionella_pneumophila_str._Lens, Nitrosococ-
cus_oceani_ATCC_19707, Cycloclasticus_sp._P1

S10 500k 1000bp 10 1:1:1:1:1:1:1:1:1:1  Pseudomonas_aeruginosa_PAO1, Marinobacter_sp._BSs20148,
Chromohalobacter_salexigens_DSM_3043, Le-
gionella_pneumophila_str, Nitrosococcus_oceani_ ATCC_19707,
Cycloclasticus_sp._P1, Salmonella_typhimurium_LT?2,
Xanthomonas_oryzae_pv._oryzae_KACC10331,
Aeromonas_salmonicida_subsp._salmonicida_A449, Vib-
rio_cholerae_0395

S11 8000k 128bp 2 1:1 Pseudomonas_aeruginosa_PAO1, Cycloclasticus_sp._P1

S12 8000k 128bp 3 1:3:9 Pseudomonas_aeruginosa_PAO1, Le-
gionella_pneumophila_str._Lens, Cycloclasticus_sp._P1

S13 8000k 128bp 3 1:1:1 Legionella_pneumophila_str._Lens, Ni-
trosococcus_oceani_ATCC_19707, Fran-
cisella_tularensis_subsp._tularensis_SCHU_S4

S14 8000k 128bp 5 1:1:3:3:9 Pseudomonas_aeruginosa_PAO1, Le-
gionella_pneumophila_str._Lens, Nitrosococ-
cus_oceani_ATCC_19707, Cycloclasticus_sp._P1

S15 8000k 128bp 10 1:1:1:1:1:1:1:1:1:1  Pseudomonas_aeruginosa_PAO1, Marinobacter_sp._BSs20148,

Chromohalobacter_salexigens_DSM_3043, Le-
gionella_pneumophila_str, Nitrosococcus_oceani_ATCC_19707,
Cycloclasticus_sp._P1, Salmonella_typhimurium_LT2,
Xanthomonas_oryzae_pv._oryzae_KACC10331,
Aeromonas_salmonicida_subsp._salmonicida_A449, Vib-
rio_cholerae_(0395
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MCluster achieves similar precision but obviously better
sensitivity and overall performance, in comparison with
MetaCluster 3.0. Moreover, MCluster performs stably for
various abundance ratios, proving that it can be applied
to datasets with both identical and biased abundance
ratios.

We also test the performances of MCluster and Meta-
Cluster 3.0 on multi-species unbalanced datasets: D9,
D10 and D12, with abundance ratios of 1:3:9, 1:3:3:9 and
1:1:3:3:9, respectively. The results are illustrated in [Fig. 6}
As shown in although the sensitivity of MetaClus-
ter 3.0 is slightly larger, MCluster is better in precision

and overall performance on all the three datasets. This
proves that MCluster has the ability to effectively cluster
multi-species unbalanced meta-genomic sequence data.

The number of sequencing reads in a dataset repre-
sents the coverage of the sequencing experiment, which
also has considerable influence on clustering perfor-
mance. Therefore, we test and compare the performances
of MCluster and MetaCluster on 3 relatively-high cover-
age datasets with 50000 reads: D14, D15 and D16. Note
that the only difference between these three datasets
and the other three datasets (D9, D10 and D12) tested
above lies in that the formers have 10 times of sequence
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reads contained in the latters. Experimental results are
shown in It is clear that the overall performance of
MCluster is still better than that of MetaCluster 3.0 on
relatively-high abundance datasets, which is consistent
with the experimental results on low abundance datasets
showed in [Fig. 6

We then evaluate and compare the performances of
MCluster and AbundanceBin [21]]. As AbundanceBin can
only deal with high-abundance datasets, we test their
performances on ten datasets, in which five datasets (51
- S5) contain 50k reads and the other five datasets (S6 -
510) contain 500k reads. The results are shown in
and respectively. We can see that for both high-
abundance datasets (500k reads) and relatively-high
abundance datasets (50k reads), our method achieves
better precision and F-measure than AbundanceBin. But
the sensitivity of MCluster is smaller than that of Abun-
danceBin on four of the ten tested datasets, which may
be attributed to the fact that the number of nonempty
clusters output by AbundanceBin is less than the real
species number, even when we set the input number of
clusters for AbudanceBin to the real number of species.

3.3.2 Experiments on Short Reads Datasets

We also compare the performance of MCluster
with that of MetaCluster 5.0 [23]. As MetaCluster 5.0
works only for short reads, we use the reads about
128bp (datasets S11 - S15) to test them. The results
are shown in We can see that the MCluster
achieves a larger sensitivity than MetaCluster 5.0. This is
possibly because MetaCluster 5.0 classifies many reads
as extremely-low abundance reads and abandons them
during the clustering process. However, MetaCluster 5.0
has a higher precision than MCluster. As a result of
tradeoff between precision and sensitivity, our method
obtains a larger F-measure than MetaCluster 5.0 on
two of the five datasets. It is interesting to notice that
MetaCluster 5.0 performs badly on the dataset S15 that
has the largest number of species, while our method
MCluster has a relatively stable F-measure on the five
tested datasets. In summary, compared with MetaClus-
ter 5.0, the experimental results suggest that our method
is able to achieve comparable yet more stable overall
performance in binning short reads.

3.4 Experimental Results on A Real

Dataset

Here we present the results on a real dataset R1 de-
scribed in Sec. We predefine the number of clusters
according to the input sequences for AbundanceBin.
Since MetaCluster 3.0 has a bottom-up merging step,
the final number of clusters output by it can not be
predefined. In our experiment, MetaCluster 3.0 groups
the dataset into three clusters. This can be explained
as a result of clustering in genus level, as showed in
Since sequences in R1 dataset can also be classified

into two superkingdoms (Bacteria and Archaea) or five
species, we set the number of clusters to 2, 3 and 5
for MCluster, to cluster the dataset at superkingdom,
genus and species levels, respectively. The clustering
performances of the three methods are summarized in

Mable 31

TABLE 3: The performances of MCluster, MetaCluster-3.0 and Abun-
danceBin on the real dataset R1

Method #ClustersPrecision  Sensitivity F-measure
MetaCluster-3.0 3 0.7054  0.7403 0.7224
MCluster 2 0.6748 0.9562 0.7912
MCluster 3 0.676 0.923 0.7804
MCluster 5 0.6819 0.7833 0.7291
AbundanceBin = 2 0.3733 0.9838 0.5412

As showed in when clustering at superking-
dom and genus levels, MCluster significantly outper-
forms MetaCluster 3.0 in sensitivity and F-measure, with
only a slightly smaller precision. At species level, MClus-
ter still achieves slightly better sensitivity and overall
performance than MetaCluster 3.0. While comparing
with AbundanceBin for the case of two clusters, our
method achieves much larger precision and F-measure,
but slightly smaller sensitivity.

The clustering performance comparison at different
levels reveals that the clustering level impacts the clus-
tering performance. In our experiment, clustering at
superkingdom level achieves the best overall perfor-
mance among all the three taxonomic levels, and clearly
separates the sequences of Bacteria from that of Archaea.
The success of superkingdom level clustering may be
attributed to the specific characteristics of R1 dataset.
As illustrated in Fig. 2| the two Bacteria in R1 belongs
to the same genus, while the other three Archaea all
belongs to the same order. Since distance within the
same genus or the same order is much smaller than
the distance between superkingdoms, it is reasonable to
cluster the dataset at superkingdom level rather than at
lower levels.

Moreover, as pointed out in Sec. there are
also a few sequences from unknown species in dataset
R1. These sequences are unclassified because there is
not enough evidence to classify them into any known
species [8]. However, Tyson ef al. mentioned that the
sample seems to contain sequences from 3 bacteria. Our
experimental results in validates this judgment:
95% of the unclassified sequences are grouped into
Cluster 1 that is dominated by “bacteria” sequences,
which suggests that these sequences might belong to
some unknown bacterium in the sample. In this sense,
our method provides valuable insights into the real
taxonomic classification of unknown sequences.

4 DISCUSSION

With all the experiments conducted in this study,
we find that the incorporation of automatic feature

Page 10 of 14
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TABLE 4: The clustering result of R1 dataset at superkingdom level.

Dataset

Bacteria Archaea Unknown sequences Total

size
Cluster1 927 2 104 1033
Cluster2 111 1385 5 1501

weighting mechanism to the clustering algorithm can
significantly improve the performance of metagenomic
sequence clustering. While the basic K-means algorithm
tends to separate data items into similar-size clus-
ters [12], the feature weighting algorithm mitigates this
drawback and is as effective as the bottom-up merging
step used by MetaCluster 3.0 in dealing with unbalanced
datasets.

The performance of MCluster is also related to an

Dataset

.0 on high abundance datasets of 8000k reads about 128bp.

appropriate distance measure. Although Cosine distance
performs best in document clustering and achieves good
sensitivity in our experiments, we find that Manhattan
distance is more suitable for metagenomic sequence
binning.

While MetaCluster 3.0 and its improved versions [23]
use a 136-dimension vector to represent each read,
MCluster follows many existing binning methods [16],
[20], [31] to represent each read as a 256-dimension
vector. To evaluate the possible impact of vectorization
scheme on clustering, we compare the clustering per-
formances of the two different vectorization schemes
with our method, the results are shown in
Obviously, it seems that the size of vector (136 or 256)
has little impact on the final performance. Such a result is
reasonable, because the two representation schemes keep
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the same amount of information of the reads, though
they use vectors of different lengths. However, shorter
vectors benefit clustering efficiency.

We compare the performances of MCluster and Meta-
Cluster 3.0 on 16 simulated datasets (D1 — D16). On
all the datasets, MCluster achieves better overall per-
formance than MetaCluster 3.0. And in most cases,
MCluster also has better precision than MetaCluster 3.0.
However, on some datasets, MetaCluster 3.0 achieves
better sensitivity than MCluster. This may be attributed
to its cluster-merging step. With this step, the cluster
number output by MetaCluster 3.0 is often less than the
real number of species hidden in reads, which leads to a
larger sensitivity. shows the output numbers of
clusters by MetaCluster 3.0 on 16 datasets. We can see
that when the datasets contain reads from more than 2
species, MetaCluster 3.0 often outputs a smaller number
of clusters than the real number of species. For example,
MetaCluster 3.0 detects only 4 of the 10 species in D13.

TABLE 5: The number of clusters output by MetaCluster 3.0 on 16
simulated datasets

Dataset #Species F#output-clusters
D1 2 2
D2
D3
D4
D5
D6
D7
D8
D9
D10
D11
D12
D13
D14
D15
D16

Q1| Q1| x| W W N NN NN N

—_
)

Qo| Qo| Qof B[ M| x| Go| NI N N Nof Nof Mo Do N

Q1 = W

When compared with AbundanceBin on 10 relatively-
high abundance datasets with long reads (S1 - S10),
our method achieves larger precision and better over-
all performance, which suggests that our method can
accurately cluster both even-distributed and uneven-
distributed data.

While compared with MetaCluster 5.0 on high-
abundance datasets with short reads, our method also
achieves better sensitivity on all five tested datasets (S11
- 515), and better overall performance on two of the five
datasets. More importantly, MCluster performs more sta-
bly than MetaCluster 5.0 in overall. This result suggests
that by using an automatic feature weighting scheme,
MCluster can also effectively handle short reads.

The experiment on real dataset implies that the perfor-
mance of clustering algorithms depends on the charac-
teristics of the tested dataset. If the dataset contains data
from closely related species, taking the related species
as one class and do clustering at a higher level may be

more appropriate, and thus achieves better performance.

Although MCluster achieves considerable good per-
formance for metagenomic sequence binning, there is
still much space for improvement in the future:

On the one hand, the cluster number has to be set
before clustering, while in many cases the actual number
of species in the dataset is unknown. The problem is
more complicated when doing clustering at different
taxonomic levels. Unfortunately, up to now, there is
not any effective computational method to automatically
and accurately determine the number of species in a
sample without using reference genome information.
This is a common challenge to all unsupervised binning
methods. Although MetaCluster 3.0 tried to determine
the cluster number automatically, as shown in
we find that its output cluster number is not correct
in many cases. To solve the problem, before binning,
experimental methods such as 16S ribosomal RNA gene
clone library construction can be used to determine
the species number in a sample [8], [32]. After the
species number is determined, MCluster can be used to
effectively determine the origins of short reads in the
sample automatically without using reference genome
information.

On the other hand, since 454 is the most widely used
second-generation-sequencing platform in metagenomic
study so far [9], and the upcoming generation of se-
quencing such as Pacific Bio and Oxford Nanopore Tech-
nologies will also output long reads [33], we have shown
that MCluster performs well on metagenomic datasets
with long reads. However, there are still many metage-
nomic datasets containing reads shorter than 200bp.
The main challenge to solve the short reads binning
problem is that for short reads, fewer N-grams can be
extracted, which leads to sparse representations of reads.
MetaCluster 4.0/5.0 uses a pregrouping step to solve this
problem. In our method, though the feature weighting
mechanism can mitigate this problem in some extent,
in the future we plan to employ a pregrouping step
as used by MetaCluster 4.0/5.0 to further improve the
performance of MCluster for clustering short reads.

5 CONCLUSION

To summarize, in this paper, we aim at solving
the binning problem of unknown metagenomic se-
quences without using reference genomes. Since tra-
ditional similarity-based and supervised composition-
based methods cannot be applied to this problem, we
present a new unsupervised composition-based method
called MCluster to tackle this problem. The incorpo-
ration of automatic feature weighting mechanism en-
ables MCluster to handle both balanced and unbalanced
datasets with long or short reads. MCluster achieves
clearly better overall performance than AbundanceBin
and MetaCluster 3.0 on both simulated and real datasets,
and comparable overall performance to MetaCluster 5.0
on five simulated datasets. The proposed method can
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Fig. 11: The performance comparison between 256-dim vectors and 136-dim vectors with MCluster.

thus be used as a promising tool for characterizing the
compositions of unknown microbial communities.
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