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Gene Name Disambiguation using Multi-
Scope Species Detection 

Jui-Chen Hsiao1†, Chih-Hsuan Wei2† and Hung-Yu Kao1,2* 

Abstract—Species detection is an important topic in the text mining field. According to the importance of the research topics 

(e.g., species assignment to genes and document focus species detection), some studies are dedicated to an individual topic. 

However, no researcher to date has discussed species detection as a general problem. Therefore, we developed a multi-scope 

species detection model to identify the focus species for different scopes (i.e., gene mention, sentence, paragraph, and global 

scope of the entire article). Species assignment is one of the bottlenecks of gene name disambiguation. In our evaluation, 

recognizing the focus species of a gene mention in four different scopes improved the gene name disambiguation. We used the 

species cue words extracted from articles to estimate the relevance between an article and a species. The relevance score was 

calculated by our proposed Entities Frequency-Augmented Invert Species Frequency (EF-AISF) formula, which represents the 

importance of an entity to a species. We also defined a relation guide factor (RGF) to normalize the relevance score. Our 

method not only achieved better performance than previous methods but also can handle the articles that do not specifically 

mention a species. In the DECA corpus, we outperformed previous studies and obtained an accuracy of 88.22%. 

Index Terms—Biomedical text mining, gene name disambiguation, focus species detection 

——————————   �   —————————— 

1 INTRODUCTION

NFORMATION extraction from biomedical literature 
sources has been studied for twenty years. One im-

portant topic, which has been discussed for several years, 
is the “focus discussion subject detection” for a specific 
target, such as “detecting the focus species for articles” 
[1, 2], “gene function assignment for human genes” [3], or 
“protein-protein interaction evidence in sentences” [4].  
There are two issues that previous studies have not dis-
cussed in much detail. The first is document triage for the 
organism group. Users working with organism groups 
need to separate articles into specific species categories 
to narrow down the articles that they need to survey [5-7]. 
However, NCBI taxonomy (http://www.ncbi.nlm.ni-
h.gov/taxonomy), which includes 220,000 species as of 
June 10, 2013, has a high dimension structure [8] and 
lacks a corpus. Therefore, species detection has not been 
well-researched [1, 2, 9]. The other issue is species as-
signment, which is a critical issue of gene name normali-
zation. Most methods cannot handle neglected species 
well. In addition, previous methods focused only on ab-
stracts rather than on the full text of articles.  
One of the critical issues of focus species detection is 
document focus species identification, which identifies the 
topic species of a particular article. Two previous methods 

of handling this challenge are dictionary-based matching 
with a voting strategy [9, 10] and a statistic-based method 
with an incremental mining strategy [1, 2]. Dictionary-
based matching cannot identify the focus species if no 
species is mentioned. The statistic-based method de-
pends on the training corpus. Based on the existing focus 
species corpora, this method can only handle four spe-
cies (i.e., human, fly, yeast, and mouse). 
Another important topic in species detection is species 
assignment for gene mentions because it is a very im-
portant step in gene normalization. The Critical Assess-
ment of Information Extraction Systems in Biology (Bi-
oCreative), a bi-yearly competition in the field of biological 
text mining, includes several important biomedical text 
mining issues. The goal of the GN tasks in BioCreative II, 
II.5, and III [11-13] is to map the genes or proteins men-
tioned in the literature to standard database (Entrez 
Gene) identifiers. In BioCreative II.5 and III gene normali-
zation (GN) tasks, many participants note that accurate 
species assignment is one of the critical keys in avoiding 
gene normalization ambiguity [11-13].  
In previous studies, gene normalization studies have fo-
cused on the case where the species information is pro-
vided. Hakenberg [13, 14] developed a dictionary-based 
gene-name normalization system (GNAT) and obtained 
the best performance for the GN task in BioCreative II. 
GNAT is the first method to focus on cross-species nor-
malization, and it can handle 13 different species with an 
F-measure of 81.4%. Wermter [15] also developed a sta-
tistical method, GENO, by applying a TF-IDF weighting 
scheme and then calculating semantic similarity scores to 
resolve ambiguous terms. Unlike GNAT, GENO only fo-
cuses on the human gene. Thus, it is developed by sam-
ples and is easy to rebuild.  
Since the difficulty of species assignment of genes has 
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been addressed, the interactor normalization task (INT) of 
BioCreative II.5 is the first international competition that is 
dedicated to inter-species gene normalization without 
providing the species information. Because the character-
istics of inter-species GN are difficult to address and the 
task uses the full text, the normalization results  appear to 
be low[16]. Hakenberg et al. [17] refined their previous 
work and integrated GNAT and BANNER. They obtained 
the highest precision in BioCreative II. In the same com-
petition, Chen et al. [18] developed a Biological Literature 
Miner (BioLMiner) system to handle the INT and IPT (in-
teraction pair task) tasks. Their system is based on a 
support vector machine (SVM) and a conditional random 
field with designed informative features. Verspoor et al. 
[19] defined a fuzzy dictionary to detect mentions of pro-
teins, and they also described several heuristic strategies 
to disambiguate species. The AkaneRE [20] is based on 
the U-Compare system, and it includes sentence bounda-
ry detection, tokenization, parsing, named-entity recogni-
tion, generation of potential relations, and generation of 
features for each relation. AkaneRE also assigns confi-
dence scores and ranking of candidate relations, and it 
obtained the highest recall (68.3%) in whole participa-
tions. Dai et al. [21] defined a three-stage normalization 
algorithm using a ranking method to handle the task and 
obtained the best AUC, 0.4347. 
In 2010, the gene normalization task of BioCreative III [8] 
focused on an issue similar to the INT task of BioCreative 
II.5. Kuo [22] developed two context-based dynamic 
strategies to select dictionary identifiers related to the 
specific species that appear in a paper and to generate a 
set of overlapping gene mention variants with nearly per-
fect recall. Tsai [23] developed a multi-stage gene normal-
ization procedure and a ranking method that exploited 
information from different paragraphs of a paper. Huang 
[12] developed a document-level gene normalization 
software, GeneTuKit, which employs both the local con-
text surrounding gene mentions and the global context in 
a machine learning classifier from an entire full-text doc-
ument. Separate from GeneTuKit, Wei [11] developed an 
inference network method to handle the gene normaliza-
tion task and obtained a 46.56% F-measure in a manually 
annotated corpus.  
The major cause for the low performance of gene normal-
ization in many studies is poor species assignment. 
Orthologous genes and/or proteins that belong to different 
species are identified by different NCBI Entrez Gene iden-
tifiers. Before normalizing genes to specific gene identifi-
ers, the species to which they belong must be detected. 
Current research [24] has developed a multi-level ap-
proach for gene normalization. It not only identifies unique 
genes in textual mentions but also assigns them to fami-
lies. 
Because of the importance of species assignment in gene 
mentions, several studies have been dedicated to this 
topic. Wang et al. [25] proposed a hybrid method that 
combined a supervised classification with a relation ex-
traction model. Their approach can identify the intra-
sentential relation between species and gene mention in 
a sentence. However, their method does not function well 

if no species mention co-occurs with the gene mentions in 
a sentence. Similarly, their method could not handle the 
articles that had no species mentions (17% in the DECA 
corpus) and simply assigned “human” as a default. To 
address this problem, Harmston et al. [26] used MesH 
terms, which were annotated manually to obtain the addi-
tional species information for species assignment. Mu et 
al. [27] defined a dictionary-based prototype for calculat-
ing the matrix similarity between tokens and species and 
applied an imbalanced learning method to learn the evi-
dence from referring to a specific species from the dic-
tionary and the training corpus. SR4GN [28], an upgraded 
version of the species assignment module of GenNorm 
[11], is a hybrid of a statistical method and dictionary-
based matching with a heuristic strategy. By the success-
ful combination of a statistical method and a heuristic 
method, state-of-the-art results can be obtained. 
The above conclusion on the importance of species de-
tection in different cases (e.g., focus species document 
triage and species assignment for gene mentions) led us 
to define a multi-scope species detection method that can 
handle different scopes in literature for different applica-
tions. Our primary goal was to identify the species for 
each gene mention even when there is no species infor-
mation in the article. We proposed a relational guide fac-
tor (RGF) to enhance the capability of the species detec-
tion method for species assignment of gene mentions. 
Our method resolves the mapping problem between gene 
and species. Unlike previous studies [10, 27, 28], our ap-
proach focuses on the full-text article (e.g., PMC articles) 
structure, including several paragraphs. More specifically, 
our defined method considers the focus species evidence 
for different scopes (i.e., the scope of whole paper, para-
graph scope, sentence scope, and noun phrase scope.). 
This method can identify the most-discussed species for a 
target (e.g., gene, paragraph) in an article.  
This study is useful in the biomedical text mining field. 
The method can do more than assign species for gene 
mentions. For different purposes, it can detect the focus 
species for document triage for different organism groups 
(e.g., TAIR, RGD, Wormbase), or it can be used to detect 
the animal that has been used in the experiments in vivo 
by mining the experiment paragraph. 

2 METHOD 

2.1 Overview of Our Method 

Briefly, our method consists of three steps. The first part is 
the pre-processing of each gene mention. This step in-
cludes tokenization, cue word extraction, and distillation. 
The second step is the estimation of focus species by our 
defined coefficient, the entity frequency-augmented invert 
species frequency (EF-AISF), to calculate the relevance 
between cue words and species. The species with the 
highest correlation coefficient is chosen as the probable 
focus species. However, some orthologous genes are 
usually discussed in the same research articles, such as 
the human gene, which uses mice for wet experiments. 
Considering the co-occurrence of species pairs, we de-
fined a relational guide factor (RGF) to normalize the spe-
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cies coefficient, thus enhancing the capability of species 
detection. The purpose of the last step is to assign appro-
priate species to gene mentions. We defined a multi-
scope species assignment strategy to find the most suita-
ble species for a gene mention. For each gene mention, 
the strategy collects the species evidence in the different 
scopes. Then, the species with the strongest evidence is 
assigned to the gene mentions. 
  

 
Fig. 1. Flow chart of our proposed multi-scope species detection 
method 

2.2 Species Indication for Multiple Scopes 

For the different purposes of species detection for differ-
ent targets in an article, we defined four different scopes 
(i.e., global, paragraph, sentence, and noun phrase). 
Global scope includes all cue words in the article. In our 
method, MeSH terms are also considered as cue words in 
the global scope. Paragraph (e.g., abstract and figure 
captions) and sentence scopes are more specific with 
respect to the cue words in one paragraph and one sen-
tence. The noun phrase scope is the basic scope that 
considers all N-grams (N=1-3) as cue words. The global, 
paragraph and sentence scopes use only the cue words 
in noun phrases. 

2.3 Noun Phrases Extractions 

To extract the noun phrases, we used the Perl module 
Lingua-EN-Tagger [29], which is a part-of-speech tagger 
for English natural language processing. To avoid redun-
dancies and over-processing, all noun phrases that are 
substrings of other noun phrases were ignored. As an 
example, in PMID 10022127, the noun phrases “presents 
several functional differences”, “TIF1gamma presents 
several functional differences”, “functional differences”, 
“differences”, “presents”, and “several functional differ-
ences” are the substrings of the longest noun phrase: 
“TIF1gamma presents several functional differences”. We 
only retained the longest noun phrase in this step. 

2.4 Cue Word Acquisition from Noun Phrases 

Then, we extracted cue words from the noun phrases. 
There are 3 types of cue words, i.e., tokens, N-grams 
(N=2, 3) and noun phrases. The longest entity unit is the 
noun phrase, and the shortest entity unit is the token. For 
example, the noun phrase “several mammalian tin-ag 
orthologues” (belong to the human category) should be 
segmented to “several”, “mammalian”, “by”, “tin”, “ag”, 
“orthologues”, ”several mammalian”, “mammalian tin”, “tin 

ag”, “ag orthologues”, “several mammalian tin”, “mamma-
lian tin ag”, ”tin ag orthologues” and “protein encoded by 
otof”. Those cue words are stored in the human category. 

2.5 Distillation of the Cue Words 

Most cue words do not provide focus species evidence 
and may mislead the detection. To focus on the helpful 
evidence related to the focus species, we defined four 
rules to filter out the unnecessary words. The first rule is 
that if a word represents three species or more, e.g., if 
“interact” represents three species (human, fly, and 
mouse), then it should be filtered out. The second rule is 
that if the word only appears in one article, or if it repre-
sents different kinds of species in different articles, then it 
is removed. For example, this rule applies when the 
phrase “heterotyp interact”, which means “heterotypic 
interaction”, represents two species (human and fly) in 
two different articles. The third rule is that if the word ap-
pears too many times in noun phrases that do not include 
gene mentions, then it should be removed. For the last 
rule, we defined thresholds for each species. We as-
signed the cue word that appears the majority of the times 
in only one species to be a standard of this species. For 
example, “human” has the greatest number (74 times) of 
mentions in the noun phrases that include human genes, 
and it appears 511 times in all noun phrases. Therefore, 
we set the threshold for human as 0.14 (74/511). Using 
the same calculation for all cue words to generate the 
species indication evidence, the words are filtered out if 
that number is under the threshold. As an example, the 
entity “transport” appears 7 times in the noun phrases that 
include human genes, but it is mentioned 65 times in all 
noun phrases. Because the species indication evidence 
of that word is not stronger than the species threshold, we 
assume the word “transport” is not a good cue word for 
the species. 

2.6 Entities Frequency-Augmented Invert Species 
Frequency (EF-AISF) 

Unlike species names, most cue words cannot indicate a 
specific species (e.g., “muscle” indicates all mammals). 
Therefore, we propose using the entities frequency-
augmented invert species frequency (EF-AISF) to esti-
mate the relevance between a cue word and a species. If 
an entity has a high frequency in a species and rarely 
appears in other species, this entity is suitable for disam-
biguating species. The entities frequency (���� ) is the 
frequency of occurrence of the entity �� in the species ��. 
The idea behind the augmented invert species frequency 
(��	��� ) is the diversity of the entity ��  in species �� . A 
higher AISF may indicate that the entity �� is a significant 
species distinguishing entity. The formula is shown below. 
We define 
�� as the number of occurrences of an entity i 
in a species j, and we define ���

�� as the maximum 
number of occurrences of all entities. To normalize the 
distribution of the different species of 
��, 
�� is divided by ���

�� as follows: ���� � 	 
�����

�� 
Then, we define ��	���  as below, where 
�  is the sum 

Articles

Gene mention recognition

Cue Words 

Acquisition

Distillation

EF-IASF

RGF

Gene mentions 

with assigned 

species 

Preprocessing Species Detection

Global Paragraph Sentence Noun phrase

Multi-scope species detection

Noun 

phrases 

extraction

Page 3 of 8 Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

4 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,  MANUSCRIPT ID 

 

(∑ 
���� ) of the entities i in all species, 	� is the number of 
species that contain the entity i, and S is the number of 
species in the entire corpus. AISF is a measure of wheth-
er the entity �� is common or rare across all species, as 
follows: 

��	��� � log
		� � 
��
� � 
Our defined AISF was designed by referring to the inverse 
document frequency (IDF). Different from the document 
frequency 

�����  of IDF, we designed 
��� � �����  instead. For 

example, if two entities, x and y, appear the same number 
of times within a species, but x appears fewer times than 
y within another species, AISF can emphasize the evi-
dence of x. 
We proposed a noun phrase focus species confidence by 
summarizing the EF-AISF for all the entities in the noun 
phrase format and a sentence focus species confidence 
by summarizing the EF-AISF for all the entities in sen-
tence format. The paragraph focus species confidence is 
the combination of all sentence focus species confidenc-
es in the paragraph. Different from the paragraph focus 
species confidence, we add the MeSH terms to obtain the 
global focus species confidence. 
After measuring the EF-AISF for each species and cue 
words pair, we summed the EF-AISF scores of the cue 
words from the same scope (e.g., ����	��� �∑ ����	������ ). As shown in Fig. 2, cue words e2 and e3 are 

in sentence 1, which focuses to species s3. Thus, the two 
cue words are part of the evidence for s3 to gene mention 
G. 
 

  
Fig. 2. An example of an EF-AISF calculation for Gene G in the sen-
tence scope 

2.7 Relational Guide Factor (RGF) 

After completing the calculation, the closest species is 
assigned to the gene mention. As a sample solution, we 
assigned the species with the highest score as the scope 
focus species. However, the focus species in a different 
scope may not be the same. Therefore, we proposed a 
relational guide factor (RGF) that can infer the relation 
between any two species. 
The approach we presented can guide the scope’s focus 
species confidence by calculating the RGF of the gene 
mention pairs in the sentence and paragraph. If ��
��,� � is 
the number of gene mentions of pairs associated with 
species S1 and S2 in sentence i, !�
��,� � is the number of 
gene mention pairs associated with species S1 and S2 in 
paragraph j, M is the total number of sentences in the 

corpus, and N is the total number of paragraphs in the 
corpus, then the relational guide factor formula is as fol-
lows: 

	"
�#,�$� � 	∑ ���� 
�#,�$�� ,%"
�#,�$� � 	∑ !�&� 
�#,�$�'  

	(
�#,�$� � )∑ ��
��,� �$�� � * +∑ ��
��,� ��� � ,$ 

	%(
�#,�$� � )∑ !�
��,� �$&� ' * +∑ !�
��,� �&� ' ,$ 

where 	"
�#,�$� and %"
�#,�$� are the means of ��
��,� � and !�
��,� �, and 	(
�#,�$� and %(
�#,�$� are the standard devia-
tions of ��
��,� �  and !�
��,� �  in the corpus. The sentence 
relational guide factor (SRGF) and paragraph relational 
guide Factor (PRGF) are as follows: 

	-.�
�#,�$� � 	(
�#,�$�	"
�#,�$� , ����	�/� �
����	���	-.�
�,/�	

 

%-.�
�#,�$� � %(
�#,�$�%"
�#,�$� , ����	�/0 �
����	��0%-.�
�,/�	

Therefore, when S1 and S2 are closer, the score is small-
er. This shows that two more closely related species more 
often appear together in the same sentence or the same 
paragraph. An example of a co-occurrence of human 
gene and mouse gene mentions is “Isolation and charac-
terization of cDNA clones for Humly9: the human homo-
logue of mouse Ly9”. This shows a human gene, “Hum-
ly9”, and a mouse gene, “Ly9”, occurring in the same sen-
tence. In our observation, the co-occurrence of two hu-
man gene mentions in a sentence or paragraph is the 
most frequent. Following that, the co-occurrence of a hu-
man gene and a mouse gene in a sentence or paragraph 
are the next most frequent when the two genes are differ-
ent, which occurs because many orthology genes occur 
both in humans and in mice. Additionally, biologists usual-
ly use mice for wet experiments to investigate the possi-
ble gene functions in the human body. 

3 RESULTS 

3.1 Evaluation Dataset 

In this study, we used the DECA corpus, published by 
Wang et al. [25]. There are 644 abstracts in the DECA 
corpus, collected from BioCreative I Task 1B [30] and the 
BioCreative II gene normalization task [31]. In total, 6406 
gene mentions in the corpus were annotated using the 
case-insensitive longest match of the species vocabulary 
supplied with the respective source dataset. Each gene 
mention was annotated with a specific taxonomy identifier 
as the standard by the domain experts. Prior to our exper-
iment, we filtered the gene mentions that were not entities 
(the taxonomy identifiers were assigned -1) or that were 
associated with “other species” (the taxonomy identifiers 
were assigned 0). As shown in TABLE 1, the human is the 
most-discussed species in the DECA corpus. The DECA 
resource is from the Biocreative 1B and II gene normali-
zation task, which focused on human, mouse, fly and 
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yeast. Therefore, over 97% of the gene mentions are as-
sociated with one of these species. After the filtering step, 
5974 gene mentions in the DECA corpus remained (366 
gene mentions had been tagged -1, and 66 gene men-
tions had been tagged 0). 

 
TABLE 1. 

Percentages of NCBI species mentions in the DECA cor-
pus 

 

NCBI Species 
Gene mention  

Frequency 
Rate 

H. sapiens (9606) 3203 53.03% 

M. musculus (10090) 1504 24.90% 
D. melanogaster 
(7227) 

636 10.53% 

S. cerevisiae (4932) 508 8.41% 
R. norvegicus (10116) 70 1.16% 

E. coli K-12 (83333) 18 0.30% 

X. tropicalis (8364) 19 0.31% 

C. elegans (6239) 7 0.12% 

O. cuniculus (9986) 2 0.03% 

B. taurus (9913) 3 0.05% 

A. thaliana (3702) 2 0.03% 

Arthropoda (6656) 1 0.02% 

M. zibellina (36722) 1 0.02% 

Other species 66 1.09% 

 
To highlight the difficulty of species assignment, we used 
GenNorm to process the DECA corpus to find the per-
centage of the mentions in the different scopes. We con-
sidered the assignments “First_letter” and “Previous rules” 
for noun phrase scope and “Front” and “Back” for sen-
tence scope. Other mentions designated as “Major” were 
considered for whole article scope. As shown in TABLE 2, 
the percentage of gene mentions associated with the 
whole article scope was over 65%. 
In the whole article scope, no species mention in a sen-
tence can be used for species assignment. In addition, 
approximately 17% of the articles do not have any spe-
cies mentions in the abstract. The only way to find the 
evidence for species assignment is to retrieve and ana-
lyze the entire text, which demonstrates why we defined 
EF-AISF to find indicators from cue words.   
  

TABLE 2. 
Percentages of species inferred from scopes in the DECA 

corpus 
 

 
Frequency Percentage 

Noun phrase scope 167 2.80% 

Sentence scope 1885 34.35% 

Whole abstract scope 3922 65.65% 

 

3.2 Comparison of Performance on Species 
Assignment with Mu et.al., 2010, Wang et.al., 
2009 and SR4GN 

To evaluate our method, we applied two measures, micro- 
and macro-averages, to evaluate performance. Micro-

averaging shows the sum of the accuracy for all gene 
mentions. This approach emphasizes the influence of the 
more frequent species (e.g., H. sapiens) over the less 
frequent ones (e.g., M. zibellina). Macro-averaging is the 
mean of all the species; thus, all species contribute with 
equal importance. According to the specific characteristics 
of the macro-average, the macro-average can be used to 
measure the adaptability of the method to different spe-
cies. TABLE 3 shows the evaluation results. As shown in 
TABLE 3, our method performed better than previous 
methods [10, 27, 28]. Especially for the macro-average, 
our method is more robust for some neglected species. In 
our experiment, we performed a five-fold cross validation 
similar to that of two previous studies [10, 27]. We ran-
domly separated the corpus into five folds. In each run, 
we calculated the EF-AISFs and RGFs using four of the 
folds and then tested using the other fold. 
 

TABLE 3. 
Comparison of the micro- and macro-averages in the 

DECA corpus 
 

Species 
(taxonomy identifier) 

Mu,2010 Wang,2009 
SR4GN 
(2012) 

Our method 

H. sapiens (9606) 0.87 0.86 0.88 0.92 
M. musculus (10090) 0.80 0.80 0.80 0.82 
D. melanogaster 
(7227) 0.86 0.87 0.83 0.88 

S. cerevisiae (4932) 0.90 0.85 0.89 0.93 
R. norvegicus 
(10116) 

0.69 0.59 0.69 0.76 

E. coli K-12 (83333) 0.00 0.00 0.00 0.95 
X. tropicalis (8364) 0.40 0.36 0.00 0.60 
C. elegans (6239) 0.22 0.22 0.43 0.67 
O. cuniculus (9986) 0.00 0.00 0.22 0.14 
B. taurus (9913) 0.50 1.00 0.00 0.50 
A. thaliana (3702) 0.00 0.67 0.14 0.00 
Arthropoda (6656) 1.00 0.00 0.00 1.00 
M. zibellina (36722) 0.50 0.00 0.00 0.00 
Micro-Average 0.8513 0.838 0.8542 0.8822 
Macro- Average 0.5196 0.4797 0.3734 0.5854 

 
We also compared the relational guide factor (RGF) with 
two sample strategies. The first strategy consists of com-
bining the four scope scores for each species and then 
assigning the species with the highest score as the focus 
species. The second strategy consists of ranking the 
scores without using RGF. The focus species in the se-
lected article (PMID: 11086001) is human (taxonomy id: 
9606). This article has 23 gene mentions, of which 21 
mentions belong to the human species, but two mentions, 
“betaIV spectrin” and “betaIVSigma1 spectrin”, belong to 
another species (taxonomy id: 10116). When using the 
combined scores to assign the species to gene mentions, 
all of the gene mentions in the same article are assigned 
to the same species. In our experiment, using RGF 
achieves better results than using either of the two basic 
strategies. 
 

TABLE 4. 
Evaluation of three strategies for focus species detection 

 
Species Combining 4 Ranking 4 Relational 
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(taxonomy identifier) scope 
scores 

w/o RGF 

scope scores 
w/o RGF 

guide factor 
(RGF) 

H. sapiens (9606) 0.88 0.89 0.92 
M. musculus (10090) 0.80 0.84 0.82 
D. melanogaster (7227) 0.81 0.94 0.88 
S. cerevisiae (4932) 0.86 0.96 0.93 
R. norvegicus (10116) 0.86 0.69 0.76 
E. coli K-12 (83333) 0.84 0.74 0.95 
X. tropicalis (8364) 0.06 0.00 0.60 
C. elegans (6239) 0.00 1.00 0.67 
O. cuniculus (9986) 0.43 0.14 0.14 
B. taurus (9913) 0.50 0.00 0.50 
A. thaliana (3702) 0.50 0.00 0.00 
Arthropoda (6656) 1.00 1.00 1.00 
M. zibellina (36722) 0.00 0.00 0.00 
Micro-Average 0.8508 0.8820 0.8822 
Macro- Average 0.5819 0.5533 0.5854 

 

3.3 Evaluation of Species Assignment for Different 
Scopes 

To determine the performance of each scope, we con-
ducted an experiment to assign a species for each scope. 
The result of each scope assignment is shown in TABLE 
5. Our strategy only detected 818 gene mentions (683 
correct and 135 incorrect), based on appearances in the 
noun phrase. The results show that the accuracy increas-
es with the trend from noun phrase scope to paragraph 
scope. From our experiment, 94.79% of the gene men-
tions belong to the same species in one article. Therefore, 
the accuracy in the noun phrase scope is better than in 
the paragraph scope. In addition, the performance in the 
paragraph scope is better than in the global scope. Ac-
cording to our observations, if an article has two kinds of 
species gene mentions, such as in PMID: 11086001, then 
the MeSH index usually mentions the two species’ names 
(e.g., human and rat). However, the paragraph scope 
does not provide enough information for correct species 
detection. We could not determine the focus species by 
using only MeSH terms. Nevertheless, the MeSH terms 
are useful when the article has rare species information. 
The results for each scope performance are shown in 
TABLE 6. In this experiment, we give every gene mention 
one answer in all scopes. If the gene mention has no an-
swer in a scope, then we assign the species that is de-
tected by a voting strategy. The results in TABLE 6 show 
that using our sentence scope or paragraph scope focus 
species to assign a gene mention is better than using a 
voting strategy. 
 

TABLE 5. 
Evaluation of each scope focus species detection 

 

Scope 
Correct 

answer 

Incorrect 

answer 

Scope 

size 
accuracy 

Noun phrase 683 135 818 83.50% 

Sentence 3551 655 4206 84.43% 

Paragraph 5226 736 5962 87.66% 

Global 5170 804 5974 86.54% 

 

TABLE 6. 
Evaluation of each scope focus species detection using a 

voting strategy 
 

Scope 
Right 
answer 

Incorrect 
answer 

accuracy 

Noun phrase 4182 1792 70.00% 

Sentence 4697 1277 78.62% 

Paragraph 5226 748 87.48% 

Global 5170 804 86.54% 

 

3.4 Applying EF-AISF on a support vector machine 
(SVM) 

Machine learning is currently the most popular solution for 
classification. Because our measure is simple to add as a 
feature to machine learning methods, we conducted an 
additional experiment to determine how our measures 
would perform in a machine learning environment. For 
each species and gene mention pair, we used a classifier 
to estimate the relevance and then assigned the species 
with the highest relevance to the gene mention. We as-
sumed that our developed measure would be useful as an 
additional feature for a machine learning method focused 
on species disambiguation. However, with respect to the 
difference between our method and general statistical 
methods, our method not only measures the confidence 
between a species and a gene mention (i.e., EF-AISF) 
but also considers the relation between any pair of spe-
cies (i.e., RGF). Unlike other measures, RGF cannot be 
implemented directly in a machine learning method.  
To understand the contribution of EF-AISF, we applied a 
support vector machine (SVM) to the process gene name 
disambiguation on the DECA corpus. We performed two 
runs to compare the SVM models with and without using 
EF-AISF. We used LibSVM [32], which is one of the most 
popular implementations for SVM. For the first run of the 
SVM model, we added five voting strategy features from 
our previous study [11], as shown in TABLE 7. For spe-
cies detection, we used SR4GN [28], which defines two 
robust strategies for inferring genus names and species 
strains. The results are shown in TABLE 8. Using our pro-
posed measure produced better results than not using it 
because our method does more than simply measure the 
confidence between gene and species by EF-AISF. We 
also calculated the association between species pairs. As 
shown in TABLE 8, the performance of our method is bet-
ter than that of the unmodified SVM implementation. 
 

TABLE 7. 
Five voting strategy features in SVM 

 

Features Description 

First_letter 
The first lowercase letter of the gene name is 

an abbreviation of its species. 

Previous 
The species is assigned to a gene entity if the 

species entity appears before the gene entity. 

Front 
The species is assigned to the gene entity if 

the species entity is in front of the gene entity 

Page 6 of 8Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

HSIAO ET AL.:  GENE NAME DISAMBIGUATION THROUGH MULTI-SCOPE SPECIES DETECTION 7 

 

in the same sentence. The nearest species is 

used for assignment. 

Back 

The species is assigned to the gene entity if 

the species entity behind the gene entity in 

the same sentence. The nearest species is 

used for assignment. 

Major 
The most discussed species; the default is 

“human”. 

 
TABLE 8. 

Comparison of SVM and our method 
 

 Micro-Average 

SVM (5 features) 65.21% 

SVM + EF-AISF 87.34% 

Our method (EF-AISF & RGF) 88.22% 

4 CONCLUSIONS 

Focus species detection is an important research topic for 
several biomedical text mining issues. This study pro-
posed a robust method to analyze species in a novel way. 
This study presents two major contributions. The first is 
multi-scope focus species detection. According to the 
multi-scope strategy, our method can handle focus spe-
cies detection for different scopes, including full text 
(global), paragraph, sentence and noun phrase. Detecting 
document focus species can help an organism group da-
tabase society to perform document triage for literature 
curation. Additionally, detecting focus species in individual 
paragraphs can identify the animals used for in vivo ex-
periments. Assigning species to gene mentions can also 
help with gene name disambiguation. The second contri-
bution is the utilization of our multi-scope focus species 
detection to species assignment of gene mentions. To 
measure the relevance of a species to a gene mention, 
we defined a new coefficient, EF-AISF. We also consid-
ered the relevance between a species pair by defining a 
relational guide factor to normalize the confidence be-
tween a species and a cue word. The performance of our 
method was better (88.22% F-measure for the micro-
average) and more robust than that of previous studies 
for many species (58.54% F-measure for the macro-
average). 
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