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Residue-Specific Side-Chain Polymorphisms
via Particle Belief Propagation

Laleh Soltan Ghoraie, Forbes Burkowski, Shuai Cheng Li, Mu Zhu

Abstract—Protein crystals populate diverse conformational ensembles. Despite much evidence that there is widespread
conformational polymorphism in protein side chains, most of the X-ray crystallography data are modeled by single conformations
in the Protein Data Bank. The ability to extract or to predict these conformational polymorphisms is of crucial importance, as
it facilitates deeper understanding of protein dynamics and functionality. In this article, we describe a computational strategy
capable of predicting side-chain polymorphisms. Our approach extends a particular class of algorithms for side-chain prediction
by modeling the side-chain dihedral angles more appropriately as continuous rather than discrete variables. Employing a new
inferential technique known as particle belief propagation, we predict residue-specific distributions that encode information about
side-chain polymorphisms. Our predicted polymorphisms are in relatively close agreement with results from a state-of-the-art
approach based on X-ray crystallography data, which characterizes the conformational polymorphisms of side chains using
electron density information, and has successfully discovered previously unmodeled conformations.

Index Terms—conformational ensemble; conformational polymorphism; mixture distribution; particle belief propagation; side-
chain prediction; von-Mises distribution
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1 INTRODUCTION

DUE to the wide range of its motions, e.g., as
shown by many studies using nuclear magnetic

resonance (NMR) spectroscopy [23], [5], [41], a protein
molecule can appear in many different conforma-
tions [13], [49]. As a result, it is insufficient to de-
scribe a protein molecule by a single model [34], [35].
One idea is to model the structure of such dynamic
molecules as proteins more properly with conforma-
tional ensembles [3]. Capturing alternate conforma-
tions of a protein is of crucial importance for many
applications, e.g., drug design, understanding disease
mechanisms, etc; undoubtedly, doing so will bring
crucial insight as well to deepen our understanding
of how proteins fold, function, and bind to ligands
[48], [14]. An important step in this direction is the
ability to predict and describe the conformational
polymorphism of each residue.

Since most residues belonging to structures in the
Protein Data Bank (PDB; http://www.rcsb.org/pdb/)
[2] are modeled by a single side-chain conformation,
the majority of computational approaches for mak-
ing side-chain predictions have focused on finding a
single “best” conformation (more on this in Section 2
below). However, a few recent studies have started to
reinvestigate crystallographic data, and to explore the
phenomenon of side-chain polymorphism.

For example, van den Bedem et al. [47] developed
a method to identify and model the conformational
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heterogeneity of proteins from electron density data.
The output of their method is a co-called “multi-
conformer model”, or “an occupancy-weighted set of
main-chain and side-chain conformations that collec-
tively best represents the electron density” [47]. The
word “occupancy” refers to the relative frequency
of occurrence for each conformer in the crystal. The
method first generates, in a sampling step, a large set
of candidate conformations. In a subsequent selection
step, the method fits the occupancies of this set of
samples to the electron density map.

Recently, the Alber Lab at the University of Califor-
nia, Berkeley released a program called Ringer [29],
which investigates side-chain conformational poly-
morphisms by sampling the electron density maps
around the side-chain dihedral angles of each residue
below the usual “1.0 sigma” threshold. Using Ringer,
they uncovered evidence suggesting the presence of
alternate, hitherto-unmodeled side-chain conforma-
tions, many of which are characterized by weak elec-
tron density features that were traditionally over-
looked when building 3D models of proteins. They
showed that their newly identified conformers are
nonrandom and are biased towards low-energy rota-
tional isomers. They also discovered, e.g., in Calmod-
ulin, alternate side-chain conformations “not only on
the surface but also within the structure” [40], where
the protein is tightly packed and side-chain polymor-
phisms were rarely expected.

1.1 Our Contribution
We have developed a computational approach cap-
able of predicting and describing side-chain polymor-
phisms — one that does not require experimental
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Fig. 1. Illustration of dihedral angles, courtesy of
http://www.ccp14.ac.uk/ccp/web-mirrors/garlic/garlic/
commands/dihedrals.html.

inputs such as electron density maps. Our approach
is an extension of a particular class of algorithms for
side-chain prediction that are based on belief propa-
gation (BP) [43].

The conformation of a protein side chain can be pa-
rameterized by a sequence of dihedral angles (Fig. 1).
Each side chain may rotate flexibly about its dihedral
angles, as long as there are no steric collisions. These
dihedral angles are continuous in nature, but most
computational approaches discretize them. Our pri-
mary extension was to model these dihedral angles
more appropriately as continuous variables rather
than discrete ones. Straight-forward as such an ex-
tension may sound, it would have remained difficult
within the BP framework if a variation called “par-
ticle belief propagation” (PBP) [22] had not become
available.

Using PBP, we were able to make inferences about
residue-specific distributions in the continuous do-
main, and it is clear that these distributions encode
information about the conformational polymorphism
of each residue. We then compared the polymor-
phisms that we predicted with the ones extracted
from crystallography data by Ringer [29]. Overall,
we found the two sets of results to be in reasonably
good agreement with each other. Ringer has success-
fully uncovered side-chain conformations that were
formerly considered mere artifacts of (or noise from)
electron density data. While Ringer found these alter-
nate conformations by re-evaluating electron density
maps, we can predict them with an improved —
and, in fact, fundamentally different — side-chain
prediction algorithm, one that works in a continuous
domain.

1.2 Outline

The rest of this article is organized as follows. In Sec-
tion 2, we quickly review computational approaches
for side-chain prediction. In Section 3, we describe our

inference method. We first give a very brief review
of belief propagation (Section 3.1), and then describe
a recent variation, called particle belief propagation,
that drives our main algorithm (Section 3.2). In Sec-
tion 4, we review the von-Mises (VM) distribution for
angular data, and explain how we have used mixtures
of VM distributions to speed up our algorithm. In
Section 5, we report some empirical experiments and
their results. Finally, in Section 6, we summarize our
main contributions and discuss some work that we
have in mind for the future.

2 REVIEW OF SIDE-CHAIN PREDICTION

To render the analysis more tractable, it is often as-
sumed that the protein backbone is fixed (the dihedral
angles in the backbone will not change). With these
constraints in place, the side-chain prediction problem
concerns finding a conformation for each residue so
that the entire molecule achieves the lowest-energy
configuration. Since each side-chain conformation is
parameterized by a sequence of dihedral angles, the
search space of the optimization problem is the in-
finite set of points with each point being a vector
having components that represent the settings for all
possible dihedral angles for all residues.

While our goal is to find this optimal solution
by using strategies that recognize the continuity of
the changes in the dihedral angles, many current
computational approaches have reduced the problem
to a combinatorial search problem by discretizing the
allowed settings of the dihedral angles in the residues.
This strategy capitalizes on the phenomenon of ro-
tamericity. Even though a side chain has an infinite
number of possible three dimensional conformations,
it has been observed that a side chain will typically
have a tendency to adopt a conformation that can be
approximated by dihedral angles chosen from a small
set of empirically observed settings. Each such pos-
sible conformation is called a rotamer. A rotamer li-
brary contains a discrete set of conformations for each
residue type. For instance, the backbone-dependent
rotamer library provided by the Dunbrack Lab [11]
has been used by many researchers. Algorithms rely-
ing on these rotamer libraries essentially apply differ-
ent heuristics to search for the optimal combination
of rotamers, one for each residue. This combinatorial
optimization problem is well-known to be NP-hard
[1]. An exhaustive search is almost never possible.
Many different heuristics have been proposed, such
as dead-end elimination [9], [17], simulated annealing
[30], and Monte Carlo techniques [19], [21], among
many others.

A state-of-the-art heuristic is the SCWRL algorithm
[4]. The main steps in SCWRL 3.0 [6] are as follows:
first, a dead-end elimination procedure is applied to
reduce the number of candidate rotamers for each
residue; next, a graph is created by treating residues
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as nodes and by drawing edges between all nearby
residues; then, the graph is clustered into many bi-
connected components; finally, the optimization prob-
lem is solved separately on each subgraph, before the
solutions are combined.

Another highly competitive heuristic is the Tree-
Pack algorithm [51]. It also models the protein
molecule as a graph. However, loops are removed and
the graph is decomposed into clusters and modeled as
a tree. The problem of assigning an optimal rotamer
to each residue is then solved efficiently by traversing
the tree. TreePack is as accurate as, but significantly
faster than, SCWRL 3.0.

Other standard optimization techniques such as
linear programming (LP) and integer programming
(IP) also have been applied to solve the side-chain pre-
diction problem. Yanover and Weiss showed that find-
ing the minimum energy configuration of a protein’s
side chains is equivalent to finding the maximum-
a-posteriori (MAP) configuration of an undirected
graphical model, or a Markov random field (MRF)
[52], [54]. This meant the side-chain prediction prob-
lem could be formulated as a MAP estimation prob-
lem, which could be solved using belief propagation
(BP). They also considered a relaxed version of the
IP problem and solved the resulting convex problem
with BP [53].

Besides these optimization approaches, Li et al. [31]
recently showed that side-chain conformations also
can be decided from backbone information without
optimization.

3 MAIN METHOD OF INFERENCE

We have extended the class of side-chain prediction
algorithms that are based on BP. To model a protein
molecule with a graphical model, the backbone is
regarded as being fixed and the residues r1, r2, ..., rn
are regarded as nodes. The side chain at each node
is described by a sequence of dihedral angles, collec-
tively stored as a vector, e.g., ri = (χi1, χi2, ..., χi4).
The exact number of dihedral angles depends on
the type of amino acid. The objective is to find the
minimal-energy conformation,

min
r1,r2,...,rn

 n∑
i

El(ri) +

n∑
i

∑
j>i

Ep(ri, rj)

 , (1)

where El is the (local) intrinsic energy of a residue,
Ep is the pairwise energy between two residues, and
n is the total number of residues. The optimization
algorithm itself is independent of the choice of the
energy function. We will say more about the energy
function later in section 4.3.

Consider a graphical model G, with a set of vertices
V and a collection of edges E . If ri denotes the
random variable associated with node i, then the joint

probability distribution of r = (r1, r2, ..., rn) can be
factorized as follows:

P (r) =
∏
i∈V

ρi(ri)
∏

(i,j)∈E

ρij(ri, rj). (2)

The functions, ρi(ri) and ρij(ri, rj), are called node-
and edge-potentials, respectively. For a given energy
function Econf , the Boltzmann distribution is given by

Pconf (r) =
1

Z
exp

[
−Econf (r)

T

]
(3)

where T is a temperature parameter and Z is a nor-
malizing constant. Clearly, using the energy function
(1), the distribution (3) can be expressed in the form
of (2), with

(4)
ρi(ri) ∝ exp

[
−El(ri)

T

]
,

ρij(ri, rj) ∝ exp
[
−Ep(ri, rj)

T

]
.

3.1 Belief Propagation (BP)

Belief propagation (BP) is an efficient local message-
passing algorithm [43] for making inferences on
graphical models. It performs exact inference if the
graph G is a tree, and approximate inference for
general graphs. If the graph contains cycles, the
algorithm is often referred to as “loopy BP” and
there is no convergence guarantee, but many groups
have reported excellent results nonetheless, e.g., [15],
[42], [16]. Indeed, loopy BP has been applied to the
side-chain prediction problem, and the results have
been comparable to such state-of-the-art software as
SCWRL 3.0 [52], [54].

Given potential functions as defined by (4), mes-
sages are computed along the edges of the graph.
The sum-product BP algorithm is used to compute
marginal distributions; its recursive message updating
equation is as follows:

m
(t)
i→j(rj) =

∑
ri∈Ri

ρi(ri)ρij(ri, rj)×
∏

k∈N (i)\j

m
(t−1)
k→i (ri)

 , (5)

where Ri is the (discrete) state space of ri, and m
(t)
i→j

represents the message from node i to j at iteration t.
The notation, N (i), denotes the set of nodes that are
neighbours of i. For proteins, the discrete state space
Ri is simply the set of rotamers for residue ri.

The max-product BP algorithm is used for finding
MAP estimates; its recursive updating equation is
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given by

m
(t)
i→j(rj) = max

ri∈Ri

ρi(ri)ρij(ri, rj)×
∏

k∈N (i)\j

m
(t−1)
k→i (ri)

 . (6)

3.2 Particle Belief Propagation (PBP)

For many applications, e.g., in bioinformatics, com-
puter vision, and other fields, the state space is conti-
nuous rather than discrete, or it can be discrete but
very large so that enumerating all possible states at
each iteration becomes very inefficient. Particle belief
propagation (PBP) has been developed recently to
address precisely such difficulties [22]. Our goal is
to model the conformation of side chains more ap-
propriately as continuous rather than discrete random
variables. Hence, PBP is a crucial piece of technology
for our work.

The key idea for PBP is the following: At iteration
t, if we draw ri from a certain trial distribution W

(t)
i ,

then (5) can be written as an “importance-sampling
corrected expectation” [22]:

m
(t)
i→j(rj) = E

ri∼W (t)
i

[
ρi(ri)

W
(t)
i (ri)

ρij(ri, rj)×

∏
k∈N (i)\j

m
(t−1)
k→i (ri)

 . (7)

It is generally not possible to express the expectation
E
ri∼W (t)

i
(·) in analytic form, but it can be obtained

using Monte Carlo techniques [10], [32]. Thus, for
each node ri, the idea is to sample a set of L par-
ticles {r(1)i , r

(2)
i , ..., r

(L)
i } from W

(t)
i , typically using a

Markov Chain Monte Carlo (MCMC) technique such
as the Metropolis-Hastings algorithm [32], and then
approximate (7) by

m̂
(t)
i→j(rj) =

1

L

L∑
l=1

 ρi

(
r
(l)
i

)
W

(t)
i

(
r
(l)
i

)ρij (r(l)i , rj

)
×

∏
k∈N (i)\j

m̂
(t−1)
k→i

(
r
(l)
i

) . (8)

In the simplest case, the particles’ locations may
remain unchanged [22] but, generally, each particle’s
location is updated at the end of each BP iteration.
This is what allows PBP to explore a continuous
state space and not be restricted to a fixed set of
choices specified a priori, such as a rotamer library;
and it is accomplished by re-sampling the particles at
each iteration from the distribution, W (t)

i , e.g., using

the Metropolis-Hastings algorithm. At iteration t, a
natural choice of W (t)

i is the current belief of node i,

W
(t)
i (ri) ∝ ρi(ri)×

∏
k∈N (i)

m̂
(t−1)
k→i (ri). (9)

The max-product version for PBP was first given by
Kothapa et al. [27]:

m̂
(t)
i→j(rj) = max

l=1,...,L

ρi (r(l)i ) ρij (r(l)i , rj

)
×

∏
k∈N (i)\j

m̂
(t−1)
k→i

(
r
(l)
i

) . (10)

Their paper [27] explains in more detail why the factor
W

(t)
i does not appear in the square brackets of (10).

4 FAST APPROXIMATION OF ρi, ρij
We used mixtures of von-Mises distributions as a fast
way to approximate the potential functions ρi(ri) and
ρij(ri, rj). It is well-known that mixture densities can
be used to approximate any arbitrary distribution. For
example, in nonparametric belief propagation [46],
mixtures of Gaussians are used to model and/or
approximate ρi(ri) and ρij(ri, rj). Since we are work-
ing in the space of dihedral angles, the von-Mises
distribution is more appropriate than the Gaussian
distribution (see Section 4.1 below).

4.1 The von-Mises (VM) Distribution
The univariate von-Mises (VM) distribution is a prob-
ability distribution on a circle. The multivariate gen-
eralization was introduced by Mardia et al. [37]. In
particular, θ ∈ Rd is said to follow the multivariate
von-Mises distribution, MVM(µ, κ,Λ), if its density
function is given by

f(θ;µ, κ,Λ) =
1

Z(κ,Λ)
×

exp
[
κT c(θ) +

sT (θ)Λs(θ)

2

]
(11)

where

cu(θ) ≡ cos(θu − µu), su(θ) ≡ sin(θu − µu)

for u = 1, 2, ..., d, and Z(κ,Λ) is a normalizing con-
stant.

The parameter µ ∈ Rd describes the location, i.e.,
the mean (or center), and the parameter κ ∈ Rd > 0
describes the scale, i.e., the spread (or concentration).
The parameter, Λ = [λuv] ∈ Rd×d is a matrix whose
diagonal elements are zero (Λuu = 0) and whose
off-diagonal elements Λuv capture the correlation be-
tween θu and θv . It is clear from the definition above
that the VM distribution is well suited for modeling
angular data, and why it is sometimes referred to as
the “Gaussian” distribution on the sphere.
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4.2 Use of VM Distribution in Bioinformatics

The von-Mises distribution has been used to model
dihedral angles in protein molecules. For example,
Mardia et al. [36] used the EM algorithm to fit a mix-
ture of bivariate von-Mises distributions to the two
dihedral angles (φ, ψ) that describe protein backbones.
To model higher-dimensional angular data (e.g., the
dihedral angles for side chains), Mardia et al. [37]
introduced the more general, multivariate von-Mises
distribution (11) by extending the bivariate model of
Singh et al. [45]. More recently, Mardia et al. [38]
have extended single MVM distributions to mixtures
of MVMs. For example, they fitted a 4-dimensional
mixture of MVMs to model the two backbone dihedral
angles (φ and ψ) and the first two side-chain dihedral
angles (χ1 and χ2) of the amino acid, ILE.

In our work, we also used mixtures of MVMs (see
Section 4.4 below). However, our work differs funda-
mentally from those of Mardia et al. [38]. While they
fitted a single mixture to model the conformation of a
given amino acid using data from different proteins,
we used mixtures of MVMs to approximate the node-
and edge-potential functions, and different mixture
models were specified for each ρi and ρij on a protein-
by-protein basis.

4.3 Energy Functions

We now give more details about the energy function
(1). We used a very simple energy function that essen-
tially acted as a collision detector. This simple energy
function was first popularized by SCWRL [11] and
later adopted by TreePack [51] as well.

Given two atoms, a1 and a2, SCWRL approximates
the van der Waals pairwise potential energy between
them by

Eapprx.vdw(a1, a2) =
0, if d > R0;

−k2 d
R0

+ k2, if k1R0 ≤ d ≤ R0;

Emax, if d < k1R0,

(12)

where d is the distance between a1 and a2; R0 is the
sum of their radii; Emax = 10; k1 = 0.8254; and k2 =
Emax/(1− k1). For Carbon (C), Nitrogen (N), Oxygen
(O), and Sulfur (S), fixed radii of 1.6, 1.3, 1.7, and 1.7
were used, respectively.

Treating each residue simply as a set of atoms, the
pairwise energy function, Ep(ri, rj) in (1), is merely
calculated by summing over all atom-pairs:

Ep(ri, rj) =
∑

a∈ri,b∈rj

Eapprx.vdw(a, b).

The intrinsic energy El(ri) in (1) is computed by

El(ri) = −K log
p(ri|φ, ψ)

pmax(ri|φ, ψ)
+∑
j<i−1
j>i+1

Ep(ri, bj), (13)

where p(ri|φ, ψ) is the rotamer probability specified
by the rotamer library, which depends on the two
backbone dihedral angles φ and ψ; pmax(ri|φ, ψ) is
the probability of the most probable rotamer among
the rotamers listed in the library for residue i; and
bj represents the backbone part of residue j. The
Dunbrack Lab [11] has suggested that the parameter
K be set to 3. In order to calculate Ep(ri, bj), ri and
bj are again treated simply as two sets of atoms, and
Ep(ri, bj) is computed in the same fashion as (12) over
all pairs of atoms in ri and bj .

4.4 Approximation of Potential Functions
Notice that the energy functions El and Ep given
in the previous section — and hence the implied
potential functions ρi and ρij , given by (4) — depend
on inter-atomic distances, whereas our state space is a
set of dihedral angles that describe the conformation
of each residue. Therefore, a conversion must take
place every time the potential functions are evaluated.
This is not difficult in principle, and there is existing,
standard software for performing such a conversion,
e.g., BALL [18]. In order to speed up our computation,
however, we used a mixture of von-Mises distribu-
tions as a crude approximation to these potential
functions.

For example, for residues described by four dihe-
dral angles (e.g., the amino acid LYS), the approxima-
tion to the node potential function would be:

ρ̂i(ri) =
∑
τ

wτfτ (χi1, ..., χi4), (14)

where fτ ∼ MVM(µτ , κτ ,Λτ ) is a (multivariate) von-
Mises density function, given by (11), and wτ denotes
the weight of the mixture component τ such that∑
wτ = 1.
We used simple spherical or radial basis mixtures,

that is, we set Λτ = 0. This is the same as treating
the dihedral angles as being locally independent —
in the future, we plan to generalize this by modeling
the local correlations among the χ-angles. We chose
κτ = (10, 10, ..., 10) for all τ . For each residue i, the set
of discrete rotamers from the (backbone-dependent)
rotamer library were used as mixture centers, µτ . We
specified the weight of each component τ to be

wτ = α p(µτ |φ, ψ) + (1− α)
1

#(mixture components)
,

where α was chosen to be 0.1, and p(µτ |φ, ψ) is the
rotamer probability for rotamer µτ from the rotamer
library.
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For the edge potential, our approximation was:

ρ̂ij(ri, rj) =∑
τ

∑
τ ′

wτ,τ ′ × fτ,τ ′(χi1, ..., χidi , χj1, ..., χjdj ), (15)

where di and dj are the number of dihedral angles
for ri and rj , respectively; fτ,τ ′ is, again, a spherical
MVM density function, with κτ,τ ′ = (10, 10, ..., 10) and
Λτ,τ ′ = 0 for all τ, τ ′ as before. If the pairwise edge
potential between two rotamers — one for residue ri
and another for rj — exceeded 0.05, their dihedral
angles were concatenated together and used as a
mixture center, µτ,τ ′ , with wτ,τ ′ ∝ ρ(µτ , µτ ′).

The expressions (14) and (15) can be viewed as
approximations of ρi and ρij using a crudely specified
single-layer radial basis function network (RBFnet) in
angular space.

5 EXPERIMENTS AND RESULTS

We used a data set containing 362 diverse proteins
that were previously analyzed by the Alber group [29]
with their Ringer program (http://ucxray.berkeley.
edu/ringer.htm). The protein data files were retrieved
from the PDB. We used functions and modules from
the Biochemistry Algorithms Library (BALL) [18] to
read and process the PDB files. The electron density
maps for the proteins, which were required to run the
Ringer program, were downloaded from the Electron
Density Server [26]. All experiments were performed
on the Sharcnet system (http://www.sharcnet.ca/).

5.1 PBPMixVM

To reflect the fact that we used PBP for inference
and mixtures of (multivariate) VM distributions for
approximating the potential functions, from this point
on we shall refer to our algorithm as PBPMixVM.
We implemented it in C++, using the overall archi-
tecture provided by GraphLab (http://select.cs.cmu.
edu/code/graphlab/) [33].

5.2 The Kolmogorov-Smirnov (KS) Test

For each residue, we used a two-sample Kolmogorov-
Smirnov (KS) test [7] to compare the results from
Ringer with those from PBPMixVM. The KS-test is
a widely used nonparametric test for determining
whether two distributions are significantly different
from each other. The significance level for the KS-test
was set to be 0.05.

Fig. 2 provides some visual illustrations of what
the KS-test does. Based on the p-values from in-
dividual KS-tests, we selected four residues, whose
corresponding p-values from the aforementioned KS-
tests were 0.99, 0.77, 0.53, and 0.25, respectively. Such
a selection is meant to illustrate varying levels of
agreement between the PBPMixVM results and the

(a) 1A2P, Ringer (b) 1A2P, PBP

(c) 1F41, Ringer (d) 1F41, PBP

(e) 1B67, Ringer (f) 1B67, PBP

(g) 1F4P, Ringer (h) 1F4P, PBP

Fig. 2. Illustration of results from Ringer (left) and
those from PBPMixVM (right; simply labeled as “PBP”
in the plots): four specific residues, whose polymor-
phisms in χ1 differed to varying degrees as character-
ized by Ringer and predicted by PBPMixVM. (a) & (b)
Residue ASN23, 1A2P, Chain C; KS-test p-value=0.99.
(c) & (d) Residue HIS88, 1F41, Chain B; KS-test p-
value=0.77. (e) & (f) Residue GLU134, 1B67; KS-test p-
value=0.53. (g) & (h) Residue LYS87, 1F4P; KS-test p-
value=0.25. Larger p-values indicate better agreement
between Ringer and PBP.

Ringer results — larger p-values indicate higher levels
of agreement.

The four selected residues are: residue ASN23,
1A2P, Chain C [39], p-value=0.99; residue HIS88, 1F41,
Chain B [20], p-value=0.77; residue GLU134, 1B67
[8], p-value=0.53; and residue LYS87, 1F4P [44], p-
value=0.25. For these four residues, the polymor-
phisms in their respective χ1-angles as characterized
by Ringer and predicted by PBPMixVM are displayed
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TABLE 1
Comparison of PBPMixVM and Ringer results: χ1 and

χ2, average results over all residues, across all
proteins in the data set.

Dihedral Percent in Mean
angle agreement (%) p-value
χ1 57 0.19
χ2 56 0.17

TABLE 2
Comparison of PBPMixVM and Ringer results: χ1

only, average results over all residues of the same
amino acid type, across all proteins in the data set.

Amino Total Percent in Mean
acid No. agreement (%) p-value
ARG 4067 57 0.18
ASN 3613 67 0.24
ASP 5072 63 0.21
CYS 1342 62 0.21
GLN 3180 67 0.24
GLU 5466 71 0.26
HIS 2080 52 0.16
ILE 4894 52 0.17
LEU 8250 64 0.22
LYS 4890 53 0.16
MET 1348 69 0.23
PHE 3675 48 0.14
PRO 4097 42 0.09
SER 4776 77 0.29
THR 4749 77 0.29
TRP 1259 54 0.16
TYR 3044 50 0.15
VAL 6422 66 0.23

next to each other in Fig. 2, ordered by p-values from
top to bottom.

5.3 Comparative Results
From the individual KS-tests, we computed two sum-
mary statistics to evaluate the overall agreement be-
tween our results from PBPMixVM and those given
by Ringer: (i) percent in agreement — the fraction
of residues for which the KS-test failed to show a
statistically significant difference; and (ii) mean p-value
— the average p-value from individual KS-tests.

Table 1 shows the overall results for the first two
dihedral angles, χ1 and χ2, averaged over all residues
across all proteins in our data set. Table 2 shows
results for χ1 only, averaged over residues of the
same amino acid type across all proteins in our data
set. Based on the KS-tests, these proteins’ side-chain
polymorphisms as predicted by PBPMixVM and as
described by Ringer agreed for well over 50% of all
the residues, and the average p-value from these KS-
tests was about 0.20, much higher than the typical
cutoff value of 0.05.

We also can observe from Table 2 that, for some
residue types, including not only those having just
one χ-angle, e.g., Serine (SER), Threonine (THR), Va-

TABLE 3
Comparison of PBPMixVM and Ringer results: χ1

only, average results over all residues of the same
amino acid type and having the same secondary

structure, across all proteins in the data set.

Amino Secondary Total Percent in Mean
acid structure No. agreement (%) p-value
ARG Helix 1774 60 0.19

Strand 815 56 0.17
Loop 1478 56 0.17

ASN Helix 1070 64 0.21
Strand 541 64 0.23
Loop 2002 69 0.25

ASP Helix 1764 62 0.21
Strand 571 59 0.19
Loop 2737 65 0.22

CYS Helix 423 63 0.22
Strand 409 57 0.20
Loop 510 66 0.20

GLN Helix 1573 71 0.26
Strand 546 66 0.22
Loop 1060 61 0.20

GLU Helix 2854 73 0.27
Strand 861 66 0.24
Loop 1751 70 0.25

HIS Helix 679 53 0.16
Strand 456 52 0.17
Loop 945 51 0.16

ILE Helix 1804 51 0.16
Strand 1885 52 0.17
Loop 1205 52 0.18

LEU Helix 3947 71 0.26
Strand 2107 57 0.18
Loop 2195 60 0.20

LYS Helix 2203 54 0.17
Strand 870 54 0.17
Loop 1817 50 0.15

MET Helix 581 68 0.24
Strand 318 67 0.22
Loop 449 70 0.24

PHE Helix 1383 51 0.14
Strand 1179 42 0.13
Loop 1112 50 0.15

PRO Helix 841 44 0.09
Strand 363 44 0.10
Loop 2893 42 0.09

SER Helix 1462 78 0.30
Strand 884 74 0.28
Loop 2430 77 0.29

THR Helix 1450 78 0.29
Strand 1255 75 0.27
Loop 2043 76 0.29

TRP Helix 487 58 0.18
Strand 392 48 0.14
Loop 380 55 0.17

TYR Helix 1122 51 0.15
Strand 1009 46 0.13
Loop 913 52 0.16

VAL Helix 2087 72 0.26
Strand 2736 63 0.21
Loop 1599 65 0.24

line (VAL), but also those having relatively large struc-
tures and hence, multiple χ-angles, e.g., Asparagine
(ASN), Glutamine (GLN), Glutamic Acid (GLU), Me-
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thionine (MET), the agreement between PBPMixVM
and Ringer can be noticeably higher than the overall
average (Table 1) — the percent in agreement for some
residue types was close to 70% and 80%, and the
corresponding mean p-value was close to 0.25 and
0.30. To the extent that the Ringer program can dis-
cover alternate side-chain conformations, PBPMixVM
can be seen to have the ability to predict alternate
side-chain conformations for these residues as well.
The agreement with Ringer for large residues having
multiple χ-angles, in particular, are indications that
using mixtures of locally independent VM distributions
in our approximation of the potential functions (see
Section 4.4) has not had a significant impact on our
algorithm.

Table 3 further groups the results by the secondary
structures of the residues, which we obtained using
the DSSP software [25], [24]. Here we easily can see
that the agreement between PBPMixVM and Ringer
was generally better for residues whose secondary
structures are helices. This is not surprising, since
helices typically are more stable.

Earlier, we mentioned in Section 1 that, using
Ringer, Lang et al. [29] had uncovered interesting
polymorphisms in the protein, Calmodulin (CaM)
[50]. A curious residue in that protein is SER38.
The currently modeled χ1-angle for SER38 changes
conformation from 80◦ in the unbound form of CaM
(PDB ID: 1EXR) to 295◦ in the complex form (PDB
ID: 2O5G). By analyzing crystallography data for
1EXR (the unbound form of CaM), Ringer successfully
recognized the 295◦ conformation — often detectable
only from 2O5G (the complex form of CaM) — as a
secondary peak. This result was scientifically signifi-
cant because, previously, such conformational changes
could not have been easily identifiable without a
complete structural refinement of both the bound
and the unbound proteins, but Ringer was able to
detect this conformational polymorphism from the
unbound molecule alone. We also analyzed 1EXR
with PBPMixVM. Our predicted polymorphism for
the χ1-angle of SER38 agreed well with the result from
Ringer (Fig. 3; KS-test p-value = 0.64). In particular,
PBPMixVM also predicted the secondary conforma-
tion near 295◦ from the unbound form of CaM (1EXR).

5.4 Some Computational Details

The PBPMixVM algorithm was deemed to have con-
verged when the Kullback-Leibler (KL) divergence
between W

(t)
i (ri) and W

(t−1)
i (ri) fell below 10−8 for

each residue i, where W (t)
i denotes the belief function

of node i at iteration t, given previously in (9). For
all proteins in our data set, PBPMixVM converged in
< 50 iterations.

At the moment, PBPMixVM is relatively slow, com-
pared with some other side-chain prediction algo-
rithms such as SCWRL. Whereas the running time

(a) Ringer (b) PBP

Fig. 3. Calmodulin (1EXR), residue SER38: polymor-
phism in χ1 as extracted by Ringer from crystallo-
graphy data (left) and predicted by PBPMixVM (right).

of SCWRL is on the order of seconds or minutes,
that of PBPMixVM is on the order of hours. This is
mainly because, within each PBP iteration, we must
run a separate MCMC to update the particles for each
residue! To speed up the computation, we used a
relatively small number of particles and relatively
short MCMC chains to analyze all the proteins.

However, we did examine, using a small subset
of 20 proteins, how much the performance of PBP-
MixVM could be affected by these computational
parameters. On this small subset at least, increasing
the length of the MCMC chains and the number of
particles per residue had little effect on the overall
level of agreement between PBPMixVM and Ringer.

6 CONCLUSION AND FUTURE WORK

Proteins in crystals undergo a lot of large- and small-
scale motions. Hence, studying a protein molecule
with a single conformational model is not ade-
quate. We have developed a computational approach
capable of predicting residue-specific conformational
polymorphisms. We modeled side-chain dihedral an-
gles as continuous random variables in an MRF,
and used PBP as our main inference technique. To
speed up the computation, we approximated the
(continuous) node- and edge-potential functions by
mixtures of VM distributions. For each node in the
MRF, a set of particles were sampled at each iteration
to represent its distribution. After convergence, these
node-specific marginal distributions could be seen to
encode information about alternate side-chain confor-
mations. To the best of our knowledge, this work is
the first one to address the prediction of side-chain
polymorphisms from a purely computational point
of view, without relying on additional experimental
inputs such as electron density data.

A distinct feature of our method is the treatment
of side-chain dihedral angles as continuous variables.
We believe it constitutes an important (and neces-
sary) step toward being able to provide an accurate
description of side-chain ensembles, and to discover
low-occupancy conformers.

As mentioned earlier (Section 5.4), PBPMixVM is
relatively slow at the moment, due to the need to up-
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date the particles for each residue by a separate MCMC
within each PBP iteration. Although we haven’t yet
done so, the running time of our algorithm could
be improved significantly by parallelizing some of
these updates. For local message passing, we are
currently using a synchronous schedule, but there
have been suggestions that using an asynchronous
schedule could further accelerate BP-types of algo-
rithms [12].

We are also considering some other refinements to
our algorithm, for example, improving our approx-
imation of the potential functions by modeling the
local correlations among the dihedral angles. We also
believe that combining the results from PBPMixVM
with those from state-of-the-art side-chain prediction
algorithms, such as SCWRL [28] and TreePack [51],
can further enhance the accuracy and reliability of the
predicted side-chain polymorphisms.
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