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Evolution and Controllability of Cancer
Networks: a Boolean Perspective

Sriganesh Srihari, Venkatesh Raman, Hon Wai Leong and Mark A. Ragan

Abstract—Cancer forms a robust system capable of maintaining stable functioning (cell sustenance and proliferation) despite
perturbations. Cancer progresses as stages over time typically with increasing aggressiveness and worsening prognosis.
Characterizing these stages and identifying the genes driving transitions between them is critical to understand cancer
progression and to develop effective anti-cancer therapies. In this work, we propose a novel model for the ‘cancer system’
as a Boolean state space in which a Boolean network, built from protein-interaction and gene-expression data from different
stages of cancer, transits between Boolean satisfiability states by “editing” interactions and “flipping” genes. Edits reflect rewiring
of the PPI network while flipping of genes reflect activation or silencing of genes between stages. We formulate a minimization
problem MIN FLIP to identify these genes driving the transitions. The application of our model (called BoolSpace) on three
case studies – pancreatic and breast tumours in human and post spinal-cord injury in rats – reveals valuable insights into the
phenomenon of cancer progression: (i) interactions involved in core cell-cycle and DNA-damage repair pathways are significantly
rewired in tumours, indicating significant impact to key genome-stabilizing mechanisms; (ii) several of the genes flipped are
serine/threonine kinases which act as biological switches, reflecting cellular switching mechanisms between stages; and (iii)
different sets of genes are flipped during the initial and final stages indicating a pattern to tumour progression. Based on these
results, we hypothesize that robustness of cancer partly stems from “passing of the baton” between genes at different stages
– genes from different biological processes and/or cellular components are involved in different stages of tumour progression
thereby allowing tumour cells to evade targeted therapy, and therefore an effective therapy should target a “cover set” of these
genes. A C/C++ implementation of BoolSpace is freely available at: http://www.bioinformatics.org.au/tools-data

Index Terms—Cancer networks, Cancer evolution, Cancer robustness, Strategy for targeted therapy
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1 INTRODUCTION

A dynamical system is controllable if it can be driven
from an initial state to a desired state within finite
time by application of suitable inputs [1]. For example,
a car is controllable as it can be moved at a desired
speed and direction by the manipulation of pedals
and steering wheel. The factors that contribute to
the controllability of the system can be assembled
in the form a network, which in this example is
the network of components such as circuits, engine,
wheels, etc. of the car. This prompts the study of
structural controllability of networks wherein we attempt
to identify input nodes (driver nodes) that control the
(entire) network [1]. This study has applications in
understanding biological networks, communication
networks, social networks, electrical circuits, etc.

Structural controllability of systems or networks has
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been studied in several fields, particularly in control
systems theory. In a classical work [2] (1974), Lin
studied linear time-invariant control systems of the
form (A, b): ẋ = Ax + bu, where matrices A ∈ Rn×n
and b ∈ Rn are time invariant and x ∈ Rn and
u ∈ R, and established that the system (A, b) is
structurally controllable if and only if the graph of
(A, b) is “spanned by a cactus”.

More recently (2011-) great interest has been gen-
erated on the structural controllability of real-world
networks [1], [4], [5], [6]. Liu Yang et al. [1], by
combining principles of network science with tools
from control theory [3], studied controllability in
gene regulatory, metabolic, social, world-wide web
(WWW) and electrical circuit networks. To identify
the minimum number ND of driver nodes required to
control the network the authors proposed a maximal-
matching based approach – those nodes that are not
matched constitute the driver nodes. Surprisingly,
they found that driver nodes tend to avoid hubs in
these real-world networks. Gene regulatory networks
displayed a high ND indicating that it is necessary
to independently control a large number of genes to
fully control the network, while social and WWW
networks displayed the smallest ND indicating that a
few individuals could in principle control the whole
network. The former finding is useful for identifying
effective drug targets (genes), while the latter is use-
ful to design robust mechanisms to prevent (a few)
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individuals from bringing down large social or web
networks.

On the other hand, Nepusz and Vicsek [4] studied
controllability from the point of view of edge dy-
namics, terming it as switchboard dynamics (SBD).
Strikingly different from the conclusions by Liu Yang
et al. [1], under the SBD model, regulatory networks
and communications networks were well controllable
using only a few driver nodes. However, Cowan et
al. [5] argue that a single time-dependent input is all
that is needed for structural controllability, and this
input should be applied to the POWER DOMINATING
SET of the network. Nacher and Akutsu [6] studied
structural controllability of real-world unidirectional
bipartite networks. The authors proposed a variant of
the MINIMUM DOMINATING SET problem to identify
driver nodes, and by applying their approach to hu-
man drug-target protein networks, they identified a
set of drugs that controlled all protein targets.

While these works consider mostly time-invariant
networks, recent studies [7], [8] have proposed
the idea of temporal sequence of network motifs
that describe developmental events which cannot be
captured by time-invariant models. However, these
works do not specifically focus on network controlla-
bility, but instead on generating time-variant models
that fit the underlying data over time.

Here we study the controllability of time-variant
networks such as in cancer. From a systems point-
of-view, cancer forms a robust system capable of
maintaining stable functioning (cell sustenance and
proliferation) despite perturbations [9]. Cancer pro-
gresses as stages over time typically with increasing
aggressiveness and worsening prognosis – e.g. as lo-
calised cancer or in situ, regional spread, and distant
spread or metastasis. Cancer even of a single organ
can be highly diverse, and is therefore studied by
categorizing into different subtypes – e.g. as basal,
luminal-A, luminal-B, HER2+ and normal-like for
breast cancer [10], [11]. Identifying these stages or
subtypes and the nodes (driver genes) responsible
for transitions between them is critical to detect ‘soft-
points’ that can break the robustness of cancer, and
therefore aid in developing subtype- or stage-specific
anti-cancer therapies.

Differential expression analysis has been tradition-
ally adopted to identify driver genes [12], [13]. While
these analyses manage to capture several “mountain”
genes that show noticeable changes in expression,
there are many more “hills” that often do not display
such drastic changes [14]. These hills are not identifi-
able through their own behaviour, but their changes
are quantifiable when considered in conjunction with
other genes; these hills may not be differentially ex-
pressed but are differentially co-expressed with other
genes [15], [16]. This is further substantiated in the
following case study [16].

Fig. 1. Pancreatic normal vs tumour shows significant
differences in co-expression patterns among PPIs.

1.1 An initial analysis

We integrated 29600 high-quality physical interac-
tions among 5824 proteins gathered from Biogrid [17]
and 39 paired normal and tumour gene-expression
samples gathered from a study on pancreatic ductal
adenocarcinoma (PDAC) patients [18] to understand
differences in behaviour of genes in the tumour vis-
a-vis normal (we use the terms genes and proteins
interchangeably).

We computed the gene expression correlation-wise
distribution of interacting gene pairs for normal
and tumour conditions (co-expression is measured as
Pearson correlation across samples), as shown in Fig-
ure 1. The gene-expression measurements, although
from tissues (mixture of cells) across multiple sam-
ples, are from cells with high cellularity, and the
figure depicts an ‘average’ picture of the co-expression
pattern in the two conditions. We observed consid-
erable changes in the correlation of gene pairs in
tumour vis-a-vis normal – a reduction in 8701 highly
correlated interactions (of absolute correlation ≥0.50).
This indicated a potential loss of positively correlated
“accelerators” (interactions driving normal cellular
processes) and negatively correlated “brakes” (inter-
actions suppressing tumour inducers and genome
instability). Interestingly, the analysis of “jumps” (in-
crease or decrease) in correlation revealed two in-
teractions, RBPMS-RHOXF2 and SMN1-TMSB4X, dis-
playing extreme jumps (from +/-[0.9,1] to -/+[0.9,1]).
Among these, RHOXF2, with low expression levels
and no noticeable change (mean of 4.67 and 4.34, re-
spectively), has been implicated as a cancer promoter
in pancreatic and gastric cancers [19].

Taking these findings into account, here we hy-
pothesize that changes in gene co-expression patterns,
especially among physically interacting protein pairs
(PPIs), are strong indicators of transitions between
tumour states. Therefore, we propose a novel model
that captures the dynamics of tumours based on co-
expression patterns of PPI networks across stages,
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Fig. 2. BoolSpace: Modeling the ‘state space’ of cancer states over time using Boolean networks.

and use this model to reconstruct the state space for
tumours.

More specifically, we model the cancer state space as
a Boolean state space wherein each state is identified by
the configuration of a Boolean network that represents
the PPI network under a given condition. Each node
in the Boolean network is a Boolean variable repre-
senting a gene, and the interactions between nodes are
Boolean clauses reflecting co-expression relationships
in the PPI network. Stable states of the network are
identified by Boolean satisfying (SAT) assignments to
the nodes, while transitions between the states are
governed by edits to the interactions and correspond-
ing new SAT assignments to the nodes. Based on
this model, we track the trajectory of the Boolean
network in the state space to capture progression of
the tumour and the genes that drive these transitions
(see Figure 2a). To identify these genes, we propose an
interesting optimization problem called MIN FLIP, and
propose an efficient fixed-parameter tractable algo-
rithm to solve it. We demonstrate the effectiveness of
our model on three case studies involving pancreatic
and breast tumours and spinal-cord injury. We call our
model BoolSpace.

2 METHODS

2.1 Boolean modeling of cancer state space

We devise a Boolean model of the cancer state space
by integrating PPI network and gene expression pro-
files from cancer conditions as follows. Let H = (V,E)
be the human PPI network, where V is the set of
proteins and E is the set of physical interactions
among the proteins. For each gene (protein) p ∈ V and
any given condition Ω, the gene-expression profile for
p consists of expression levels of p measured across
multiple samples (e.g. patients) in the condition Ω.
Using these expression profiles, for each interacting
gene pair (p, q) ∈ E, we measure the co-expression
r(p, q)Ω in Ω. Applying a threshold 0 < δ < 1 on r,
we model the interaction (p, q) as a Boolean clause:

• if p and q are positively co-expressed, r(p, q)Ω ≥ δ,
we model it as p⊗̄q (i.e. NOT XOR); and

• if p and q are negatively co-expressed, r(p, q)Ω ≤
−δ, we model it as p⊗ q (i.e. XOR).

This results in a conditional Boolean network BΩ =
(VΩ, EΩ), where each p ∈ VΩ is a Boolean variable
and each interaction (p, q) ∈ EΩ is a Boolean clause in
p and q for condition Ω.

When the Boolean clause for the interaction (p, q)
evaluates to 1, it reflects the co-expression relation-
ship between p and q. Here, p⊗̄q represents the case
where both p and q are 1 or 0 simultaneously, which
means both p and q are simultaneously up-regulated
or down-regulated, i.e. positive co-expression. On the
other hand, p⊗ q represents the case where only one
of p or q is 1 (0) and the other 0 (1), which means
only one of p or q is up-regulated while the other is
down-regulated, i.e. negative co-expression.

The underlying assumption here is that interacting
pairs of proteins are likely to be encoded by strongly
co-expressed (positive or negative) pairs of genes [20],
[21]. Therefore, we consider the generic PPI network
as a backbone and condition (contextualize) it using
expression profiles to reflect the presence or absence
of interactions under different conditions. If any two
genes p and q display strong co-expression (r(p, q)Ω ≥
δ or ≤ −δ) under a condition Ω, then we consider the
interaction (p, q) to exist in Ω, with the positive or
negative co-expression represented by the clauses ⊗̄
or ⊗, respectively, in the Boolean network.

Given BΩ generated using this model, we consider
(p, q) to be SATISFIED if we can find a Boolean assign-
ment (0/1) for p and q such that the Boolean clause
for (p, q) evaluates to 1. We consider the network BΩ

to be SATISFIED if we can find a Boolean assignment
B(BΩ) = {b1, b2, ..., bn}, bi = 0/1, spanning all genes
vi ∈ VΩ such that every interaction in the network
is SATISFIED. The set of all possible states (SATISFIED
as well as UNSATISFIED) a Boolean network can take
constitutes its Boolean state space, where each state
is uniquely identified by the configuration and corre-
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sponding Boolean assignments for the network. The
SATISFIED states represent stable states because these
reflect acceptable expression values for genes in the
PPI network.

2.2 Modeling transitions in Boolean space
We postulate that the Boolean network always tran-
sists between SATISFIED states in the Boolean state
space. If the configurations, BΩ and BΨ, for a network
under any two successive conditions Ω and Ψ are
known, we say BΩ has transitioned to BΨ by edits to its
interactions. These edits can be of three types viz. loss,
gain and ‘toggling’ of interactions, all of which change
the configuration of the network. From condition Ω to
Ψ, an interaction (p, q) is:
• lost, if r(p, q)Ω ≥ δ or r(p, q)Ω ≤ −δ but r(p, q)Ψ ∈

(−δ,+δ);
• gained, if r(p, q)Ω ∈ (−δ, δ) but r(p, q)Ψ ≥ δ or
r(p, q)Ψ ≤ −δ; and

• toggled, if r(p, q)Ω ≥ δ but r(p, q)Ψ ≤ −δ or vice
versa.

Upon toggling, the Boolean logic on (p, q) changes
from ⊗ to ⊗̄ or vice versa, and the set of toggled
interactions is given by TΩΨ = {(p, q) : p◦q ∈ EΩ, p◦̄q ∈
EΨ; ◦ ∈ {⊗, ⊗̄}} (recollect “jumps” in co-expression
mentioned under ‘Initial analysis’). The total set of
interactions edited is represented as EΩΨ. These edits
capture changes in co-expression patterns among in-
teracting gene pairs, and therefore transitions in the
Boolean space reflect ‘rewiring’ of the PPI network
between conditions. Based on this model, we are
now interested in identifying the genes driving these
transitions of the network.

2.2.1 Deducing drivers of state transitions
Given a satisfying assignment B(BΩ), we hypothesize
that the minimum subset of genes to be flipped (from 0
to 1 or vice versa) to maintain the network SATISFIED
upon transit to BΨ constitutes the genes driving this
transition. To identify these driver genes, we propose
the following problem:

MIN FLIP: Given the network BΩ = (VΩ, EΩ)
and its satisfying assignment B(BΩ) for a
condition Ω, and the set of edited interac-
tions EΩΨ relative to another condition Ψ,
find a minimal subset of genes V ′Ω ⊆ VΩ to
be flipped such that BΩ remains SATISFIED
when EΩΨ is edited.

Note that we edit or toggle interactions but flip genes.
For example, in Figure 2b, the interactions (x1, x2)
and (x3, x4) have toggled from ⊗ to ⊗̄ and ⊗̄ to ⊗,
respectively, and to resatisfy this network, we flip x2

and x4.

2.3 Parameterizing MIN FLIP

In the MIN FLIP formulation above, we need to
know the initial SAT assignment B(BΩ) to identify the

flipped genes. In an n-gene network with only ⊗ or ⊗̄
clauses there are polynomial (in n) and in a general
network there are potentially O(2n) [22] number of
SAT assignments to choose as our initial assignment.
Here we always select the assignment with the mini-
mum number of 1’s as our initial assignment B(BΩ).

In a network with only ⊗ or ⊗̄ clauses an assign-
ment with the minimum number of 1’s (called the
MIN-ONES-2SAT problem) is determinable in poly-
nomial time, and therefore MIN FLIP is solvable in
polynomial time (shown later). On the other hand,
MIN FLIP is equivalent (details skipped here) to the
MIN-ONES-2SAT, which is NP-complete in a general
network [22], [23]. Therefore, to solve MIN FLIP in
general, we assume a bound on the flipped genes and
present a tractable algorithm relative to this bound.

We present a fixed-parameter tractable (FPT) algo-
rithm for MIN FLIP parameterizing on the number of
flipped genes. For an input of size n, FPT algorithms
run in O(f(k).nc) time, where k is a positive integer
(the parameter), f a (typically exponential) function
dependent only on k, and c is a constant independent
of k [24]. FPT algorithms, in many cases, are more
practical than the naı̈ve O(nk) algorithms when k
is “small enough” [24], [25]. A classical example is
of the VERTEX COVER problem, for which a number
of FPT algorithms exist in the literature parameter-
izing primarily on the size of the vertex cover, the
best one achieving an asymptotic running time of
1.2738k.nO(1) [26] (for an introduction to FPT algo-
rithms, refer to [24]).

We reformulate MIN FLIP relative to a parameter
k > 0 as follows:

k-FLIP: Given the network BΩ = (VΩ, EΩ), its
satisfying assignment B(BΩ) for a condition
Ω, and the set of edited interactions EΩΨ

relative to a condition Ψ, find the subset of
genes V ′Ω ⊆ VΩ, |V ′Ω| ≤ k, to be flipped
such that BΩ remains SATISFIED when EΩΨ

is edited.

We expect k << |VΩ|.

2.4 Solving MIN FLIP

We first state some preliminaries. For a gene p in
network BΩ, NΩ(p) is the set of neighbors and EΩ(p)
is the set of incident interactions of p. The subsets of
SATISFIED and UNSATISFIED interactions, ESΩ(p) and
EUΩ (p) respectively, form a partition of EΩ(p), that is,
ESΩ(p) ∪ EUΩ (p) = EΩ(p) and ESΩ(p) ∩ EUΩ (p) = ∅.

Lemma 1: For a gene p, if |EUΩ (p)| > k then p belongs
to the final solution F of flipped genes.

Proof: If p /∈ F then, each of its neighbors NΩ(p)
need to be flipped at the very least to satisfy EUΩ (p).
However, by doing so, we overshoot F i.e., |F | > k.
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2.4.1 An FPT algorithm for general networks

We propose an FPT algorithm similar to that known
for the VERTEX COVER problem [24]. The inputs to
the algorithm are the network BΩ in condition Ω, a
SATISFYING assignment B(BΩ), the edited subset EΩΨ

relative to a condition Ψ, and k > 0.

Pre-processing: We perform the edits EΩΨ in BΩ. At
each step in our algorithm we maintain two partitions
of EΩ: (i) U of all UNSATISFIED interactions, initially
U := EΩΨ; and (ii) S of all SATISFIED interactions,
initially S := EΩ \ U .

We repeatedly find genes p such that |EUΩ (p)| > k
and do F := F∪{p} (by Lemma 1). For all interactions
(p, q) that get SATISFIED, we do S := S ∪ {(p, q)} and
U := U \ {(p, q)}. At the end of this step, the resultant
network should have at most k.(k−|F |) UNSATISFIED
interactions, if it is to have a solution. This is because
for each gene p /∈ F , |EUΩ (p)| ≤ k, and at most k−|F | of
these can be flipped and added to F , which can satisfy
at most k.(k−|F |) interactions. If |U | > k.(k−|F |) we
return a NO, else we set k′ := k − |F | and continue
with the following recursive search.

Bounded search (see Algorithm 1): At every step of
the recursive search we pick an interaction (p, q) and
branch on the following two cases: we either flip p
or flip q. We recursively solve the problem by this
two-way branching until we have flipped k′ genes
or have found a solution. Upon flipping p (or q), we
set F := F ∪ {p} (or F := F ∪ {q}) and decrement
k′ by 1. For all interactions (p, x) (or (q, x)) that are
incident on p (or q) and are SATISFIED by the flip,
we set S := S ∪ {(p, x)} and U := U \ {(p, x)} (or
S := S ∪ {(q, x)} and U := U \ {(q, x)}). At any step if
k′ = 0 and U 6= ∅, we return a NO, else we return an
YES along with F .

Since we perform a two-way branching at every
recursive step and upto a depth of at most k′, the
total number of nodes in the search tree is at most
2k

′
, and because we spend at most a polynomial time

(in |EΩ|) at each of these nodes, total the running time
is bounded in the worst case by O∗(2k), i.e. FPT.

Lazy speed-up: We can speed-up the above algorithm
in certain cases (e.g. when the Boolean clauses are of
the form p∧q) by making the following observation: if
(p, q) remains UNSATISFIED upon flipping p, then the
only way to satisfy (p, q) is to flip q as well, and there-
fore we can perform the operations of two recursive
calls within one call based on the satisfiability of (p, q).
Consequently, in any step after flipping p, if (p, q)
remains UNSATISFIED, then instead of performing a
call immediately, we delay the call to post flipping of
q. We then decrement k′ by 2, and therefore speed-up
the descent down the tree and also avoid the overhead
of a function call.

Algorithm 1 bool k-Flip(U, S, F, k)

bool r;
if k = 0 and U 6= ∅ then

return FALSE;
end if

Pick (p, q); // Pick a random interaction.
—————
Flip p; F := F ∪ p;
if (p, q) is SATISFIED then

U := U \ (p, q), S := S ∪ (p, q);
if U 6= ∅ and k > 0 then

//Decrement k by 1 and recurse.
r := k-Flip(U, S, F, k − 1);

end if
if r == TRUE then

return TRUE and F ;
end if

end if
—————
Flip q; F := F ∪ q
U := U \ (p, q), S := S ∪ (p, q);
if U 6= ∅ and k > 1 then

//Decrement k by 2 and recurse.
r := k-Flip(U, S, F, k − 2);

end if
if r = TRUE then

return TRUE and F ;
else

return FALSE;
end if

end k-Flip;

2.4.2 Initial assignment for general networks
The problem of determining an initial assignment
with the minimum number of 1’s, called the MIN-
ONES 2-SAT problem, is NP-complete in a general
network [22], [23]. Therefore, to identify the initial
assignment, we parameterize the problem as follows:

k-ONES 2-SAT: Given a Boolean network BΩ

and a parameter k > 0, find a SAT assignment
B(BΩ) such that B(BΩ) has at most k 1’s.

Observe here that k-ONES 2-SAT is equivalent to k-
FLIP by starting with an all-0 assignment. Therefore,
to find the solution B(BΩ), we just reset every gene
to 0 and run Algorithm 1 with the parameter as k.
The number of 0’s flipped (at most k) is the solution
to k-ONES 2-SAT, determinable in O(2k) time, giving
us the initial assignment B(BΩ).

2.4.3 A polynomial-time algorithm for ⊗/⊗̄-networks
We first show that in a network with only ⊗/⊗̄
clauses, there are only a polynomial number of sat-
isfiability assignments.

Theorem 1: The number of satisfiability assignments
for a Boolean network B containing only ⊗/⊗̄ clauses
is twice the number of components of B.

Proof: We construct a subnetwork B′ using only
the ⊗-interactions of B. If B′ is satisfiable, then we
should be able to 2-colour each of its components,
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that is, assign a 1/0 to each gene such that no two
genes have the same assignment. This is equivalent
to finding whether B′ is bipartite, and can be done
in two ways for each of the components. Next, we
pick each remaining ⊗̄-interaction and add it to B′.
If an interaction (p, q) is incident on a gene p already
present in B′, then q should have the same assignment
as p, else this interaction belongs to a new component
and there are two ways of satisfying it. Therefore,
the total number of ways of satisfying B is twice the
number of components in B.

We next give a polynomial-time algorithm for MIN
FLIP in ⊗/⊗̄-networks. For a given such network BΩ,
there are only a polynomial number of SAT assign-
ments (Theorem 1), and therefore we can identify
the initial SAT assignment B(BΩ) with the minimum
number of 1’s by simply checking each of these
assignments, in polynomial time.

Observe that among the interactions in EΩΨ, the
lost interactions do not change the satisfiability of the
network, while for the gained or toggled interactions
(p, q) ∈ EΩΨ we need to flip only one of p or q to
resatisfy (p, q). Therefore, there are at most 2.|EΩΨ|
ways to resatisfy the network upon editing EΩΨ, and
we can identify the assignment achievable using the
minimum number of flips in polynomial time.

2.5 Practical considerations

2.5.1 Network structure

The network structure might not always allow a sat-
isfying assignment. Therefore, in practice, we allow at
most a certain (small) number of interactions to be left
UNSATISFIED in our solution. This number is specified
as an input to our algorithm (here, 10% of the total
interactions).

2.5.2 Contradictory cycles

Cycles in the network that cause contradictory assign-
ments can interfere with our search for solutions. Con-
sider a cycle C = {p, q, ..., r, p} in an ⊗/⊗̄-network.
Starting at p and assigning it a 0(1), if we go around
the cycle and arrive at a contradictory assignment
1(0) for p, we call C a contradictory cycle. We
overcome such cycles in the network by arbitrarily
marking an interaction in each of the cycles to be left
UNSATISFIED in the network.

3 RESULTS

We implemented BoolSpace using C/C++ on an Intel
Core i5 Linux machine. The source codes are available
at: http://www.bioinformatics.org.au/tools-data. Al-
though the networks considered here contain only
⊗/⊗̄-interactions, we employed the algorithm for gen-
eral networks in our experiments.

3.1 Preparation of experimental data

We applied BoolSpace on three case studies: (i) pan-
creatic normal and tumour conditions in human; (ii)
BRCA1 and BRCA2 breast tumours in human; and
(iii) across five time-points after spinal-cord injury
(SCI) in rats. While the third case study is not from
cancer, much of the regeneration mechanisms post-
injury involve progressive stages similar to cancer. We
gathered the following datasets for our experiments.

PPI datasets: We gathered Homo sapiens, Mus muscu-
lus and Rattus norvegicus PPI data inferred from multi-
ple low- and high-throughput experiments deposited
in Biogrid v3.1.93 [17]. To minimize false-positives
in these datasets [27] we used a scoring scheme,
Iterative-CD (with 30 iterations) by Liu Guimei et
al. [28], to assign a reliability score for each interaction
in the PPI networks. The score (between 0 and 1)
reflects the reliability of interactions by accounting for
the number of common neighbors shared among the
proteins in each pair. Discarding low-scoring interac-
tions (<0.20) resulted in a high-quality human PPI
network of 29600 interactions among 5824 proteins
(average node degree davg = 10.16), and a mammalian
(rat and mouse) PPI network of 3215 interactions
among 1146 proteins (davg = 5.61).

Gene expression datasets: The pancreatic ductal ade-
nocarcinoma (PDAC) gene-expression datasets were
gathered from the studies by Badea et al. [18], con-
taining of 39 matched pairs (78 total) of normal and
tumour samples (GEO GSE15471). The breast expres-
sion profiles came from the study on familial BRCA1
and BRCA2 tumours by Waddell et al. [29], containing
19 BRCA1- and 30 BRCA2-tumour samples (GEO
GSE19177). The rat spinal-cord injury (SCI) datasets
came from the study by De Baise et al. [30], containing
samples from five time-points post SCI: 0 hours, 4
hours, 72 hours, 7 days and 28 days with at least
15 samples per time-point (ArrayExpress E-GEOD-
5296). In all cases, the original processed (normalized)
datasets released by the studies were used.

Some background on these case studies: PDAC accounts
for most (95%) pancreatic tumours and is predomi-
nantly characterized by dysfunctioning (by mutation)
of the KRAS oncogene and of the CDKN2A, SMAD4
and TP53 tumour-suppressor genes [31].

On the other hand, breast tumours are very het-
erogeneous, and extensive gene expression profil-
ing studies have classified sporadic tumours into
clinically relevant molecular subtypes viz. luminal
A, luminal B, triple-negative/basal-like, HER2+ and
normal-like [10], [11]. Most breast tumours are lu-
minal and they tend to be estrogen-receptor positive
(ER+) and/or progesterone-receptor positive (PR+).
Luminal tumours have relatively better prognosis and
survival rates. Triple-negative tumours are charac-
terised by lack of ER (ER−), PR (PR−) and HER2
(HER2−) expression. These tumours are highly ag-
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gressive relative to the luminal subtypes and are
associated with high recurrence, distant metastasis
and poor survival. Basal-like tumours form a sub-
type of triple-negative tumours that stain positive
for EGFR/HER1 and express high-molecular-weight
form of cytokeratine 5/6 [11]. The breast expres-
sion profiles we employ here come from the study
on familial BRCA1 and BRCA2 tumours (that have
germline BRCA1/BRCA2 mutations) by Waddell et
al. [29]. BRCA1 tumours are known to be predom-
inantly triple-negative/basal-like while BRCA2 tu-
mours predominantly luminal [32].

SCI causes secondary biochemical changes which
are typically associated with hemorrhage, metabolic
failure, inflammatory/immune activation, loss of
ionic homeostasis, lipid degradation, production of
free radicals, and neurotransmitter/neuromodulator
imbalances [30], [33]. Such alterations contribute to
death of neurons and oligodendroglial cells, glial pro-
liferation, demyelination, and axonal loss [30].

3.2 Setting the parameter k
The parameter k determines the size of the allowable
set of genes to be flipped. While there is no standard
procedure to choose k, we would like a k that is as
close as possible to the minimum number of flipped
genes (the minimum is unknown to us). To determine
such a k, we provide a rule-of-thumb to be used in
practice. This rule is based on the observation that
typically when k is much farther from the minimum,
the FPT algorithm tends to takes lesser time, com-
pared to when k is closer to the minimum. This
is because the search is depth-first in nature and
therefore, with a larger k it is easier to find a deep
path containing a solution quickly (by including the
first-available k genes into the solution) instead of
exploring the rest of the search tree and trying for
a smaller solution. Although this “quick” solution is
of size at most k and is correct, we would like to force
the algorithm to explore other (potentially smaller)
solutions, if achievable. Therefore, our rule-of-thumb
works as follows: we start with k = |VΩ| − 1, and
repeatedly decrement k until we can find a solution
at each iteration within “reasonable” time T (here, we
set T = 100 seconds). If a solution is found within
T time, we consider the algorithm is not exploring
the search tree sufficiently, and therefore we continue
decrementing k. We stop at the k at which the search
takes more than T time.

3.3 Analysis of network in different conditions
Table 1 shows properties of the Boolean network and
the number of genes flipped while it transists between
different conditions for δ = {0.80, 0.75, 0.70} in the
three case studies – pancreatic and breast tumours
and spinal-cord injury. The number of ⊗̄ interactions
are higher than ⊗ in these networks indicating higher

number of positively co-expressed interacting pairs
compared to negatively co-expressed; this is not sur-
prising since we expect higher number of “accelera-
tor” interactions compared to “brakes”, and has been
observed in several previous studies as well [34].
As the δ-threshold decreases, we observe an increase
in the network sizes because we allow for lowly
co-expressed gene pairs. This also leads to higher
number of edits in terms of lost, gained and toggled
interactions between the conditions.

The correlation-wise distributions for interactions
before and after the edits showed significant differ-
ences: KS test – Normal vs PDAC DNP = 23.12 >
Kα=0.05; BRCA1 vs BRCA2 DB12 = 22.85 > Kα=0.05;
and SCI between 7hr and 7d D7hr−7d = 17.03 >
Kα=0.05, where Kα=0.05 = 1.36.

While it is not entirely surprising to see (given
our initial analysis in Section I) a large number of
edited (particularly lost) interactions between normal
and tumour (here, normal and PDAC), the noticeably
large number of interactions edited between two sub-
types of the same cancer (here, BRCA1 and BRCA2
tumours) is very interesting. This strongly suggests
considerable differences in PPI wiring between the
two breast tumours. In general, BRCA1 tumours have
higher number of interactions compared to BRCA2
tumours. Whether this is reflective of the higher ag-
gressiveness of BRCA1 tumours [32] is interesting to
explore.

Further, while there were higher number of total
edited interactions from normal to tumour compared
to BRCA1 tumour to BRCA2 tumour, the gained inter-
actions from BRCA1 tumour to BRCA2 tumour were
higher than the gained interactions from normal to
tumour. Even though the two cancers (pancreatic and
breast) are not directly comparable, but this trend in-
dicates that during transition from normal to tumour,
we predominantly see a weakening of the cellular
machinery (as loss in interactions), but between sub-
types, we can expect considerable rewiring involving
not only a loss but also gain of interactions. This
extensive rewiring might be the cause of considerable
differences between the two tumour subtypes.

In the case of SCI, the number of gained interactions
between 0hr to 72hr is higher than the lost, but
between 72hr to 28d the number of lost interactions
is higher than gained. Whether this is indicative of
a pattern of response to the injury is worth further
exploration – for example, a considerable number of
new interactions are formed during the initial stages
to aid recovery, and subsequently lost when the re-
covery stabilizes during the final stages.

3.3.1 Functional analysis of edited interactions

DAVID-based (http://david.abcc.ncifcrf.gov/) [35]
functional analysis of the edited interactions in pan-
creatic and breast showed significant enrichment (p <
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TABLE 1
Transition of Boolean networks between conditions in three case studies

#Interactions #Edits Parameter #Genes Running
Case study Transition δ #Genes Total ⊗ ⊗̄ Lost Gained Toggled k flipped time (sec)∗

0.80 1174 1701 241 1460 1672 16 0 10 9 6
Pancreatic Normal to 0.75 1712 2896 573 2323 2836 40 4 25 23 10

tumour 0.70 2265 4300 1056 3244 4185 95 4 60 54 13

0.80 270 302 106 196 293 23 0 5 1 8
Breast BRCA1 to 0.75 604 646 227 419 620 45 2 15 11 10

BRCA2 0.70 1090 1170 373 797 1116 95 4 50 46 10

0.80 25 15 0 15 4 15 0 5 0 1
Spinal 0hr to 4hr 0.75 35 22 0 22 9 28 0 5 1 1

0.70 42 26 0 26 9 45 0 20 14 1

0.80 108 87 3 73 15 76 0 5 3 1
cord 4hr to 72hr 0.75 66 41 4 37 24 93 0 5 4 1

0.70 99 62 6 56 38 130 1 25 23 1

0.80 107 87 3 84 39 39 0 5 1 1
injury 72hr to 7d 0.75 136 112 4 108 49 46 0 5 2 1

0.70 185 154 8 146 75 46 0 10 6 1

0.80 108 87 1 86 42 22 0 5 4 1
7d to 28d 0.75 131 109 2 107 45 33 0 10 6 1

0.70 153 126 5 121 53 49 0 25 22 1

0.80 25 15 0 15 4 56 0 5 5 1
0hr to 28d 0.75 35 22 0 22 8 83 0 10 7 1

0.70 42 26 0 26 11 107 0 20 16 1
*Includes the time for finding initial Boolean assignment and the solution after edits.

0.01) for Biological Process (BP) terms viz. Cell cy-
cle, Chromatin organization, DNA repair and RNA
splicing, indicating considerable rewiring in core cel-
lular processes responsible for genome stability and
maintenance. For example, interactions involving the
tumour suppressors TP53 and SMAD4 in pancreatic
tumour, and those involved in DNA double-strand
break repair namely BRE and BRCC3 apart from
BRCA1, BRCA2 and TP53 in breast tumours showed
significant decrease in correlations indicating loss of
interactions. Among the interactions edited in spinal-
cord injury, we noted significant enrichment (p < 0.01)
for MAPK signalling, TGF-β signalling, Inflammatory
response, Cell proliferation and Apoptosis pathways.
This indicated activation of regenerative mechanisms
including response to inflammation and growth-factor
pathway actuation for regeneration of cells.

3.4 Analysis of driver genes
Next, we collated the flipped genes (Tables 2 and 3)
and studied them using differential expression and
functional analysis.

3.4.1 Differential expression of flipped genes
We assessed our flipped genes using differential ex-
pression analysis (p-value < 0.001), as shown in Fig-
ure 3 (a)-(c). Interestingly, while many of the flipped
genes were also differentially expressed, there were
several others which were not captured by the analy-
sis. Investigation into these genes showed that these

Fig. 3. Analysis of flip genes: (a)-(c): Differentially
expressed genes (red) among the flipped genes (blue);
(d) Genes flipped at each stage of SCI.

directly or indirectly (through one or two neighbors)
interacted in the PPI network with key genes im-
plicated in pancreatic and breast tumours. In other
words, these were differentially co-expressed and be-
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longed to the same pathways as the key genes.

3.4.2 Functional analysis of flipped genes

Table 4 shows the top GO terms (using DAVID [35])
enriched for the flipped genes in the three case stud-
ies. For the spinal-cord study, we show the enrichment
only for genes flipped between the two extreme con-
ditions (0hr to 28days).

The pancreatic genes were involved in Cell cycle,
Wnt signalling and Mismatch repair pathways, which
have been implicated in pancreatic tumours [31]. The
high enrichment for Neurotrophin signalling further
the nexus between neural genes and pancreatic car-
cinogenesis [36], [16]. The breast genes were enriched
for Homologous recombination, which is a key path-
way in DNA double-strand break repair and houses
the two breast-cancer susceptibility genes, BRCA1 and
BRCA2. The SCI genes were enriched for Immune
response and Growth-factor signalling pathways in-
dicating activation of regenerative mechanisms.

Table 3 and Figure 3d show overlaps among the
flipped genes at each transition post SCI from 0hr till
28d. For example, 14 genes were flipped from 0hr to
4hr and 23 genes were flipped from 4hr to 72hr stages
with 6 genes in common. Interestingly, the overlaps
between successive stages were not considerable (<
50%) indicating that sets of genes involved in different
cellular processes were flipped at each transition. For
example, the genes flipped during the initial stages
(0hr to 4hr) were predominantly enriched for immune
response and the proteins were localized in extra-
cellular matrix and membranes, while those during
the final stages (7d to 28d) were predominantly en-
riched for cell apoptosis, growth and proliferation,
and were localized in the nucleus (Figure 4). This
suggests a pattern to SCI response – activation of
immune response during the initial stages, and re-
generation through cell apoptosis, growth and prolif-
eration during the final stages. Further, the analysis
also highlights that genes belonging to cell cycle
progression are involved in neuronal responses to
DNA damage and/or cell stress after SCI, as also
observed in earlier studies [33]. For example, Pten
(O08586) is a tumour suppressor which modulates cell
cycle progression and cell survival, and is involved
in controlling the rate of newborn neuron-integration
during adult neurogenesis, including correct neuron
positioning, dendritic development and synapse for-
mation.

3.4.3 In-depth study of some flipped genes

Several of the flipped genes were cyclin-dependent
kinases (CDKs), particularly the serine-threonine ki-
nases that act as “ON/OFF” switches and play crucial
roles in the regulation of cell proliferation, apoptosis
and cell differentiation; the flipping of genes in our
Boolean model might possibly be related to these

cellular switching mechanisms. For example, we no-
ticed flipping of Ccnd3 (P30282), a member of the
G1/S-specific cyclin D3-CDK4 complex that phospho-
rylates and inhibits members of the retinoblastoma
(RB) protein family including RB1 and regulates the
cell-cycle during G1/S transition. It also acts as a
substrate for SMAD3 (a tumour suppressor), phos-
phorylating SMAD3 in a cell-cycle-dependent man-
ner and repressing its transcriptional activity (http:
//www.uniprot.org/uniprot/P30282 [37]).

Among the flipped genes were also a few tran-
scription factors (TFs). For example, the following
TFs flipped between BRCA1 and BRCA2 tumours:
GATA3, ESR1, FOXA1 and XBP1. These four TFs
are ER targets, and BRCA1 tumours are ER− and
therefore are likely to show lower expression of ER
targets compared to BRCA2 tumours, which are ex-
press ER+ [32].

Finally, we also noticed striking overlaps between
the genes and/or pathways enriched in pancre-
atic tumour and SCI. For example, Pten (O08586),
Myd88 (P22366), Wnt4 (P22724), Tnfrsf1b (P25119),
Atm (Q62388), Bcl3 (Q9Z2F6) and Jak2 (Q62120) are
involved in TGF-β, Wnt and JAK-STAT signalling and
have been implicated in pancreatic tumours [31]. This
supports the close nexus between pancreatic tumouri-
genesis and neuronal response and development [36].

4 DISCUSSION

4.1 Why minimum gene flips makes sense

We argue using a simple yet intuitive example why
we select the minimum number of genes (instead
of, say, the maximum) to be flipped to determine
driver genes. Consider a gene t (say, a transcription
factor) that interacts with m genes, {g1, g2, ..., gm}
(its targets), in the network under condition Ω. Now
suppose that a change in the expression level of t
(and not of the m genes) results in the interactions
Etg = {(t, g1), (t, g2), ..., (t, gm)} becoming UNSATIS-
FIED upon transit to condition Ψ. To resatisfy Etg , we
could either flip t or each of the m genes. However, in
this case, flipping the maximum set of genes (the m
genes) instead of the minimum (only t) identifies the
incorrect set of driver genes. Therefore, by flipping the
minimum set, we always attempt to identify the genes
that are “more” responsible for driving the transition.

Note that selecting the minimum set tends to favor
hubs. Therefore, our model agrees more with Nepusz
and Viscek [4] and Nacher and Akutsu [6] than with
Liu Yang et al. [1]. Since many of the hubs in PPI
networks correspond to essential proteins [38], and
because many of these hubs that we found were
CDKs that act as biological “ON/OFF” switches, it is
possible that our flipped genes are indeed important
proteins involved in rewiring of the PPI network.
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TABLE 2
Genes flipped between tumour states in human

Transition Normal to PDAC BRCA1 to BRCA2
Brca1 Jun Ruvbl1 Brca1 Pparγ Sp1

Flipped Csnk2b Krt15 Sfn Esr1 Tp53 Hsf1
genes Fgfr Mcm5 Usp10 Cebpβ Myb

Fos Psmd1 Gata1 Foxa1
Hras Rbx1 Gata3 Fos

Genes shown here have degree ≥ 5

TABLE 3
Genes flipped at different stage-transitions post spinal-cord injury in rats

Transition 0hr to 4hr 4hr to 72hr 72hr to 7d 7d to 28d 0hr to 28d
Angpt2 Tnfrsf1b Pten Tnfrsf1b Smad4 Pparγc1a Pten Csk Atm Hdac1 Csk Bcl10
Sparc Mapk1 Angpt2 Akt1 Fabp5 Sp1 Hdac1 Ccng1 Mapk3 Pparγc1a Ccng1 Nfκbia

Flipped Cdc14 Jak2 Cflar Bmpr1a Neurod1 Akt1 Cflar Ppp1ca Casp9 Ccnd3 Ppp1ca Chek2
genes Il1r1 Relb Hoxa3 Csk Atm Csk Sp1 Smad1 Bcl10 Cdk4 Egfr Casp9

Bmp4 Tlr2 Cd14 Pms2 Tgfbr1 Eif4g2 Ccnd3 Smad4 Nfκbia akt1 Mapk3 Cdkn1a
Myd88 Nfκbia Il1r1 Ppp1ca Trib3 Zeb1 Cdk4 Egfr Chek2 Traf2
Wnt4 Bcl3 Myd88 Eif4e Tlr2 Akt1 Hif1a Cdkn1a

Hfe Smad1 Traf2

TABLE 4
Enrichment for top Gene Ontology terms in flipped genes

Case study
GO Pancreatic Breast Spinal cord injury

Term Genes p-value Term Genes p-value Term Genes p-value
(%) (%) (%)

Cell cycle 4.6 3.5(-13) Cell cycle 3.2 2.7(-07) Apoptosis 21.7 1.3(-04)
Neurotrophin signal. 3.0 1.7(-05) Nucleotide excision rep. 1.6 1.5(-05) TGF-β sig. 17.4 2.3(-03)
Nucleotide excision rep. 1.7 1.9(-05) DNA repli. 1.4 6.4(-05) Toll-like receptor 17.4 3.4(-03)

KEGG Pancreatic cancer 2.1 5.7(-05) Adipocytokine signal. 1.8 7.5(-07) Pancreatic cancer 13.0 2.1(-02)
pathways Adipocytokine signal. 2.0 9.7(-04) Apoptosis 2.1 1.2(-04) colourectal cancer 13.0 2.9(-02)

Regulation of autophagy 1.3 3.4(-04) Homologous recomb. 1.0 1.6(-03) MAPK signal. 17.4 4.8(-02)
Mismatch rep. 1.0 5.2(-04) Insulin signal. 2.2 6.0(-03)
Wnt signal. 2.8 2.2(-03) Mismatch rep. 0.9 2.8(-03)
Cell cycle 17.3 1.6(-35) Chromosome org. 14.3 1.5(-43) Enzyme-receptor signal. 34.8 1.6(-07)

Biological Chromosome org 13.0 6.2(-33) Chromatin mod. 12.2 1.3(-40) Serine/threonine kinase 21.7 6.8(-06)
Process Chromatin mod. 8.9 1.0(-27) Transcription reg. 31.6 1.1(-24) Inflammatory res. 26.1 2.5(-05)

Defense/immune res. 30.4 7.8(-05)
Cell proliferation 30.4 1.6(-04)

Fig. 4. Distribution of flipped genes in SCI at 0-4hrs and 7-28days for (a) Biological Process and (b) Cellular
Component terms.

4.2 Cancer robustness partly stems from ‘pass-
ing of the baton’ between genes

Although the experiments presented in this work are
still preliminary, based on our findings (Figures 3d
and 4) we hypothesize that robustness of cancer partly
stems from the fact that genes from different biological
processes and/or cellular components are involved
in different stages (timepoints) during tumour pro-
gression. As a result of this constant “passing of the
baton” between the genes, tumours can evade therapy

if the genes that are targeted at a particular timepoint
are no longer driving the tumour (i.e. have passed on
the baton to other genes) or are not yet involved in
the tumour (i.e. not yet received the baton) at that
timepoint.

Having said that, there is a certain sequence in
which genes are involved in the tumour, and therefore
deciphering this sequence will be crucial to develop
effective anti-cancer therapies. Applying BoolSpace,
we can identify the genes driving the tumour at

Page 10 of 12Transactions on Computational Biology and Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

different stages during tumour progression, and by
identifying a “cover set” of these genes (e.g. the cover
set contains at least one gene from each transition)
that can be simultaneously targeted, we should be
able to break the robustness of the tumour.

4.3 A distance measure between tumour stages

It is not hard to see that the (minimum) number of
genes flipped between stages is a metric because it
essentially is the Hamming distance between Boolean
vectors for the stages. Therefore, the idea of using
the minimum number of genes flipped as a ‘distance’
measure between tumour stages in the Boolean state
space, in which stages that are more (biologically)
similar are placed closer in the state space compared
to stages that are less (biologically) similar, is worth
further exploration. It is interesting to check if this
distance captures (biological) differences between tu-
mours or tumour stages.

5 CONCLUSION

Cancer forms a robust system by maintaining stable
functioning (cell proliferation and sustenance) despite
perturbations (e.g. drug targeting) [9]. Inherent to this
robustness is the continuous progression or change in
system characteristics so as to constantly evade sys-
tem failure inflicted through perturbations. Therefore,
identifying genes driving this progression is critical to
develop effective anti-cancer therapies.

In this work, we have proposed a novel model
called BoolSpace to track the progression of cancer in
a Boolean state space. In this state space, a Boolean
network, constructed by integrating PPI and gene-
expression datasets, transits between Boolean satis-
fiability states by editing interactions and flipping
genes. We hypothesize that the minimum number
of genes flipped in response to edits in interactions
corresponds to the genes driving these transitions. To
identify these flipped genes, we propose an optimiza-
tion problem called MIN FLIP and a fixed-parameter
tractable algorithm to solve the problem efficiently.
Experiments on three case studies – pancreatic and
breast tumours in human and spinal-cord injury in
rats – suggest that many of the identified genes are
involved in tumourigenic activity. Several of these
genes are serine/threonine kinases that act as biologi-
cal “ON/OFF switches” within cells and are involved
in key cell cycle, proliferation, apoptosis and differen-
tiation processes. Finally, we hypothesize that cancer
robustness partly stems from “passing of the baton”
between genes responsible for driving different stages
of the tumour, and therefore an effective therapy
should likely target a “cover set” of genes across a
succession of stages to break the robustness of cancer.
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