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Human genome sequencing has enabled the association of phenotypes with genetic loci, but our ability to effectively translate this 

data to the clinic has not kept pace. Integration of drug-target data with candidate gene prediction systems can identify novel 
phenotypes which may benefit from current therapeutics. Such a drug repositioning tool can save valuable time and money spent on 

preclinical studies and phase I clinical trials.  

We adopted a simple approach to integrate drug data with candidate gene predictions at the systems level. We previously 
used Gentrepid as a platform to predict 1,497 candidate genes for seven complex diseases considered in the Wellcome Trust Case 

Control Consortium genome wide association study. Using the publicly available drug databases, Therapeutic Target Database, 
PharmGKB and DrugBank as sources of drug-target association data, we identified a total of 428 (29%) candidate genes as novel 

therapeutic targets for the phenotype of interest and 2,130 drugs feasible for repositioning against the predicted targets.  

By integrating genetic, bioinformatic and drug data, we have demonstrated that currently available drugs may be 
repositioned as novel therapeutics for the seven diseases studied here, quickly taking advantage of prior work in pharmaceutics to 

translate ground breaking results in genetics to clinical treatments.  
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Background 
 
The development of new therapeutics is essential to improve the human condition and lower the burden of 

disease. Due to our limited knowledge of the molecular basis of complex diseases, comparatively few gene 

targets for therapeutics have been identified to date. The standard approach to developing therapeutics 

involves testing many thousands of compounds against a known target in order to identify a lead 

compound. The lead compound can then be further refined in silico and in vitro before heading into the 

lengthy and costly clinical trials pipeline. This process, which consists of phases I, II, III and IV before 

final drug approval, involves 10-17 years of drug development from target identification until FDA/EMEA 

approval, with only a 10% probability of success [1]. As a result, the pharmaceutical industry spends an 

average of about 1.2 billion US dollars to bring each new drug to market [2]. There is also a high risk 

associated with de novo drugs due to unforeseen adverse side effects, as seen in the case of Thalidomide, a 

drug used to treat morning sickness which resulted in devastating birth defects [3]. 

A novel approach to therapeutic development is to identify new applications for drugs that have 

already been approved, or have successfully completed phase I clinical trials [4, 5]. This process of “drug 

repositioning” aims not to develop drugs de novo, but associate existing therapeutics with new phenotypes. 

Here, we attempted to reposition existing drugs to treat common complex diseases using recently acquired 

Genome Wide Association Study (GWAS) data. 

Complex diseases are genetically intricate, polygenic and multifactorial [6]; and frequently arise 

as a consequence of interaction between genes and the environment. Recently, GWAS have begun to 
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unravel the complicated genetic basis of complex diseases. Sheer statistical power has allowed GWAS to 

successfully identify some associations between Single Nucleotide Polymorphisms (SNPs) and complex 

diseases [7]. Using these genetic loci, GWAS have enabled identification of novel drug targets for 

common diseases. Despite high investment, far fewer genes have been identified than can account for the 

heritable component of complex diseases, and the clinical benefit remains limited to date [8]. A factor that 

contributes to the missing heritability is likely to be noisy genotype-phenotype association signals [9]. 

Also, analysis of GWAS data using highly stringent thresholds for statistical significance, by testing 

multiple isolated SNPs, has limited the scope of gene discovery based on existing data [10]. As shown in 

Manhattan plots, GWAS data obviously contain far more information than the most significant peaks and 

more work needs to be done extracting data from these slightly less significant peaks [9, 11]. 

Currently available gene discovery platforms can enhance candidate gene identification from 

GWAS data [9]. Candidate gene prediction tools are designed to find the needle in the genetic haystack. 

These tools are based on the assumption that genes with similar or related functions cause similar 

phenotypes [12]. Specific candidate gene prediction tools differ in the strategy adopted for calculating 

similarity, and the databases utilized for the prediction [13, 14]. Gentrepid is one of the many 

bioinformatic tools developed to help geneticists predict and prioritize candidate genes [9, 15]. The salient 

features of the Gentrepid tool and its knowledge base are it utilizes two independent methods Common 

Pathway Scanning, a systems biology approach; and Common Module Profiling, a domain-based 

homology recognition approach, to prioritize candidate genes for human inherited disorders (See Methods 

for details). Compared to other prediction systems, Gentrepid is designed to make fewer, more 

conservative predictions which do not extensively extrapolate existing bioinformatic data i.e. it tends to be 

more specific than other systems [15]. 

Used in conjunction with public drug databases as major drug repositories, candidate gene 

prediction tools can facilitate the therapeutic drug-target discovery process. We have previously developed 

protocols to analyze GWAS data using a multilocus approach which combines bioinformatic and genetic 

data [9]. To demonstrate the usefulness of this protocol, we applied it to the well-studied Wellcome Trust 

Case Control Consortium (WTCCC) GWAS data for seven complex diseases [9]. Using a series of 

increasingly less conservative statistical thresholds, we attempted to discriminate the signal from the noise 

in the most statistically significant data (p<10
-4

). By incorporating bioinformatic data, we were able to 

predict ~1,497 candidate genes by reanalyzing the well-studied data on the seven complex diseases, 

namely, Type 2 Diabetes (T2D), Bipolar Disorder (BD), Crohn’s Disease (CD), Hypertension (HT), Type 

1 Diabetes (T1D), Coronary Artery Disease (CAD) and Rheumatoid Arthritis (RA) [9]. 

Here, we extend this pipeline to identify potential novel drug targets among the predicted 

candidate genes by associating drug information extracted from publicly available drug databases. The 

three databases sourced in this study were DrugBank [16], PharmGKB [17] and the Therapeutic Target 

Database (TTD) [18]. The feasibility of this approach is illustrated for the seven complex diseases studied 

by the WTCCC [11]. This study allows identification of possible therapeutics for treatment of specific 

complex diseases by enabling association of predicted candidate genes with a complex disease and 

providing possible drug compound information towards cures. Thus, in combination with drug target 

information, Gentrepid can be utilized as a drug discovery tool to identify therapeutics which may be 

repositioned as novel treatments for seven complex diseases. 

Methods 

We implemented a computational workflow to enable repositioning of drugs by integrating two data 

sets (Figure 1) 

1. Candidate gene dataset obtained by integration of genotype-phenotype data from the WTCCC 

GWAS study on seven complex phenotypes [11] and bioinformatic data on structural domains and 

systems biology to associate proteins that share common features or participate in the same complex 

or pathway [19]; 
2. Drug-Target association data set obtained from three drug database namely TTD, DrugBank and 

PharmGKB [16-18]. 



 
 

Candidate genes dataset 

We used Gentrepid as a gene discovery bioinformatics platform and drug databases implemented online 

as web based tools repository of drug data. In previous work, we predicted a total of ~1,497 candidate 

genes for seven complex diseases by careful reanalysis of the WTCCC GWAS data [11] using the 

Gentrepid candidate gene prediction system [9]. In the original analysis, a highly stringent significance 

threshold (p<5 x 10
-7

) was used in an attempt to correct for multiple testing. This conservative statistical 

approach, combined with the selection of the nearest-neighboring gene to the significant SNP, resulted in 

identification of only a small number of genes, with modest cumulative heritability, associated with each 

phenotype (Table 1). We specifically addressed these two issues in our reanalysis of this noisy data by: 

 
1. Considering a series of four thresholds of decreasing stringency, starting with the highly significant 

threshold used in the original study and decreasing to weakly significant (p< 10
-3

). This resulted in a 

series of four SNP sets containing up to ~804 SNPs being considered for each phenotype. 

 

2. Creating six different search spaces around each SNP cluster, 3 of fixed-widths and 3 proximity-

based, which were analyzed with our candidate gene prediction system. Twenty-four search spaces 

were constructed per phenotype using multiple SNP significance thresholds and gene selection 

methods. In total, 168 search spaces ranging in size from 2 to 4,431 genes (up to 10% of the genome) 

were analyzed using Gentrepid. Gentrepid is based on two modules: 

The Common Pathway Scanning (CPS) module is based on the assumption that common 

phenotypes are associated with proteins that participate in the same complex or pathway [20]. System 

biology methods are currently favoured in candidate gene prediction because of the attractiveness of their 

underlying thesis. Their weakness is the lack of coverage of the underlying system biology knowledge 

bases. Many tools attempt to ameliorate the deficits of the knowledge base by extensive extrapolation of 

data from other species. Examples are GeneSeeker, ToppGene and Endeavour [13, 21-23]. Gentrepid CPS 

uses only human data to reduce the number of predicted false positives i.e. it makes fewer predictions 

which are more often correct compared to other prediction systems [15]. Common Module Profiling 

(CMP) is a novel sequence analysis approach based on the principle that candidate genes have similar 

functions to disease genes already determined for the phenotype [24]. 

Gentrepid differs from most candidate gene prediction systems which describe functional 

similarity via keywords, a procedure which also lacks good coverage of the human genome. In CMP, 

sequences are parsed at the domain level, linking them directly to function [19]. Although CMP’s 

performance was disappointing in our original benchmark using a set of nine oligogenic diseases with 

Mendelian inheritance, it produced a surprising number of statistically significant results when confronted 

with the GWAS data on seven complex diseases [9]. This result was robust when compared with 

simulations using random SNPs, and may arise from an underlying role for homologous genes specific to 

complex diseases. 

Drug-Gene Target dataset  

We compiled drug-gene target dataset from three publicly available drug databases DrugBank [16] the 

Pharmacogenomics KnowledgeBase- PharmGKB [17] and the Therapeutic Target Database (TTD) [18] on 

June 2012.  

 

 

Figure 1. The complete workflow  

 



 

 

DrugBank is a freely available online database that combines detailed drug data with comprehensive 

drug-target and indication information. In this study, we used the DrugBank drug IDs, drug generic and 

brand names, to represent drugs and the unique gene symbols to represent protein targets. We extracted 

~6,711 drug entries active against the ~3,410 unique drug targets including ~2,022 human drug targets 

associated with ~3910 drugs. PharmGKB is another drug knowledge base that captures information about 

drugs, diseases/phenotypes and targeted genes. From this database, we extracted the “drug-associated 

genes” along with “description” which contains the disease information. We retrieved ~382 drugs for ~566 

drug targets from the PharmGKB database because some drugs target multiple genes. Therapeutic Target 

Database (TTD) is also a freely available online drug database which integrates drug data with 

therapeutic targets. This database contains ~17,816 drugs against both human and non-human (bacterial 

and fungal protein) targets. We extracted “Drug names” along with “Disease” information and Uniprot 

accession numbers for “targets”. UniProt accession numbers were replaced with official HUGO gene 

symbols using the G-profiler conversion tool [25]. Finally, we extracted ~2,960 drugs for ~544 unique 

human drug targets from this database.  

 

 

 

 

 

 

 

Level 

  WS MWS MHS HS 

 p ≤ 1e-3 p ≤ 1e-4 p ≤ 1e-5 p < 5e-7 

SNPs  804.29 160.29 56.71 29.14 

Loci  446.86 84.43 18.71 7.29 

Total genes 

in search 

space  

-BY 

  

1Mbp 3875.57 870.86 175.29 87.43 

0.5 Mbp 2140.00 477.29 106.00 57.29 

0.1 Mbp 654.57 148.43 43.71 23.00 

Total genes 

in search 

space   

-NN 

Adjacent 1412.14 292.43 62.29 26.14 

Nearest 452.86 91.0 22.29 10.14 

Smallest 198.71 42.57 11.43 5.43 

Annotated 

candidate 

genes  

-BY 

1Mbp 2285.29 528.86 116.43 61.57 

0.5 Mbp 1275.57 300.43 73.14 41.57 

0.1 Mbp 426.43 103.43 32.00 16.57 

Annotated 

candidate 

genes   

-NN 

Adjacent 803.14 172.00 40.71 17.57 

Nearest 285.71 59.00 15.57 6.14 

Smallest 155.29 33.43 8.86 5.57 

Table 1. Average number of SNPs, loci and genes per phenotype used gene prediction with significant association p 

values. 



Validation of predicted therapeutic targets 
The predicted therapeutic targets were further validated using two benchmarks. In the first benchmark, the 

actual status of the gene was assessed by the existence or the non-existence of the abstract in the literature 

citing both the gene name and the phenotype. In the second benchmark, the actual status of genes based on 

whether they are designated as targets in the drug databases or not. This was repeated for all the six search 

spaces investigated for each phenotype (Table 1). 

In the first benchmark work, all Pubmed IDs of literature related to Bipolar disorder, Type 1 

diabetes, Type 2 diabetes, Crohn’s disease, Coronary artery disease, Rheumatoid arthritis and 

Hypertension were first downloaded from Pubmed on Feb. 2013. For each target, we calculated the 

number of citations related to each disease by mapping the extracted Pubmed IDs to the gene citation 

information from Entrez Gene (ftp//ftp.ncbi.nih.gov/gene/), composed of genes and their corresponding 

cited literature. Further, Receiver Operation Characteristics Curves were created considering four 

thresholds of atleast one, five, ten, fifteen citations (see section validation of therapeutic targets in Result 

and Discussion). 

In the second benchmark, genes present in six search spaces classified as “candidates” or “non-

candidates” (Table 1). We considered targets already containing drugs for the phenotype of interest as 

“true positives”. Targets with currently registered therapeutics for the phenotype of interest which were 

not predicted by Gentrepid but already present in the search space as “false negatives”. Genes which were 

not predicted and not targetable by drugs as “true negatives” and predicted novel therapeutic targets were 

considered as “false positives” (see section validation of therapeutic targets in Results and Discussion). 

 

Results and Discussion 
Comparison of drug databases 
The therapeutic drug-gene target association data was extracted from three following databases 

1 DrugBank, a Cheminformatics/Bioinformatics database - 2,022 human targets associated 

with 3910 drugs [16]; 

2 PharmGKB, a Pharmacogenomics database -  382 drugs against 566 human targets [17] and; 

3 TTD, a database with comprehensive information about drug targets - 2,960 drugs against 

544 human targets [18] 

It is estimated that ~3,000-5,000 genes are druggable which is ~10-17% of the entire genome The 

total number of unique targets, we retrieved from all the databases were ~2,494 genes which is ~8% of 

the entire genome (Figure 2). The gap between extracted targets and estimated druggable genes exist 

because of the fact that there are many druggable genes which are yet to be identified as drug targets. The 

total targets used in our study cover 50-83% of the possible druggable genes mentioned in previous 

studies [26-29].  We compared raw data such as drug targets across three drug databases to determine the 

redundancy of the information in these databases. With respect to drug targets, only ~4 % of drug target 

entries were common to all the three databases (Figure 3). When the databases were compared in a 

pairwise fashion, the proportion of common targets ranged from 5-12%. Each of the databases contains a 

significant amount of information that is unique to that database. TTD has the least number of unique 

targets (129), while DB and PharmGKB include ~1495 and ~326 respectively (Figure 3). The low 

proportion of similarity among the databases and the high number of unique targets in each database 

shows the databases are fairly complementary. In total, targets with drug information represents 8% of 

the human genome (Figure 2). 

 

 

 
 

 

 

 

 

 

 

 

 

 Figure 2. Coverage of human genome by 

annotated drug targets in drug databases 
 

 Figure 3. Comparison of extracted drug targets from three databases                

databases 

  



Identification of Therapeutic Targets 
 
We identified potential therapeutic targets for seven complex diseases by using lists of Gentrepid-

predicted candidate genes generated by our reanalysis of the WTCCC data. In total, Gentrepid predicted 

~1,497 candidate genes for all the seven diseases namely Type 2 Diabetes (291), Bipolar Disorder (212), 

Crohn’s Disease (356), Hypertension (219), Type 1 Diabetes (280), Coronary Artery Disease (258) and 

Rheumatoid Arthritis (189) [3]. We searched for these candidate genes in the drug-gene target files 

obtained from all the three databases and found ~452 as potential therapeutic targets for the seven complex 

diseases (Table 1, Figure 4). This illustrates that almost ~30% of the total number of predicted candidate 

genes by Gentrepid are potential targets for therapeutic treatments using currently available drugs.  

To drill a little further into the data, we assessed the therapeutic potential of each phenotype using 

currently available repositioned drugs, by calculating Targetability index (TI) i.e. the ratio of number of 

predicted targets to the number of predicted candidate genes for each phenotype (Table 2). CAD was the 

most targettable phenotype investigated (TI= 0.39), on the other hand, T1D was the least amenable 

phenotype with (TI= 0.27). The factor which likely to influence the targetability of the phenotype is our 

underlying knowledge of the phenotype. If the molecular pathways involved have been previously 

characterized, there is more likely to be drug-target information in the existing drug databases, even if the 

phenotype has not previously been associated with the molecular system. The low TI in case of T1D (0.27) 

and BD (0.28) likely arises from lack of knowledge of underlying pathways. More basic research in this 

area is required. 

As shown in figure 4, all the three drug databases made significant contributions to target 

identification with the highest contribution from DrugBank (400)  followed by TTD (156) and PharmGKB 

(61). DrugBank is a chemical as well as clinical drug database which contains broader coverage of drug 

targets compare to TTD, a chemical drug database and PharmGKB, a clinical drug database. Therefore, we 

obtained least number of therapeutic targets from PharmGKB and highest number of therapeutic targets 

from DrugBank. To summarize, the total coverage of the predicted targets from all the three databases was 

estimated to be 30% of the total candidate genes predicted by Gentrepid with the maximum contribution 

from DrugBank followed by TTD and PharmGKB (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

Identification of Novel Therapeutic Targets 

We classified 452 predicted targets to distinguish therapeutic targets which were “rediscovered” for the 

phenotype and those which might be novel therapeutic targets for the specific phenotype of interest from 

the seven diseases considered in our study. These targets contain registered therapeutics for other uses but 

have not registered for the phenotype of interest. We found 428 novel therapeutic targets accounting for 

almost 94% of the targets identified in the previous section. The remaining 24 targets either have 

therapeutics which are approved, in ongoing clinical trials or have been discontinued for the phenotype of 

interest (Table 3). We considered these 24 targets already containing drugs for the phenotype of interest 

(Table 3) as “true positives”. Targets with currently registered therapeutics for the phenotype of interest 

which were not predicted by Gentrepid but already present in the search space as “false negatives”. Genes 

which were not predicted and not targetable by drugs as “true negatives” and predicted novel therapeutic 

targets were considered as “false positives” (Table 4). Figure 6A, 6B and 6C show the individual number 

of novel targets obtained for each of the seven diseases from each drug database. The novelty of the 

predicted targets was assessed by calculating the ratio of the number of novel predicted targets to the 

number of targets predicted for each of the disease. The novelty ratio for all the diseases was between 1 

and .92 (Table 2). We observed the highest ratio for CD (1.0) while the least for RA (0.92). The high ratio 

 

 

Figure 4. Comparison of number of predicted therapeutic 
targets and drugs 

 

 

 Figure 5.  Predicted Therapeutic targets                           
 

 



of novel targets to predicted targets suggests repositioning could potentially have a large impact on clinical 

studies.  

 

Identification of Novel Therapeutics 

Furthermore, we attempted to identify novel drugs for our phenotype of interest. So, we compared our 

phenotype of interest (from the pool of seven diseases considered in our study) with phenotypes 

indications associated with the drug. In total, we retrieved ~7,252 drugs associated with human drug 

targets from all the drug databases. This resulted in retrieving 2,192 (~30%) unique drugs that target the 

452 potential therapeutic targets.  

As shown in Figure 4, maximum number of drugs were retrieved from DrugBank (~1,618) while 

the remaining were retrieved from TTD and PharmGKB (~735) and (91) respectively. Furthermore, T1D 

and CAD were predicted with the maximum number of novel therapeutics (Figure 7). Although CD was 

predicted with more number of novel targets, it had comparatively less number of novel therapeutics. BD 

had the least number of therapeutics as expected owing to the least number of therapeutic targets (Figure 

7). In order to identify the novel drugs i.e. drugs not targeting our phenotype of interest, we filtered the 

above list of 2,192 drugs to retrieve 2,130 novel therapeutics. The total percentage of drugs that may be 

repositioned towards identified novel targets was estimated to be around ~30%of extracted drugs. 

We identified both matches and mismatches between the current drug indication and the phenotype of our 

interest. The mismatches serve as the novel therapeutics whereas matches tend to relate to similar 

phenotypes. Table 3 shows 24 matches found in our study. For example, the drug “Aleglitazar” in phase II 

clinical trial for Diabetes Mellitus, Type 2 targets upon our predicted candidate gene named PPARA 

against Type II diabetes. It is seen that both the current phenotype associated with the drug and the 

phenotype of our interest are the same. Similar cases were observed with drugs like “Rosiglitazone” 

known to act upon target PPARG for diabetes mellitus, has a potential use in our phenotype of interest 

named Type I diabetes. 

In case of mismatches (Table 4), we found novel therapeutics for the phenotype. For example, 

“Pirenzepine” is approved as a therapeutic drug for peptic ulcer disease which acts upon the CHRM1 

gene product. CHRM1 is a predicted candidate gene for Type II diabetes, suggesting that the drug 

Pirenzepine may be repositioned as a novel therapeutic for Type II diabetes. Hence, the associated 

therapeutics for these novel targets may be repositioned against a phenotype of interest. This freely 

accessible easy identification of potential therapeutic targets, can accelerate the drug discovery process. 
 

 

 

FDA-approved and clinical trial targets 

 

We classified the predicted targets as FDA approved and clinical trial targets for seven complex diseases. 

An example depicted in figure 8 shows the comparison between T2D targets from TTD database and 

targets predicted by Gentrepid for T2D. Out of 84 targets predicted for T2D by Gentrepid (Table 2), 28 are 

from TTD (Figure 6A). Comparing these 28 targets with the 32 targets already present in TTD for T2D, 

we found three targets (HSD11B1, PPARA, NR3C1) targeted by drugs currently in clinical trials for T2D. 

In addition, PPARA is already targeted by FDA approved drugs. Hence, we predicted 25 novel drug targets 

from the TTD database for Type II diabetes. In total for seven diseases, we found 291 approved 

therapeutic targets and 95% of these as novel approved targets. We also found 334 clinical targets and 

96% of these as novel clinical targets (Table 5). Both approved and clinical targets are potential drug 

targets however, approved targets will undoubtedly in the priority list for further experimental studies.  To 

summarize, both approved and clinical novel targets are associated with therapeutics which can be 

repositioned as novel treatments towards cure of seven complex diseases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Validation of predicted therapeutic targets 

To assess the validity of targets predicted by Gentrepid for each phenotype, we used two different 

benchmarks. In the first benchmark, the actual status of the gene was assessed by the existence or the non-

existence of the abstract in literature citing both the gene name and the phenotype. In the second 

benchmark, the actual status of genes was based on whether they are designated as targets in the drug 

databases or not. This was repeated for all six search spaces investigated for each phenotype (Table1). The 

assessment was also based on Receiver Operation Characteristics (ROC) curves. 

 

 

 

For the first benchmark, ROC curves for all the seven complex diseases were created by 

considering four thresholds for targets cited by at least one, five, ten or fifteen literature citations for the 

respective disease as true positives and targets without any citations or less than five, ten and fifteen 

citations as true negatives. Figure 9 contains all the ROC curves with Area Under Curve (AUC) values. 

The AUC values observed from the ROC curves were greater than or equal to 0.9 for each disease. The 

AUC values for all the seven diseases were obtained with 95% confidence interval and was significantly 

different from 0.5 (p - value .000) meaning that our results were significantly better than by chance. This 

suggests that our predictions of novel therapeutic targets for all the seven diseases are highly significant. 

 

For the second benchmark, we performed a binary classification of genes in the six search spaces 

as “candidates” or “non-candidates”. As described in Table 3, targets already containing drugs for the 

phenotype of interest considered as “true positives”. Targets with currently registered therapeutics for the 

phenotype of interest which were not predicted by Gentrepid but already present in the search space as 

“false negatives”. Genes which were not predicted and not targetable by drugs as “true negatives” and 

predicted novel therapeutic targets were considered as “false positives” (Table 6). This assessment was 

also based on ROC curves and AUC values considering six thresholds of search spaces described in table 

1 from weakly significant (WS) candidate gene dataset (Figure 10). The AUC values observed from these 

ROC curves were also greater than or equal to 0.9 for each disease with 95% confidence interval. This also 

suggests that our predictions of novel therapeutic targets for all the seven diseases are highly significant. 

PH TT TI RN RTT NTT NV RN 

T2D 84 0.29 5 7 77 0.92 5 

T1D 97 0.27 6 2 95 0.98 2 

RA 77 0.38 2 6 71 0.92 5 

HT 78 0.36 3 5 73 0.94 4 

BD 59 0.27 6 1 58 0.98 2 

CD 135 0.36 4 0 135 1 1 

CAD 102 0.39 1 4 98 0.96 3 

Table 2. Table describing targetability index of seven diseases. Row abbreviations- PH- Phenotype of 

Interest; TT- Therapeutic Target; TI- Targetability Index; NTT-Novel Therapeutic Target; RTT- 

Replicated Therapeutic Target; T2D- Type 2 Diabetes; BD- Bipolar Disorder; CD- Crohn’s Disease; HT- 

Hypertension; T1D- Type 1 Diabetes; CAD- Coronary Artery Disease; RA- Rheumatoid Arthritis; RN- 

Rank and NV- Novelty ratio 



 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6B. Predicted known and novel therapeutic targets(DB) 

(DrugBank)   

                     

 

                       

    
 

 Figure 6C. Predicted known and novel therapeutic targets 

(PharmGKB) 

(DrugBank)                       

 

 

  

 

Figure 6A. Predicted known and novel therapeutic targets(TTD) 

 

Figure 7.  Predicted Therapeutics 

 

 

Figure 8. FDA approved and clinical trial 

targets for T2D 

 

 Phenotype AUC 

value 

T2D 1.0 

T1D 1.0 

RA 0.97 

HT 1.0 

BD 1.0 

CD 1.0 

CAD 1.0 

 
 

 Figure 9.   ROC curve and AUC values for seven diseases based on Pubmed citations as benchmark 
 



PH 

Target Drug name Status Database 

T1D PPARG Rosiglitazone Approved TTD 

 DGKA Vitamin E Approved DrugBank 

T2D CTSD Insulin recombinant Approved DrugBank 

 PPARA Aleglitazar Phase II TTD 

 NR3C1 ISIS-GCCR Preclinical TTD 

 TCF7L2 Repaglinide Unknown PharmGKB 

 PPARD Benzafibrate Approved DrugBank 

 RB1 Insulin,procine Approved DrugBank 

 HSD11B1 INCB13739 Phase IIa TTD 

RA TNF Infliximab Approved DrugBank 

 
ITGA4 R1295 

Discontinued in 

phase I 
TTD 

 JAK2 INCB1824 Phase III TTD 

 
IL15 AMG-714 

Discontinued in 

phase I 
TTD 

 CCL2 MCP-1 Preclinical TTD 

 PRKCA Vit E Approved DrugBank 

HT DRD1 Fenoldopam Approved TTD 

 AGTR1 Valsartan Approved TTD 

 CNR1 AZD1175 Approved TTD 

 AGT Benazepril Unknown PharmGKB 

 GUCY1A2 Isosorbide  Mononitrate Approved DrugBank 

BD SLC6A2 Imipramine Approved DrugBank 

CAD AGTR1 Valsartan Approved DrugBank 

 MYC AVI4127 Phase I/II TTD 

 PLG Abbokinase Approved DrugBank 

 NOS3 ACCLAIM Phase III TTD 

 

PH Target Drug name Status Current Indication Database 

T1D 
RAR Alitretinoin Approved Kaposi's sarcoma TTD 

GSK3B Lithium Unknown Bipolar disorder PharmGKB 

T2D 
CHRM1 Pirenzepine Approved Peptic ulcer disease TTD 

LPL Gemfibrozil Approved Hyperlipidemia DrugBank 

CAD 
FLT1 Sorafenib Launched Advanced renal cell carcinoma TTD 

KDR Sunitinib Launched Advanced renal cell carcinoma TTD 

BD 
ESR1 Trilostane Approved Cushing’s syndrome DrugBank 

ABCC1 Methotrexate Unknown Psoriasis PharmGKB 

HT 
TACR1 GSK144814 Phase I Schizophrenia TTD 

NRP1 Palifermin Approved Oral mucositis DrugBank 

CD 
CRHR1 CRF antagonist Phase II completed Irritable bowel syndrome TTD 

INSR Insulin detemir Approved Type I and II Diabetes DrugBank 

RA 
HLA-DRB1 Glatiramer Acetate Approved Multiple sclerosis TTD 

ACE Ramipril Approved Hypertension DrugBank 

 

 

 

Table 4.  Examples of novel therapeutics suitable for repositioning for the seven diseases.  

 

Table 3.  Predicted known therapeutics - Row abbreviations- PH- Phenotype of Interest; T2D- Type 2 Diabetes; BD- Bipolar Disorder; 

CD- Crohn’s Disease; HT- Hypertension; T1D- Type 1 Diabetes; CAD- Coronary Artery Disease and RA- Rheumatoid Arthritis 



 

  PH Total genes in all 

search spaces 

          Binary classification 

  
 

TP =  07 FP  = 77 

T2D 4,292 FN  = 10 TN = 4,198 

  
TP  = 02 FP = 95 

T1D 5,340 FN  = 10 TN  = 5,233 

  
TP  = 05 FP  = 72 

HT 8,427 FN  = 32 TN  = 8,318 

 
 

TP  = 05 FP  = 05 

RA 4,970 FN  = 10 TN  = 4,815 

  
TP  = 01 FP  = 58 

BD 5,667 FN = 08 TN  =  5,605 

  
TP  = 0 FP  = 135 

CD 5,644 FN  = 02 TN  = 5,512 

  
TP  = 04 FP  = 98 

CAD 4,715 FN  = 06 TN  = 4,607     
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Table 6. A table describing binary classification genes and targets. Row 

abbreviations- TP - True Positives; FP  - False Positives; TN -  True Negatives, 

FN -False Negatives; TN True Negatives; Column abbreviation - PH - Phenotype 

Table 5. Table describing approved and clinical trial 

targets for seven complex diseases 

Phenotype Approved 

targets 

Approved novel  

targets 

T2D 45 41 

T1D 57 55 

HT 71 68 

RA 55 53 

CD 93 93 

CAD 63 61 

BD 37 36 

Unique sum 291 277 

Phenotype Clinical targets Clinical novel 

targets 

T2D 65 62 

T1D 73 72 

HT 43 40 

RA 59 54 

CD 135 135 

CAD 80 76 

BD 44 44 

Unique sum 334 318 

 

BD T1D RA 

HT 
CAD 

CD 

T1D 

Figure 10. ROC curve and AUC values for seven diseases based on targets present in six search spaces obtained from weakly significant 

dataset 

Phenotype AUC 

value 

T2D 1.0 

T1D 1.0 

RA 1.0 

HT 1.0 

BD 1.0 

CD 1.0 

CAD 1.0 

 



Evaluation of Predictions using Gene Function Annotations:  
The Gene Ontology (GO) associations allow biologist to make inferences about group of genes instead of 

investigating each one individually. GO annotations describe gene products in terms of their associated 

biological processes, cellular components and molecular functions in a species -independent manner. We 

used Gene Ontology functional annotations related to GO processes and molecular functions of predicted 

therapeutic targets. If the GO process of predicted target is similar to the biological process of respective 

disease, then it provides incidence of the close association between therapeutic target and the disease. 

Similarly, if GO annotation of molecular function for predicted target is similar to the function of 

molecular target of disease, it pinpoints strong relation between the target and the disease. 
 

Gorilla [30] a gene enrichment analysis tool, was applied to identify enriched GO terms that 

appear for 452 potential therapeutic targets identified in our study for seven complex diseases. GOrilla is 

an interactive tool with running time of a few seconds (~7 seconds) using an efficient algorithm for 
computing the exact minimal hyper geometric (MHG) p -value, which circumvents the need for 

simulations, and an efficient software implementation. Gorilla [30], a gene ontology enrichment analysis 

tool, was applied to identify enriched GO terms that appear for 452 potential therapeutic targets identified 

in our study for seven complex diseases. We found that many of identified GO process terms are same or 

related to the biological processes of the seven diseases. The identified GO terms were evaluated with 

already available literature for the biological processes of seven diseases. Hypertension (HT) is a disease 

related to the nervous system [31] and most of the GO terms of predicted targets of HT are related to the 

nervous system which includes memory  (GO:0007613), cognition  (GO:0050890), learning or memory  

(GO:0007611), system process  (GO:0003008), neurological system process  (GO:0050877), regulation of 

ion homeostasis  (GO:2000021), positive regulation of calcium ion transport into the cytosol 

(GO:0010524), and associative learning  (GO:0008306). We also found some other GO terms such as 

carbohydrate transport (GO: 0008643), hexose transport (GO: 0008645), glucose transport (GO: 0015758), 

monosaccharide transport (GO: 0015749) which indicate that the predicted target for HT participate in 

multiple metabolic pathways. Bipolar disorder is a neuro-  psychiatric diagnosis of  mood  disorder in 

which abnormalities occur in the structure and/or function of certain brain circuits [32]. In our study, 

predicted targets for Bipolar disorder (BD) were identified with the single GO process: response to 

stimulus  (GO:0050896) which is a well-known biological process for neurological diseases [32]. 

Coronary artery disease is a common heart disease caused by  plaque building up along the inner walls of 

the  arteries  of the heart. Predicted targets from Coronary artery disease (CAD) s how many known 

biological processes like cellular response to vascular endothelial growth factor stimulus  (GO:0035924), 

regulation of cellular process  (GO:0050794) and regulation of biological process  (GO:0050789) as 

potential GO terms which are biological processes of CAD.  

We also found some biological process related to new hallmarks of CAD, such as regulation of 

cell proliferation  (GO:0042127), biological regulation  (GO:0065007), response to stimulus  

(GO:0050896), negative regulation of developmental process  (GO:0051093) [33]. Surprisingly, for Type 

2 Diabetes which is a complex metabolic disorder of high  blood glucose in the context of  insulin 

resistance and relative  insulin deficiency, we found only one GO term: response to radiation  

(GO:0009314). Rheumatoid arthritis (RA) is an  autoimmune disease that results in a chronic,  systemic  

inflammatory disorder that may affect many tissues and organs, but principally attack flexible  (synovial) 

joints. For RA, we also found only one GO term: Organophosphate metabolic process  (GO:0019637) 

which is related to inflammation, a well-known biological process for RA [34]. For Type1 Diabetes, a 

metabolic disorder characterized by absolute insulin deficiency due to destruction of  islet cells in the 

pancreas. We found GO terms such as Response to alkaloid (GO: 0043279), drug (GO: 0042493) and 

stress (GO: 0006950) which are known biological processes. We also found some non-related terms such 

as negative regulation of transcription from RNA polymerase II promoter (GO:0000122), cellular response 

to stimulus (GO:0051716), cellular response to chemical stimulus (GO:0070887), response to chemical 

stimulus (GO:0042221), cellular developmental process (GO:0048869), responding to organic substance 

(GO:0010033), negative regulation of cell differentiation (GO:0045596), response to stress (GO:0006950), 

single-organism cellular process (GO:0044763), response to radiation (GO:0009314). For Crohn’s 

Disease, a type of  inflammatory bowel disease that may affect any part of the  gastrointestinal tract. We 

found GO terms such as single-multicellular organism process  (GO: 0044707), multicellular organismal 

process  (GO:0032501) and GPCR signaling pathway  (GO:0007186) [35]. These results also indicate that 

genes predicted as therapeutic targets for CAD, HT, CD and T1D are involved in multiple biological 

processes and pathways while targets for T2D, BD and RA are involved in the single biological process.  
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Molecular Function:  
In addition, several types of molecules, such as signal transducers, trans-membrane receptors are often 

proposed as molecular targets in CAD [36] while neurotransmitter receptors HT [37] and transcription co-

repressors and regulators in T1D [38]. We found that many receptors, and transcription factors related GO 

molecular function terms are enriched in predicted therapeutic targets for CAD, HT and T1D (Table 2). 

For example, neurotransmitter receptors (e.g. dopamine /serotonin receptors ) are implicated in many 

neurological processes, including motivation, pleasure, cognition, memory, learning, fine motor control 

and modulation of  neuroendocrine signalling. We did not retrieve any molecular function terms from 

GOrilla for BD, RA, CD and T2D. This might be because predicted targets for T2D, BD, RA and CD are 

involved in the limited number of metabolic processes and pathways. More basic research in required in 

this area. 

 

Significance of the Work  
The primary purpose of our work was to identify potential therapeutics and their targets by integrating 

publicly available genetic, bioinformatics and drug data. As the method involves repositioning of currently 

available drugs, it allows translational opportunities for drug testing [8]. Other bioinformatics tools which 

have been used to identify potential therapeutic targets for complex diseases and other diseases are 

designed to serve the purpose. For example, TARGET gene was used to identify and prioritize potential 

targets from hundreds of candidate genes for different types of cancer [39]. Another study identified 

potential drug targets for three neurological disorders- Alzheimer’s disease, Parkinson’s disease and 

Schizophrenia. This study involved the prediction of candidate genes using ToppGene and ToppNet 

prediction systems [22, 40]. The repositioning tools could be used as an initial screening tool for potential 

drugs which can be used for further evaluation [39]. It is important to note that not all repositioning 

opportunities will be successful as there are always some limitations. 

Conclusions 

 
There is a need to develop new approaches for the identification of therapeutic targets to accelerate the 

process of therapeutic discovery. In this study, our approach integrates detailed drug data with predicted 

candidate genes for seven complex diseases. This study enables people to efficiently identify possible 

novel therapeutic targets and alternative indication of existing therapeutics. We found 29% of predicted 

candidate genes as novel therapeutic targets from the candidate gene dataset and ~30% of drugs as novel 

therapeutics from the drug dataset for the seven complex diseases considered in our study. We have 

utilized both FDA approved drugs and drugs in clinical trials. Further investigation to verify action of 

these drugs is required for the discovery of drugs against potential targets. Hence, these drugs may be 

repositioned against seven phenotypes of interests. Gentrepid, thus can be utilized as a drug screening 

tool to save time and money spent on initial stages of drug discovery. 
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