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ABSTRACT
The support-confidence framework is the most common mea-
sure used in itemset mining algorithms, for its antimono-
tonicity that effectively simplifies the search lattice. This
computational convenience brings both quality and statisti-
cal flaws to the results as observed by many previous studies.
In this paper, we introduce a novel algorithm that produces
itemsets with ranked statistical merits under sophisticated
test statistics such as chi-square, risk ratio, odds ratio, etc.
Our algorithm is based on the concept of equivalence classes.
An equivalence class is a set of frequent itemsets that always
occur together in the same set of transactions. Therefore,
itemsets within an equivalence class all share the same level
of statistical significance regardless of the variety of test
statistics. As an equivalence class can be uniquely deter-
mined and concisely represented by a closed pattern and a
set of generators, we just mine closed patterns and genera-
tors, taking a simultaneous depth-first search scheme. This
parallel approach has not been exploited by any prior work.
We evaluate our algorithm on two aspects. In general, we
compare to LCM and FPclose which are the best algo-
rithms tailored for mining only closed patterns. In particu-
lar, we compare to epMiner which is the most recent algo-
rithm for mining a type of relative risk patterns, known as
minimal emerging patterns. Experimental results show that
our algorithm is faster than all of them, sometimes even mul-
tiple orders of magnitude faster. These statistically ranked
patterns and the efficiency have a high potential for real-
life applications, especially in biomedical and financial fields
where classical test statistics are of dominant interest.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—
Data mining

∗Jinyan was full-time working at I2R till June 30, 2007 where
this work was done.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’07, August 12–15, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-609-7/07/0008 ...$5.00.

General Terms
Algorithms, Performance

Keywords
Equivalence classes, itemsets with ranked statistical merit

1. INTRODUCTION
Given a database consisting of classes of transactions, it

is important to find frequent itemsets that are capable of
making statistically fine distinctions between the classes,
e.g. in the fields of evidence-based medicine, sequence motif
detection, financial stocks portfolio construction, risk man-
agement, etc. The statistical significance of these frequent
itemsets can be measured by various test statistics such
as the widely known chi-square, relative risk, odds ratio,
and so on [28, 30]. However, there have been a lack of ef-
ficient algorithms that can find and rank statistically im-
portant patterns from large datasets that meet a certain
significance threshold. Many itemsets mining algorithms
using support and confidence as thresholds cannot accom-
plish this—sometimes, they even cause statistical flaws to
the results [1, 6, 10]. As an innovative work on statistical
data mining, Li et al [15] proposed a so-called “plateau-
redundance” theorem which proves that many “plateaus”
of itemsets can be located at the same level of significance
under relative risk and odds ratio. However, the work [15]
did not examine efficient mining and implementation de-
tails; also whether the method can handle other test statis-
tics remains unknown. Tan et al [25] conducted an excellent
comparative study to select the right interestingness mea-
sure for association rules, but their random-and-disjoint al-
gorithm is heavily dependent on subjective domain expertise
and it is also computationally expensive. As a type of rela-
tive risk patterns, minimal emerging patterns [9, 17, 24, 20,
11] have long been proposed to capture statistically impor-
tant difference between two classes, or trends from temporal
databases. However, all known algorithms for mining emerg-
ing patterns cannot handle multi-class data efficiently and
have not noticed the redundance problem in the minimal
patterns. Therefore, in this paper, we investigate (i) how to
discover a concise representation of statistically important
itemsets to get rid of the redundance, (ii) how to easily unify
the method for a wide range of test statistics, and (iii) how
to easily extend to handling multi-class data.

The key idea of our method is to mine a concise represen-
tation of equivalence classes [4] of frequent itemsets [2] from
a transactional database D.



An equivalence class EC is a set of itemsets that always
occur together in some transactions of D. That is, for all
X and Y ∈ EC, fD(X) = fD(Y ), where fD(Z) = {T ∈
D | Z ⊆ T}. Suppose D consists of two classes of data D1

and D2, let X be an itemset of D, and assume fD(X) consists
of n1 and n2 transactions from D1 and D2 respectively. Then
n1 and n2 are sufficient information to calculate various test
statistics of X. For instance, X’s relative risk in Di against

Dj (i 6= j) is ni/|Di|
nj/|Dj |

. Similarly, X’s odds ratio between Di

and Dj (j 6= i) is

ni/ (|Di| − ni)

nj/ (|Dj | − nj)
.

By definition of equivalence classes, it is not difficult to see
that for any other itemset in the same equivalence class of
X, that itemset is at the same level of significance as X
under a given test statistics.

Equivalence classes have a nice property that: An equiv-
alence class EC can be uniquely and concisely represented
by a closed pattern [21] C and a set G of generators [21, 4],
in the form of EC = [G, C], where [G, C] = {X | there is
G ∈ G, G ⊆ X ⊆ C}. Therefore, just closed patterns and
generators of D are sufficient to guarantee completeness—
all and exactly those frequent itemsets meeting the speci-
fied statistical significance threshold can be deterministically
identified. One could use the best algorithms for mining
closed patterns [26, 12, 27, 32] and generators [7, 16] sep-
arately, and then combine their outputs to solve the prob-
lem. However, this brute-force approach has to access to the
database at least twice, and incurs a large overhead to prop-
erly pair up the closed patterns with their corresponding
generators. To achieve high efficiency, we mine closed pat-
terns and generators of D simultaneously under one depth-
first search framework. This novel algorithm is even faster
than state-of-the-art closed pattern mining algorithms such
as LCM [26] (version 3) and FPclose [12] that do not output
generators at the same time.

As a more challenging problem in this work, we investi-
gate how to pinpoint a special subtype of equivalence classes
called non-redundant δ-discriminative equivalence classes.
This concept is an extension to jumping emerging patterns
[9, 17] (recently also known as minimal emerging patterns
[20, 11]). Using this concept, we not only can identify pat-
terns with strong relative risk, but also can group the mini-
mal emerging patterns into equivalence classes, reducing the
redundance to a minimum degree. As those δ-discriminative
equivalence classes are rarely located at the bottom, while
very often at the middle, of the search lattice, breadth-
first search algorithms would cost huge amount of memory
and examine many unnecessary candidates. We refine our
main algorithm to skip all low-ranked equivalence classes,
so that our algorithm can produce the results with high
efficiency. We compare it to the state-of-the-art epMiner
algorithms [20, 11]; experimental results show that our al-
gorithm can be multiple orders of magnitude faster for the
same mining tasks.

Contribution by this paper: (1) We focus on the min-
ing of a concise representation of statistically important
equivalence classes with ranked merit from large datasets.
Our work is contrast to the pioneer CBA method by Liu
et al. [18] or its variants which mine individual classifica-
tion rules measured by only support and confidence. By
our approach, redundant patterns can be greatly reduced,

and sophisticated test statistics can be applied. (2) We
mine closed patterns and generators simultaneously under
one depth-first search scheme. The efficiency is even higher
than the best algorithms that are tailored for mining only
closed patterns. We are the first to propose such a simulta-
neous mining. (3) Our algorithm can be easily unified for a
wide range of test statistics, and can discover and rank sta-
tistically important patterns in one go. This is very helpful
to find those top-ranked patterns according to various com-
binations of statistical merits. (4) Our algorithm and results
will be helpful for those machine learning applications con-
taining multiple classes of data. This is because traditional
learning methods [3, 14, 31, 22] have to organize the mul-
tiple classes of data through exhaustive pairwise coupling
approaches (one-vs-one or all-vs-all), leading to very heavy
computational redundancy. However, our mining algorithm
does not require any pairwise coupling of data.

Paper organization: Section 2 formally defines the re-
search problems. Section 3 presents our computational steps
to solve the problems. Section 4 describes details of the min-
ing algorithm. Section 5 reports a performance evaluation of
our algorithms in comparison with other methods. Section 6
discusses related works. Section 7 concludes the paper.

2. PROBLEM FORMULATION
We consider n items i1, i2, ..., in. A dataset is a set of

transactions. A transaction is a non-empty set of items.
An itemset is a set of items. The support of an itemset P
in a data set D, denoted sup(P,D), is the percentage of
transactions in D that contain P . The negated support of P
in D is sup(P,D) = 1 − sup(P,D).

Problem 1: Given k non-empty classes (datasets D1,
D2, ..., Dk) of transactions, we investigate how to

• Concisely represent frequent itemsets (for a support
threshold ms) that have the same level of statistical
significance under a given test statistics;

• Efficiently discover the concise representations with
ranked statistical merit for all of the k classes.

For a pair of datasets Dp and Dn, we assume that a test
statistics on an itemset X, denoted st(X,D) where D = Dp∪
Dn, is a function of just the supports of X in Dp, Dn, and/or
in D. That is, st(X,D) = h(sup(X,Dp), sup(X,Dn), sup(X,D)),
for some function h. This assumption is not very restrictive,
as it is sufficiently general to cover a broad range of widely
used test statistics. For example, under the odds ratio (OR)
test:

stOR(X,D) =
sup(X,Dp)/sup(X,Dp)

sup(X,Dn)/sup(X,Dn)

A chi-square test with 1 degree of freedom is:

stχ2

(X,D) =
(x ∗ y − y ∗ x)2 ∗ |D|

|Dp| ∗ |Dn| ∗ (x + y) ∗ (x + y)

where x = sup(X,Dp) ∗ |Dp|, y = sup(X,Dn) ∗ |Dn|, x =
(1− sup(X,Dp)) ∗ |Dp|, and y = (1− sup(X,Dn)) ∗ |Dn|. A
longer list of statistical tests allowable under our assump-
tion includes relative risk test, Student’s t, Fisher sign test,
likelihood ratio, Yule’s Q, and Yule’s Y [28, 30, 25].

Only frequent itemsets are in our consideration, because
infrequent itemsets are likely to be random noise patterns,
and the inclusion of infrequent itemsets would much enlarge



the size of mining results which is deemed not unfavorable
to the end users. We also note that the ranking of itemsets
under different statistical tests can be quite different. Their
intersections certainly contain some itemsets that possess
many statistical merits. Different statistics may also be bet-
ter suited for different applications—e.g., OR is applicable
to case-control studies, while relative risk is applicable to
cohort studies [30]. Thus we are interested in unifying our
mining method to cover various test statistics.

Problem 1 can be reduced to the mining of closed pat-
terns [21] and generators [21, 4] of frequent equivalence
classes [4] from D.

Definition 1. Let X be an itemset of a dataset D. The
equivalence class of X in D, denoted [X]D, is the set
{A | fD(A) = fD(X)}, where fD(Z) = {T ∈ D | Z ⊆ T}.
The maximal itemset and the minimal itemsets of [X]D are
called the closed pattern and the generators of this equiva-
lence class respectively. The closed patterns and generators
of D are all the closed patterns and generators of their equiv-
alence classes.

Property 1. Let C be the closed pattern of an equiva-
lence class EC and G be a generator of EC. Then all item-
set X satisfying G ⊆ X ⊆ C are also in this equivalence
class.

This convexity property says that the entire equivalence
class can be concisely bounded as EC = [G, C], where G is
the set of generators of EC, C is the closed pattern, and
[G, C] = {X | there is G ∈ G, G ⊆ X ⊆ C}.

It is easy to see that equivalence classes do not overlap.

Property 2. Let D be a dataset. Let EC1 and EC2 be
distinct equivalence classes of D. Then EC1 ∩ EC2 = {}.

Corollary 1. Let D be a data set and ms be a minimum
support threshold. Then the set Fms

D of frequent itemsets of
D can be exactly partitioned into frequent equivalence classes
without overlapping. That is,

Fms
D =

m
[

i=1

[Ci]D =
m
[

i=1

[Gi, Ci]

where C1, C2, ..., Cm are m frequent closed patterns of D,
Gi is the set of generators of [Ci]D.

For |[Ci]D| = 1—i.e., only one itemset in this equivalence
class—we simplify [{Ci}, Ci] as Ci. Therefore,

Sm
i=1 [Gi, Ci]

is a true concise and lossless representation of Fms
D .

As we assume that the statistical significance of an item-
set X is a function h of X’s global and local support in-
formation, the class label information of the transactions
that contain X are important. We refer to this informa-
tion as the class label distribution of X, denoted ni(X) =
|fD(X)∩Di|, i = 1, 2, · · · , k. As all itemsets within an equiv-
alence class have the same class label distribution, it is easy
to see the following property:

Property 3. All itemsets within an equivalence class share
the same level of statistical significance.

Therefore, Problem 1 can be solved by mining the genera-
tors and closed patterns of frequent equivalence classes, and
their associated class label distribution information.

Example 1. Suppose we are given 4 transactions cate-
gorized into two classes (class 1 and class 2). Class 1 has
two transactions {a, b, c} and {a, b, c, d}; Class 2 has trans-
actions {u, v, w} and {u, v, w, x}. Let the minimum support
threshold be 30%. Then there are two frequent closed pat-
terns: abc and uvw. Their corresponding equivalence classes
are: EC1 = [{a, b, c}, abc] and EC2 = [{u, v, w}, uvw], which
concisely represent the total 14 frequent itemsets (not in-
cluding the empty set). The class label distribution of abc
is: n1(abc) = 2 and n2(abc) = 0; while the class label dis-
tribution of uvw is: n1(uvw) = 0 and n2(uvw) = 2. Thus,
the statistical importance of EC1 and EC2 can be calculated
straightforward.

Problem 2: As a special and most useful case of Prob-
lem 1, we also investigate how to directly output a subtype
of equivalence classes that are δ-discriminative and non-
redundant.

Definition 2. Let D =
Sk

i=1 Di. Let EC be a frequent
equivalence class of D, and C be the closed pattern in EC.
Let ni(C), i = 1, 2, · · · , k, be the class label distribution in-
formation of C. Then EC is a δ-discriminative equivalence
class if there is i ∈ {1, 2, · · · , k} such that

P

j 6=i nj(C) ≤ δ,
where δ is usually a small integer number 1 or 2.

In other words, every itemset in a δ-discriminative equiv-
alence class occurs in only one of the k classes with almost
no occurrence in any other classes. The following table il-
lustrates an example, where every itemset in EC shows an
outstanding occurrence in D1, while few occurrence in any
of the other classes, exhibiting a sharp difference between
D1 versus all other classes.

|fD(X)| n1(X) = |fD(X) ∩ D1| ≥ ms ∗ |D|

P

j 6=1 |fD(X) ∩ Dj | = 0, or 1

The definition of δ-discriminative equivalence classes con-
ceptually differs from jumping emerging patterns (JEPs) [17,
9, 20, 11]. A JEP is an itemset which occurs in one class, but
never occurs in the other class. Thus, our notion looks at
the itemsets in groups, but the notion of JEPs treats them
individually; We highlight the redundancy within an equiv-
alence class, while JEPs did not notice the hidden redun-
dancy problem. Also, itemsets in a δ-discriminative equiv-
alence class are required to be frequent, but JEPs may be
infrequent.

Itemsets in a δ-discriminative equivalence class often have
a statistical value of infinity under the odds ratio test or the
relative risk test. We use EC∞

D to denote all δ-discriminative
equivalence classes of D.

Definition 3. Let D be a dataset. Let EC1, EC2 ∈ EC∞
D

be two equivalence classes of D satisfying C1 ⊂ C2, where
C1 and C2 are the closed patterns of EC1 and EC2 respec-
tively. Then EC2 is said to be a redundant δ-discriminative
equivalence class with respect to EC1.

This notion of redundancy makes sense, because C1 ⊂ C2

and thus fD(C2) ⊂ fD(C1) by definition. In other words,
C2’s transaction set is entirely subsumed by C1’s transaction
set. This is true for every itemset in EC2. Therefore, EC2

can be considered as a redundant equivalence class.
It follows that only the most general (minimal) equiva-

lence classes of EC∞
D are non-redundant. Here equivalence



classes are ordered so that an equivalence class EC1 is said
to be more general than another equivalence class EC2 if
EC1’s closed pattern is more general than that of EC2.

Example 2. Following Example 1, let the minimum sup-
port threshold be 10%. Then there are 4 frequent equiv-
alence classes: EC1 = [{a, b, c}, abc], EC ′

1 = [{d}, abcd],
EC2 = [{u, v, w}, uvw], and EC ′

2 = [{x}, uvwx]. Observe
that all the 4 equivalence classes are δ-discriminative, be-
cause each of them has a zero occurrence in either Class 1
or Class2. However, only EC1 and EC2 are non-redundant:
EC′

1 is redundant to EC ′
1 because abcd ⊃ abc, and EC ′

2 is
redundant to EC2 because uvwx ⊃ uvw.

Non-redundant δ-discriminative equivalence classes are of-
ten located in the middle of the search lattice. Thus, breadth-
first search algorithms would cost huge amount of memory
and examine many unnecessary candidates. We refine our
main algorithm (solving Problem 1) to solve Problem 2.

3. COMPUTATIONAL STEPS
Given k non-empty classes of transactions—D1, D2, ...,

and Dk—and a support threshold ms, our method to dis-
cover and rank statistically important equivalence classes for
the k classes of data (Problem 1) consists of the following 5
steps:

1. Let D =
Sk

i=1 Di.

2. Mine frequent closed patterns and generators to con-
cisely represent all frequent equivalence classes of D.

3. For every frequent closed pattern X, determine the
class label distribution information of fD(X), namely
{ni(X) = |fD(X) ∩ Di|, i = 1, 2, · · · , k}.

4. For a test statistics h and a pair of datasets Dp and
Dn, calculate sth(X,Dp ∪Dn) for every closed pattern
X, where Dp or Dn is the union of some of Di, and
Dp ∩ Dn = ∅.

5. Rank all X as per sth(X,Dp ∪ Dn), and output sig-
nificant equivalence classes as [GX , X], where sth(X,
Dp ∪ Dn) meets a pre-specified significance threshold,
and GX is the corresponding set of generators.

The main computational part is at Step 2 for mining
closed patterns and generators from D. Step 3 can be actu-
ally integrated into Step 2. Steps 4–5 are repeatable when
different test statistics and different class label pairs are
specified. This repetition does not require access to D.
Therefore, our method can be easily extended to unify a
broad range of test statistics without much extra computa-
tional cost. The completeness of the algorithm is guaranteed
at Step 2 by Corollary 1. All patterns at the same level of
statistical significance are concisely represented as shown in
Step 5. Thus, our method is indeed a unified style, accessing
the data only once, and yet providing sufficient information
for determining the concise representation of the statisti-
cally important patterns, and for calculating the multiple
test statistics in one run. Our method also handles multi-
class data.

To solve Problem 2, we refine Step 2. The implementation
is easy as we adopt a depth-first search strategy on a set-
enumeration tree [23]—we just stop the depth-first search

along a branch whenever we reach a δ-discriminative equiv-
alence class. This refinement can save much cost as low-
ranked redundant equivalence classes are not touched in the
entire mining process. Details are described in Section 4.2.

4. OUR EFFICIENT ALGORITHMS
This section presents our novel ideas for the simultaneous

mining of closed patterns and generators on top of a modi-
fied data structure of the seminal FP-tree [13]. The FP-tree
structure, originally proposed for efficiently mining frequent
itemsets [13], has also been used before to mine frequent
closed patterns by FPclose [12]. FPclose uses conditional
FP-trees to generates candidate closed patterns, then these
candidates are inserted into a separate pattern tree to check
whether they are true closed patterns or not. The critical
drawback of FPclose is the separate pattern tree structure
which consumes a large amount of memory and which is
also a bottleneck for speeding up the efficiency. However,
we modify FP-tree in such a way that we can directly out-
put closed patterns one-by-one, without an additional data
structure to check whether the patterns are true closed pat-
terns or not. Our novel modifications also include a smaller
head table, a smaller projected database, and a new sub-
tree structure storing all full-support items. With these sub-
tle and effective modifications, our algorithm is capable of
a simultaneous mining of both closed patterns and genera-
tors in a high efficiency. The mining speed is even faster
than existing best algorithms for mining closed patterns
alone. Our algorithm is termed as DPMiner (discriminative
pattern miner).

4.1 Mining Equivalence Classes
A brute-force method to mine equivalence classes is to use

one of the best closed pattern mining algorithms [32, 27, 19,
12, 26] and the best generator mining algorithms [7, 16], and
then associate those generators with their closed patterns.
However, this approach explores the search space twice, and
has a considerable overhead to match up the closed patterns
and generators, as mentioned in Introduction.

DPMiner speeds up the efficiency by integrating the min-
ing of closed patterns and generators into one depth-first
framework. It constructs a conditional database for each
frequent generator; A tail sub-tree is maintained together
with these conditional databases to generate the closure of
each generator. The anti-monotonicity [21] of generators
(two versions), reviewed below, are frequently exploited in
the mining:

Property 4. Let D be a dataset and FG be the set of
frequent generators of D. (1) If X ∈ FG, then Y ∈ FG for
all Y ⊆ X. (2) If X 6∈ FG, then Y 6∈ FG for all Y ⊇ X.

Property 5. Let X be a frequent itemset of D. X is a
generator if and only if sup(X,D) < sup(Y,D) for every
immediate proper subset Y of X.

4.1.1 Revised FP-Tree for Pruning Non-Generators
In a normal FP-tree [13], all frequent items are sorted

into a descending frequency order in the head table, our
modification is that frequent items with a full support—i.e.,
those items that appear in every transaction of the original
database or conditional projected databases—must be re-
moved from the head table of FP-trees. The reason is that



Table 1: The projected database for F = {d: 5,b: 4,a:
4,c: 3,h: 3,i: 2}.

TID Transactions Projected Transactions
1 a, b, c, d, e, g, h d, b, a, c, h

2 a, b, d, e, f, h d, b, a, h

3 b, c, d, e, h, i d, b, c, h, i

4 a, c, d, e, m d, a, c

5 a, d, e, n d, a

6 b, e, i, o b, i

root

d:5

h:1

c:1
i:1

a:2

b:1

c:1

i:1

h:1
c:1

b:3

d : 5

b : 4

a : 4

c : 3

h : 3

i : 2

header table

a:2

h:1

Figure 1: An example of our FP-trees

they and those itemsets containing them are not generators,
due to the anti-monotone property of generators. This mod-
ification often leads to very small tree structures.

An example of our modified FP-tree is shown in Figure 1,
which is constructed from a database in Table 1 containing
6 transactions. The minimum support threshold ms is set to
30%. The frequent item e appears in every transaction, it is
thus not allowed to be in the head table. Please refer to [13]
for detailed steps for constructing projected transactions,
node links, parent links, and conditional FP-trees. After
our modified FP-tree is constructed, all subsequent mining
are operated on top of the tree.

4.1.2 Deeper Pruning of Non-Generators
We make use of Property 5 for further pruning of non-

generators. The idea is that an itemset X is a generator
if and only if sup(X,D) < sup(Y,D) for every immediate
proper subset Y of X. Therefore, X can be identified as a
generator, or filtered out, by just comparing the support of
X with that of X’s (immediate) subsets. To be able to do
this checking during the mining process, the subsets of an
itemset must be discovered prior to that itemset. To ensure
this ordering, we built conditional databases according to
the descending frequency order of items in the head table.

We present details as follows. When mining a generator
l’s conditional database Dl, DPMiner first traverses Dl to
find frequent items in Dl, denoted as Fl={a1, a2, · · · , am},
and removes each item ai from Fl if l ∪ {ai} is not a gen-
erator, and then constructs a new FP-tree which stores the
conditional databases of the remaining items in Fl. More
specifically, it checks whether sup(l ∪ {ai}, D)=sup(l, D) is
true for every item ai in Fl. If sup(l ∪ {ai}, D)=sup(l, D)
is true for some item ai in Fl, it means that l ∪ {ai} is
not a generator, and item ai should be removed from Fl.
This checking is performed immediately after all the fre-
quent items in Dl are discovered and it incurs little over-
head. DPMiner then checks whether there exists an itemset
l′ such that l′ ⊂ (l ∪ {ai}) and sup(l′, D)= sup(l ∪ {ai}, D)
for each remaining item ai in Fl. It is not necessary to

compare l ∪ {ai} with all of its subsets. It is adequate to
compare l ∪ {ai} with its immediate subsets based on the
anti-monotone property of generators.

DPMiner maintains the set of frequent generators that
have been discovered so far in a hash table to facilitate the
subset checking. The hash function hashes an itemset to
an integer by: H(l) =

P

i∈l h(i) mod Ltable, and h(i) =

2i mod 32 + i + 2order(i) mod 32 + order(i) + 1, where l is a
generator, order(i) is the position of item i if the frequent
items in the original database are sorted into descending
frequency order, and Ltable is the size of the hash table and
it is a prime number. In the above hash function, both
the id of an item and the position of an item in descending
frequency order are used. It is to reduce the possibility
that two different items are mapped into the same value.
The reason being that the position of an item in descending
frequency order depends on the frequency of the item and
is independent of the id of the item. Our experiments show
that this hash function is very effective in avoiding conflicts.

The FP-tree structure provides an additional pruning op-
portunity. If an itemset l’s conditional database Dl contains
only one branch, then there is no need to construct a new
FP-tree from Dl even if there are more than one frequent
items in Dl that can be appended to l to form frequent
generators. The reason being that if Dl contains only one
branch, then for any two items ai and aj in Dl, itemset
l∪{ai, aj} cannot be a generator because sup(l∪{ai, aj}, D)
= min{sup(l ∪ {ai}, D), sup(l ∪ {aj}, D)}.

4.1.3 Generating Closed Itemsets Simultaneously
Generators in the same equivalence class have the same

closure and DPMiner associates generators in the same class
together via their common closure. DPMiner maintains the
set of closed itemsets in a hash table during the mining pro-
cess, and the hash function of the hash table is the same as
the one used in the previous subsection. When a genera-
tor is identified, DPMiner generates its closure, and checks
whether the closed itemset is already in the hash table. If
it is true, then the generator is added to the equivalence
class of the closed itemset. Otherwise, the closed itemset
is inserted into the hash table to create a new equivalence
class. Next we describe how to generate the closure of each
generator.

The closure of a generator l, denoted as Cl, is the inter-
section of all the transactions containing l. That is, Cl =
T

t∈D∧l⊆t t. Every item i in (Cl−l) satisfies sup(l∪{i},D) =

sup(l,D), due to convexity of equivalence classes, so we call
the items in (Cl−l) cover items with respect to l. Let l′ be the
length-(|l|-1) prefix of frequent generator l, Dl′ be the con-
ditional database of l′, Tl′ be the FP-tree constructed from
Dl′ , and ai be the last item of l. Note that l = l′∪{ai}. The
FP-tree Tl′ stores all conditional databases of the frequent
items in Dl′ . In FP-tree Tl′ , any path containing ai rep-
resents a set of transactions containing l. Correspondingly,
any transaction containing l is stored in some branch of Tl′

and the branch must contain the item ai. If an item appears
in all the branches containing ai and has the same support
as ai, then the item should be included in the closure of l.
However, not all such items are in Dl as Dl contains only
the upper portion of the branches containing ai, that is, the
portion between the nodes containing ai and the root. To
obtain all the cover items with respect to l, we need to tra-
verse the lower portion of these branches as well, that is,



the subtrees rooted at the nodes containing item ai. We
call these subtrees tail subtrees of l.

We use the example FP-tree shown in Figure 1 to illus-
trate closure generation. There are three transactions con-
taining itemset c in the example database shown in Table 1.
Correspondingly, there are three branches in the FP-tree
shown in Figure 1 containing item c: dbach : 1, dbchi : 1,
and dac : 1. To obtain all the cover items with respect to
c, we need to access all the nodes in these three branches.
The FP-tree nodes containing item c split each of the three
branches into two parts. The upper portions of the three
branches—dbac, dbc, and dac—form itemset c’s conditional
database Dc. Every node in Dc can be visited by follow-
ing the node-links of item c as in the FP-growth algorithm.
The lower portions of the three branches—h : 1, hi : 1, and
φ—are the tail subtrees of itemset c. We use the depth-first
strategy to traverse each tail subtree, and move to the next
tail subtree following the node-links of item c.

If an item appears in l’s closure, then the item must ap-
pear in l’s supersets’ closure. If an item aj does not appear
in l’s closure but l ∪ {aj} is frequent, it is still possible that
aj appears in l’s supersets’ closure. An item aj can either
appear in Dl or in the tail subtrees of l. Therefore, when
constructing the FP-tree storing all the frequent items in
Dl, we need to include the frequent items in the tail sub-
trees of l as well. The frequent items in the tail subtrees of l
are not candidate extensions of l as a generator, so they are
not put into the header table. In the FP-tree constructed
from Dl, these items are always put after the items in the
header table so that they can appear in the tail subtrees of
l’s supersets but they never appear in l’s superset’s condi-
tional databases. We use an example to illustrate this. In
Figure 1, there are two frequent items a and b in c’s condi-
tional database Dc. We need to construct an FP-tree from
Dc. Item h does not appear in Dc but it is frequent in the
tail subtrees of c, so we need to include h in the FP-tree
constructed from Dc, and item h is put after item a and b
in this FP-tree as shown in Figure 2. When we traverse the
tail subtrees of cb, we find that item h is in the closure of
cb.

root

b:2

h:1

a:1

a:1

b : 2

a : 2

header table

h:1

Figure 2: The FP-tree of itemset c with frequent tail

items

To generate the closure of a generator l, DPMiner needs
to traverse all the tail subtrees of l besides traversing Dl. As
an FP-tree node is always in the tail subtrees of all of its an-
cestors, the number of times that an FP-node is additionally
visited is equal to the number of ancestors of the FP-tree
node. As we also need to include frequent tail items into FP-
trees for closure generation, our FP-trees can be sometimes
large.

To solve this problem, DPMiner identifies and prunes tail
subtrees that do not contain any potential cover items as
soon as possible. Let B be a branch in generator l’s condi-
tional database, lB be the set of items contained in branch

B, and TB be the tail subtree rooted at the last node of
branch B. If an item i in TB is a cover item of l1, where
l ⊆ l1 ⊆ l ∪ lB, then the support of item i in TB must be
the same as that of branch B, because otherwise there ex-
ists at least one transaction that contains l1 but does not
contain item i. The support of an FP-tree node is always no
larger than that of its ancestors. Therefore, if the support
sum of the children node of an FP-node in TB is less than
the support of the FP-node, then there is no need to access
the descendants of the FP-node. After TB is traversed, we
check the support of the items in TB and discard those items
whose support in TB is less than the support of the branch
B. After all the tail subtrees are visited, the support of the
items are accumulated over all the tail subtrees, and fre-
quent items are included into the FP-tree constructed from
Dl. We use an example to illustrate this pruning. In Figure
1, item a’s conditional database Da contains two branches:
abd : 2 and ad : 2. We first visit the first tail subtree of
a and get the support of items c and h. The second tail
subtree of a is a single branch and the support of the first
node of this single branch is 1, which is less than the support
of branch ad : 2. Therefore, we discard that single branch.
After the two tail subtrees are visited, we accumulate the
support of items c and h. The support of item c is less than
2, so we discard item c from further consideration. If the
above pruning technique is not used, then item c would not
be pruned, as its accumulated support in the two tail sub-
trees is 2. Therefore, the above pruning technique not only
avoids traversing unnecessary tail subtrees but also prunes
those items that are not cover-items in a very early stage.

4.2 Ranking Equivalence Classes by Statisti-
cal Merits

To rank equivalence classes, the class label distribution
information of the itemsets are required as shown in Sec-
tion 3. We accomplish this by replacing the support count
of an FP-node with the class label distribution of the FP-
node. For example, if transactions 1, 3, and 5 in Table 1
are in class 0 and the other three transactions are in class
1, then the FP-tree is modified as shown in Figure 3. The
class distribution of an item in the FP-tree is computed by
accumulating the class distribution of the FP-nodes contain-
ing that item. The global support of an item is the sum of
the support of the item in all the classes. Generators and
closed itemsets are identified and generated as described in
the previous subsection.

root

d 3:2

h 1:0

c 0:1
i 0:1

a 1:1

b 0:1

c 1:0

i 1:0

h 1:0
c 1:0

b 2:1

d : 5

b : 4

a : 4

c : 3

h : 3

i : 2

header table

a 1:1

h 0:1

Figure 3: Class distribution information are added

into FP-tree nodes for ranking equivalence classes.

Algorithm 1 shows the pseudo-codes of DPMiner to solve
our Problem 1, which can be also refined to solve our
Problem 2. As shown, DPMiner maintains the set of



Algorithm 1 The DPMiner Algorithm
Input:

l is a frequent generator;
Dl is the conditional database of l stored in an FP-tree;
Cl contains l and the set of cover items on the current path;
FG is the set of generators and is stored in a hash table;
FC is the set of closed itemsets and is stored in a hash table;
ms is the minimum support threshold;

Description:

1: Scan Dl to count frequent items and sort them into descending
frequency order, denoted as Fl={a1, a2,· · · , am};

2: Ccdb = {ai|sup(l ∪ {ai}, D) = sup(l, D), ai ∈ Fl};
3: Cl = Cl ∪ Ccdb; Fl = Fl − Ccdb;
4: Scan the tail subtrees of l to obtain Ctail and Ftail, where

Ctail = {x|sup(l∪{x}, D) = sup(l, D), x is in tail subtrees of l}
and Ftail = {x|sup(l ∪ {x}, D) 6= sup(l, D) ∧ sup(l ∪ {x}, D) ≥
ms, x is in tail subtrees of l};

5: Cl = Cl ∪ Ctail;
6: if Cl is not in FC then

7: Insert Cl into the hash table storing FC;
8: end if

9: Insert l into the equivalence class of Cl;
10: for all item ai ∈ Fl do

11: if ∃l′ ∈ FG such that l′ ⊂ l ∪ {ai} and sup(l′ , D)= sup(l ∪
{ai}, D) then

12: Fl = Fl − {ai};
13: else

14: Insert l ∪ {ai} into the hash table storing FG;
15: end if

16: end for

17: if |Fl| ≤1 then

18: return ;
19: end if

20: if Dl contains only one branch then

21: return ;
22: end if

23: for all transaction t ∈ Dl do

24: t = t
T

(Fl ∪ Ftail);
25: Sort items in t and insert t into the new FP-tree.
26: end for

27: for all item ai ∈ Fl do

28: DPM(l ∪ {ai}, Dl∪{ai}
, Cl, FG, FC, ms);

29: end for

30: Cl = Cl − Ccdb − Ctail;

frequent generators FG in a hash table. DPMiner checks
whether itemset l ∪ {ai} is a generator by searching the im-
mediate subsets of l∪{ai} in the hash table (Line 10). If l∪
{ai} is not a generator, then it is removed from Fl (Line 11);
otherwise it is inserted into the hash table (Line 13). DP-
Miner also maintains the set of closed itemsets FC in a
hash table, and each closed itemset represents an equiva-
lence class. Generators in the same equivalence class are as-
sociated together by their common closed itemset. If the clo-
sure of a generator is already in the hash table, then the gen-
erator is added to the equivalence class of the closed itemset
(Line 8). Otherwise, the closed itemset is inserted into the
hash table to create a new equivalence class (Lines 6–7).
To generate closed itemsets, DPMiner maintains the set of
cover items Cl on the current path during the mining pro-
cess to propagate the cover items with respect to l to l’s
supersets’ closure. Besides the cover items inherited from
l’s prefix, the other cover items of l can either from l’s con-
ditional database (Lines 2–3) or from the tail subtrees of l
(Lines 4–5).

To solve Problem 2 (mining δ-discriminative equivalence
classes (ECs) that are also non-redundant), we make use
of the following observation. If an EC is δ-discriminative
and non-redundant, then none of its subset ECs can be
δ-discriminative and none of its superset ECs can be non-
redundant. Therefore, mining non-redundant δ-discriminative
ECs is just to find a border in the set-enumeration tree [23]

such that the patterns above the border (close to the top
root node empty set) are not δ-discriminative and the pat-
terns below the border are redundant. So, we refine line
10 of Algorithm 1—We just check whether l ∪ {ai} is a δ-
discriminative patterns. If it is, then we remove ai from
Fl.

4.3 Optimizations and Discussion
DPMiner maintains two hash tables during the mining

process. One hash table stores generators for checking the
minimality of generators. The other one stores closed item-
sets for associating generators with their closed itemsets.
When the number of generators or closed itemsets is large,
the space occupied by these two hash tables may exceed the
size of the main memory. To solve this problem, we can
associate generators with their closed itemsets in a post-
processing step to avoid keeping the second hash table in
the memory. It is possible that the hash table storing gen-
erators is larger than the main memory. In this case, we can
use the CFP-tree structure [19] to store frequent generators.
The in-core querying time of CFP-tree may be a little longer
than the hash table, but CFP-tree requires much less space
than the hash table and it also supports efficient retrieval of
itemsets on disk.

DPMiner constructs a conditional database for each gen-
erator and the closure of each generator is generated during
the mining process. An equivalence class may have multiple
generators. Therefore, a closed itemset may be generated
multiple times in the algorithm. An alternative approach is
to construct a conditional database for each closed itemset
to ensure every closed itemset is generated only once, and
then generate the generators of each closed itemset. The
reason for us to adopt the first approach is that items that
cannot appear in the closure of a generator are identified
and pruned very early in DPMiner. Therefore, generating
the closure of generators incurs little overhead in the al-
gorithm. However, it is much more difficult and costly to
generate generators from closed itemsets.

The method used by DPMiner for generating the closure
of generators can be used alone to mine only frequent closed
itemsets. An itemset is a closed itemset if and only if the
closure of the itemset is the same as the itemset itself. A
trick due to this property is that: If an itemset l is not a
closed itemset and the closure of l contains an item i such
that item i does not appear in l’s conditional database, then
there is no need to process l’s conditional database. The
reason being that any closed itemset containing l must also
contain item i (because the closure of l contains item i), and
all of the itemsets discovered from l’s conditional database
contain l, but none of them contain item i. Therefore, none
of the itemsets discovered from l’s conditional database can
be closed, and we can skip mining them. Therefore, if an
itemset is not a closed itemset, then there is no need to
process the conditional database of the itemset. By using
this method, we do not need to maintain the set of frequent
closed itemsets in the memory, but most of existing frequent
closed itemset mining algorithms such as CLOSET+ [27],
and FPclose [12] require this.

5. EXPERIMENT RESULTS AND EVALU-
ATION

We used the following 8 benchmark datasets to evaluate
DPMiner:



Datasets Size #Trans #Items MaxTL AvgTL #classes
adult 1.29MB 32,561 149 15 13.87 2
chess 0.34MB 3,196 75 37 37.00 2

connect-4 9.11MB 67,557 129 43 43.00 3
mushroom 0.56M 8,124 119 23 23.00 2
BMS-POS 11.62MB 515,597 1,657 165 6.53 -

pumsb 16.30MB 49,046 2,113 74 74.00 -
ALL-AML 1.1MB 38 1738 865 865 2

LungCancer 2.1MB 32 4372 2172 2172 2

where ‘MaxTL’ and ‘AvgTL’ indicate the maximal and aver-
age transaction length. The first four datasets are obtained
from the UCI machine learning repository. The BMS-POS
and pumsb datasets have been also widely used to evaluate
the performance of frequent itemset mining algorithms, and
they are available at http://fimi.cs.helsinki.fi/data/.
These two datasets do not contain class information. The
ALL-AML and LungCancer datasets (available at http:

//research.i2r.a-star.edu.sg/rp/) contain gene expres-
sion levels of leukemia or lung cancer patients. They are
challenging, as discussed in [20], because every transaction
contains hundreds (865 in ALL-AML) or even thousands
(2172 in LungCancer) of items. The experiments were con-
ducted on a 3.60Ghz Pentium IV with 2GB memory running
Fedora core. All codes were compiled using g++.

5.1 On Mining Equivalence Classes
To evaluate the efficiency of DPMiner for mining equiv-

alence classes, we compare DPMiner with LCM [26] and
FPclose [12]. We obtained the source codes of LCM and
FPclose from their correspondence authors. The LCM al-
gorithm represents the state-of-the-art algorithm for mining
frequent closed itemsets. It shows the best performance in
a comparative study of frequent closed itemset mining algo-
rithms; see http://fimi.cs.helsinki.fi/fimi04/. Here
we use its newest version—LCM ver. 3 [26]. The main tech-
nique of LCM is a parent-child relationship defined on closed
patterns which constructs tree-shaped transversal routes com-
posed of only closed patterns. FPclose is the winning algo-
rithm in FIMI03; see http://fimi.cs.helsinki.fi/fimi03/.
FPclose uses conditional FP-trees to generate candidate closed
patterns, then these candidates are inserted into a separate
pattern tree to check whether they are true or not closed
patterns. DPMiner differs from all of them as we store the
data using a modified version of the FP-tree, and we output
both closed patterns and generators in parallel directly from
those FP-trees.

As said, the main purpose of DPMiner is to output both
closed patterns and generators in parallel. To directly com-
pare with FPclose and LCM, we provide an optional imple-
mentation of DPMiner that mines and outputs only closed
itemsets by using the closure generation technique described
in Section 4.1.3 and Section 4.3. We term this option of DP-
Miner as “DPMiner-close”. We found that our algorithm is
not only faster, but also we use less amount of memory as we
do not have to store all the closed patterns in the memory.

Figure 4 shows the running time of the algorithms on the
first six datasets. DPMiner performs better than LCM3 on
four datasets. The DPMiner-close algorithm is significantly
faster than LCM3 and FPclose on all the datasets except
BMS-POS. This indicates that our closure generation tech-
nique is very efficient. The reason why DPMiner-close is
slower than LCM3 and FPclose on BMS-POS is that BMS-
POS is a very sparse dataset, the cost for building FP-trees
from sparse datasets is relatively high.

5.2 On Mining δ-Discriminative Equivalence
Classes That Are Non-redundant (Prob-
lem 2)

Loekito and Bailey [20] proposed an excellent algorithm,
called epMiner, for mining minimal emerging patterns based
on zero-suppressed binary decision diagrams. The epMiner
algorithm is claimed to significantly outperform another state-
of-the-art algorithm proposed by Fan and Kotagiri [11]. Given
two classes of data Dpos and Dneg , the epMiner algorithm
mines those minimal patterns occurring frequently (> α%)
in the positive class and infrequently (< β%) in the negative
class. Such patterns are known as minimal emerging pat-
terns [9]—patterns with good relative risk and odds ratio
test values.

For a fair comparison with the epMiner algorithm [20],
DPMiner takes the option of mining non-redundant
δ-discriminative equivalence classes under the setting

ms = (|Dpos| · α%)/(|Dpos| + |Dneg |)

and

δ = |Dneg | · β%

Then, all the generators of these equivalence classes are ex-
actly the minimal α%-β% emerging patterns that the ep-
Miner algorithm outputs. As DPMiner also outputs the
closed patterns of the equivalence classes, strictly speaking,
we can actually ignore the mining of closed patterns to save
more cost for a fairer comparison.

Figure 5 shows the running time of DPMiner and ep-
Miner. From this figure, we can see that DPMiner is con-
stantly faster than epMiner with multiple orders of magni-
tude on the two high-dimensional gene expression datasets
when varying α and β. (Our running time included the
time for mining the closed patterns. The experiments on the
ALL-AML dataset was terminated when the time reached
50000 seconds; on the LungCancer dataset was terminated
when reached 10000 seconds.)

The high efficiency of DPMiner is mainly attributed to
the prefix trees (the revised FP-tree structure) to store the
data, and the use of closed patterns and generators to con-
cisely represent the equivalence classes. We also note that
for handling multiple-class transactions, DPMiner can gain
even more efficiency, as the epMiner algorithm [20] has to
be run repeatedly on multiple pairwise combinations of the
datasets.

6. RELATED WORK
Cong et al. [8] studied the problem of mining top-k cover-

ing rule groups from binary classes of gene expression data.
Unlike our work dealing with statistically significant equiv-
alence classes, the notion of top-k rule groups is limited
to only association rules which are ranked by the rules’
confidence and support level. A rule group γ1 is ranked
higher than rule group γ2 if γ1.conf > γ2.conf or γ1.supp >
γ2.supp when γ1.conf = γ2.conf . By this ranking criteria,
top-k rule groups can contain much redundancy. For ex-
ample, in situations where γ1.conf = γ2.conf , γ1’s superset
closed patterns could be all in the top-k patterns. Such a
top-k rule group contains a very high redundancy because
k − 1 of them are totally subsumed to the first one in terms
of their transaction set. Second, the mining of generators
by Cong et al. is a post-mining process after mining closed
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Figure 4: Performance by DPMiner, DPMiner-close, LCM3, and FPclose.

patterns, and it takes a breadth-first search strategy. How-
ever, DPMiner takes a parallel depth-first approach to min-
ing both closed patterns and generators. Our algorithm is an
order of magnitude faster than Cong et al on many bench-
mark datasets. (Detailed comparison results are not shown
here due to space constraint.)

Our previous work by [15] is also related to this work.
The previous one was focused on a theoretical study on a
concise representation of odds ratio patterns and relative
risk patterns from binary classes of data, by using the con-
cept of “plateaus”. However, the current work does not use
the concept of “plateaus”. Instead, we present new data
structures, search strategies, and algorithm details to mine
statistically important equivalence classes in general, and
mine non-redundant δ-discriminative equivalence classes in
particular. This work also provides new ideas to unify the
method suitable for broad range of test statistics and mul-
tiple classes of transactions.

Recent work on mining contrast sets by STUCCO [5, 29]
is relevant to our work. Unlike emerging patterns signifying
the support ratio of an itemset between two classes of trans-
actions, a contrast set is an itemset emphasizing the absolute
support difference. They are a kind of statistical itemsets
under absolute risk reduction test [28, 30]. Therefore, con-
trast sets can be considered as a special case of this work.
Also, STUCCO uses a breadth-first search framework. Al-
though it can nicely handle datasets containing two classes
of transactions, it may become inconvenient when the data
contain multiple classes of transactions as its pruning and
filtering ideas become not that straightforward.

Our algorithm and results will be useful for the tradi-
tional machine learning field, especially when the applica-
tion involves multiple classes of data. This is because the
traditional learning methods [14, 3, 31, 22] have to orga-
nize the multiple classes of data through two typical pair-
wise coupling approaches. One is the one-vs-all approach—
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Figure 5: Running time comparison between DP-

Miner and epMiner.

constructing all possible data pairwise combinations of one
class against all the rest. The other is the all-vs-all approach—
constructing all possible pairs of single classes. Then, the
base learning algorithms are repeated many times to find
patterns characterizing every class—k times in the one-vs-all
method, and k(k−1)/2 times in the all-vs-all method, where
k is the number of classes. However, our mining algorithm
can totally avoid such a heavy computational redundancy
no matter how many classes are involved.

7. CONCLUSION
In this paper, we have investigated how to efficiently mine

a concise representation of statistically important equiva-



lence classes. Our key idea is to mine the frequent genera-
tors, their corresponding closed patterns, and the class label
distribution information of the itemsets. We have proposed
DPMiner that takes a depth-first search strategy for mining
both closed patterns and generators simultaneously under a
revised, often smaller, FP-tree data structures. DPMiner-
close (and DPMiner itself) is much faster than the best
closed pattern mining algorithms LCM3 and FPclose. We
have also refined DPMiner to efficiently produce a subtype
of equivalence classes called non-redundant δ-discriminative
equivalence classes. Experiment results show that this re-
fined algorithm is magnificently faster than epMiner, the
most recent algorithm for the same mining tasks. As a fu-
ture work, we will take advantage of the high efficiency for
supervised classification problems where the classical statis-
tical tests are of strong interests.
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