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ii USING EMERGING PATTERNS IN ANALYSIS OF GENE EXPRESSION PROFILES

1.1 INTRODUCTION

Microarrays are glass surfaces bearing arrays of DNA fragments at discrete addresses.

These DNA fragments on the microarray are hybridized to a complex sample of

fluorescently labeled DNA or RNA in solution. After a washing and staining process,

the addresses at which hybridization has taken place can be determined and the

expression level of the corresponding genes derived. Today, a single microarray

can contain several tens of thousands of DNA fragments. Thus, microarrays are a

technology for simultaneously profiling the expression levels of tens of thousands of

genes in a patient sample.

It is hopeful that better diagnosis methods and better understanding of disease

mechanisms can be derived from a careful analysis of microarray measurements of

gene expression profiles. This chapter discusses several types of analysis of such

gene expression profiles using a form of supervised learning based on the idea of

emerging patterns. The types of analysis discussed are (a) diagnosis of disease state

or subtype, (b) derivation of disease treatment plan, and (c) understanding of gene

interaction networks.

The first type of analysis mentioned above reasonably postulates that the ex-

pression levels of various genes in a patient are dependent on his/her disease state

and/or subtype. Therefore, by a careful analysis of gene expression profiles, we can

hopefully determine the signature pattern of gene expression profiles associated with

specific disease states and/or subtypes that are useful for diagnosis purposes. The

second and third types of analysis mentioned above suggest the converse that the state

of a disease can be affected by the expression levels of certain genes. That is, the

improper expression of these genes is the cause of the disease. Hence, by a careful

analysis of gene expression profiles, one might be able to infer such “causal” genes

and to plan a course of treatment to modulate these genes.

This chapter is organized as follows. Section 1.2 discusses a method of classi-

fication/prediction, called PCL, that uses collective likelihood based on emerging

patterns. Section 1.3 deals with the selection of relevant genes. Section 1.4 consid-

ers the diagnosis of disease states or subtypes using PCL. Section 1.5 presents an
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PREDICTION BY COLLECTIVE LIKELIHOOD BASED ON EMERGING PATTERNS iii

approach to deriving treatment plans based on emerging patterns. Section 1.6 dis-

cusses approaches to understanding molecular circuits. Section 1.7 provides closing

remarks.

1.2 PREDICTION BY COLLECTIVE LIKELIHOOD BASED ON

EMERGING PATTERNS

In the field of machine learning, there are many good prediction methods including

k-nearest neighbours (k-NN) [23], C4.5 [100], support vector machines (SVM) [17],

Naive Bayes (NB) [65], etc. C4.5 is a widely used learning algorithm that induces

from training data rules that are easy to comprehend. However, it may not have good

performance if real decision boundary underlying the data is not linear. The Naive

Bayes model uses Bayesian rules to estimate probabilistic score for each class. When

given a test sample, NB uses the probabilistic scores to rank the classes, and assigns

the sample to the highest scoring class. An important assumption used in NB is that

the underlying features are statistically independent. However, this is not appropriate

for gene expression data analysis as genes involved in an expression profile are often

closely related and appear not to be independent. The k-nearest neighbour method

assigns a test sample the class of its nearest training sample in terms of some distance

functions. Even though the k-NN is intuitive and has good performance, it is not

helpful for understanding complex cases in depth. The support vector machines use

non-linear kernel functions to construct a complicated mapping between samples

and their class labels. SVM has good performance, but it functions as a black box.

Similarly, traditional datamining methods that look for high frequency patterns are

frequently not useful on gene expression data. We are therefore motivated to seek

a classification method that enjoys the advantages of both high accuracy and high

comprehensibility. In this section, we describe the method of Prediction by Collective

Likelihood based on emerging patterns (PCL).

PCL [71, 67] is a classification method that we have been developing during the

last couple of years. This method focuses on (a) fast techniques for identifying

patterns whose frequencies in two classes differ by a large ratio [26], which are the
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so-called emerging patterns; and on (b) combining these patterns to make decisions.

A pattern is a set of expression conditions of the form ci1 ≤ Gi < ci2 if feature Gi is

numerical, and of the form Gi = ci if feature Gi is discretized. Often we discretize

numerical features first. Example emerging patterns are given in Section 1.4. Note

that a pattern is still emerging if its frequencies are as low as 1% in one class and

0.1% in another class, because the ratio indicates a 10 times difference. However, for

the purpose of PCL, we use only emerging patterns that are most general and have

infinite ratio. That is, we use only emerging patterns that occur in one class of data

but not the other class and that do not contain any subsets which are also infinite-

ratio emerging patterns. From now on by emerging patterns we mean infinite-ratio

most-general emerging patterns.

Basically, the PCL classifier has two phases. Given two training datasets DA

and DB (instances of classes A and B, resp.), PCL first discovers two groups of most

general emerging patterns from DA and DB. Denote the most general emerging

patterns of DA as, EPA
1 , EPA

2 , · · ·, EPA
i , in descending order of frequency.

Similarly denote the most general emerging patterns of DB as EPB
1 , EPB

2 , · · ·,

EPB
j . Let T be a test sample. Suppose T contains the following most general

emerging patterns of DA: EPA
i1

, EPA
i2

, · · ·, EPA
ix

, i1 < i2 < · · · < ix ≤ i,

and the following most general emerging patterns of DB: EPB
j1

, EPB
j2

, · · ·, EPB
jy

,

j1 < j2 < · · · < jy ≤ j. Next, PCL calculates two scores for predicting the class

label of T . Suppose we use k (k � i and k � j) top-ranked most general emerging

patterns of DA and DB. Then we define the score of T in the DA class as

score(T, DA) =
k

∑

m=1

frequency(EPA
im

)

frequency(EPA
m)

,

and the score in the DB class is similarly defined in terms of EP B
jm

and EPB
m. The use

of summation allows us to combine signals captured by different emerging patterns,

and the use of ratio allows us to somehow normalize the scores for situations where

one class has many strong (high frequency) emerging patterns but another class has

very few or even no strong emerging patterns. If score(T, DA) > score(T, DB),

then T ’s predicted class is DA. Otherwise its predicted class is DB. We use the size
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of DA and DB to break tie. The PCL classifier has proved to be a good tool for

analysing gene expression data and proteomic data [67, 131, 71, 73, 68, 74].

Clearly PCL requires an efficient method to discover emerging patterns that are

most general (and that have infinite ratio). Observe that there are 2n possible patterns

contained in each tuple of DA and DB, if DA and DB have n attributes. Hence

naive methods to extract emerging patterns would be too expensive. More efficient

methods for extracting emerging patterns are therefore crucial to the operation of

PCL. We briefly discuss here an approach for developing more practical algorithms

for finding such emerging patterns. Let us begin with a theoretical observation:

Proposition 1.2.1 (Cf. [69]) The collection of all (infinite-ratio) emerging patterns

from DA to DB form a convex space, i.e., for all emerging patterns X and Y and for

each Z such that X ⊆ Z ⊆ Y , Z is also an emerging pattern.

A convex space C can be represented by a pair of borders 〈L, R〉, so that (a) both

L and R are anti-chains, (b) each X ∈ L is more general than some Z ∈ R (i.e.,

Z is a superset of X), (c) each Z ∈ R is more specific than some X ∈ L, and (d)

C = {Y | ∃X ∈ L, ∃Z ∈ R, X ⊆ Y ⊆ Z}. Actually, L consists of the most

general, and R the most specific, patterns in C. We can write [L, R] for C. Observe

that

Proposition 1.2.2 Suppose DA (respectively, DB) has no duplicate and its tuples

are of the same dimension. Then the set of emerging patterns of DA is given

by [{{}}, DA] − [{{}}, DB], and the set of emerging patterns of DB is given by

[{{}}, DB]− [{{}}, DA].

Having reduced emerging patterns to this border formulation, we can derive a more

efficient approach to discovering them. Let A1, . . . , An be the tuples of DA that do

not occur in DB, and let DB = {B1, . . . , Bm}. Then

[{{}}, DA]− [{{}}, DB]
= [{{}}, {A1, . . . , An}]− [{{}}, {B1, . . . , Bm}]
= [L, {A1, . . . , An}]

where

L =

n
⋃

i

min{{s1, . . . , sm}|sj ∈ Ai −Bj , 1 ≤ j ≤ m}.
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Citations [26, 69, 132] give fairly efficient methods to compute L, using novel

border-based algorithms and constraint-based algorithms. Citation [127] gives results

showing that emerging pattern mining is hard theoretically.

In the remainder of this chapter, we discuss the use of emerging patterns and PCL

in the analysis of microarray gene expression profiles.

1.3 SELECTION OF RELEVANT GENES

pairs
in avg abs

probe pos neg avg diff call Description

... ... ... ... ... ... ...
106 at 4 1 15 1527.6 A Z35278 Human PEBP2aC1 ...
107 at 4 4 15 3723.3 A Z95624 Human DNA from ...
108 g at 5 2 15 1392.4 A Z95624 Human DNA ...
109 at 6 2 16 2274.7 M Z97074 Human mRNA for ...
... ... ... ... ... ... ...

Fig. 1.1 A partial example of a processed microarray measurement record of a patient sample

using the Affymetrix U95A Gene Chip. Each row represents a probe. Typically each probe

represents a gene. The U95A Gene Chip contains more than 12,000 probes. The 5th column

contains the gene expression measured by the corresponding probe. The 2nd, 3rd, 4th, and

6th columns are quality control data. The 1st and last columns are the probe identifier and a

description of the corresponding gene.

A single microarray experiment can measure the expression level of tens of thou-

sands of genes simultaneously [76, 102]. In other words, the microarray experiment

record of a patient sample—see Figure 1.1 for an example—is a record having tens

of thousands of features or dimensions. This extremely high dimensionality causes

many problems to existing datamining and machine learning methods. One such

problem is that of efficiency because most datamining and machine learning methods

have time complexity that are high with respect to the number of dimensions [47].

Another such problem is that of noise because most datamining and machine learning

methods suffer from the “curse of dimensionality”—these methods typically require
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SELECTION OF RELEVANT GENES vii

an exponential increase in the number of training samples with respect to an increase

in the dimensionality of the samples in order to uncover and learn the relationship of

the various dimensions to the nature of the samples [48].

Let us assume that we have two classes A and B of microarray gene expression

profiles of patient samples. For example, A could be gene expression profiles of

colon tumour cells and B could be gene expression profiles of normal (matching)

cells. Then a feature—in this case, a gene—is relevant if it contributes to separating

samples in A from those in B. Conversely, a feature may be irrelevant if it does not

contribute much to separating samples in A from those in B. In order to alleviate

the impact of the problems caused by high dimensionality mentioned above, it is

desirable to first discard as many features that are irrelevant as possible. In this

section, we present several techniques for deciding whether a feature is relevant, viz.

t-statistics, signal-to-noise, and entropy measures.

A basic approach for selecting relevant features is the following: if the values of a

feature in samples inA are significantly different from the values of the same feature

in samples in B, then the feature is likely to be more relevant than a feature that has

similar values in A and B.

One concept to capture significant difference among feature values in multiple

classes is to use the difference between mean values of a feature in the different

classes. However, we caution that the mean difference itself is not good enough for

selecting relevant features. Indeed, if the values of a feature f varies greatly within

the same class of samples, even if µAf differs greatly from µBf , the feature f is still

not a reliable one.

The deficiency of the mean difference concept leads us to a second concept to

capture significant difference among feature values in multiple classes: the standard

deviation σAf of f in A and the standard deviation σBf of f in B. We will also use the

variance (σAf )2 and (σBf )2 which can be derived from the standard deviation.

One way to combine these two concepts is the signal-to-noise measure, proposed

in the first paper [45] that applied gene expression profiling for disease diagnosis,

s(f,A,B) =
|µAf − µBf |

σAf + σBf
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However, the statistical property of s(f,A,B) is not fully understood. Subsequently,

a second and older way—the t-test—to combine these two concepts was rediscov-

ered. The classical t-test statistical measure [10, 18] is known to follow a Student

distribution with (h(A)+h(B))2/((h(A)2/(nA−1))+(h(B)2/(nB−1))) degrees

of freedom, where h(C) = (σCf )2/nC , nA and nB are respectively the number of

samples in A and B. The t-test statistical measure is given by,

t(f,A,B) =
|µAf − µBf |

√

(σAf )2/nA + (σBf )2/nB

Both of these measures are easy to compute and thus are straightforward to use.

However, these measures have three significant deficiencies in the context of gene

expression profiles. Firstly, in gene expression profile experiments, the population

sizes nA and nB are often as small as 2 or 3. These small population sizes can lead

to significant underestimates of the standard deviations and variances. Secondly,

due to some technological limitations of microarrays, there is no guarantee that two

measurements of gene expression values taken from the same sample will agree with

each other. That is, the value of a gene f may be different in these two microarray

measurements taken from the same sample. However, if the ranges of f in A and B

do not overlap, then the variances with respect to A and B should not matter all that

much. Unfortunately, both t(f,A,B) and s(f,A,B) are sensitive to small changes

in the values of f . Thirdly, the t-test statistical measure requires the gene expression

values to follow the Student’s distribution or a nearly normal distribution. For some

experiments, the gene expression values may not follow such distributions.

So, one should consider alternative statistical measures that are less sensitive to

changes in the value of f that are unimportant in the sense that they do not shift

the value of f from the range in A into the range of B. One such idea is the

entropy measure [34]. Let P (f, C, S) be the proportion of samples whose feature

f has value in the range S and are in class C. The class entropy of a range S

with respect to feature f and a collection of classes U is defined as Ent(f,U , S) =

−
∑

C∈U
P (f, C, S)log(P (f, C, S)). Let T partitions the values of f into two ranges

S1 (of values less than T ) and S2 (of values at least T ). We sometimes refer to
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T as the cutting point of the values of f . The entropy measure e(f,A,B) of a

feature f is then defined as min{E(f, {A,B}, S1, S2) | (S1, S2) is a partitioning of

the values of f in A and B by some point T}. Here, E(f, {A,B}, S1, S2) is the

class information entropy of partition (S1, S2). The definition is given below, where

n(f,U , S) denotes the number of samples in the classes in U whose feature f has

value in the range S,

E(f,U , S1, S2) =
2

∑

i=1

n(f,U , Si)

n(f,U , S1 ∪ S2)
Ent(f,U , Si)

A refinement of the entropy measure is to recursively partition the ranges S1 and

S2 until some stopping criteria is reached [34]. A commonly used stopping criteria

is the so-called minimal description length principle. Another refinement is the X 2

measure [75].

All of the preceding measures provide a rank ordering of the features in terms of

their relevance to separatingA andB. One would rank the features using one of these

measures and select the top n features. However, one must appreciate that there may

be a variety of independent reasons why a sample is in A or is in B. For example,

there can be a number of different pathways via which a cell becomes cancerous

and there can be a number of different pathways via which a disease cell becomes

of a specific subtype. If a primary pathway involves n genes, the procedure above

may select only these n genes and may ignore genes in other secondary pathways.

Consequently, concentrating on such top n features may cause us to lose sight of the

secondary pathways underlying the disease.

This issue above calls for a different approach to feature selection: select a group

of features that are correlated with separating A and B but are not correlated with

each other. The cardinality in such a group may suggest the number of independent

factors that underly the separation of A and B. A well-known technique that imple-

ments this feature selection strategy is the Correlation-based Feature Selection (CFS)

method [46]. Rather than scoring and ranking individual features, the CFS method

scores and ranks the worth of subsets of features. As the feature subset space is usu-

ally huge, CFS uses a best-first-search heuristic. This heuristic algorithm takes into

account the usefulness of individual features for predicting the class along with the
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level of intercorrelation among them. CFS first calculates a matrix of feature-class

and feature-feature correlations from the training data. Then a score of a subset of

features is assigned by a heuristic. CFS starts from the empty set of features and

uses the best-first-search heuristic with a stopping criterion of 5 consecutive fully

expanded non-improving subsets. The subset with the highest merit found during the

search will be selected.

Note that even if each gene selected by CFS is associated with a distinct pathway

underlying the separation of A and B, there is no guarantee that these genes will

lead to good results by themselves. Each pathway involves multiple genes acting

in a coordinated fashion. In methods such as the entropy measure, one is more

likely to select all the genes in a primary pathways and neglect those of secondary

pathways. In methods such as CFS, one is more likely to select the more important

gene in each pathways and neglect the secondary genes. However, to get the best

analysis results and to achieve the best understanding, it is crucial to know all of the

relevant pathways and all of the genes relevant in each pathway. This ideal remains

a significant challenge in research in feature selection methods.

Nevertheless, empirical evidence [68] suggests that so long as A and B are rel-

atively homogeneous, the entropy measure and its refinements can make a good

selection of relevant genes from microarray gene expression profiles. For example,

comparing Figure 1.3 and Figure 1.4 in the next section, we see that prediction

errors are significantly reduced by selecting relevant genes as described earlier. Fur-

thermore, this reduction in prediction errors is universal across all the prediction

algorithms used.

We want to make a final note of caution in performing feature selection to mi-

croarray gene expression profiles. The collection of gene expression profiles should

be divided into a training set and a testing set. Selection of relevant genes should

be made on the basis of the training set only. If there is insufficient gene expression

profiles to divide into separate training and testing sets, then a k-fold cross validation

strategy should be used and a fresh selection should be made for each fold using the

training portion of that fold. To appreciate the importance of this caution, let us visit

a simulation experiment reported by Miller et al. [88]. They constructed an artificial
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data set with 100 samples. Each sample contains 100,000 random expression values

and has a randomly assigned class. They then selected the 20 genes with the smallest

p values determined by the Wilcoxon rank sum test. They evaluated the accuracy

of using these 20 genes in class prediction by leave-one-out cross validation. The

resultant estimated accuracy was 88%. However, as the data are derived from ran-

dom assignments, the true accuracy must be only 50%. This is clearly inappropriate.

Ambroise and McLachlan [5] provide additional examples that illustrate this issue.

1.4 DIAGNOSIS OF DISEASE STATE OR SUBTYPE

A major excitement generated by microarrays in the biomedical world is the possibil-

ity of using microarrays to diagnose disease states or disease subtypes in a way that

is more efficient and more effective than conventional techniques [45, 131, 3, 40, 96].

Let us consider the diagnosis of childhood leukaemia subtypes as an illustration.

Childhood leukaemia is a heterogeneous disease comprising more than 10 subtypes,

including T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL, MLL, Hyperdiploid>50,

and so on. The response of each subtype to chemotherapy is different. Thus the

optimal treatment plan for childhood leukaemia depends critically on the subtype.

Conventional childhood leukaemia subtype diagnosis is a difficult and expensive

process [131]. It requires intensive laboratory studies comprising cytogenetics, im-

munophenotyping, and molecular diagnostics. Usually, these diagnostic approaches

require the collective expertise of a number of professionals comprising hematolo-

gists, oncologists, pathologists, and cytogeneticists. Although such combined ex-

pertise is available in major medical centers in developed countries, it is generally

unavailable in less developed countries. It is therefore very exciting if microarrays

and associated automatic gene expression profile analysis can serve as a single easy-

to-use platform for subtyping of childhood leukaemia. This section applies the ideas

of emerging patterns and PCL on a large childhood leukaemia dataset to perform

subtype diagnosis.

We show the results of PCL on the dataset reported in Yeoh et al. [131]. The whole

dataset consists of gene expression profiles of 327 childhood accute lymphoblastic
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leukaemia (ALL) samples. These profiles were obtained by hybridization on the

Affymetrix U95A GeneChip containing probes for 12558 genes. The data contain

all the known acute lymphoblastic leukemia subtypes, including T-ALL, E2A-PBX1,

TEL-AML1, BCR-ABL, MLL, and Hyperdiploid>50. The data were divided by

Yeoh et al. into a training set of 215 instances and an independent test set of 112

samples. There are 28, 18, 52, 9, 14, and 42 training instances and 15, 9, 27, 6, 6,

and 22 test samples respectively for T-ALL, E2A-PBX1, TEL-AML1, BCR-ABL,

MLL, and Hyperdiploid>50. There are also 52 training and 27 test samples of other

miscellaneous subtypes. The original training and test data were layered in a tree-

structure, as shown in Figure 1.2. Given a new sample, we first check if it is T-ALL.

If it is not classified as T-ALL, we go to the next level and check if it is a E2A-PBX1.

If it is not classified as E2A-PBX1, we go to the third level and so on.

A Sample

MLL?

No

No

No

No

Y

Y

Y

Y

Y

Y

T-ALL

MLL

T-ALL?

E2A-PBX1?

TEL-AML1?

BCR-ABL?

Hyperdip>50?

BCR-ABL

TEL-AML1

E2A-PBX1

No

No

OTHERSHyperdip>50

Fig. 1.2 The classification of the ALL subtypes is organized in a tree. Given a new sample,

we first check if it is T-ALL. If it is not classified as T-ALL, we go to the next level and check

if it is a E2A-PBX1. If it is not classified as E2A-PBX1, we go to the third level and so on.

In applying PCL to this dataset, at each level of the tree, we first use the entropy

measure described in the previous section to select the 20 genes that have the lowest
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entropy in that level’s training data. Then we extract emerging patterns of that

level involving just these 20 genes using the training set of that level. After the

discretization of these top-ranked genes, we use border-based algorithms [26, 69]

to discover the most general emerging patterns. Then these emerging patterns are

used by PCL to predict the subtypes of test instances of that level. For comparison,

we have also applied several popular classification methods—C4.5, SVM, and Naive

Bayes(NB)—to the same datasets after filtering using the same selected genes. In

each of these comparison methods, the default settings of the weka package (http:

//www.cs.waikato.ac.nz/ml/weka) was used. In the PCL case, the parameter k

was set to 20. The number of false predictions on the test instances, after filtering

by selecting relevant genes as described above, at each level of the tree by PCL, as

well as those by C4.5, SVM, and NB, is given in Figure 1.3. The results of the same

algorithms but without filtering by selecting relevant genes beforehand is given in

Figure 1.4. The number of false predictions by PCL is less than that made by the

other methods. We have also tried using different number of genes and different

selection methods and different values of the parameter k in PCL, the number of false

predictions by PCL is consistently less than that made by other methods [68]. Similar

results are also obtained when a parallel classification scheme is used in place of the

tree-structured scheme [67].

PCL has high accuracy and the underlying emerging patterns identified can also

be translated into highly comprehensible rules. Let us illustrate this point about

comprehensibility using some of the top emerging patterns from the ALL study

above. In the prediction of the substype E2A-PBX1 versus other subtypes, the gene

32063 at has perfect entropy measure when its expression range is partitioned at

the point 4068.7. The two emerging patterns induced by this partitioning have very

high support: the expression of 32063 at in all E2A-PBX1 samples are greater than

4068.7 and the expression of 32063 at in all other subtypes are less than 4068.7. In

other words, the emerging pattern, {32063 at ≥ 4068.7}, and the emerging pattern,

{32063 at < 4068.7}, yield two rules that are 100% valid:

if 32063 at ≥ 4068.7, then the sample is E2A-PBX1;

if 32063 at < 4068.7, then the sample is OTHERS2.
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Testing Data Error rate of different models
C4.5 SVM NB PCL

(k = 20)

T-ALL vs OTHERS1 0:1 0:0 0:0 0:0
E2A-PBX1 vs OTHERS2 0:0 0:0 0:0 0:0
TEL-AML1 vs OTHERS3 1:1 0:1 0:1 1:0
BCR-ABL vs OTHERS4 2:0 1:1 2:2 1:1
MLL vs OTHERS5 1:1 0:0 0:0 0:0
Hyperdiploid>50 vs OTHERS 1:6 0:2 0:2 0:2

Total Errors 14 5 7 5

Fig. 1.3 The error counts of various classification methods on the blinded ALL test samples

are given in this figure. PCL is shown to make considerably less misclassifications. The

OTHERSi class contains all those subtypes of ALL below the ith level of the tree depicted in

Figure 1.2.

Testing Data Error rate of different models
C4.5 SVM NB

T-ALL vs OTHERS1 0:1 0:0 13:0
E2A-PBX1 vs OTHERS2 0:0 0:0 9:0
TEL-AML1 vs OTHERS3 2:4 0:9 20:0
BCR-ABL vs OTHERS4 1:3 2:0 6:0
MLL vs OTHERS5 0:1 0:0 6:0
Hyperdiploid>50 vs OTHERS 4:10 12:0 7:2

Total Errors 26 23 63

Fig. 1.4 The error counts of various classification methods on the blinded ALL test samples

without filtering by selecting relevant genes are given in this figure. The OTHERSi class

contains all those subtypes of ALL below the ith level of the tree depicted in Figure 1.2.

In some other subtypes, no single gene can yield such reliable rules, and we must thus

look at rules involving co-ordinated gene expression. In the prediction of the subtype

TEL-AML1, two of the top genes are 38652 at and 36937 s at. The expression

range of 38652 at is partitioned at the point 8997.35 and the expression range of

36937 at is partitioned at the point 13617.05. These partitioning induces 4 candidate

patterns and one of them (38652 at ≥ 8997.35 and 36937 s at < 13617.05) is a
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top emerging pattern that appears in 92.31% of TEL-AML1 training samples but

never in OTHERS3. This suggests that 38652 at and 36937 s at are co-ordinated in

TEL-AML1 and induces a rule that has an estimated validity of 92.31%:

if 38652 at ≥ 8997.35 and 36937 s at < 13617.05 in a sample, then the sample

is TEL-AML1.

These rules and other additional ones on the childhood leukaemia dataset are dis-

cussed in more detail in Li et al [67].

1.5 DERIVATION OF TREATMENT PLAN

In the previous sections, we see that the entropy measure can be used to identify

genes that are relevant to the diagnosis of disease states and subtypes. We also

saw that the top emerging patterns are suggestive of coordinated gene groups in

particular disease states and subtypes: (i) For each gene in such a coordinated gene

group there is a pre-determined interval of gene expression level, as specified by the

corresponding emerging pattern. (ii) Particular disease states and subtypes can often

be characterized by one or more such emerging patterns, in the sense that a large

portion of the cases in the given disease state (or subtype) match the corresponding

emerging patterns and the cases in other disease states (or subtypes) never match

the same emerging patterns. Based on these patterns, we conjecture the possibility

of a personalized “treatment plan” which converts tumor cells into normal cells by

modulating the expression levels of a few genes.

We use the colon tumour dataset of Alon et al. [4] to demonstrate our idea in this

section. This dataset consists of 22 normal tissues and 40 colon tumor tissues. We

begin with finding out which intervals of the expression levels of a group of genes

occur only in cancer tissues but not in the normal tissues and vice versa. Then we

attempt an explanation of the results and suggest a plan for treating the disease.

We use the entropy measure [34] described earlier to induce a partition of the

expression range of each gene into suitable intervals. As discussed, this method

partitions a range of real values into a number of disjoint intervals such that the

entropy of the partition is minimal. For the colon cancer dataset, of its 2000 genes,
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only 135 genes can be partitioned into 2 intervals of low entropy [72, 70]. The

remaining 1865 genes are ignored by the method. Thus most of the genes are viewed

as irrelevant by the method. For the purpose of this chapter we further concentrate

on the 35 genes with the lowest entropy measure amongst the 135 genes. These 35

genes are shown in Figure 1.5. This gives us an easy platform where a small number

of good diagnostic indicators are concentrated. For simplicity of reference, the index

numbers in the first column of Figure 1.5 are used to refer to the two expression

intervals of the corresponding genes. For example, the index 1 means M26338 <

59.83 and the index 2 means M26383≥ 59.83.

Next, we use an efficient border-based algorithm [26, 69] to discover emerging

patterns based on the selected 35 genes and the partitioning of their expression inter-

vals induced by the entropy measure. The emerging patterns are thus combinations of

intervals of gene expression levels of these relevant genes. A total of 10548 emerging

patterns are found, 9540 emerging patterns for the normal class and 1008 emerging

patterns for the tumour class. The top several tens of the normal class emerging pat-

terns contain about 8 genes each and can reach a frequency of 77.27%, while many

tumour class emerging patterns can reach a frequency of around 65%. These top

emerging patterns are presented in Figure 1.6 and Figure 1.7. Note that the numbers

in the emerging patterns in these figures, such as {2, 10} in Figure 1.7, refer to the

index numbers in Figure 1.5. Hence, {2, 10} denotes the pattern {M26383≥ 59.83,

H08393≥ 84.87}. The emerging patterns that are discovered are most general ones,

and they occur in one class of data but do not occur in the other class. The discovered

emerging patterns always contain only a small number of the relevant genes. This

result reveals interesting conditions on the expression of these genes that differentiate

between two classes of data.

Each emerging pattern with high frequency is considered as a common property

of a class of cells. Based on this idea, we propose a strategy for treating colon tumors

by adjusting the expression level of some improperly expressed genes. That is, we

increase or decrease the expression levels of some particular genes in a cancer cell,

so that it has the common properties of normal cells and no properties of cancer cells.

As a result, instead of killing the cancer cell, it is “converted” into a normal one. We
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Our accession cutting
list number points Name

1,2 M26383 59.83 monocyte-derived neutrophil-activating protein mRNA
3,4 M63391 1696.22 Human desmin gene
5,6 R87126 379.38 myosin heavy chain, nonmuscle (Gallus gallus)
7,8 M76378 842.30 Human cysteine-rich protein (CRP) gene, exons 5 and 6
9,10 H08393 84.87 COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)
11,12 X12671 229.99 heterogeneous nuclear ribonucleoprotein core protein A1
13,14 R36977 274.96 P03001 TRANSCRIPTION FACTOR IIIA
15,16 J02854 735.80 Myosin regulatory light chain 2, smooth muscle isoform
17,18 M22382 447.04 Mitochondrial matrix protein P1 precursor (Human)
19,20 J05032 88.90 Human aspartyl-tRNA synthetase alpha-2 subunit mRNA
21,22 M76378 1048.37 Human cysteine-rich protein (CRP) gene, exons 5 and 6
23,24 M76378 1136.74 Human cysteine-rich protein (CRP) gene, exons 5 and 6
25,26 M16937 390.44 Human homeo box c1 protein mRNA
27,28 H40095 400.03 Macrophage migration inhibitory factor (Human)
29,30 U30825 288.99 Human splicing factor SRp30c mRNA
31,32 H43887 334.01 Complement Factor D Precursor
33,34 H51015 84.19 Proto-oncogene DBL Precursor
35,36 X57206 417.30 1D-myo-inositol-trisphosphate 3-kinase B isoenzyme
37,38 R10066 494.17 PROHIBITIN (Homo sapiens)
39,40 T96873 75.42 Hypothetical protein in TRPE 3’region (S. aurantia)
41,42 T57619 2597.85 40S ribosomal protein S6 (Nicotiana tabacum)
43,44 R84411 735.57 Small nuclear ribonucleoprotein assoc. protein B and B’
45,46 U21090 232.74 Human DNA polymerase delta small subunit mRNA
47,48 U32519 87.58 Human GAP SH3 binding protein mRNA
49,50 T71025 1695.98 Human (HUMAN)
51,52 T92451 845.7 Tropomyosin, fibroblast and epithelial muscle-type
53,54 U09564 120.38 Human serine kinase mRNA
55,56 H40560 913.77 THIOREDOXIN (HUMAN)
57,58 T47377 629.44 S-100P PROTEIN (HUMAN)
59,60 X53586 121.91 Human mRNA for integrin alpha 6
61,62 U25138 186.19 Human MaxiK potassium channel beta subunit mRNA
63,64 T60155 1798.65 ACTIN, AORTIC SMOOTH MUSCLE (HUMAN)
65,66 H55758 1453.15 ALPHA ENOLASE (HUMAN)
67,68 Z50753 196.12 H.sapiens mRNA for GCAP-II/uroguanylin precursor
69,70 U09587 486.17 Human glycyl-tRNA synthetase mRNA

Fig. 1.5 The 35 top-ranked genes by the entropy measure. The index numbers in the first

column are used to refer to the two expression intervals of the corresponding genes. For

example, the index 1 means M26338 < 59.83 and the index 2 means M26383 ≥ 59.83.

show later that almost all “adjusted” cells are predicted as normal cells by a number

of good classifiers that were trained to distinguish normal from colon tumor cells.
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Count & Freq. (%) Count & Freq. (%)
Emerging patterns in normal tissues in cancer tissues

{25, 33, 37, 41, 43, 57, 59, 69} 17(77.27%) 0
{25, 33, 37, 41, 43, 47, 57, 69} 17(77.27%) 0
{29, 33, 35, 37, 41, 43, 57, 69} 17(77.27%) 0
{29, 33, 37, 41, 43, 47, 57, 69} 17(77.27%) 0
{29, 33, 37, 41, 43, 57, 59, 69} 17(77.27%) 0
{25, 33, 35, 37, 41, 43, 57, 69} 17(77.27%) 0
{33, 35, 37, 41, 43, 57, 65, 69} 17(77.27%) 0
{33, 37, 41, 43, 47, 57, 65, 69} 17(77.27%) 0
{33, 37, 41, 43, 57, 59, 65, 69} 17(77.27%) 0
{33, 35, 37, 41, 43, 45, 57, 69} 17(77.27%) 0
{33, 37, 41, 43, 45, 47, 57, 69} 17(77.27%) 0
{33, 37, 41, 43, 45, 57, 59, 69} 17(77.27%) 0
{13, 33, 35, 37, 43, 57, 69} 17(77.27%) 0
{13, 33, 37, 43, 47, 57, 69} 17(77.27%) 0
{13, 33, 37, 43, 57, 59, 69} 17(77.27%) 0
{13, 32, 37, 57, 69} 17(77.27%) 0
{33, 35, 37, 57, 68} 17(77.27%) 0
{33, 37, 47, 57, 68} 17(77.27%) 0
{33, 37, 57, 59, 68} 17(77.27%) 0
{32, 37, 41, 57, 69} 17(77.27%) 0

Fig. 1.6 The top 20 emerging patterns, in descending frequency order, in the 22 normal

tissues. The numbers in the emerging patterns above refer to the index numbers in Figure 1.5.

As shown in Figure 1.6, the frequency of emerging patterns can reach a very

high level such as 77.27%. The conditions implied by a highly frequent emerging

pattern form a common property of one class of cells. Using the emerging pattern

{25, 33, 37, 41, 43, 57, 59, 69} from Figure 1.6, we see that each of the 77.27%

of the normal cells simultaneously expresses the eight genes— M16937, H51015,

R10066, T57619, R84411, T47377, X53586, and U09587 referenced in this emerging

pattern—in such a way that each of the eight expression levels is contained in the

corresponding interval—the 25th, 33th, 37th, 41st, 43rd, 57th, 59th, and 69th—as

indexed in Figure 1.5. Although a cancer cell may express some of the eight genes

in a similar manner as normal cells do, according to the dataset, a cancer cell can

never express all of the eight genes in the same way as normal cells do. So, if

the expression levels of those improperly expressed genes can be adjusted, then the

cancer cell can be made to have one more common property that normal cells exhibit.
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Count & Freq. (%) Count & Freq. (%)
Emerging patterns in normal tissues in cancer tissues

{2, 10} 0 28 (70.00%)
{10, 61} 0 27 (67.50%)
{10, 20} 0 27 (67.50%)
{3, 10} 0 27 (67.50%)
{10, 21} 0 27 (67.50%)
{10, 23} 0 27 (67.50%)
{7, 40, 56} 0 26 (65.00%)
{2, 56} 0 26 (65.00%)
{12, 56} 0 26 (65.00%)
{10, 63} 0 26 (65.00%)
{3, 58} 0 26 (65.00%)
{7, 58} 0 26 (65.00%)
{15, 58} 0 26 (65.00%)
{23, 58} 0 26 (65.00%)
{58, 61} 0 26 (65.00%)
{2, 58} 0 26 (65.00%)
{20, 56} 0 26 (65.00%)
{21, 58} 0 26 (65.00%)
{15, 40, 56} 0 25 (62.50%)
{21, 40, 56} 0 25 (62.50%)

Fig. 1.7 The top 20 emerging patterns, in descending frequency order, in the 40 cancer

tissues. The numbers in the emerging patterns refer to the index numbers in Figure 1.5.

Conversely, a cancer cell may exhibit an emerging pattern that is a common property

of a large percentage of cancer cells and is not exhibited in any of the normal cells.

Adjustments should also be made to some genes involved in this pattern so that the

cancer cell can be made to have one less common property that cancer cells exhibit.

A cancer cell can then be iteratively converted into a normal one as described above.

As there usually exist some genes of a cancer cell which express in a similar

way as their counterparts in normal cells, less than 35 genes’ expression levels are

required to be changed. The most important issue is to determine which genes need

an adjustment. Our emerging patterns can be used to address this issue as follows.

Given a cancer cell, we first determine which top emerging pattern of normal cells has

the closest Hamming distance to it in the sense that the least number of genes need

to be adjusted to make this emerging pattern appear in the adjusted cancer cell. Then

we proceed to adjust these genes. This process is repeated several times until the
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adjusted cancer cell exhibits as many common properties of normal cells as a normal

cell does. The next step is to look at which top emerging pattern of cancer cells

that is still present in the adjusted cancer cell has the closest Hamming distance to a

pattern in a normal cell. Then we also proceed to adjust some genes involved in this

emerging pattern so that this emerging pattern would vanish from the adjusted cancer

cell. This process is repeated until all top emerging patterns of cancer cells disappear

from our adjusted cancer cell. It is possible to choose genes to adjust following the

spirit above, but in a different way so that the number of gene adjustments needed is

minimized. We leave the diligent readers to devise a more optimal strategy.

We use a cancer cell (T1) of the colon tumor dataset as an example to show

how a tumor cell is converted into a normal one. Recall the emerging pattern

{25, 33, 37, 41, 43, 57, 59, 69} is a common property of normal cells. The eight

genes involved in this emerging pattern are M16937, H51015, R10066, T57619,

R84411, T47377, X53586, and U09587. Let us list the expression profile of these

eight genes in T1:

genes expression levels in T1

M16937 369.92
H51015 137.39
R10066 354.97
T57619 1926.39
R84411 798.28
T47377 662.06
X53586 136.09
U09587 672.20

However, 77.27%—17 out of 22 cases—of the normal cells have the following

expression intervals for these 8 genes:

genes expression interval

M16937 <390.44
H51015 <84.19
R10066 <494.17
T57619 <2597.85
R84411 <735.57
T47377 <629.44
X53586 <121.91
U09587 <486.17
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Comparing T1’s gene expression levels with the intervals of normal cells, we see that

5 of the 8 genes—H51015, R84411, T47377, X53586, and U09587—of the cancer

cell T1 behave in a different way from those the 22 normal cells commonly express.

However, the remaining 3 genes of T1 are in the same expression range as most of

the normal cells. So, if the 5 genes of T1 can be down regulated to scale below those

cutting points, then this adjusted cancer cell will have a common property of normal

cells. This is because {25, 33, 37, 41, 43, 57, 59, 69} is an emerging pattern which

does not occur in the cancer cells. This idea is at the core of our suggestion for this

treatment plan.

Interestingly, the expression change of the 5 genes in T1 leads to a chain of other

changes. These include the change that 9 extra top-ten EPs of normal cells are

contained in the adjusted T1. So all top-ten EPs of normal cells are contained in T1

if the 5 genes’ expression level are adjusted. As the average number of top-ten EPs

contained in normal cells is 7, the changed T1 cell will now be considered as a cell

that has the most important features of normal cells. Note that we have adjusted only

5 genes’ expression level so far.

We also need to eliminate those common properties of cancer cells that are con-

tained in T1. By adjusting the expression level of 2 other genes, M26383 and H08393,

the top-ten EPs of cancer cells all disappear from T1. According to our colon tumor

dataset, the average number of top-ten EPs of cancer cells contained in a cancer cell

is 6. Therefore, T1 is converted into a normal cell as it now holds the common

properties of normal cells and does not hold the common properties of cancer cells.

By this method, all the other 39 cancer cells can be converted into normal ones

after adjusting the expression levels of 10 genes or so, possibly different genes from

person to person. We conjecture that this personalized treatment plan is effective if

the expression of some particular genes can be modulated by suitable means.

We next discuss a validation of this idea. The “adjustments” we made to the 40

colon tumour cells were based on the emerging patterns in the manner described

above. If these adjustments had indeed converted the colon tumour cells into normal

cells, then any good classifier that could distinguish normal vs colon tumour cells

on the basis of gene expression profiles would classify our adjusted cells as normal
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cells. So, we established a SVM model using the original entire 22 normal plus 40

cancer cells as training data. The code for constructing this SVM model is available

at http://www.cs.waikato.ac.nz/ml/weka. The prediction result is that all of

the adjusted cells were predicted as normal cells. Although our “therapy” was not

applied to the real treatment of a patient, the prediction result by the SVM model

partially demonstrates the potential biological significance of our proposal.

1.6 UNDERSTANDING OF MOLECULAR CIRCUIT

A large number of genes can be differentially expressed in a microarray experi-

ment. Such genes can serve as markers of the different classes—such as tumour vs.

normal—of samples in the experiment. Some of these genes can even be the primary

cause of a sample being tumour. However, on the basis of gene expression alone,

it is not possible to decide which gene is part of the primary cause and which gene

is merely a down-stream effect. In order to separate the former from the latter, it is

necessary to consider the underlying molecular network or biological pathway [43].

In this section, we first briefly discuss four approaches to this issue that do not rely

on microarray gene expression experiments, and then we discuss a fifth approach to

this issue that does rely on microarray gene expression experiments.

There are four approaches to constructing a database of molecular network that do

not rely on microarray gene expression experiments. The first approach is that of hand

curation from literatures that discuss pathways of protein inhibition, activation, and

other interactions. KEGG [60], MPW [33], and CSNDB [119] are examples of such

hand curated databases of molecular network. However, this approach is laborious

and is unlikely to scale. The second approach is that of conducting high throughput

experiments such as yeast two-hybrid assay [55] and mass spectrometry [84]. This

is also very time consuming, costly, and is also not free of errors [24]. Furthermore,

the number of interactions determined by recent large-scale experiments is still small

relative to the large number of interactions reported from the thousands of individ-

ual small experiments over the years [129]. This leads to the development of the

third approach which is based on natural language processing. In this approach, a
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large collection of abstracts and texts from biological research papers are collected.

Algorithms are then applied to recognize names of proteins and other molecules

in these texts. These algorithms are typically based on special characteristics of

protein names such as the occurrence of uppercase letters, numerals, and special

endings [39]. Then sentences containing multiple occurrences of protein names and

some action words—such as “inhibit” and “activate”—are extracted. Such sentences

are then analysed by natural language parsers to determine the exact relationships

between the proteins mentioned [97, 93]. Lastly, these relationships are assembled

into a network, so that we know exactly which protein is acting directly or indirectly

on which other proteins and in what way [128]. However, this third approach can

only identify previously reported protein interactions. In order to obtain additional

interactions, it is necessary to computationally infer them in a fourth approach. One

of the important methods to infer interactions is the Rosetta stone method [85, 32].

Under this method, two proteins are assumed to interact if they are fused into a third

protein in another organism. Fusion is typically detected by a sequence comparison

and alignment program. There are three caveats. (1) This technique cannot infer

the direction of the interaction. (2) It cannot deal with proteins having promiscuous

domains such as SH3 and ATP-binding cassettes. (3) It can produce false positives.

Networks constructed using the second and fourth approaches above lack informa-

tion on the direction of interactions, and thus they are less useful for inferring genes

that are responsible for the primary effect. Nevertheless, as networks constructed

using the other two approaches do not have this deficiency, they are extremely useful

for another purpose. Specifically, these networks can be used to perform functional

annotation [41], because proteins near each other in the network can be assumed

to be in the same pathway and thus have related functions. Networks constructed

using the second and fourth approaches may also contain a large number of false

positives and false negatives, as demonstrated [24] by the small overlap among pro-

tein interactions determined by several experiments [55, 123, 38, 90]. In order to

improve their fidelity, additional filtering by computational methods is necessary.

Deane et al [24] described two such assessment techniques. The first technique is to

compare the RNA expression profiles of a pair of proteins that have been identified
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as interacted by the second or the fourth approach to the RNA expression profiles of

pairs of known interaction proteins and pairs of known non-interacting proteins. The

second technique is to check whether a pair of proteins, that have been identified as

interacting by the second or fourth approach, have paralogs that are known to inter-

act. In addition, subcellular co-localization information can also be used to assess a

putative interaction [111].

A fifth approach to constructing a database of molecular network that does rely on

microarray gene expression experiments is possible. Let us recall that in analysing

microarray gene expression output in the last two sections, we first identify a number

of candidate genes by feature selection. Do we know which ones of these are

causal genes and which are mere surrogates? Genes are “connected” in a “circuit”

or network. The expression of a gene in a network depends on the expression

of some other genes in the network. Can we reconstruct the gene network from

gene expression data? For each gene in the network, can we determine which genes

affect it? and how they affect it—positively, negatively, or in more complicated ways?

There are several techniques to reconstructing and modeling molecular networks from

gene expression experiments. Some techniques that have been tried are Bayesian

networks [36], Boolean networks [2, 1], differential equations [21], association rule

discovery [92], as well as classification-based methods [116]. We devote the rest of

section to describe the classification-based method of Soinov et al [116].

Let a collection of n microarray gene expression output be given. For convenience,

this collection can be organized into a gene expression matrix X . Each row of the

matrix is a gene, each column is a sample, and each element xij is the expression

of gene i in sample j. Then the basic idea of the method of Soinov et al [116]

is as follows. First determine the average value ai of each gene i as (
∑

j xij)/n.

Next, denote sij as the state of gene i in sample j, where sij = up if xij ≥ ai,

and sij = down if xij < ai. Then, according to Soinov et al [116], to see whether

the state of a gene g is determined by the state of other genes G, we check whether

〈sij | i ∈ G〉 can predict sgj . If it can predict sgj with high accuracy, then we conclude

that the state of the gene g is determined by the states of other genes G. Furthermore,

any classifier can be used to see if such predictions can be made reliably, such as
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C4.5, PCL, and SVM. Then, to see how the state of a gene g is determined by the

state of other genes, we apply C4.5, or PCL, or other rule-based classifiers to predict

sgj from 〈sij | i ∈ G〉 and extract the decision tree or rules used.

This interesting method has a few advantages: It can identify genes affecting a

target genes in an explicit manner, it does not need a discretization threshold, each

data sample is treated as an example, and explicit rules can be extracted from a rule-

based classifier like C4.5 or PCL. For example, we generate from the gene expression

matrix a set of n vectors 〈sij | i 6= g〉 ⇒ sgj . Then C4.5 (or PCL) can be applied to

see if 〈sij | i 6= g〉 predicts sgj . The decision tree (or emerging patterns, respectively)

induced would involve a small number of sij . Then we can conclude that those genes

corresponding to these small number of sij affect gene g.

One other nice advantage of the Soinov method [116] is that it is easily general-

izable to time series. Suppose the matrices X t and Xt+1 correspond to microarray

gene expression measurements taken at time t and t + 1. Suppose st
ij and st+1

ij

correspond to the expression of gene i in sample j at time t and t + 1. Then to

find out whether the state of a gene g is affected by other genes G in a time-lagged

manner, we check whether 〈st
ij | i ∈ G〉 can predict st+1

gj . The rest of the procedure

is as before.

Of course, there is a major caveat that this method as described assumes that a

gene g can be in only two states, viz. sgj = up or sgj = down. As cautioned by

Soinov et al [116], it is possible for a gene to have more than two states and thus

this assumption may not infer the complete network of gene interactions. Another

caution is that if the states of two genes g and h are strongly co-related, the rules

shj ⇒ sgj and sgj ⇒ shj saying that h depends on g and g depends on h are likely

to be both inferred, even though only one of them may be true and the other false.

Hence, further confirmation by gene knock-out or other experiments is advisable.

We do not have independent results on this approach to reconstructing molecular

networks. However, we refer the curious reader to Soinov et al [116] for a discussion

on experiments they have performed to verify the relevance of this method.
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1.7 CLOSING REMARKS

Microarrays are a technology for simultaneously profiling the expression levels of

tens of thousands of genes in a patient samples. It is increasingly clear that better

diagnosis methods and better understanding of disease mechanisms can be derived

from a careful analysis of microarray measurements of gene expression profiles. This

chapter discussed several types of analysis of such gene expression profiles, including

(a) diagnosis of disease state and subtype, (b) derivation of disease treatment plan,

and (c) understanding of gene interaction networks. In the course of this discussion,

we have surveyed techniques for gene selection from microarray gene expression

profiles, including signal-to-noise measure, t-test, entropy measure, and CFS. We

have also introduced the emerging patterns-based classification method called PCL.

Let us end this chapter with a brief mention of a number of other data mining

tools and their applications in the biomedical arena in the context of classification

and prediction. The most popular classification technique is the idea of decision

tree induction. We already briefly discussed the C4.5 method in Section 1.4. Other

algorithms for decision tree induction include CART [14], ID3 [99], SLIQ [87],

FACT [78], QUEST [77], PUBLIC [103], CHAID [59], ID5 [124], SPRINT [114],

and BOAT [42]. This group of algorithms are most successful for analysis of clinical

data and for diagnosis from clinical data. Some examples are diagnosis of central

nervous system involvement in hematooncologic patients [80], prediction of post-

traumatic acute lung injury [101], identification of acute cardiac ischemia [113],

prediction of neurobehavioral outcome in head-injury survivors [120], and diagnosis

of myoinvasion [79].

Another important group of techniques [9, 28, 89, 58, 50, 57, 108, 66] are based

on the Bayes theorem. The theorem states that P (h|d) = P (d|h) ∗ P (h)/P (d),

where P (h) is the prior probability that a hypothesis h holds, P (d|h) is the prob-

ability of observing data d given some world that h holds, and P (h|d) is the

posterior probability that h holds given the observed data d. Let H be all the

possible classes. Then given a test instance with feature vector (f1, . . . , fn), the

most probable classification is argmaxhj∈HP (hj |f1, . . . , fn). Using the Bayes
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theorem, this is rewritten to argmaxhj∈HP (f1, . . . , fn|hj) ∗ P (hj)/P (f1, . . . , fn)

= argmaxhj∈HP (f1, . . . , fn|hj) ∗ P (hj). However, estimating P (f1, . . . , fn|hj)

accurately may not be feasible unless the training set is sufficiently large. So, the

Naive Bayes method mentioned in Section 1.4 assumes that the effect of a feature

value on a given class is independent of the values of other features. This assumption

is called class conditional independence. It is made to simplify computation and

it is in this sense that Naive Bayes is considered to be “naive.” Under this class

conditional independence assumption, argmaxhj∈HP (f1, . . . , fn|hj) ∗ P (hj) =

argmaxhj∈H

∏

i P (fi|hj) ∗ P (hj). P (hj) and P (fi|hj) can often be estimated

reliably from typical training sets. Some example applications of Bayesian classi-

fiers in the biomedical context are mapping and controlling of a genetic trait [44],

screening for macromolecular crystallization [51], classification of cNMP-binding

proteins [86], prediction of carboplatin exposure [54], prediction of prostate cancer

recurrence [25], prognosis of femoral neck fracture recovery [64], and prediction of

protein secondary structure [61, 118, 6].

Related to the Bayesian classifiers are the Hidden Markov Models or HMMs [9,

62, 29, 30]. A HMM is a stochastic generative model for sequences defined by

a finite set S of states, a finite alphabet A of symbols, a transition probability

matrix T , and an emission probability matrix E. The system moves from state

to state according to T while emitting symbols according to E. In an n-th order

HMM, the matrices T and E depend on all n previous states. HMMs have been

applied to a variety of problems in sequence analysis, including protein family

classification and prediction [11, 8, 63], tRNA detection in genomic sequences [81],

methylation guide snoRNA screening [82], gene finding and gene structure prediction

in DNA sequences [13, 12, 7, 62, 109], protein secondary structure modeling [35],

and promoter recognition [130, 94].

Artificial neural networks [107, 9, 19] are another important approach to classifica-

tion that have high tolerance to noisy data. Feed-forward multi-layer neural networks

have received the greatest attention, in part because of their universal approximation

capability [20, 53] as well as simple and effective training algorithms [107]. Success-

ful applications of artificial neural networks in the biomedical context include protein
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secondary structure prediction [105, 106, 98], signal peptide prediction [22, 91, 31],

gene finding and gene structure prediction [122, 115], T-cell epitope prediction [52],

RNA secondary structure prediction [117], toxicity prediction [16], disease diagnosis

and outcome prediction [126, 112, 121], as well as protein translation initiation site

recognition [95, 49].

Last but not least, support vector machines are another approach to the classi-

fication problem that has clear connections to statistical learning theory [17, 125].

We have also briefly seen SVM in Section 1.4. An SVM selects a small number of

critical boundary samples from each class and builds a linear discriminant function

that separates them as widely as possible. In the case that no linear separation is

possible, the technique of “kernel” is used to automatically inject the training samples

into a higher-dimensional space, and to learn a separator in that space. An SVM is

largely characterized by the choice of its kernel function. Thus SVMs connect the

problem they are designed for to a large body of existing research on kernel-based

methods [104, 125, 17]. Some recent applications of SVM in the biomedical context

include protein homology detection [56], microarray gene expression data classifi-

cation [15], breast cancer diagnosis [83, 37], as well as protein translation initiation

site recognition [133, 134].
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