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Summary

Host–pathogen protein-protein interaction (PPI) data are very important informa-

tion for illuminating infection mechanisms and for developing better prevention mea-

sures.

However, host–pathogen PPI data are very scarce in most host–pathogen systems.

Computational prediction of host–pathogen PPIs is an important strategy to fill in the

gap. In this dissertation, we systemically investigate host–pathogen protein-protein

interactions using the H. sapiens–M. tuberculosis H37Rv system as the model host–

pathogen system. Our four main contributions are summarized below.

Knowledge of intra-species PPIs could help a lot in understanding the functional

role of the proteins that are involved in host–pathogen PPIs. Moreover, intra-species

pathogen PPIs have been used as training data for the prediction of host–pathogen

PPIs(Dyer et al., 2007). But for most pathogens, their intra-species pathogen PPIs are

not readily available on a large scale; this is especially true for M. tuberculosis H37Rv.

Therefore, in Chapter 2, we identify a reliable M. tuberculosis H37Rv PPI dataset and

pave the way for the analysis of H. sapiens–M. tuberculosis H37Rv PPIs.

For most host–pathogen systems, including H. sapiens–M. tuberculosis H37Rv,

high-quality large-scale inter-species PPIs are scarce, resulting in a lack of gold stan-

dard to assess the predicted host–pathogen PPIs. Therefore, functional analysis based

on pathway data becomes one of the most frequently used approaches to assess the

predicted host–pathogen PPIs. However, there are several major limitations that seri-

ously reduce the effective use of pathway data for analysis and assessment of predicted

host–pathogen PPIs. Thus, in Chapter 3 we create an analysis tool, IntPath, which

is currently one of the most comprehensive pathway integration databases. IntPath

enables comprehensive functional analysis based on integrated pathway data for both

host and pathogen. It uses a novel integration technology that addresses limitations

of current pathway databases; and it also provides the scalability to extend to many

model host organisms and important pathogens.

Domain-domain interaction (DDI) based approaches are often used for predicting
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both intra-species and inter-species PPIs, with the assumption that domain-domain

interactions mediate the protein-protein interactions. In Chapter 4, we develop an

accurate DDI-based prediction approach with emphasis on (i) differences between the

specific domain sequences on annotated regions of proteins under the same domain

ID and (ii) calculation of the interaction strength of predicted PPIs based on the

interacting residues in their interaction interfaces. We compare our accurate DDI-

based approach to a conventional DDI-based approach for predicting PPIs based on

gold standard intra-species PPIs and coherent informative Gene Ontology assessment.

The assessment results show that our accurate DDI-based approach achieves much

better performance in predicting PPIs than the convention approach.

Homology-based approaches are also used in predicting host–pathogen PPIs in

many works, but with unsolved deficiencies in the transfer of interactions from tem-

plate PPIs. In Chapter 5, we develop an accurate homology-based prediction approach

by taking into account (i) differences between eukaryotic and prokaryotic proteins and

(ii) differences between inter-species and intra-species PPI interfaces. We compare

our accurate homology-based approach to a conventional homology-based approach

for predicting host–pathogen PPIs based on cellular compartment distribution analy-

sis, disease gene list enrichment analysis, pathway enrichment analysis and functional

category enrichment analysis. The analysis results support the validity of our predic-

tion result and clearly show that our accurate homology-based approach has better

performance in predicting H. sapiens–M. tuberculosis H37Rv PPIs.

ix



List of Figures

2.1 Agreement between H37Rv PPIs in STRING and the B2H PPI datasets.
The Jaccard coefficient, precision and recall between H37Rv PPI datasets
in STRING database predicted by different methods and the H37Rv B2H
PPI dataset (benchmark). . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Overlap PPI number ratios at various STRING score thresholds. The
overlap PPI number ratios at various STRING score thresholds between
(i) the H37Rv B2H PPI dataset and the H37Rv STRING predicted func-
tional associations dataset, (ii) the S. cerevisiae Y2H PPI dataset and the
S. cerevisiae STRING predicted functional associations dataset, (iii) the
C. jejuni NCTC11168 Y2H PPI dataset and the C. jejuni NCTC11168
STRING predicted functional associations dataset, and (iv) the Syne-
chocystis sp. PCC6803 Y2H PPI dataset and Synechocystis sp. PCC6803
STRING predicted functional associations dataset. . . . . . . . . . . . . 47

2.3 Percentage of PPIs in various M. tuberculosis PPI datasets that have co-
herent informative GO term annotations. Percentage of PPIs in various
M. tuberculosis PPI datasets that have coherent informative GO term
annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 PPI datasets assessment by gene expression profile correlation. The
distribution of Pearsons correlation coefficient of the expression profiles
of underlying genes of different PPI datasets are given in this figure (x
axis is the Pearsons correlation coefficient, y axis is the number of PPIs).
The bar at -1 in the charts here corresponds to PPIs where we do not
have the expression profiles of their underlying genes. . . . . . . . . . . 52

2.5 Comparative analysis of PPI datasets using integrated pathway gene
relationships (ECrel). M. tuberculosis H37Rv PPI datasets similarity to
integrated pathway gene relationships (ECrel dataset as benchmark). . . 53

2.6 Comparative analysis of different S. cerevisiae protein relationships datasets
with S. cerevisiae STRING functional associations dataset. Comparison
of the similarity between different protein relationships datasets with S.
cerevisiae predicted functional associations from STRING database. . . 55

3.1 Pie charts depicting overlapping gene proportions. The red part refers to
the proportions of unique genes while the blue part refers to proportions
where there is an overlap of genes. . . . . . . . . . . . . . . . . . . . . . 88

x



3.2 Pie charts depicting overlapping gene pair proportions. The red part
refers to the proportions of unique gene pairs while the blue part refers
to proportions where there is an overlap of gene pairs. . . . . . . . . . . 89

3.3 Venn diagram of pathways in different databases. Venn diagram depict-
ing overlapping pathways across the three databases. . . . . . . . . . . . 90

3.4 IntPath system overview. This figure shows the components of IntPath
database, the relationships between those components and a clear indi-
cation on which components are supported by web service and which are
supported by web interface. . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Core functions of IntPath. This figure shows the core functions of Int-
Path, the relationships between those core functions, database and web
service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1 Visualization of predicted H. sapiens–M. tuberculosis H37Rv PPI net-
work. The orange dots are M. tuberculosis H37Rv proteins, while the
blue dots are H. sapiens proteins. . . . . . . . . . . . . . . . . . . . . . . 106

4.2 Assessment of the stringent and the conventional DDI-based approaches
through gold standard H. sapiens PPIs. We plot the precision-recall curve.108

4.3 Informative GO assessment of the PPIs predicted by the stringent DDI-
based approach. Informative GO assessment of the PPIs predicted by
the stringent DDI-based approach. . . . . . . . . . . . . . . . . . . . . . 110

4.4 Informative GO assessment of the PPIs predicted by the conventional
DDI-based approach. Informative GO assessment of the PPIs predicted
by the conventional DDI-based approach. . . . . . . . . . . . . . . . . . 110

4.5 Informative GO assessment of the top 839 PPIs predicted by the strin-
gent and the conventional DDI-based approaches. Informative GO as-
sessment of the top 839 PPIs predicted by the stringent and the conven-
tional DDI-based approaches. “Acc.” means the PPIs predicted by the
stringent DDI-based approach; “Conv.” means the PPIs predicted by
the conventional DDI-based approach. . . . . . . . . . . . . . . . . . . . 111

4.6 Cellular compartment distribution of H. sapiens proteins targeted by
host–pathogen PPIs predicted by the stringent DDI-based approach.
Cellular compartment distribution of H. sapiens proteins targeted by
host–pathogen PPIs predicted by the stringent DDI-based approach. . . 113

5.1 Representation of homology-based prediction approach. Representation
of (A) the conventional homology-based prediction approach and (B)the
accurate homology-based prediction approach adopted in this study. . . 128

5.2 Visualization of the predicted H. sapiens–M. tuberculosis H37Rv PPI
network. The blue dots are M. tuberculosis H37Rv proteins, while the
orange dots are H. sapiens proteins. The “thickness” of an edge cor-
responds to the “interaction strength” of the predicted H. sapiens–M.
tuberculosis H37Rv PPI, the thicker the edge the larger of the “interac-
tion strength”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xi



5.3 Cellular compartment distribution of H. sapiens proteins targeted by
the accurate homology-based approach predicted host–pathogen PPIs.
Cellular compartment distribution of H. sapiens proteins targeted by the
accurate homology-based approach predicted host–pathogen PPIs(Top
10 cellular compartments). . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.4 Cellular compartment distribution of H. sapiens proteins targeted by
predicted host–pathogen PPIs(Top 10 Cellular Compartments). . . . . . 143

5.5 Visualization of the KEGG “Tuberculosis” pathway with H. sapiens pro-
teins recovered by our predicted H. sapiens–M. tuberculosis H37Rv PPI
network. The pink squares are H. sapiens proteins targeted in our pre-
dicted H. sapiens–M. tuberculosis H37Rv PPIN that are in the KEGG
“Tuberculosis” pathway map. The green squares are H. sapiens proteins
in the “Tuberculosis” pathway, but not recovered in our prediction. . . . 153

xii



List of Tables

1.1 Summary of limitations of current host-pathogen interaction databases . 33

3.1 Four types of IntPath unified gene relationships. Explanations of the
types of relationships in IntPath are given below. . . . . . . . . . . . . . 62

3.2 The number of pathways, genes and gene pairs from different databases
after normalization. Summary of the number of pathways, genes, and
gene pairs after normalization from different databases. . . . . . . . . . 69

3.3 Summary of overlapping gene proportions. Summary of the number of
overlap genes, number of unique genes, and Jaccard coefficient among
three representative databases. . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Summary of overlapping gene pair proportions. Summary of the num-
ber of overlap gene pairs, number of unique gene pairs, and Jaccard
coefficient among three representative databases. . . . . . . . . . . . . . 71

3.5 Table showing data overlap for same chosen pathways in difference source
databases. This table shows the calculation of gene/gene pair differences
and overlap between the different source databases for the same chosen
pathways. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6 Examples of inconsistent referrals to pathway names in M. musculus.
The table shows several examples of the same pathways with inconsistent
referrals to pathway names in different databases. . . . . . . . . . . . . . 75

3.7 Number of related pathways. Summary of the number of identified re-
lated pathways within and among databases. . . . . . . . . . . . . . . . 76

3.8 Summary of number of pathways, average number of genes per pathway
and average number of gene pairs per pathway before and after inte-
gration. The table below shows the number of pathways from major
pathway databases before and after integration. . . . . . . . . . . . . . . 77

xiii



4.1 Assessment of the stringent and the conventional DDI-based approaches
through gold standard H. sapiens PPIs. This table summarizes the
assessment of the stringent and the conventional DDI-based approaches
through gold standard human PPIs. In order for the conventional DDI-
based approach to attain an amount of overlap with gold standard human
PPIs similar to the stringent DDI-based approach, a much larger number
of (false positive) predicted PPIs must be accepted. Conversely, if the
conventional DDI-based approach is restricted to a similar number of
predictions as the stringent DDI-based approach, a much lower overlap
with gold standard human PPIs must be accepted. . . . . . . . . . . . . 109

4.2 Number of informative GO terms annotated to proteins involved in PPIs
predicted by the stringent and the conventional DDI-based approach.
This table summarizes the number of informative GO terms annotated to
proteins involved in PPIs predicted by the stringent and the conventional
DDI-based approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3 Cellular compartment distribution of H. sapiens proteins targeted by
host–pathogen PPIs predicted by the stringent DDI-based approach.
This table summarizes cellular compartment distribution of H. sapi-
ens proteins targeted by host–pathogen PPIs predicted by the stringent
DDI-based approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 Functional enrichment analysis of H. sapiens proteins involved in the
host–pathogen PPI dataset predicted by the stringent DDI-based ap-
proach. This table summarizes the significantly enriched level 5 MF
(Molecular Function) GO terms for H. sapiens proteins involved in the
host–pathogen PPI dataset predicted by the stringent DDI-based ap-
proach. The analysis is produced using the DAVID database (threshold
“count > 2, p-value < 0.1”). . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.5 Pathway enrichment analyses of H. sapiens proteins involved in the host–
pathogen PPI dataset predicted by the stringent DDI-based approach.
This Table shows the 8 most significantly enriched pathways for H. sapi-
ens proteins involved in the host–pathogen PPI dataset predicted by our
stringent DDI-based approach. . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Pathway enrichment analyses of M. tuberculosis H37Rv proteins involved
in the host–pathogen PPI dataset predicted by the stringent DDI-based
approach. This table summarizes the most significantly enriched path-
ways for M. tuberculosis H37Rv proteins involved in the host–pathogen
PPI dataset predicted by our stringent DDI-based approach. . . . . . . 118

xiv



4.7 Protein domain property analysis result. This table summarizes the
protein domain analysis for H. sapiens proteins involved in the host–
pathogen PPI dataset predicted by our stringent DDI-based approach
comparing with the proteins involved in intra-species PPIN. Protein do-
main property analysis for H. sapiens proteins involved in gold standard
H. sapiens–HIV PPI dataset(Fu et al., 2009) have also been conducted.
In the table there are some abbreviations. Hum-Mtb: in predicted H.
sapiens–M. tuberculosis H37Rv PPIN. Hum-Hum: in H. sapiens intra-
species PPIN. Hum-HIV: in gold standard H. sapiens–HIV PPIN. . . . 121

5.1 Cellular compartment distribution of H. sapiens proteins targeted by the
predicted host–pathogen PPIs. This table summarizes top 10 most fre-
quent cellular compartments where the H. sapiens proteins(targeted by
the accurate homology-based approach predicted host–pathogen PPIs)
likely to be located in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2 Cellular compartment distribution of H. sapiens proteins targeted by
the predicted host–pathogen PPIs. This table summarizes top 10 most
frequent cellular compartments where the H. sapiens proteins(targeted
by the conventional homology-based approach predicted host–pathogen
PPIs) likely to be located in. . . . . . . . . . . . . . . . . . . . . . . . . 142

5.3 Disease-related enrichment analysis of H. sapiens proteins involved in
accurate homology-based approach predicted host–pathogen PPIs. This
table summarizes H. sapiens proteins’ (involved in the accurate homology-
based approach predicted host–pathogen PPIs) enrichment (over-representation)
in M. tuberculosis H37Rv infection and treatment-related differentially
expressed gene lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.4 Disease-related enrichment analysis of H. sapiens proteins involved in
conventional homology-based approach predicted host–pathogen PPIs.
This table summarizes H. sapiens proteins’ (involved in the conventional
homology-based approach predicted host–pathogen PPIs) enrichment
(over-representation) in M. tuberculosis H37Rv infection and treatment-
related differentially expressed gene lists. . . . . . . . . . . . . . . . . . . 147

5.5 GO term enrichment analyses of H. sapiens proteins involved in the ac-
curate homology-based approach predicted host–pathogen PPI dataset.
It summarizes the most significantly enriched level 5 MF (Molecular
Function) GO terms for H. sapiens proteins involved in the accurate
homology-based approach predicted host–pathogen PPI dataset using
DAVID database (threshold “count > 2, p-value < 0.01”). . . . . . . . . 147

5.6 GO term enrichment analyses of H. sapiens proteins involved in the con-
ventional homology-based approach predicted host–pathogen PPI dataset.
It summarizes the most significantly enriched level 5 MF (Molecular
Function) GO terms for H. sapiens proteins involved in the conventional
homology-based approach predicted host–pathogen PPI dataset using
DAVID database (threshold “count > 2, p-value < 0.01”). . . . . . . . . 147

xv



5.7 Pathway enrichment analysis of H. sapiens proteins involved in the ac-
curate homology-based approach predicted host–pathogen PPI dataset.
It summarizes the 20 most significantly enriched pathways for H. sapi-
ens proteins involved in the host–pathogen PPI dataset predicted by our
accurate homology-based approach. . . . . . . . . . . . . . . . . . . . . . 154

5.8 Pathway enrichment analysis of H. sapiens proteins involved in the con-
ventional homology-based approach predicted host–pathogen PPI dataset.
It summarizes the 20 most significantly enriched pathways for H. sapi-
ens proteins involved in the host–pathogen PPI dataset predicted by our
conventional homology-based approach. . . . . . . . . . . . . . . . . . . 155

5.9 Pathway enrichment analysis of M. tuberculosis H37Rv proteins involved
in the predicted host–pathogen PPI dataset. This table summarizes
the 15 most significantly enriched pathways for M. tuberculosis H37Rv
proteins involved in the predicted host–pathogen PPI dataset. . . . . . . 156

5.10 Protein sequence properties analysis result. This table summarizes our
analysis of protein sequence properties for H. sapiens and M. tuberculo-
sis H37Rv proteins involved in the predicted host–pathogen PPI dataset
compared with proteins involved in intra-species PPIN. In the table
there are some abbreviations. Hum-Mtb: in predicted H. sapiens–M.
tuberculosis H37Rv PPIN. Hum-Hum: in H. sapiens intra-species PPIN.
Mtb-Mtb: in M. tuberculosis intra-species PPIN. . . . . . . . . . . . . . 158

5.11 Domain sequence properties analysis result. This table summarizes our
analysis of domain sequence properties for H. sapiens and M. tuber-
culosis H37Rv proteins involved in the predicted host–pathogen PPI
dataset, compared with proteins involved in intra-species PPIN. In the
table there are some abbreviations. Hum-Mtb: in predicted H. sapiens–
M. tuberculosis H37Rv PPIN. Hum-Hum: in H. sapiens intra-species
PPIN. Mtb-Mtb: in M. tuberculosis intra-species PPIN. . . . . . . . . . 158

5.12 Topological properties analysis result. This table summarizes our anal-
ysis of intra-species PPIN topological properties for H. sapiens and M.
tuberculosis H37Rv proteins involved in the predicted host–pathogen PPI
dataset, compared with proteins involved in intra-species PPIN. In the
table there are some abbreviations. Hum-Mtb: in predicted H. sapiens–
M. tuberculosis H37Rv PPIN. Hum-Hum: in H. sapiens intra-species
PPIN. Mtb-Mtb: in M. tuberculosis intra-species PPIN. . . . . . . . . . 159

5.13 Gene content of cancer pathways and M. tuberculosis infection related
pathways. This table summarizes the gene content of cancer pathways
and M. tuberculosis infection related Pathways. We choose one large rep-
resentative cancer pathway—“Pathways in cancer”. The M. tuberculosis
infection related pathways(“infection-related pathways” for short) are:
“Focal adhesion, “Proteasome”, “Antigen processing and presentation”,
“MAPK signaling pathway”, “Endocytosis”, “T cell receptor signaling
pathway”, “Spliceosome”, “Apoptosis”, and “Tuberculosis”. Hum-Mtb:
predicted H. sapiens–M. tuberculosis H37Rv PPIN. . . . . . . . . . . . . 162

xvi



Chapter 1

Introduction and Background

Host-pathogen interactions are important for understanding infection mechanism and

developing better treatment and prevention of infectious diseases. The protein interac-

tion map will guide the investigation on the key PPIs that may lead to the adhesion,

colonization, and even invasion of pathogens to human cells. However, prediction of

host-pathogen PPIs has its unique challenges.

Many approaches for predicting intra-species PPIs may not be applicable to inter-

species host-pathogen PPIs. For example, if two interacting partners are located at

the same cellular compartment, they are more likely to interact with each other in the

intra-species scenario, because being at the same cellular compartment (i.e., being in the

same place) is a requirement for interaction. But this is inapplicable to host-pathogen

PPIs: The cellular compartment annotations for host (resp. pathogen) proteins refer

to cellular compartments in the host (resp. pathogen) species and, thus, the host and

pathogen proteins in a host-pathogen PPI are never annotated for the same cellular

compartment. Therefore novel computational prediction and assessment approaches

are needed for the study of inter-species host-pathogen PPIs.

Many computational studies on host-pathogen interactions have been published.

Here, we first review recent progress and results in this field, providing a system-

1
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atic summary, comparison and discussion of computational studies on host-pathogen

interactions including: prediction and analysis of host-pathogen protein-protein inter-

actions; basic principles revealed from host-pathogen interactions; and database and

software tools for host-pathogen interaction data collection, integration and analysis.

After the review, we state the objectives of this dissertation and highlight our main

results.

1.1 Context and introduction

Infectious diseases are among the leading causes of death especially in the developing

world. Host-pathogen interactions are crucial for better understanding of the mecha-

nisms that underlie infectious diseases and for developing more effective treatment and

prevention measures.

While host-pathogen interactions take many forms, in this review, we concentrate

on protein-protein interactions (PPIs) between a pathogen and its host. This Chapter

consists of the following parts: (i) host-pathogen PPI prediction; (ii) basic principles

derived from analysis of known host-pathogen PPIs; (iii) host-pathogen PPI analysis

and assessment; and (iv) host-pathogen interaction data collection and integration.

Several approaches have been proposed to computationally predict host-pathogen

protein-protein interactions. There has also been progress on analyzing and assessing

the quality of the inferred host-pathogen PPIs. This has led to cataloging of PPI data

that can be further analyzed to understand the impact of these interactions (especially

on the host) and to decipher the underlying disease mechanisms. Approaches developed

for predicting host-pathogen PPIs can be broadly categorized into homology-based(Lee

et al., 2008; Krishnadev and Srinivasan, 2008; Tyagi et al., 2009; Krishnadev and Srini-

vasan, 2011; Wuchty, 2011), structure-based(Davis et al., 2007; Doolittle and Gomez,

2011, 2010), domain and motif interaction-based approaches(Dyer et al., 2007; Evans

et al., 2009), as well as machine learning-based approaches(Tastan et al., 2009; Dyer
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et al., 2011; Qi et al., 2010). These approaches can also be combined and used together

in some studies to improve prediction performance. These approaches are reviewed in

Section1.2 “Host-pathogen protein-protein interactions prediction”.

An analysis of experimentally verified, as well as manually curated, host-pathogen

PPIs have led to a number of observations. These observations include the topological

properties of targeted host proteins and structural properties of host-pathogen protein-

protein interaction interfaces. These observations are discussed in Section 1.3 “Basic

principles of host-pathogen interaction”.

Approaches for assessing and analyzing host-pathogen PPIs can be categorized into

assessment based on gold standard PPIs(Tastan et al., 2009; Qi et al., 2010; Dyer et al.,

2011; Evans et al., 2009; Davis et al., 2007; Doolittle and Gomez, 2011); functional in-

formation analysis in terms of Gene Ontology(Davis et al., 2007; Wuchty, 2011; Tastan

et al., 2009; Doolittle and Gomez, 2010, 2011; Evans et al., 2009), pathways(Singh

et al., 2010; Zhao et al., 2011; Wuchty, 2011; Evans et al., 2009), gene expression

data(Wuchty, 2011; Krishnadev and Srinivasan, 2008; Davis et al., 2007) and RNA

interference data(Doolittle and Gomez, 2010, 2011; Evans et al., 2009; Tastan et al.,

2009; Qi et al., 2010; Dyer et al., 2011); localization information analysis in terms

of protein sub-cellular localization(Lee et al., 2008; Krishnadev and Srinivasan, 2008;

Tyagi et al., 2009; Krishnadev and Srinivasan, 2011; Wuchty, 2011) and co-localization

of host and pathogen proteins(Doolittle and Gomez, 2011, 2010); related experimental

data analyses(Doolittle and Gomez, 2010; Tastan et al., 2009; Qi et al., 2010); and

biological case studies and explanations(Krishnadev and Srinivasan, 2008; Tyagi et al.,

2009; Krishnadev and Srinivasan, 2011; Dyer et al., 2011; Davis et al., 2007; Doolittle

and Gomez, 2011, 2010). Some of these assessment approaches can also be used as

filtering strategies for pruning host-pathogen PPI prediction results. These approaches

and the outcome of the analysis are reviewed in Section 1.4 “Analysis and assessment

of host-pathogen PPIs”.
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Host-pathogen PPIs curated from primary literature are usually facilitated by text-

mining techniques(Chatr-aryamontri et al., 2009; Navratil et al., 2009). With more

host-pathogen PPI data available from literature curation and experiments, there are

strong needs for data collection and integration facilities that can provide comprehen-

sive storage, convenient access, and effective analysis of the integrated host-pathogen

interaction data. The development of software and database tools dedicated to host-

pathogen interaction data collection, integration and analysis are also very prominent.

Integration of host-pathogen interaction data are not confined to PPI data. Other

related data — such as pathogen virulence factors, human diseases related genes, se-

quence and homology information, pathway information, functional annotations, dis-

eases information, and literature sources, etc.—are also being integrated into several

databases. These databases (Winnenburg et al., 2008; Fu et al., 2009; Chatr-aryamontri

et al., 2009; Navratil et al., 2009; Xiang et al., 2007; Ranjit and Bindu, 2010; Fahey

et al., 2011; Driscoll et al., 2009, 2011; Gillespie et al., 2011) and softwares(Sergey

et al., 2011) are reviewed in Section 1.5 “Host-pathogen interaction data collection and

integration”.

1.2 Host-pathogen protein-protein interactions prediction

Host-pathogen protein-protein interactions play an important role between the host

and pathogen, which may be crucial in the outcome of an infection and the estab-

lishment of disease. Unfortunately, experimentally verified interactions between host

and pathogen proteins are currently rather limited for most host-pathogen systems.

This has motivated a number of pioneering works on computational prediction of host-

pathogen protein-protein interactions. These works can be roughly categorized into

modeling approaches based on sequence homology, protein structure, domain and mo-

tif, and approaches based on machine learning. These pioneering works are reviewed

and discussed below.
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1.2.1 Homology-based approach

The homology-based approach is a conventional way for predicting intra-species PPIs.

Many studies have also adopted this strategy for predicting host-pathogen PPIs, which

are inter-species PPIs. The basic hypothesis of the homology-based approach is that

the interaction between a pair of proteins in one species is expected to be conserved

in related species(Matthews et al., 2001). This is a reasonable hypothesis as a pair of

homologous proteins are descended from the same ancestral pair of interacting proteins

and is expected to inherit the structure and function and, thus, interactions of the

ancestral proteins. Therefore, the basic procedure of the homology-based approach for

intra-species PPI prediction is to (i) start from a known PPI (the template PPI) in

some source species, (ii) determining in the target species the homologs (x’, y’) of the

two proteins (x, y) in the template PPI, and (iii) predicting that the two homologs

(x’, y’) interact in the target species. This approach is generally adapted to the inter-

species scenario of host-pathogen PPI prediction by (i) starting from a known PPI (the

template PPI) in some source species, (ii) determining in the host a homolog (x’) and

in the pathogen a homolog (y’) respectively of the two proteins (x,y) in the template

PPI, and (iii) predicting that (x’,y’) interact.

The main advantages of the homology-based approach to host-pathogen PPI predic-

tion are its simplicity and its apparent biological basis. Since the data required for per-

forming the prediction are only the template PPIs and protein sequences, this approach

is scalable and can be applied to many different host-pathogen systems. The homology-

based approach can be used alone(Lee et al., 2008; Krishnadev and Srinivasan, 2008;

Tyagi et al., 2009; Krishnadev and Srinivasan, 2011) or in combination with other meth-

ods(Wuchty, 2011) in predicting host-pathogen PPIs. The investigated host-pathogen

systems in past studies include H. sapiens–P. falciparum(Wuchty, 2011; Lee et al.,

2008; Krishnadev and Srinivasan, 2008), H. sapiens–H. pylori(Tyagi et al., 2009), E.

coli–phage T4 (Krishnadev and Srinivasan, 2011), E. coli–phage lambda(Krishnadev and
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Srinivasan, 2011), H. sapiens–E. coli(Krishnadev and Srinivasan, 2011), H. sapiens–

S. enterica(Krishnadev and Srinivasan, 2011), H. sapiens–Y. pestis(Krishnadev and

Srinivasan, 2011), etc. The template PPIs used in the prediction can also be very

different. The commonly used template PPIs are from DIP(Salwinski et al., 2004),

iPfam(Finn et al., 2005), MINT(Zanzoni et al., 2002), HPRD(Mishra et al., 2006),

Reactome(Joshi-Tope et al., 2005), IntAct(Hermjakob et al., 2004), etc.

There is an inherent weakness in the homology-based approach. Basically, in a real

biological process, such as infection, the two proteins in a predicted PPI may actually

have little opportunity to be present together. Consequently, host-pathogen PPIs pre-

dicted solely on the homology basis, without considering other biological properties of

the proteins involved, may not be very reliable. Additional information should be used

to increase the accuracy of the prediction. For example, extracellular localization and

trans-membrane regions are used in pruning(Krishnadev and Srinivasan, 2011) or con-

straining the predictions(Tyagi et al., 2009). Also, a pathogen (e.g., P. falciparum) may

infect different organs at different stages of the pathogen’s life cycle. Thus, filtering by

tissue-specific gene expression data may also improve prediction reliability(Krishnadev

and Srinivasan, 2008). Indeed, recognizing this weakness in the homology-based ap-

proach, Wuchty (2011) has proposed filtering PPIs predicted by the homology-based

approach using a random-forest classifier trained on sequence compositional character-

istics of known PPIs, as well as by gene expression and molecular characteristics. This

results in a significantly smaller set of putative host-pathogen PPIs, which are claimed

to be of higher quality than the original set of predicted PPIs.

1.2.2 Structure-based approach

When a pair of proteins have structures that are similar to a known interacting pair

of proteins, it is reasonable to believe that the former are likely interacting in a way

that is structurally similar to the latter. In accordance to this hypothesis, several works
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have used structural information to identify the similarity between query proteins (i.e.,

proteins in the pathogen and host) and template PPIs (i.e., known interacting protein

pairs), and infer that host-pathogen protein pairs that match some template PPIs are

interacting.

Comparative modeling

Prediction by comparative modeling is a representative structure-based approach. For

example, in Davis et al. (2007), an automated pipeline for large-scale comparative

protein structure modeling, MODPIPE, is applied to model the structure of host and

pathogen proteins based on their sequences and corresponding template structures.

Given the computed model of a protein, the SCOP(Murzin et al., 1995) superfamilies

that the protein belongs to are identified. A database of protein structural interfaces,

PIBASE, is then scanned. If a SCOP superfamily of a host protein and a SCOP

superfamily of a pathogen protein are both involved in the same PIBASE(Davis and

Sali, 2005) protein structural interface, then the host protein and the pathogen protein

are predicted as a putative PPI.

Query proteins that lack structural templates cannot be modeled in the process

above. In this case, template interactions in alternative databases (e.g., IntAct) are

considered by Davis et al. (2007). Specifically, a pair of host and pathogen proteins are

predicted to interact if at least 50% of each of the two protein sequences are similar to

some member proteins of a template complex in IntAct and the joint sequence identity

(
√
Sequence Identity1 ∗ Sequence Identity2) is at least 80%. These predictions, which

are conducted without structural information, form a very small portion of the total

number of putative PPIs, because of the stringent joint threshold. Each prediction is

further followed by a series of assessments and filtering (biological and network filters),

which results in a significant reduction of potential host-pathogen PPIs by several order

of magnitudes.
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Structural similarity

Structural similarity can also be analyzed using the Dali database(Holm et al., 2008).

This strategy has been adopted to predict H. sapiens–HIV PPIs(Doolittle and Gomez,

2010), H.sapiens–DENV PPIs(Doolittle and Gomez, 2011), and A. aegypti–DENV

PPIs(Doolittle and Gomez, 2011). Dali calculates structural similarity score by compar-

ing the 3D structural coordinates of two PDB entries(Doolittle and Gomez, 2011). To

predict the H. sapiens–HIV and H. sapiens–DENV PPIs, structurally similar pathogen

(HIV, DENV) and host (H. sapiens) proteins are first determined using Dali. Then, un-

der the assumption that pathogen proteins having similar structure to host proteins are

likely to participate in a similar set of PPIs (H. sapiens PPI dataset from HPRD(Mishra

et al., 2006)) that those matched host proteins participate in, the pathogen proteins

are directly mapped to their high-similarity matches within the host intra-species PPI

network to predict the host-pathogen PPIs(Doolittle and Gomez, 2010, 2011). The

same structural similarity prediction method has been applied to identify orthologs

between D. melanogaster and A. aegypti and map D. melanogaster–DENV PPIs to

predict A. aegypti–DENV PPIs(Doolittle and Gomez, 2011)—the host-pathogen PPIs

between DENV and its real insect host. The accuracy of this prediction method de-

pends on the performance of Dali in determining structurally similar pathogen and

host proteins. The availability of pathogen and host protein structures and the quality

of host intra-species PPI data also have a significant influence on prediction results.

1.2.3 Domain and motif interaction-based approach

Domains are basic building blocks determining the structure and function of proteins

and they play specialized role in mediating the interaction of proteins with other

molecules(Itzhaki et al., 2010). Some studies have proposed predicting host-pathogen

PPI based on domain-domain interaction (DDI)(Dyer et al., 2007) and motif-domain

interaction(Evans et al., 2009).
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Domain-domain interaction-based approach

Dyer et al. (2007) predict host-pathogen PPIs in the H. sapiens–P. falciparum system

by integrating known intra-species PPIs with domain profiles based on an association

method (sequence-signature algorithm) proposed by Sprinzak and Margalit (2001).

Specifically, domains are first identified by InterProScan(Quevillon et al., 2005) in each

interacting protein in the intra-species PPIs. Then, the probability P (d, e) that two

proteins containing a specific pair of domains (d, e) would interact is estimated for

each pair of domains in the Bayesian manner. Finally, given a pair of host-pathogen

proteins, their probability of interaction is estimated by a naive combination (= 1 −∏
i

∏
j(1− P (di, ej))) of the probabilities from each pair of domains (di, ej) contained

in the pair of proteins(Dyer et al., 2007).

At around the same time, Kim et al. (2007) predict H. sapiens–H.pylori PPIs using

the PreDIN(Kim et al., 2002) and PreSPI(Han et al., 2004) algorithms, which are

also based on domain information. The domain annotation used in this work is done

by InterProScan as well. However, in contrast to Dyer et al. (2007), which is based

on estimating the probability of an individual pair of domains being associated with

protein interactions and naively combining these probabilities, PreDIN and PreSPI

directly estimate the probability of domain combination pairs being associated protein

interactions.

Motif-domain interaction-based approach

Some protein interactions are mediated not by interactions between domains, but by

interactions between a domain in one protein and a short linear motif (SLiM) in the

other protein(Edwards et al., 2007; Hugo et al., 2011). As viral pathogens typically

have a compact genome, they have few domains. It is reasonable to postulate that their

interaction with host proteins are likely to be mediated by Domain-SLiM interactions.

For example, since HIV-1 proteins have few domains, Evans et al. (2009) predicted H.
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sapiens–HIV-1 PPIs based on the interactions between short eukaryotic linear motifs

(ELMs) and human protein counter domains (CDs).

Evans et al. use the ELM resource(Puntervoll et al., 2003) to determine ELMs

contained in human and HIV-1 proteins and PROSITE(Hulo et al., 2008) to determine

domains in human proteins. Then starting from a template human PPI (x,y) where

protein x contains a ELM (E) and protein y a counter domain (CD), proteins in HIV-1

that contain the ELM (E) are predicted to form host-pathogen PPIs with the human

protein y. Notably, Evans et al. point out that the human protein x is expected to

compete with these HIV-1 proteins for interacting with y, and that this competition

should be considered as another form of host-pathogen interaction.

1.2.4 Machine learning-based approach

Both supervised(Tastan et al., 2009; Dyer et al., 2011) and semi-supervised(Qi et al.,

2010) learning frameworks have also been used in predicting host-pathogen PPIs. A

considerable amount of interacting and non-interacting pairs are usually needed by

these machine learning algorithms to produce good classifiers. For example, Tas-

tan et al. (2009) and Qi et al. (2010) obtain curated H. sapiens–HIV PPIs from

the ‘HIV-1, human protein interaction database’(Fu et al., 2009), while Dyer et al.

(2011) compile H. sapiens–HIV PPIs from other sources including BIND(Gilbert,

2005), DIP(Salwinski et al., 2004), IntAct(Hermjakob et al., 2004) and Reactome(Joshi-

Tope et al., 2005). Supervised learning framework has first been attempted using a

Random Forest (RF)(Tastan et al., 2009) classifier with 35 selected features including

GO similarity, graph properties of the human interactome, ELM-ligand, gene expres-

sion, tissue feature, sequence similarity, post-translational modification similarity to

neighbor, HIV-1 protein type, etc. In another work(Dyer et al., 2011), a Support Vec-

tor Machine (SVM) is used with linear kernel and features such as domain profiles,

protein sequence k -mers and properties of human proteins in the human interactome.
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The performance of supervised learning algorithms is limited by the availability of

truly interacting proteins. However, there are a lot of protein pairs that have a known

association between themselves which may not be a confirmed direct interaction(Qi

et al., 2010). In order to exploit the availability of these data, Qi et al. (2010) try a

semi-supervised learning approach.

The semi-supervised approach of Qi et al. (2010) use the same training data (col-

lected by Fu et al. (2009)) as the supervised approach of Tastan et al. (2009). Tastan

et al. use only physical PPIs with keywords “interact”, “bind”, etc. for training.

However, Qi et al. use only a subset of the physical PPIs used by Tastan et al.. This

subset consists of 158 expert-annotated H. sapiens–HIV PPIs and is labeled as positive

training data. The remaining PPIs from Fu et al. (2009) are used as “partial positive”

training data. This is because Qi et al. find that many of the PPIs—even those with

keywords “interact”, “bind”, etc. —are not well agreed by experts(Qi et al., 2010).

Moreover, only 18 of the 35 attributes used by Tastan et al. are used by Qi et al. De-

spite using fewer attributes, the separation of the PPI training data into definite known

positive interactions and partial positives helps Qi et al. achieve a higher performance

than Tastan et al.

An important weakness of these approaches based on machine learning is that the

features used by them—e.g., the domain profile feature(Dyer et al., 2011) and the HIV-

1 protein type feature(Tastan et al., 2009)—are not easy to understand, especially with

respect to their biological basis. Another weakness is the limitation of training data.

For example, the use of machine learning approaches in the context of host-pathogen

PPI prediction has so far been applied in the H. sapiens–HIV system because known

host-pathogen PPIs are not available in other host-pathogen systems on a sufficiently

large scale.
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1.3 Basic principles of host-pathogen interaction

Some basic principles derived from the analysis of experimentally verified or manually

curated host-pathogen PPIs are discussed in this section. These principles either have

been reported and confirmed by several works or have high potential to be applied in

future works on host-pathogen interactions.

1.3.1 Topological properties of targeted host proteins

Calderwood et al. (2007) have generated 44 intra-species Epstein-Barr virus (EBV)

PPIs and 173 inter-species H. sapiens–EBV PPIs using a stringent and systematic

two-hybrid system. They observe that the degree (in the human interactome) of hu-

man proteins involved in H. sapiens–EBV PPIs are significantly higher than randomly

selected human proteins. Thus, these targeted human proteins are enriched with hubs

(i.e., proteins with high degree in the human interactome).

Moreover, Calderwood et al. (2007) also report that the minimum number of steps

(in terms of PPI edges) between a targeted human protein and a reachable protein

in the network is, on average, smaller than that of randomly-picked human proteins.

Thus the EBV-targeted human proteins have relatively shorter paths to other proteins

in the human interactome(Calderwood et al., 2007).

Dyer et al. (2008) have also analyzed the topological properties of pathogen-targeted

host proteins using much larger datasets. The inter-species host-pathogen PPI and

intra-species human PPI datasets studied are integrated from primary literature (Calder-

wood et al., 2007) and 7 databases(Gilbert, 2005; Salwinski et al., 2004; Mishra et al.,

2006; Hermjakob et al., 2004; Zanzoni et al., 2002; Pagel et al., 2005; Joshi-Tope et al.,

2005). This integrated host-pathogen PPI dataset contains 10,477 experimentally de-

tected and manually curated host-pathogen PPIs, covering 190 pathogens (most of

which are viruses), while the integrated human PPI dataset contains 75,457 experi-

mentally verified PPIs(Dyer et al., 2008). The result reveals that proteins interacting
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with viral and bacterial pathogen groups tend to have higher degrees (hubs), which

confirms one of the observations of Calderwood et al. (2007), and higher betweenness

centrality (bottlenecks).

Dyer et al. also analyzed the physical interaction network between human and

three bacterial pathogens (B. anthracis, F. tularensis and Y. pestis) generated from

a modified two-hybrid assay (liquid-format mating)(Dyer et al., 2010). The analyses

show again pathogen preferentially interact with hubs and bottlenecks in the human

interactome(Dyer et al., 2010). Zhao et al. (2011) have similarly confirmed that hubs

are more likely to be targeted by viruses in studying human–virus PPIs and human

signal transduction pathways.

1.3.2 Structural properties of host-pathogen PPIs

Franzosa and Xia (2011) report a significant overlap between exogenous (i.e., host-

pathogen) and endogenous (i.e., within-host) interfaces of PPIs, suggesting interface

mimicry as a possible pathogen strategy to evade immune system detection and to

hijack host cellular machinery. The exogenous interactions represent clear cases of

horizontal gene transfer between the virus and host(Franzosa and Xia, 2011). The

acquisition of viral protein sequences from hosts are also observed and discussed by

Rappoport and Linial (2012)

Comparing with endogenous interfaces, exogenous interfaces tend to be smaller,

indicating that the viral genome is under intense selection to reduce its size compared

to the host genome(Franzosa and Xia, 2011). There is a similar observation in an-

other work(Rappoport and Linial, 2012) that viral proteins are noticeably shorter than

their corresponding host counterparts, which may result from acquiring only host gene

fragment, eliminating internal domain and shortening domain linkers.

Interestingly, Franzosa and Xia (2011) find that virus-targeted interfaces tend to

be “date”-like. That is they are transiently used by different endogenous binding part-



CHAPTER 1. INTRODUCTION AND BACKGROUND 14

ners at different times and, on average, they utilize more human binding partners

than generic endogenous interfaces. This finding is supported by functional enrich-

ment among the mimicked endogenous binding partners for the GO term “Regulation

of Biological Process”(Franzosa and Xia, 2011), since proteins involved in biological

regulation usually have transient binding with other proteins. This may also partially

explain the topological property that targeted host proteins tend to be hubs in the host

interactome(Calderwood et al., 2007), because the proteins having date-like interfaces

tend to interact with many proteins and appear as hubs in intra-species PPI networks.

Lastly, an analysis of residues involved in exogenous and endogenous interfaces

shows that exogenous interfaces are likely to be less conserved then endogenous inter-

faces(Calderwood et al., 2007).

1.4 Analysis and assessment of host-pathogen PPIs

Analysis of host-pathogen PPI datasets is essential both for developing better prediction

approaches and applying the host-pathogen PPI datasets in the subsequent studies.

Assessment and analysis of host-pathogen PPI datasets can be conducted directly using

(i) gold standard host-pathogen PPIs or indirectly using (ii) functional information, (iii)

localization information, (iv) related experimental data, (v) biological explanation of

selected examples, etc.

1.4.1 Assessment based on gold standard

Known truly interacting host-pathogen PPI data (gold standard) are available for a few

pathogens. The ‘HIV-1, Human Protein Interaction database’(Fu et al., 2009) contains

a considerable number of H. sapiens–HIV PPIs. A substantial number of host-pathogen

PPIs (mainly H. sapiens–HIV PPIs) can also be found in other databases including

BIND(Gilbert, 2005), DIP(Salwinski et al., 2004), IntAct(Hermjakob et al., 2004), and

Reactome(Joshi-Tope et al., 2005). Therefore, in the case of H. sapiens–HIV PPIs, a
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fairly large gold standard dataset is available. For example, the “HIV-1, Human Protein

Interaction database”(Fu et al., 2009) has been used in assessing predictions based on

motif-domain interaction(Evans et al., 2009). On the other hand, Davis et al. (2007)

have only managed to collect 33 host-pathogen PPIs from the literature to validate their

predictions for 10 pathogen species. As another example, Doolittle and Gomez (2011)

have only managed to collect 3 PPIs from a public database(Dyer et al., 2008) and 20

PPIs from the literature, and only 19 among these collected PPIs are specific for the

H. sapiens–DENV-2 system that Doolittle and Gomez (2011) have made predictions

for. Although 9 of these 19 gold standard PPIs are present in the prediction results

of Doolittle and Gomez (2011), the assessment has been badly hampered by the small

size of the gold standard dataset.

1.4.2 Analysis and assessment based on functional information

Gene Ontology

GO terms that are significantly enriched in the host proteins predicted to be targeted

by pathogens can be used to evaluate the functional relevance of the predicted host-

pathogen PPIs(Davis et al., 2007). GO terms specific for human proteins involved in

the immune system and for pathogen proteins involved in host-pathogen interactions

can also be used to filter putative host-pathogen PPIs(Davis et al., 2007).

Several tools can analyze GO term enrichment, including GOstat(Beißbarth and

Speed, 2004) used by Wuchty (2011), GO::TermFinder(Boyle et al., 2004) used by

Davis et al. (2007), Ontologizer(Bauer et al., 2008) used by Tastan et al. (2009), and

DAVID(Dennis Jr et al., 2003) used in many other studies(Doolittle and Gomez, 2010,

2011; Evans et al., 2009). Specifically, Wuchty (2011) analyzes the GO term enrichment

of host proteins in predicted H. sapiens–P. falciparum PPIs and derives the 100 most

enriched GO terms (in the Biological Process category) of host proteins. He finds

that the pathogen may influence important signaling and regulation processes of the
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host through host-pathogen PPIs(Wuchty, 2011). Tastan et al. (2009) analyze the GO

term enrichment of host proteins in predicted host-pathogen PPIs; they find that 31

GO terms in the Molecular Function category (e.g., transcription regulator, ligand-

dependent nuclear receptor, MHC class I receptor, and protein kinase C activities), 19

GO terms in the Biological Process category (e.g., immune system process and response

to stimulus) and 14 GO terms in the Cellular Component category (e.g., membrane-

enclosed lumen and plasma membrane) are significantly enriched. Enriched GO terms

are identified similarly in several studies(Doolittle and Gomez, 2011, 2010) and, results

show consistency with viral infection. Similarly, enriched GO terms have also been

analyzed for pathogen groups(Dyer et al., 2008) and Conserved Protein Interaction

Modules (CPIM)(Dyer et al., 2010) among H. sapiens–B. anthracis, H. sapiens–F.

tularensis and H. sapiens–Y. pestis protein interaction networks.

Pathway data

An analysis of host-pathogen PPIs in the context of biological pathways provides a

functional overview of the targeted host proteins, illuminates the mechanisms of a

pathogen’s obstruction on host pathways, and serves as an important assessment of

predicted host-pathogen PPIs. We first discuss some results derived from an analy-

sis of the known host-pathogen PPIs using pathway data. Then we introduce some

assessment strategies of predicted host-pathogen PPIs using pathways.

Balakrishnan et al. (2009) analyze the PPI dataset from the ‘HIV-1, Human Protein

Interaction database’(Fu et al., 2009) in the context of human signal transduction in

the Pathway Interaction Database (PID)(Schaefer et al., 2009) and Reactome(Joshi-

Tope et al., 2005). They discover that a majority of human pathways can potentially

be targeted by H. sapiens–HIV-1 PPIs. However, many alternative paths (starting and

ending at the same proteins yet circumventing HIV-1 disrupted intermediate steps) to

the HIV-1 targeted paths exist due to human network redundancy; and degradation
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and down-regulation pathways are among the most highly targeted pathways. Singh

et al. (2010) and Zhao et al. (2011) have also obtained similar results from analyzing

the same pathway data: human signal transduction pathways derived from Pathway

Interaction Database (PID)(Schaefer et al., 2009) and Reactome(Joshi-Tope et al.,

2005) and virus–host PPI data from VirusMINT(Chatr-aryamontri et al., 2009). They

find that 355 out of 671 pathways are targeted by at least one viral protein. Moreover,

the majority of which (268 out of 355) are targeted by more than one viral proteins.

In these 355 pathways, 413 proteins are targeted by 28 different viruses. Also, 95

of these 413 targeted host proteins are known drug targets(Singh et al., 2010; Zhao

et al., 2011). However, proteins targeted by different viruses in each pathways are not

necessarily the same. Zhao et al. (2011) further report that centrally-located proteins

in merged networks of statistically significant pathways are hub proteins, and are more

frequently targeted by viruses.

Wuchty (2011) analyzes both predicted and external (experimentally determined

and structurally inferred) H. sapiens–P. falciparum PPIs using 184 manually curated

pathways from PID(Schaefer et al., 2009). He reports that both separate and com-

bined sets of predicted and external PPIs target proteins which have a higher de-

gree and which appear in more pathways(Wuchty, 2011). For each pathogen protein,

Wuchty (2011) identifies pathways enriched with host proteins that are targeted by

this pathogen protein using Fisher’s exact test. He then constructs a bipartite matrix

between pathogen proteins and their corresponding enriched host signaling pathways.

Observation of the matrix reveals that the pathogen has many interactions with proteins

in the TNF- and NF-kappa B pathways, which indicates the pathogen’s obstruction of

inflammatory response(Wuchty, 2011). To evaluate host-pathogen PPIs predicted by

the domain-motif interaction-based approach, KEGG pathway enrichment for HIV-1

proteins (ENV, NEF and TAT) targeted host proteins in the (experimentally verified

and computationally predicted) inter-species host-pathogen PPIs are analyzed(Evans
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et al., 2009). The enriched pathways include (i) immune system pathways such as T cell

and B cell receptor signally pathways, apoptosis, focal adhesion, and toll-like receptor

signaling pathways; (ii) disease pathways such as the colorectal cancer, leukemia and

lung cancer pathways; and (iii) signal transduction processes(Evans et al., 2009).

Gene expression data

Gene expression data are another important functional information source which have

been widely used in the filtering, assessment and verification of host-pathogen PPIs.

Tissue-specific and infection-related gene expression data are frequently used in host-

pathogen studies. A pathogen like P. falciparum infects different human organs at

different stages of its life cycle. So the expression data of different stages of its life

cycle and H. sapiens tissue-specific gene expression data can be used simultaneously

for pruning putative H. sapiens–P. falciparum PPIs(Wuchty, 2011; Krishnadev and

Srinivasan, 2008). For example, P. falciparum invades H. sapiens liver tissue during

the sporozoit stage. The predicted host-pathogen PPIs are thus more likely to be real,

if the corresponding human proteins are known to express in liver tissue and the corre-

sponding pathogen proteins are known to express in the sporozoit stage. This filtering

strategy has been adopted by several studies(Wuchty, 2011; Krishnadev and Srinivasan,

2008). For the H. sapiens–M. tuberculosis system, human proteins expressed in lung

tissue or bronchial epithelial cells and pathogen proteins upregulated in granuloma,

pericavity, or distal infection sites can be used for filtering purposes(Davis et al., 2007).

Moreover, pathogen genes involved in M. tuberculosis infections(Sassetti and Rubin,

2003; Rachman et al., 2006), and human genes involved in M. tuberculosis, L. major,

T. gondii infections(Chaussabel et al., 2003) can be compared with the pathogen and

host proteins in predicted H. sapiens–M. tuberculosis PPIs as a useful assessment(Davis

et al., 2007).
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RNA interference data

RNA interference (RNAi) is a natural process to specifically and selectively inhibit a

targeted gene expression. Small interfering RNA (siRNA), short hairpin RNA (shRNA)

and bi-functional shRNA are often used to mediate the RNAi effect. Some human pro-

teins, when being silenced by genome-wide RNAi experiments, are found not lethal to

human cells but essential for HIV replication. Those human proteins may have high

likelihood of interacting with HIV. Therefore, comparing the set of host proteins in pre-

dicted host-pathogen PPIs and the set of host proteins identified by RNAi experiments

can be used as an assessment. We briefly list some examples below.

Several studies show that knocking down some host proteins by siRNA(König et al.,

2008; Brass et al., 2008; Zhou et al., 2008) or shRNAs(Yeung et al., 2009), can impair

HIV-1 infection or replication. Thus, those host proteins are essential for HIV-1 infec-

tion or replication. Therefore, they have higher possibility to interact HIV-1 proteins.

This has been used as a filtering criterion(Doolittle and Gomez, 2010) and assessment

data(Tastan et al., 2009; Qi et al., 2010; Dyer et al., 2011; Evans et al., 2009) in several

studies.

Three works(Tastan et al., 2009; Qi et al., 2010; Dyer et al., 2011) based on the ma-

chine learning approach for predicting H. sapiens–HIV PPIs use a siRNA dataset(Brass

et al., 2008) to assess their prediction results. The assessment is conducted by exam-

ining the overlap between the human proteins targeted by the predicted PPIs and the

proteins in the siRNA dataset(Brass et al., 2008). Besides Qi et al. (2010) also com-

bine four RNAi datasets(König et al., 2008; Brass et al., 2008; Zhou et al., 2008; Yeung

et al., 2009) and conduct additional assessment in a similar way.

A five-way comparison has been conducted by Evans et al. (2009) on five HIV-

1 targeted human protein datasets—viz., (i) the human protein dataset targeted by

PPIs predicted using the motif-domain interaction-based approach(Evans et al., 2009);

(ii) human protein dataset targeted by gold standard PPIs from the ‘HIV-1,Human
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Protein Interaction database’(Fu et al., 2009); and (iii) human protein datasets from

three genome-wide RNAi experiments(König et al., 2008; Brass et al., 2008; Zhou et al.,

2008). Results show that genome-wide RNAi experiments match each other better than

the interaction studies(Evans et al., 2009). The matches between protein dataset (i)

and the other four protein sets are significant, but discrepancies are still observed(Evans

et al., 2009).

For the H. sapiens–DENV system, host protein datasets from two siRNA exper-

iments in DENV infection(Sessions et al., 2009; Krishnan et al., 2008) are available.

They have also been used to refine H. sapiens–DENV PPI prediction result(Doolittle

and Gomez, 2011).

1.4.3 Pruning based on localization information

Localization information of pathogen and host proteins may relate to the possibility of

their interactions. For extracellular pathogens, their extracellular or secretion proteins

may have higher chance of interacting with host surface proteins rather than host

nuclear proteins. For intracellular pathogens like viruses, co-localization of host and

pathogen proteins may be one of the prerequisites for protein interactions. Several

studies use these information to filter prediction results.

Sub-cellular localization of host and pathogen proteins

Since pathogen extracellular and secretion proteins, and proteins with translocational

signals are more likely to interact with host extracellular or membrane proteins, such

sub-cellular localization information are often used in pruning of predicted host-pathogen

PPIs(Lee et al., 2008; Krishnadev and Srinivasan, 2008; Tyagi et al., 2009; Krishnadev

and Srinivasan, 2011; Wuchty, 2011). In connection with this, several tools are used

in homology-based approaches(Krishnadev and Srinivasan, 2008; Tyagi et al., 2009;

Krishnadev and Srinivasan, 2011) to predict protein sub-cellular localization.
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Co-localization of host and pathogen proteins

As obligate intracellular pathogens, viruses do not have cellular structure or their own

metabolism, and are solely dependent on the host cell. Therefore, a viral protein and

its host protein interaction targets are more likely to be co-localized. Several studies

use this basic assumption to assess or filter predicted H. sapiens–HIV PPIs(Doolittle

and Gomez, 2010) and H. sapiens-DENV PPIs(Doolittle and Gomez, 2011). Similar

information is also used as one of the selected features for classifiers in approaches

based on machine learning for predicting H. sapiens–HIV PPIs(Qi et al., 2010; Tastan

et al., 2009). The co-localization information of two proteins can be revealed through

their shared GO terms in the Cellular Compartment category.

1.4.4 Biological explanation of selected examples

An analysis of a specific PPI by explaining the underlining biological functions is not

an effective assessment of predicted host-pathogen PPIs, because such an analysis can

cover only a small number of PPIs. However, it may facilitate a better understanding of

that putative PPI, and therefore promote subsequent experimental verification of that

prediction. Explanation of the biological basis of some example PPIs from the whole

dataset can be found in many studies(Krishnadev and Srinivasan, 2008; Tyagi et al.,

2009; Krishnadev and Srinivasan, 2011; Dyer et al., 2011; Davis et al., 2007; Doolittle

and Gomez, 2011, 2010). Some of the specific examples may have literature or exper-

imental supports, some lack direct literature support but have some indirect supports

including structural information, homology to template PPIs, evidence from related

experiments (gene expression and RNAi experiment data), etc. Explanation and iden-

tification of validated predictions also enhance the impact of the prediction methods;

and this approach has been used in many studies(Davis et al., 2007; Dyer et al., 2011;

Krishnadev and Srinivasan, 2011). For example, Dyer et al. (2011) discuss in detail the

predicted H. sapiens–HIV PPIs involving the HIV Dependency Factors(Brass et al.,
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2008) that have support in the literature(Dyer et al., 2011). To some extent, explana-

tion of indirect evidence and clues enhances validity of the selected parts of the pre-

diction results(Krishnadev and Srinivasan, 2011; Tyagi et al., 2009; Davis et al., 2007;

Doolittle and Gomez, 2011, 2010). Predicted PPIs both with and without experimental

verifications, and PPIs involving hypothetical proteins are discussed and explained in

Krishnadev and Srinivasan (2011). In another work, Tyagi et al. (2009) also explain

some examples of predicted H. sapiens–H. pylori PPIs through the structural point

of view, and discuss examples of PPIs involving membrane proteins, secreted proteins

and hypothetical proteins.

1.4.5 Assessment through related experimental data

Some related experimental data turn out to be useful for assessing the targeted host

proteins in host-pathogen PPIs. For example, during budding, host proteins may be

incorporated into virion(Chertova et al., 2006). Although some host proteins may be

taken up by a budding virus accidentally, others are known to play crucial roles in viral

life cycle and host-pathogen interaction. A dataset(Chertova et al., 2006) on human

protein presents in virion has also been used to filter predicted H. sapiens–HIV-1

PPIs(Doolittle and Gomez, 2010).

Qi et al. (2010) and Tastan et al. (2009) use a human protein set hijacked by HIV-1

into its virion(Ott, 2008) to assess their predicted H. sapiens–HIV-1 PPIs. Specifically

they examine the overlap between targeted human proteins in the predicted PPIs and

the 314 human proteins in virion(Ott, 2008). A large overlap suggests a satisfactory

performance of the prediction approach(Tastan et al., 2009; Qi et al., 2010).
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1.5 Host-pathogen interaction data collection and inte-

gration

The rapid progress on the host-pathogen interaction studies is supported by many

collection, dissemination, integration, analysis and visualization tools. Host-pathogen

interaction databases, can be divided into two categories: (i) collection and curation

databases; (ii) integration and analysis databases. There is no clear dividing line for

the two categories. This categorization is mostly for convenience of discussion.

1.5.1 Host-pathogen interaction data collection techniques

Text mining is frequently used for extracting PPI data from literature. This is very

useful in facilitating the manual curation of host-pathogen interaction data from pub-

lications. For example, VirusMINT(Chatr-aryamontri et al., 2009) relies on a simple

text mining approach based on a context-free grammar that identifies sentences con-

taining interaction information to select relevant articles. VirHostNet(Navratil et al.,

2009) also uses a text mining approach to prioritize papers for manual curation, where

the text mining pipeline is applied to extract keywords related to both virus and ex-

perimental procedures.

Moreover, text mining techniques have been applied to specifically extract host-

pathogen PPIs from biomedical literature with considerable accuracy(Thieu et al.,

2012). Feature-based and language-based approaches are introduced and compared

by Thieu et al. (2012). Both methods can automatically detect host-pathogen in-

teraction data and extract information about organisms and proteins involved in the

interactions(Thieu et al., 2012). The feature-based method uses SVM trained on fea-

tures derived from the individual sentences, including names of the organisms and cor-

responding proteins or genes, keywords describing host-pathogen interaction-specific

information, general PPI information, experimental methods, and other statistical in-
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formation(Thieu et al., 2012). The language-based method uses a link grammar parser

combined with semantic patterns derived from training examples(Thieu et al., 2012).

1.5.2 Host-pathogen interaction collection and curation databases

Host-pathogen interaction collection and curation databases are those dedicated to col-

lect and curate host-pathogen interaction from literature or from experimental data.

These databases may have imported some parts of data from other databases but

at least contain some data derived from their own collection or curation. Collection

and curation databases serve primarily as “data source”, and generally provide only

simple tools for searching, visualization or analysis. They are often used as the data

source for host-pathogen interaction studies or are imported by integration and analysis

databases (to be discussed in the next section). In this section we list some represen-

tative databases of this category.

PHI-base is a database created to catalog experimentally verified pathogenicity,

virulence and effector genes of fungal and Oomycet pathogens(Winnenburg et al., 2006).

After its update, PHI-base also covers bacterial pathogens. The pathogens covered by

PHI-base infect a wide range of hosts(Winnenburg et al., 2008).

The ‘HIV-1, Human Protein Interaction database’ at NCBI aims at cataloging

all interactions between HIV-1 and human proteins published in the peer-reviewed

literature(Fu et al., 2009). Basic search and visualization tools are also provided. It is

very popular among the AIDS research community. It is well known for its intensive

long-term curation effort. The H. sapiens–HIV-1 interaction data included in this

database cover both direct and indirect interactions; brief description and PubMed IDs

are also provided for each entry. Its H. sapiens–HIV-1 PPI data have been used in

several studies(Tastan et al., 2009; Qi et al., 2010; Evans et al., 2009) and imported as

source data by some databases(Chatr-aryamontri et al., 2009).

The VirusMINT database aims at collecting all interactions between viral and hu-
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man proteins reported in the literature(Chatr-aryamontri et al., 2009). It covers more

than 110 different viral strains(Chatr-aryamontri et al., 2009). The curation effort has

focused mainly on viruses known to be associated with infectious diseases and oncoge-

nesis in humans(Chatr-aryamontri et al., 2009). VirusMINT derives its host-virus PPI

data from two sources. The first source is from databases of literature-curated PPIs

like IntAct(Hermjakob et al., 2004), MINT(Zanzoni et al., 2002), and ‘HIV-1,Human

Protein Interaction database’(Fu et al., 2009). Host-virus PPI data are uploaded from

IntAct and MINT directly without further curation. Only a subset of ‘HIV-1, Hu-

man Protein Interaction database’ is imported, which pertains to enzymatic reactions,

physical associations and co-localization. The second source are PPIs manually cu-

rated from literature; the PPIs are first uploaded to MINT and then re-imported into

VirusMINT(Chatr-aryamontri et al., 2009). The literature curation is facilitated by

simple text ming techniques in selecting relevant articles. MINT(Zanzoni et al., 2002)

and VirusMINT are both curated by MINT curators and uploaded first to MINT then

to VirusMINT. Much of the PPI data in VirusMINT are the same as in MINT. Virus-

MINT also provides searching and visualization functions.

VirHostNet (Virus-Host Network) is a management and analysis database of inte-

grated virus-virus, virus-host and host-host interaction networks and their functional

annotations(Navratil et al., 2009).The interaction data are reconstructed from public

databases and, for virus-virus and virus-host interactions, are also supplemented by

original literature-curated dataset.

A simple text mining strategy has been adopted for prioritizing articles for literature

curation. Virus-virus and virus-host interactions data from public databases are also

carefully inspected before importing into VirHostNet(Navratil et al., 2009). Search and

visualization functions are supported in this database.

The databases mentioned below are mostly well known for their intra-species PPI

datasets. However, their curation and collection have also been extended to inter-
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species host-pathogen PPIs. IntAct is an open-source, open-data molecular interaction

database(Kerrien et al., 2012). Both intra and inter-species PPI data are collected in

this database either from the literature or from direct data depositions. For each PPI

entry a brief description, experimental method and literature citation are included.

Several integration databases(Chatr-aryamontri et al., 2009; Driscoll et al., 2009; Ran-

jit and Bindu, 2010) import host-pathogen PPI data from IntAct. It is well known

for its intensive curation and quality control process. BioGRID (Biological General

Repository for Interaction Datasets) archives and disseminates genetic and protein in-

teraction data(Stark et al., 2011). BioGRID interaction data are curated from both

high-throughput experiments and individual focused studies. Most of the interaction

data are intra-species PPIs, but some host-pathogen PPIs are included. DIP (Database

of Interacting Proteins) aims to integrate the diverse experimental evidences on PPIs

into the database(Salwinski et al., 2004). It is another well-known intra-species PPI

integration database. It also collects host-pathogen PPI data. Reactome is a curated,

peer-reviewed knowledgebase of biological pathways(Joshi-Tope et al., 2005). It cu-

rates both intra- and inter-species data. Curated host-pathogen PPI data are also

available in Reactome(Joshi-Tope et al., 2005). BIND (Biomolecular interaction net-

work database) archives biomolecular interaction, complex and pathway information,

and is a major source of curated biomolecular interactions(Gilbert, 2005). It has not

been maintained for the last few years, until a recent update and conversion of the

BIND data to a standard format (Proteomics Standard Initiative-Molecular Interac-

tion 2.5)(Isserlin et al., 2011). Its main interaction data are intra-species PPIs, but

also contains some host-pathogen PPI data.

1.5.3 Host-pathogen interaction integration and analysis databases

Host-pathogen interaction integration and analysis databases mainly integrate host-

pathogen interaction data from other source databases. While they usually do not
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have their own intensive curation process, some of them provide powerful analysis and

visualization functions. The integrated data can be more than just host-pathogen

PPI data, like gene expression data related to infection, disease outbreak information,

pathogen proteomics data, protein functional data, protein complex data, etc. In this

section, representative integration and analysis databases are briefly introduced.

APID (Agile Protein Interaction Data Analyzer) provides an open-access frame-

work where all known experimentally validated protein-protein interactions (BIND,

BioGRID, DIP, HPRD, IntAct and MINT) are unified in it(Prieto and De Las Rivas,

2006). iRefIndex(Razick et al., 2008) provides an index of PPIs from BIND, BioGrid,

DIP, HPRD, IntAct, MINT, MPact(Güldener et al., 2006), MIPS(Pagel et al., 2005)

and OPHID(Brown and Jurisica, 2005). iRefWeb(Turner et al., 2010) provides a search-

able web interface to the iRefIndex. Both APID and iRefIndex (iRefWeb) are general

PPI integration databases, unlike the following databases which are dedicated to host-

pathogen interaction data integration and analysis. They include host-pathogen PPIs

just because their source databases contain some host-pathogen PPI data.

PHIDIAS (Pathogen-Host Interaction Data Integration and Analysis System) in-

cludes six components (PGBrowser, Pacodom, BLAST searches, Phinfo, Phigen and

Phinet) for searching, comparing, and analyzing integrated genome sequences, con-

served domains, host-pathogen interaction data and gene expression data related to

host-pathogen interactions(Xiang et al., 2007).

HPIDB is a host-pathogen PPI database which integrates experimental PPIs from

several public databases (BIND, REACTOME, MINT, IntAct, PIG)(Ranjit and Bindu,

2010). Some of the HPIDB sources may have content overlap with each other, since

PIG(Driscoll et al., 2009) also integrates data from BIND, REACTOME, and MINT.

Different from PIG—which only considers one host, H. sapiens—HPIDB also takes

other hosts into account.

GPS-Prot is an integration and visualization database that currently focuses on
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H. sapiens–HIV interactions(Fahey et al., 2011). It allows for integration of different

HIV interaction data types(Fahey et al., 2011). Human PPI data are imported from

the following six databases, MINT, IntAct, DIP, MIPS, BioGRID and HPRD. H. sapi-

ens–HIV PPI data are import from VirusMINT(Chatr-aryamontri et al., 2009). The

GPS-Prot can group proteins into functional modules or protein complexes, generat-

ing intuitive network representations. It allows for the uploading of user-generated

data(Fahey et al., 2011).

RCBPR (Resource Center for Biodefense Proteomics Research) is a bioinformatics

framework employing a protein-centric approach to integrate and the collect large and

heterogeneous data(McGarvey et al., 2009). It is no longer functional and the collected

data have been transferred to the Pathogen Portal (http://www.pathogenportal.org).

PIG (Pathogen Interaction Gateway)(Driscoll et al., 2009) is created by integrating

host-pathogen PPI data from a number of public resources, including BIND, REAC-

TOME, MINT, MIPS, HPRD, DIP, and MvirDB(Zhou et al., 2007). Now PIG has

become part of the PATRIC(Gillespie et al., 2011) database; but only the bacterial

pathogen data in PIG have been merged into PATRIC.

Disease View is a host-pathogen data integration and visualization resource that en-

ables access, analysis, and integration of diverse data sources, including host, pathogen,

host-pathogen interactions, and disease outbreak. It provides a mechanism for infec-

tious disease-centric data analysis and visualization. The infections diseases covered

by Disease View come with related information like the corresponding pathogen that

causes the infectious diseases, the associated pathogen virulence genes and the ge-

netic and chemical evidences for the human genes that are associated with the dis-

eases(Driscoll et al., 2011). It is implemented as a component of PATRIC(Gillespie

et al., 2011).

PATRIC (the Pathosystems Resource Integration Center) is a comprehensive genomics-

centric relational database for infectious-disease research(Gillespie et al., 2011). Com-



CHAPTER 1. INTRODUCTION AND BACKGROUND 29

prehensive bacterial genomics data, associated data relevant to genomic analysis, and

analysis tools and platforms have been provided in this database. Its resources can

be divided into two categories, (i) organisms, genomes, and comparative genomics; (ii)

recurrent integration of community-derived associated data.

1.5.4 Host-pathogen interaction integration and analysis software

Not only databases but also standalone software tools are available for host-pathogen

interaction studies.

Conventional complex network analysis and visualization software platforms like

Cytoscape(Smoot et al., 2011) continue to be very popular in host-pathogen inter-

action studies. Cytoscape has been used for visualization of host-pathogen PPI net-

works in several works(Dyer et al., 2007, 2008). Software that are specifically de-

signed for host-pathogen interaction studies have also been developed. For example,

BiologicalNetworks is a system that enables the integration of multi-scale data for

host-pathogen studies(Sergey et al., 2011). It can integrate diverse experimental data

types, including molecular interactions, phylogenetic classifications, genomic sequences,

protein structure information, gene expression, pathway and virulence data for host-

pathogen studies(Sergey et al., 2011). It provides several useful functions including,

analyzing sub-networks, building host-pathogen interaction networks, studying individ-

ual genes, identifying potential drug targets, adding phylogeography, integrating user

data, etc(Sergey et al., 2011). This system is available through a standalone Java ap-

plication (BiologicalNetworks), which provides complex data analysis capabilities, and

a web interface (http://flu.sdsc.edu) for quick search of phylogenetic relations among

sequenced strains.
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1.6 Discussion

1.6.1 Contributions and limitations of current host-pathogen interac-

tion study approaches

The current host-pathogen interaction studies described in this Chapter are indispens-

able stepping stones for the future progress in this field. Nevertheless, several limita-

tions are also noticeable.

Contributions of current host-pathogen interaction studies

Usually host-pathogen PPIs prediction followed by analyses and assessment would pro-

duce enriched datasets which are useful for the experimental testing and verification.

This could save a lot of wet lab experimental effort. The prediction and verification

approaches discussed in these pioneering works pave the way for future development of

host-pathogen interaction studies as they provide insights for improvements and basis

for comparison.

Limitations of current host-pathogen interaction prediction approaches

It is not uncommon that different prediction approaches yield very different predic-

tion results, even in the same host-pathogen system, as revealed by the comparison

among different H. sapiens–HIV PPI datasets generated from different prediction ap-

proaches(Doolittle and Gomez, 2010).

It has not escaped our notice that some publications repeatedly report almost the

same prediction method whose performance and predicted results have not been rigor-

ously assessed. Sometimes even the source data (like template PPI data) are the same,

yet only applied to different host-pathogen systems(Krishnadev and Srinivasan, 2008;

Tyagi et al., 2009; Krishnadev and Srinivasan, 2011). Therefore the contribution of

these publications may be relatively limited.
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Limited by the current understanding of host-pathogen protein interaction, the pre-

diction approaches may not resemble the real biological scenario. For example, although

the approach based on motif-domain interaction(Evans et al., 2009) has achieved good

performance, Evans et al. has also mentioned the mismatches between predicted result

and gold standard may be caused by the fact that real mechanisms of host-pathogen

PPIs are more complicated than the assumption (that host-pathogen PPIs are mediated

by ELMs-CDs interactions) in this study.

Limitations of current host-pathogen interaction verification approaches

Due to the limitation of current known gold-standard host-pathogen PPI data and

limited understanding of the host-pathogen interactions, most current assessments are

rather “indirect” approaches.

Some verifications may not have a strong logical or biological basis. For exam-

ple, Dyer et al. (2007) assessed predicted H. sapiens-P. falciparum PPIs by examining

whether the pairs of human proteins predicted to interact with the same pathogen

proteins are close to each other in the human PPI network. This assessment through

distance in triplets may not have biological or experimental basis. However, based on

the observed topological properties discussed in the Section 1.3, “Basic principles of

host-pathogen interaction”, calculating whether the human proteins targeted by pre-

dicted PPIs have shorter paths to other reachable proteins in the human interactome,

would serve as a possible assessment. Dyer et al. (2007) also analyze the gene expression

profile of pathogen protein pairs interacting with the same host proteins; they report

that those pathogen protein pairs exhibit correlated gene expression profile, and also

the same for host protein pairs interacting with same pathogen proteins. While gene

expression profile can be reasonably used in assessing M. tuberculosis H37Rv intra-

species PPI datasets as done by Zhou and Wong (2011), it may lack biological basis in

assessing inter-species host-pathogen PPI dataset through gene expression in the form
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of triplets as conducted by (Dyer et al., 2007).

Explanation on selected examples of predicted results, neither reflects the qual-

ity of the whole predicted results nor the performance of prediction approaches. For

example, biological explanation for selected examples should not be used as the only

assessment of a few predicted results, as what we observed in several studies(Lee et al.,

2008; Krishnadev and Srinivasan, 2008; Tyagi et al., 2009; Krishnadev and Srinivasan,

2011)—the qualities of those prediction results are still largely in doubt.

1.6.2 Contributions and limitations of current host-pathogen interac-

tion databases

Current host-pathogen interaction databases contribute a lot to host-pathogen interac-

tion studies in the form of collecting and integrating valuable host-pathogen interactions

and providing powerful analysis tools. Yet some possible limitations also exist.

The host-pathogen interaction databases greatly facilitate host-pathogen interac-

tion studies in collecting and integrating valuable interaction and related genomic and

experimental data scattered in primary literature. Without these databases, many of

the studies described in this Chapter would be impossible or at least would take much

longer time and more effort in collecting the source data. Moreover, these databases

provide the platforms for accessing and sharing of host-pathogen interaction data, which

in turn facilitate research in this field. Many databases not only enable convenient data

access and integration of related host and pathogen data, but also provide powerful

analysis tools which significantly increase the efficiency of host-pathogen interactions

analysis.

Some databases lack long-term support and are no longer in function, like RCBPR

(McGarvey et al., 2009; Zhang et al., 2008). And there are some information loss in the

merging of the one database into another, like PIG(Driscoll et al., 2009), where only its

bacterial pathogen data have been moved into PATRIC. Some databases, although still
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Limitations databases

Lack long-term support(no longer in function) RCBPR
Information loss in the merging to another database PIG
Lack necessary updates(still in operation) ViursMINT, HPIDB

Table 1.1: Summary of limitations of current host-pathogen interaction databases

in operation, lack necessary updates, like ViursMINT(Chatr-aryamontri et al., 2009)

and HPIDB(Ranjit and Bindu, 2010); refer Table 1.1.

1.6.3 Literature-curated host-pathogen interaction data

The literature-curated interaction data from the databases discussed above are often

used as gold standard in studies on host-pathogen interactions. However, a study(Cusick

et al., 2008) on intra-species PPI datasets shows that literature-curated PPI data may

not be as accurate as people usually have assumed. Therefore, those manually cu-

rated host-pathogen PPI data should be used with caution. For example, the ‘HIV-1,

Human Protein Interaction database’ at NCBI(Fu et al., 2009) has been divided into

“positively labeled” and “partially labeled” data in Qi et al. (2010), and VirusMINT

only imports a portion of the PPI data from it.

1.6.4 Future development of host-pathogen interaction studies

Fundamental progress in host-pathogen interaction studies will be achieved in the fu-

ture, due to better source data, improved investigation approaches and tools, and these

will lead to deeper understanding of host-pathogen interaction.

It is reasonable to expect that high-quality source data will become increasingly

available. More genomic and proteomic data will emerge. As a result, more accu-

rate orthologs can be identified between less-known pathogens and well-studied organ-

isms. This will enable the application of homology-based approach to many under-

studied host-pathogen systems. Better annotation of known motifs and counter do-

mains will result in enhanced performance of domain-motif interaction-based predic-
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tion approaches(Evans et al., 2009). With more protein structures being resolved,

structure-based approach will have higher-quality structural template and with much

larger coverage. With more high-resolution Structural Interaction Network (SIN) be-

ing provided to analysis, more fundamental interaction mechanisms will come to light.

Abundant and accurate functional information—including, GO annotation, gene ex-

pression, RNA interference, and pathway data—will largely improve the performance

of current analysis approaches. More reliable PPI data (both intra- and inter-species)

will provide sufficient high-quality templates for homology-based approaches, and also

larger as well as more accurate training and testing data for machine learning-based

approaches. The lack of gold-standard host-pathogen PPI data will also be alleviated

in the future. As a result more direct and effective verification approaches will be

available for many host-pathogen systems. With better source data from a variety

of aspects, the prediction approaches that can integrate different types of data (e.g.,

machine learning-based approach) into their prediction will have good potential.

More effective host-pathogen interaction prediction algorithms will be proposed in

the future. For example, the core algorithm used by Dyer et al. is an association method

proposed in 2001. However, several other algorithms with enhanced performance are

available now, including the association numerical method (ASNM)(Hayashida et al.,

2004) in 2004 and the association probabilistic method (APM)(Chen et al., 2006) in

2006. Using ASNM or APM in predicting host-pathogen PPIs may improve prediction

performance. Recently, Itzhaki et al. (2010) propose the concept of “preferential use of

protein domain pairs as interaction mediators” may also introduce new idea to DDI-

based prediction algorithms. More accurate prediction and more effective verification

approaches on a better understanding of host-pathogen interactions will come out.

All these will help the community to achieve the ultimate goal of better prevention

and treatment of infectious diseases.
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1.7 Objective of this dissertation

This dissertation aims at conducting a systematic study on host–pathogen PPIs based

on the H. sapiens–M. tuberculosis H37Rv model system. The systematic study consists

of three parts:(i)identifying reliable pathogen PPI dataset; (ii)constructing comprehen-

sive functional analysis tool; (iii) developing more accurate prediction approaches and

analyzing the predicted inter-species host–pathogen PPIs.

Intra-species PPI datasets are crucial for understanding the functional role of the

proteins that are involved in host–pathogen PPIs. And intra-species pathogen PPIs

can be used as training data for the prediction of host–pathogen PPIs as in Dyer et al.

(2007). Like most pathogens, large-scale high-quality intra-species pathogen PPIs of M.

tuberculosis H37Rv are not readily available. If we want to conduct a systematic study

on H. sapiens–M. tuberculosis H37Rv PPIs, a reliable M. tuberculosis H37Rv intra-

species PPI dataset has to be identified. Therefore, in the first part of our systematic

study, we work towards building the foundation of H. sapiens–M. tuberculosis H37Rv

PPI study by identifying a reliable M. tuberculosis H37Rv intra-species PPI dataset.

The lack of high-quality large-scale inter-species PPIs is a problem common to most

host–pathogen systems, including H. sapiens–M. tuberculosis H37Rv. This results in

a lack of gold standard for assessing the predicted host–pathogen PPIs. Thus, func-

tional analysis based on pathway data are frequently used to assess the predicted host–

pathogen PPIs. But due to several major limitations of current pathway databases, the

effectiveness of pathway data for analysis and assessment of predicted host–pathogen

PPIs has been seriously reduced. Therefore, the second part of our systematic study

is to create our own analysis tool—IntPath. IntPath enables comprehensive functional

analysis based on integrated pathway data for both host and pathogen.

Predicting host–pathogen PPIs is one of the important topics in host–pathogen

interaction studies, as the experimental host–pathogen PPIs are usually very scarce.

Many prediction approaches have been proposed in the past few years as discussed in
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Section 1.2. However the performance of most prediction approaches are rather limited

and their accuracy is largely unknown. Therefore, for the third part of our systematic

investigation, we aim at developing more accurate prediction approaches than existing

approaches. We tackle the challenge in two ways, by refining the homology-based

prediction approach and the DDI-based prediction approach.

We compare our refined approaches to the corresponding conventional DDI-based

and homology-based approaches in terms of cellular compartment distribution, disease

gene list enrichment, pathway enrichment and functional category enrichment. The

analysis results support the validity of our prediction result and clearly show that our

our refinements lead to better performance in predicting H. sapiens–M. tuberculosis

H37Rv PPIs.

This dissertation presents our systematic investigation on host–pathogen PPIs through

three major parts as discussed above. The tools, methods, prediction results and ob-

served properties described in this dissertation can be an important stepping stone for

the future host–pathogen interaction studies.

1.8 Declaration

This dissertation is based on the following material:

• “Progress in computational studies of host-pathogen interactions”, H. Zhou, J.

Jin and L. Wong. J. Bioinform. Comput. Biol., 11(2):1230001, April 2013.

• “Comparative analysis and assessment of M. tuberculosis H37Rv protein-protein

interaction datasets”, H. Zhou and L. Wong. BMC Genomics, 12(Suppl 3):S20,

November 2011.

• “IntPath—an integrated pathway gene relationship database for model organisms

and important pathogens”, H. Zhou, J. Jin, H. Zhang, Y. Bo, M. Wozniak and

L. Wong. BMC Systems Bio., 6(Suppl 2):S2, December 2012.



CHAPTER 1. INTRODUCTION AND BACKGROUND 37

• “Stringent DDI-based prediction of H. sapiens–M. tuberculosis H37Rv proteint-

protein interactions”, H. Zhou, J. Rezaie, W. Hugo, J. Jin, C. H. Yong, M.

Wozniak and L. Wong. BMC Systems Bio. Accepted, September 2013.

• “Accurate homology-based prediction of H. sapiens–M. tuberculosis H37Rv proteint-

protein interactions”, H. Zhou, N. Nguyen, J. Jin, L. Zhao, M. Fan and L. Wong.

BMC Systems Bio., submitted, May 2013.



Chapter 2

Analysis of M. tuberculosis H37Rv

PPI Datasets

M. tuberculosis protein-protein interactions (PPIs) data are crucial for the study of

host-pathogen interaction. However, the quality of the well known M. tuberculosis

PPI datasets is unclear. This hampers the effectiveness of research works that rely

on these PPI datasets. Here, we analyze the two well known M. tuberculosis H37Rv

PPI datasets. The first dataset is the high-throughput B2H PPI dataset from a recent

paper in Journal of Proteome Research (Wang et al., 2010). The second dataset is

from the STRING database, version 8.3, which is comprised entirely of H37Rv PPIs

predicted using various methods.

We find that these two datasets have a surprisingly low level of agreement. To test

the quality of these two datasets, we evaluate them based on correlated gene expression

profiles, and coherent informative GO term annotations. Next, to test the possibility

that the H37Rv STRING PPIs are not purely direct physical interactions, we compare

B2H PPIs and predicted PPIs in STRING for protein pairs that catalyze adjacent steps

in enzymatic reactions. If two proteins in a pair catalyze adjacent steps in enzymatic

reactions, these two proteins are very likely have close functional association; however,

38
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they may not have physical interactions.

The results show that the H37Rv B2H PPI dataset is of low quality. It should not

be used as the gold standard to assess the quality of other (possibly predicted) H37Rv

PPI datasets. The H37Rv STRING PPI dataset is also of low quality; nevertheless, a

subset consisting of STRING PPIs with score ≥770 has satisfactory quality. However,

these STRING “PPIs” should be interpreted as functional associations, which include

a substantial portion of indirect protein interactions, rather than direct physical in-

teractions. These two factors cause the strikingly low similarities between these two

main H37Rv PPI datasets. The results and conclusions from this comparative anal-

ysis provide valuable guidance in using these M. tuberculosis H37Rv PPI datasets in

subsequent studies for a wide range of purposes.

2.1 Background

M. tuberculosis H37Rv protein-protein interaction (PPI) data has become an important

reference for the host-pathogen interaction studies. However, M. tuberculosis H37Rv

PPI data is far from complete and accurate. Hitherto predicted M. tuberculosis H37Rv

PPIs in the STRING database (version 8.3 contains 248,574 PPIs covering 3,965 pro-

teins)(Szklarczyk et al., 2011) have seen the most frequent use because large-scale

experimental PPI datasets have not been available until recently.

The first large-scale proteome-wide PPI dataset of H37Rv was produced in 2010

using a high-throughput bacterial two-hybrid (B2H) approach (Wang et al., 2010);

it comprises 8,042 PPIs covering 2,907 proteins. No doubt in the foreseeable future,

increasingly more studies on M. tuberculosis will base on both of these datasets.

There is an extremely low overlap of just 276 protein-protein interactions shared

between the 8,042 H37Rv PPIs (covering 2,907 proteins) in the B2H dataset and the

248,574 predicted H37Rv PPIs in STRING(covering 3,965 proteins). In fact a hyper-

geometric test—drawing 8,042 pairs from the background of 7,858,630 (= 3,965 choose
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2) possible pairs, and testing for an intersection of size at least 276 with the 248,574

predicted H37Rv PPIs in STRING—gives a p-value of 0.9, showing that the overlap of

the STRING and B2H PPI datasets is no better than random. It is the objective of

this Chapter to investigate the cause of this unexpectedly low overlap. We hypothesize

that this low overlap between the two datasets may be due to (i) the B2H dataset is

poor in quality, (ii) the STRING dataset is poor in quality, and/or (iii) the STRING

dataset does not correspond to direct physical protein-protein interactions.

In order to test the quality of these two M. tuberculosis H37Rv PPI datasets, we

evaluate them based on correlated gene expression profiles, coherent informative GO

term annotations, and conservation in other organisms. Two proteins that interact are

expected to be expressed at the same time, and be located or transported to the same

place. Thus their underlying genes are likely to exhibit correlated expression profiles.

Two proteins interact to effect a biological process or molecular function; thus they

are expected to be annotated to some GO terms in common or GO terms that are

closely related. Many protein-protein interactions are expected to be conserved across

several organisms that have common ancestry; thus real protein interactions are likely

to coincide with interologs from such organisms.

These assessments indicate H37Rv B2H PPIs agree less well with correlated gene

expression profiles, coherent informative GO term annotations, and conservation in

other organisms than H37Rv STRING PPIs (with score ≥ 770) . This suggests that

PPIs in the H37Rv B2H dataset may contain a high level of noise (false positives).

As mentioned earlier, the H37Rv STRING PPI dataset (with score ≥ 770) , which

is comprised entirely of PPIs predicted using a variety of methods, shows good agree-

ment with correlated gene expression profiles, coherent informative GO term annota-

tions, and conservation in other organisms. However, protein pairs that are functionally

linked are also expected to agree well with correlated gene expression profiles, coherent

informative GO term annotations, and conservation in other organisms, even though
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many of these protein pairs do not have direct physical interactions. In order to test

whether the predicted PPIs in STRING correspond to direct physical protein-protein

interactions, we should analyze the similarity between these predicted PPIs with sev-

eral distinct types of protein pairs such as experimental PPIs obtained from two-hybrid

assays, protein pairs that belong to the same protein complexes, and protein pairs that

catalyze adjacent steps in enzymatic pathways. As these types of additional informa-

tion are not available for M. tuberculosis, we turn to the model organism S. cerevisiae

where more comprehensive information is available. We extract from STRING an un-

biased representative S. cerevisiae PPI subset (which we denote “predicted functional

associations dataset”) that are predicted using similar methods as the H37Rv STRING

PPI dataset. For the three different types of protein pairs, we use the following gold

standard: (i) S. cerevisiae two-hybrid PPI dataset from Yu et al. (2008), (ii) all protein

pairs found in the same S. cerevisiae protein complexes from Wodak Lab (Pu et al.,

2009), and (iii) protein/gene pairs that catalyze/form successive reaction steps in bi-

ological pathways from KEGG (Ogata et al., 1999), Wikipathways (Pico et al., 2008;

Kelder et al., 2009) and Biocyc (Karp et al., 2005).

This analysis indicates that the predicted S. cerevisiae STRING PPIs show higher

similarities with protein pairs in the same protein complexes and protein/gene pairs

that catalyze/form adjacent reaction steps in biological pathways than with PPIs re-

ported in two-hybrid assays. Therefore, the predicted S. cerevisiae STRING PPIs are

mostly not direct physical protein-protein interactions. As the H37Rv STRING PPIs

are predicted using similar methods, in turn, they are also unlikely to correspond to di-

rect physical interactions. Nonetheless, their relatively good agreement with correlated

gene expression profiles, coherent informative GO term annotations, and conservation

in other organisms suggests that the H37Rv STRING PPIs (at score ≥ 770) are pro-

teins that are functionally linked. We wish to have a more thorough investigation on

the differences between direct physical interactions and indirect functional associations,
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however, due to the limitations of this study, we can only present the characteristics of

the datasets, but can’t achieve more precise quantitative analysis in this thesis. This

Chapter thus provides an important guidance to the researchers who might base their

works on the two M. tuberculosis H37Rv PPI datasets. The details of our analyses are

presented in the sections below.

2.2 Method

2.2.1 Preparing STRING PPI datasets for analyses

STRING database uses a combination of prediction approaches and an integration

of other information (neighborhood, transferred neighborhood, gene fusion, text min-

ing, databases, homology transfer, cooccurrence, experiments and so on). STRING

PPIs come from a mix of experimental data; PPIs copied from public databases (e.g.

KEGG and BioGRID) and predicted PPIs. So we derive from STRING a subset of

predicted PPIs and name this unbiased STRING subset “predicted functional associa-

tions dataset”. This dataset is derived only from the following prediction approaches:

neighborhood, transferred neighborhood, gene fusion, cooccurrence, transferred co-

expression, text mining, and transferred text mining.

2.2.2 The agreement between a benchmark PPI dataset and a testing

PPI dataset

We use Jaccard coefficient, recall, and precision to measure the agreement between a

benchmark PPI dataset and a testing PPI dataset. Jaccard coefficient is defined as the

size of the intersection of the two datasets divided by the size of the union of the two

datasets. Recall is the proportion of benchmark PPIs that are in the testing dataset.

Precision is the proportion of testing PPIs that are in the benchmark dataset. Thus,

1. Jaccard coefficient = TP / (TP+FP +FN);
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2. Precision = TP / (TP+FP);

3. Recall = TP / (TP + FN).

Here, TP (true positives) represents the number of PPIs in the testing dataset that

overlap with the benchmark dataset; FN (false negatives) represents the number of

PPIs in the benchmark dataset that are not in the testing dataset; TN (true negatives)

represents the number of all possible PPIs that appear in neither the testing dataset

nor the benchmark dataset; and FP (false positives) represents the number of PPIs in

testing dataset but are not in the benchmark dataset. The Jaccard coefficient, recall,

and precision of the benchmark and testing datasets considered in this Chapter are

given in Figures 2.1, 2.3, 2.5 and 2.6.

2.2.3 STRING score distribution of “Overlap PPI Number ratio”

In order to find which STRING score region has a higher percentage of overlapping PPIs

with the B2H PPI dataset, STRING score distribution of “overlap PPI number ratio”

between the STRING predicted functional associations dataset and the M. tuberculosis

H37Rv B2H PPI dataset were calculated and plotted in Figure 2.2. At each score

interval of 10, the “overlap PPI number ratio” is defined as the number of overlapping

PPIs divided by the total number of PPIs in that interval. For example, if there are

300 PPIs from the STRING predicted functional associations dataset are in score range

150-160, and among these 300 PPIs there are 30 PPIs overlapping with the B2H PPI

dataset, then in this score range 150-160 the “overlap PPI number ratio” is 30/300 =

0.1. We calculate all the “overlap PPI number ratio” in each interval, STRING score

ranging from 150 to 1000, and the distribution of the ratios are plotted in Figure 2.2.
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2.2.4 GO term annotation, informative GO term identification and

PPI datasets assessments

M. tuberculosis H37Rv proteins are annotated with GO terms using InterProScan

(Quevillon et al., 2005). GO terms are organized into three separate hierarchical

ontologies—viz., cellular component terms (CC), molecular function terms (MF), and

biological process terms (BP). A protein that is annotated by a particular GO term

is considered to be annotated by all ancestor terms (in the corresponding hierarchical

ontology) of that GO term—that is, the so-called “through-path” rule is applied. As

top-level GO terms tend to be annotated to many proteins and leaf-level GO terms to

very few proteins, in order to avoid bias in our analysis, we keep only “informative”

GO terms for analysis.

A pair of proteins comes into contact with each other and interacts to perform a

function. If the GO term annotations of the proteins in an organism are complete,

we can expect such a pair of interacting proteins to have at least one informative GO

term annotation in common. Therefore, a predicted or reported PPI is more likely

to be a false positive when the two proteins in the PPI do not have an informative

GO term annotated to them in common. We can therefore gauge the quality of a PPI

dataset by calculating the percentage of PPIs in the dataset (where both proteins in

the PPI have informative GO term annotations) that has “coherent” informative GO

term annotations. A PPI is said to have coherent informative GO term annotation if

the two proteins in the PPI have an informative GO term annotation in common.

However, the percentage of PPIs in a dataset that have coherent informative GO

terms can be affected by the number of informative GO terms and by biases in the

distribution of proteins these informative GO terms are annotated to. An informative

GO term is defined as a GO term that has at least 30 proteins assigned to it or its

descendants and none of its child terms have 30 or more proteins assigned to it. For

example, if only one informative GO term was available in the organism, then 100%



CHAPTER 2. ANALYSIS OF M. TUBERCULOSIS H37RV PPI DATASETS 45

of the annotated PPIs would be coherent. Thus, to better assess the quality of a PPI

dataset by coherence of informative GO term annotations, we need to compare the per-

centage of coherently annotated PPIs in the dataset to appropriately generate random

PPI datasets. In particular, a high ratio (named “Info GO ratio”) of the percentage

of coherently annotated PPIs in the PPI dataset compared to that of the random PPI

dataset suggests that PPI dataset is likely to be of high quality. We generate random

PPI network using the Random Network Plug-in in Cytoscape (Shannon et al., 2003).

The percentage of PPIs that have coherent informative GO term annotations in the

PPI datasets considered in this Chapter is given in Figures 2.3.

2.3 Result

This section can be divided into four parts: (i) Discover the low similarity between

the two main H37Rv PPI datasets. (ii) Evaluate the quality of the two H37Rv PPI

datasets in the same organism. (iii) Assess the quality of the H37Rv B2H PPI dataset

across organisms. (iv) Analyse characteristics of the STRING PPIs in M. tuberculosis

and S. cerevisiae.

2.3.1 Lack of agreement between the two M. tuberculosis H37Rv PPI

datasets

The H37Rv B2H PPI dataset is used as benchmark and different subsets of H37Rv

STRING PPIs are tested against it. We consider all H37Rv STRING PPIs as well as

STRING H37Rv PPIs based on specific methods (gene neighbourhood, gene fusion,

etc.) used for predicting them. For each subset, in Figure 2.1, we show the Jaccard

coefficient, precision, and recall of each predicted subset at STRING score ≥ 770.

According to Figure 2.2, STRING score threshold at around 770 generally maxi-

mizes the overlap between two-hybrid PPIs and STRING predicted PPIs in M. tuber-

culosis H37Rv. It is clear from Figure 1 that the STRING PPIs predicted by various
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Figure 2.1: Agreement between H37Rv PPIs in STRING and the B2H PPI datasets.
The Jaccard coefficient, precision and recall between H37Rv PPI datasets in STRING
database predicted by different methods and the H37Rv B2H PPI dataset (benchmark).
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Figure 2.2: Overlap PPI number ratios at various STRING score thresholds. The
overlap PPI number ratios at various STRING score thresholds between (i) the H37Rv
B2H PPI dataset and the H37Rv STRING predicted functional associations dataset,
(ii) the S. cerevisiae Y2H PPI dataset and the S. cerevisiae STRING predicted func-
tional associations dataset, (iii) the C. jejuni NCTC11168 Y2H PPI dataset and the
C. jejuni NCTC11168 STRING predicted functional associations dataset, and (iv) the
Synechocystis sp. PCC6803 Y2H PPI dataset and Synechocystis sp. PCC6803 STRING
predicted functional associations dataset.
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methods all have extremely low precision, recall, and overlap with the H37Rv B2H PPI

dataset. Below are some representative statistics:

1. Overlapping PPIs between the two datasets: 276

2. STRING PPIs Precision: 0.00215 Recall: 0.03503

3. STRING PPIs (at score ≥ 770) Precision: 0.00574 Recall: 0.00896

The extremely low agreement between the H37Rv PPIs in the STRING and B2H PPI

datasets is rather unexpected. We hypothesize that it may be a result of one or more of

the following situations. First, it may be that the H37Rv B2H PPI dataset contains an

unusually high level of noise. Second, it may be that the H37Rv STRING PPI dataset

and subsets thereof contain an unusually high level of noise. Third, it may be that

the predicted PPIs in STRING are not direct physical interactions; rather, they may

primarily be other types of functional associations such as protein pairs in the same

protein complexes and enzyme pairs catalyzing successive reaction steps.

2.3.2 Overlap PPI number ratios at various STRING score thresholds

The results above reveal the surprisingly low coverage between the two H37Rv PPI

datasets. However, as shown in Figure 2.2, at STRING score ≥ 770, there is a higher

level of overlap between the two datasets. This increase in overlap between two-hybrid

PPI dataset and STRING predicted functional associations dataset at high scores is

also observed in C. jejuni (Parrish et al., 2007), Synechocystis (Sato et al., 2007) and

S. cerevisiae (Yu et al., 2008). This suggests that STRING PPIs with high score

potentially has higher quality than STRING PPIs with a lower score. Nevertheless, the

overlap between these two-hybrid PPI datasets and their respective STRING predicted

functional association datasets is no more than 8% at any score interval. Thus, even

at a high STRING score threshold, there is no clear agreement between two-hybrid

PPIs and STRING predicted functional association datasets. Assuming that not all of
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these two-hybrid PPI datasets are of low quality, this lack of clear agreement strongly

suggests that STRING predicted PPIs are unlikely to correspond mainly to direct

physical interactions.

2.3.3 Assessment of PPI datasets using informative GO terms

Two interacting proteins are more likely to be localized in the same cellular component

and/or having a common function role than not (Chua et al., 2006). So we calculate

the percentage of PPIs in a PPI dataset having coherent informative GO terms—i.e.,

the rate of interacting protein pairs with common function roles (measured based on

informative GO terms in MF and BP categories) and cellular localization (measured

based on informative GO terms in the CC category) in the PPI dataset—to evaluate

the quality of the PPI dataset.
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Figure 2.3: Percentage of PPIs in various M. tuberculosis PPI datasets that have coher-
ent informative GO term annotations. Percentage of PPIs in various M. tuberculosis
PPI datasets that have coherent informative GO term annotations.

The percentage of PPIs having coherent informative GO terms is computed for

each of the datasets in Figure 2.3. This way, exactly one GO term is considered in any
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through path. Moreover, each GO term considered is at the finest resolution possible

while being annotated to a sufficiently large number of proteins (≥ 30) for a valid anal-

ysis. The datasets include subsets of STRING derived from specific source channels in

STRING. Note that some source channels may introduce GO-related information into

STRING. In particular, the “database” and “database transfer” channels may collect

PPIs derived from Protein Complexes in the Gene Ontology (GO) database. Thus, to

avoid circularity in our results here and elsewhere, we mainly use statistics from an

unbiased subset “predicted functional associations dataset” of STRING obtained by

excluding the PPIs from source channels that may introduce confounding factors. The

“predicted functional associations dataset” consists of STRING PPIs that are gener-

ated only from the following prediction approaches: gene neighborhood, transferred

neighborhood, gene fusion, and co-occurrence, transferred co-expression, text mining,

and transferred text mining. Among the three categories of GO terms, the datasets gen-

erally show a high percentage of coherence with respect to informative CC GO terms.

However, this observation should be dismissed because there are only three distinct

informative CC GO terms, which is an order of magnitude less than informative MF

and BP GO terms. The random PPI dataset has the lowest percentage of PPIs with

coherent informative GO terms in all the tested PPI datasets, which makes sense. But

the H37Rv B2H PPI dataset has the second lowest percentage of PPIs with coherent

informative GO terms and is very close to the random PPI dataset. This indicates that

the M. tuberculosis H37Rv B2H PPI dataset has the lowest quality among all the PPI

datasets been evaluated. The H37Rv predicted functional association dataset (without

thresholding at score ≥ 770) also has a low percentage of PPIs with coherent informa-

tive GO terms and is thus of low quality. However, most PPI datasets from STRING

(with score ≥ 770) show a much higher percentage of PPIs having coherent informative

GO terms than the H37Rv B2H PPI dataset, suggesting that a higher percentage of

PPIs in these datasets may have better reliability than those of the B2H PPI dataset
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and of the STRING PPI dataset as a whole.

2.3.4 Analysis of PPI datasets using gene expression profile correla-

tion

Two proteins that interact are more likely to be correlated in the expression of their un-

derlying genes than not (Grigoriev, 2001). In fact, co-expression is one of the prediction

methods in STRING (Szklarczyk et al., 2011). However, there is no STRING PPI pre-

dicted from co-expression in M. tuberculosis H37Rv. Given that M. tuberculosis H37Rv

gene expression data is readily available in public repositories, this lack of H37Rv PPIs

predicted using this information is an unexpected limitation of STRING. At the same

time, this absence makes using correlation of gene expression profiles for assessing the

quality of the H37Rv B2H and STRING PPI datasets unbiased. The results in Figure

2.4 clearly show that the H37Rv STRING PPI dataset (at score ≥ 770) has a much

larger proportion of PPIs that exhibit correlation in the expression profiles of their

underlying genes than the H37Rv B2H PPI dataset and the whole H37Rv STRING

PPI dataset. In fact, a mere 223 PPIs in the H37Rv B2H PPI dataset have significant

correlated gene expression profiles (Pearsons correlation coefficient >0.4). These 223

PPIs are likely to be more reliable than most of the other PPIs in the H37Rv B2H

dataset.

2.3.5 Analysis of the characteristics of M. tuberculosis H37Rv PPIs us-

ing pathway gene relationships

From the results presented earlier, it seems that many H37Rv STRING PPIs may not

be direct physical interactions. In order to understand what these PPIs may better

correspond to, we collect pair-wise protein/gene relationships from several major path-

way databases, and compare them with the various PPI datasets considered earlier in

this paper. The ECrel dataset comprises enzyme pairs that catalyze successive reaction
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Figure 2.4: PPI datasets assessment by gene expression profile correlation. The distri-
bution of Pearsons correlation coefficient of the expression profiles of underlying genes
of different PPI datasets are given in this figure (x axis is the Pearsons correlation
coefficient, y axis is the number of PPIs). The bar at -1 in the charts here corresponds
to PPIs where we do not have the expression profiles of their underlying genes.

steps in enzymatic pathways. The PPrel dataset comprises more direct protein-protein

interactions but it also contains protein pairs in the same complexes. Thus, a PPI

dataset containing more indirect protein relationships should show high similarity to

the ECrel dataset.

However, this task is hampered by the sparse information stored in all the current

main pathway databases, like KEGG, WikiPathways and BioCyc. Therefore an inte-

gration of pathway information from the three main databases is needed to maximize

the effectiveness of pathway information for this comparative analysis of PPI datasets.

We calculate the Jaccard coefficient, precision, and recall of each of the M. tuberculosis

H37Rv PPI datasets discussed earlier using ECrel (Figure 2.5) from M. tuberculosis

H37Rv integrated pathway gene relationships as the benchmarks.

Results from above experiments show that the M. tuberculosis H37Rv B2H PPI

dataset shows very low similarity with ECrel dataset, while most of STRING PPI

datasets show good similarity. This provides another explanation for the low similarity
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between the H37Rv B2H and STRING PPI datasets. Namely, the former dataset

contains direct physical interactions, as it is to be expected of B2H assays; while the

latter STRING datasets also include substantial amounts of PPIs that are indirect

protein relationships.
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Figure 2.5: Comparative analysis of PPI datasets using integrated pathway gene rela-
tionships (ECrel). M. tuberculosis H37Rv PPI datasets similarity to integrated pathway
gene relationships (ECrel dataset as benchmark).

2.3.6 STRING PPI dataset analysis in S. cerevisiae

The comparative analysis of the various H37Rv PPI datasets using integrated pathway

gene relationships reveals that the H37Rv STRING PPI dataset may contain a lot

of indirect protein relationships. The STRING database has proclaimed itself as a

database consisting of “known and predicted protein-protein interactions” (Szklarczyk

et al., 2011). In practice, both physical interactions and functional associations, and

both predicted and experimental “PPIs” are included in this database. Therefore, it

is important to clearly demonstrate which kind of PPIs are contained in STRING. We

return to the most comprehensively investigated model organism—S. cerevisiae —to
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more precisely analyze the characteristics of PPIs in STRING. As a unified database,

the PPIs prediction approaches in the STRING database are consistently used on all

the 630 organisms included in it. Thus the phenomena discovered in M. tuberculosis

H37Rv should also exist in other organisms like S. cerevisiae, and vice versa. Moreover,

we have much more information in S. cerevisiae that can be used for conducting a much

more precise analysis. If the situation observed earlier that the M. tuberculosis H37Rv

STRING PPI dataset contains a lot of indirect PPIs is also observe in S. cerevisiae,

then it will be a sound confirmation of our earlier conclusion.

We similarly obtain the integrated pathway gene relationships (mainly ECrel and

PPrel) for S. cerevisiae and also separate datasets prepared only from KEGG for more

precise reference. We further collect all protein pairs (named the “S. cerevisiae Complex

PPI dataset”) that appear in the same protein complexes using the protein complexes

dataset from Wodak Lab (Pu et al., 2009). It is obvious that the “S. cerevisiae Complex

PPI dataset” may contain a lot of indirect PPIs, like relationships between two non-

directly-binding proteins in protein complexes. A representative S. cerevisiae two-

hybrid PPI dataset (Yu et al., 2008) is also included in this comparative analysis. To

avoid a biased comparison, as the full STRING PPI dataset may include many PPIs

from the datasets above, we use the S. cerevisiae predicted functional associations

dataset from STRING database as the testing dataset in this analysis. The overlapping

number of PPIs, Jaccard coefficient, precision and recall are calculated, and the results

are given in Figure 2.6. From the results, the S. cerevisiae two-hybrid PPI dataset

has the lowest similarity to the S. cerevisiae STRING predicted functional associations

dataset, whereas the complex PPI dataset and ECrel datasets (both from KEGG and

from integrated pathway gene relationships) reveal good similarity to the S. cerevisiae

STRING predicted functional associations dataset. This result is in accordance with the

results on M. tuberculosis H37Rv, clearly demonstrating that the STRING database

PPIs include a substantial amount of PPIs that are indirect protein relationships,
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including protein pairs in the same protein complexes and protein pairs catalyzing

successive enzymatic reaction steps.

S. cerevisiae  
Y2H PPI

S. cerevisiae  
Complex PPI

Integrative 
ECrel

Integrative 
PPrel

KEGG ECrel KEGG PPrel

Jaccard coefficient 3.62% 19.59% 10.26% 12.09% 8.82% 10.94%

Precision 4.10% 21.02% 11.26% 12.52% 9.65% 12.12%

Recall 23.71% 74.19% 53.47% 77.59% 50.63% 52.78%
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Figure 2.6: Comparative analysis of different S. cerevisiae protein relationships datasets
with S. cerevisiae STRING functional associations dataset. Comparison of the similar-
ity between different protein relationships datasets with S. cerevisiae predicted func-
tional associations from STRING database.

2.4 Discussion

2.4.1 Reliable M. tuberculosis H37Rv B2H PPI datasets

We have shown that the M. tuberculosis H37Rv B2H PPI dataset has low quality. In the

process, we find four subsets of the B2H PPI dataset that may be more reliable than the

rest of this dataset. The first subset consists of PPIs where both interaction partners

have coherent informative GO terms—viz., B2H PPIs sharing functional homogeneity

or localization coherence. This subset contains 115 PPIs and is named “B2HsameGO

dataset”. The second contains overlapping PPIs between the H37Rv B2H and STRING

PPI datasets, which can be considered as B2H PPIs supported by STRING prediction

approaches. This subset consists of 276 PPIs and is named “B2HSTRING dataset”.
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The third subset contains those H37Rv B2H PPIs that have been verified by different

experiments. This subset has 147 PPIs and is named “B2HdiffExp dataset”. The fourth

subset contains PPIs where both interaction partners have significant correlated gene

expression profile (Pearsons correlation coefficient >0.4). This subset has 223 PPIs and

is named “B2Hco-express dataset”. The overlap between any pair of these four subsets

is small because the PPIs in these four subsets involve very different proteins.

There are several inherent limitations of PPI data generated by two-hybrid ap-

proaches (both B2H and Y2H), including PPIs that are detected between over-expressed

proteins, between fusion proteins, and in a different host (Yeast or E. coli). Given the

data available in this study, we are not able to clearly identify which erroneous B2H

PPIs are caused by which inherent limitations of the two-hybrid system. We leave this

interesting and difficult challenge to a future project.

2.4.2 Differences between functional associations and physical inter-

actions

Physical interactions correspond to direct protein relationships such as two proteins

binding to each other. Functional associations can be both direct and indirect protein

relationships; for example, two enzymes catalyzing successive reaction steps can be

regarded as functional associations. This partially explains the differences between the

H37Rv B2H and STRING PPI datasets, as we have demonstrated earlier.

Based on the approach used in generating the PPIs, each of the two major categories

can be further divided into two parts, experimental physical interactions (e.g., PPIs

from Y2H or co-purification); predicted physical interactions (e.g., interologs predicted

from co-purification PPIs); experimental functional associations (e.g., PPIs from syn-

thetic lethality or dosage growth defect); predicted functional associations (e.g., PPIs

from neighbourhood or co-occurrence). Differences among PPI datasets from the four

categories are inevitable, and they all have some portion of real PPIs and some noise.
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However, a high noise level often overwhelms the agreement between the datasets from

these four categories. Real PPIs are both functional associations and physical inter-

actions (intersect dataset), because if two proteins truly interact with each other in

normal environments, the two proteins must have functional relationships. The four

subsets of reliable H37Rv B2H PPIs identified by us only contain a small number of

PPIs and are not enough to illuminate the whole direct physical interactome in M.

tuberculosis H37Rv.

2.5 Conclusions

In this Chapter, we have observed the strikingly low agreement between M. tuberculosis

H37Rv B2H and STRING PPI datasets. We have demonstrated the two main causes

of this low level of agreement. The first reason is the low quality of the B2H PPI

dataset, which seems to contain a significant amount of false positives as well as false

negatives. The same is true of the H37Rv STRING PPI dataset as a whole, though

a subset comprising PPIs with score ≥ 700 seems more reliable. The second reason

is that the STRING PPI dataset contains a substantial amount of predicted PPIs

that are not direct interactions, which seem more likely to correspond to protein pairs

that are in the same protein complexes or protein pairs that are catalyzing adjacent

reaction steps in enzymatic pathways. Because of the low quality of the H37Rv B2H

PPI dataset, it should not be used as a gold standard to evaluate the quality of other

M. tuberculosis PPI datasets, predicted or otherwise. Researchers who need to use this

dataset should do so with great caution. Yet, as the only available large-scale physical

interaction dataset of M. tuberculosis H37Rv at the moment, even though it suffers

from high noise and low quality, the direct protein physical interaction information in

this dataset should not be ignored. We have identified four subsets of this B2H PPI

dataset that are more reliable, which can be combined into a single dataset, which can

serve as a suitable reference H37Rv physical interaction dataset for many applications.
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STRING score is useful for indicating which STRING PPIs have higher quality. We

suggest a STRING score threshold set around 770. Therefore, this dataset can be a

good source as a functional associations reference in M. tuberculosis H37Rv.



Chapter 3

IntPath—Integration and

Database

Pathway data are important for understanding the relationship between genes, proteins

and many other molecules in living organisms. Many well-established databases—

e.g., KEGG , WikiPathways, and BioCyc—are dedicated to collecting pathway data

for public access. However, the effectiveness of these databases is hindered by issues

such as incompatible data formats, inconsistent molecular representations, inconsistent

molecular relationship representations, inconsistent referrals to pathway names, and

incomprehensive data from different databases.

We have overcome in IntPath the issues of compatibility, consistency, and compre-

hensiveness that often hamper effective use of pathway databases. We have included

four organisms in the current release of IntPath. Our methodology and programs de-

scribed in this Chapter can be easily applied to other organisms; and we will include

more model organisms and important pathogens in future releases of IntPath. IntPath

maintains regular updates and is freely available at http://compbio.ddns.comp.nus.

edu.sg:8080/IntPath.

59
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3.1 Background

The proliferation of pathway databases—e.g., KEGG (Ogata et al., 1999), WikiPath-

ways (Pico et al., 2008; Kelder et al., 2009), BioCyc (Karp et al., 2005; Karp, 2001),

and MouseCyc (Evsikov et al., 2009)—are useful for understanding the relationship

between genes, proteins and other molecules in living organisms. However, the effec-

tiveness of these databases is hindered by issues such as incompatible data formats,

inconsistent molecular representations, inconsistent molecular relationship representa-

tions, inconsistent referrals to pathway names, and incomprehensive data from different

databases. These difficulties call for an effective integration of these databases.

There are many approaches to integrate pathways. For example, Pathway Com-

mons and PathCase (Elliott et al., 2008) can be considered as taking the “aggregator”

approach. In this approach, a common access method and data format are adopted or

developed for a set of pathways imported from a collection of source databases. The

aggregator approach does not perform any unification of the underlying pathways—

viz., if n source databases each contains information on a particular pathway, that

pathway is presented by the aggregator as n separate pathways. On the other hand,

GenMapp (Salomonis et al., 2007), Cytoscape (Shannon et al., 2003), and PathVisio

(van Iersel et al., 2008) can be considered as taking the “converter” approach. Basi-

cally, these tools support the import and export of biological pathways in a variety of

formats, even though these tools are designed mainly for exploring, visualizing, and

editing biological pathways. Lastly, PathwayAPI (Soh et al., 2010) can be considered

as taking the “full unification” approach. In this approach, pathways in different source

databases that are meant to represent the same pathway are merged and molecular ob-

jects mentioned in the different source pathways that are meant to represent the same

objects are matched. This approach is technically more difficult than other approaches;

but it has the advantage of presenting a more coherent and comprehensive view of the

pathways.
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Very recently, Stobbe et al. (2011) compared the genes, EC numbers and reactions

of five frequently used human metabolic pathway databases. They found that the

overlap between these databases is surprisingly low. More importantly, their results

show that each of the five networks compared provides a valuable piece of the puzzle

of the comprehensive reconstruction of the human metabolic network. This discovery

is a strong motivation for the “full unification” approach mentioned above. Stobbe et

al. further suggested that, for an effective integration, one needs to standardize the

metabolite names and identifiers and to resolve the conceptual differences between the

databases.

Besides the databases that focus specifically on pathway data integration, some

protein functional interaction databases have also extended their collection to path-

way data. For example, ConsensusPathDB (Kamburov et al., 2011) integrates differ-

ent types of functional interactions from heterogeneous interaction data resources and

pathway databases for three organisms(human, yeast and mouse).The distinct differ-

ence in their primary focus results in an obvious difference between ConsensusPathDB

and IntPath. ConsensusPathDB collects pathway data from many databases but does

not appear to produce integrated pathways—even when the same pathway is present

in different sources, they are still listed individually without merging. How to merge

the different instances of the same pathways among and within the source pathway

databases is the major concern of IntPath. Unlike ConsensusPathDB, IntPath mainly

focuses on the integration of pathway-gene and pathway-gene pair relationships , with

the aim of solving the problem of inconsistencies and incomprehensiveness among dif-

ferent pathway databases.The definition of “gene pair” in this Chapter is the gene-gene

relationship in pathways, the relationship type of the two components in each gene pair

is described in table 3.1.

In this Chapter, we take this full unification approach in building IntPath, the

Integrated Pathway gene relationship database for model organisms and important
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Unified Genes
relationships Explanation

ECrel Enzyme-enzyme relation, indicating two enzymes catalyzing
successive reaction steps.

PPrel Protein-protein interaction, such as binding and modifica-
tion, or proteins have control over the same process.

GErel Gene expression interaction, indicating relation of transcrip-
tion factor and target gene product.

GPrel Proteins belong to the same molecular complex, not neces-
sarily interacting directly.

Table 3.1: Four types of IntPath unified gene relationships. Explanations of the types
of relationships in IntPath are given below.

pathogens. This approach was also taken earlier by Soh et al. (2010) when they inte-

grated general human pathways into PathwayAPI. IntPath differs from PathwayAPI in

several aspects. In terms of content, a different set of databases and multiple organisms

are considered in IntPath. In terms of data extraction, IntPath extracts all pathway

data directly from the xml files of each source database and the whole process is highly

automated. Therefore, IntPath provides integrated and unified pathway information

on a much larger set of organisms and it can be extended to include many other organ-

isms in a short time. In contrast, PathwayAPI integrated only human pathways. Also,

for all the organisms included in IntPath, a regular update of each organism can be

maintained. In terms of pathway data integration, IntPath not only looks for related

pathways between databases but also within each source database; this integration ap-

proach provides more unified, meaningful and comprehensive integrated pathway-gene

and pathway-gene pair relationships information. In contrast, PathwayAPI only looks

for related pathways between databases but not within the same source database. More-

over, IntPath also provides more features and tools. It not only supports web service

but also a full-featured web interface. More analysis tools based on pathway data have

been provided—like “Analyze Distance” and “Identify Pathways”—and more analysis

functions and tools will continue to be added on IntPath in future releases.
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The incompatible data formats of different databases seriously inhibit effective and

compatible information retrieval. In KEGG, pathways are represented in KGML for-

mat and SOAP (returned when using API calls). In WikiPathways, pathways are

represented in GPML format; recently it begins to support web service (Kelder et al.,

2009), allowing users to access the data through API calls; and the BioPAX format

is also supported. In BioCyc and MouseCyc, the pathway data are primarily repre-

sented in the BioPAX format. In IntPath, we overcome this limitation by extracting

the pathway gene relationships from these different databases and convert these various

complicated XML-based formats into simple tab-delimited text files.

Inconsistent molecular representations significantly lower the effectiveness of path-

way information retrieval. Different databases maintain different naming conventions

on the nodes of their pathways. In KEGG, the names of the nodes (genes and pro-

teins) in the pathways can be KEGG Entry name, KEGG ORTHOLOG (KO) ID, etc.

The graphic names on KEGG pathway map can be Gene Symbol (or synonym), En-

zyme Commission (EC) number, etc. In WikiPathways, the nodes’ “TextLabel” are

given gene symbol (or synonym), gene name, protein name, EC number, etc. In most

cases the nodes can also be given Entrez ID, NCBI Accession, Ensembl Gene ID, En-

sembl protein ID, UniProt Assession, etc. And some times nodes in WikiPathways are

only given “TextLabel” without any database reference ID. MouseCyc (Evsikov et al.,

2009) mainly uses MGI ID and also includes the corresponding gene symbol, UniProt

accession, etc. BioCyc (MTBRvCyc, YeastCyc and HumanCyc) Accession Number

is mainly used to represent nodes in the pathways while corresponding gene symbol,

gene name (protein name), Entrez ID, and UniProt accession number are sometimes

included.

Inconsistent molecular relationship representations may also cause confusion when

referencing pathway information from different repositories. In KGML (KEGG), the

relationships between molecules are represented as PPrel, ECrel, PCrel, GErel, etc.
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In GPML (WikiPathways), the relationships can be inhibition, activation, protein

complexes, enzyme complexes, acetylation, phosphorylation, etc. In BioPAX (Bio-

Cyc and MouseCyc), when transformed into the SIF format, the relationships can be

SEQUENTIAL CATALYSIS, CO CONTROL, INTERACTS WITH, etc. These incon-

sistencies cause troubles for researchers wishing to refer to pathway information in a

large-scale manner across different databases. Therefore, some normalization technique

is needed to convert the nodes and edges from different pathways in different reposito-

ries into a common representation. In IntPath, we overcome the above two limitations

by normalizing the pathway gene representations and gene relationship representations

from different databases into unified IntPath gene and relationship representation. The

unified IntPath gene ID for Homo Sapiens is HGNC Symbol, Mus musculus is MGI

Symbol, Saccharomyces cerevisiae is Systematic name, and Mycobacterium tuberculosis

H37Rv is TuberList Rv number. The unified IntPath gene relationship representations

are listed in Table 3.1.

Inconsistent referrals to pathway names are another source of confusion that sub-

stantially reduces the effectiveness of retrieving information on the same pathway

from different databases. For instance, KEGG may refer to a pathway as “Glycol-

ysis / Gluconeogenesis”, and WikiPathways may name it as “Glycolysis and Gluco-

neogenesis”. For another example, WikiPathways contains a pathway with the name

“Cholesterol Biosynthesis”, while BioCyc has many corresponding pathways such as

“cholesterol biosynthesis III (via desmosterol)”, “cholesterol biosynthesis II (via 24,

25-dihydrolanosterol)”, “cholesterol biosynthesis I”, and “superpathway of cholesterol

biosynthesis”. Therefore, a unified pathway naming system may reduce the confusion

when referring to the same or similar pathway information from different databases.

Furthermore, the comprehensiveness of data from different databases is another

limitation of these pathway databases. By the term “incomprehensiveness”, we mean

that each single biological database is not a comprehensive representation of biological
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knowledge that is considered by experts to be accurate (Soh et al., 2010). We reveal

the incomprehensiveness of current databases via analysis on the agreement of the

common pathway between these different databases. In IntPath, these inconsistencies

and incomprehensiveness issues are solved by the integration approach.

3.2 Data

We choose several representative data sources—KEGG (Ogata et al., 1999), WikiPath-

ways (Pico et al., 2008; Kelder et al., 2009), BioCyc (Karp et al., 2005; Karp, 2001), and

MouseCyc (Evsikov et al., 2009)—for our analysis and integration. These data sources

are selected because they are representatives of very different kinds of curation efforts.

Currently, the following organisms are included in our IntPath database (version 2.0):

Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Mycobacterium tubercu-

losis H37Rv. For each organism included in IntPath, the pathway data are collected

from three representative databases: 1. KEGG; 2. WikiPathways; 3. One of the fol-

lowing four databases—YeastCyc, HumanCyc (Romero et al., 2005), and MTBRvCyc

from the BioCyc collection (Karp et al., 2005; Karp, 2001); and MouseCyc (Evsikov

et al., 2009). The four Pathway/Genome Databases (PGDBs)—MouseCyc, YeastCyc,

HumanCyc, MTBRvCyc—are generated and recorded in a very similar way, but the

PGDBs of different organisms are maintained and curated by different groups.

MouseCyc is curated by the Jackson Laboratory; it is a new, manually curated

database of both known and predicted metabolic pathways for the laboratory mouse

(Evsikov et al., 2009). YeastCyc is a Tier-1 PGDB from the BioCyc collection (Karp

et al., 2005; Karp, 2001); it is curated by SGD Curators in Stanford University. PGDBs

in Tier 1 have received more than one year of literature-based curation by scientists.

MTBRvCyc and HumanCyc (Romero et al., 2005) are Tier-2 PGDBs from the BioCyc

collection; they are generated by the PathoLogic program and received moderate cura-

tion (mostly have undergone 1-4 months of curation). WikiPathways is maintained by
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a community of users via a wiki-style platform (Pico et al., 2008; Kelder et al., 2009).

KEGG database is curated independently by a single lab from published literature (Soh

et al., 2010).

3.3 Methods

3.3.1 Extraction and normalization of pathway-gene and pathway-

gene pair relationships

The first step of extracting information from pathway databases is downloading the

XML files. To automatically download the hundreds of KGML files of each organism

on the KEGG ftp site, we use a simple spider program written in Perl. For BioCyc and

MouseCyc, the BioPAX files—and for WikiPathways, the GPML files—are compressed

into a single package which can easily be downloaded manually.

Extracting the pathway-gene and pathway-gene pair relationships from KGML is

accomplished using an in-house Java program, which extensively uses regular expres-

sions to retrieve specific information from the KGML files. A KGML file consists of

entries like “</entry>”, “</relation>” and “</reaction>”; in each entry there is ei-

ther entry information of the nodes (genes, enzymes, compounds , ortholog groups

and so on), groups (complexes of gene products like protein complexes and so on) or

relationships (relationship between the nodes in the pathway map). Using regular ex-

pressions we can specifically obtain the genes of each pathway and the relationships

between each gene, and then link these genes according to the relationships. For genes

belonging to complexes (groups), the binary gene pairs are generated based on the

matrix model.

An alternative way of retrieving KEGG pathway genes and gene pairs is by calling

the KEGG API, which enables users to easily use their programs to get access to the

KEGG database. However, the API is not well updated (Soh et al., 2010). The KEGG
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API does provide a function that can retrieve gene relationships from this database,

though the results returned are KGML entry IDs, not exactly as we have wanted.

Although calling the KEGG API would work in theory as described in (Soh et al.,

2010), we turn to mining KGML directly and achieve the same good results.

Extracting pathway-gene and pathway-gene pair relationships from a GPML file is

also accomplished using a strategy similar to mining KGML files. Mining a GPML

file is much more difficult due to its wiki-style; and there are slight variations among

individual GPML files even in the same organism, like some key tags may be in upper

case in one file but lower case in another, random insertions of whitespace character,

etc. Due to these variations, the regular expressions used for performing the extraction

must be very robust. In GPML files, the information of genes and proteins are stored

in a “</DataNode>” entry where, if the node is a gene or protein, the Type of the

entry is set to “GeneProduct”. The information of relationships (like activation and

inhibition) are stored in a “</Line>” entry.

The linkage of “</DataNode>” entry and “</Line>” entry is mainly accomplished

by their “graphID”. A “</Line>” entry usually records which two “</DataNode>”

entries it links to through the records of two corresponding “graphID” of the “</DataN-

ode>” entries. Using this information we can retrieve the relationship of two genes

linked by a “</Line>” entry. This relationship—like inhibition, activation, etc.—can

be regarded as equivalent to the “PPrel” relationship in KGML.

If the genes belong to certain complexes (groups), their “GroupRef” ID are recorded

in some “</DataNode>” entries; and genes with same “GroupRef” ID are in the same

group (molecular complexes). All possible pair-wise relationships among members of

a group are generated based on the matrix model. These relationships, derived from

such a group, are mainly binary relationships among members in a protein complex or

enzyme complex. They can thus be regarded as equivalent to the “group” relationship

in KGML. This strategy works well for most GPML files; but, for some individual files,
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there is simply no “graphID” in the file and, only positional information of each entry

is recorded. This causes difficulty in retrieving the corresponding gene relationships.

Attempts have been made to retrieve the pair-wise relationships based purely on the

positional information; but these attempts also introduce a substantial amount of noise.

Therefore we do not use this noisy information.

Retrieving gene relationships from BioPAX files is mainly by using the Paxtools

Java programming library (Demir et al., 2010) in combination with our own simple

Java program. By transforming a BioPAX (Level 2) file into the SIF format, we get

both a Node file and an Edge file. Then a simple node mapping is made to retrieve gene

relationships. These pair-wise relationships have no indication of the source pathway

name. We need to map these relationships to their corresponding pathways. MouseCyc

and BioCyc provide a file that clearly records all the genes in each pathway. Using this

information, we are able to map the gene relationships to their corresponding pathways.

Converting the relationship of genes in complexes (groups) into binary gene pair

relationships may not be the most ideal format for some users, who wish to refer to the

original protein complexes information in pathways. For KEGG and WikiPathways we

also maintain a “group-gene list” which specifically retains the original format of genes

in the groups. The groups in this “group-gene list” are not integrated, as we have

done for the pathway-gene and pathway-gene pair relationships, since maintaining this

“group-gene list” is mainly to prevent information loss and to give users more precise

original information that may not be easily reconstructed from the integrated pathway-

gene pair relationships. We normalize the gene IDs in the “group-gene list” to IntPath

unified gene IDs and store the list in a simple text file. Users can download this list

along with other pathway-gene and pathway-gene pair relationships in the form of

compressed text files from IntPath.

Normalization of gene names is done using gene ID mapping files downloaded from

a variety of databases including NCBI(Maglott et al., 2005), KEGG (Ogata et al.,
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H. sapiens KEGG WikiPathways HumanCyc

Pathways 237 135 290
Genes 5,935 3,445 1,082
Gene Pairs 29,566 18,035 5,961

M. musculus KEGG WikiPathways MouseCyc

Pathways 218 140 323
Genes 6,306 4,084 1,194
Gene Pairs 32,235 25,004 10,792

S. cerevisiae KEGG WikiPathways YeastCyc

Pathways 98 125 184
Genes 1,735 863 542
Gene Pairs 2,922 57 1,440

M. tuberculosis H37Rv KEGG WikiPathways MTBRvCyc

Pathways 110 8 234
Genes 1,078 152 493
Gene Pairs 3,775 62 2,764

Table 3.2: The number of pathways, genes and gene pairs from different databases
after normalization. Summary of the number of pathways, genes, and gene pairs after
normalization from different databases.

1999), UniProt (The UniProt Consortium, 2012), HGNC (Seal et al., 2011), MouseCyc

(Evsikov et al., 2009), BioCyc (Karp et al., 2005; Karp, 2001), and BioMart (Haider

et al., 2009). The gene relationships from different databases are mapped to the IntPath

unified relationships listed in Table 3.1.

3.3.2 Evaluation of normalized pathway genes and gene pairs from

different databases

After we have obtained the pathway-gene and pathway-gene pair relationships from

different pathway databases, agreement among the databases can be analyzed. These

agreement analyses are crucial for the downstream applications of IntPath. We examine

three aspects of the agreement among the different pathway databases: (i) agreement of

genes and gene pairs in different databases, (ii) agreement of the pathways in different

databases, and (iii) agreement of genes and gene pairs of the same pathway in different

databases.

After normalization the statistics about pathway number, gene number and gene
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KEGG vs WikiPathways vs HumanCyc vs
H. sapiens WikiPathways HumanCyc KEGG

Overlap Genes 2,485 396 824
Unique Genes 4,410 3,735 5,369
Jaccard Coefficient 0.360 0.096 0.133

KEGG vs WikiPathways vs MouseCyc vs
M. musculus WikiPathways MouseCyc KEGG

Overlap Genes 2,611 532 919
Unique Genes 5,168 4,214 5,662
Jaccard Coefficient 0.336 0.112 0.140

KEGG vs WikiPathways vs YeastCyc vs
S. cerevisiae WikiPathways YeastCyc KEGG

Overlap Genes 801 402 480
Unique Genes 996 601 1,317
Jaccard Coefficient 0.446 0.400 0.267

KEGG vs WikiPathways vs MTBRvCyc vs
M. tuberculosis H37Rv WikiPathways MTBRvCyc KEGG

Overlap Genes 141 60 432
Unique Genes 948 525 707
Jaccard Coefficient 0.129 0.103 0.379

Table 3.3: Summary of overlapping gene proportions. Summary of the number of over-
lap genes, number of unique genes, and Jaccard coefficient among three representative
databases.

pair number in each of the source databases can be found in Table 3.2. To calculate

the agreement of genes and gene pairs in different databases, we obtain all the non-

redundant genes and gene pairs (without considering the types of relationships) in

different databases. We then calculate how many genes and gene pairs are common

between two databases being compared. The Jaccard coefficient between two datasets

being compared is calculated. Results are shown in the form of pie charts in Figure 3.1

and Figure 3.2, the detail statistics are listed in Table 3.3 and Table 3.4.

To analyze the agreement of the pathways in different databases, we only look at the

pathway names in different databases, and calculate how many pathways two databases

have in common. To find similar pathway names, we implement a “Longest Common

Substring” algorithm. Our program can detect similar pathway names very accurately;

detailed techniques will be explained in the following section. In this analysis we only

search the related pathway between databases rather than within databases. The
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KEGG vs WikiPathways vs HumanCyc vs
H. sapiens WikiPathways HumanCyc KEGG

Overlap Gene Pairs 1198 468 1,270
Unique Gene Pairs 45,205 23,060 32,987
Jaccard Coefficient 0.026 0.020 0.037

KEGG vs WikiPathways vs MouseCyc vs
M. musculus WikiPathways MouseCyc KEGG

Overlap Gene Pairs 875 1,242 2,068
Unique Gene Pairs 55,489 33,312 38,891
Jaccard Coefficient 0.016 0.036 0.050

KEGG vs WikiPathways vs YeastCyc vs
S. cerevisiae WikiPathways YeastCyc KEGG

Overlap Gene Pairs 35 9 419
Unique Gene Pairs 2,909 1,479 3,524
Jaccard Coefficient 0.012 0.006 0.106

KEGG vs WikiPathways vs MTBRvCyc vs
M. tuberculosis H37Rv WikiPathways MTBRvCyc KEGG

Overlap Gene Pairs 9 8 358
Unique Gene Pairs 3,819 2,810 5,823
Jaccard Coefficient 0.002 0.003 0.058

Table 3.4: Summary of overlapping gene pair proportions. Summary of the number of
overlap gene pairs, number of unique gene pairs, and Jaccard coefficient among three
representative databases.

results are presented in Figure 3.3.

The two experiments above are analyses at the database level. Next, to analyze—

at the pathway level—the agreement of genes and gene pairs of the same pathway in

different databases, We calculate the overlap of the genes and gene pairs in the chosen

pathway in different databases. The results are summarized in Table 3.5.

3.3.3 Integration of pathway-gene and pathway-gene pair relation-

ships

From the analyses above, we realize the lack of comprehensiveness and consistency of

different pathway databases at both the database level and the pathway level. Hence,

we should use the integrated information from all the databases rather than rely on

any single source. The inconsistent referrals to pathway names further strengthen the

necessity of integrating the pathway-gene and pathway-gene pair relationships from
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KEGG vs KEGG vs MouseCyc vs
M. musculus TCA cycle pathway WikiPathways MouseCyc WikiPathways

Gene Count 31 vs 30 31 vs 13 13 vs 30
Overlap 24 13 11
Jaccard Coefficient 0.65 0.42 0.34

Gene Pair Count 100 vs 30 100 vs 24 24 vs 30
Overlap 10 9 7
Jaccard Coefficient 0.083 0.078 0.149

KEGG vs KEGG vs HumanCyc vs
H. sapiens Fatty Acid Biosynthesis WikiPathways HumanCyc WikiPathways

Gene Count 6 vs 22 6 vs 2 2 vs 22
Overlap 3 2 1
Jaccard Coefficient 0.12 0.33 0.04

Gene Pair Count 12 vs 29 12 vs 2 2 vs 29
Overlap 1 1 0
Jaccard Coefficient 0.025 0.077 0.0

KEGG vs KEGG vs MTBRvCyc vs
M. tuberculosis H37Rv TCA cycle pathway WikiPathways MTBRvCyc WikiPathways

Gene Count 35 vs 34 35 vs 10 10 vs 34
Overlap 34 10 10
Jaccard Coefficient 0.97 0.29 0.29

Gene Pair Count 107 vs 37 107 vs 19 19 vs 37
Overlap 3 9 5
Jaccard Coefficient 0.021 0.077 0.098

Table 3.5: Table showing data overlap for same chosen pathways in difference source
databases. This table shows the calculation of gene/gene pair differences and overlap
between the different source databases for the same chosen pathways.
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different databases into one unified and comprehensive information source.

To find all related pathways both among and within databases which have inconsis-

tent referrals to pathway names (both name variations and different levels of emphases),

we implement a refinement of the Longest Common Substring (LCS) algorithm to iden-

tify related pathway names. LCS was shown by Soh et al. (2010) to be superior for

identifying related pathways in different databases, compared to approaches based on

large overlap of genes and interacting gene pairs.

The common LCS algorithm based on dynamic programming works like this: when

comparing two strings, the more similar they are, the higher alignment score they

have. In our program, the alignment score is the number of aligned characters. We

also compute the alignment ratio, which is two times the alignment score divided by

the sum of the length of the two strings. To identify the related pathway names in two

databases’ pathway name lists (x and y), we iterate each name in the list x and search

against all the names in the list y; for each name in x, we report the best hit in y.

“Best hit” means that, for each name from x, when searched against all the names in y,

the one that gets the highest alignment ratio is reported as the best hit for this round.

We do not use the alignment score to report best hits because the alignment ratio

proves to perform better. This is because some related pathway names do not have

very high alignment scores due to the short length of two strings, but the similarities of

the two strings can be revealed accurately by the high alignment ratio when compared

to other not-so-similar long strings in a single round of search. For example, suppose

the name Xa is very short and is searched against the name list y. Suppose there is

a very similar short name Y a which aligns all characters in Xa except one character.

Suppose there is also a very different but long name Y b which aligns all characters in

Xa. It is obvious that the alignment score Xa− Y a is lower than the alignment score

Xa − Y b, while the alignment ratio of Xa − Y a is the higher of the two. Thus using

the alignment score to report the best hit is not as good as using the alignment ratio.



CHAPTER 3. INTPATH—INTEGRATION AND DATABASE 74

From many background experiments, we realize that relying only on best hits can

result in some noise, since many pathway names in the list x may not have any related

pathway names in the list y. Our strategy is to introduce more stringent requirement to

increase the precision of the reported best hits. We require that either of the following

two additional (empirically determined) conditions to be satisfied:

1. Alignment score > the length of shorter string −1 & alignment ratio >= 0.5, or

2. Alignment ratio > 0.91

Combined with this additional requirement, our program achieves high precision

and recall in identifying related pathway names. Nevertheless, a small number of path-

ways which do not describe the same pathway, but have very similar names, are still

incorrectly identified by the methods described above as related pathways. “VEGF sig-

naling pathway” and “EGFR1 Signaling Pathway”, “T Cell Receptor Signaling Path-

way” and “B Cell Receptor Signaling Pathway”, etc. are examples of this kind of

mismatches. Our approach to solve this problem is by using a “error-prone words pair

list” to filter potential mismatches. For example, if in a candidate related pathway pair,

one pathway name has one partner of an “error-prone words pair”(EGFR1) and the

other pathway name contains the other partner in the “error-prone words pair”(VEGF),

this pair of candidate related pathways is discarded by our program. This approach

successfully gets rid of mismatched pathways without compromising the identification

of related pathways. Although a little manual curation is needed for initializing the

“error-prone words pair list”, the curation work load is much less after the first time,

since only a few changes or supplementations of “error-prone words pair list” are needed

when processing different groups of pathway names. Moreover, it is suitable for many

different pathways in different organisms.

We run our program to compare pathway names within each database and between

the databases. After obtaining all the related pathways, our program uses a disjoint
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IntPath KEGG WikiPathways MouseCyc

Fatty Acid
Biosynthesis

Fatty acid
biosynthesis

Fatty Acid
Biosynthesis

1. fatty acid biosynthesis initiation II
2. very long chain fatty acid biosynthesis
3. fatty acid biosynthesis initiation III

Cholesterol
Biosynthesis

Cholesterol
Biosynthesis

1. cholesterol biosynthesis III (via desmos-
terol)
2. cholesterol biosynthesis II (via 24,25-
dihydro-lanosterol)
3. cholesterol biosynthesis I
4. superpathway of cholesterol biosynthesis

TCA cycle Citrate cycle
(TCA cycle)

TCA cycle TCA Cycle

Glycolysis
and Gluco-
neogenesis

Glycolysis /
Gluconeogen-
esis

Glycolysis
and Gluco-
neogenesis

1. glycolysis I
2. glycolysis II

Table 3.6: Examples of inconsistent referrals to pathway names in M. musculus. The
table shows several examples of the same pathways with inconsistent referrals to path-
way names in different databases.

set data structure to store all the identified related pathways and then groups together

all the related pathways under a general pathway name. The general pathway name is

chosen as the shortest pathway names from among the identified related pathways. The

shortest pathway name is usually suitable to be the name of the integrated pathway.

However, in some cases, the shortest name contains “suffix” or “prefix”—like “I”, “II”—

that causes the integrated pathway name to give the wrong idea of describing only a

specific aspect of the integrated pathway. So our program removes such suffixes and

prefixes when generating integrated pathway names. In addition, there are also a small

number of cases where several similar pathways are included in one pathway name—an

example is shown in the last row of Table 3.6.

In these cases, the shortest name is not appropriate as the name of the integrated

pathway. For these small number of cases, we replace the keyword of the integrated

pathway name to cover more pathway information. After all the processing steps

described above, we can be sure that the integrated pathway names in IntPath is
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H. sapiens KEGG HumanCyc WikiPathways

KEGG 5 3 29
HumanCyc 3 34 12
WikiPathways 29 12 4

M. musculus KEGG MouseCyc WikiPathways

KEGG 6 6 32
MouseCyc 6 61 14
WikiPathways 32 14 10

S. cerevisiae KEGG YeastCyc WikiPathways

KEGG 1 10 11
YeastCyc 10 25 74
WikiPathways 11 74 15

M. tuberculosis H37Rv KEGG MTBRvCyc WikiPathways

KEGG 1 7 8
MTBRvCyc 7 35 2
WikiPathways 8 2 0

Table 3.7: Number of related pathways. Summary of the number of identified related
pathways within and among databases.

correct and accurate. The numbers of identified related pathway names are listed in

Table 3.7.

The number of pathways, average number of genes per pathway, and average number

of gene pairs per pathway in each database, before and after this integration, is given

in Table 3.8.

3.3.4 IntPath web interface and web service

IntPath is developed using JSP and MySQL. The web service is created and published

using AXIS2.

3.4 Results

3.4.1 Extraction and normalization of pathway-gene and pathway-

gene pair relationships

In order to overcome the limitation of incompatible data formats, we directly extract

from the XML files (KGML, GPLM, BioPAX) of each pathway database and obtain
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No. of Pathways Average No. of Average No. of
H. sapiens BEFORE integration genes/pathway gene pairs/pathway

WikiPathways 135 pathways 46.3 166.2
HumanCyc 290 pathways 7.2 33.0
KEGG 237 pathways 72.4 171.3

No. of unique Pathways Average No. of Average No. of
H. sapiens AFTER integration genes/pathway gene pairs/pathway

WikiPathways 100 pathways 42.7 157.4
HumanCyc 225 pathways 7.2 31.6
KEGG 201 pathways 72.6 165.3
Integrated Pathways 57 pathways 59.5 263.6

No. of Pathways Average No. of Average No. of
M. musculus BEFORE integration genes/pathway gene pairs/pathway

WikiPathways 140 pathways 57.8 209.1
MouseCyc 323 pathways 8.0 61.4
KEGG 218 pathways 74.6 194.8

No. of unique Pathways Average No. of Average No. of
M. musculus AFTER integration genes/pathway gene pairs/pathway

WikiPathways 97 pathways 56.8 242.8
MouseCyc 204 pathways 7.4 43.0
KEGG 172 pathways 77.9 187.3
Integrated Pathways 85 pathways 52.6 260.9

No. of Pathways Average No. of Average No. of
S. cerevisiae BEFORE integration genes/pathway gene pairs/pathway

WikiPathways 125 pathways 11.8 0.5
YeastCyc 184 pathways 6.5 13.4
KEGG 98 pathways 35.2 34.7

No. of unique Pathways Average No. of Average No. of
S. cerevisiae AFTER integration genes/pathway gene pairs/pathway

WikiPathways 45 pathways 15.1 0.2
YeastCyc 85 pathways 5.8 11.6
KEGG 80 pathways 38.0 35.0
Integrated Pathways 76 pathways 14.1 25.2

No. of Pathways Average No. of Average No. of
M. tuberculosis H37Rv BEFORE integration genes/pathway gene pairs/pathway

WikiPathways 8 pathways 22.3 7.8
MTBRvCyc 234 pathways 5.7 18.9
KEGG 110 pathways 32.5 47.5

No. of unique Pathways Average No. of Average No. of
M. tuberculosis H37Rv AFTER integration genes/pathway gene pairs/pathway

WikiPathways 0 pathways
MTBRvCyc 171 pathways 5.9 21.0
KEGG 94 pathways 35.4 51.7
Integrated Pathways 35 pathways 12.3 25.4

Table 3.8: Summary of number of pathways, average number of genes per pathway
and average number of gene pairs per pathway before and after integration. The table
below shows the number of pathways from major pathway databases before and after
integration.
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the gene relationships. To deal with inconsistent molecular representations, we nor-

malize the gene representations into a unified gene ID. The IntPath unified gene ID

(which adopts a set of the most commonly used gene names) is compatible with the

gene names used in most public repositories. A summary of the number of pathways,

genes and gene pairs from different databases after normalization is given in Table 3.2.

To tackle inconsistent molecular relationship representations, we also normalized the

relationships of different databases into the IntPath unified relationship types as shown

in Table 3.1.

3.4.2 Evaluation of normalized pathway genes and gene pairs from

different databases

After obtaining the normalized pathway-gene and pathway-gene pair relationships, we

are able to analyze the comprehensiveness and agreement among the different pathway

databases on different aspects.

The results from analyzing the overlap of genes and gene pairs in different databases

are presented in pie charts in Figures 3.1 and 3.2. The detailed statistics are summarized

in Tables 3.3 and 3.4. These results prove that the overlap of genes and gene pairs in

different databases are very low. This result is in accord with similar experiments done

on human pathway databases (Soh et al., 2010).

From the results on the overlap of the pathways in different databases we can

see there is also a strikingly low overlap of pathways among the different databases;

see Figures 3.3. This demonstrates the obvious low level of comprehensiveness in the

databases analyzed, also in accord with the experiments on human pathway databases

described in (Soh et al., 2010).

Zooming in from the database level to the individual pathway level, we analyze the

agreement of genes and gene pairs of the same pathway in different databases. The

results are listed in Table 3.5. The agreement of different databases at the pathway
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level is also not as high as we expected (especially for gene pairs), which proves the low

level of consistency between these databases on the same pathway.

The comparative analyses from the above three aspects clearly exhibit the incom-

prehensiveness and inconsistency among the pathway databases. This suggests that

the integration of the extracted and normalized information from different databases

into a unified and comprehensive resource is very necessary.

3.4.3 Integration of pathway-gene and pathway-gene pair relation-

ships

The results above demonstrate that relying only on a single source of pathway infor-

mation from any of the databases is not reasonable. Moreover, we have also discovered

the problem of inconsistent referrals to pathway names. Table 3.6 lists some examples

of the same pathway under inconsistent names in different databases. Those are just a

few typical examples; there are many pathways with similar situations which need to be

properly addressed. Therefore, it is of great necessity to integrate all the pathway-gene

and pathway-gene pair relationships from different databases into a comprehensive and

unified source.

In the integrated pathways, all the related pathways with inconsistent names should

be merged. (i) The inconsistent referrals to pathway names are partially caused by

the different levels of emphases on the same pathway in different databases. One

database (BioCyc) may emphasize on some very specific aspects of a certain large

pathway; so this large pathway is broken up in this database into different pathways

with similar/related names, yet all describing the detailed aspects of the original large

pathway; see Table 3.6.

However, the other two databases may emphasize on a more general level and,

therefore only use a general and often shorter pathway name. When merging pathways

from different databases into integrated pathways, we should unify the different levels
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of emphases. We decide to choose a more general level rather than a detailed level.

(ii) When merging the same pathways with different levels of emphases in different

databases, if we have already merged one detailed-level pathway into a general-level

pathway, all other related detailed-level pathways in the databases should be merged

into this general-level pathway. After merging all the related pathways we should use a

general pathway name (usually the shortest one) to represent the integrated pathway.

(iii) The distinct differences between our integrated pathway gene relationships and

conventional pictorial pathway map indicate a more general level is suitable. We are

primarily focusing on gene relationships, but not on other the relationships in the

pathways (protein-compound relationships, compound-compound relationships, and so

on.) in this version of IntPath. This emphasis results in less enthusiasm on the detailed

level of individual pathways, and we lack sufficient information (just gene relationships)

to emphasize on the detailed level in most cases. (iv) The common problem of gene

relationships is the sparseness in each pathway; and putting emphasis on the detailed

aspect of certain pathway could render the data in a single pathway too sparse to be

useful.

For the reasons listed above, we should merge all the related pathways under the

same general name into one comprehensive pathway (among and within databases).

And after merging, we should use the general pathway name which is usually the

shortest name among all the comparing pathway names.

The results of identified related pathways both within and among databases are

summarized in Table 3.7. From the number of related pathways within databases, we

find BioCyc and MouseCyc emphasize more on the detailed aspect of pathways; there-

fore, more related pathway names are identified. In IntPath, all the related pathways

within and among databases are grouped together with the integrated pathway name.

The number of pathways, average number of genes per pathway and average number

of gene pairs per pathway, before and after integration, in the four IntPath included
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organisms are given in Table 3.8. The statistics listed in Table 3.8 clearly show that in

integrated pathways there is a significant increase of average node degree (average node

degree = average no. of gene pairs per pathway / average no. of genes per pathway),

which means significant increase of gene relationships of each gene on average in the

integrated pathways. There is also a considerable increase of average no. of gene pairs

per pathway in the integrated pathways, which indicates richer gene relationships on

average in each pathway. In some sense, the integration approach partially solves the

sparseness of pathway-gene relationships in MouseCyc and BioCyc.

We have accomplished in IntPath the integration of pathway-gene and pathway-gene

pair relationships, achieving compatible data formats, consistent molecular represen-

tations, consistent relationship representations, consistent referrals to pathway names

and comprehensive data.

3.4.4 IntPath web interface and web service

The web interface of IntPath comprises the following parts: Home, Gene List Analysis

Tools (Identify Pathways and Analyze Distances), API Toolkit, Statistics, Tutorial,

and Download. In order to facilitate convenient access of IntPath data through local

programs, the API functions are also supported by IntPath web service. An overview of

the IntPath system is shown in Figure 3.4. The core functions of IntPath are represented

in Figure 3.5. An explanation of each part is given below.

Home: It is to introduce the objective of IntPath, what the major contribution

of this database is and what the specific problems that we wish to solve through this

database are. We also indicate the analysis tools supported in this database, the

publications related to these analysis tools, and which species are currently included in

our database. This Home page of IntPath is a summary of the general information of

the database.

Identify Pathways: The function of “Identify Pathways” uses the hyper-geometric
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test to find the most significant pathways given an input gene list. Through this tool,

users can have a clear insight of which pathway is most related to the input gene list.

For each result returned, details like p-value are also given.

Analyze Distances: The function of “Analyze Distances” is to tell the similarities

between the two input gene lists from a pathway perspective. To perform the distance

analysis, first the hyper-geometric test is used to find the most significant pathways

of the two input gene lists, then the Floyd-Warshall algorithm is used to calculate the

“distances” between the two pathways. STRING PPI datasets (version 9.0) is used

in the distance calculation between two pathways in the current version of IntPath

(V2.0). The “distances” provide a reference in telling the relationships between two

specific pathways, and it can be very useful, e.g., in identifying how “far” it will take for

a normal pathway to transform into a diseased pathway. For a detailed explanation of

“Analyze Distances” and its application in biomedical research, please refer to methods

described in (Goh et al., 2011).

Statistics: This statistics section gives users an overall insight of IntPath. Users

can easily get the following statistics: number of genes, number of gene pairs, num-

ber of integrated pathways, number of original KEGG pathways, number of original

WikiPathways pathways, number of original BioCyc(MouseCyc) pathways, and num-

ber of source databases. The default option is “All statistics” which displays all the

statistics listed above.

API Toolkit : We provide powerful as well as flexible API functions of our IntPath

database. Users can both call the API functions using their local programs through

IntPath’s web service or using API functions by directly retrieving information through

IntPath’s web interface. The following API functions are supported, getGeneID, get-

DBPathways, getPathway, getPathwayGenes, getGenePathways, getPathwayInterac-

tions, getPathwayDifference, getIntPathGenes, getIntPathGenePairs and getIntPath-

Pathways. The explanation and user guide of each API function can be found in the
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Tutorial page.

Download: Some users may have other requirements of data analyses that are not

met by IntPath in the current version. Some users may also have different application

purposes of IntPath. To cope with a variety of needs, we release all our IntPath data

in this “Download” section, where users can obtain all IntPath data in two different

formats: (1) text format (*.txt), this compressed package includes three text files,

(a) the integrated pathway-gene relationships, (b) the integrated pathway-gene pair

relationships and (c) the normalized group-genes list; and (2) sqldump format (*.sql),

which is based on the integrated data we have prepared and stored in 6 tables in each

sqldump (each organism is a separate sqldump).

3.5 Discussion

3.5.1 Comments on WikiPathways

The “wiki-style” of WikiPathways makes this database more casual than other databases.

It is good for the community to freely maintain and share knowledge through WikiPath-

ways. On the other hand, it causes many problems for automatic information retrieval.

One of the limitations is the slight inconsistency among the formats of GPML as men-

tioned before—some key tags can be upper or lower cases. GPML is more different from

other XML formats. GPML emphasizes more on pictorial information; therefore, most

of the objects on the file are more likely to be recorded for their positional information.

Worse, some GPML files even do not have a “graphID” record; and for these GPML

files, whole information of certain pathways is given by the positional information on

the pathway map. For these GPML files, judging the relationships between two genes

is solely dependent on the positional information. It may be easy for the human eye

to look at the pictorial format of the pathway map; but it is hard for computer pro-

grams to retrieve accurate information automatically. Attempts on spatial clustering
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have been made. But these attempts also introduce a substantial amount of noise.

Therefore we decide to discard this noisy information at the current stage.

Recently, WikiPathways begins to support web service and BioPAX. We have tried

solving the problem mentioned above using WikiPathways web service and directly

extracting from BioPAX format; but no improvement has been achieved.

Web service has not solved the problem of those GPML files that do not have

“graphID” record. For example, our program fails to extract reliable gene relation-

ships from the pathway “Mm Androgen Receptor Signaling Pathway WP252 35669”

by calling the WikiPathways API function “findInteractions”. It is supposed to find in-

teractions defined in WikiPathways’ pathways. In our experiments, it works in finding

interactions in other pathways. Extensive experiments have been made using differ-

ent ways to call the “findInteractions” function. Yet nothing related to the WP252

pathway is returned. On the png graph we can see there are lots of interactions in

this WP252 pathway. These kinds of experiments have been attempted many times on

several pathways. All have failed to find the “interactions” or gene relationships in the

specific pathways that lack “graphID” entry.

We turn to BioPAX files which have recently been supported on WikiPathways

for a solution. We specifically run our program on the pathway BioPAX files whose

corresponding GPML files do not have “graphID” records. Our program successfully

retrieved gene relationships from BioPAX files in BioCyc and MouseCyc, but not on

these specific BioPAX files in WikiPathways (for example, “Sc Cell Cycle and Cell

Division WP414 21554” and “Sc Glycolysis and Gluconeogenesis WP515 42806”). We

also try to visualize those specific BioPAX files on Cytoscape; but no relationship can

be visualized from these files.

The gene ID problems in WikiPathways is also quite serious. There are two places

to retrieve gene ID information from the GPML “</DataNode>” entry, one is from

“TextLabel” and the other is from “<Xref Database” IDs. Usually gene IDs in “Text-
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Label” are gene symbol, while gene IDs in “<Xref Database” can be the gene IDs

from different public databases, like Entrez, Ensembl, UniProt, and so on. Getting

gene ID information from both of these two fields is necessary. It is not uncommon

for the WikiPathways database to have errors and problems in both fields. In most

cases, erroneous gene IDs from “TextLabel” also do not have any information in “<Xref

Database”. The erroneous gene IDs can be gene symbols or EC numbers that cannot

be found in the target organism to which the pathway map belongs; they can also

be common gene names without any information in “<Xref Database”, or they can

be just upper- or lower-case flaws. In our program, both information from the two

fields,“TextLabel” and “<Xref Database” are retrieved. For gene IDs where informa-

tion from both of these fields are problematic, manual curation is adopted to deal with

them, generally by removing them from IntPath.

3.5.2 Access, update and extension of IntPath

IntPath and all its data have been released online at http://compbio.ddns.comp.

nus.edu.sg:8080/IntPath. As some analyses in Chapter 2, Chapter 4, Chapter 5

already used IntPath data, we believe our work here can facilitate a variety of works

that need to refer to pathway information.

IntPath heavily depends on source pathway data from all the pathway databases

and most databases are updated quite frequently. The important question is: Can we

keep our data updated in a timely fashion? The answer is: Yes.

The “IntPath Data Preparation” program is streamlined and automated in per-

forming the extraction, normalization, integration processes and directly outputing

into MySQL databases and text files. For organism already included in IntPath, run-

ning the program for each update takes a short time; and we will maintain a regular

update of IntPath in the long term. Another key question is whether we can extend our

approach to other organisms. Currently, we have already included four organisms—S.
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cerevisiae, M. tuberculosis H37Rv, H. Sapiens and M. musculus—and we will include

more in future releases of IntPath. Extending the methodology to include other or-

ganisms just needs modifying the regular expressions for extracting GPML and KGML

files; preparing the gene ID mapping files; manually correcting some possible errors of

the gene IDs introduced by the source databases (like WikiPathways gene ID problems)

and, if necessary, updating the “error-prone words pair list”; and reviewing integrated

pathway names. Therefore, the whole process of including other organisms in IntPath

takes a short time. We will include more model organisms and important pathogens in

IntPath in future releases.

3.5.3 Outlook of IntPath

Pathway data have wide application in a variety of studies(Wong, 2011), for exam-

ple, they are used to improve gene expression profile analysis(Soh et al., 2011), to

make protein function prediction in the absence of sequence homology(Hawkins and

Kihara, 2007), to better identify targets for disrupting pathogen drug resistance mech-

anisms(Wong and Liu, 2010), to better identify disease genes(Li and Agarwal, 2009),

to improve robustness of proteomic profile analysis(Goh et al., 2013), and drug target

prioritization(Yadav et al., 2013). We believe IntPath will contribute greatly to all

these aspects of application.

In the near future, more functions and analysis tools will be supported in IntPath—

for example, clustering algorithms for microarray studies using the IntPath data as

background knowledge, visualization tools of interaction and relationship, more power-

ful algorithms to identify pathways given user-specified input gene lists, and more API

functions. Moreover, in this version of IntPath we only take gene relationships into

account; in a future version, IntPath will also consider other important relationships

in the pathways—like protein-compound relationships, compound-compound relation-

ships, and so on. Meanwhile, in future releases, more organisms will be included.
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We wish our continuing effort can make IntPath one of the most useful databases in

pathway studies that can benefit a variety of related researches.

3.6 Conclusion

The five limitations of current pathway databases that hamper effective use of pathway

information have been overcome in this Chapter. We solve the problem of incompatible

data formats in different databases by extracting the pathway-gene and pathway-gene

pair relationships. The limitations of inconsistent molecular representations and incon-

sistent molecular relationship representations have been overcome by our normalization

of the data into common gene name representations and common relationship types

which are compatible with other database. The problems of inconsistent referrals to

pathway names and incomprehensive data from different databases have been solved

by the integration of pathway-gene and pathway-gene pair relationships into a unified

and comprehensive data source.

We achieve compatible data formats, consistent molecular representations, con-

sistent relationship representations, consistent referrals to pathway names and com-

prehensive data in our IntPath database for several organisms—viz., H. sapiens, S.

cerevisiae, M. musculus and M. tuberculosis H37Rv. IntPath can maintain a regular

update in these organisms and, the methodology we describe here can be applied to

other organisms straightforwardly.

We believe IntPath will not only facilitate convenient access of the integrated path-

way gene relationship data for model organisms and important pathogens but also

greatly boost data analysis and application to many related studies through the anal-

ysis tools and API functions provided in the database.
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Figure 3.1: Pie charts depicting overlapping gene proportions. The red part refers to
the proportions of unique genes while the blue part refers to proportions where there
is an overlap of genes.
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Figure 3.2: Pie charts depicting overlapping gene pair proportions. The red part refers
to the proportions of unique gene pairs while the blue part refers to proportions where
there is an overlap of gene pairs.
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Figure 3.3: Venn diagram of pathways in different databases. Venn diagram depicting
overlapping pathways across the three databases.
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Figure 3.4: IntPath system overview. This figure shows the components of IntPath
database, the relationships between those components and a clear indication on which
components are supported by web service and which are supported by web interface.
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Figure 3.5: Core functions of IntPath. This figure shows the core functions of IntPath,
the relationships between those core functions, database and web service.



Chapter 4

Stringent DDI-based Prediction

Domain-domain interaction (DDI) based prediction is one of the frequently used com-

putational approaches in predicting both intra-species and inter-species PPIs. However,

the performance of DDI-based host–pathogen PPI prediction has been rather limited.

We develop a stringent DDI-based prediction approach with emphasis on (i) differ-

ences between the specific domain sequences on annotated regions of proteins under

the same domain ID and (ii) calculation of the interaction strength of predicted PPIs

based on the interacting residues in their interaction interfaces. As long as the two

amino acids have one of the atomic interactions (hydrogen bonds, electrostatic or van

de Waals interactions) between two domain instances, they are defined as interacting

residues in this study.

The stringent DDI-based prediction approach reported in this Chapter provides an

accurate strategy for predicting host–pathogen PPIs. It also performs better than a

conventional DDI-based approach in predicting PPIs. We have predicted a small set

of accurate H. sapiens–M. tuberculosis H37Rv PPIs which could be very useful for a

variety of related studies.

92
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4.1 Background

Tuberculosis is an infectious disease which causes millions of deaths each year. M.

tuberculosis—the causative agent of tuberculosis— infects around one-third of the

world’s population(Butler, 2000; Koul et al., 2004). Tuberculosis is one of the most

common opportunistic infection in HIV-infected patients and it is also one of the most

common death causes among HIV patients(Hestvik et al., 2006; Global Tuberculo-

sis Programme, 2010).

Host–pathogen PPIs are essential for a pathogen’s colonization, adhesion and inva-

sion of host cells, which are crucial for the understanding of infection mechanism and

the interaction between pathogen and host. Unfortunately, high-quality large-scale ex-

perimental host–pathogen PPIs are not available in many host–pathogen systems, espe-

cially between H. sapiens and M. tuberculosis H37Rv. Many computational approaches

have been developed to predict host–pathogen PPIs including approaches based on ho-

mology, interacting domain/motif, structure, and even machine learning(Zhou et al.,

2013). DDI-based approaches are often used for predicting both intra-species and

inter-species PPIs, with the assumption that domain-domain interactions mediate the

protein-protein interactions, because domains are the basic building blocks determining

the structure and function of proteins(Zhou et al., 2013).

In this Chapter, we develop a stringent DDI-based approach for predicting the H.

sapiens–M. tuberculosis H37Rv PPIs by taking into account of the differences between

each specific domain sequence (we name it “domain instance”) on each annotated re-

gion of proteins under the same domain ID. The interactions between query domain

instances are made based on very stringent sequence alignment to the structural tem-

plate domain instances. Moreover, we adopt an effective scoring strategy in ranking

how likely the predicted proteins are interacting with each other by examining the in-

teracting residues in the interaction interfaces. Thus, we are standing on a much more

accurate and finer level of domain interaction by examining not only the sequence simi-
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larity of each domain instances but also the interaction interface compatibility between

them. In contrast, conventional DDI-based approaches generally use some popular

tools to annotate the domains in proteins and then see whether two proteins contain a

pair of domains whose IDs match a pair of domains that are known to interact in some

other pair of proteins. Matching query domain instance to template domain instance

based on domain ID—as done in such conventional DDI-based approaches—is rather

coarse and often leads to matching of domain instances that do not have the same

interaction interfaces.

Using gold standard H. sapiens PPIs, we assess the performance of our stringent

DDI-based approach and the conventional DDI-based approach by comparing their

precision-recall curves and the number of predicted PPIs overlapping with gold stan-

dard PPIs. We also use the percentage of coherent informative Gene Ontology(GO)

annotations to assess the predicted H. sapiens PPIs to compare the performance of

our stringent DDI-based approach and the conventional DDI-based approach. These

assessments demonstrate that our stringent DDI-based approach has much better per-

formance than a conventional DDI-based approach. Cellular compartment distribution

analysis, pathway enrichment analysis, and functional category enrichment analysis

supports the validity of our predicted H. sapiens–M. tuberculosis H37Rv PPI dataset.

Our stringent DDI-based approach can be used for predicting host–pathogen PPIs in

a variety of different host–pathogen systems. We have also discovered some interesting

properties of both pathogen and host proteins participating in host–pathogen PPIs, in-

cluding the tendency to have more domains, and the domains on the proteins involved

in host–pathogen PPIs tend to have much higher degrees.

4.2 Methods

Our stringent DDI-based approach predicts PPIs by inferring domain instance inter-

actions from structural template domain instance interactions. We accurately align
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query protein domain instances to template domain instances using a stringent thresh-

old(length difference ≤ 20% and sequence similarity ≥ 50%) and transfer the possible

interactions between template structural domain instances to our query domain in-

stances. We then predict the possible PPIs from interacting query domain instances.

The structural domain instances are extracted from the 3did database(Stein et al.,

2011). Each interacting query domain instance pair is scored according to the similar-

ity of the interaction residues in the interaction interfaces, and the best query instance

score is used to represent the interaction strength of the predicted PPI (how likely

the two proteins in the PPI are interacting each with other). We predict both host–

pathogen (H. sapiens–M. tuberculosis H37Rv) and intra-species (H. sapiens) PPIs in

this Chapter. For a comparison study, we use a conventional DDI-based approach(Dyer

et al., 2007) to predict possible intra-species (H. sapiens) PPIs. We assess our stringent

DDI-based approach and the conventional approach using gold standard H. sapiens

PPIs and by the percentage of the predicted PPIs that have coherent informative GO

annotation. These assessments show that our stringent DDI-based approach has better

performance in predicting PPIs than the conventional approach. Cellular compartment

distribution analysis, pathway enrichment analysis, and functional enrichment analysis

support our prediction results and show that the predicted PPIs correspond to the M.

tuberculosis H37Rv infection process. We further analyze some of the basic domain

properties of proteins involved in the host–pathogen PPIN, comparing with other pro-

teins involved in intra-species PPIN, by examining the number of domains and domain

interaction degrees.

4.2.1 PPI prediction—our stringent DDI-based approach

It is a reasonable assumption that an observed interaction between two domain in-

stances can be used to infer the interaction of another domain instance pair, provided

the two domain instance pairs are sufficiently similar as to preserve the relevant in-
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teraction interfaces. Specifically, consider two protein domains A and B. Let Ai and

Bi be two instances of domain A and B, respectively. Suppose we know that these

two instances have a direct physical interaction (from the crystal structure of a pro-

tein complex). Given the observation of Ai and Bi, one could infer the interaction of

another instance pair of A and B, Aj and Bj , by using a sequence similarity threshold

between (Ai, Bi) and (Aj , Bj).

In general, conventional DDI-based approaches disregard the details of the interac-

tion between these domain instances in the real 3D space—i.e., the interaction interface

between the two instances—and thus effectively matches the domain instances based

on name. In contrast, we formulate a stringent approach that emphasizes the simi-

larity of the interaction interface of the domain instances. Specifically, we assign a

positive prediction score on pairs with high interface residue similarity with respect to

the observed interaction instances in the existing protein structural data.

The data on structural domain instances, including the interacting domain pair, the

structural and sequence details of interacting domain instances, the interacting residues

in the interaction interfaces are extracted from the 3did database(Stein et al., 2011).

These individual domain instances with 3did structural data serve as “template domain

instances”, and pairs of interacting domain instances with 3did structural data serve as

“template interacting domain instance pairs”. The fasta sequences of all H. sapiens and

M. tuberculosis H37Rv proteins are obtained from Uniprot(The UniProt Consortium,

2012). Their respective protein domain annotations are obtained from InterPro(Hunter

et al., 2012), from which we collect the sequences of domain instances which have at

least one template domain instance from 3did. These domain instances are named the

“query domain instances”. They are aligned to each of the template domain instances

under the same domain ID using the MUSCLE alignment program(Edgar, 2004). Only

query domain instances meeting the stringent threshold of length difference ≤ 20% and

sequence similarity≥ 50% are kept for the following analysis. For each pair (Ai, Bi)
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of query domain instances that meets the stringent alignment threshold to a template

interacting domain instance pair (A, B), we infer the interaction interface residues in

(Ai, Bi) as the residues that are aligned to the interaction interface residues in (A,

B). A score of this interaction interface of (Ai, Bi) is then computed by summing the

BLOSUM62 substitution score(Henikoff and Henikoff, 1992) between the residues in

this interaction interface and the corresponding residues in the interaction interface of

(A, B) that they are aligned to. This score is defined as the “domain instance interaction

strength”. Query domain instances with multiple possible template instances are scored

based on the template with the best domain instance interaction strength. For any

possible pair of proteins, if they have a query domain instance pair (one domain instance

on each of the two proteins), then these two proteins are predicted to be interacting

with an interaction score equaling the domain instance interaction strength of that

query domain instance pair. If the protein pair has more than one underlying query

domain instance interaction pair, then the query domain instance pair with the best

score is used to represent the protein pair. This best score is taken as “interaction

strength” of this protein pair.

We apply this DDI-based prediction approach on human proteins and this results

in 839 predicted human intra-species PPIs. We also predict inter-species PPIs (H.

sapiens–M. tuberculosis H37Rv) to identify a set of potential host–pathogen PPIs; the

result is visualized in Figure 4.1.

4.2.2 PPI prediction—a convention DDI-based approach

The conventional DDI-based approach predicts how likely two proteins are interacting

with each other by integrating known intra-species PPIs with domain profiles based

on an association method (sequence-signature algorithm) proposed by Sprinzak and

Margalit (2001) Specifically, domains are annotated in each protein in a known intra-

species PPI dataset. Then, the probability P (d, e) that two proteins containing a
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specific pair of domains (d, e) would interact is estimated for each pair of domains in a

Bayesian manner. Finally, given a new pair of proteins, their probability of interaction

is estimated by a naive combination (= 1 −
∏

i

∏
j(1 − P (di, ej))) of the probabilities

from each pair of domains (di, ej) contained in the pair of proteins(Dyer et al., 2007).

This predicted probability(called “interaction strength” of the conventional approach)

can be used to rank the list of predicted PPIs.

This conventional DDI-based approach is applied to predict host–pathogen PPIs as

follows. For each pair of proteins (one in H. sapiens and one in M. tuberculosis), we

compute their probability of interactions as described above based on DDIs in a yeast

physical PPI dataset collected from MINT(Zanzoni et al., 2002), BioGRID(Stark et al.,

2011), and IntAct(Hermjakob et al., 2004). This conventional DDI-based approach is

also applied to predict human intra-species PPIs. In this case, for each pair of proteins

(both in H. sapiens), we compute their probability of interactions as described above

based on DDIs in the same yeast physical PPI dataset. As a control study, we ensure

that the domains considered are the same domain set considered in the stringent DDI-

based approach—i.e., we restrict the domain set to domains contained in 3did.

4.2.3 Assessment based on gold standard H. sapiens PPIs

Because no large-scale high-quality H. sapiens-M. tuberculosis PPI dataset is currently

available, we can only assess the performance of the stringent and the conventional

DDI-based approaches in a intra-species system. We use both the stringent and the

conventional DDI-based approach to predict possible H. sapiens PPIs and assess the

predicted PPI datasets using gold standard H. sapiens PPIs. The gold standard H.

sapiens PPIs are the physical PPIs collected from MINT(Zanzoni et al., 2002), Bi-

oGRID(Stark et al., 2011), and IntAct(Hermjakob et al., 2004). We sort the predicted

H. sapiens PPIs according to their predicted “interaction strength” in the respective

DDI-based approaches, and compare the top PPIs with the gold standard H. sapiens
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PPIs. For the stringent DDI-based approach, we sort the prediction results and iter-

ate 10 PPIs at a time—which means the first time we choose all the top 839 PPIs, the

second time we choose the top 829 PPIs, etc.—and then we compare with the gold stan-

dard H. sapiens PPIs to calculate the precision and recall and plot the precision-recall

curve. The precision-recall curve of the conventional DDI-based approach is plotted in

the same way. The precision-recall curves are plotted together for a better comparison

in Figure 4.2.

As the two PPI datasets predicted by the stringent and the conventional DDI-based

approaches are very different in the number of PPIs, their precision-recall curves may

not be sufficient for judging the performance of the two prediction approaches. So

we choose some special points to provide a more informative statistics. The stringent

DDI-based approach predicted 839 H. sapiens PPIs and 82 of which overlap with the

gold standard PPIs. We consider a similar amount of conventional-approach predicted

H. sapiens PPIs(top 885 PPIs), and see how many of these predicted PPIs overlap

with gold standard. We also choose another point on the precision-recall curve, that

has a similar number of overlapping PPIs with the gold standard as the stringent DDI-

based approach, and see how many predictions are made by conventional DDI-based

approach. The results are shown in Table 4.1.

4.2.4 Assessment using coherent informative GO annotation of pre-

dicted H. sapiens PPIs

A PPI is more likely to be real, if its two protein components have coherent GO

annotation—i.e., the two proteins are annotated with at least one “informative” GO

term in common. The percentage of PPIs having coherent GO annotation is also

frequently used in assessing the quality of the PPI dataset(Zhou and Wong, 2011).

Note that GO contains three hierarchical ontologies, and terms at the root level have

more proteins annotated with them, while terms at the leaf level have fewer proteins



CHAPTER 4. STRINGENT DDI-BASED PREDICTION 100

annotated with them. In order to avoid bias, we only keep informative GO terms

for the assessment here. An informative GO term is defined as a GO term that has

at least 30 proteins annotated with it but each of its child terms has fewer than 30

proteins annotated with it. This definition of informative GO term is also used in

another work(Zhou and Wong, 2011) for assessing PPI dataset quality in M. tuberculosis

H37Rv. For the PPI datasets predicted by the stringent DDI-based approach and by

the conventional DDI-based approach, the PPIs in each dataset are sorted according

to their respective “interaction strength” (which is an indicator of how likely the PPIs

are real), then the percentage of PPIs that has coherent informative GO terms are

calculated. For each dataset we move along from the bottom to the top to set the

threshold of how many top PPIs are considered, and calculate the percentage of these

PPIs having coherent informative GO terms. For the stringent DDI-based approach

we choose an interval of 10 PPIs and move along from the bottom to the top(e.g. top

839 PPIs, top 829 PPIs, etc.), then calculate the percentage of PPIs that have coherent

informative GO terms and plot the percentage; see Figure 4.3.

For the conventional DDI-based approach, we plot the percentage in the same way;

but as the conventional DDI-based approach predicts much more PPIs, we choose

interval of 1000 PPIs while making the plot; see Figure 4.4.

To better compare and assess the performance of the stringent and the conventional

DDI-based approaches, we focus on the top 839 PPIs predicted by both approaches,

choosing interval of 10 PPIs as we plot the percentage of PPIs having coherent GO

annotation on the same figure; see Figure 4.5.

When assessing the quality of two PPI datasets based on informative GO terms,

the number of GO terms that are annotated to the proteins of that PPI dataset also

influences the percentage of PPIs having coherent informative GO terms in that dataset.

Therefore we summarize the number of informative GO terms in the 839 PPIs predicted

by the stringent DDI-based approach, and the number of informative GO terms in
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the 724185 PPIs and in the top 839 PPIs predicted by the conventional DDI-based

approach; see Table 4.2.

4.2.5 Cellular compartment distribution of H. sapiens proteins tar-

geted by the predicted host–pathogen PPIs.

The assessments above prove that our stringent DDI-based approach has a much better

performance than the conventional DDI-based approach in predicting more reliable

intra-species PPIs. We next analyze the host–pathogen PPIs predicted by our stringent

DDI-based approach.

The cellular compartments of the H. sapiens proteins targeted by the predicted H.

sapiens-M. tuberculosis H37Rv PPIs are useful in telling the quality of the predicted

host–pathogen PPIs. If the targeted H. sapiens proteins are located in cellular com-

partments that are very relevant to the pathogen’s infection or are very likely to be

involved in interactions with the pathogen, then the result supports the host–pathogen

predictions. Gene Ontology (Cellular Compartment, CC) is a very comprehensive an-

notation system for human proteins. However, as the Gene Ontology is hierarchical,

we only use informative CC terms for our analysis.

In contrast to using the coherent informative GO annotation for the assessment

of the human intra-species PPI dataset, we choose a different resolution of the GO

terms for the category distribution analysis of human proteins involved in H. sapiens-

M. tuberculosis PPIs: An informative CC term is defined here to be a term that has at

least 90 proteins annotated with it, but each of its child terms has less than 90 proteins

annotate with it. The cellular compartment distribution tells how many proteins(and

the percentage) in the datasets fall into each cellular compartment. We show the

cellular compartments of the H. sapiens proteins that are targeted by the stringent

DDI-based prediction approach in Table 4.3 and Figure 4.6.
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4.2.6 Functional enrichment analysis of proteins involved in host–

pathogen PPIs

Functional enrichment analysis is important for revealing the functional relevance of

the proteins involved in the host–pathogen PPIs predicted by our stringent DDI-based

approach. The presence of enriched(over-represented) functional categories that are

closely related to pathogen infection, serves as a support for the validity of the predicted

host–pathogen PPIs. The Gene Ontology (Molecular Function, MF) is a comprehen-

sive functional annotation system. Therefore we conduct MF term enrichment analysis

on the H. sapiens proteins involved in the H. sapiens-M. tuberculosis H37Rv PPIs pre-

dicted by our stringent DDI-based approach. We use the DAVID database (Dennis Jr

et al., 2003) for the GO term enrichment analysis. Results are shown in Table 4.4

(significantly enriched level 5 MF terms, threshold “count > 2, p-value < 0.1”).

On the other hand, as we have found in another work(Zhou and Wong, 2011), most

of the GO annotations for M. tuberculosis H37Rv are not specific enough to provide

effective functional enrichment analysis. Thus, the functional analysis of M. tuberculosis

H37Rv proteins are not discussed in this Chapter.

4.2.7 Pathway enrichment analysis of proteins involved in host–pathogen

PPIs

Pathway data are very important functional information for identifying a list of pro-

teins’ overall related functions in a cell. For a set of proteins which is significantly

enriched in some pathways, it is very likely that this set of proteins play similar or

co-ordinated roles in vivo. Thus, pathway enrichment analysis is also one of the most

frequently used strategy for analyzing predicted host–pathogen PPIs.

We use the IntPath(Zhou et al., 2012) database for the pathway enrichment analysis.

IntPath is currently one of the most comprehensive integrated pathway databases. The

“Identify Pathways” function in IntPath can identify the pathway enrichment of an
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input gene list. The “Identify Pathways” function in IntPath(Zhou et al., 2012) adopts

the hypergeometric test to identify the input gene list’s over-representation(enrichment)

in the pathways. For the H. sapiens protein set predicted by the stringent DDI-based

approach, the pathway enrichment analysis result is shown in Table 4.5.

We also analyze the pathway enrichments for the M. tuberculosis H37Rv proteins,

because IntPath(Zhou et al., 2012) also supports pathway analysis for this and other

important pathogens. The pathway analysis on the M. tuberculosis H37Rv proteins

involved in H. sapiens–M. tuberculosis H37Rv PPIs predicted by the stringent DDI-

based approach is given in Table 4.6.

4.2.8 Analysis of domain properties of proteins involved in host–

pathogen PPIs

The analysis of protein domain properties considers the number of domains and the de-

grees of domains on proteins. The protein domain properties directly reflect differences

between the proteins involved in inter-species host–pathogen PPIN and intra-species

PPIN. We analyze the domain properties of both M. tuberculosis H37Rv and H. sapiens

involved in the predicted host–pathogen PPIs, and comparing them with other proteins

in their own intra-species PPIN. As a control experiment, we also conduct the same

analysis on the H. sapiens proteins in the gold standard H. sapiens–HIV PPIs(Fu et al.,

2009) to see whether the H. sapiens proteins in the gold standard H. sapiens-HIV PPIs

exhibit similar properties.

As the host–pathogen PPIs are predicted by the stringent DDI-based approach, to

avoid biased analysis, we use a different domain annotation system in this analysis.

The annotation of both M. tuberculosis H37Rv and H. sapiens protein domains is ac-

complished using HMMER-V3.0(Eddy, 2011). The domain profiles used in the protein

domain annotation are Pfam-A(Bateman et al., 2004). The threshold for the domain

annotation is E-value(iE-value) ≤ E − 20 and accuracy ≥ 0.9. For each domain anno-
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tated on each protein, we retrieve the sequences of these domains on every protein for

the following analysis.

For the domain degree analysis, we obtain the DDI(Domain-Domain Interaction)

data from the DOMINE database. DDIs “inferred from PDB entries” and “high

confidence predictions” in the DOMINE database are considered in this study, while

“medium confidence predictions” and “low confidence predictions” are discarded. For

each domain, we count the number of interaction partners in the DOMINE database(only

“inferred from PDB entries” and “high confidence predictions”) as the degree of that

domain. We analyze the above protein domain properties and summarize the results

in Table 4.7.

4.2.9 Software Packages and Datasets

The software packages and database tools used in this study are:

• IntPath(Zhou et al., 2012)

• Cytoscape(Smoot et al., 2011)

• InterPro(Hunter et al., 2012)

• InterProScan(Quevillon et al., 2005)

• DAVID(Dennis Jr et al., 2003)

The datasets used in this study are:

• M. tuberculosis H37Rv PPI dataset consisting of four reliable subsets of the B2H

PPI dataset and STRING PPI dataset(threshold at 770)(Zhou and Wong, 2011).

• H. sapiens physical PPI dataset collected from MINT(Zanzoni et al., 2002), Bi-

oGRID(Stark et al., 2011), and IntAct(Hermjakob et al., 2004); date of download

is November 10, 2011.
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• S. cerevisiae physical PPI dataset collected from MINT(Zanzoni et al., 2002), Bi-

oGRID(Stark et al., 2011), and IntAct(Hermjakob et al., 2004); date of download

is November 10, 2011.

• Protein domain annotation (protein2ipr) from InterPro(Hunter et al., 2012); date

of download is March 5th, 2012.

• DDI data from the 3did database(Stein et al., 2011)(version November 28, 2010).

• DDI data from the DOMINE database V2.0(Yellaboina et al., 2011).

• Pfam-A Domain profiles(Bateman et al., 2004).

• H. sapiens–HIV-1 PPI dataset downloaded from “HIV-1, human protein interac-

tion database at NCBI”(Fu et al., 2009).

4.3 Results

4.3.1 Prediction of host–pathogen PPIs

Because of the stringent alignment threshold used for identifying query and template

domain instances, lots of instances with large sequence variation under the same domain

ID are filtered out, leaving very few domain instances for study. Also, our template

interacting domain instances are from structurally resolved data in 3did, therefore the

template domain instances are a relatively small number. Due to these two factors,

our stringent DDI-based approach predicted PPI datasets are usually small. We have

predicted 92 H. sapiens-M. tuberculosis H37Rv PPIs and this small set of predicted

host–pathogen PPIs are analyzed using several approaches as discussed in the following

sections. We visualize the predicted host–pathogen PPIN consisting of these 92 H.

sapiens-M. tuberculosis H37Rv PPIs using Cytoscape(Smoot et al., 2011) in Figure

4.1. The orange dots are M. tuberculosis H37Rv proteins, while the blue dots are
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Figure 4.1: Visualization of predicted H. sapiens–M. tuberculosis H37Rv PPI network.
The orange dots are M. tuberculosis H37Rv proteins, while the blue dots are H. sapiens
proteins.

H. sapiens proteins. From Figure 4.1 we can observe that, like many host–pathogen

PPINs, the pathogen proteins tend to be hubs in host–pathogen PPIN.

4.3.2 Prediction of intra-species PPIs

Currently no large-scale high-quality H. sapiens-M. tuberculosis H37Rv dataset is avail-

able. So we can not directly assess the performance of our stringent DDI-based ap-

proach in the inter-species host–pathogen system. Reluctantly, we turn to the intra-

species system for the assessments. We predict intra-species H. sapiens PPIs using the

stringent and the conventional DDI-based approaches. Altogether 839 H. sapiens PPIs
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are predicted by the stringent DDI-based approach. In contrast, 724185 H. sapiens

PPIs are predicted by the conventional DDI-based approach. Just from the number of

PPIs predicted by two approaches the differences are obvious. Our stringent DDI-based

approach relies on very high sequence similarity to the template domain instances and

stands on the stringent domain instances to make the prediction. Therefore only a

small amount of PPIs are predicted. And the small number of structurally resolved

template interacting domain instances also limits the number of PPIs we can predict us-

ing our stringent DDI-based approach. Whereas the conventional DDI-based approach

derives the possible interacting domain information from known PPI datasets(which

can be abundant for some species), and treats all domain instances annotated under

the same domain ID as the same. So a large number of PPIs can be predicted by

the conventional DDI-based approach. We compare the performance of our stringent

DDI-based approach and the conventional DDI-based approach based on gold standard

PPI datasets and percentage of PPIs having coherent informative GO terms.

4.3.3 Assessment based on gold standard H. sapiens PPIs

We collect the known H. sapiens physical PPI datasets from MINT(Zanzoni et al.,

2002), BioGRID(Stark et al., 2011), and IntAct(Hermjakob et al., 2004) as our gold

standard PPI dataset to assess the H. sapiens PPIs predicted by the stringent and the

conventional DDI-based approaches. We calculate and plot the precision-recall curve

of the stringent and the conventional DDI-based approaches; see Figure 4.2. From the

plots we can see both of the prediction approaches achieve better precision when the

threshold increases. This shows that the scoring strategies adopted by both prediction

approaches in calculating the “interaction strength” are valid in telling the likelihood

of predicted PPIs being real. From the precision-recall curves, one can clearly tell that

overall the stringent DDI-based approach consistently predicts PPIs with much higher

precision than that of the conventional DDI-based approach.
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Figure 4.2: Assessment of the stringent and the conventional DDI-based approaches
through gold standard H. sapiens PPIs. We plot the precision-recall curve.

As the conventional DDI-based approach makes a large number of predictions, it

has higher recall. The precision-recall curve shows that our stringent DDI-based ap-

proach can only predict small amount of PPIs but with much higher accuracy than the

conventional approach. As the two approaches predict very different number of PPIs,

we also choose some special points to compare the performance of the two prediction

approaches, see Table 4.1.

We can see that when our stringent DDI-based approach predicts 839 H. sapiens

PPIs, 82 of which overlap with the gold standard; when the conventional DDI-based

approach predicts 885 H. sapiens PPIs, only 11 of which overlap with the gold standard.

The conventional DDI-based approach has to predict 3085 H. sapiens PPIs in order

to have 81 H. sapiens PPIs overlapping with the gold standard. All these assessments

using the gold standard H. sapiens PPIs clearly show that our stringent DDI-based

approach is more accurate and has better performance than that of the conventional

DDI-based approach.
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Conventional DDI-based Approach Overlap with Gold Standard

Top 3085 PPIs 81
Top 885 PPIs 11

Stringent DDI-based Approach Overlap with Gold Standard

All 839 PPIs 82

Table 4.1: Assessment of the stringent and the conventional DDI-based approaches
through gold standard H. sapiens PPIs. This table summarizes the assessment of the
stringent and the conventional DDI-based approaches through gold standard human
PPIs. In order for the conventional DDI-based approach to attain an amount of overlap
with gold standard human PPIs similar to the stringent DDI-based approach, a much
larger number of (false positive) predicted PPIs must be accepted. Conversely, if the
conventional DDI-based approach is restricted to a similar number of predictions as
the stringent DDI-based approach, a much lower overlap with gold standard human
PPIs must be accepted.

4.3.4 Assessment based on coherent informative GO annotation of

predicted H. sapiens PPIs

To further compare the performance of the stringent and the conventional DDI-based

approaches, we calculate the percentage of PPIs that have coherent informative GO

terms. From Figure 4.3 and Figure 4.4, the overall percentage of PPIs having coherent

informative GO terms reveals that both approaches work well—as moving towards to

a higher threshold (smaller number of top PPIs) leads to a higher percentage of PPIs

having coherent informative GO terms.

As shown in Figure 4.3, the PPI dataset predicted by our stringent DDI-based

approach starts with high percentage of PPIs having coherent informative GO terms;

this indicates overall good performance as the PPI dataset predicted by our stringent

DDI-based approach has low noise level and high quality. In contrast, the PPI dataset

predicted by the conventional DDI-based approach does not show as good performance

as the stringent DDI-based approach in terms of the overall percentage of PPIs having

coherent informative GO terms—the PPI dataset predicted by the conventional DDI-

based approach starts with a low percentage of PPIs having coherent informative GO

terms, especially very low percentage of cellular compartment (CC) terms and biological
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Figure 4.3: Informative GO assessment of the PPIs predicted by the stringent DDI-
based approach. Informative GO assessment of the PPIs predicted by the stringent
DDI-based approach.

Figure 4.4: Informative GO assessment of the PPIs predicted by the conventional DDI-
based approach. Informative GO assessment of the PPIs predicted by the conventional
DDI-based approach.
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Figure 4.5: Informative GO assessment of the top 839 PPIs predicted by the stringent
and the conventional DDI-based approaches. Informative GO assessment of the top 839
PPIs predicted by the stringent and the conventional DDI-based approaches. “Acc.”
means the PPIs predicted by the stringent DDI-based approach; “Conv.” means the
PPIs predicted by the conventional DDI-based approach.

process (BP) terms; this indicates that the PPI dataset predicted by the conventional

DDI-based approach has high noise and the quality is not good.

As the PPI datasets predicted by the two approaches are very different in the

number of predicted PPIs, it may not be a sufficient assessment seeing only overall

plots of percentage of PPIs having coherent informative GO terms. Therefore, we

focus on the top 839 PPIs respectively predicted by the stringent and the conventional

DDI-based approaches and plot their percentage of PPIs having coherent informative

GO terms in Figure 4.5.

We can clearly observe that PPIs predicted by the stringent DDI-based approach

have consistently higher percentage of coherent informative CC and BP terms; see

Figure 4.5.

The percentage of PPIs that have coherent informative GO terms may also be

influenced by the number of GO terms that are annotated to the proteins in the PPI
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Conventional DDI-based Approach CC term No. BP term No. MF term No.

All 724185 PPIs 140 880 247
Top 839 PPIs 28 94 34

Stringent DDI-based Approach CC term No. BP term No. MF term No.

All 839 PPIs 116 820 237

Table 4.2: Number of informative GO terms annotated to proteins involved in PPIs
predicted by the stringent and the conventional DDI-based approach. This table sum-
marizes the number of informative GO terms annotated to proteins involved in PPIs
predicted by the stringent and the conventional DDI-based approach.

datasets. So we summarize the number of GO terms that are annotated to proteins in

all 839 PPIs predicted by the stringent DDI-based approach, and proteins in all 724185

PPIs and the top 839 PPIs predicted by the conventional DDI-based approach in Table

4.2.

This table shows that although a high percentage of the PPIs predicted at a high

threshold by the conventional DDI-based approach has coherent informative GO terms,

this may be due the fact that these top 839 PPIs are annotated with very few distinct

GO terms. Even with such a smaller number of informative GO terms we can see

that the percentage of PPIs predicted by the conventional DDI-based approach having

coherent informative GO terms is still consistently lower than the stringent DDI-based

approach; this strongly supports the conclusion that the stringent DDI-based approach

has a much better performance than that of the conventional DDI-based approach in

predicting reliable PPIs.

4.3.5 Cellular compartment distribution of H. sapiens proteins tar-

geted by predicted host–pathogen PPIs.

The cellular compartment distribution of the H. sapiens proteins targeted by the host–

pathogen PPIs predicted by our stringent DDI-based approach is an important indica-

tor of the performance of the prediction approach and the quality of the H. sapiens-M.

tuberculosis H37Rv PPIs predicted. Host cellular compartments related to pathogen
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Figure 4.6: Cellular compartment distribution of H. sapiens proteins targeted by host–
pathogen PPIs predicted by the stringent DDI-based approach. Cellular compartment
distribution of H. sapiens proteins targeted by host–pathogen PPIs predicted by the
stringent DDI-based approach.

infection that could be expected to be involved in PPIs with the pathogen, but not

over-represented in the predicted set. Therefore, if the targeted H. sapiens proteins

are mostly located in cellular compartments having a close relationship with pathogen

infection then the predicted results are more convincing. We identify the informative

CC terms in H. sapiens proteins. Then we calculate the number and percentage of

proteins in the datasets that have been annotated with each of the informative CC

terms. Then we plot the located informative CC terms for the targeted H. sapiens

proteins by the stringent DDI-based approach in Figure 4.6, with detail statistics given

in Table 4.3.

Many of the host–pathogen PPIs predicted by the stringent DDI-based approach

target H. sapiens proteins are located in very relevant cellular compartments. M. tuber-

culosis H37Rv infection has a close relationship with mitochondria activities and func-

tion and induces quantitatively distinct changes in the mitochondrial proteome(Jamwal

et al., 2013). Ultrastructural changes in the mitochondria and mitochondrial clus-
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Cellular Compartment Percentage(%) No. of Proteins

GO:0005759 mitochondrial matrix 40.91% 18
GO:0005730 nucleolus 6.82% 3
GO:0045211 postsynaptic membrane 6.82% 3
GO:0005741 mitochondrial outer membrane 4.55% 2
GO:0016469 proton-transporting two-sector ATPase complex 4.55% 2
GO:0044439 peroxisomal part 4.55% 2
GO:0005813 centrosome 4.55% 2
GO:0031965 nuclear membrane 4.55% 2
GO:0048471 perinuclear region of cytoplasm 4.55% 2
GO:0019861 flagellum 2.27% 1
GO:0016324 apical plasma membrane 2.27% 1
GO:0005925 focal adhesion 2.27% 1
GO:0030027 lamellipodium 2.27% 1
GO:0035770 ribonucleoprotein granule 2.27% 1
GO:0016605 PML body 2.27% 1
GO:0016607 nuclear speck 2.27% 1
GO:0030018 Z disc 2.27% 1

Table 4.3: Cellular compartment distribution of H. sapiens proteins targeted by host–
pathogen PPIs predicted by the stringent DDI-based approach. This table summarizes
cellular compartment distribution of H. sapiens proteins targeted by host–pathogen
PPIs predicted by the stringent DDI-based approach.

tering are also observed in the M. tuberculosis H37Rv infected cells(Jamwal et al.,

2013). The augmentation of mitochondrial activity by M. tuberculosis H37Rv en-

ables manipulation of host cellular mechanisms to inhibit apoptosis and ensure for-

tification against anti-microbial pathways(Jamwal et al., 2013). Therefore mitochon-

drial matrix(GO:0005759), mitochondrial outer membrane(GO:0005741) and proton-

transporting two-sector ATPase complex(GO:0016469), are relevant to M. tuberculosis

H37Rv infection.

H. sapiens proteins located at flagellum (GO:0019861) have much higher chance of

interacting with M. tuberculosis H37Rv during infection as proteins located at flagellum

are the first set of proteins that M. tuberculosis H37Rv comes across before invading

the cell.

The CC term peroxisomal part(GO:0044439) is also strongly related to M. tubercu-

losis infection. It is found that the interaction between the mycobacterial phagosome

and the endoplasmic reticulum leads to proteasome degradation and MHC class I pre-
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sentation of M. tuberculosis antigens.

Focal adhesion(GO:0005925) is also closely interconnected to the M. tuberculosis in-

fection process. In many bacterial pathogens, protein tyrosine phosphatases (PTPases)

are essential for dephosphorylating host focal adhesion proteins and focal adhesion ki-

nase. This dephosphorylation leads to destabilization of focal adhesions involved in the

internalization of bacterial pathogens by eukaryotic cells(Persson et al., 1997; Black

and Bliska, 1997). Therefore the proteins located at “Focal adhesion” compartment

are very important target for M. tuberculosis infection of host. This strongly supports

the validity of the prediction results of our stringent DDI-based approach.

The cellular compartment lamellipodium(GO:0030027) also supports the validity

of our prediction results. It has been reported that host cell’s actin filament network

is interfered by pathogenic species of mycobateria(Guérin and de Chastellier, 2000b,a;

Anes et al., 2003). A more recent study shows that M. tuberculosis affects actin poly-

merisation(Esposito et al., 2011).

The CC term nucleolus(GO:0005730) may also be related to M. tuberculosis in-

fection, as M. tuberculosis infection of human macrophages blocks several responses

to IFN-γ. The inhibitory effect of M. tuberculosis is directed at the transcription of

IFN-γ-responsive genes(Ting et al., 1999). Several studies show that M. tuberculosis

and its purified protein derivative induced HIV LTR primarily through transcriptional

activation(Toossi et al., 1999).

The cellular compartment distribution analysis of the H. sapiens proteins targeted

by host–pathogen PPIs strongly supports the validity of the PPI datasetpredicted by

our stringent DDI-based approach.
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GO terms p-value

GO:0050660 FAD binding 2.27E-11
GO:0016462 pyrophosphatase activity 3.64E-06
GO:0004022 alcohol dehydrogenase (NAD) activity 8.70E-06
GO:0032559 adenyl ribonucleotide binding 9.27E-05
GO:0042626 ATPase activity, coupled to transmembrane movement of substances 6.54E-04
GO:0015405 P-P-bond-hydrolysis-driven transmembrane transporter activity 1.09E-03
GO:0042625 ATPase activity, coupled to transmembrane movement of ions 1.27E-03
GO:0000287 magnesium ion binding 8.04E-03
GO:0004466 long-chain-acyl-CoA dehydrogenase activity 1.28E-02
GO:0003960 NADPH:quinone reductase activity 2.55E-02
GO:0070402 NADPH binding 2.55E-02
GO:0004745 retinol dehydrogenase activity 6.25E-02
GO:0019841 retinol binding 7.45E-02
GO:0042288 MHC class I protein binding 9.81E-02

Table 4.4: Functional enrichment analysis of H. sapiens proteins involved in the host–
pathogen PPI dataset predicted by the stringent DDI-based approach. This table
summarizes the significantly enriched level 5 MF (Molecular Function) GO terms for H.
sapiens proteins involved in the host–pathogen PPI dataset predicted by the stringent
DDI-based approach. The analysis is produced using the DAVID database (threshold
“count > 2, p-value < 0.1”).

4.3.6 Functional enrichment analysis of proteins involved in host–

pathogen PPIs

Functional enrichment analysis points out the possible functional relevance of H. sapi-

ens proteins involved in the H. sapiens-M. tuberculosis H37Rv PPIN predicted by the

stringent DDI-based approaches. The representative result—the most significantly en-

riched level 5 MF GO terms—is given in Table 4.4.

Most of the significantly enriched functional categories are strongly related to M. tu-

berculosis H37Rv infection, including adenyl ribonucleotide binding(GO:0032559), AT-

Pase activity, coupled to transmembrane movement of substances (GO:0042626), P-P-

bond-hydrolysis-driven transmembrane transporter activity(GO:0015405), ATPase ac-

tivity, coupled to transmembrane movement of ions(GO:0042625), long-chain-acyl-CoA

dehydrogenase activity(GO:0004466), NADPH:quinone reductase activity(GO:0003960),

NADPH binding(GO:0070402), retinol dehydrogenase activity(GO:0004745), retinol

binding(GO:0019841), and MHC class I protein binding(GO:0042288).
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As described above, M. tuberculosis H37Rv infection is closely related to the mi-

tochondria. Therefore all those MF terms closely related to mitochondria are rele-

vant to M. tuberculosis H37Rv infection; the relevant GO terms include ATPase ac-

tivity, coupled to transmembrane movement of substances (GO:0042626), P-P-bond-

hydrolysis-driven transmembrane transporter activity(GO:0015405), ATPase activity,

coupled to transmembrane movement of ions(GO:0042625), NADPH:quinone reductase

activity(GO:0003960), NADPH binding(GO:0070402).

MHC class I protein binding(GO:0042288) is a strongly immune-related term which

is also very relevant to M. tuberculosis H37Rv infection. Proteins enriched in this term

play an important role in presenting M. tuberculosis antigens, which is essential for the

immune response to this pathogen.

The long-chain-acyl-CoA dehydrogenase activity(GO:0004466) is a fatty acid-related

term which is very relevant to M. tuberculosis H37Rv infection. Fatty acids and choles-

terol appear to be the favored nutrients for M. tuberculosis inside H. sapiens cells(Lee

et al., 2013). The breakdown of fatty acids and cholesterol can generate propionyl-

CoA, which gives rise to potentially toxic intermediates(Lee et al., 2013). Through the

methylcitrate cycle, the methylmalonyl pathway, or incorporation of the propionyl-CoA

into methyl-branched lipids in the cell wall, M. tuberculosis expands the acetyl-CoA

pool and alleviates the pressure from propionyl-CoA(Lee et al., 2013).

This functional enrichment analysis shows that our stringent DDI-based approach

is accurate and has merits in identifying possible H. sapiens proteins that are involved

in H. sapiens–M. tuberculosis H37Rv PPIs.

4.3.7 Pathway enrichment analysis of proteins involved in host–pathogen

PPIs

Pathway enrichment analysis of the proteins involved in host–pathogen PPIN can pro-

vide rich information on the functional relevance of (both the host and pathogen)
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Pathway names p-value

Metabolic Pathways 4.82E-24
Fatty Acid Metabolism 4.04E-21
Valine, Leucine and Isoleucine Degradation 7.90E-19
Fatty Acid Beta Oxidation 5.00E-11
Glycolysis and Gluconeogenesis 4.84E-10
2-Oxobutanoate Degradation I 8.42E-10
p53 Signaling Pathway 3.86E-09
Ethanol Degradation II (cytosol) 5.92E-09

Table 4.5: Pathway enrichment analyses of H. sapiens proteins involved in the host–
pathogen PPI dataset predicted by the stringent DDI-based approach. This Table
shows the 8 most significantly enriched pathways for H. sapiens proteins involved in
the host–pathogen PPI dataset predicted by our stringent DDI-based approach.

Pathway names p-value

Fatty Acid β oxidation I 6.78E-3
Naphthalene degradation 7.29E-3

Table 4.6: Pathway enrichment analyses of M. tuberculosis H37Rv proteins involved in
the host–pathogen PPI dataset predicted by the stringent DDI-based approach. This
table summarizes the most significantly enriched pathways for M. tuberculosis H37Rv
proteins involved in the host–pathogen PPI dataset predicted by our stringent DDI-
based approach.

proteins involved in the host–pathogen PPIN. The analysis should show that the host

proteins involved in host–pathogen interactions is a set of proteins that have func-

tional correlation to pathways relevant to the pathogen’s infection. Indeed H. sapiens

proteins involved in the H. sapiens-M. tuberculosis H37Rv PPIN predicted by the strin-

gent DDI-based approach are mostly enriched in the pathways are closely relevant to

M. tuberculosis infection; see Table 4.5.

For example, “Fatty Acid Metabolism”, “Fatty Acid Beta Oxidation”, and “Glycol-

ysis and Gluconeogenesis” are closely related to M. tuberculosis infection as fatty acids

are one of the favored nutrients for M. tuberculosis inside H. sapiens cells(Lee et al.,

2013). M. tuberculosis is able to grow on a variety of carbon sources, but mounting

evidence has implicated fatty acids as the major source of carbon and energy for M.

tuberculosis during infection(Marrero et al., 2010).



CHAPTER 4. STRINGENT DDI-BASED PREDICTION 119

Also, M. tuberculosis switches its carbon source from sugars to fatty acids during the

persistent phase of infection(Shi et al., 2010). Consequently, biosynthesis of sugars from

intermediates of the tricarboxylic acid cycle is essential for its growth(Marrero et al.,

2010). So the pathways “Metabolic Pathways”, “Valine, Leucine and Isoleucine Degra-

dation”, “2-Oxobutanoate Degradation I”, and “Ethanol Degradation II (cytosol)”

maybe also be very related to M. tuberculosis infection as they are closely involved

with intermediates of the tricarboxylic acid cycle which is essential for the growth of

M. tuberculosis(Marrero et al., 2010). They may also contribute to the carbon flow of

M. tuberculosis metabolism inside the human cell.

M. tuberculosis H37Rv proteins involved in the H. sapiens-M. tuberculosis H37Rv

PPIN predicted by the stringent DDI-based approach are significantly enriched in the

“Fatty Acid β oxidation I” pathway, see Table 4.6. This strongly supports the validity

of our prediction results. As discussed above, fatty acids are the major source of carbon

and energy for M. tuberculosis during infection(Marrero et al., 2010), and pathways in-

volved with fatty acids metabolism strongly indicate association with the infection state

of M. tuberculosis H37Rv. It is found that when the pathogen’s acyl-coenzyme A syn-

thetase gene is disrupted, infected mice survive significantly longer than those infected

with the wild type, thus suggesting attenuation of the mutated pathogen. In fact the

pathogen never attains the plateau phase of infection in mouse lungs when pathogen’s

acyl-coenzyme A synthetase gene is disrupted(Dunphy et al., 2010). M. tuberculosis

fatty acyl-coenzyme A synthetase gene may serve to recycle mycolic acids for the long-

term survival of the tubercle bacilli(Dunphy et al., 2010). Carbon rerouting is marked

by a switch from metabolic pathways generating energy and biosynthetic precursors in

growing bacilli to pathways for storage compound synthesis during growth arrest(Shi

et al., 2010). This analysis result is in accord with the above cellular compartment

distribution, functional enrichment analysis.

The presence of “Naphthalene Degradation” as a significant pathway is likely an ar-
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tifact due to the sharing of many genes in this pathway with the “Fatty Acid β oxidation

I” pathway. In particular, “naphthalene degradation” contains 40 genes, “Fatty Acid

β oxidation I” contains 39 genes, and around half genes of these two pathways overlap

with each other: 18 genes are mutually contained in both of these pathways. These

shared genes are, Rv1934c, Rv0244c, Rv0972c, Rv3564, Rv3563, Rv3139, Rv2724c,

Rv3274c, Rv3543c, Rv3505, Rv3504, Rv0215c, Rv0752c, Rv3560c, Rv0873, Rv1467c,

Rv1933c, and Rv3544c. More specifically, there are 44 unique M. tuberculosis H37Rv

proteins in the predicted H. sapiens–M. tuberculosis PPIs, 7 of these 44 proteins over-

lap with “Fatty Acid β oxidation I” (Rv2724c, Rv2500c, Rv3274c, Rv0752c, Rv0975c,

Rv0400c, Rv3061c), 3 of these 44 proteins overlap with “naphthalene degradation”

(Rv2724c, Rv3274c, Rv0752c), and all of these 3 proteins overlapping with “naph-

thalene degradation” are included in the 7 proteins overlapping with “Fatty Acid β

oxidation I”.

All the results support the validity of the H. sapiens–M. tuberculosis H37Rv PPIs

predicted by our stringent DDI-based approach. Therefore the prediction results from

our stringent DDI-based approach can serve as a reliable reference of PPIs between H.

sapiens and M. tuberculosis H37Rv.

4.3.8 Analysis of domain properties of proteins involved in host–

pathogen PPIs

We compare two domain properties of both H. sapiens and M. tuberculosis H37Rv

proteins in the predicted H. sapiens–M. tuberculosis H37Rv PPIN and their own intra-

species PPIN. We also conduct a similar analysis on H. sapiens proteins involved in the

gold standard H. sapiens–HIV PPIN(Fu et al., 2009) as a control experiment. Table 4.7

provides summary results from the analysis of H. sapiens and M. tuberculosis H37Rv

proteins.

It is obvious that H. sapiens proteins targeted by the predicted H. sapiens–M. tuber-
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Organism H. sapiens proteins H. sapiens proteins

PPIN Hum-Mtb Hum-Hum Hum-HIV Hum-Hum

Average No. of domains 1.79 1.31 1.42 1.27
P-value 4.40E-5 9.14E-17

Average Domain degrees 17.95 10.22 13.23 9.21
P-value 1.79E-2 1.04E-10

Table 4.7: Protein domain property analysis result. This table summarizes the protein
domain analysis for H. sapiens proteins involved in the host–pathogen PPI dataset
predicted by our stringent DDI-based approach comparing with the proteins involved in
intra-species PPIN. Protein domain property analysis for H. sapiens proteins involved in
gold standard H. sapiens–HIV PPI dataset(Fu et al., 2009) have also been conducted.
In the table there are some abbreviations. Hum-Mtb: in predicted H. sapiens–M.
tuberculosis H37Rv PPIN. Hum-Hum: in H. sapiens intra-species PPIN. Hum-HIV: in
gold standard H. sapiens–HIV PPIN.

culosis H37Rv PPIN show properties very similar to those H. sapiens proteins targeted

by the gold standard H. sapiens–HIV PPIN(Fu et al., 2009). This also supports the

validity of our prediction results to some extent.

Both in the predicted H. sapiens–M. tuberculosis H37Rv PPIN and in the gold

standard H. sapiens–HIV PPIN, H. sapiens proteins tend to have more domains and

those domains tend to have higher degrees than those proteins in the intra-species H.

sapiens PPIN.

The discoveries found by analyzing domain properties may be helpful in illuminating

the basic mechanisms of how the host and pathogen proteins interact with each other,

and may be useful in assessing the predicted host–pathogen PPIN.

4.4 Discussion

4.4.1 Sequence similarity between domain instances in DDI-based

prediction

Comparing with conventional DDI-based approaches, our stringent DDI-based ap-

proach emphasizes the importance of domain instances in inferring interactions from
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template DDIs. While this emphasis on stringent sequence similarity between template

and query domain instances in transferring interaction results in significant improve-

ment on prediction performance, it also draws attention to the large sequence variation

among domain instances which may limit conventional DDI-based approaches.

4.4.2 Pros and cons of DDI-based prediction

The advantages of our stringent DDI-based approach have been discussed above, as

it can predict more accurate PPIs on a small scale. The possible limitation of this

approach is the lack of large-scale high-quality structurally-resolved DDIs. However,

it is reasonable to expect more protein complex structures will be resolved, and the

effectiveness of our stringent DDI-based approach will consequently be significantly

strengthened.

Producing only a small amount of PPIs does not distract us from the merits of

our stringent DDI-based approach, because the small number of highly accurate PPIs

may already be more valuable than a huge amount of PPIs with a substantial fraction

of noise. Highly accurate predicted PPIs, even though small in size, are usually very

welcomed in experimental research, as they are a much more valuable reference for

experimental verification than large datasets with high noise.

Accurate sequence alignment among domain instances are much more computa-

tionally expensive than the conventional DDI-based approach. This may limit the ap-

plication of our stringent DDI-based approach to large-scale prediction of PPIs across

many host–pathogen systems.

4.5 Conclusion

In this Chapter, we have proposed a stringent DDI-based prediction approach based

on high sequence similarity between template domain instances and query domain

instances. The assessment based on gold-standard H. sapiens PPIs and informative
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GO annotation shows that the stringent DDI-based approach performs better than

the conventional DDI-based approach. We have also predicted a small set of accurate

H. sapiens–M. tuberculosis H37Rv PPIs. Through cellular compartment distribution,

functional enrichment, and pathway enrichment analysis, we have demonstrated that

this small set of accurate H. sapiens–M. tuberculosis H37Rv PPIs is valid and closely

corresponds to M. tuberculosis H37Rv infection. This dataset of H. sapiens–M. tu-

berculosis H37Rv PPIs can be used for a variety of related studies as an important

reference.



Chapter 5

Accurate Homology-Based

Prediction

Homologs are a pair of proteins share a same ancestry. Homology-based prediction is

one of the most frequently used computational approaches in predicting both intra-

species and inter-species PPIs. However, some limitations are not properly resolved

in several published works that predict eukaryote-prokaryote inter-species PPIs us-

ing intra-species template PPIs. We develop an accurate homology-based prediction

approach by taking into account (i) differences between eukaryotic and prokaryotic

proteins and (ii) differences between inter-species and intra-species PPI interfaces.

This accurate homology-based prediction approach provides an accurate strategy

in predicting possible PPIs between eukaryotic hosts and prokaryotic pathogens. It

performs better than a conventional homology-based approach in predicting PPIs be-

tween eukaryotic hosts and prokaryotic pathogens. The properties we have observed

from the predicted H. sapiens–M. tuberculosis H37Rv PPI network are also important

for understanding inter-species host–pathogen PPI networks and provide crucial novel

insights for host–pathogen interaction studies.

124
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5.1 Background

Homology-based approaches are the conventional way of predicting both intra-species

and inter-species PPIs, with the assumption that the interaction between a pair of

proteins in one species is likely to be conserved in related species(Matthews et al.,

2001). They are also among the most frequently used methods in predicting host–

pathogen PPIs, either being used alone(Lee et al., 2008; Krishnadev and Srinivasan,

2008; Tyagi et al., 2009; Krishnadev and Srinivasan, 2011) or in combination with other

methods(Wuchty, 2011).

Current homology-based approaches generally transfer intra-species PPIs to predict

host–pathogen PPIs. There are several limitations and concerns that have yet to be

addressed. For example, (i) the protein-protein interaction interfaces between intra-

species PPI and inter-species PPI are not exactly the same(Franzosa and Xia, 2011);

(ii) the differences between prokaryotic and eukaryotic proteins are not considered.

Therefore, the performance of conventional homology-based host–pathogen PPI pre-

diction approaches is rather limited(Lee et al., 2008; Krishnadev and Srinivasan, 2008;

Tyagi et al., 2009; Krishnadev and Srinivasan, 2011). In fact, most of these published

works lack stringent verification, Thus, the accuracy of conventional homology-based

approaches in predicting host–pathogen PPI is largely unknown.

In this Chapter, we develop a novel homology-based approach for predicting the

H. sapiens–M. tuberculosis H37Rv PPIs by specifically transferring the eukaryote-

prokaryote PPIs from an experimental human-bacteria template PPI dataset. More-

over, we adopt a more accurate method in identifying homologs between species by

taking into account of genomic context. This prediction approach specifically addresses

the limitations of the conventional homology-based approaches.

Cellular compartment distribution analysis, disease-related enrichment analysis,

pathway enrichment analysis, and functional category enrichment analysis show that

our predicted H. sapiens–M. tuberculosis H37Rv PPI dataset has good quality. These
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analyses also demonstrate that our accurate homology-based approach have much bet-

ter performance than a conventional homology-based approach. Therefore this accurate

homology-based approach can be used for predicting host–pathogen PPIs in a variety

of different eukaryote-prokaryote host–pathogen systems.

Based on primary sequence analysis and topological analysis of the predicted host–

pathogen protein-protein interaction network (PPIN), we discover some interesting

properties of both pathogen and host proteins participating in host–pathogen PPIs,

including the tendency to be hubs in the intra-species PPIN, tendency to have smaller

average shortest path length, tendency to be more hydrophilic, tendency to have longer

sequences and more domains. Furthermore, the domains in the proteins involved in

host–pathogen PPIN tend to have lower charge and tend to be more hydrophilic in

comparison with other proteins in the intra-species PPIN.

5.2 Methods

Our accurate homology-based approach for predicting host–pathogen (H. sapiens–M.

tuberculosis H37Rv) PPIs specifically transfers eukaryote–prokaryote (human–bacteria)

PPIs from the PATRIC database(Gillespie et al., 2011). Cellular compartment distri-

bution analysis, disease-related enrichment analysis, pathway enrichment analysis, and

functional category enrichment analysis strongly support our prediction results and

show that the predicted PPIs correspond to the M. tuberculosis H37Rv infection pro-

cess.

In a control study, we use a conventional homology-based approach to predict pos-

sible host–pathogen (H. sapiens–M. tuberculosis H37Rv) PPIs. The same distribution

and enrichment analyses are conducted on both results predicted by our accurate ap-

proach and the conventional approach.

The comparison shows that our accurate homology-based approach has better per-

formance in predicting more relevant and meaningful host–pathogen PPI than the
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conventional approach.

We further analyze some of the basic sequence properties of proteins involved in

the host–pathogen PPIN comparing with the counterparts involved in intra-species

PPIN by examining the sequences, domains, hydrophobicity scales, domain interaction

degrees, electronic charge, etc. We also perform topological analysis to illuminate the

intra-species topological properties of both the host and pathogen proteins involved in

the predicted H. sapiens–M. tuberculosis H37Rv PPIN.

5.2.1 Prediction of host–pathogen PPI networks

Conventional homology-based approaches generally transfer intra-species PPIs to pre-

dict host–pathogen PPIs. That is, if a protein X in the host and a protein Y in the

pathogen are respectively homologous to a pair of proteins X’ and Y’ which are known

to interact in a third species, X and Y are predicted to interact.

In contrast, our accurate homology-based approach specifically transfers eukaryote-

prokaryote inter-species PPIs to predict host–pathogen PPIs. Specifically, if a protein

X in a eukaryotic host is known to interact with a protein Y’ in a prokaryote species,

and Y’ is homologous to a protein Y in a prokaryotic pathogen, then we predict X

and Y to interact. Moreover, to more accurately determine homologous proteins with

conserved interactions, we use a homolog matching method that takes genomic context

into consideration.

This accurate homology-based approach takes the followings into account: (i) the

interface between intra- and inter-species PPI are not exactly the same(Franzosa and

Xia, 2011); (ii) the differences between prokaryotic and eukaryotic proteins are also very

obvious (post-transcriptional modifications, structures). Figure 5.1 shows differences

between (a) a conventional homology-based prediction approach and (b) our approach.

For the accurate homology-based approach, we collect from the PATRIC database

(Gillespie et al., 2011) the template eukaryote-prokaryote human-bacteria PPIs and the
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Figure 5.1: Representation of homology-based prediction approach. Representation
of (A) the conventional homology-based prediction approach and (B)the accurate
homology-based prediction approach adopted in this study.
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genome sequences and gene feature files of relevant bacteria strains.

The list of bacteria strains in the PATRIC database (Gillespie et al., 2011) relevant

to our study are Bacillus anthracis str. A2012, Bacillus anthracis str. Ames Ancestor,

Bacillus anthracis str. Ames, Bacillus anthracis str. Sterne, Francisella tularensis

subsp tularensis MA00-2987, Francisella tularensis subsp tularensis SCHU S4, Shigella

flexneri 2a str. 301, Yersinia pestis biovar Microtus str. 91001, Yersinia pestis CO92,

and Yersinia pestis KIM. These 10 major strains of bacteria cover 7120 PPIs in the

PATRIC database, constituting 99% of the total PPIs contained in the database (data

downloaded in April 3, 2012). The dataset collected above (PPIs between human and

10 major bacteria species) are the most abundant source eukaryote-prokaryote inter-

species PPIs.

Our accurate homology-based prediction strategy works like this. If a human pro-

tein A is known to interact with a bacteria protein B in a template PPI (we call this

template PPI a supporting template PPI), and the bacteria protein B has a homolog

B’ identified in M.tuberculosis H37Rv, then we predict that the human protein A and

the M.tuberculosis H37Rv protein B’ also interact with each other.

We count the number of supporting template PPIs as the “interaction strength”

of each predicted H. sapiens-M. tuberculosis H37Rv PPI. This serves as one of the

important parameters for evaluating how likely the predicted PPI is real compared

with the rest of the predicted PPIs.

Using the accurate prediction approach as described above, we have predicted 1005

H. sapiens-M. tuberculosis H37Rv PPIs. We visualize the predicted network using

Cytoscape(Smoot et al., 2011) in Figure 5.2.

We also predict host–pathogen PPIs using a conventional homology-based approach

as a control experiment. Different from the accurate homology-based approach, the

conventional homology-based approach uses template intra-species H. sapiens physi-

cal PPIs collected from three major PPI databases, MINT(Zanzoni et al., 2002), Bi-
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oGRID(Stark et al., 2011), and IntAct(Hermjakob et al., 2004). All together 73251 H.

sapiens physical PPIs are collected(data was downloaded on November 10, 2011). To

predict H. sapiens–M. tuberculosis H37Rv PPIs using the conventional homology-based

approach, we identify homologs between H. sapiens and M. tuberculosis H37Rv, and

then transfer the intra-species H. sapiens PPIs to predict the inter-species H. sapiens–

M. tuberculosis H37Rv PPIs.

The conventional homology-based prediction strategy just use different template

PPIs for the prediction: if a human protein A interacts with a human protein B in a

template PPI, and the human protein B has a homolog B’ identified in M.tuberculosis

H37Rv, then it predicts that the human protein A and the M.tuberculosis H37Rv

protein B’ interact with each other.

Using the conventional homology-based prediction approach as described above, we

have predicted 326 H. sapiens-M. tuberculosis H37Rv PPIs.

To identify the homologs between M.tuberculosis H37Rv and the 10 bacteria (in

our accurate approach) and also the between M.tuberculosis H37Rv and H. sapiens (in

the conventional approach), we use the BBH-LS algorithm which computes positional

homologs using both sequence and gene context similarity(Zhang and Leong, 2012).

BBH-LS is considered to be a more accurate way of identifying homologs than other

approaches which do not consider both the sequence and gene context similarity. The

BBH-LS strength threshold β in this Chapter is set as 0.01.

5.2.2 Cellular compartment distribution of H. sapiens proteins tar-

geted by the predicted host–pathogen PPIs.

The cellular compartment of the H. sapiens proteins targeted by the predicted host–

pathogen PPIs are an important indicator of the quality of predicted PPIs. If the

targeted H. sapiens proteins are located in cellular compartments that are very relevant

to the pathogen’s infection or are very likely to be involved in interactions with the
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pathogen, then the result supports the host–pathogen predictions.

Gene Ontology (Cellular Compartment, CC) is one of the most comprehensive

annotations for human proteins. Thus, we use it in our analysis. However, as the Gene

Ontology is hierarchical, CC terms at the top levels may have more proteins annotated

with them, while terms on lower levels may have less proteins annotate with them.

Therefore, we only use the informative CC terms for our analysis. An informative

CC term is defined here to be a term that has at least 90 proteins annotated to it,

but each of its child terms has less than 90 proteins annotate with it. The cellular

compartment distribution tells how many proteins(and the percentage) in the datasets

that fall into each cellular compartment. We choose the top 10 frequently located

cellular compartments of the H. sapiens proteins that are targeted by the accurate

and the conventional homology-based prediction approaches. The results are shown in

Table 5.1, 5.2 and Figure 5.3, 5.4.

5.2.3 Disease-related enrichment analysis of proteins involved in host–

pathogen PPIs

Currently large-scale high-quality experimental H. sapiens–M. tuberculosis H37Rv PPIs

are not readily available. Therefore a gold standard PPI dataset for assessing the pre-

dicted H. sapiens–M. tuberculosis H37Rv PPIs is not possible at the moment. However,

there are several studies that examine H. sapiens gene expression profiles during M.

tuberculosis H37Rv infection and treatment(Cliff et al., 2013; Chaussabel et al., 2003).

We obtain several H. sapiens gene lists related to M. tuberculosis H37Rv infection

and treatment from the two studies(Cliff et al., 2013; Chaussabel et al., 2003). Chauss-

abel et al. (2003) identified the unique gene expression profiles of human macrophages

and dendritic cells to phylogenetically distinct parasites, including M. tuberculosis

H37Rv. We name this gene list “Macrophages and dendritic differentially expressed

genes”; it contains 1531 differentially expressed H. sapiens genes. In another study,
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Cliff et al. (2013) identifies several lists of blood gene expression profiles through tuber-

culosis treatment in different phases. Genes differentially expressed between diagnosis

and week 1 of treatment are called “Early Changers”, comprising 470 differentially

expressed H. sapiens genes. Genes differentially expressed between week 4 and week

26 of treatment are called “Late Changers”, comprising 327 differentially expressed H.

sapiens genes. Genes which maintained a consistent pattern of change of gene expres-

sion and did not revert are called “Consistent Changers”, comprising 406 differentially

expressed H. sapiens genes.

Monocyte-derived dendritic cells and macrophages generated in vitro from the same

individual blood donors were exposed to pathogens(M. tuberculosis), and gene expres-

sion profiles were assessed by microarray analysis in the work of Chaussabel et al.

(2003). The genes differentially expressed during the exposure of pathogens are con-

sistent with the concept that antigen-presenting cells have specific genes for use in the

response to pathogens like M. tuberculosis(Chaussabel et al., 2003). Therefore the list

of genes differentially expressed when the dendritic cells and macrophages are expose to

M. tuberculosis are the enriched list of gene candidates that may have high possibility

of involving in H. sapiens–M. tuberculosis H37Rv PPIs.

In the work of Cliff et al. (2013), ex vivo blood samples were collected from 27

first-episode pulmonary tuberculosis patients prior to starting standard therapy and

after 1, 2, 4, and 26 weeks of successful treatment. Genome-wide gene expression

profiles were obtained from ex vivo blood samples, the differentially expressed genes

in different phases are called Early Changers, Late Changers and Constant Changers.

The fast initial down-regulation of expression of inflammatory mediators coincided

with rapid killing of actively dividing bacilli, whereas slower delayed changes occurred

as drugs acted on dormant bacilli and coincided with lung pathology resolution(Cliff

et al., 2013). As the drugs are working on killing the bacilli (M. tuberculosis), the

differentially expressed genes at different phases correspond to the response to different
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groups of M. tuberculosis(actively dividing bacilli, dormant bacilli, etc.).

These disease gene lists have also been used in assessments of predicted host–

pathogen PPIs in other studies(Davis et al., 2007). These lists of differentially ex-

pressed genes form our reference disease-related gene lists. We conduct, against these

disease-related gene lists, the enrichment(over-representation) analysis of the H. sapiens

proteins involved in H. sapiens–M. tuberculosis H37Rv PPIs predicted by our accurate

homology-based approach and by the conventional homology-based approach. The en-

richment analysis uses hypergeometric test. The results are given in Table 5.3, Table

5.4.

5.2.4 Functional enrichment analysis of proteins involved in host–

pathogen PPIs

Functional enrichment analysis is very important for identifying the functional relevance

of the proteins involved in the host–pathogen PPIs. The presence of enriched(over-

represented) functional categories that are closely related to pathogen infection, im-

mune response, etc. serves as an important support for the validity of the prediction

results.

The Gene Ontology (Molecular Function, MF) is one of the most comprehensive

functional categories annotation. Therefore we conduct MF term enrichment analysis

on the H. sapiens proteins involved in the predicted H. sapiens-M. tuberculosis H37Rv

PPIs.

In this Chapter, we use the DAVID database(Dennis Jr et al., 2003) for the GO term

enrichment analysis on the H. sapiens proteins involved in host–pathogen PPIs pre-

dicted by our accurate homology-based approach and the conventional homology-based

approach. Representative results (significantly enriched level 5 MF terms, threshold

“count > 2, p-value < 0.01”) are shown in Table 5.5 and 5.6 (threshold “count > 2,

p-value < 0.01”).
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DAVID does not support the functional enrichment analysis of M. tuberculosis

H37Rv proteins. Moreover, as we have found in Chapter 5, most of the GO annotations

for M. tuberculosis H37Rv are not specific enough to provide effective functional en-

richment analysis. Therefore the functional analysis of M. tuberculosis H37Rv proteins

is not discussed in this Chapter.

5.2.5 Pathway enrichment analysis of proteins involved in host–pathogen

PPIs

Pathway data are a primary functional source for identifying a list of proteins’ related

functions. Usually for a set of proteins, if they are significantly enriched in certain

pathways, it is very likely that this set of proteins play similar roles in vivo. There-

fore pathway enrichment analysis is one of the most frequently used assessments on

predicted host–pathogen PPIs.

For pathway enrichment analysis, we use the IntPath database(Zhou et al., 2012),

which is currently one of the most comprehensive integrated pathway databases. The

“Identify Pathways” function in IntPath can specifically identify the pathway enrich-

ment of an input gene list. The “Identify Pathways” function in IntPath adopts the

hypergeometric test to identify the input gene list’s over-representation(enrichment) in

the pathways. For each H. sapiens protein set (predicted by the accurate and the con-

ventional homology-based approaches), we analyze the H. sapiens proteins’ pathway

enrichment using the IntPath database(Zhou et al., 2012), and the top 20 most signif-

icantly enriched pathways are listed in the Table 5.7 and 5.8. The enrichment analysis

results summarized in the Table 5.7 and Table 5.8 provide an important evidence on

which of the two approaches can predict more H. sapiens–M. tuberculosis H37Rv PPIs

that are more relevant to M. tuberculosis H37Rv infection.

Besides comparing the quality of the two host–pathogen PPI datasets predicted by

the two approaches based on pathway enrichment, we also analyze the pathway enrich-
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ments for the M. tuberculosis H37Rv proteins. It is enabled by IntPath(Zhou et al.,

2012), which supports pathway analysis for the important pathogens. The pathway

analysis on the M. tuberculosis H37Rv proteins are not used to assess the performance

of the two homology-based approaches—this is the first work to analyze the pathway

enrichment of the pathogen proteins, so we have no base line to compare with. The

results of pathway enrichment analysis on the M. tuberculosis H37Rv proteins involved

in H. sapiens–M. tuberculosis H37Rv PPIs predicted by the accurate homology-based

approach are listed in Table 5.9.

5.2.6 Analysis of sequence properties of proteins involved in host–

pathogen PPIs

The analysis of primary protein sequence properties considers protein sequence length,

number of domains, degrees of domains on proteins, length of domains on proteins,

hydrophobicity, electron charge, etc. The protein sequence properties directly reflect

differences between the proteins involved in inter-species host–pathogen PPIN and

intra-species PPIN. We analyze the sequence properties of both M. tuberculosis H37Rv

and H. sapiens involved in the predicted host–pathogen PPIs, and comparing them

with other proteins in their own intra-species PPIN.

The annotation of both M. tuberculosis H37Rv and H. sapiens protein domains

is accomplished using HMMER-V3.0(Eddy, 2011). The domain profiles used in the

protein domain annotation are Pfam-A(Bateman et al., 2004). The threshold for the

domain annotation is E-value(iE-value) ≤ E−20 and accuracy ≥ 0.9. For each domain

annotated on each protein, we retrieve the sequences of the domains on every protein

for the following analyses.

Hydrophobicity of the proteins and domains are assessed based on the Kyte-Doolittle

hydrophobicity scale. Kyte-Doolittle is a widely applied scale for delineating hydropho-

bic character of a protein. Regions with values above 0 are hydrophobic. We scan the
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sequences of the proteins and domains and calculate the average hydrophobicity scale

of each protein and each domain(sum the hydrophobicity scale of each amino acid and

then divide the length of the protein/domain).

For the domain degree analysis, we obtain the DDI(Domain-Domain Interaction)

data from the DOMINE database. DDIs “inferred from PDB entries” and “high

confidence predictions” in the DOMINE database are considered in this study, while

“medium confidence predictions” and “low confidence predictions” are discarded. For

each domain, we count the number of interaction partners in the DOMINE database(only

“inferred from PDB entries” and “high confidence predictions”) as the degree of that

domain.

The protein/domain net charge is calculated in the following ways: only three

amino acids (Arginine, Histidine, Lysine) are positively charged (assigned value +1),

two amino acids (Aspartic Acid, Glutamic Acid) are negatively charged (assigned value

-1), the rest amino acid are neutral(assigned value 0). The average charge of each

protein/domain is calculated by scanning the protein/domain sequence and take the

average value of each protein/domain (sum the charge value divide the length of the

protein/domain).

We analyze the above protein sequence properties and summarize the results in

Table 5.10. We conduct a similar analysis on the domains, and the results are shown

in Table 5.11.

5.2.7 Analysis of intra-species PPIN topological properties in host–

pathogen PPIs

Intra-species PPIN topological properties was first examined and reported by Calder-

wood et al. (2007) and then repeatedly confirmed by others(Zhou et al., 2013). In this

Chapter, we also conduct a similar study on the targeted H. sapiens proteins by exam-

ining the number of interaction partners in the intra-species PPIN. Previous analyses
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are mainly constrained on the H. sapiens proteins as the H. sapiens PPIN is available,

while most of the pathogen’s intra-species PPIs are not available. Due to the work of

Zhou and Wong (2011) on M. tuberculosis H37Rv intra-species PPIN, a high quality

M. tuberculosis H37Rv PPI dataset is now available. Therefore this work is the first-

ever study that examines the intra-species PPIN topological properties of the pathogen

proteins involved in host–pathogen PPIs.

We mainly consider three important topological properties, Degree(the number of

interaction partners in the intra-species PPIN), Betweenness Centrality(a measure of a

node’s centrality in a network, equal to the number of shortest paths from all vertices

to all others that pass through that node in the intra-species PPIN), Shortest Path

Length(average number of steps along the shortest paths for all possible pairs of network

nodes, it measures the efficiency of information transport on a network). All these

topological properties are calculated using Cytoscape’s(Smoot et al., 2011) Analyze

Network Plugin.

In this Chapter, H. sapiens intra-species PPIs are collected mainly from three

databases, MINT(Zanzoni et al., 2002), BioGRID(Stark et al., 2011), and IntAct(Hermjakob

et al., 2004). M. tuberculosis H37Rv PPIs are collected from STRING (with score above

770)(Szklarczyk et al., 2011) and the B2H PPI dataset(four small subsets of reliable

PPIs)(Zhou and Wong, 2011). The results are shown in Table 5.12.

5.2.8 Software Packages and Datasets

The software packages and database tools used in this study are:

• IntPath(Zhou et al., 2012)

• BBH-LS(Zhang and Leong, 2012)

• Cytoscape(Smoot et al., 2011)

• HMMER-V3.0(Eddy, 2011)
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• DAVID(Dennis Jr et al., 2003)

The datasets used in this study are:

• M. tuberculosis H37Rv PPI dataset consisting of four reliable subsets of the B2H

PPI dataset and STRING PPI dataset(threshold at 770)(Zhou and Wong, 2011).

• H. sapiens PPI dataset collected from MINT(Zanzoni et al., 2002), BioGRID(Stark

et al., 2011), and IntAct(Hermjakob et al., 2004), date of download is November

10, 2011.

• host–pathogen PPI data from PATRIC(Gillespie et al., 2011), date of download

is April 3, 2012.

• 10 bacteria gene feature files, and whole genome fasta files are from PATRIC(Gillespie

et al., 2011), date of download is April 3rd, 2012.

• DDI data from DOMINE database V2.0(Yellaboina et al., 2011).

• Pfam-A Domain profiles.(Bateman et al., 2004)

• H. sapiens–HIV-1 PPI dataset downloaded from “HIV-1, human protein interac-

tion database at NCBI”(Fu et al., 2009).

5.3 Results

5.3.1 Prediction of host–pathogen PPI network

For our accurate homology-based approach, the most abundant template eukaryote-

prokaryote inter-species PPIs are between human and 10 major bacteria species (7120

PPIs), therefore when predicting the H. sapiens–M. tuberculosis H37Rv PPIs we only

need to identify the prokaryotic homologs between template and targeted species in
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this situation. We identify, using BBH-LS (strength threshold β ≥ 0.01), the homologs

between M.tuberculosis H37Rv and the 10 bacteria from the PATRIC database. Here

in this Chapter we use the “interaction strength”(the number of supporting template

PPIs) as one of the parameters to evaluate how likely a predicted PPI is real, compared

to the other predicted PPIs. For example, if there are 3 template human-bacteria

PPIs transferring to the same H. sapiens–M. tuberculosis H37Rv PPI, then the PPI’s

interaction strength is “3”. A total of 1005 H. sapiens–M. tuberculosis H37Rv PPIs are

transferred from 7120 eukaryote-prokaryote (human-pathogen) PPIs. A visualization

of the H. sapiens-M. tuberculosis H37Rv PPIN are shown in Figure 5.2. The blue dots

are M. tuberculosis H37Rv proteins, while the orange dots are H. sapiens proteins. The

“thickness” of an edge corresponds to the “interaction strength” of each predicted H.

sapiens–M. tuberculosis H37Rv PPI. The predicted H. sapiens–M. tuberculosis H37Rv

PPI dataset can be found in the additional file A.3.

For the conventional homology-based approach we obtain 73251 template PPIs

from MINT, BioGRID and IntAct. We identify the homologs between human and

M.tuberculosis to transfer PPIs in the prediction. Using BBH-LS (strength threshold

β ≥ 0.01), we identify 355 homologs between M.tuberculosis H37Rv and H. sapiens.

Using these 355 homologs, we predict 326 H. sapiens–M. tuberculosis H37Rv PPIs from

the 73251 eukaryote-eukaryote (human-human) intra-species PPIs.

The number of templates we start from and the number of predicted PPIs are

surprisingly different between the accurate homology-based approach and the conven-

tional homology-based approach. Using the same system and threshold in identifying

homologs and then transferring a template PPI to predict a target host–pathogen PPI,

in the accurate homology-based approach, 1005 inter-species PPIs are predicted from

7120 template PPIs; while in the conventional homology-based approach, only 326

inter-species PPIs are predicted from 73251 template PPIs. This result shows that our

accurate homology-based approach are more efficient in using the template PPIs than
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Figure 5.2: Visualization of the predicted H. sapiens–M. tuberculosis H37Rv PPI net-
work. The blue dots are M. tuberculosis H37Rv proteins, while the orange dots are H.
sapiens proteins. The “thickness” of an edge corresponds to the “interaction strength”
of the predicted H. sapiens–M. tuberculosis H37Rv PPI, the thicker the edge the larger
of the “interaction strength”.
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the conventional homology-based approach in predicting prokaryote-eukaryote inter-

species PPIs. This highlights the merits of our accurate homology-based approach in

applying to many host–pathogen systems.

5.3.2 Cellular compartment distribution of H. sapiens proteins tar-

geted by predicted host–pathogen PPIs.

The cellular compartment of the H. sapiens proteins targeted by the predicted host–

pathogen PPIs can provide important clues about the quality of the H. sapiens-M.

tuberculosis H37Rv PPIs predicted. Host cellular compartments related to pathogen

infection that could be expected to be involved in PPIs with the pathogen, but not

over-represented in the predicted set. Therefore, if the targeted H. sapiens proteins

are mostly located in cellular compartments having a close relationship with pathogen

infection or known interactions with host cells, then the predicted results are solid.

We identify the informative CC terms of the H. sapiens proteins. Then we calculate

the number and percentage of proteins in the datasets that have been annotated with

each of the informative CC terms. Then we plot the top 10 most frequently located

informative CC terms for the targeted H. sapiens proteins by the accurate and the

conventional homology-based approach in Figure 5.3 and 5.4. We also summarize the

statistics into Table 5.1 and 5.2.

Many of the host–pathogen PPIs predicted by the accurate homology-based ap-

proach target H. sapiens proteins locate in very relevant cellular compartments. This

corresponds to the pathogen’s infection and invasion of host cells. Among the top

ten most frequent cellular compartment (GO) terms, four of them are closely rel-

evant to the M. tuberculosis H37Rv infection. Those four terms are: extracellu-

lar space(GO:0005615), transcription factor complex(GO:0005667), proteasome com-

plex(GO:0000502), external side of plasma membrane(GO:0009897).

H. sapiens proteins locate at extracellular space (GO:0005615) and extracellu-
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Cellular Compartment Percentage(%) No. of Proteins

GO:0048471 perinuclear region of cytoplasm 12.2 44
GO:0005730 nucleolus 7.50 27
GO:0005615 extracellular space 5.56 20
GO:0016607 nuclear speck 5.28 19
GO:0005813 centrosome 3.89 14
GO:0031965 nuclear membrane 2.78 10
GO:0005667 transcription factor complex 2.78 10
GO:0000502 proteasome complex 2.50 9
GO:0042470 melanosome 2.50 9
GO:0009897 external side of plasma membrane 2.22 8

Table 5.1: Cellular compartment distribution of H. sapiens proteins targeted by the
predicted host–pathogen PPIs. This table summarizes top 10 most frequent cellular
compartments where the H. sapiens proteins(targeted by the accurate homology-based
approach predicted host–pathogen PPIs) likely to be located in.

Cellular Compartment Percentage(%) No. of Proteins

GO:0048471 perinuclear region of cytoplasm 11.9 14
GO:0043025 neuronal cell body 5.93 7
GO:0005730 nucleolus 5.08 6
GO:0005759 mitochondrial matrix 5.08 6
GO:0016585 chromatin remodeling complex 4.24 5
GO:0005813 centrosome 3.39 4
GO:0005667 transcription factor complex 3.39 4
GO:0031965 nuclear membrane 3.39 4
GO:0017053 transcriptional repressor complex 2.54 3
GO:0005741 mitochondrial outer membrane 2.54 3

Table 5.2: Cellular compartment distribution of H. sapiens proteins targeted by the
predicted host–pathogen PPIs. This table summarizes top 10 most frequent cellular
compartments where the H. sapiens proteins(targeted by the conventional homology-
based approach predicted host–pathogen PPIs) likely to be located in.
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Figure 5.3: Cellular compartment distribution of H. sapiens proteins targeted by the ac-
curate homology-based approach predicted host–pathogen PPIs. Cellular compartment
distribution of H. sapiens proteins targeted by the accurate homology-based approach
predicted host–pathogen PPIs(Top 10 cellular compartments).

Figure 5.4: Cellular compartment distribution of H. sapiens proteins targeted by pre-
dicted host–pathogen PPIs(Top 10 Cellular Compartments).
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lar space membrane (GO:0009897) have a much higher chance to interact with the

pathogen M. tuberculosis H37Rv, because invasive bacteria pathogens are more likely

to interact with the receptors, outer membrane proteins located on these two cellular

compartments. The CC term, transcription factor complex(GO:0005667), is also rele-

vant to M. tuberculosis infection, as M. tuberculosis has close interplay with H. sapiens

cells on the transcription process.

For example, M. tuberculosis infection of human macrophages blocks several re-

sponses to IFN-γ. The inhibitory effect of M. tuberculosis is directed at the transcrip-

tion of IFN-γ-responsive genes(Ting et al., 1999). There is a marked decrease in IFN-γ

induced association of STAT1 with the transcriptional coactivators CREB-binding pro-

tein and p300 in M. tuberculosis-infected macrophages, indicating that M. tuberculosis

directly or indirectly disrupts this protein-protein interaction that is essential for tran-

scriptional responses to IFN-γ(Ting et al., 1999).

Several studies show that infection with M. tuberculosis increases the replication of

HIV in mononuclear cells(Toossi et al., 1999). It turns out that M. tuberculosis and

its purified protein derivative induced HIV LTR(Toossi et al., 1999). And the effect of

M. tuberculosis and its purified protein derivative on HIV replication in monocytes is

primarily one of transcriptional activation(Toossi et al., 1999). The CC term protea-

some complex(GO:0000502), is also strongly related to M. tuberculosis infection. It is

found that the interaction between the mycobacterial phagosome and the endoplasmic

reticulum lead to proteasome degradation and MHC class I presentation of M. tuber-

culosis antigens. Thus, the results shown in Table 5.1 strongly supports the validity of

our prediction results using the accurate homology-based prediction approach.

In contrast, there are three relevant CC terms out of the top ten most frequent cel-

lular compartments where the conventional homology-based approach predicted host–

pathogen PPIs targeted H. sapiens proteins locate at. These terms are: transcription

factor complex (GO:0005667), mitochondrial matrix(GO:0005759), mitochondrial outer
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membrane(GO:0005741); see Table 5.2.

M. tuberculosis H37Rv infection has a close relationship with mitochondria activities

and function and was shown to induce quantitatively distinct changes in the mitochon-

drial proteome(Jamwal et al., 2013); therefore mitochondrial matrix(GO:0005759) and

mitochondrial outer membrane(GO:0005741) are relevant to M. tuberculosis H37Rv in-

fection. It is found that mitochondria in M. tuberculosis H37Rv-infected cells displayed

robust activity with increased membrane potential and ATP synthesis(Jamwal et al.,

2013). Ultrastructural changes in the mitochondria and mitochondrial clustering are

also observed in the M. tuberculosis H37Rv infected cells(Jamwal et al., 2013). The

augmentation of mitochondrial activity by M. tuberculosis H37Rv enables manipula-

tion of host cellular mechanisms to inhibit apoptosis and ensure fortification against

anti-microbial pathways(Jamwal et al., 2013).

From the results we can tell that the accurate homology-based approach has a

better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs than the con-

ventional homology-based approach.

5.3.3 Disease-related enrichment analysis of proteins involved in host–

pathogen PPIs

The disease-related enrichment analysis results of H. sapiens proteins in H. sapiens–

M. tuberculosis H37Rv PPIs predicted by the accurate homology-based approach show

significant enrichment in all the gene lists, as summarized in Table 5.3. The signifi-

cant enrichment of H. sapiens proteins involved in host–pathogen PPIs in “early, late,

consistent changers” gene lists(Cliff et al., 2013) and also in “Macrophages and den-

dritic differentially expressed genes”(Chaussabel et al., 2003) is further evidence that

H. sapiens-M. tuberculosis H37Rv PPIs predicted by our accurate homology-based ap-

proach are valid and very relevant to the infection process of M. tuberculosis H37Rv.

In contrast, the results from the conventional homology-based approach show much



CHAPTER 5. ACCURATE HOMOLOGY-BASED PREDICTION 146

Gene List Overlap p-value

Early Changers 32 1.022E-10
Late Changers 31 3.785E-14
Consistent Changers 35 1.500E-14
Early and Late Changers 56 6.996E-21
Early and Consistent Changers 49 3.721E-18
Consistent and Late Changers 42 1.499E-16
Macrophages and dendritic differentially expressed genes 107 2.097E-34

Table 5.3: Disease-related enrichment analysis of H. sapiens proteins involved in accu-
rate homology-based approach predicted host–pathogen PPIs. This table summarizes
H. sapiens proteins’ (involved in the accurate homology-based approach predicted host–
pathogen PPIs) enrichment (over-representation) in M. tuberculosis H37Rv infection
and treatment-related differentially expressed gene lists.

less significant enrichment than the results from the accurate homology-based approach;

see Table 5.4. This comparison clearly shows that our accurate homology-based ap-

proach has much better performance than the conventional homology-based approach.

The enrichment in disease-related genes observed above is perhaps not surprising.

The template prokaryote-eukaryote PPIs from the source database used in this Chap-

ter are mainly human-bacteria PPIs. Therefore, this may be a caveat. Unfortunately,

due to the limited availability of non-pathogenic bacteria (i.e., commensals and pro-

biotics) PPIs with human, we cannot overcome this problem by identifying a more

neutral/unbiased source. This will be a good point to re-analyze when we have enough

source templates from human-commensal and human-probiotic PPIs.

5.3.4 Functional enrichment analysis of proteins involved in host–

pathogen PPIs

Functional enrichment analysis points out the possible functional relevance of H. sapi-

ens proteins involved in the H. sapiens-M. tuberculosis H37Rv PPIN predicted by both

the accurate and the conventional homology-based approaches. The representative

result—the most significantly enriched level 5 MF GO terms—are listed in Table 5.5

and 5.6.
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Gene List Overlap p-value

Early Changers 6 3.08E-02
Late Changers 6 6.11E-03
Consistent Changers 8 1.04E-03
Early and Late Changers 10 2.94E-03
Early and Consistent Changers 9 4.30E-03
Consistent and Late Changers 9 1.07E-03
Macrophages and dendritic differentially expressed genes 35 5.23E-14

Table 5.4: Disease-related enrichment analysis of H. sapiens proteins involved in con-
ventional homology-based approach predicted host–pathogen PPIs. This table summa-
rizes H. sapiens proteins’ (involved in the conventional homology-based approach pre-
dicted host–pathogen PPIs) enrichment (over-representation) in M. tuberculosis H37Rv
infection and treatment-related differentially expressed gene lists.

GO terms p-value

GO:0051015 actin filament binding 6.12E-5
GO:0010843 promoter binding 5.76E-4
GO:0003713 transcription coactivator activity 7.18E-4
GO:0019901 protein kinase binding 3.63E-3
GO:0035257 nuclear hormone receptor binding 4.92E-3
GO:0070003 threonine-type peptidase activity 8.83E-3

Table 5.5: GO term enrichment analyses of H. sapiens proteins involved in the accurate
homology-based approach predicted host–pathogen PPI dataset. It summarizes the
most significantly enriched level 5 MF (Molecular Function) GO terms for H. sapiens
proteins involved in the accurate homology-based approach predicted host–pathogen
PPI dataset using DAVID database (threshold “count > 2, p-value < 0.01”).

GO terms p-value

GO:0003690 double-stranded DNA binding 8.11E-8
GO:0032559 adenyl ribonucleotide binding 1.54E-5
GO:0004672 protein kinase activity 2.50E-5
GO:0010843 promoter binding 1.08E-3
GO:0019901 protein kinase binding 4.13E-3
GO:0005031 tumor necrosis factor receptor activity 4.98E-3

Table 5.6: GO term enrichment analyses of H. sapiens proteins involved in the con-
ventional homology-based approach predicted host–pathogen PPI dataset. It summa-
rizes the most significantly enriched level 5 MF (Molecular Function) GO terms for
H. sapiens proteins involved in the conventional homology-based approach predicted
host–pathogen PPI dataset using DAVID database (threshold “count > 2, p-value
< 0.01”).
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From the enrichment analysis results of the H. sapiens proteins targeted by the

accurate homology-based approach predicted PPIs, shown in Table 5.5, five out of six

significantly enriched terms are strongly M. tuberculosis H37Rv infection related func-

tional categories, including “GO:0051015 actin filament binding”, “GO:0010843 pro-

moter binding”, “GO:0003713 transcription coactivator activity”, “GO:0019901 protein

kinase binding”, “GO:0035257 nuclear hormone receptor binding”.

During vesicular fusion, the movement of endosomes and lysosomes are guided by

the actin molecules associated with them. The fusion of endosomes with lysosomes is

seriously affected by the disruption of actin filaments. And it has been reported that

host cell’s actin filament network are found to be interfered by pathogenic species of

mycobateria(Guérin and de Chastellier, 2000b,a; Anes et al., 2003). A more recent

study shows that M. tuberculosis affects actin polymerisation(Esposito et al., 2011).

Therefore the functional enrichment analysis strongly supports the validity of the pre-

diction results from our accurate homology-based approach, as the most enriched MF

term shown in Table 5.5 is “actin filament binding”(GO:0051015). The significant

enrichment of the terms “promoter binding(GO:0010843)”,“transcription coactivator

activity(GO:0003713)” are closely related to M. tuberculosis infection, which also sup-

ports the validity of the prediction results by our accurate homology-based approach.

As discussed above, M. tuberculosis infection of human macrophages has inhibitory

effect on transcription of IFN-γ-responsive genes(Ting et al., 1999). It directly or

indirectly influences transcriptional responses to IFN-γ(Ting et al., 1999). And M.

tuberculosis increases the replication of HIV in mononuclear cells(Toossi et al., 1999).

The effect of M. tuberculosis and its purified protein derivative on HIV replication in

monocytes is primarily one of transcriptional activation(Toossi et al., 1999).

Bacterial pathogens have many ways to target one of the most ubiquitous signal-

ing mechanisms of all eukaryotic host: phosphorylation by protein kinases(Krachler

et al., 2011). MAPKs are evolutionarily conserved kinases that are important in cel-
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lular signal transduction(Koul et al., 2004). There are three main families of MAPKs:

(i)the c-Jun N-terminal kinases; (ii)the extracellular signal-related kinases; (iii)the p38

MAPK(Koul et al., 2004). Many bacterial pathogens (including M. tuberculosis) mod-

ify MAPK signalling to promote their survival in the host cells(Koul et al., 2004). By

usurping p38 to interfere with CD1 surface expression, mycobacteria disrupt MAPK

signaling pathways which play a crucial role in immune modulation(Gagliardi et al.,

2009; Krachler et al., 2011). And p38 is exactly predicted to be targeted by M. tubercu-

losis H37Rv by our accurate homology-based approach. Therefore it is very reasonable

and meaningful for the targeted host proteins to have significant functional enrichment

in the term “GO:0019901 protein kinase binding”. M. tuberculosis and its components

are strong inducers of cytokines, such as tumour necrosis factor-alpha (TNF-α) and

IL-1β(Valone et al., 1988; Wallis et al., 1986)

Many nuclear hormone receptors are shown to play a role in the repression of in-

flammatory mediators and they are also capable of modulating innate immunity in a

positive manner(Chow et al., 2007). Liu et al. (2006) demonstrated, through the up-

regulation of VDR and vitamin D-1-hydroxylase genes, that TLRs adopt VDR antimi-

crobial activity in response to M. tuberculosis infection(Chow et al., 2007). Therefore

the evidence is clear that, through positive and negative regulatory mechanisms, nu-

clear hormone receptors regulate innate immune responses to bacteria infections(Chow

et al., 2007). This makes sense as this functional category of H. sapiens proteins are

likely to be targeted by M. tuberculosis H37Rv proteins during infection.

In contrast, in the enrichment analysis results of H. sapiens proteins targeted by

the conventional homology-based approach predicted PPIs, shown in Table 5.6, only

four out of six significantly enriched terms are strongly M. tuberculosis H37Rv in-

fection related functional categories, including “GO:0004672 protein kinase activity”,

“GO:0010843 promoter binding”, “GO:0005031 tumor necrosis factor receptor activ-

ity”, “GO:0019901 protein kinase binding”.
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This functional enrichment analysis shows that our accurate homology-based ap-

proach is accurate and has merits in identifying possible H. sapiens proteins that are

involved in H. sapiens–M. tuberculosis H37Rv PPIs.

5.3.5 Pathway enrichment analysis of proteins involved in host–pathogen

PPIs

Pathway enrichment analysis of the proteins involved in host–pathogen PPIN can tell

a lot about the functional relevance of (both the host and pathogen) proteins involved

in the host–pathogen PPIN. Therefore, pathway enrichment analysis has been used

frequently in assessing host–pathogen PPI prediction results. The assessment stems

from the basis that the host proteins involved in host–pathogen interactions should be

a set of proteins that have functional correlation to pathways relevant to the pathogen’s

infection. So we also conduct pathway enrichment analysis to assess the quality of

our prediction results and the performance of both the accurate and the conventional

homology-based prediction approaches.

For H. sapiens proteins involved in the H. sapiens-M. tuberculosis H37Rv PPIN

predicted by the accurate homology-based approach, they are mostly enriched in the

pathways that are closely relevant to M. tuberculosis infection. Among the top 20 most

significantly enriched pathways, 13 are closely relevant to M. tuberculosis infection;

see Table 5.7. For example, “Amoebiasis”, “Measles”, “Tuberculosis”, “Antigen pro-

cessing and presentation”, “Viral myocarditis”, “Leishmaniasis”, and “T cell receptor

signaling pathway” are strongly infectious disease related and immune response related

pathways which are obviously very relevant to M. tuberculosis infection. Moreover, our

accurate homology-based approach predicted H. sapiens protein targets that are signif-

icantly enriched in the “Tuberculosis” pathway, which is a strong evidence supporting

our prediction approach. “Focal adhesion”, “Spliceosome”, “Proteasome”, “MAPK

signaling pathway”, and “Endocytosis” are essential pathways closely interconnected
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to the “Tuberculosis” pathway. These essential pathways play crucial roles in the M.

tuberculosis infection process and in the immune response to the infection.

The “Focal adhesion” pathway is closely interconnected to the M. tuberculosis in-

fection process. In many bacterial pathogens, protein tyrosine phosphatases (PTPases)

have been demonstrated to be essential for dephosphorylating host focal adhesion pro-

teins and focal adhesion kinase. This dephosphorylation leads to destabilization of focal

adhesions which are involved in the internalization of bacterial pathogens by eukaryotic

cells(Persson et al., 1997; Black and Bliska, 1997). There are two functional PTPases

in M. tuberculosis(Koul et al., 2000). A very interesting fact is that the M. tuberculosis

genome lacks tyrosine kinases; so the existence of these two secretory tyrosine phos-

phatases (PTPases) shows that they are very likely involved in the dephosphorylation

of host proteins. A study shows that, when the mptpB gene is deleted from M. tubercu-

losis, the mutant strain is attenuated in the lung and spleen of infected animals(Singh

et al., 2003). Therefore the “Focal adhesion” pathway is a very important target for M.

tuberculosis infection of host. The significant enrichment of this pathway strongly sup-

ports the validity of the prediction results of our accurate homology-based approach,

as shown in Table 5.7.

The invasion of M. tuberculosis to the host cell is closely facilitated by endocytosis,

which is one of early steps for the pathogen to interact with proteins inside the host

cell.

Proteasome is also strongly related to M. tuberculosis infection. It is found that the

interaction between the mycobacterial phagosome and the endoplasmic reticulum leads

to proteasome degradation and MHC class I presentation of M. tuberculosis antigens.

MAPKs are evolutionarily conserved kinases that are important in cellular signal

transduction(Koul et al., 2004). Many bacterial pathogens (including M. tuberculosis)

modify MAPK signalling to promote their survival in the host cells(Koul et al., 2004).

From the biological aspect, the H. sapiens proteins involved in the H. sapiens-
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M. tuberculosis H37Rv PPIs(predicted by the accurate homology-based approach) are

highly likely to be involved in the above enriched pathways. This pathway enrichment

analysis suggests that our accurate homology-based prediction accurately identifies H.

sapiens proteins that are likely to be targeted by M. tuberculosis H37Rv.

In contrast, the pathway enrichment analysis of H. sapiens proteins involved in the

H. sapiens-M. tuberculosis H37Rv PPIN predicted by the conventional homology-based

approach shows that the conventional homology-based approach does not have the same

good performance as the accurate homology-based approach. Among the top 20 most

significantly enriched pathways, only 9 are closely relevant to M. tuberculosis infection;

see Table 4(b). For example, “Hepatitis C”, “Shigellosis”, “T cell receptor signaling

pathway”, “EBV LMP1 signaling”, and “Chagas disease (American trypanosomiasis)”

are infectious disease related and immune response related pathways relevant to M.

tuberculosis infection. “Endocytosis”, “MAPK signaling pathway”, “Apoptosis”, and

“Proteasome” are essential pathways also considered as related pathways.

This comparative analysis shows both homology-based approaches can predict the

H. sapiens-M. tuberculosis H37Rv PPIN and pathway enrichment analysis supports

both prediction results. However, the accurate homology-based approach has better

performance than the conventional homology-based approach.

Among the most significantly enriched pathways, our accurate homology-based ap-

proach recovers the “Tuberculosis” pathway. We use the KEGG pathway map(Ogata

et al., 1999) to visualize the H. sapiens proteins that have been targeted in our predic-

tion results(in pink color) and all rest of the proteins participating in the pathway(in

green color). The pathway map is shown in Figure 5.5.

Some cancer-related pathways are also present in the list of most enriched path-

ways. The presence of cancer pathways may or may not be regarded as artifacts of the

pathway analysis. On one hand, cancers share lots of similarity with pathogen infec-

tion, including evading immune response, inducing apoptosis, metastasis and invading
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Figure 5.5: Visualization of the KEGG “Tuberculosis” pathway with H. sapiens pro-
teins recovered by our predicted H. sapiens–M. tuberculosis H37Rv PPI network. The
pink squares are H. sapiens proteins targeted in our predicted H. sapiens–M. tuber-
culosis H37Rv PPIN that are in the KEGG “Tuberculosis” pathway map. The green
squares are H. sapiens proteins in the “Tuberculosis” pathway, but not recovered in
our prediction.
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Pathway names p-value

Focal adhesion 5.85E-13
Translation factors 6.61E-12
Pathways in cancer 7.51E-12
Measles 5.21E-09
Pancreatic cancer 7.44E-09
Proteasome 8.80E-09
Antigen processing and presentation 1.68E-08
Adipogenesis 3.41E-08
Myometrial relaxation and contraction pathways 5.66E-08
MAPK signaling pathway 5.82E-08
Endocytosis 5.87E-08
Integrated cancer pathway 5.89E-08
Viral myocarditis 8.03E-08
Cell cycle 8.28E-08
Leishmaniasis 1.08E-07
T cell receptor signaling pathway 1.12E-07
Tuberculosis 2.76E-07
Spliceosome 7.79E-07
Renal cell carcinoma 7.82E-07
Amoebiasis 8.28E-07

Table 5.7: Pathway enrichment analysis of H. sapiens proteins involved in the accurate
homology-based approach predicted host–pathogen PPI dataset. It summarizes the
20 most significantly enriched pathways for H. sapiens proteins involved in the host–
pathogen PPI dataset predicted by our accurate homology-based approach.

the cells, etc. Therefore, many essential pathways that are highly interconnected to M.

tuberculosis infection are also closely related to cancer pathways. Those essential path-

ways are “Apoptosis”, “MAPK signaling pathway”, “Jak-STAT signaling pathway”,

“Focal adhesion”, etc.

On the other hand, the presence of cancer pathways in the set of highly enriched

pathways is also caused by the overlap of many “core” proteins, which mostly are the

housekeeping genes of H. sapiens cells.

M. tuberculosis H37Rv proteins involved in the accurate homology-based approach

predicted H. sapiens–M. tuberculosis H37Rv PPIN are mostly enriched in pathways

that are related to “general metabolism”, “amino acid metabolism”, “ribonucleotides

metabolism”, etc.; see Table 5.9. This makes sense as the pathogen infecting the human

host undergoes rigorous metabolism in order to multiply and further infects the host.



CHAPTER 5. ACCURATE HOMOLOGY-BASED PREDICTION 155

Pathway names p-value

Hepatitis C 2.03E-14
Pathways in cancer 2.52E-13
Endocytosis 3.20E-13
MAPK signaling pathway 5.66E-13
Neurotrophin signaling pathway 4.67E-12
Cell cycle 1.78E-11
Shigellosis 4.18E-11
T cell receptor signaling pathway 3.21E-10
Senescence and autophagy 7.20E-10
NOD-like receptor signaling pathway 9.06E-10
Prostate cancer 1.35E-09
EBV LMP1 signaling 4.64E-09
RIG-I-like receptor signaling pathway 4.74E-09
Acute myeloid leukemia 2.42E-08
Osteoclast differentiation 3.37E-08
Apoptosis 3.86E-08
Chagas disease (American trypanosomiasis) 9.86E-08
Pancreatic cancer 1.03E-07
Proteasome 1.14E-07
DNA damage response 1.25E-07

Table 5.8: Pathway enrichment analysis of H. sapiens proteins involved in the conven-
tional homology-based approach predicted host–pathogen PPI dataset. It summarizes
the 20 most significantly enriched pathways for H. sapiens proteins involved in the
host–pathogen PPI dataset predicted by our conventional homology-based approach.
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Pathway names p-value

Metabolic pathways 6.81E-39
tRNA charging pathway 1.46E-18
Biosynthesis of secondary metabolites 1.54E-17
Pyrimidine metabolism 6.72E-10
Purine metabolism 2.25E-09
Aminoacyl-tRNA biosynthesis 6.47E-09
Alanine, aspartate and glutamate metabolism 3.09E-07
Superpathway of histidine, purine, and pyrimidine biosynthesis 3.25E-07
Superpathway of chorismate 1.14E-06
Arginine biosynthesis 1.39E-06
Superpathway of citrulline metabolism 2.13E-06
Tetrapyrrole biosynthesis I 2.13E-06
Tryptophan biosynthesis 2.13E-06
Phenylalanine, tyrosine and tryptophan biosynthesis 2.22E-06
Superpathway of cytosolic glycolysis, pyruvate dehydrogenase and TCA cycle 1.72E-05
Glyceraldehyde 3-phosphate degradation 3.47E-05
Gluconeogenesis I 3.92E-05
Pyrimidine ribonucleotides de novo biosynthesis 3.92E-05
Nucleotide excision repair 3.98E-05
Glycine, serine and threonine metabolism 4.53E-05

Table 5.9: Pathway enrichment analysis of M. tuberculosis H37Rv proteins involved in
the predicted host–pathogen PPI dataset. This table summarizes the 15 most signifi-
cantly enriched pathways for M. tuberculosis H37Rv proteins involved in the predicted
host–pathogen PPI dataset.
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Therefore the prediction results from our accurate homology-based approach can

serve as a reliable reference of PPIs between H. sapiens and M. tuberculosis H37Rv.

This analysis result is in accord with the above cellular compartment distribution,

disease gene list, pathway enrichment and functional category enrichment analysis re-

sults. All the results support the validity of the H. sapiens–M. tuberculosis H37Rv

PPIs predicted by our accurate homology-based approach. Furthermore, all the analy-

sis results above suggest our accurate homology-based approach has better performance

than the conventional homology-based approach in predicting host–pathogen PPIs.

5.3.6 Analysis of protein sequence properties of proteins involved in

host–pathogen PPIs

The analysis of the sequence properties of proteins involved in host–pathogen PPI

network reveals many interesting properties that have not been reported before. In the

analysis we compare several important features of both H. sapiens and M. tuberculosis

H37Rv proteins/domains in the predicted H. sapiens–M. tuberculosis H37Rv PPIN and

their own intra-species PPIN. Table 5.10 provides summary results from the analysis

of H. sapiens and M. tuberculosis H37Rv proteins.

It is very obvious that in the predicted H. sapiens–M. tuberculosis H37Rv PPIN,

H. sapiens proteins tend to have longer primary sequence, tend to have more domains,

tend to have lower charge and tend to be more hydrophilic than those proteins in the

intra-species H. sapiens PPIN. For M. tuberculosis H37Rv proteins, similar properties

are also exhibited; for example, M. tuberculosis H37Rv proteins in the predicted H.

sapiens–M. tuberculosis H37Rv PPIN tend to have longer primary sequences, tend to

have more domains, tend to have lower charge and tend to be more hydrophilic than

those proteins in the intra-species M. tuberculosis H37Rv PPIN. When we zoom in from

the protein level to the domain level, we find the domains also exhibit similar properties

as the proteins; see Table 5.11. The most significant properties for the domains in inter-
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Organism H. sapiens proteins M. tuberculosis proteins

PPIN Hum-Mtb Hum-Hum Hum-Mtb Mtb-Mtb

Average Length 769.3 623.0 486.0 328.7
P-value 1.33E-7 7.36E-17

Average Hydrophobicity -0.453 -0.413 -0.034 -0.027
P-value 2.39E-3 0.700

Average Charge 0.058 0.065 0.068 0.079
P-value 9.07E-4 7.31E-7

Average No. of domains 1.39 1.31 1.55 1.25
P-value 2.65E-2 2.82E-6

Average Domain degrees 10.56 10.19 5.54 3.16
P-value 0.756 5.94E-4

Table 5.10: Protein sequence properties analysis result. This table summarizes our
analysis of protein sequence properties for H. sapiens and M. tuberculosis H37Rv pro-
teins involved in the predicted host–pathogen PPI dataset compared with proteins
involved in intra-species PPIN. In the table there are some abbreviations. Hum-Mtb:
in predicted H. sapiens–M. tuberculosis H37Rv PPIN. Hum-Hum: in H. sapiens intra-
species PPIN. Mtb-Mtb: in M. tuberculosis intra-species PPIN.

Organism H. sapiens proteins M. tuberculosis proteins

PPIN Hum-Mtb Hum-Hum Hum-Mtb Mtb-Mtb

Average Length 205.0 188.4 210.0 187.2
P-value 0.863 2.04E-2

Average Hydrophobicity -0.355 -0.293 -0.033 0.037
P-value 2.15E-2 7.90E-4

Average Charge 0.055 0.059 0.069 0.076
P-value 4.19E-2 9.93E-3

Average degrees 11.66 11.62 4.42 4.47
P-value 0.97 0.89

Table 5.11: Domain sequence properties analysis result. This table summarizes our
analysis of domain sequence properties for H. sapiens and M. tuberculosis H37Rv pro-
teins involved in the predicted host–pathogen PPI dataset, compared with proteins
involved in intra-species PPIN. In the table there are some abbreviations. Hum-Mtb:
in predicted H. sapiens–M. tuberculosis H37Rv PPIN. Hum-Hum: in H. sapiens intra-
species PPIN. Mtb-Mtb: in M. tuberculosis intra-species PPIN.
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Organism H. sapiens proteins M. tuberculosis proteins

PPIN Hum-Mtb Hum-Hum Hum-Mtb Mtb-Mtb

Average Degree 26.69 12.56 25.67 16.16
P-value 2.18E-11 7.34E-9

Average Betweeness Centrality 6.33E-4 8.23E-4 8.36E-3 1.63E-2
P-value 0.439 0.132

Average Shortest Path Length 3.33 3.57 4.73 4.77
P-value 1.33E-30 0.65

Table 5.12: Topological properties analysis result. This table summarizes our analysis
of intra-species PPIN topological properties for H. sapiens and M. tuberculosis H37Rv
proteins involved in the predicted host–pathogen PPI dataset, compared with proteins
involved in intra-species PPIN. In the table there are some abbreviations. Hum-Mtb:
in predicted H. sapiens–M. tuberculosis H37Rv PPIN. Hum-Hum: in H. sapiens intra-
species PPIN. Mtb-Mtb: in M. tuberculosis intra-species PPIN.

species host–pathogen PPIN are that they tend to be more hydrophilic and tend to

have lower charge than counterparts in the intra-species PPIN (both in H. sapiens and

M. tuberculosis H37Rv proteins).

The discoveries found by analyzing sequence properties may be helpful in illumi-

nating the basic mechanisms of how the host and pathogen proteins interact with each

other, and may be useful in assessing the predicted host–pathogen PPIN.

5.3.7 Analysis of intra-species PPIN topological properties in host–

pathogen PPIs

The results from the analysis of intra-species PPIN topological properties for H. sapi-

ens and M. tuberculosis H37Rv proteins involved in the predicted host–pathogen PPI

dataset in comparison with proteins involved in intra-species PPIN are summarized in

Table 5.12.

From the intra-species PPIN topological properties of H. sapiens proteins involved

in the predicted and gold standard host–pathogen PPINs, we conclude that H. sapiens

proteins being targeted by pathogen proteins in the host–pathogen PPIs tend to have

much higher degree than proteins in the intra-species PPIN. In other words, the host



CHAPTER 5. ACCURATE HOMOLOGY-BASED PREDICTION 160

proteins being targeted by pathogens are more likely to be hubs in their own intra-

species PPIN. This result further strengthens the discoveries first reported by Calder-

wood et al. (2007) and is also in agreement with many studies that followed(Zhou et al.,

2013).

In this Chapter we are the first to examine the intra-species PPIN topological

properties of M. tuberculosis H37Rv proteins involved in the H. sapiens–M. tuber-

culosis H37Rv PPIN. We find that M. tuberculosis H37Rv proteins involved in the

host–pathogen PPIN also tend to have much higher degrees than proteins in the intra-

species M. tuberculosis H37Rv PPIN. This shows that pathogen proteins involved in the

host–pathogen PPIN are also more likely to be hubs in their own intra-species PPIN.

This makes sense as pathogen proteins that interact with human proteins may also

have very important functions in the pathogen’s own metabolism, and the interaction

between hub pathogen proteins with host proteins may be important to switching

the pathogen status from managing its own “free-living” metabolism to an “infection-

oriented” metabolism.

5.4 Discussion

5.4.1 Homology-based prediction

The homology-based approach for predicting the conserved intra-species PPIs across

closely related species was reported more than a decade ago(Matthews et al., 2001),

with the assumption that the interaction between a pair of proteins in one species is

expected to be conserved in related species. It has also been widely used in predicting

inter-species PPIs(Lee et al., 2008; Krishnadev and Srinivasan, 2008; Tyagi et al., 2009;

Krishnadev and Srinivasan, 2011; Wuchty, 2011).

However, the limitation of the conventional homology-based approach for predicting

inter-species(host–pathogen) PPIs have not been fully discussed. In particular, when
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applying this approach in predicting eukaryote-prokaryote PPIs, (i) the differences be-

tween eukaryotic and prokaryotic proteins and (ii) the differences between inter-species

and intra-species PPI interfaces may all contribute to the limited performance of the

conventional homology-based prediction approach in predicting eukaryote-prokaryote

host–pathogen PPIs. Therefore, our proposed accurate homology-based prediction ap-

proach has merits in overcoming the above two limitations, and should be suitable for

predicting eukaryote-prokaryote host–pathogen PPIs in many host–pathogen systems.

The main limitation of our accurate homology-based approach lies in the fact that there

is a limited amount of source eukaryote-prokaryote PPIs available currently. However,

with the rapid advance in technology and the community’s increasing interest on host-

microbe interaction studies, the eukaryote-prokaryote template PPIs will be much more

abundant in the future. This should greatly facilitate the massive application of our

accurate prediction approach to many host–pathogen systems in the future.

As a matter of fact, our accurate homology-based approach may not only have

merits in predicting eukaryote-prokaryote PPIs, but also can be extended to many

other types of inter-species PPI prediction, including eukaryote-archea PPIs(human

microbiome; especially in human gut), eukaryote-virus PPIs(e.g. Human-HIV PPIs,

Human-EBV PPIs and so one), etc. This can be especially meaningful for predicting

human-virus PPIs because (i) there are large differences between human and virus

proteins, (ii) human-virus PPI interfaces are also very different from intra-species PPI

interfaces, and (iii) abundant template human-virus PPIs are available.

5.4.2 Cancer pathways and enrichment analysis

In several host–pathogen interaction studies, when analyzing the pathway enrichment

of host–pathogen PPIN targeted human proteins, cancer-related pathways also show

up in the list of most enriched pathways(Evans et al., 2009). According to our study,

the presence of cancer pathways makes sense, as cancer shares many similarities with
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Pathways Infection related pathways Pathways in cancer

Gene No. 1082 326

Overlap between Pathways in cancer and
Infection related pathways

169

Hum-Mtb targeted Human proteins Over-
lap with HP-PPI targeted Human proteins

204 29

Overlap of the three datasets 20

Table 5.13: Gene content of cancer pathways and M. tuberculosis infection related
pathways. This table summarizes the gene content of cancer pathways and M. tubercu-
losis infection related Pathways. We choose one large representative cancer pathway—
“Pathways in cancer”. The M. tuberculosis infection related pathways(“infection-
related pathways” for short) are: “Focal adhesion, “Proteasome”, “Antigen processing
and presentation”, “MAPK signaling pathway”, “Endocytosis”, “T cell receptor signal-
ing pathway”, “Spliceosome”, “Apoptosis”, and “Tuberculosis”. Hum-Mtb: predicted
H. sapiens–M. tuberculosis H37Rv PPIN.

pathogen infection, including evading immune response, inducing apoptosis, metastasis

and invading the cells. Therefore many essential pathways that are highly intercon-

nected to M. tuberculosis infection are also closely related to cancer pathways. These

essential pathways are “Apoptosis”, ”MAPK signaling pathway”, ”Jak-STAT signaling

pathway”, ”Focal adhesion”, etc. On the other hand, cancer pathways may also be

an artifact because a substantial number of proteins are in the overlap between the

cancer-related pathways and the essential pathways. We conduct some experiments to

test this hypothesis. We group all the essential pathways that are related to M. tuber-

culosis infection, and name the collection “infection-related pathways”. The collection

includes the following pathways, “Focal adhesion”, “Proteasome”, “Antigen process-

ing and presentation”, “MAPK signaling pathway”, “Endocytosis”, “T cell receptor

signaling pathway”, “Spliceosome”, “Apoptosis”, “Tuberculosis”. We also choose one

large representative cancer pathway (“Pathways in cancer”). We then test the overlap

of these two collections of pathways. The results of the analysis are summarized in

Table 5.13.

From the results we can see that among the 1082 proteins in ”infection-related

pathways” and the 326 proteins in ”Pathways in cancer”, there are 169 proteins over-
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lapping between the two datasets. However, the H. sapiens–M. tuberculosis H37Rv

PPIN predicted by the accurate homology-based prediction approach involves 755 H.

sapiens proteins. This 755 H. sapiens proteins covers 204 proteins in “infection-related

pathways” and covers 29 proteins in the “Pathways in cancer”. Among these 204 and

29 proteins, 20 of them overlap with each other. This significantly demonstrates our

hypothesis that the cancer-related pathways are enriched due to the substantial overlap

(in protein members) with infection-related pathways(p-value ≤ 1.82E-6).

5.4.3 Impact and possible application of the illuminated sequence and

topological properties

Among the key contributions of this work are the discoveries of sequence and topological

properties of the proteins involved in the host–pathogen PPIN. Based on the analysis

of our predicted host–pathogen PPINs, we see that both host and pathogen proteins

involved in host–pathogen PPINs tend to have longer primary sequences, tend to have

more domains, tend to have lower charge and tend to be more hydrophilic than proteins

in intra-species PPINs. We also see that not only host proteins but also pathogen

proteins involved in host–pathogen PPINs tend to be hubs in their own intra-species

PPINs.

These important properties maybe useful in application to host–pathogen interac-

tion studies. For example, for assessing the quality of newly predicted or experimentally

derived host–pathogen PPIs, we can specifically analyze the sequence and topological

properties (primary protein sequences, number of domains, hydrophobicity, charge,

domain degrees and intra-species PPIN degrees) of the host and pathogen proteins

involved in the host–pathogen PPIs to see how likely the host–pathogen PPIN is valid.

These will open more doors for the analysis and assessment of host–pathogen PPINs.



CHAPTER 5. ACCURATE HOMOLOGY-BASED PREDICTION 164

5.5 Conclusion

In this Chapter we have proposed an accurate homology-based approach for predicting

host–pathogen PPIs. Our approach specifically overcomes the limitation of the con-

ventional homology-based approach by taking into account two important factors: (i)

differences between eukaryotic and prokaryotic proteins, and (ii) differences between

intra-species and inter-species PPI interfaces.

Using this accurate homology-based approach, we have predicted 1005 H. sapiens–

M. tuberculosis H37Rv PPIs. Pathway enrichment analysis, functional enrichment anal-

ysis, disease-related gene list enrichment analysis, etc. all support the validity of our

prediction results and show that our accurate homology-based approach has better

performance in predicting H. sapiens–M. tuberculosis H37Rv PPIs than the conven-

tional homology-based approach. The H. sapiens–M. tuberculosis H37Rv PPI dataset

predicted by our accurate homology-based approach can be used as an important refer-

ence for a variety of related studies on H. sapiens–M. tuberculosis H37Rv interactions,

M. tuberculosis H37Rv infections and infectious disease prevention.

We have further analyzed the sequence and topological properties of both the H.

sapiens and M. tuberculosis H37Rv proteins involved in H. sapiens–M. tuberculosis

H37Rv PPIs. Analysis of sequence properties shows that, both host and pathogen pro-

teins involved in host–pathogen PPIN tend to have longer primary sequences, tend to

have more domains, tend to be more hydrophilic and tend to be less positively charged

compared to other proteins in intra-species PPIN. Analysis of topological properties

shows that not only host proteins but also pathogen proteins involved in the host–

pathogen PPIN tend to be hubs in their own intra-species PPIN.

The prediction approach we discussed in this Chapter has merits in applying to

many other host–pathogen systems, and the properties that we have discovered through

sequence and topological analyses may be helpful in understanding the host–pathogen

PPIN and also provide alternative ways to assess predicted host–pathogen PPIN in a
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variety of different situations.



Chapter 6

Closing Remarks

6.1 Recap of work done

Using H. sapiens–M. tuberculosis H37Rv as a model, we have conducted a systematic

computational study on host–pathogen PPIs. We have identified important reliable

pathogen PPI datasets that can be used for the analysis of host–pathogen PPIs studies

in Chapter 2, which also enables the topological and sequence properties analysis for

the first time on the pathogen side. We have developed one of currently most compre-

hensive pathway databases—IntPath—in Chapter 3, which for the first time enables

functional analysis on both host and pathogen. We have proposed two prediction ap-

proaches: the accurate DDI-based prediction approach in Chapter 4 and the accurate

homology-based prediction approach in Chapter 5. Both of these prediction approaches

have better performance than their conventional counterparts. We have provided high-

quality predicted H. sapiens–M. tuberculosis H37Rv PPIs datasets that can be used for

a variety of purposes. Based on the predicted H. sapiens–M. tuberculosis H37Rv PPIs,

we have observed some very important properties for both host and pathogen proteins

involved in the host–pathogen PPIs.

In Chapter 2, we have observed the strikingly low agreement between M. tuberculosis

166
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H37Rv B2H and STRING PPI datasets. We have demonstrated the two main causes

of this low level of agreement: the H37Rv B2H dataset being of very low quality and

the STRING PPI datasets containing many non-direct interactions. The H37Rv B2H

dataset is the first—and currently, only—available large-scale experimental protein

interaction data on M. tuberculosis. It is disappointing that it is of poor quality,

and it should not be used in its entirety as a reference M. tuberculosis PPI dataset.

Nevertheless, we have identified four subsets of this B2H PPI dataset that are more

reliable, and can collectively serve as a suitable reference H37Rv physical interaction

dataset for many applications. As for the STRING dataset, it is also very noisy.

Fortunately, the STRING score is useful for indicating which STRING PPIs have higher

quality. We suggest a STRING score threshold set around 770.

In Chapter 3 we overcome the five limitations of current pathway databases that

hamper effective use of pathway information. We solve the problem of incompatible

data formats in different databases by extracting the pathway-gene and pathway-gene

pair relationships. The limitations of inconsistent molecular representations and incon-

sistent molecular relationship representations have been overcome by our normalization

of the data into common gene name representations and common relationship types

which are compatible with other database. The problems of inconsistent referrals to

pathway names and incomprehensive data from different databases have been solved by

the integration of pathway-gene and pathway-gene pair relationships into a unified and

comprehensive data source. We achieve compatible data formats, consistent molecular

representations, consistent relationship representations, consistent referrals to pathway

names and comprehensive data in our IntPath database for several organisms—viz., H.

sapiens, S. cerevisiae, M. musculus and M. tuberculosis H37Rv. IntPath can maintain

a regular update in these organisms and, the methodology we describe here can be ap-

plied to other organisms straightforwardly. We believe IntPath will not only facilitate

convenient access of the integrated pathway gene relationship data for model organisms
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and important pathogens but also greatly boost data analysis and application to the

host–pathogen PPIs studies, as demonstrated in Chapter 4 and Chapter 5.

In Chapter 4, we have proposed an stringent DDI-based prediction approach based

on high sequence similarity between template domain instances and query domain in-

stances. The assessment based on gold-standard H. sapiens PPIs and informative GO

annotation shows that the stringent DDI-based approach performs better than the con-

ventional DDI-based approach—its precision is 3–8 times better at the same or even

higher levels of recall. This shows, for the first time, that while the conventional idea

of DDI mediating PPI is sound, it is critical to apply it using carefully aligned domain

instances and checking whether the interaction interfaces are conserved. We have pre-

dicted a small set of accurate H. sapiens–M. tuberculosis H37Rv PPIs. Through cellular

compartment distribution, functional enrichment, and pathway enrichment analysis, we

have demonstrated that this small set of accurate H. sapiens–M. tuberculosis H37Rv

PPIs is valid and closely corresponds to M. tuberculosis H37Rv infection. This dataset

of H. sapiens–M. tuberculosis H37Rv PPIs can be used for a variety of related studies

as an important reference.

In Chapter 5, we have proposed an accurate homology-based approach for predict-

ing host–pathogen PPIs. Our approach specifically overcomes the limitation of the

conventional homology-based approach—which has relied solely on intra-species PPIs

as template—by relying on eukaryote-prokaryote interspecies PPIs as template. That

is, by taking into account two important factors: (i) differences between eukaryotic

and prokaryotic proteins, and (ii) differences between intra-species and inter-species

PPI interfaces. Using this accurate homology-based approach, we have predicted 1005

H. sapiens–M. tuberculosis H37Rv PPIs. Thus, for the first time, we show that 3 times

more host-pathogen PPIs can be predicted using inter-species template PPIs than using

intra-species template PPIs, while requiring 10 times less template PPIs. Moreover,

pathway enrichment analysis, functional enrichment analysis, disease-related gene list
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enrichment analysis, etc. all support the validity of our prediction results and show

that our accurate homology-based approach has better performance in predicting H.

sapiens–M. tuberculosis H37Rv PPIs than the conventional homology-based approach.

We compared the H. sapiens–M. tuberculosis H37Rv PPI datasets predicted by my

stringent DDI-based approach (92 PPIs) from Chapter 4 and accurate homolgy-based

approach (1105 PPIs) from Chapter 5, none of the PPIs overlap between the two

datasets. Because the two PPI datasets are predicted by very different methods and

based on very different source data, they cover very different proteins. Therefore it is

not surprising that the two PPI datasets do not overlap with each other.

The systematic computational studies on H. sapiens–M. tuberculosis H37Rv PPIs

may serve as an important reference to host–pathogen interaction studies and the

methodologies and technologies described in this thesis can be used for many host–

pathogen systems.

6.2 Future work

Computational study of host–pathogen interactions is very important for us to have

a better understanding on the interplay between pathogen and host, which is crucial

for providing better treatment and prevention of infectious diseases. There are many

interesting on-going topics in host–pathogen interaction studies that deserve more at-

tention.

We discussed functional analysis based on pathway enrichment using IntPath which

captures important functional relevance between host–pathogen PPIs. More powerful

pathway analysis tools that can provide a deeper analysis on the connection between

host and pathogen pathways and their functional inter-connections should greatly fa-

cilitate the understanding of host–pathogen interaction through functional aspects.

The accurate prediction approaches described in Chapter 4 and Chapter 5 can

be applied to many host–pathogen systems. This can provide very important host–
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pathogen PPI data for many host–pathogen systems which will be crucial for a variety

of different studies. Centralized data repositories hosting the predicted host–pathogen

PPI data can be developed for convenient access for the community.

As for host–pathogen PPI prediction approaches, integrative approaches can be

applied. By integrating related data (e.g. expression, homology, structure, pathways,

topology,) in the prediction approaches, better performance may be achieved. In de-

veloping integrative prediction approaches, machine learning techniques may be useful.

Without doubt, the progress in computational studies of host–pathogen interac-

tions is already very exciting and there will be lots of more interesting discoveries and

breakthroughs in the future.
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Appendix A

Additional Files

This appendix contains the additional files for the Chapter 2, 4 and 5.

A.1 Additional file 1 — Reliable M. tuberculosis H37Rv

B2H PPI datasets

We identified the reliable M. tuberculosis H37Rv B2H PPI datasets in Chapter 2, list

in four text files, tab delimited.

A.2 Additional file 2 — Predicted H.sapiens-M. tuberculosis

H37Rv PPI datasets

We predicted H.sapiens-M. tuberculosis H37Rv PPIs using our accurate DDI-based

prediction approach in Chapter 4. The predicted PPI data are recorded in simple text

format in additional file 2.
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A.3 Additional file 3 — Predicted H. sapiens-M. tuberculosis

H37Rv PPI datasets

We predicted 1005 H. sapiens-M. tuberculosis H37Rv PPIs using the accurate homology-

based prediction approach in Chapter 5. All the PPI data are recorded in simple text

format in this additional file.


