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Summary

Sequencing technologies have revolutionized the study of genomes by generating

high throughput data for various studies which are not cost-efficient when done with

Sanger sequencing. The first step in analyzing these high throughput data is often to

find the original location from which the data reads are sequenced from a reference

genome. Moreover, references genomes can be very large (human genome ~3.2GB).

This calls for better methodologies in aligning reads onto a reference genome.

In this thesis, we present three methodologies in producing accurate alignments of

DNA-sequencing reads with bisulfite-induced nucleotide conversion, DNA-

sequencing reads with mismatches and gaps, and RNA-sequencing reads with

intronic spliced junctions.

Our first contribution is BatMeth; a fast, sensitive and accurate aligner for DNA-

sequencing reads derived from sodium bisulfite treatment. BatMeth is designed to

handle both base-space and color-space bisulfite-treated reads. Based on List-

Filtering, Mismatch-Stage-Filtering, BatMeth was able to avoid examining spurious

hits and improve the efficiency and specificity of our alignment. Our experiments

also show that BatMeth can produce better methylation callings across samples of

different bisulfite conversion rates.

BatAlign is our next contribution which can align DNA-sequencing reads in the

presence of both mismatches and insert-delete (indel) accurately. Two novel
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strategies called Reverse-Alignment and Deep-Scan are developed to enable the

efficient reporting of accurate alignments for these reads. Reverse-Alignment starts

the alignment of a read by looking for the most probable preliminary alignments

incrementally. Deep-Scan refines the preliminary alignments by searching for a

targeted subset of less probable alignments to better distinguish the best alignment

from the rest. BatAlign was able to achieve competitive runtime efficiency with

SIMD-enabled Smith-Waterman algorithm for the extension of seeds from a long

read in our seed-and-extend strategy.

Our last contribution is BatRNA is designed to recover splice alignment of a RNA-

sequencing read sensitively and efficiently. As RNA-sequencing datasets can have

very varying mixture of exonic and spliced reads in them, BatAlign was introduced in

BatRNA as a pre-mapping tool to draft up the possible spliced sites of the genome.

After which, we filtrate the reads from the mappings of BatAlign to be mapped by

BatRNA for possible spliced alignments of the reads. The resultant mappings from

both BatAlign and BatRNA are considered for the final alignment of a read.

Compared with other popular and recent RNA-sequencing aligners, BatRNA was

able to produce very sensitive and accurate alignments in a dataset of mixed exonic

and spliced reads, while maintaining competitive runtimes.

In summary, we have developed various methodologies to align reads on to a

reference genome, sequenced from various genomic origins, accurately and

sensitively.
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Chapter 1

1Introduction

Earth has been brimming with life for as long as we can remember. With ourselves

being intellectually revolutionized agents, it is imminent for us to question and

understand the ravels of life. As known to some as The Code of Life, DNA has been

understood to be the determinant material that guides the operations and propagation

of organisms on a molecular basis. Charles Darwin and Gregor Mendel first studied

the rules on how life propagates between 1856 and 1865.

In 1859, Charles Darwin published his theory of evolution with inspiring evidences in

a book titled “On the Origin of Species” [1]. He showed that all species of life have

descended from common ancestors and rejected competing explanations of species

being transmuted from one and another. This scientific theory proposed a branching

pattern of evolution for different species resulted from a process which he has coined

as Natural Selection. While the theory of evolution was centered on the communal

pressure for existence in an ecosystem, Gregor Mendel focused on the passing of

phenotypes to the next generation of the same species. Mendel’s experiments on plant

hybridization led to the understandings of dominant and recessive phenotypes

propagation in a species under the form of inheritable materials [2], which we now
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call it as genes. It was not until the 1940s that Darwin’s theory of Natural Selection

and Mendel’s Law of Inheritance were combined and gave rise to evolutionary

biology.

The genes which gave phenotypic traits to an organism are made up of DNA. It was

first isolated as a weak acid and identified as the genetic material in 1944 by Oswald

Avery, Colin MacLeod and Maclyn McCarty [3]. Within the next decade, science

celebrated ground-breaking discovery on the structure of DNA with the publication of

three papers by Nature: one from James Watson and Francis Crick of Cambridge

University that proposed the double helix sugar-phosphate backbone structure of the

DNA [4], and two accompanying papers from Franklin Rosalind [5] and Maurice

Wilkins [6] of King’s College, London, who used X-ray diffraction images to support

the helix hypothesis.

After the DNA double helix structure was discovered, scientists moved on to

investigate the contents of what our genetic materials hold, namely, the sequence of

the nucleotides which form the genes. DNA is sequenced for the first time in early

1970s and methods by Fred Sanger [7], Walter Gilbert, and Allan Maxam [8] were

published independently in 1977. Sanger sequencing was the first established method

to sequence the long stretches of DNA and has partially been used to produce the first

draft of the human genome, known as the Human Genome Project (HGP), starting

from 1990 and to its completion in 2003 with the working draft of the human genome

[9].

Due to the influx of funding and talent into the field of genomics, huge advances in

sequencing technologies were achieved and this gave rise to a new generation of

sequencing technologies which we call second-generation sequencing (SGS)

technologies.
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With SGS technologies at the disposal of scientists, landmark projects were launched.

After the HGP, scientists went on to sequence the genomic sequences of a wide

variety of species from various clades such as mammal, nematode and insect. Some

examples include humans from different ethnic groups and different strains of

influenza virus due to antigenic shift. Alongside with DNA sequencing projects,

studies were also started on functional genetic elements such as RNA and proteins.

As such, Human Encyclopedia of DNA Elements (ENCODE) was started in 2003 to

build a comprehensive parts list of functional elements of the human genome,

including elements that act at the protein and RNA levels, and regulatory elements

that control cells and circumstances in which a gene is active [10]. As of 2012,

ENCODE has claimed to have assigned biochemical functions for 80% of the human

genome [11].

1.1 History of DNA Sequencing

1.1.1 First-Generation sequencing

DNA sequencing is the process of determining the precise order of nucleotides within

a DNA molecule. The first whole DNA genomic sequence was obtained in 1977 from

the entire genome of bacteriophage Φ–X174 using chain-termination methods [12].

This sequencing method was developed in 1975 by Sanger [13] and followed

independently by Maxam and Gilbert in 1977.  The Maxam-Gilbert method was more

laborious and hazardous to handle with as the chemicals used in the sequencing

procedures were more radioactive than Sanger’s method. Due to these reasons,

Sanger sequencing became dominant and was ubiquitous in first-generation

sequencing. Even till now, Sanger sequencing is still practiced due to the longer reads,

~800 bases in average, that it generates as compared to ~100 bases reads from

Illumina GA IIx machines [14]. Sample preparation for Sanger sequencing starts by

generating randomly-sized fragments of the DNA from the same starting location.

The ends of these different-sized fragments are then labeled with one of the four
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fluorescent/radioactive dyes which substitutes for each of the four nucleotides of the

DNA – adenine, cytosine, guanine and thymine. Next, the dye-ended fragments are

placed into a 2D gel and will be sorted in order of their lengths via electrophoresis

across the gel. Lastly, the sequence of the DNA sample is determined from the last

base of the fragments as depicted by the order of their relative positions in the 2D gel.

Although, this method can be fully automated to sequence long stretches of DNA, it

still took about 13 years and three billion dollars to produce the first working draft of

the human genome for the HGP. The main drawback of Sanger sequencing is that the

throughput of each run is too low to perform in-depth studies on the complex

dynamics of the human genome.

1.1.2 Second-Generation sequencing

This wave of technologies aims to offer numerous advantages over Sanger

sequencing in the form of (1) shorter runtime (sequencing speed is increased); (2)

higher throughput (more bases sequenced within short period of time); (3) cheaper

sequencing costs (less reagents needed for the experiments) and (4) higher accuracy

(enabled discovery of rare-occurring variants).

The second generation of sequencing (SGS) was first described by two publications

in 2005 [15, 16]. The initial impacts that polony sequencing had brought about was

the lower sequencing costs and the potential for scientists to capture the complex

dynamics of the genome at high resolutions. A year later, two Cambridge scientists

developed the Solexa 1G sequencer and it was able to produce a throughput of 1 giga-

base in a single experimental run for the first time in history using reversible

terminator chemistry [17]. In the same year of 2006, Agencourt was purchased by

Applied Biosystems which introduced SOLiD sequencing [18] which too had the

ability to sequence a genome as complex as the human genome. Other NGS

technologies include Roche 454 pyrosequencing [19], IonTorrent semiconductor

sequencing [20], DNA nanoball sequencing [21] and Heliscope single molecule
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sequencing [22]. With most SGS technologies, strands of identical DNA are anchored

to a fixed location to be read by a sequential series of label-scan-wash cycles. Each of

this cycle will yield a read-base and is no longer continued until the series of label-

scan-wash cycles exceeds a threshold of quality. Due to the extremely high density of

DNA that can be packed into a single sequencing template platform, the throughput

from such technologies far exceeds of those of Sanger sequencing [14]. This is the

most outstanding advantage of SGS over first-generation sequencing technology and

it has directly made quantification of transcripts, genome-wide methylation profiling

and many other studies possible.

More cost-effective methods were also developed to compromise between the

competing goals of genome-wide coverage and cost-effective targeted-coverage; such

an example will be “exome sequencing” whereby ~1% of the human protein-coding

genome is sequenced [23, 24].

1.1.3 Third-Generation sequencing

Sanger sequencing and SGS technologies have by far revolutionized the field of

genomics. However, there are still aspects of genome biology that are beyond the

capabilities of SGS technologies. The main shortcomings of SGS technologies are the

long runtime (a few days), short read-lengths and potentially high sequence bias

and/or errors. Due to the large number of synchronized label-scan-wash cycles

required to generate a read, the time needed to generate viable reads of long read-

lengths is long. It is also due to the fact that the label-scan-wash cycles have to be

synchronized in between cycles, meaning that the yield of each step of the long series

of cycles will be <100%; the cycles sometimes get “dephased” and out-of-

synchronization which produced erroneous reads. As such, this causes an increase in

sequencing errors as the read extends during sequencing. The average read lengths

generated by SGS technologies are generally less than the lengths achieved by Sanger

sequencing. Another source of read errors in the form of sequencing bias come from
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PCR amplification [25] which is involved as an intermediate step in SGS

technologies. A new generation of single-molecule sequencing (SMS) technology

aims to resolve these shortcomings of SGS technologies.

Unlike sequencing-by-synthesis (SBS) technologies in SGS, SMS interrogate single

molecules of DNA using SBS too but in an asynchrony manner. In this manner, tens

of thousands of reads can be sequenced within hours as compared to days as

experienced with SGS technologies. In addition, since molecules are interrogated

individually, there is no need to amplify the DNA sample prior to sequencing by SGS

technologies; this removes any amplification bias or defects which may be introduced

by PCR. The nucleotides used in SGS technologies are usually ‘color-coded’ with a

dye and this makes them different from natural-occurring nucleotides which make up

the DNA. This chemical bias is further removed in SMS technologies and the reagent

used to replace the dyed nucleotides is none other than DNA polymerase which is

responsible for DNA duplication whenever cells divide.

The main idea in SMS comes from the tangible measurements that can be measured

when the new DNA fragment is synthesized upon the template fragment. The

measurements can then be interpreted as an ordered sequence of nucleotides. Some

technologies of this new generation are based on but not limited to the use of

nanopores, tunneling currents during DNA synthesis, mass spectrometry, micro-

fluidic chips and electron microscopes.

1.2 Motivation

1.2.1 Looking at the DNA with an intent

Little was known about the functions of DNA when it was identified as the genetic

materials of organisms in 1944. It was also unclear on how DNA polymorphisms

played a part in the molecular operations of the cells in an organism. It was not until

1956 when Vernon Ingram successfully associated a single amino acid substitution
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with Sickle Cell Disease [26]. Since then, scientists have moved forward with the

intention to better understand of diseases caused by genetic variations and discover

new ways to treat them [27]. Other common genetic diseases include Cystic Fibrosis,

Glucose-6 Phosphate Dehydrogenase deficiency and Color Blindness.

Genetic diseases were first thought to be a direct causal effect of mutations in the

DNA. This thought could not be more wrong. The products of such processes can

also affect the level of transcription of DNA to RNA and translation of RNA to

proteins. The study on the causal effects of the DNA and its products other than the

changes in the underlying sequence is now termed as epigenetics [28]. The two

epigenetic modifications to the genome are histone modifications and DNA

methylation [29].

Regardless of genomic or epigenetic factors, the important challenge is to understand

the mechanisms that control the expression of each gene in a genome. By learning

about these processes, we can uncover more ways to treat, cure or even prevent such

adverse phenotypes in a diseased genome.

1.3 General workflow on sequencing reads

Due to the limitations of technology, the sequenced reads is almost always shorter

than the reference genomes, such as that of the human and mouse. As such, from the

raw sequenced reads of a sample to downstream analysis in the dry-lab, the common

step in most processing pipeline is to map the sequenced reads onto a reference

genome as depicted by Figure 1.1. In the field of genomics, the two most front-lined

computational tasks are 1) mapping reads back onto a reference genome and 2) de

novo or guided assembly of the genome with sequenced reads to produce a reference

for reads to be mapped on. These tasks are generally the most computationally

intensive tasks in a pipeline and the problem is made worse by the voluminous

amount of data (~600 Gb in a single run).
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Figure 1.1. General workflow on sequencing reads

1.4 The mapping challenge

One can see the problem of mapping a read onto a reference genome as a

computational problem of string matching. The aim is to find the original location

from where the read was sequenced from the genome. The alignment of SGS reads

poses some challenges in the forms of different error profiles of sequenced reads from

different sequencing technologies, short read lengths (reads from SGS can be ~36

bases long), large reference length which the reads need to be mapped on and the

voluminous data that are generated from SGS machines [30]. Since mapping the

reads is a prelude to many downstream analyses such as and not restricted to variant-

callings, quantification of rare transcripts and annotation of epigenetic factors on the

DNA, it is important to map the sequenced reads with high sensitivity, specificity and

speed.

Many scientists and classic software have tackled this problem. For instance, BLAST

[31] (~50k citation count) and BLAT [32] have shown the demand and impact of
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bioinformatics in understanding genomic data. However, classic software cannot

handle SGS well as they are not designed for SGS reads in mind. Therefore, new

methods have to be developed to align SGS reads. This thesis aims to reports on the

new algorithms which we have developed to align SGS reads with high sensitivity,

specificity and speed.

1.5 Contribution of thesis

The first contribution of this thesis is the development of BatMeth which is a fast and

efficient algorithm for the alignment of bisulfite-treated DNA sequencing reads back

onto a genome allowing mismatches. BatMeth is based an exact algorithm, namely

BatMis, for the alignment of reads onto a genome allowing mismatches. By designing

the appropriate heuristics, BatMeth has shown to be an improved aligner in our

benchmarks. In addition, it was also shown to have less bias when mapping bisulfite

treated samples across a wide range of bisulfite conversion rates on both Illumina

base-space and SOLiD color space reads. Dr Guoliang Li also used BatMeth to

predict potential imprinting genes and his results are also included in this thesis.

The second contribution is the development of BatAlign for the accurate alignments

DNA sequencing reads allowing both mismatches and indels. The algorithm of

BatAlign was designed to discriminate between polymorphisms and sequencing

errors with high precision. The initial method for aligning short reads (~100 bases)

was also extended to handle longer reads of (150-250 bases). Dr Chandana

Tennakoon developed underlying data structures used to implement the algorithm for

space-time efficiency. BatAlign was benchmarked on a wide class of simulated and

real reads and have shown to be more accurate than other popular aligners in terms of

mapping accuracy and variant callings on published PCR-validated SNV/indel

mutation in gastric cancer.
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The third contribution is the development of BatRNA for the alignment of reads

allowing mismatches, indels and large intronic gaps to be in a single read. The

algorithm of BatRNA was designed to resolve large gaps due to introns with high

accuracy and speed while maintaining the capability to avoid mapping to pseudogene

areas and resolve short exonic overhangs due to spliced junctions near the ends of

reads. The algorithm was extended and modified from BatAlign to make better use of

RNA-specific features for more accurate mappings of RNA-seq reads. Benchmarks

showed that BatRNA gives sensitive and accurate mappings in a mixed sample of

exonic and spliced read across varying sequenced read lengths.

In summary, we have developed three novel alignment algorithms on improved data

structures for the efficient and accurate mappings of sequencing reads from various

genomic contexts. In addition, we also include results on the biological insights which

Dr Guoliang Li and I have uncovered on the prediction of imprinting genes by using

BatMeth.

1.6 Organization of the thesis

The remaining contents of the thesis are organized as follows. Chapter 2 presents a

preliminary of biological background and survey of SGS technologies required for

the proper understandings of the thesis. Chapter 3 will present the survey of bisulfite-

treated DNA-seq aligners, gapped DNA-seq aligners and spliced RNA-seq aligners in

their respective subsections. Chapter 4-6 will present our algorithms for an improved

alignment of bisulfite-treated DNA-seq reads (I am the first-author of this paper

published in Genome Biology), gapped DNA-seq reads and spliced RNA-seq reads

respectively. Chapter 4 also includes research findings on the prediction of imprinting

genes using BatMeth. Chapter 7, the last chapter, will conclude the thesis with a

summary of all the presented work and a brief discussion on the possible future

developments which still can be carried out on alignment algorithms.
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Chapter 2

2Basic Biology and
Sequencing Technologies

2.1 Basic Biology

In this chapter, we present the background knowledge on molecular biology and

describe some of the SGS technologies that are widely used today. We also describe

the types of reads which can be obtained from the wet-lab which will be mapped onto

the reference genome by aligners.

Figure 2.1. Schematic diagram of a typical animal cell. Source: [33]
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Cells are the building blocks of organisms and complex organisms such as an adult

human will contain trillions of cells. Cells are also referred to be the building blocks

of life as they are essential to maintain the bodily functions of the organisms which

they make up. On a cellular level, a cell has a cell membrane, nucleus, golgi

apparatus, cytoplasm and mitochondrion as drawn in Figure 2.1. On a macro-

molecular scale, it typically contains carbohydrates, amino acids, lipids and nucleic

acids. With the advantages made in the protocols for experiments, studies can be

carried out to study the activities of the various macro-molecules in the cell. For

instance, genome-wide analysis of gene expression can be measured using high

throughput methods such as RNA-seq data [34], spliced alignment tools [35-42] and

transcripts-isoforms quantification tools [43-47]. Repetitive regions of the genome

can be hard to be studied with SGS data as alignment tools will not be able to report

the putative original location of the read in the genome with high confidence of

uniqueness. These repetitive regions can include the telomeres and centromeres of the

human genome and florescence immuno-staining techniques are used to study these

genomic regions [48].

To first study the genomes using high throughput data using SGS, scientists have to

use sequencing machines to ‘read’ out the genomic sequences of the prepared sample.

Many SGS technologies are now widely used by scientists worldwide and some of

these technologies come from Illumina, Life Technologies, Roche and Ion Torrent.

Depending on the type of samples, method of preparation on the experiments and the

sequencing technologies being used, a wide range of analysis can be carried out.

Figure 2.2 shows some of the analysis which can be carried out on sequencing data.

This is the important initial phase in identifying and understanding the dynamics of

macromolecules in a cell.
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Figure 2.2. Two main types of genomic tasks and their respective downstream
analysis. De novo tasks involve the manipulation of read data without a reference.
Profiling tasks use the alignment of the read on a reference for analysis.

2.2 Central Dogma of Molecular Biology

The Central Dogma of Molecular Biology is one of the main principles in

understanding molecular biology. Although there are exceptions pointing against it, it

is still widely accepted that the transfer of genetic information is from the gene

sequences of the DNA to proteins which carries out various cellular functions. Figure

2.3 depicts the general passing of sequential information between genetic materials as

stated by the general cases in the Central Dogma of Molecular Biology as formulated

in 1970 [49].
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The central dogma states that all genetic information is encoded in the DNA

molecules. This genetic information can be visualized as linear sequences of

nucleotides in the cells. When cells grow and divide, genetic information is

transmitted from the parent cell to the daughter cells by replication to form a

duplicate of the DNA molecule during the synthesis phase of the cell-cycle. During

the synthesis of messenger ribonucleic acid (mRNA), part of the original DNA

sequence acts as a template for the mRNA sequence to be synthesized on. This

process of mRNA synthesis is known as transcription.

Figure 2.3. The general cases of the central dogma of molecular biology for
eukaryotic cells

For eukaryotic cells, the mRNA molecules are then transported out of the nucleus,

into the cytoplasm, where consecutive triplets of nucleotides are read as codons by

protein complexes known as ribosome. In the ribosome-mRNA complex,

aminoacylated transfer RNAs (tRNA) are recruited and used to link the amino acids

according to the mRNA sequence to form the protein polypeptide chains. The process

of reading mRNA and form the protein complex from it is known as translation. This
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protein polypeptide chains will undergo post-translation modifications to a stable

folded 3D structure which attributes to its functions and will then drive various

cellular functions in an organism.

From the central dogma, DNA-DNA replication, DNA-RNA transcription and RNA-

Protein translation are the main processes for understanding the transfer of genetic

information. In addition, we can also see that there are several ways in which cells

can be regulated. For instance, the amount of mRNA transcribed from the DNA,

known as gene expression level, will be translated into varying  concentrations of

proteins which, in turn, will up/down-regulate transcription, affecting the gene

expression levels and subsequently their corresponding protein concentration levels in

the form of a feedback loop. Post-modifications to the proteins such as

phosphorylation and acylation can also affect the functional properties of proteins. By

mutating the DNA sequences, changing the levels of mRNA and protein abundances

can lead to the onset of diseases such as Sickle-cell anemia and Cystic Fibrosis.

In the following subsections, we will describe replication, transcription and

translation in detail.

2.2.1 DNA-DNA Replication

DNA comprises of nucleotides and each of them contains a deoxyribose sugar, a

phosphate and a nucleobase. It is usually double-stranded and both strands are bonded

together to form a double-helix structure. The deoxyribose sugar and phosphate will

form the backbone of the double-helix structure and the nucleobase (Adenine,

Cytosine, Guanine and Thymine; ACGT) will be forming hydrogen bonds with

another nucleobase on the reverse-complementary strand of the DNA. The base pair

makeup of the DNA was also hinted by Chargaff’s 1950 experiment and provides a

general but not exclusive rule that adenine and cytosine pairs up with thymine and

guanine respectively on opposing strands of the DNA [50].
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DNA replication is the process whereby a new copy of the DNA molecule is

replicated from one original template DNA molecule. This is possible as DNA is

composed of two strands and each strand of the original DNA molecule serves as a

template for the replication of the new reverse-complementary strand. This results in

two copies of double-stranded DNA molecules with each of them consisting of an

‘old’ template strand and a ‘new’ replicated strand; this is why DNA is semi-

conservatively replicated and is demonstrated to be so in 1958 by Meselson-Stahl

experiment [51]. Figure 2.4 shows three postulated methods of replication before

Meselson-Stahl experiment.

Figure 2.4. Three postulated methods for DNA replication prior to Meselson-Stahl
experiment

As DNA replicates prior to mitosis, it must involve initiation of replication,

elongation of DNA fragments and termination of synthesis. For a cell to divide, it

must replicate its DNA first and this process can initialize at various sites known as

replication origins. Initiator proteins will target A-T rich regions of the DNA and

recruit other proteins, unzips the double-stranded DNA and prepares it for replication.

As the new DNA is being synthesized and elongated on the old template DNA, the

helicases keep breaking the hydrogen bonds between the two DNA strands to unwind

more regions of the DNA for elongation.
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Figure 2.5. Schematic diagram of DNA replication at a replication fork. Source: [52]

As DNA is always synthesized from the 5’ to 3’ direction, there will be one strand of

the DNA that will be in the ‘wrong’ direction and this is called the lagging strand in

DNA replication; the other strand will be the leading strand. The DNA polymerase

will start to add complementary bases to the template strand after a small RNA

fragment attaches itself to the site of replication origin to prime the elongation

process. With respect to the leading strand, the DNA polymerase will move in the

same direction of the helicase. However, for the lagging strand, the DNA polymerase

can only add bases away from the direction of the helicase and results in replicating

the DNA in disjoint but adjacent fragments called Okazaki fragments. Figure 2.5

depicts the process of DNA replication at one instance of the DNA replication fork.

Since there are multiple points of replication origins, termination of elongation

happens when a replication forks meet and this can occur at many points in a single

chromosome.

2.2.2 DNA-RNA Transcription

RNA comprises of nucleotides and each of them contains a ribose sugar, a phosphate

and a nucleobase. It is usually single-stranded. However, RNA can form intra-strand

double helix structure as in the case of the double-stranded DNA by complementary
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base-pairing with hydrogen bonds too; as in the case of tRNAs. The ribose sugar and

phosphate will form the backbone of the structure for RNA and the nucleobase

(Adenine, Cytosine, Guanine and Uracil; ACGU).  Three main types of RNA are

transcribed from a region of the DNA as a template and they are messenger-RNA

(mRNA), transfer-RNA (tRNA) and ribosomal RNA (rRNA) [53].  mRNA is a near-

duplicate of a region of the template DNA which will code for a protein sequence.

tRNA is a short sequence of ~80 nucleotides that transfers amino acid to the site of

protein synthesis. rRNA is responsible to link the amino acids from the tRNA to grow

the polypeptide chain to form a protein.

The first step in achieving molecular function is to transcribe a gene region of the

DNA into mRNA in a process called transcription. The mRNA will act as a blueprint

for a protein to be translated from it. In eukaryotes, the process starts by having the

RNA polymerase and other transcription factor(s) to bind to a core promoter sequence

in the DNA which is usually within a hundred bases upstream from the transcription

start site (TSS) of a gene. In prokaryotes, protein factors bind to the RNA polymerase

which affects the binding of the polymerase to the DNA. The RNA polymerase will

next start to move along the promoter region and towards the TSS. Once the RNA

polymerase enters the gene region, it will use base pairing complementarily with the

DNA template (non-coding strand) to create an RNA copy. Different transcription

levels of genes are usually resulted from multiple rounds of transcription or multiple

RNA polymerases on a single DNA template. Elongation of the RNA terminates

when the newly synthesized RNA segment contains a GC rich and subsequent Us rich

sequence or the ‘Rho’ protein destabilize the interaction between the template DNA

and the mRNA. These two mechanisms cause the template DNA and RNA

polymerase to disengage from one another and the synthesis of any new RNA

segments to cease.
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2.2.2.1 Genes and Splicing

A gene is a biological unit of hereditary material. It can also refer to subsequences of

DNA and it provides the blueprints for the RNA polymerase to synthesize proteins

from it. In eukaryotic cells, the RNA that is transcribed from the DNA will undergo

more post-transcription modifications [54]. At the 5’ end of the pre-mRNA, a single

G will have its 5’ end attached to it, whereas at the 3’ end, a poly-A tail will be added.

This capping on both ends of the untranslated regions (UTRs) of the pre-mRNA

fragment will result in 3’ endings and protect the fragment from being cleaved at the

5’ end by exonucleases. Figure 2.6 shows the differences in the markup of genomic

features between pre-mRNA and mRNA.

Figure 2.6. Illustration of introns and exons in pre-mRNA and the maturation of
mRNA by splicing.

A pre-mRNA fragment contains adjacent sequences of nucleotides that will either be

translated to protein or not; namely, exons and introns respectively [55]. In eukaryotic

cells, the pre-mRNA fragment will be matured by cleaving the introns away from the

original pre-mRNA fragment which will leave the exons behind. This event is known

as splicing and the genomic locations where introns are being cleaved at are called

splice sites. From the literature, we can observe that these splice sites tends to be
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conserved with canonical signals (GT-AG, donor-acceptor) at rate of >98% on

splicing events in humans [56].

Splice sites can sometimes reside completely in exonic or intronic regions. In other

words, splicing can sometimes happen or not happen at a splice site and this is known

as alternate splicing [57]. This gives the possibility of a single gene to code for

several proteins which makes it more efficient as a single gene region may have more

than one functional product. In fact, the human DNA is so efficient in this sense that

~95% of multi-exons gene regions can express more than one functional product [58].

Currently, SGS technologies produce RNA-seq data from sequencing matured mRNA

fragments. As such, the intronic regions are left out from the spliced sequencing read.

Before scientists can study the transcription levels of genes, they have to map the

RNA-seq reads back to the human DNA reference genome by taking these intronic

gaps into account too. The alignment of RNA-seq read proved to be a challenge as

seen from the myriad of computational methods developed to solve it. In the

following chapter, we will review on the techniques developed for the alignment of

RNA-seq reads.

2.2.3 RNA-Protein Translation

Proteins are chains of polypeptide sequences that are made up of some combinations

of amino acids. The polypeptide chain folds into a 3-D structure which will define its

cellular functions. Generally, proteins are studied at four levels of granularity. At the

finest level, the structure of a protein can be studied by the sequence of amino acids

which represents it. Next, secondary local structures such as the α-helix and β-pleated

sheets are formed when amino acids of the same polypeptide are joined together by

hydrogen bonds. Thirdly, tertiary structures are folded into configurations due to the

attractive/repulsive forces between secondary local structures. Lastly, quaternary
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structures are formed when two or more proteins come together to form a more

complex 3-D structure.

Proteins are synthesized from an mRNA sequence by a ribosome complex through a

process called translation. Translation starts with the ribosome binding to the 5’ end

of the mRNA. The ribosome will then decode the mRNA in consecutive non-

overlapping frames of 3 bases called a codon. The start codon for translation is “ATG”

and serves as an initiation site for translation. While the ribosome traverses across the

mRNA, tRNAs carrying specific amino acids with complementary anti-codon

sequences to that of the mRNA will have the amino acids chain together into a

polypeptide. The chain will terminate when the ribosome faces a stop codon (UAA,

UAG or UGA) and this recruit a release factor protein to disassemble the entire

ribosome-mRNA complex. The synthesized chains of polypeptide will then give itself

the molecular functions with the structure which it folds itself into or by integrating

with other secondary or tertiary structures as mentioned before.

2.3 Next Generation Sequencing Technologies

Chapter 1 gave a brief history of sequencing technologies and the motivation to

uncover insights that genomic sequences contain. In this section, we will briefly

describe the computational challenges that these technologies bring about and the

main ideas behind some sequencing technologies which the thesis is focused on.

Currently, sequencing technologies support sequencing materials from a wide range

of starting materials, such as genomic DNA, PCR products, bacterial artificial

genome (BAC) and complementary DNA. Without loss of generality, we will

describe the sequencing of genomic DNA in the following subsections by various

technologies.
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2.3.1 Roche/454 Sequencing

454 sequencing is arguably the first high throughput sequencing technology that is

available to the market. This technology eradicates the need for DNA sample

fragments to be cloned in bacterial hosts. By removing bacterial clonal copies of the

DNA, we also remove any amplification bias which may be introduced by the hosts

into the DNA sample. Instead of in vivo cloning of the DNA sample using bacterial

hosts, the amplification process is replaced by a more efficient in vitro DNA

amplification method called emulsion PCR [59]. In emulsion PCR, fragmented DNA

will attach to a streptavidin bead covered with adapter probes with bases

complementary to that of the fragmented DNA. The ideal scenario will be one

fragment to one bead and then this bead will be suspended in an emulsion so that

individual beads can be trapped in amplification micro-reactors. The whole emulsion

of beads will be amplified in parallel to create millions of clonal copies of each DNA

fragment on each bead. After amplification, the emulsion is removed from the

mixture of beads as like removing the oil from an oil-and-water mixture and the beads

are loaded onto a picotiter plate prior to being sequenced by a machine [16].

The loaded picotiter plate will have hundreds of thousands of sequencing processes to

be carried out in parallel, obtaining massive increase in throughput as compared to

Sanger sequencing [60]. As sequencing takes place, a nucleotide is added one by one

to the immobilized template DNA on the bead. Whenever a complementary

nucleotide is added to the template DNA, a chemiluminescent enzyme present in the

reaction mix will produce a detectable light by releasing inorganic pyrophosphate [19,

61]. This is also why 454 sequencing is also known as pyrosequencing and SBS.

Since the produced light signal is directly proportional to the number of bases

incorporated onto the template DNA in one sequencing cycle, pyro-sequenced reads

will often have lengths of homo-polymeric nucleobases wrongly estimated.
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2.3.2 Ion Torrent Sequencing

Ion Torrent invented the first semiconductor sequencing chip that is commercially

available for the market. Similar to 454 sequencing, Ion Torrent clonally amplify

DNA fragments by using emulsion PCR. After which, the beads with the amplified

DNA materials will each sit inside a micro-well. The main difference in Ion Torrent

sequencing from 454 sequencing is that the chip itself sequences the read [62].

The scanning of the DNA fragment starts by flooding the bead-loaded well with one

nucleotide after another sequentially. When the DNA fragment is extended by the

incorporation of nucleotides, it releases hydrogen ions into the well and this changes

the pH of the solution in the well changes. This chemical change of pH in the solution

can directly be recorded by a sensor plate at the bottom of the well into voltage

readings [63]. Since the chip directly detects the nucleotides which are being

synthesis on the DNA template fragments on the bead, no external optical instruments

are needed. This is the fundamental difference of Ion Torrent sequencing from 454

sequencing.

Although Ion Torrent sequencing uses a different methodology from Roche-454 to

sequence genomic materials, its sequenced read will also have lengths of homo-

polymeric nucleobases wrongly estimated [64]. This is due to the produced voltage

being directly proportional to the number of bases incorporated onto the template

DNA in one sequencing cycle.

2.3.3 Illumina/Solexa Sequencing

DNA molecules are first fragmented into varying length-sizes through the use of a

nebulizer through a process called sonication [65] or nebulization [66]. The subset of

these randomly sized DNA fragments of similar length-size is then selected to be

sequenced. Illumina uses ‘bridge’ amplification reaction that occurs on the surface of

the flow cell to sequence a DNA fragment [67]. The surface of the flow cell is coated
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with single stranded oligonucleotides as complementary probes that correspond to the

priming adapters ligated to both ends of the DNA fragment. These single stranded

oligonucleotides are bounded to the surface of the flow cell exposed to the reagents

for polymerase-based extension. Priming occurs at the free end of a ligated fragments

and ‘bridges’ to a complementary oligonucleotide on the surface.

Repeated denaturation and extension result in localized amplification of single

molecules in millions of unique locations across the flow cell. This process is referred

to as “cluster station”; an automated flow cell processor. Figure 2.7 shows the process

of bridge amplification of DNA fragments prior to obtaining clusters of amplified

DNA materials [68]. The flow cell, with millions of clusters, is then loaded into the

Solexa sequencer for cycles of extension and imaging. The first cycle of sequencing

consists first of the incorporation of a single fluorescent nucleotide and followed by

laser imaging of the entire flow cell. These images represent the respective base being

synthesized at each individual location of the flow cell. Any laser signals above

background will identify the physical location of a cluster and the fluorescent

emission identifies which of the four bases was incorporated at that position. The

cycle is then repeated, one base at a time, generating images each representing a

single base extension at a cluster.

Figure 2.7. Schematic diagram of bridge amplification forming cluster stations.
Source: [68]
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The result of sequencing a DNA fragment with Solexa will be a string of ATCG

which is the read representation of a cluster on the flow cell.

2.3.4 ABI/SOLiD Sequencing

Similar to 454 and Ion Torrent sequencing, SOLiD also uses emulsion PCR which

generates ‘bead’ clones which each contains a single nucleic acid species. Each bead

is then attached to the surface of a flow cells via 3’ modifications to the DNA strands.

At this point, we have a flow cell with millions of beads, each of a single genomic

DNA species, with distinct adaptors on either end being monitored simultaneously via

sequential digital imaging.

Figure 2.8. Workflow of ligase-mediated sequencing approach from ABi SOLiD.
Source: [68]
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Now, the actual base interrogation is no longer done by the polymerase-driven

incorporation of labeled dideoxy terminators but rather by a mixture of labeled

oligonucleotides and queries the input strand with ligase [15]. The technology is also

strange such that each oligonucleotide has degenerated positions at base positions

from 3 to 5, and one of the 16 specific dinucleotides at positions 1-2 from the 3’ end.

Base positions from 6 till the 5’ end of the oligonucleotide are also degenerated and

will hold one of the four fluorescent dyes.

Figure 2.8 provides an overview of steps involved in sequencing DNA fragments

using SOLiD sequencers [68]. The sequencers initially involve annealing a primer,

hybridizing and ligating a mixture of fluorescent oligonucleotides of 8-mers whose 1st

and 2nd 3’ bases match that of the template. The unextended fragments are then

capped with the same mixtures of non-fluorescent probes. Following which,

phosphatase treatment is applied to prevent out of phase ligation and detection of

specific fluorescent dyes takes place. After imaging, the dyes are removed via a two

step chemical cleavage of the three 5’ bases, leaving behind a 5-base ligated probe, a

5’ phosphate. We repeat these steps, this time, querying the 6th and 7th bases. After

~10 cycles, a ‘reset’ of primer is initiated. The initial primer and all ligated parts of

the template are melted and washed away. A new primer that is N-1 in length takes

over and the whole process of sequencing, starting with annealing the primer restarts.

Sequencing by ligation method used in SOLiD sequencers has been reported to have

problem sequencing palindromic sequences [69].

2.3.5 Comparison

Having discussed some of the most popular sequencing technologies, we can infer

that there is no best sequencer for all types of experiments. The type of sequencer

used is largely dependent on the type of data which the experimenters wish to collect

and the budget allowed in these sequencing projects. Table 2.1 shows the
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specifications of some commercial sequencers which are commonly used today [14,

70].

Table 2.1. Comparison between some commercialized sequencing platforms in the
market.

2.4 Origins and representations of sequenced data

Chapter 1 has outlined some of the challenges in aligning sequencing reads to a

reference genome which this thesis tackles. In this subsection, we will highlight some

of the genomic materials which are commonly being sequenced. In addition, we also

describe the two main representations of sequenced reads. In doing so, we present an

overview on how alignment challenges can arise from various sequencing

technologies.

2.4.1 Whole-genome and targeted sequencing

High throughout sequencing technologies have successfully been used to sequence

genome-wide dataset for the study of genome in its entirety. Machines from Illumina

and Roche have much higher throughput and shorter sequencing times as compared to

Sanger sequencing. As such, it is almost always that NGS is picked over Sanger

sequencing to sequence whole genomes. Two main types of projects which are

performed with NGS are the de novo assemblies of whole genomes and the alignment
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of sequencing reads onto assembled reference genomes. In the former type of projects,

scientists construct a reference genome from the sequencing reads to allow the study

of various disease-causing genomic features such as SNPs, indels, structural variants

and epigenetic profiles on it. In the latter, the alignments of the sequenced sample

onto a reference genome are used to uncover some of the mentioned disease-causing

genomic features which are of interest to the scientists. [71] showed that massively

sequenced reads are able to reconstruct mutational signatures on a genome-wide scale

in gastric cancer samples.

However, whole-genome sequencing (WGS) is not preferred when the cost of

reagents far exceeds the requirements of a study. For instance, it will not be cost-

efficient to use GWS to study 10 genomic locations (the human diploid genome has

about 6G locations). Thus, targeted sequencing was developed to sequence a specific

genomic region of interest with high coverage. With high coverage at targeted

genomic regions, mutations can still be studied at the same level of resolution as it is

with WGS. However, by doing so, the amount of reagents used is directly

proportional to the extent of the study and the time used to sequence the sample is

also reduced as compared to Sanger sequencing and WGS. [24] allowed the study of

a rare Mendelian disease through targeted sequencing on a small population and the

identification of the genes responsible for Millers syndrome. Examples of targeted

sequencing are exome sequencing, amplicon sequencing and reduced representation

bisulfite sequencing.

2.4.2 RNA-seq – mRNA

RNA-seq is used to create a profile of transcription levels of all genes in a genome

called transcriptome [34]. The transcriptome is clinically important in genetic

diagnosis as the functional consequences in a cell can be viewed as transcript

sequences in the transcriptome. The transcriptome was first profiled from using

Sanger sequencing on the DNA fragments that are complementary to mRNA
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fragments called Expressed Sequenced Tags (EST) [72]. However, due to the low

throughput of Sanger sequencing, lowly transcribed genes are eluded from detection.

Since NGS can sequence genomic samples with high coverage and throughput,

lowly-expressed transcripts can also be detected and be dynamically quantified

directly to the number of mRNA fragments being sequenced. In addition, the cost of

RNA-seq is also lower than EST sequencing as the required amount of RNA is less

than what is needed for EST sequencing.

2.4.3 Epigenetic sequencing

Epigenetic is the study on the causal effects of the DNA and its products other than

the changes in the underlying sequence. The main types of epigenetic studies enabled

by high throughput sequencing technologies are Chromatin-Immuno Precipitation

sequencing (ChIP-seq) and methylation studies.

ChIP-seq is used to identify the protein-binding sites on the DNA [73]. This is

important as it helps scientists to understand how DNA-protein interaction affects

gene expression. ChIP-seq was preceded by ChIP-chip which requires a pre-designed

microarray and this makes ChIP-chip susceptible to hybridization bias as microarrays

come with a fixed number of probes. ChIP-seq lacks this form of bias as sequencing

technologies can amplify all ChIP-enriched regions and can be applied to genome-

wide discovery of transcription factors, structural proteins and DNA modifications.

DNA methylation is the process of adding a functional methyl group to the cytosine

of the DNA [74]. Changes in DNA methylation influences the expression of genes in

cells and as differentiated cells matured from embryonic stem cells. The methylation

profiles, methylome, of differentiated cells from different tissues are vastly unique to

one another. Knowing that sites of methylation in differentiated cells are specific and

permanent, these cells are prevented to revert back to their pluri-potent state [75]. The

current golden standard to produce a genome-wide methylome of a sample is to do
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bisulfite treatment on the DNA sample. Bisulfite treatment modifies the unmethylated

cytosines to uracils and leaves methylated cytosines unchanged [76]. Upon

subsequent PCR amplification of the bisulfite treated sample, uracils will be

amplified as thymine on the + strand and adenine on the – strand; unmodified

cytosines will be amplified as if DNA-DNA replication is taking place. By using

NGS, each possible sites of methylation can be surveyed at high coverage and give a

finer granularity of methylation rates at each site.

2.4.4 Base-space and color-space reads

Sequenced reads can be stored in various representations and the two most distinctive

representations are base-space and color-space reads.

Base-space reads are stored as a string of characters consisting of “ACGTN”. This

sequence of characters usually represents and can directly translate to the genomic

sequence which was being scanned by the sequencing machines. The character ‘N’ is

to denote a base in the read which the sequencing machine cannot represent with any

of the usual “ACGT” nucleotide characters with high confidence. Illumina/Solexa,

Roche/454 and Life Technologies/Ion Torrent produces base-space reads.
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For SOLiD, a genomic base is interrogated dinucleotide-ly; each color dye represents

two adjacent genomic bases. Figure 2.9 shows how the 16 combinations of di-

nucleotides are encoded by 4 of the color codes. An example color read would be

“T000123100122331100”. The first character, T, is the last base of the primer used

during sequencing and the numbers represents the transitions of genomic bases during

the dinucleotides interrogation. To obtain the reverse-complement of a color read, we

can simply reverse the numerical portion of the read and flip the terminal base from

‘T’ to ‘G’.

Figure 2.9. 2-base encoding scheme used by SOLiD sequencers. Source: [68]

In addition, SNPs are easily identified by two adjacent color mismatches in a read

while aligned to a reference genome. However, it is also this strength that got turned

into a weakness for SNP-rich and bisulfite-treated data. Each base-letter mismatch

will be represented by two adjacent color mismatches instead of one letter mismatch

in other technologies. As there will more color-space mismatches in a color-space

read than base-space mismatches in an equivalent base-space read, computational
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time dramatically increases as we do read-mapping at a much high mismatch number

with color-space reads.

2.4.5 Computational representation of data

Computers run on software which are compiled and then executed as a string of 1s

and 0s on the hardware level. Behind layers of abstraction, the data which we store in

a computer is an ordered string of 1s and 0s; the binary data format. The smallest unit

of storage in a computer is a bit which can represent either a 1 or a 0. Data are often

stored in pre-defined data structure which can be 4 bytes long (1 byte = 8 bits). A 4

bytes long structure, holding 32 bits, can effectively express a large range of numbers.

If we were to use units of 4 bytes structures to store each DNA nucleotide then this

would be putting a lot of bits to waste. As DNA is comprised of only 4 unique

characters, a 2-bit data structure is enough to represent a nucleotide uniquely with

other 3 nucleotides. In the literature, 2-bit encoding is used extensively to optimize

use of space in the storage of DNA and RNA sequences.

In this thesis, we discuss mainly on aligning a read onto a reference genome with high

accuracy and efficiency. To achieve this, we have to build a 1-time index of our

reference genome. The reference genome is now represented as an FM-index [77]; an

opportunistic data structure based on BWT [78] to optimize both space and time

complexity in our alignment algorithms. It supports linear time complexity query

operation, in terms of the query read length, with a Backwards Search routine. In the

following chapter, we will review on other alignments algorithms and the indexing

techniques which they have employed in their respective methods.



33

Chapter 3

3Survey of Alignment
Methods

Alignment of genomic sequences has been tackled since the advent of sequencing

technologies. Pioneering works such as Smith-Waterman [79] and Needleman-

Wunsch [80] has guided the development of genomics when sequence alignment was

still in its infancy. However, as huge technological advancements are made, the

amount of data and the types of sequencing reads which can be generated has

increased dramatically. Therefore it is now essential to have methods which can align

high volume of reads from various wet-lab/dry-lab origins accurately and efficiently.

Hence, a salvo of alignment methods was designed to handle these reads.

3.1 Basics of Genomic Alignments

The aim of all genomic alignment algorithms is to map each query read to a reference

genomic location in which it is originally sequenced from. Given a reference genome

T and a read R, the alignment algorithm may report a list of putative genomic

locations which R is from. These locations are sometimes called hits or mappings.

For each reported location which represents R, the aligner can also report the

sequence of text-edit operations which can transform R into T. The text-edit
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operations are often stored as a string of characters as CIGAR string in a SAM

formatted mapping file [81]. CIGAR is made up of the alphabet {M, I, D, N, S, H, P,

=, X} and the details of each text-edit operation are described in Table 3.1.

Table 3.1. The possible text-edit operations which can be represented by a CIGAR for
the alignment of a query string onto a reference text

Given that R can be transformed into T with a sequence of text-edit operations, we

would often want to find the location in T such that the number of edit operations

needed to transform R into T[loc .. loc + |R| + |gap|] is minimized. Ideally, an aligner

would want to align R onto T perfectly, with no mismatches or gaps between R and T.

However, in the presence of polymorphisms and sequencing errors, it is uncommon to

map R onto T perfectly. As such, a scoring function and scoring matrix can be

designed to account demerits for mismatches, opening gaps and extending gaps

between the alignment of R and T; the function is also known as affine gap penalty

[82]. Thereafter, the best-scoring hit can be chosen from a list of preliminary

candidate hits reported by an aligner.

Aside from alignment-score, an important measure of accuracy in an alignment is the

Phred-scaled [83] mapping quality score or mapQ [84]. This score equals to -10 log10

Pr{mapping position is wrong}. If an alignment is deemed to be wrong, Pr{mapping

position is wrong} = 1 then its mapQ will be assigned 0. In many cases, an alignment

with mapQ=0 is deemed as ambiguous. As the mapQ increases, the likelihood of the

query read being sequenced from the reported location increases too. However, we
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should also keep in mind that a higher mapQ of one read does not mean that it should

be trusted more than an alignment of a lower mapQ. This unreliability of mapQ can

be attributed from how the mapQ calculation functions are designed or even the

alignment algorithms itself.

3.2 Bisulfite-treated DNA-seq aligners

To study the methylation state of a whole genome, the methylome, bisulfite (BS)

conversion of the genomic DNA is performed and the resultant BS-converted DNA is

sequenced with NGS (BS-seq). BS-seq is then mapped to a reference genome and

single nucleotide resolution methylome can be obtained. Although NGS has advanced

the study of the methylome, there are still various challenges to infer the methylome

accurately from NGS data. In this subsection, we will review on these challenges and

the developed approaches which are used to analyze BS-seq data.

3.2.1 Challenges in aligning BS-seq reads

Bisulfite treatment on a DNA fragment causes unmethylated and methylated

cytosines to change to uracils and remains as cytosines respectively [76]. As uracils

behave as a thymine, unmethylated cytosines will be amplified as adenine upon

subsequent PCR amplification for the complementary DNA strand after bisulfite

conversion. As a reference genome will not contain any information of methylation of

its bases, an allowance of mismatches has to be given when aligning unmethylated

cytosines against the reference genome. This will inevitably reduce mapping

efficiency.

Since the methylated state of a base in the sequenced read can only be inferred by

comparing it to its corresponding mapped base on the reference genome, accurate

alignment of BS-seq reads is critical in correctly deriving the methylome. Thus,

special consideration has to be made for induced BS-mismatches when aligning a

read onto a reference genome, discriminating them from sequencing errors and
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polymorphisms. In addition, cytosine methylation is not symmetrical on both strands

of the DNA and candidate alignments on each strand must be examined. If the BS-

reads are from a directional library, then only the DNA fragments from the top

(Watson) and bottom (Crick) strands are sequenced. However, if the BS-reads are

from a non-directional library, all four possible orientations of the DNA fragments

(Watson-forward/reverse and Crick-forward/reverse) can be sequenced. Non-

directional libraries will require aligners to align a BS-read in all of its four possible

strand orientations before the best-alignment can be picked for the construction of the

methylome. Figure 3.1 shows the possible BS-induced conversions that can take

place on cytosines of bidirectional library after bisulfite treatment.

Figure 3.1. PCR amplification of bisulfite treated genomic DNA. The original strands
of the DNA undergo bisulfite conversion with unmethylated-C changing to U and
methylated-C remaining unchanged after the treatment. Methylated (Red) and
Unmethylated (Green).

Apart from allowing a higher number of mismatches when aligning a BS-treated read

onto a reference genome than with an untreated DNA read, an even higher number of

mismatches should be allowed in aligning a BS-treated color read. This is so as a

color base in a color read is called from the consensus of two adjacent nucleotides, a

BS-conversion on one nucleotide will result in two adjacent color mismatches. Thus,

it is also computationally more expensive to align BS color-space reads than BS

letter-space reads. In Chapter 4, we will describe the problem of BS-seq alignment

and our solution to it in more details.
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3.2.2 BS-aligner for Base-space reads

Base-space reads generated by Illumina sequencing technologies will represent

bisulfite mismatches as nucleotides mismatches during alignment. Generally,

alignments of BS-reads are classified into two main types: Methylation-aware and

Methylation-unbiased. After we obtain the mapping locations of the BS-reads,

cytosines on the reference genome will be compared with the letter bases which are

mapped to it. After which, the state of methylation on each possible site of

methylation will be calculated.

3.2.3 BS-aligner for Color-space reads

Each color base in a color read dictates the transition from one letter base to the next

adjacent base. Based on the terminal letter base of a color read, a color read can be

converted into letter-space, a base at a time, by using the color-to-base transition

matrix described in Chapter 2. However, if any of the color bases are erroneous

resulting either from sequencing errors or genomic variations, this naïve conversion

from color-space to letter-space will not be suitable. By using the color-to-base

transition matrix on a mismatched color base, cascading base-letter mismatches will

be introduced after the mismatched color base as the color error is carried forward

throughout the whole read when the conversion takes place. Due to this problem, in-

silico conversion of cytosine to thymine is not advisable and unbiased methylation

mapping is often opted out in these alignment tasks.

As each color base is interrogated from two nucleotides of a read, a letter-mismatch

in the sequenced read will introduce two adjacent color-base mismatches into a color

read. Hence, the same number of BS-induced conversion in a read will usually need

to be aligned at a higher mismatches setting when in color-space than in base-space.

Due to this, more computations are needed to align color-space BS-reads. However,

with the prior knowledge of methylation in various genomic contexts, we can apply

in-silico bisulfite conversion to the reference genome in hope to reduce the number of
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mismatches needed to scan a BS-read against a reference genome. For most of the

eukaryotic genomes, less than 5% of the methylation happens in non-CpG context

[85]. Given this information, we can prepare an in-silico conversion of cytosine to

thymine in non-CpG context of the reference genome prior to having BS-reads

mapping on it. In all, this is not an unbiased approach to do bisulfite mapping but it

does reduce the required number of mismatches which an aligner need to scan a

color-space BS-read against the reference genome. Semi methylation-aware mapping

can be incorporated into an unbiased aligner to improve mapping sensitivity but

remapping reads which cannot be mapped unbiasedly. With the right set of heuristics,

this 2-phase alignment strategy can improve mapping sensitivity and accuracy

without much impedance on its speed [86].

3.2.4 Methylation-aware mapping

In methylation-aware aligners, cytosine in a BS-read is assumed to be sequenced

from an original methylated cytosine, whereas, a thymine is assumed to be either

from an unmethylated cytosine or thymine. These assumptions encapsulate all

possible combinations of cytosine and thymine that a BS-read can have at the

positions reading cytosine and thymine. For example, if a BS-read is to be sequenced

with 10 cytosines and thymines then a methylation-aware aligner will try to map 210

possible representations of this BS-read onto the reference genome; permuting

between cytosine and thymine at those 10 positions. Due to the amount of search-

space which the aligner searches through, it is able to produce the highest possible

sensitivity of mapping rates.

At the expense of high mapping sensitivity, there is a reduction in speed and also

overestimation of methylation levels. In methylation-aware alignment, the reference

genome is used in its whole original state; assuming full methylation throughout the

genome. As such, methylated sequences will map to the original genome more easily
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than sequences of lower methylation rates. This directly causes an overestimation of

methylation levels from the mappings of methylation-aware aligners.

An example of methylation-aware aligner is SOCS-B [87]. SOCS-B starts an

alignment of a color read by first converting it into base-space. Four translations are

computed, starting from all four possible nucleotides as the terminal base instead of

the terminal primer base provided by the original color read. The substrings of the

translated reads are enumerated in ternary to form a partial hash over positions

represented by a cytosine or thymine. The mapping algorithm is based on an iterative

version of the Rabin-Karp algorithm and generates candidate genomic locations of

the partial hash. SOC-B then uses dynamic programming and base qualities to

compute the most probably methylation state for each cytosine. The optimal

alignment should have the least number of color-space mismatches with respect to the

reference genome.

3.2.5 Unbiased-Methylation mapping

Fundamentally different from methylation-aware aligners, unbiased-methylation

aligners convert cytosines in the BS-reads and reference genome to thymines prior to

alignment. This assumes the BS-reads to be fully BS-converted due to the absence of

methylation throughout the experimental data. Since both the reference and read has

all its cytosines being changed to thymines, the methylation state of either the

reference or the read will not affect the alignment of such an in-silico converted read

and will not incur any biased estimation of methylation state after alignment. Since

the BS-read and genome now assume same state of methylation and assuming we

have error-free reads, using a DNA-seq aligner will already enable us to align the

converted BS-read onto the converted reference genome with an exact match.

With unbiased mapping, this type of alignment for BS-reads also has some

shortcomings. Due to this in-silico conversion of cytosines to thymines, the alphabet
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size of the data gets reduce from 4 to 3; the complexity of the data is now greatly

reduced. Thus, it has become harder to map such an in-silico converted BS-read onto

a similarly converted genome unambiguously. Hence, unbiased-methylation aligners

generally yield lower mapping efficiency than methylation-aware aligners.

Some of the BS-aligners which fall into this category are Bismark [88], BRAT [89,

90] and BS-Seeker [91]. Bismark and BS-Seeker are based on Bowtie as a pre-

mapping tool. These two methods prepare in-silico fully converted references prior to

alignment. Bismark synchronized the threads of Bowtie to consider methylation level

for each read on-the-fly but is slowed down due to synchronization of threads. BS-

Seeker outputs the preliminary alignments of each thread into separate files and post-

process these alignments but have to take up additional storage prior to the

consideration of methylation levels for each read. BRAT-BW implements an FM-

index alignment routine from scratch to avoid the problem of synchronization and

large temporary storage from using an auxiliary program as a pre-mapping tool.

BRAT-BW also guarantees to find all alignments if there is at most one mismatch in

a prefix of length 32-64 bp (user defined) of the read.

3.2.6 Semi Methylation-aware mapping

Due to the difference of methylation levels on different genomic contexts, in silico

conversion of the reference genome can be done to allow for methylation-aware

mapping or unbiased methylation mapping on different parts of the genome. A semi

methylation-aware mapping approach to profiling human methylome is to do

unbiased mapping only in CpG context and methylation-aware mapping in non-CpG

context. This approach is used to improve mapping sensitivity of reads by utilizing

prior knowledge of expected methylation levels in different genomic contexts as

studied in [92]. If such an aligner is used to map BS-reads from flowering plants to a

reference genome, the aligner would probably do unbiased mapping in non-CHH (H

= A, C and T) context, and methylation-aware mappings in CG and CHG contexts.
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The gain in mapping sensitivity comes at the expenses of similar but milder

drawbacks seen by methylation-aware aligners.

An example of an aligner that depends on such a mapping strategy is RMAP [93] and

PASS-bis [94]. RMAP uses wildcard matching for positions represented by thymines

and thus only maps unbiasedly in CpG genomic context; it performs biased mapping

in non CpG genomic context. PASS-bis can map both base-space and color-space

reads. While it does map base-space reads unbiasedly, it does not do so for color-

space reads. Due to the fact that PASS-bis converts a color-space read to base-space

read prior to mapping, the base-space read could be mis-represented by the reference

due to cascading errors due to this conversion. In order to maximize the mappability

of each color read, PASS-bis performs a secondary phase of mapping based on the

combinatorial assortment of genomic C-T conversions which is methylation-aware

mapping. As this second phase of mapping is slow, it is implemented as an option in

PASS-bis and even if it is used, it will only be activated when the read fails to map

onto the in-silico fully converted reference genomes unbiasedly.

3.2.7 Comparison of BS-Seq Aligners

In the previous section, we have reviewed on three approaches which are used to

align BS-seq reads and the two types of reads which can represent such reads. Below,

we summarize the details of the different BS-seq alignment methods for the analysis

of methylome in Table 3.2.
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a. Alignment output.
b. Methylation call output.
c. Methylation caller.
d. Summary of methylation level.

Method Bismark BRAT-BW BSMAP BS-Seeker PASS-bis RMAP-BS SOCS-B B-SOLANA
Reference [88] [90] [95] [91] [94] [93] [87] [96]

Mapping strategy Bowtie FM-index SOAP Bowtie PASS
Positional

weight matrix
matching

Robin-Karp
algorithm Bowtie

Read-space Letter Letter Letter Letter Letter/Color Letter Color Color
Paired-end mode Y Y Y N Y N N N

Methylation-aware
mapping Unbiased Unbiased Biased Unbiased Semi Semi Biased Biased

Best Alignment
criteria

Lowest
number of non

BS-
mismatches

Lowest
number of

mismatches
OR non BS-
mismatches

Lowest
number of

mismatches

Lowest
number of

mismatches

Lowest
number of non

BS-
mismatches

Lowest
number of

mismatches

Lowest number
of non BS-
mismatches

Lowest
number of

mismatches

Output a,b,c,d a,c a,b a,b a,b a a,b a,b

Advantages Speed Speed - Speed Sensitive -
Full

methylation-
aware

Speed

Disadvantages - - Speed - -
Speed and

semi-biased
mapping

Speed -
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3.3 Gapped DNA-seq aligners

In numerous studies of Mendelian diseases, periodic sequences are found to be

mutagenic and context of deletions and insertions in human coding sequences are

investigated for possible onsets of diseases [97, 98]. In the case of cancers,

differential mutational studies are also carried out to identify somatic differences

between normal and tumor tissues. For instance, the identification of aberrant gapped-

integrations of hepatitis B virus into the genomes of its hosts will increase the chances

for the onset of malignant hepatoma [99]. All these studies using DNA-seq data

would not have been possible without the advent of gapped DNA-seq aligners.

In order to improve space-time efficiency in the alignment of the voluminous data

brought about by NGS, aligners use indexing strategies to achieve this. Indexing

approaches can be sub-divided into two main groups based on whether the reference

genome or query reads are indexed. Methods such as BWA [100, 101], Bowtie [102,

103], SOAP [104, 105], Novoalign [106], Stampy [107], PASS [108], CUSHAW

[109, 110], SRmapper [111], SeqAlto [112] index the genomic reference. On the

other hand, Eland [113], RMAP [114], MAQ [84], SHRiMP [115, 116] and ZOOM

[117] index the query reads and map them back onto the genomic sequences.

In general, gapped DNA-seq aligners can be classified in many ways. In this thesis,

we classify aligners based on their indexing strategies: hash based, suffix-trie based

and merge-sort based approaches. With the context of this thesis in mind, we will not

describe the details of the merge-sort based approach; SliderI/II. Readers who wish to

understand how merge-sort is applied to the alignment of genomic data can refer to

[118, 119].

Gapped aligners mostly involve finding a list of preliminary candidate mapping

locations by aligning a subpart of the read onto the reference with a technique called

seeding. After which, a secondary step takes place by locally aligning the query reads
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with each of the candidate locations, also known as extension phase, before the best-

scoring local aligned location is reported to the user. The secondary step is

computationally expensive and is the main reason why gapped alignment was

avoided in the past for short (~36 bp) reads. There have also been some works

revolving around hardware acceleration to improve the execution timings of local

alignment [120, 121]. In general, seed-and-extend strategy dominates the field of

aligning NGS reads.

In recent advancements of alignment methods, the reference is indexed instead of the

query reads. This has the advantages of the programs’ working memory being

independent and execution times directly proportional to the input query sizes.

3.3.1 Challenges in Gapped Alignment

During the early development of alignment algorithms for NGS reads, a number of

aligners [84, 100, 102, 114] were developed. These aligners map a query read onto a

reference genome within a number of mismatches only; this type of alignment is also

known as ungapped alignment. Due to the limitations of past sequencing technologies,

the lengths of reads range from ~25 bp to ~36 bp long. The short read-lengths slow

down most algorithms due to its redundant representation in the large reference

genome and makes gapped alignment infeasible. However, due to recent

advancements in sequencing technologies, read-lengths can reach as long as ~100 bp

and ~250 bp from Illumina GAIIx and MiSeq machines respectively. The lengthened

read lengths have now made gapped alignment tractable.

As reads get longer, they will more likely contain more SNPs, indels and structural

variations in them than shorter reads. Ungapped alignment was not sufficient to align

them back onto a reference genome and gapped alignment becomes critically

important in aligning NGS reads. In Chapter 5, we will describe the problem of

gapped RNA-seq alignment and our solution to it in more details.
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3.3.2 Hash/Seed based Approaches

Hash based approaches stem from the first hash-based algorithm, BLAST [31], and

follow the seed-and-extend paradigm. Since the publication of the BLAST paper,

many developments have been made to its original seeding idea to handle more

features which are present in NGS reads. As mentioned before, many aligners follow

the seed-and-extend paradigm in the alignment of a query read. In the following

subsections, we will report on the different seeding methodologies which have been

developed.

3.3.2.1 Seeds

The most primitive type of a seed is a contiguous substring of the query read. Seed is

also termed k-mer and is usually referred to a specific n-tuple of nucleotides or amino

acid sequences. Pioneering aligner for NGS reads such as BLAST uses 11-mers (for

DNA sequences) to seed the alignment query. Subsequently, BLAT [32],

MegaBLAST [122] and YAHA [123] were developed to use 11-mer, 28-mer and 15-

mer respectively.

By using a seed instead of the original query string for alignment, we can

theoretically increase the sensitivity of the method. As a seed is much shorter than the

original query read, it will have a higher chance of finding an exact representation of

itself in the reference genome. However, due to the reduced informational content in

the seed (trimmed from the query read), it is now less unique and can be spuriously

represented by many regions of the reference genome. In a seeding approach, the first

task is to identify all possible locations to which the original read can be aligned to.

Next, an extension step is performed on the seed on the candidate locations to pick

the best scoring alignment candidate location to report to the user.
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3.3.2.2 Mismatch-seeds

If the correct alignment of a query read lies in a SNP-dense region of the DNA, a k-

mer seed might miss it and, worse, other seeds may report a false-positive hit to the

user. To resolve this shortcoming, mismatches can be allowed in a seed to avoid

missing the correct alignment during the initial seeding-phase of the alignment.

To the best of my knowledge, RMAP [114] is the first method to use mismatch-seed

in the alignment of sequenced reads. RMAP uses a different set of seeds to achieve

full sensitivity of k-mismatches through the use of k+1 seeds [124]. According to the

pigeonhole principle, if we are to partition a k-mismatch read into k+1 equal adjacent

and non-overlapping seeds, then at least one of the k+1 seeds can be represented

exactly in the reference text. RMAP first identifies locations in the reference genome

where the seeds can be matched exactly. Exact matching is preferred as it can be

executed more efficiently than approximate matching and only the regions outside of

the seeds need to be realigned during the extension-phase of the alignment. The

disadvantage of this seeding approach becomes obvious when k is large and each

mismatch-seed is small. Ultra-short seeds will return too many spurious candidate

locations for the extension-phase to work with and such seeding approaches will take

a great hit on its running time.

3.3.2.3 Spaced-Seeds

From the use of contiguous bases as a seed, we are faced with two conflicting

performance factors which aligners are designed to improve on: Speed and Sensitivity.

In a seed-and-extend paradigm, an aligner would want to minimize the number of

local alignments as it is a computational expensive procedure. With this in mind,

better filtration methods are designed so that the seed-phase of the alignment will

return a minimal set of candidate locations, preferably with one of the seeds

representing the correct location of the query read, for the extend-phase of the aligner
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to work with. As such, spaced-seeds are developed as a filtration technique to achieve

a balance between these two conflicting performance factors [125].

A spaced-seed is a seed which can be specified using a sequence of 1’s and 0’s. From

the name, we can guess that some of the positions in a spaced-seed will be sampled

and some will not be sampled, allowing mismatches between itself and the reference

sequence internally. A query performed with a spaced-seed will use it as a template

and skip the sampling of bases between the reference and the underlying read-

sequence which are marked by a 0 in the template spaced-seed. For instance, use of

spaced seed in PatternHunter showed that a template ‘111010010100110111’ can be

~50% more sensitive than BLAST’s default 11-mer seed for two sequences of 70%

similarity [126].

Pioneering aligner based on the use of spaced-seed for filtration, Eland [113] used six

spaced-seeds to span the entire query read. The scanning of the six seeds will ensure

that a two-mismatch query read (with respect to the reference), regardless of the

mismatches’ positions in the read, will be represented by at least one of the seeds.

MAQ extended the idea of 6-template-2-mismatches from PatternHunter to guarantee

recovery of k-mismatches hit of a query read. However, to provide full sensitivity,

MAQ required spaced-seeds to guarantee full sensitivity of k-mismatches

mappings. Due to the large number of seeds needed to be scanned, MAQ guarantees

full sensitivity by only using the spaced-seed seeding approach on the first 28 bp

segment of the read with at most two mismatches. Usually the first k-bases from the 5’

end of a sequenced read is selected to seed a query as it is shown to contain less

sequencing errors [127]. Once the spaced-seed returns a partial match, the seed match

is then fully extended to the full read length.
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For the design of a minimum set of spaced-seeds to achieve certain sensitivity

requirement and memory usage on a given read length, readers can refer to ZOOM!

[117] for more details.

3.3.2.4 q-gram Filter

The primitive approach to recover indels from a short read is to anchor parts of the

query string onto the reference in the seeding-phase and the indels are recovered in

the extension-phase by using SW-algorithm. Indels can be recovered using this

primitive seeding approach, albeit small indels of 1-3 bp [104] and mis-alignments.

In the previous seeding approaches, the candidate hits from one long seed will

undergo the extension-phase of alignment. A q-gram is similar to a contiguous seed

but by using q-gram filter as a filtration step, the extension-phase is only initiated on a

cluster of localized seeds which shares t matching q-grams instead of partial matches

from a single long contiguous seed. The q-gram filter is based on the observation that

if the query string has at most k mismatches and gaps, then both the query string and

the reference of length w will shares at least t = (w+1) – (k+1)q common q-grams

[128, 129]. Based on q-gram filter, SHRiMP [115, 116] and RazerS [130, 131] are

able to build an index which innately allowing gaps during the seeding-phase of an

alignment. A more recent variant of q-gram filter can be seem in MASAI [132] where

a set of multiple seeds are searched simultaneously on an additional index to speed up

alignment by 11.9x as compared to RaserS 3.

3.3.3 Prefix/Suffix trie based approaches

In trie based aligners, the seed-phase and extension-phase of alignment correspond to

the exact string matching problem and inexact string matching problem respectively.

For these aligners to find an exact match to substrings of the query reads, they have to

build an index of the reference genome using data structures based on FM-index [77],

suffix array [133] and suffix tree [134]. The advantage of searching a query string
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against a trie-based index is that identical substrings of a reference genome need to be

searched only once as identical substrings will collapse into a single traversal path in

the trie. As opposed to the trie-based index, identical substrings of the reference

genome are not always represented by the same entry in a hash table and thus

alignment needs to be performed on each identical copy of the reference.

The first uses of trie in aligners are mainly based on suffix tree and can be traced back

to MUMmer [135] and OASIS [136]. However, the disadvantage of using suffix trees

as the search index is huge memory-space requirements. An immediate improvement

on suffix tree, with respect to space-efficiency, is the development of suffix array (SA)

based on Farach’s [137] optimal linear time suffix tree construction algorithm.

However, the sizes of the index built, based on suffix tree and suffix array still require

more or equal memory than the reference itself. Due to the fact that reference

genomes can be very large and is best to reside entirely in the working physical

memory of the computer during alignment, the development of genomic index-

building algorithms was motivated towards building a space-efficient index such as

one based on enhanced suffix array (ESA) [138] and FM-index which require only

space within the size of the reference or even less.

Vmatch [138] and Segemehl [139] are based on ESA which consists of an SA and

auxiliary arrays. Theoretically, ESA is able to store each nucleotide at the cost of 6.25

bytes. Since ESA is a succinct representation of the suffix tree, they allow exact

queries at the same time complexity of suffix tree while requiring lower space-

requirement needed to index the reference than SA. A further improvement on space-

efficiency was achieved through the use of FM-index which is a compressed full-text

substring index based on Burrows-Wheeler transform [78]. It was also observed by

the inventors of the FM-index that the descendant of a node in a prefix trie can be

located in constant time by performing a backwards search on this data structure

which allows it to have the same time complexity of performing exact matches with
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that of a trie. Some pioneering genomic aligners which use FM-index are Bowtie,

BWA and SOAP2. The FM-index is the most used trie-based index due to its minute

memory footprint. GEM [140] is shown to be the fastest aligner by our benchmarks in

the later chapter of this thesis and is based on the FM-index.

3.3.3.1 Inexact Matching using Trie

As noted from above, aligners are based on different trie-related data structures but all

of them can be translated into one another without any loss of information. Trie is

excellent in finding exact matches as all identical copies of substrings from the

reference are collapsed into a single traversal path but it is not ideal for using inexact

matches. Inexact matching is performed on trie by introducing mismatches and/or

gaps when the alignment progresses in a depth-first traversal on the index. These

introduced mismatches make the search space grow exponentially and affects

alignment speed dramatically.

In order to curb the effects of performing inexact matching on trie, aligners have their

algorithms designed to only explore a portion of the search space. With the illusion of

a pruned search space, aligners hope to achieve speedups with minimal impact on

sensitivity and accuracy of alignments in such a designed search/trie-traversal

algorithm.

MUMmer, Vmatch, CUSHAW2 and YAHA anchor the alignment with exact matches

and join these exact matched segments with gapped alignment. In addition, Segemehl

tries to align the longest exact prefix of each suffix but also introduces mismatches at

certain positions of the query read to reduce false alignments.

OASIS and BWT-SW searches substrings of the reference by a depth-first traversal

on the trie and align these substrings with the query strings by dynamic programming.

BWA-SW extends from BWT-SW [141] by representing the query string as a

directed words graph which enables it to deploy heuristics to speed up alignments.
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As dynamic programming using SW/NW-algorithms is much slower than a linear-

time exact matching between the query string and the reference BWT-index, it was

avoided as much as possible in Bowtie and BWA. Instead of realigning the short

substrings of the reference with the query string, the query and substrings of the

reference are only being compared if they are within a number of mismatches else

those substrings will not be considered for alignment with the query read. As BWA

and Bowtie align a query read by the traversal of an FM-index, it can determine the

pruning of some branches in the search space that will result in excessive number of

text-edit operations between the query read and reference genome on-the-fly. BWA

further speeds up gapped alignment by performing a banded-SW algorithm and

employing MegaBLAST’s X-Dropoff heuristic for the extension of it seeds.

Bowtie2 samples a set of 22-mer seeds from the query string using exact matching.

The seeds are extended to their full length by dynamic programming in order of their

frequencies of occurrences in the reference genome as indicated by their suffix array

intervals. The prioritized seeds are realigned using hardware accelerated versions of

SW/NW-algorithms with Streaming SIMD Extensions 2 (SSE2) hardware

instructions for speed.

GEM uses region-based filtration technique to speed up exhaustive alignment of its

query string. This technique identifies non-overlapping regions which are non-

repetitive (less than certain number of occurrences in the reference) for the extension-

phase. The seeds are extended using Myer’s fast bit-vector algorithm in GEM. GEM

can align up to several times faster than Bowtie2 and BWA as the filtration technique

used greatly reduced the number of candidate reference positions needed to be

extended by dynamic programming.
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3.3.4 Hardware acceleration of seed-extension

During the implementation of algorithms, source codes are written in a rather

sequential manner but they do not need to be interpreted and executed in a sequential

manner. By exploiting the features of modern hardware and application programming

interface, performance of sequential programs can be improved. Many aligners are

able to achieve decent speedups by introducing elements of concurrency into their

algorithms. Three main exploits which current aligners have in them are multi-

threading capabilities on multi-core system, Single-Input-Multiple-Data (SIMD)

instructions and Graphics Processing Units (GPUs) accelerations.

Since the introduction of multiple-core central processing units (CPUs) into bench-

top personal computers, coders have tried to fully utilize the availability of

computational power on these processors by having multiple threads of their single

program to run in parallel on a single computer. Since the memory-overheard

incurred by an addition thread of operation in genomic alignment is small, using a

shared-memory policy within a single execution process such as CUSHAW2. As such,

multi-threading is preferred by current users of genomic applications.

In genomic applications, due to the alphabet size of data being handled, 2-bit

encoding is often used, and many indexing and alignment operations can be seen as

bit-based operations. In the extension-phase of alignment, the binary bits that

represent the query string and reference text can be fetched into the registers of the

CPUs such that a single instruction can operate more bits than it would normally. A

common application of SIMD acceleration [120, 121] is in the SW/NW-algorithm

routine used in the extension-phase of aligners such as Bowtie2, SHRiMP and

Novoalign.

GPUs are also gaining popularity in genomic applications. CPUs are designed with a

few computational cores for serial processing while general purpose GPUs consists of
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thousands of smaller computational cores which are designed for parallel processing

of users-customized code [142]. More than often, the alignment of a genomic DNA

fragment is independent of the alignment of other fragments and executing them in

parallel is possible without affecting the end-results of each individual alignment. By

using GPUs over CPUs in genomic alignment, SOAP3 [143] was able to achieve tens

of times speedup over SOAP2 [105].

3.3.5 Comparison of Gapped DNA-Seq Aligners

In the previous section, we have reviewed on two indexing strategies and two

mapping approaches for aligning gapped reads. In Table 3.3, we summarize the

details of different gapped alignment methods together with a short description to

each of them.
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Table 3.3. Methods for gapped alignment and their respective main indexing/mapping strategies

Methods Index Type of Mapping Approach Description Reference

Reference Read Hash-based BWT-based

BFAST X X Uses empirical derived seed template for mapping
fixed read lengths and genome sizes [144]

BLASR X X Maps PacBio reads with successive refinements to
the local alignments of the seed locations [145]

Bowtie X X
Bowtie1/2 aim at fast and sensitive mappings of
reads. Version 2 targets longer reads and can do
gapped alignment too

[102, 103]

BWA X X
BWA-short targets short reads of ~100bp with low
(~3%) error rate. BWA-SW targets longer reads up
to 10kbp with higher error rate

[100, 101]

CloudBurst X X Uses Hadoop MapReduce framework to do
alignment in the CLOUD [146]

CUSHAW2 X X
CUSHAW1 is targeted for CUDA-enabled GPUs.
CUSHAW2 (-GPU) is targeted for long read
alignment for CPUs (GPUs).

[109, 110,
147]

Eland X X First NGS short read aligner. Allows up to two
mismatches in an alignment [113]

GEM X X
Based on adaptive region based filtration technique
for sensitive and extremely fast alignment
efficiency

[140]
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GNUMAP X X Targets accurate gapped alignment of Illumina
reads [148]

Hobbes X X Reports multiple putative mappings fast [149]

MAQ X X First program to use posterior mapping score to
disambiguate multiple candidate mappings [84]

Masai X X Uses approximate seeds to speed up alignments [132]

MOM X X Identifies the maximal length match within the
short read. [150]

Mosaik X X Uses banded SW-algorithm for extending seed
locations [151]

mrFAST X X

Uses cache oblivious memory technique to
minimize memory miss-transfers to speed up
gapped alignments of letter-space reads. mrsFAST
is ungapped version of mrFAST. drFAST is
designed for color-space reads.

[152-154]

Novoalign X X
High sensitivity and specificity alignments. Uses
base qualities in all steps of alignments and output
good calibrated posterior mapping quality scores

[106]

PASS X X Alignment of words are pre-computed from the
hashed index of the genome [108]
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PerM X X Uses periodic seeds to quickly find alignments of
up to four mismatches with full sensitivity [155]

ProbeMatch X X
Uses gapped q-grams and q-grams of various
pattern to identify seeding locations from a
reference

[156]

RazerS X X
No restriction on read length. Seeds can be
designed with predictable tradeoff between
sensitivity and speed

[130, 131]

REAL X X Targeted at fast, accurate and sensitive mappings of
single-end reads [157]

RMAP X X Can map reads with an arbitrary numbers of
mismatches [114]

SeqAlto X X
Uses adaptive seeding approach to terminate
alignment when alignment reaches certain
confidence for reporting

[112]

SeqMap X X Can align up to a mixture of 5 mismatches and gaps
between the reference and the read [158]

SHRiMP X X Aims at accurate mapping of color-space reads.
Version 2 index the reference instead of the reads [115, 116]

Slider Merge-sort
Reduces the percentage of base call error
mismatches in an alignment; produces high SNP
discovery rate

[118, 119]

SOAP2 X X
Fast and accurate alignments on a wide range of
read lengths. Improved version of SOAP1. SOAP3
is akin to GPU-enabled SOAP2.

[104, 105,
143]
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SRmapper X X Small memory footprint. ~2.5GB for human
genome. [111]

SSAHA2 X X Fast alignments for reads of small number of
variants [159]

Stampy X X
High sensitivity of reads with high percentages of
variants in them. Very slow but can be sped up by
using BWA as a pre-mapping tool

[107]

Subread X X Uses novel 'seed-and-vote' paradigm to perform
fast alignments [160]

YAHA X X Recover optimal breakpoints of alignments for
structural variation detection [123]

ZOOM X X 100% sensitivity of reads between 15-240bp with
reasonable number of mismatches and gaps. [117]
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3.4 RNA-seq aligners

RNA, together with DNA and proteins, is one of the three major macromolecules

which are needed for life. Pre-mRNA is synthesized from the DNA in a process

called transcription and is matured by having its introns removed in eukaryotic cells

[161]. In mammalian genomes, alternate splicing of the same gene region adds onto

the genomic complexity by generating multiples variants of a single gene known as

mRNA isoforms [162]. The disruption in the synthesis of mRNA isoforms can cause

genetic diseases [163, 164].

Since it is motivating to produce a map of genes together with their expression level

on the genome-wide scale across various cell types, it is critical to annotate a

transcriptome efficiently and accurately. The prevalent method for producing a

genome-wide gene-map requires the costly and low-throughput method of applying

capillary sequencing on cDNAs or expressed sequence tag (EST) fragments [72]. Due

to the usage of low-throughput sequencing, the true complexity brought about by

alternate splicing to isoforms and cell-type specific splicing events cannot be studied

in depth without the advent of high-throughput method. Alternatives to capillary

sequencing of ESTs are tiling arrays and splice-aware microarrays. Tiling arrays are

able to interrogate larger transcribed regions but at limited resolution [165]. As for

SJ-aware microarrays, they are fabricated with probes which hybridize to known

RNA sequences and will not be suitable to quantify expression levels of novel or

unrepresented genes [166, 167].

Due to the advent of NGS technologies, we are able to sequence the cDNAs derived

from RNA fragments using NGS technologies [34]. This gave rise to high throughput

sequencing of RNA fragments which we know as RNA-seq. Methods such as

Exonerate [168] and BLAT [32] which are designed for the alignment of capillary

sequencing technologies are now unable to map voluminous NGS data within

competitive timings. In order to improve space-time efficiency in the alignment of
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RNA-seq data, computational tools have to be developed to deliver unparalleled

performance for the alignment of RNA-seq reads.

Akin to the analysis of DNA-seq datasets, the first step of analyzing RNA-seq

datasets is to align the RNA-seq reads back onto a reference genome or transcriptome.

Given the myriad of aligners developed in the recent years, we are able to group those

aligners which targets RNA-seq reads into two main groups based on their read

mapping strategies: Unspliced and Spliced aligners.

3.4.1 Challenges in RNA-seq Alignment

The goal of RNA-seq alignment is the resolution of the gene-map with all exact splice

junctions annotated in it for different types of cells. Although the main challenge in

gapped DNA-seq alignment is similar to RNA-seq alignment, the task of RNA-seq

alignment is tougher as reads now need to be split into smaller k-mer for

identification of small-exons (<20 bp) too. Shorter read fragments will be harder to

map unambiguously and will be more computationally expensive to resolve during

the extension phase of the alignment. In addition, accurate detection of split junction

without prior knowledge of splice signals is still an open problem especially in lowly

transcripted regions. To make matter worse, canonical splice signals are ubiquitous in

both transcripted and non-transcripted regions.

The presence of unexpressed genomic sequences, which are similar to concatenated

sequences of multiple exons also, poses problem to the accurate alignment of RNA-

seq reads. These regions, which are known as pseudogenes [169], are not transcripted

from the genomic DNA into mRNA sequences and should not have RNA-seq reads

mapping to it. However, due to the case whereby multi-exons spanning reads may

map to these regions, without splicing, poses a great challenge to exon-first method.

Seed-and-extend methods will also face problem in determining if an unspliced full

alignment of a RNA-seq read should actually be spliced or not.
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In Chapter 6, we will describe the problem of spliced RNA-seq alignment and our

solution to it in more details.

3.4.2 Unspliced/Annotation-guided Aligners

The unspliced aligners are mostly as described in the previous section of gapped

aligners. In the aspect of RNA-seq, unspliced aligners are mostly used to align RNA-

seq reads to the assembled transcriptome without having the need to allow for large

intronic gaps during alignment. Due to the use of the assembled transcriptome,

unspliced aligners are also known as annotation-based aligners in the literature.

Unspliced aligners are used when de novo detection of splice junctions is not needed

and are great for mappings reads against a well annotated transcriptome for

quantification studies [170-172]. Some examples of unspliced aligners are ERANGE

[170] and RNA-MATE [173].

ERANGE begins by mapping reads onto the DNA reference genome. Reads that

cannot map onto the DNA reference will be mapped again onto a known

transcriptome. Highly reliable ambiguous mappings from the previous 2-step

alignment will be used to calculate the Reads Per Kilo Megabases (RPKM) of

putative transcripts. Lastly, the assignment of ambiguous mappings to the current

transcriptome will be based on the previously calculated RPKM as a form of

weightage.

RNA-MATE is developed for aligning color-space RNA-seq reads. It follows a

similar 2-step alignment strategy used in ERANGE. However, it is largely based on a

recursive methodology as a read is truncated if it fails to map to a known

transcriptome or DNA reference. The process of truncation is repeated until the

truncated read length reaches a certain lower limit or is can be mapped using the 2-

step alignment strategy. RNA-MATE also provides an option to use ambiguous
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mappings from the alignment step for the quantification of expression transcripts.

RNA-MATE is now superseded by X-MATE [174].

3.4.3 Spliced Aligner

Unlike unspliced aligners, spliced aligners align RNA-seq reads back onto a genomic

DNA reference genome consisting of adjacent exons and introns in it. Spliced

alignment was generally evoked by the longer read lengths that are introduced by

improved sequencing technology. The transcripts represented by NCBI Reference

Sequence Database (RefSeq) [175, 176] are downloaded and used as an oracle set for

BEERS [177] to simulate RNA-seq reads from. On 76 bp, 100 bp and 120 bp of 2

millions simulated reads each, it was observed that there is 17.8%, 22.4% and 25.5%

of reads spanning across two or more exons respectively. With increasing read

lengths generated by improving sequencing technologies, it has become more

important for aligner to handle spliced alignments more efficiently and accurately.

Spliced aligners can generally be classified into two categories based on their method

of detecting splice junctions - Exon-first and Seed-and-Extend. We will also describe

learning-based approaches which is a sub-class of spliced aligners here.

3.4.3.1 Exon-first Approaches

Aligners which are categorized as exon-first approaches map the original RNA-seq

reads onto a DNA reference first. This initial alignment step will only align reads

which do not span across exon-exon junctions successfully. Hence, they are named

“exon-first” approaches. This step essentially quantifies transcript abundance using

only exonic reads and does not identity the exon-exon breakpoints. The mapped

exonic reads are used as a guide to guide the detection of splice junction in the latter

extension step. TopHat [41] and G-Mo.R-Se [178] to incorporate the mappings of the

exonic reads to guide the alignment of non exonic reads. The downside of this

approach is that sufficient coverage is needed to be provided by the exonic mappings

before it can be used to align non exonic reads confidently.
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The unmapped reads from the initial alignment step are now split into shorter

fragments and aligned independently. Since the fragments are now shorter, they stand

a better chance of aligning exactly onto the DNA reference. From before, we know

that a shorter read will produce spurious seeding locations but will allow full-read

which are unable to map exactly before to be able to be mapped onto the reference

now. Due to this, more computational effort needs to be spent on realigning the many

alignments that may be returned from the shorter mapped read lengths to their full

read-length. However, exon-first aligners can be very efficient as minority of reads

would need this computationally expensive step.

Some examples of exon-first aligners are GEM (splice alignment module) [140],

TopHat1/2 [41, 42], MapSplice [37], SpliceMap [40], SOAPsplice [179] and

PASSion [38].

3.4.3.2 Seed-and-Extend Approaches

This class of spliced aligners begins aligning reads onto a DNA reference by splitting

them up into smaller fragments. The candidate alignments of these fragments are then

used to localize the actual alignment of the original read. By merging initial seeding

alignments, local realignment, the seeding alignments of the split fragments can

extend toward one and another to the original full read length. Some methods of this

approach are QPALMA [39], GSNAP [180], Supersplat [181] and STAR [35].

Recently, seed-and-extend strategy are also extended to consider a read as a

concatenation of multiple smaller read fragments by using multiple seeds in the

alignment of the reads. These methods include CRAC [182], OLego [36] and Subjunc

[160].

For both exon-first and seed-and-extend approaches, it is possible to align flanking

intronic dinucleotides to known canonical splice signals to increase the reliability of

detecting novel splice junctions and recover short-overhangs.
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3.4.3.3 Learning-based Approaches

One of the earliest RNA-seq aligner is QPALMA [39] which is a spliced aligner. It is

based on a learning algorithm, support vector machines (SVM) [183], to learn how

splice junctions are positioned on a reference genome by training with a known set of

spliced mappings. However, the performance of this strategy relies heavily on the

completeness of the underlying reference transcriptome for efficient and accurate

alignment. Unspliced aligners do have the same pitfall as microarray as they cannot

interrogate expression levels of novel genes or unrepresented transcription regions in

the used reference transcriptome. QPALMA is succeeded by PALMapper [184]

which is a combination of the learning-based spliced alignment method QPALMA

and the short read alignment tool GenomeMapper [185]. PALMapper improves on

the speed by using a banded semi-global and spliced alignment algorithm of

GenomeMapper to align the RNA-seq reads while taking advantage of base quality

information and the predictions of splice junctions from the SVM algorithm.

Also based on a learning approach is HMMSplicer [186] which is a tool developed

for the discovery of novel and known splice junctions. HMMSplicer trains a hidden

markov chain model (HMM) by using the halves of aligned reads which initially

cannot align its entirety onto the reference genome. From the trained HMM model,

the method tries to find the splice junctions within the other halves of these aligned

reads and match the remaining portion of the read downstream of the spliced sites. As

HMMSplicer trains using data from the input itself, it is capable of detecting novel

splice junctions.

Since the objective of using machine-learning in RNA-seq alignment is for the

accurate discovery of known splice junctions, learning-based approaches can also be

regarded as a subset of spliced aligners.
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Most aligners assume a known gene model for the sequenced reads and can be biased

towards the detection of canonical (~98.7% of the splicing junctions in mammalian

sample [56]) and semi-canonical junctions . Non-canonical junctions such as splicing

of exons that does not lie on the same RNA transcript (trans-splicing [187]) may not

be detected. However, learning-based approached can learn from sample-specific data

and train a sample-specific model for unbiased detection of splicing junctions without

the annotations of known splicing motifs. As such, this approach might be more

suitable for de novo discovery of splicing junctions of less studied organisms.

3.4.4 Comparison of RNA-seq Aligners

In the previous section, we have reviewed on two main mapping strategies, possible

usage of known canonical signals and annotated intron gaps for biased detection of

splice junctions. We summarize and characterize different RNA-seq alignment

methods for the analysis of transcriptome in Table 3.4.
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Table 3.4. Methods for RNA-seq alignment and their respective mapping strategies and usage of annotations for spliced alignments

Methods
Mapping Strategy Use of

Annotations
Splice junction

Model
Description Reference

Exon-
first

Seed-
Extend Yes No Biased Unbiased

ABmapper X X X

k-mer from both ends of seeds are searched
against Suffix Array index and extended
towards each. Still essentially an exon-first
approach as seeds is extended for exonic
mapping first.

[188]

CRAC X X X
Uses k-mer profiling to detect candidate
mutations, indels, splicing and chimeric
junctions

[182]

GEM-rna-mapper X X X X Based on GEM. (unpublished) [140]

GSNAP X X X

Detection of novel splice junctions is based
on a probabilistic model implemented as a
maximum entropy model on user-specified
known splice junctions.[189]

[180]

HMMsplicer X L X Uses half-read mapping to train a HMM to
detect most probable splice position [186]

MapNext X X X X
Using un-annotated mode, searches paired k-
mer in a hash table within 10kbp and with
the same strand

[190]

MapSplice X X X Sensitive for exonic reads [37]
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OLego X X L X
Targeted at finding small exon and good
specificity on exonic reads. Based on logistic
regression for detecting splice junctions

[36]

OSA X X X X Trims poor-quality 3' ends of reads and
improves alignment speed [191]

PALMapper X L X Combined QPALMA and GenomeMapper [184]

PASSion X X X
Use of pattern growth algorithm and splicing
signals to detect both novel and known
splicing junctions

[38]

PASTA - L X
Similar to seed-extend strategy, it uses
patterned alignments of 2 subreads split at
various points for spliced mapping

[192]

QPALMA X L X
Used in silico spliced reads from annotated
genome to train a 'weighted degree' kernel
with SVMs

[39]

RNASEQR X X X Reduces false identifications of SNVs near
splice junctions [193]

RUM X X X X
Combination of Bowtie (exonic) and BLAT
(spliced) are used to align reads to both the
transcriptome and genome

[177]

SeqSaw X X X Based on SeqMap [158]. High specificity in
detecting splice junctions [194]

SOAPsplice X X X Use two filtration strategies to produce low
false positive rates [179]



67

L is for machine-based

learning.
SpliceMap X X X 50bp reads cannot be extended for more than

40bp and residual overhang must be >10bp [40]

SplitSeek X X X Suitable for detecting novel splicing
junctions and chimeric transcripts [195]

STAR X X X X Ultrafast aligner that can discover non-
canonical junctions and fusion junctions [35]

Subread/Subjunc X X X Uses a seed-and-vote strategy on sub-reads
for alignment [160]

Supersplat X X X
Finds every possible splice junction by
mapping different 2-chunk reads for
alignment

[181]

TopHat 1/2 X X X X
Construct exon islands with exonic reads to
determine localize final splice junctions.
TopHat2 can handle indels

[41, 42]

TrueSight X X X

Takes all possible splice junctions of a
transcriptome from the aligning reads and
learn a regression model to find best
assignments for them

[196]

X-Mate X X X
Upgraded version of RNA-Mate [173].
Designed for color-space reads but can align
base-space reads too

[174]
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Chapter 4

4Bisulfite Sequencing Reads
Alignment

4.1 Introduction

DNA methylation modifies the nucleotide cytosine by the addition of methyl groups

to its C5 carbon residue by DNA methyltransferases [197]. This modification can be

inherited through cell division and it plays an important role in many biological

processes, such as heterochromatin and transcriptional silencing [198, 199],

imprinting genes [200], inactivating the X chromosome [201] and silencing of

repetitive DNA components in healthy and diseased (including cancerous) cells [202,

203]. Methylation analysis can also be used to diagnose pre-natal Down’s syndrome

[204]. Thus, the genome-wide methylation profiles of different tissues are important

to understand the complex nature and effects of DNA methylation.

In the past decade, quantum leaps have been made in the development of sequencing

technologies by vendors such as Illumina-Solexa and Applied BioSystems (AB)-

SOLiD. These can generate millions of short reads at a lower cost compared to

traditional Sanger methods [75, 205-208]. Bisulfite (BS) treatment converts

unmethylated cytosines (Cs) to uracils (which are then amplified by PCR as thymine
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(T) without affecting the other nucleotide bases and methylated cytosines [209].

Next-generation sequencing coupled with bisulfite treatment enables us to produce a

methylome of a genome at single base resolution and low cost.

4.2 Related Work

One important step in calling methylation of a genome is to map BS reads. Mapping

of BS reads is different from that of ChIP-Seq and RNA-Seq data since the non-

methylated Cs are converted to Ts by BS treatment and subsequent PCR. The BS

reads are difficult to map to the reference genome due to the high number of

mismatches between the converted Ts and the original Cs. For mapping Illumina BS

reads, the pioneering published methods are BSMAP [95] and RMAP [93]. BSMAP

aligns a BS read to the reference genome by first enumerating all C-to-T

combinations within a user-defined length k seed of the reads; then, through hashing,

BSMAP aligns the seeds onto the genome and putative alignments are extended and

validated with the original reads. After this step, BSMAP can output an unambiguous

hit for each read, if available. BRAT [89] uses a similar strategy as BSMAP. It

converts the reference genome into a TA reference and a CG reference (each

converted reference uses one bit per base). Using a 36-mer hash table, BRAT aligns

the first 36 bases of every read and its 1-neighbors on the two converted references to

identify possible alignments. RMAP uses layered seeds as a bit-mask to select a

subset of the bases in the reads and constructs a hash table to index all the reads.

However, these seed-hash-based approaches are slow.

Subsequently, several methods were proposed to map BS reads onto the converted

genomes. MethylCoder [210] surfaced as a BS read mapper that uses GSNAP [180]

to do a primary mapping of in silico converted reads (that is, all Cs in the reads are

converted to Ts) onto a converted reference genome (that is, all Cs in the genome are

converted to Ts). Those reads that fail to map onto the converted genome will be

remapped again in their original forms onto the original reference. BS-Seeker [91]
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and Bismark [88] use a similar conversion strategy as BSMAP except that they align

the reads with Bowtie [102] and unique hits are found by a seed-then-extend

methodology. (Note that every tool has its own uniqueness criterion. A tool will

denote a read to have a unique hit if it finds exactly one occurrence of the read in the

reference genome.) Both methods trade accuracy for efficiency.

AB-SOLiD color reads are different from Illumina reads since they encode every pair

of bases with four different colors. (For more details on this sequencing technology

and how it differs from sequencing by synthesis, see [18, 68, 211, 212].) Unlike BS

mapping of Illumina reads onto converted genomes, mapping BS color reads onto

converted genomes produces many mismatches when the regions are highly

methylated [213]. This also causes a dramatic decrease in the unique mapping rate

and unbiased measurements of hypomethylation sites. In addition, a single color error

in a read will lead to incorrect conversions throughout the rest of the read (Figure 4.1a,

b). Although in silico conversion of Cs to Ts guarantees unbiased alignments in base

space, this is not preferred for color reads.

SOCS-B [214] and B-SOLANA [96] were developed to map BS color reads. SOCS-

B splits a color read into four parts and tries to get hits for any combination of two

parts via an iterative Rabin-Karp approach [215]. SOCS-B uses a dynamic

programming (DP) approach to convert an aligned read to the aligned portion of the

reference genome. The conversion starts with all possible four nucleotides as the

pseudo-terminal base (rather than just the terminal base from the read). Subsequently,

the sub-strings of the four translations are used to generate partial hashing seeds that

are then mapped onto the hashed reference genome. However, the running time of

SOCS-B is long and the unique mapping rate is too low to be practical. B-SOLANA

improves speed and unique mapping rate by aligning against both fully converted and

non-CpG converted references simultaneously with Bowtie. The final hits are

determined by checking their number of mismatches.
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Figure 4.1. (a, b) Base call error simulation in Illumina and SOLiD reads reflecting
one mismatch with respect to the reference from which they are simulated in their
respective base- and color-space. (b) A naïve conversion of color read to base space,
for the purpose of mapping against the base space reference, is not recommended as a
single color base error will introduce cascading mismatches in base space. (c) A BS
conversion in base space will introduce two adjacent mismatches in its equivalent
representation in color space.
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A recent Nature review paper [213] reported that Bismark and BS-Seeker are the

most recent published methods for mapping BS base reads whereas B-SOLANA is

the most recent published method for mapping BS color reads. This review also

highlighted the main challenges to develop methods that can map reads unbiasedly

and to improve unique mapping rates for mapping color reads.

4.3 Results

BatMeth (Basic Alignment Tool for Methylation) was developed by us to address the

issues of efficiency and accuracy on mapping BS reads from Illumina and BS color

reads from SOLiD. Unlike existing algorithms, BatMeth does not map the BS reads

in the initial stage. Instead, BatMeth counts the number of hits of the BS reads to

remove spurious orientations of a read. This idea has significantly sped up the

mapping process and has also reduced the number of false positives. When dealing

with color reads, BatMeth reduced bias on hypomethylation measurements with high

initial mismatch scanning. BatMeth also employed a DP conversion step for the color

reads to account for BS mismatch accurately and an incremental processing step to

produce higher unique mapping rates and speed (refer to the Materials and methods

section for details).

4.3.1 Evaluated programs and performance measures

In order to evaluate the performance of our pipeline, we have tested the following

programs: BSMAP, BS-Seeker, and Bismark for base-space mapping; and SOCS-B

and B-SOLANA for color-space mapping. BS-Seeker and Bismark only output

unique hits for each read. BSMAP, SOCS-B and B-SOLANA will output at most one

hit per read, with a flag to indicate if a hit is unique. Some reads can map to multiple

genomic locations and since a read can only come from one origin, retaining such

non-unique mappings will affect the accuracy of downstream analysis such as

unbiased methylation site calls. To avoid the problem of wrong methylation calls, all

six programs were thus compared with their unique mapping rates.
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All our experiments were run on a server equipped with an Intel Xeon E7450 @

2.40GHz and 128 GB of RAM. We allowed the same mismatch number and CPU

threads on all the compared programs in our experiments. Other parameters were kept

at default.

We have compared the performance of BatMeth with recent stable versions of

BSMAP (2.4.2), BS-Seeker, Bismark (0.5.4), SOCS-B (2.1.1) and B-SOLANA (1.0)

using both simulated and real data sets (BS-Seeker, Bismark and B-SOLANA used

Bowtie 0.12.7 in our experiments). With simulated Illumina and SOLiD reads,

BatMeth (default mode) recovered the highest number of hits, has the lowest noise

rate and is the fastest among the compared programs. BatMeth is also able to produce

better unbiased results than the other programs by comparing the detected

methylation levels in different genomic contexts over simulated data sets (Illumina

and SOLiD reads) of different methylation levels. With a paired-end library, we show

the specificity of our Illumina results by counting the pairs of concordant paired reads

that fall within the expected insert size of the library. With a directional library, we

indicate the specificity of our results with direction-specific information. In summary,

BatMeth is an improved BS mapper in terms of speed, recovery rate and accuracy,

and, in particular, has addressed the main challenges of mapping color reads

identified in [213].

We have not included RMAP in our comparisons as it only performs biased mapping

in a non-CpG context. MethylCoder was also not included because a newer variant of

it, namely B-SOLANA, has been released (MethylCoder’s release notes mention that

it is now deprecated due to the release of B-SOLANA). BRAT was considered

impractical as it only considers one base error in the first 36 bp of a read and

therefore was not included in our experiments.
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Below, we define ‘recovery’ to be the portion of the unique hits recovered by the

programs. We also define ‘accuracy’ to be the portion of the recovered hits that are

correct. All recorded timings are wall clock times. A ‘hit’ is a genomic location to

which a read is aligned. Lastly, due to sequencing errors and BS mismatches, we

allow k (>0) mismatches when mapping a BS read onto a reference. A genomic

location is deemed to be unique for a read if it is the only location with the lowest

number of mismatches with respect to the read.

4.3.2 Evaluation on the simulated Illumina data

We generated 1 million reads, each 75 bp long, which were randomly simulated from

the human genome hg19 using the simulator found in RMAP-bs [216]. The data set

was built by allowing a maximum of three mismatches per read. Each C in the

simulated read, regardless of its context, was BS converted at a uniform rate of 97%.

We benchmarked BatMeth and the other methods, BSMAP, BS-Seeker and Bismark,

on this data set. Since the original coordinates in the simulated reads are known, we

can evaluate the accuracy of all the programs by comparing their outputs with the

original coordinates. We mapped the reads onto the reference allowing at most three

mismatches. BatMeth recovered the most number of true positives and the lowest

number of false positives and is the fastest program, as shown in Figure 4.2a.

We further illustrate that BatMeth can achieve better unbiased methylation calls than

the best published method, Bismark, by replicating the experimental settings of

Figure 4.2b in [213]. We used the same simulator, Sherman [217], the same number

of reads (1 million), the same length of read (75 bases) and the same reference

genome (NCBI37) for this comparison. We used Sherman to simulate 11 sets of data,

from 0% to 100% of BS conversion in increments of 10%. Sherman emulates BS

conversion by converting all Cs regardless of their genomic context with a uniform

distribution. No non-BS mismatches were allowed in the reads, during the scanning

phase, for both BatMeth and Bismark. The results produced by Bismark show exactly



76

the same trends as the graph that was presented in [213]. Table 4.1 presents the

performance of BatMeth and Bismark in terms of mapping efficiency, detected

methylation levels in different genomic contexts from various in silico methylation

rates in different contexts (CG, CHG and CHH genomic contexts, where H stands for

base A/C/T only). BatMeth has an average of approximately 1.1% better mapping

efficiency and about twice the accuracy as Bismark in estimating methylation levels

of Cs from different genomic contexts with different initial methylation levels.

4.3.3 Evaluation on the real Illumina data

We downloaded about 850 million reads sequenced by Illumina Genome Analyzer II

(Gene Expression Omnibus (GEO) accession number GSE19418) [218] on H9

embryonic stem cells. Since BSMAP is not efficient enough to handle the full data set,

2 million paired-end reads were randomly extracted from one of the runs in

GSE19418 for comparative analysis with BSMAP. Reads were observed to have a lot

of Ns near the 3’ end and were trimmed down to 51 bp before being mapped onto

hg19 with at most two mismatches per read.

For this sample data set, BatMeth mapped 1,518,591 (75.93%) reads uniquely

compared to 1,511,385 (75.57%) by BSMAP, 1,474,880 (73.74%) by BS-Seeker and

1,498,451 (74.92%) by Bismark. Out of all the hits reported by BatMeth, 1,505,190,

1,464,417 and 1,481,251 mapped loci were also reported by BSMAP, BS-Seeker and

Bismark, respectively. BatMeth found 13,401, 54,174 and 37,340 extra hits when

compared to BSMAP, BS-Seeker and Bismark, respectively. BSMAP, BS-Seeker and

Bismark also found 6,195, 10,463 and 17,220 extra hits, respectively, when compared

to our result set.

Next, we mapped the two reads of every paired-end read independently to investigate

the mapping accuracy of the compared programs. Since the insert size of this set of
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Figure 4.2. Benchmarking of programs on various simulated and real data sets (a)
Benchmark results of BatMeth and other methods on the simulated reads: A, BatMeth;
B, BSMAP; C, BS-Seeker; D, Bismark. The timings do not include index/table
building time for BatMeth, BS-Seeker, and Bismark. These three programs only
involve a one-time index-building procedure but BSMAP rebuilds its seed-table upon
every start of a mapping procedure. (b) Insert lengths of uniquely mapped paired
reads and the running times for the compared programs. (c) Benchmark results on
simulated SOLiD reads. Values above the bars are the percentage of false positives in
the result sets. The numbers inside the bars are the number of hits returned by the
respective mappers. The graph on the right shows the running time. SOCS-B took
approximately 16,500 seconds and is not included in this figure. (d) BS and non-BS
induced (SNP) adjacent color mismatches.
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Table 4.1. Comparison of mapping efficiencies and estimation of methylation levels
in various genomic contexts

BatMeth (%) Bismark (%) Oracle
BS
rate
(%)

Mapping
efficiency CG CHG CHH Mapping

efficiency CG CHG CHH

94.2 0.0 0.0 0.0 91.1 0.0 0.0 0.0 0.0

94.0 10.0 10.0 10.0 92.1 10.0 10.0 10.0 10.0

93.9 20.0 20.0 20.0 92.4 20.0 20.1 20.0 20.0

93.8 30.0 30.0 30.0 92.5 29.9 30.0 30.0 30.0

93.6 39.9 40.0 40.0 92.5 40.0 40.0 40.0 40.0

93.5 50.0 50.0 50.0 92.6 50.0 50.0 50.0 50.0

93.4 60.0 60.0 60.0 92.6 60.0 60.1 60.0 60.0

93.2 70.0 70.0 70.0 92.7 70.0 70.0 70.0 70.0

93.0 79.9 80.0 80.0 92.6 79.9 80.0 80.0 80.0

92.8 90.0 90.0 90.0 92.6 90.1 90.0 90.0 90.0

92.6 100 100.0 100.0 92.6 100.0 100.0 100.0 100.0

Methylation levels in various genomic contexts, such as CG, CHG and CHH (H is A/C/T only), are called by BatMeth and Bismark
and validated against the oracle BS rate used in Sherman.

Table 4.2. Comparison of speed and unique mapping rates on three lanes of human
BS data

Number of Unique mapping (%) a Running time (minutes) a

Read file reads BatMeth BS-Seeker BatMeth BS-Seeker

SRR019048 15,331,851 37.4 37.2 30 87

SRR019501 7,217,883 44.7 44.5 16 41

SRR019597 5,943,586 58.2 58.1 13 37

a Threshold of two mismatches used.

paired-end reads is approximately 300 bp, a pair of partner reads can be expected to

be mapped correctly with a high probability if they are mapped concordantly within a

nominal distance of 1,000 bp. The high number of such pairable reads (Figure 4.2b)

indicates that BatMeth is accurate. Figure 4.2b also shows that BatMeth is fast.

We have also downloaded approximately 28.5 million reads sequenced by Illumina

Genome Analyzer II on the human H1 embryonic cell line (GEO accession numbers
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SRR019048, SRR019501 and SRR019597) [91]. We only compared BatMeth with

BS-Seeker since BSMAP and Bismark are too slow. Furthermore, Krueger and

Andrews [88] mention that Bismark is both slower and less likely to report unique

hits than BS-Seeker. Table 4.2 shows the unique mapping rates and running times of

BatMeth and BS-Seeker. In summary, BatMeth achieved the best mappability rate,

lowest estimated false positive rate and was the fastest on real Illumina data.

4.3.4 Evaluation on the simulated SOLiD data

We generated 10,000 simulated reads, each having 51 color bases, that were

randomly extracted from chromosome 1 of UCSC hg19 using the simulator from

RMAP-bs [216]. RMAP-bs was used to convert the Cs in the reads, regardless of its

context, to Ts at a uniform rate of 97% to simulate BS conversions. In addition, for

each read, zero to two non-BS base mismatches were introduced with equal chance

before the read was converted to color space. Lastly, sequencing errors were added at

a uniform rate of 5% to the reads.

The simulated color reads were mapped using BatMeth, SOCS-B and B-SOLANA

allowing resultant unique hits to have at most three mismatches. Precisely, BatMeth

and SOCS-B allowed at most three non-BS mismatches while B-SOLANA did not

discount BS mismatches. Figure 4.2c summarizes the results of the three programs

together with the verification against the oracle set. BatMeth gave many more correct

hits and fewer wrong hits than both SOCS-B and B-SOLANA. BatMeth can be made

to offer a flexible tradeoff between unique mapping rates and speed. In the ‘default’

mode, BatMeth was found to be more sensitive (approximately 15%) and faster

(approximately 10%) than the most recent published B-SOLANA. In the ‘sensitive’

mode, BatMeth was found to be more sensitive (approximately 29%) and slower

(approximately two times) than B-SOLANA. In addition to producing approximately

15% to 29% more correct hits, BatMeth had a precision of 94.5% while that of B-
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SOLANA and SOCS-B was 92.1% and 91.5%, respectively. These statistics show

that BatMeth is an accurate mapper for color reads.

To illustrate that BatMeth can achieve better unbiased methylation calls for color

reads than the best published method, B-SOLANA, we replicated the experimental

settings of Figure 4.2c in [213] to compare the two programs; we used the same

simulator (Sherman), the same number of reads (1 million), the same length of read

(75 bp) and the same reference genome (NCBI37) for this comparison. We used

Sherman to simulate 11 sets of data, from 0% to 100% of BS conversion at

increments of 10%. Sherman emulates BS conversion by converting all Cs regardless

of their genomic context with a uniform distribution. Default parameters were used

for BatMeth and B-SOLANA. The graph produced by us for B-SOLANA shows the

same trends as that presented in [213]. We further broke down the graphs as well as

those in Figures 4.3a (BatMeth) and 3b (B-SOLANA), which show rates of

methylation calling for various in silico methylation rates (0% to 100% at divisions of

10% of BS conversion) in different contexts (CG, CHG and CHH genomic contexts,

where H stands for base A/C/T only) of the genomes, into separate series of data.

Subsequently, we did a direct comparison between BatMeth and B-SOLANA to show

that BatMeth is better than B-SOLANA in all contexts of methylation calling, namely,

CG (Figure 4.3c), CHG (Figure 4.3d), CHH (Figure 4.3e) and non-unique mapping

rates (Figure 4.3f). To be exact, BatMeth was approximately 0.7%, 0.7% and 2.2%

more accurate than B-SOLANA in the methylation callings of the CG, CHG and

CHH sites, respectively, and had an average of approximately 9.2% more non-unique

mappings than B-SOLANA on the tested data sets.

4.3.5 Evaluation on the real SOLiD data

We downloaded about 495 million reads sequenced by AB SOLiD system 3.0

(Sequence Read Archive (SRA) accession number SRX062398) [208] on colorectal

cancer. Since SOCS-B is not efficient enough to handle the full data set, 100,000
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reads were randomly extracted from SRR204026 to evaluate BatMeth against SOCS-

B and B-SOLANA. The mismatch threshold used was 3.

Table 4.3 compares the unique mapping rates and running times between BatMeth,

SOCS-B and B-SOLANA. Note that BatMeth always has a higher unique mapping

rate (from 39.6% to 52.1%; from fast to sensitive mode) than the next best method, B-

SOLANA with 37.4%. At the same time, BatMeth maintained low rates of noise

(from 0.47% to 1.75%; from fast to sensitive mode). Hence, it is still more specific

than the other programs. In terms of running time, BatMeth fast mode is

approximately 1.7 times faster and BatMeth sensitive mode is approximately 4 times

slower than B-SOLANA. It was also observed that 3.26% of the resultant hits from

B-SOLANA are duplicated; some of the reads were given two hit locations as B-

SOLANA traded speed for checking the uniqueness of hits.

Based on the experiments performed, BatMeth’s memory usage peaked at 9.3 GB

(approximately 17 seconds of load time) for Illumina reads and 18.8 GB

(approximately 35 seconds of load time) for color reads while BSMAP and BS-

Seeker peaked at 9+ GB and Bismark peaked at 12 GB. SOCS-B peaked at 7+ GB

and B-SOLANA peaked at 12 GB. In summary, the experiments in this section show

that BatMeth is the fastest among all the compared programs. Furthermore, BatMeth

also has the highest recovery rate of unique hits (exclusive of false positives) and the

best accuracy among all the compared programs.

4.4 Materials and Methods

4.4.1 Methods for base reads

4.4.1.1 Problem definition and overview of the method

The problem of mapping BS reads is defined as follows. A BS treatment mismatch is

defined as a mismatch where the aligned position is a T in the read and the
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Figure 4.3. A total of 106, 75 bp long reads were simulated from human (NCBI37)
genomes. Eleven data sets with different rates of BS conversion, 0% to 100% at
increments of 10% (context is indicated), were created and aligned to the NCBI37
genome. (a-e) The x-axis represents the detected methylation conversion percentage.
The y-axis represents the simulated methylation conversion percentage. (f) The x-axis
represents the mapping efficiency of the programs. The y-axis represents the
simulated methylation conversion percentage of the data set that the program is
mapping. (a,b) The mapping statistics for various genomic contexts and mapping
efficiency with data sets at different rates of BS conversion for BatMeth and B-
SOLANA, respectively. (c-e) Comparison of the methylated levels detected by
BatMeth and B-SOLANA in the context of genomic CG, CHG and CHH,
respectively. (f) Comparison of mapping efficiencies of BatMeth and B-SOLANA
across data sets with the described various methylation levels.

a) b)

c) d)

e) f)
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Table 4.3. Unique mapping rates and speed on 100,000 real color reads

SRR204026 Unique mapping (%)a Estimated noise (%)b Timing

BatMeth (fast) 39.6 0.47 77 s

BatMeth (default) 45.8 0.94 247 s

BatMeth (sensitive) 52.1 1.75 521 s

B-SOLANAc 37.4 2.06 130 s

SOCS-Bd 28.3 4.55 ~71 h

a We tabulated the unique mapping rates of the 100,000 reads. b The error rates are estimated from the number of reverse-strand
mappings as stated by Equation 2 in Materials and methods. c Note that 3.26% of B-SOLANA’s resultant reads are double-counted as
B-SOLANA reported two hits for them. One of the two hits is assumed to be correct for the estimation of the noise rate of B-
SOLANA. d Reverse-strand mapping is allowed by enabling G-A transitions in SOCS-B. BatMeth fast, default, and sensitive modes
were run with -n0-N3, -n0-N4, -n0-N5 as parameters, respectively.

corresponding position in the reference genome is a C. Given a set of BS reads, our

task is to map each BS read onto the reference genome location, which minimizes the

number of non-BS mismatches.

The algorithm of BatMeth is as follows. BatMeth starts off by preparing the

converted genome and does a one-time indexing on it. Next, low complexity BS reads

are discarded; otherwise, we obtain counts of the hits for BS reads and discard the hits

according to list filtering. After this, each of the retained hits will be checked for BS

mismatches by ignoring C to T conversions caused by the BS treatment. BatMeth

reports the unique hit with the lowest non-BS mismatches for each read. Figure 4.4a

outlines the algorithm and we discuss the novel components that aid BatMeth to gain

speed and accuracy below.

4.4.1.2 Converted genome

Similar to BS-Seeker and Bismark, we prepare a converted reference genome with all

Cs converted to Ts. Since the plus and minus strands are not complementary after Cs

are converted to Ts, we have to create two converted references where one is for the

plus strand and the other is for the minus strand. Burrows-Wheeler transform (BWT)

indexing of the two new converted references is done before the mapping.
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4.4.1.3 Low complexity BS reads

BatMeth does not map BS reads with low complexity. The complexity of the raw

read is computed as Shannon’s entropy, and raw BS reads with a differential entropy

H < 0.25 are discarded. In BatMeth, differential entropy is estimated from the discrete

entropy of the histogram of A/C/G/T in a read. Depending on the design of the wet-

lab experiment, the amount of reads being discarded by this entropy cutoff varies. In

our experiments on Illumina reads, approximately 0.5% of the reads were discarded.

4.4.1.4 Counting hits of BS reads and list filtering

For those reads that pass the complexity filter, we first convert all Cs to Ts and map

them against the converted genomes. In contrast to existing methods, BatMeth does

not obtain the best or second best hits (for example, BS-Seeker and Bismark) from

each possible orientation of a converted read and reports the lowest-mismatch locus

to be the resultant hit for a read. In the case of hyper-methylation, the correct hit may

not be the best or second best hit as it might contain more mismatches. Thus, this

approach will miss some correct solutions. BatMeth also does not enumerate all hits

like BSMAP, which is slow. Instead of mapping the reads directly, BatMeth counts

the number of hits where the read or its reverse complement can occur on the two

converted genomes using an in-house short read mapper, BatMis Aligner [219]. Table

4.4 shows the four ways of aligning the converted reads onto the converted genomes,

which yield four counts of hits.

Table 4.4. Possible ways to map a BS read onto the converted genome

Reference (C→T) RC reference (C→T)
Read (C→T) Count 1 Count 2
RC Read (C→T) Count 3 Count 4

RC, reverse-complement.

Out of the four counts on the four lists, only one list contains the true hit. List filtering

aims to filter away those spurious lists of hits (represented by the counts) that are

unlikely to contain the true hit. Note that a read can appear to be repetitive on one
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strand but unique on the opposite strand of the DNA. Hence, if a list has many hits

(by default the cutoff is set to be 40 hits) with the same number of mismatches, we

discard such a list since it is likely to be spuriously reported for one strand of the

reference genome. Another reason for rejecting such lists is that they may contain hits

that may be of the same mismatch number as the hit that is unique on the opposite

strand, rendering all hits as ambiguous.

Apart from improving the uniqueness of the putative resultant hit among all reported

hits of a BS read, filtering also reduces the number of candidate hits that need to be

checked.

This improves the efficiency of the algorithm. For example, consider the simulated

BS-converted read ‘ATATATATGTGTATATATATATATATATATATGTGTATA

TATATGTGTGTATATATATATA TATATATGTATATAT’ being mapped onto

the converted hg19 genomes as discussed earlier. We obtained four counts of 1, 0, 40

and 40 hits by mapping the converted reads onto the converted genomes. The last two

lists are filtered away since they have too many hits, leaving us to check only one hit

instead of 81 for BS mismatches. Since the data are simulated, the unfiltered hit is

found to be the correct unique hit for this read, which the other mappers cannot find.

Table 4.5. Cutoffs for list filtering on simulated reads from the Results section

List size
Mismatch counting in

secondsa Correct hit Wrong hit Total hit

20 136 901,164 1,516 902,680

40 165 901,160 1,462 902,622

60 191 901,165 1,454 902,619

100 279 901,166 1,448 902,614

200 475 901,166 1,447 902,613

500 1,197 901,167 1,450* 902,617

1,000 2,942 901,167 1,450* 902,617

Asterisks indicate increased false-positives produced with large list filtering cutoffs.
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a)

b)

Figure 4.4. Outline of the mapping procedure. (a) Mapping procedure on Illumina BS
base reads. (b) Mapping procedure on SOLiD color-space BS reads.

1. Prepare 4 Reference Indexes for the two fully-converted color genomes and the two non-CpG converted color
genomes.

2. For every read do
3. Count the number of hits for 2 possible ways to map the read and its reverse on the fully-converted color

genomes
4. Apply List Filtering on the counts obtained from Step 3.
5. Apply Mismatch Stage Filtering to the unfiltered list from Step 4.
6. Apply Conversion of Bisulfite Color reads to Base reads to the hits from Step 5.
7. Determine the Color Mismatch Counts for the hits on the ordered hits from Step 6.
8. If the least mismatch hit is unique then
9. Report it. Goto Step 14.
10. ElseIf the least mismatch hit is non-unique
11. Reported it as non-unique. Goto Step 14.
12. ElseIf no hits found on fully-converted color genomes then
13. Repeat Steps 3 to 14 with non-CpG-converted color genomes
14. EndIf
15. EndFor

1. Prepare the converted Reference Indexes for both plus and minus strands.
2. For each input read do
3. Prepare the plus and minus conversions of the read
4. Count the number of hits using 4 possible ways to map the converted reads on the Converted Genome
5. Using List Filtering, we filter the lists whose number of hits > cutoff
6. For each hit in the unfiltered lists, compute the number of mismatches ignoring the BS-treatment mismatches.
7. If the least mismatch hit is unique then
8. Report its location.
9. Else
10. Report it as non-unique.
11. EndIf
12. EndFor
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Table 4.5 shows the effect of using list filtering on the same set of simulated data

from the evaluation on the simulated Illumina reads. We ran BatMeth with different

cutoffs for list filtering and we can see that the time taken increased linearly with

increasing cutoffs for list filtering while sensitivity and accuracy dropped. With large

cutoffs such as ≥500 (marked by asterisks in Table 4.5), the number of wrong hits

increased while sensitivity still continued to drop. Thus, we have chosen a cutoff of

40 for a balance of speed, sensitivity and accuracy. (Disabling list filtering will cause

BatMeth to check through all the reported candidate locations for a read and will slow

BatMeth down by approximately 20-fold, as shown in Table 4.5.)

4.4.2 Methods for color reads

4.4.2.1 Overview of the method

Due to the di-nucleotide encoding and sequencing errors in SOLiD color reads, a

naïve conversion from color space to base space is hardly possible without errors. As

a color error in a read will introduce cascading base-space errors, we cannot use the

method described in ‘Methods for base reads’ above to map BS color reads. This

section describes how we aim to map each BS color read uniquely to the reference

genome while minimizing the number of non-BS treatment mismatches.

The algorithm of BatMeth is as follows. BatMeth starts by preparing the converted

genome and non-CpG converted genome and does a one-time BWT indexing on them.

For every color read, we do a ‘counting hits of BS color reads’ for it on the references

and discard the list of hits according to list filtering. After applying mismatch stage

filtering, the unfiltered hits are converted to base space as described in ‘Conversion of

bisulfite color reads to base reads’ below to allow for the checking of BS mismatches.

The color mismatch count for the retained hits is then determined and the unique

locus with the lowest mismatch count reported; otherwise, no hits will be reported for

this read. We have also utilized additional heuristics, such as fast mapping onto two
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indexes and handling hypo- and/or hyper-methylation sites to speed up and improve

the accuracy of BatMeth, which we discuss below. All the components, namely list

filtering, mismatch stage filtering, conversion of BS color reads to base reads, color

mismatch count, fast mapping onto two indexes and handling hypo- and/or hyper

methylation sites differ from existing methods. Figure 4.4b outlines the algorithm and

shows how the components are assembled for SOLiD color-space BS read mapping.

4.4.2.2 Non-CpG converted genome

The reference genome and its reverse-complement were first prepared by converting

all its Cs to Ts as described in the base reads mapping procedures; then, the two

converted genomes are encoded into color space. These two genomes are called fully

converted color genomes. In addition, the reference genome and its reverse-

complement are similarly converted except that the Cs in CpG are left unchanged. We

call these the non-CpG converted color genomes. Finally, the BWT indexes for these

four color genomes are generated.

In the algorithm, the BS color reads will be mapped to the fully converted color

genomes to identify unique hits first; if this fails, we will try to map the reads onto the

non-CpG converted color genomes and BatMeth will label which reference a hit is

from.

The reason for using the non-CpG converted genome is that the conversion step for

BS color reads is different from that for Illumina. In Illumina reads, the C-to-T

mismatches between the raw BS reads and the reference genome are eliminated by

converting all Cs to Ts in both the reads and the reference genomes. However, we

cannot make such a conversion in BS color reads as we do not know the actual

nucleotides in the reads. Based on biological knowledge, we know that CpG sites are

expected to be more methylated [220]. Hence, such conversion reduces the number of

mismatches when the color reads are mapped onto the reference genome in color
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space. This aids in gaining coverage in regions with high CpG content. Thus,

BatMeth maps BS reads to both hyper- and hypo-methylation sites.

4.4.2.3 Counting hits of BS color reads and list filtering

Unlike sequencing by Illumina, SOLiD only sequences reads from the original BS-

treated DNA strands. During PCR amplification, both strands of the DNA are

amplified but only the original forward strands are sequenced. Subsequently, during

the sequencing phase, reverse-complement reads are non-existent as a specific 5’

ligated P1 adaptor is used. As such, matches to the reverse-complement of the BS-

converted reference genome are invalid.

In other words, although a BS color read has four possible orientations to map on the

non-CpG converted color genomes (or the fully converted color genomes), only two

orientations are valid as opposed to the four orientations in the pipeline on Illumina

reads

Table 4.6. Possible ways to map a BS color read onto the converted color genome

Reference (C→T) RC reference (C→T)
Read Count 1 Invalid
RC read Invalid Count 4

RC, reverse-complement.

(Table 4.6). As opposed to the mapping of Illumina reads, it is not preferred to do a

naïve conversion of color reads to base space prior to mapping. Figure 4.1a shows

that a single base call error in an Illumina read will introduce one mismatch with

respect to the reference. However, Figure 4.1b shows that a single base color call

error in a color read will introduce cascading base mismatches instead of just one

color mismatch if we are to map the color read as it is onto the reference in color

space.

Thus, we will need to do a primary map onto a converted genome with a higher

mismatch parameter (by default, 4) than what we usually use for Illumina BS reads as
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a BS mismatch will introduce two adjacent color mismatches (see Figure 4.1c for an

example of BS-induced adjacent color mismatches). Similar to mapping Illumina

reads, we count the number of possible hits from the two valid orientations. Then, the

list filtering step is applied to filter the lists with too many hits (by default, more than

10). (Note that this property also helps us to estimate the noise rate; we discuss this

further in ‘Noise estimation in color reads’ below.)

4.4.2.4 Conversion of bisulfite color reads to base reads

After the color BS reads are aligned to the reference genome, we can convert the

color BS reads to their most-likely nucleotide equivalent representation. In the

context of BS mapping, we discount all the mismatches caused by BS conversions.

We use a DP formulation as presented in [100] to convert color reads to base reads

except that the costs for BS-induced mismatches have to be zeroed when the

reference is C and the read is T. This conversion is optimal and we use the converted

base read to check against the putative genomic locations from list filtering to

interrogate all mismatches in the read to determine if they are caused by BS

conversion, base call error or SNP.

4.4.2.5 Color mismatch count

After converting each color read to its base-space equivalent representation, we can

calculate the number of base mismatches that are actually caused by BS treatment in

the color read. Figure 4.2d shows two different types of adjacent color mismatches

that are caused by BS conversion (left) and non-BS conversion (right). For BS-

induced adjacent mismatches, we assign a mismatch cost of 0 to the hit. For non-BS-

induced adjacent mismatches, we assign a mismatch cost of 1 to the hit.

To be precise, we consider a color read as C[1..L], where L is the read length, and let

B[1..L-1] be the converted base read computed from the DP described previously and
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mm[i] as a mismatch at position i of C, which is computed using Equation 4.1. The

mismatch count of C is computed as mm[1]+…+mm[L-1], where:

Eq (4.1)

4.4.2.6 Mismatch stage filtering

We have developed a set of heuristics to improve the rate of finding a unique hit

among the set of candidate hits. First, we sort and group the initial hits by their

number of color mismatches; then, we try to find a unique hit with the minimum non-

BS-mismatch count within each group of hits.

As the bound of color mismatches is known, we can apply a linear time bucket sort to

order all the candidate hits according to their mismatch counts. The group of initial

mapping loci with the lowest mismatch number is recounted for their number of base

mismatches using the converted read in base space obtained from the previously

discussed DP formulation. If a unique lowest base mismatch hit exists among them,

we report this location as unique for this read. Otherwise, we proceed to recount the

base mismatches for the group of mapping loci with the next highest color mismatch

count. We continue this procedure until a unique hit is found or until there are no

more color-space mismatch groups to be examined. A unique hit must be unique and

also minimizes the base mismatch counts among all previously checked hits in the

previous groups.

Mismatch stage filtering enables us to check less candidate hits, which speeds up the

algorithm. It also improves the unique mapping rate as there are less ambiguous hits

within a smaller group of candidate hits.

When the above components are applied, the mapping rates on SOLiD data improve

progressively as seen below. By using Equation 1 to count color mismatches,
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BatMeth was able to increase the number of unique mappings by approximately 9%

and by employing mismatch stage filtering, unique mapping rate is approximately

increased by another 3%. With this increase in unique mappings of approximately

12%, BatMeth had an estimated noise level of approximately 1% as based on

Equation 2 while B-SOLANA and SOCS-B had estimated noise levels of

approximately 2.06% and 4.55%, respectively, on the same set of 100,000 reads.

These statistics agree with the results on the simulated data and indicate that BatMeth

is capable of producing low-noise results.

4.4.2.7 Fast mapping onto two indexes

As mentioned in the ‘Non-CpG converted genome’ section above, we map BS

color reads onto four converted references, two of which have their Cs converted to

Ts at non-CpG sites and the other two have all their Cs converted to Ts. It was

observed that mappings on both non-CpG converted and fully converted references

highly coincide with each other with an approximately 95.2% overlap. Due to this

observation, we try to map onto the fully converted reference first to give us a

mapping to regions of hypo-methylation status. If there are no mappings found on the

fully converted references, then BatMeth maps the same read again onto the non-CpG

converted references, which biases hyper-methylation sites. This allows the

simultaneous interrogation of canonical CpG hyper-methylation sites with reduced

biased mapping on the fully converted genome. BatMeth also labels each hit with the

type of converted references it was mapped to. Overall, this approach can save time

by skipping some scanning of the non-CpG-converted references.

4.4.2.8 Handling hypo- and/or hyper-methylation sites

With prior knowledge of the methylation characteristics of the organism to be

analyzed, different in silico conversions to the reference can be done and the best

alignments can be determined from the combined set of results of different mapping

runs. BatMeth uses two types of converted genomes to reduce mapping biases to both
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hyper- and hypo-methylation sets. Since the two sets of hits from the two genomes

coincide to a large extent, we can save time by scanning a read on one genome with a

much lower mismatch number than on the other genome.

BatMeth allows users to choose the mismatch number they want to scan on each of

the two types of genomes. We now introduce M1 and M2 (capped at 5) as the

mismatch numbers used in the scans against the fully converted and non-CpG-

converted genomes, respectively. For the best sensitivity, BatMeth scans at M1 = M2

= 5 for both hyper- and hypo-methylation sites. For the highest speed, BatMeth scans

at [M1 = 0, M2 = 3] and [M1 = 3, M2 = 0], which will perform biased mapping to

hyper- and hypo-methylation at CpG sites, respectively. Figure 4.2c shows the results

of running the various modes of BatMeth (fast, default and sensitive) on a set of

10,000 simulated color reads.

4.4.2.9 Noise estimation in color reads

To estimate noise rates, we map the real reads in their two possible orientations onto

the genome. If a hit is found for a read from the original strands of the genome, we try

to map the same read onto the complement strand of the genome too. If a lower

mismatch hit can be found from the complement strand of the genome, then we mark

the result for this read as noise. We use the proportion of marked reverse-complement

unique mappings to estimate the noise level, given by Equation 4.2:

Eq (4.2)

4.4.2.10 Handling ambiguous bases

For base reads, non-A/C/G/T bases are replaced by A so they will not affect the

callings of methylation sites. Similarly, color reads with non-A/C/G/T bases are

replaced with 0. Non-A/C/G/T bases on the reference genome are converted to A to
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avoid affecting downstream methylation callers. We have avoided converting them to

random nucleotides as it may produce false hits in regions containing ambiguous

bases. We mapped 1 million 75 bp reads and have seen reads being mapped to poly-N

regions. This can be mostly attributed to the reduced alphabet size, from four to three,

due to BS conversions.

4.5 Prediction of Imprinting Genes using BatMeth

From genome-wide mappings of bisulfite data, Laurent et al and Lister et al [218, 221]

showed that the pattern of fully-methylated Cs changes throughout the cell

differentiation process and affects the gene expressions. Hansen et al [208] found that

different cancer types have variable profiles in their methylomes, which may

contribute to tumor heterogeneity. Stadler et al [222] showed that transcription factor

binding affects DNA methylation and may create low-methylation regions (i.e.,

regions with low percentages of fully-methylated Cs).

Partially-methylated Cs are as important as fully-methylated Cs. Gene promoter

regions enriched with partially-methylated Cs (i.e. high percentage of partially-

methylated Cs over the all Cs in the regions) are functionally different from regions

enriched with fully-methylated Cs. For example, X-chromosome inactivation, in

which one allele of chromosome X is inactivated, is believed to be related to partial

DNA methylation [223]. In another example, partial methylation is known to be

related to imprinting genes [224], in which only one parental-specific allele of the

gene is expressed. The effect of partial methylation on imprinting genes was tested in

mouse models [225] and mutant mice that were deficient in DNA methyltransferases

activity [200].

Abnormal pattern of partially-methylated Cs causes disease and affects the

progression of cancers [226-229]. For example, it was showed that partial

methylation of p14ASF affects its gene expression in colorectal cancer (CRC) [230].
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Prader-Willi Syndrome and Angelman Syndrome are associated with partial

methylation and can be detected by parent-of-origin specific DNA methylation [231-

233].

Although the patterns of partially-methylated Cs are important, little attention has

been put on partially-methylated Cs. In this work, we generated profiles of partially-

methylated Cs from the genome-wide DNA methylation bisulfite sequencing datasets

for 18 cell-lines and tissues. We observed that partially-methylated Cs were

widespread in the genome. Moreover, partially-methylated Cs were clustered in

kilobase regions to form partially-methylated regions (pMRs). Some pMRs are

conserved in most of the studied cell-lines, while some are gender-specific or

differentiated-cell-specific. These pMRs mark genes with intermediate level of

expressions and are enriched with active histone modifications and transcription

factors. The gender-specific pMRs are enriched in chromosome X with X-linked

inheritance function; the differentiated-cell-specific pMRs show development related

functions. Furthermore, we observed that the conserved pMRs are significantly

overlapped with known imprinting genes, which can be a method to identify new

imprinting genes.

4.5.1 Results

4.5.1.1 Partially-methylated Cs from 18 individual bisulfite libraries

We studied 18 bisulfite sequencing libraries [218, 221, 234-238], including 8 libraries

from female samples and 10 libraries from male samples (see Appendix Table A1.1

for details of the libraries used, including gender information and embryonic-cell-

differentiated-cell information). They were re-mapped with BatMeth [239] to human

reference genome hg19. The methylation level of each individual C is defined as the

percentage of reads covering the C that are not modified by the bisulfite treatment.

The percentage ranges from full methylation (100%) to no methylation (0%). The
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DNA methylation level of each C is stratified into five categories (Figure 4.5a): 1)

methylated (as M, 80%-100%), 2) between methylated and partially-methylated (as

Mp, 60%-80%), 3) partially-methylated (as P, 40%-60%), 4) between partially

methylated and un-methylated (as pU, 20%-40%), and 5) un-methylated (as U, 0%-

20%). To validate our bisulfite mapping and methylation callings, we compared the

methylation callings of cell-line H9 from bisulfite sequencing [218] and from

Illumina Infinium Human-Methylation27 BeadChip microarray (as 27K array in the

following text). 27K array heatmap in Figure 4.5b shows the ratios of the observed

counts and the expected counts in all 25 combinations. The darker colors (as high

observed/expected ratios) along the diagonal of the heatmap suggest that the

methylation callings from our bisulfite sequencing are concordant with the callings

from 27K array. The high observed/expected ratio for the category with “P” callings

from both bisulfite sequencing and 27K array shows that the partial methylation

callings from bisulfite reads are quite reliable. Our following studies are mainly

focused on partially methylated Cs (i.e. Cs with methylation level between 40%-60%)

from bisulfite sequencing. The numbers of partially methylated Cs in CpGs from

individual cell-lines are shown in Figure 4.5c (see Appendix Table A1.2 for more

information about bisulfite mapping and partial-methylation calling).

4.5.1.2 Individual partially-methylated Cs widely spread in the genome

First, we characterized the individual partially-methylated Cs. Figure 4.6a shows the

distributions of partially-methylated Cs in CpA, CpC, CpG and CpT compositions.

Similar to fully-methylated Cs, partially-methylated Cs are significantly enriched in

CpGs, while vast majority of the partially-methylated Cs are not in CpG islands

(Figure A1.1). Apart from CpGs, partially-methylated Cs are enriched in CpAs of

embryonic stem cells H1, H9 and induced-pluripotent-stem (iPS) cells, but not in

differentiated cells.
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This is similar to the previous observations that non-CpG methylated Cs are enriched

in embryonic stem cells [218, 221]. When partially-methylated Cs in CpAs were

checked in details, CAGs were enriched in partially-methylated Cs at CpA sites from

embryonic stem cells, while diminished in blood cells (Figure 4.6b). The functions of

such non-CpG methylated Cs need further investigation. Since partially-methylated

Cs are mainly from CpGs in most of the cell-lines, the following analyses are based

on partially-methylated Cs from CpGs.

Second, we checked the profiles of the partially-methylated Cs along the

chromosomes. Figure 4.6c shows the profile of percentages of partially-methylated

Cs over the covered Cs in 100Kb bins along chromosome 1 from cell-lines H1, H9

and IMR90. The partially-methylated Cs spread widely along chromosome 1 (and the

same for other cell-lines and tissues, see Figure A1.2, and other chromosomes). In

fact, the number of partially-methylated Cs in each chromosome is proportional to the

chromosome length (see Figure A1.3). We also observed that, in the embryonic stem

cells, 3%-6% of Cs per 100Kb are generally partially-methylated, while in the

differentiated cell-lines, higher percentages (6%-10%) of the Cs per 100Kb are

partially-methylated (Figure A1.2). This observation is consistent with Figure 4.5c,

which showed that differentiated cells have more partially-methylated Cs.

Figure 4.6d is a heatmap showing the correlation of partially-methylated Cs among

different cell-lines. In general, the correlations of partial methylation profiles of Cs

among embryonic stem cells are higher than those between embryonic stem cells and

differentiated cells. The hierarchical clustering of the correlation matrix shows the

separation of the cell lineages. Roughly speaking, there are two clusters: one cluster is

for the embryonic stem cells and the likes, and another cluster is for the differentiated

cells. H1 and H9 are the male and female embryonic stem cell respectively.

H1_BMP4 and H1_mesendoderm_BMP4 are H1 derived embryonic-stem-like cells.

H1NPC is a neural progenitor cell derived from H1. Sperm cells are similar to the
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Figure 4.5. Partial methylation callings. a) Categories of methylation levels; b)
Validation of DNA methylation callings from bisulfite sequencing with 27K DNA
methylation array in embryonic stem cell H9. The darker the color, the higher ratio
from the observed consistent DNA methylation callings to the randomly expected
consistent callings; c) Numbers of partially-methylated Cs from individual cell-lines
and tissues.

embryonic stem cells. HSF1 cell-line is an embryonic stem cell and has a low

mapping rate (due to extensive Ns in the reads). Cell-line iPS19.11 is an induced

pluripotent stem cell. The other cell-lines are in the differentiated cell cluster.
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4.5.1.3 Regions enriched with partially-methylated Cs across the samples

overlap with imprinting genes

Although the numbers of partially-methylated Cs in the individual chromosomes are

approximately proportional to the chromosome lengths (Figure A1.3), Figure 4.6c

shows that partially-methylated Cs are not uniformly distributed along the

chromosomes – some partially-methylated Cs are clustered in small regions. Based on

this observation, we partitioned the genome into 5Kb bins to identify the regions

enriched with partially-methylated Cs. For every bin in each cell-line, we computed

its percentage of partially-methylated Cs over the covered Cs (precisely, the

percentage of Cs that are partially methylated within the bin). Then, the average

percentage of partially-methylated Cs of each bin among all cell-lines was computed.

Figure 4.7a shows the QQ plot of the average percentage of partially-methylated Cs

of all the bins. From the plot, we saw that some bins were significantly enriched with

partially-methylated Cs. 0.15 was determined as the cutoff to identify bins enriched

with partially-methylated Cs. We further merged the bins enriched with partially-

methylated Cs if they were less than 5Kb apart and filtered the bins that overlapped

by 40% or more with RepeatMasker regions [240]. This resulted in 94 regions from

autosomes as the conserved partially-methylated regions (pMRs). Figure 4.7b shows

the conserved pMR with the highest average percentage of partially-methylated Cs.

This region locates around the promoter of the known imprinting gene GNAS. Figure

4.7c and 4.7d show two more pMRs which are around known imprinting genes

PEG10, MAGEL2 and NDN. In particular, the pMR around the imprinting genes

MAGEL2/NDN is located in the Prader-Willi syndrome deletion region.

The above examples show that conserved pMRs are good candidates of imprinting

genes. In fact, the number of conserved pMRs is approximately the same as the
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Figure 4.6. Genomic profile of partial methylated C. a) Distributions of partially-methylated Cs in CpAs, CpCs, CpGs and CpTs from individual cell lines.
The cell lines are sorted by the proportion of partially-methylated Cs from CpGs. b) Distributions of partially-methylated Cs in CAAs, CACs, CAGs and
CATs from embryonic stem cells H1, H9, induced pluripotent stem cell iPS19.11, and blood cells. Cell-lines H1, H9, and iPS19.11 are enriched with CAGs
at CpA sites, while blood cells are depleted with CAGs at CpA sites. c) Profile of partially-methylated Cs from cell-lines H1, H9 and IMR90 along
chromosome 1 in 100Kb bins. d) Hierarchical clustering of the profile of partially-methylated Cs from different cell lines. ES cluster includes H9, H1,
H1NPC, H1_BMP4, H1_me_BMP4, and iPS19.11. Sperm cluster includes two sperm replicate DNA methylation data. HSF1 is an embryonic stem cell with
low mapping rate (due to extensive “N”s in the reads). Other cell lines are in the differentiated cell cluster (Diff. cells).
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estimated number of the imprinting genes, which is around 100-200 [241]. Gene

Ontology (GO) analysis with GREAT [242] also showed that the conserved pMRs are

enriched with genomic imprinting. Then, we overlapped the conserved pMRs with 98

known imprinting genes. 18 out of 94 conserved pMRs overlap with known

imprinting genes. To test if the overlap is statistically significant, we randomly

simulated the same number of regions from the genome and calculated the overlapped

regions with known imprinting genes. We repeated the simulation 1000 times and

found the average number of overlapped regions was 0.74 in the simulation, which is

much smaller than 18, which is the actual number of conserved pMRs overlapped

with imprinting genes (empirical p-value = 0).

Especially, 11 out of top 20 conserved pMRs overlap with known imprinting genes

(Table 4.7). From the remaining 9 pMRs that did not overlap with the set of known

imprinting genes, the FANK1 gene was validated to have allele-specific methylation

in blood [235] and another gene MAP2K3 was validated using strain-biased

expression [243]. Another region, chr11:2,020,000-2,025,000, is just 1Kb upstream

of a well-characterized imprinting gene H19. Taken together, this list is highly

enriched with imprinting genes.

4.5.1.4 Cell specificity of partial methylations

To study if partially-methylated Cs mark genes with cell specificity, we used t-test

(see Method) to identify pMRs which were gender-specific and differentiated-cell-

specific. 210 regions were identified as gender-specific pMRs and 272 regions were

identified as differentiated-cell-specific pMRs. Figure 4.8a shows the heatmap of the

percentages of partially-methylated Cs from gender-specific pMRs in different cell-

lines. Majority of such gender-specific pMRs (201 out of 210 regions) are from

chromosome X, and they have higher percentage of partially-methylated Cs in the

female cell-lines. The remaining gender-specific pMRs are from chromosomes other
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Figure 4.7. Partial methylation across samples. a) QQ plot of the average percentage of partially-methylated Cs in 5Kb bins across the genome from all
studied cell-lines and tissues. There are regions without partially-methylated Cs as percentage 0. (b-d) Screenshots around imprinting genes GNAS, PEG10,
and MAGEL2/NDN enriched with partially-methylated Cs in the studied cell lines.
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Table 4.7. Top pMRs across cell types

than chromosome X, with higher percentage of partially-methylated Cs in male cell-

lines. Figure 4.8b shows an example gender-specific pMR which is around the gene

AMELX. AMELX is known to associate with X-linked forms of amelogenesis

imperfecta. Gene Ontology analysis with GREAT [242] showed that the gender-

specific pMRs are highly enriched for X-linked inheritance and intellectual disability.

This means that genes around these pMRs are important for gender-related functions.

Figure 4.8c shows the heatmap of the percentages of partially-methylated Cs from

differentiated-cell-specific pMRs in different cell-lines. Figure 4.8d shows an

example differentiated-cell-specific pMR which is around the PCDHB gene clusters.

PCDHB gene clusters are related to Wilms' tumor, which is a pediatric tumor of the

kidney with failure of the fetal developmental program [244]. In summary, both the

genomic regions with partial
methylation across samples

genes overlapped at promoter regions(known
imprinting genes in BOLD)

chr20:57,415,000-57,435,000 GNAS
chr7:94,285,000-94,290,000 SGCE;PEG10
chr6:57,360,000-57,420,000 PRIM2
chr7:130,130,000-130,135,000 MEST;MESTIT1
chr10:135,490,000-135,495,000 DUX4L3;DUX2
chr21:9,890,000-9,920,000 ---
chr19:54,040,000-54,045,000 ZNF331
chr11:2,720,000-2,725,000 KCNQ1;KCNQ1OT1
chr17:21,245,000-21,255,000 ---
chr15:25,200,000-25,205,000 SNRPN;SNURF

chr1:161,420,000-161,425,000 TRNA_Glu;TRNA_Gly;TRNA_Asp;TRNA_Leu

chr20:29,625,000-29,635,000 MLLT10P1;FRG1B
chr20:42,140,000-42,145,000 L3MBTL1
chr11:2,020,000-2,025,000 AK311497;MIR675;H19
chr17:21,200,000-21,230,000 MAP2K3
chr10:127,575,000-127,590,000 DHX32;U2;FANK1
chr7:61,050,000-61,060,000 ---
chr6:57,205,000-57,210,000 PRIM2
chr15:23,930,000-23,935,000 NDN
chr19:57,345,000-57,355,000 ZIM2;PEG3;MIMT1
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gender-specific pMRs and differentiated-cell-specific pMRs are enriched with cell-

specific functions.

4.5.1.5 Characterization of partially-methylated regions with methylated

Cs, histone modification marks and gene expressions

With conserved pMRs, gender-specific pMRs and differentiated-cell-specific pMRs,

we characterized them with the profile of fully-methylated Cs, histone marks and

gene expressions. First, we checked the profile of fully-methylated Cs in the

identified pMRs. Figure 4.9a shows the percentages of fully-methylated Cs in the

whole genome, the conserved pMRs, the gender-specific pMRs and the

differentiated-cell-specific pMRs. For the whole genome, the average percentages of

fully-methylated Cs from all cell-lines and cell-line H9 are generally high (the

medians are around 80%). The conserved pMRs have the lowest percentage of fully-

methylated Cs (around 50%-60%). The gender-specific pMRs have higher percentage

of fully-methylated Cs in the male samples than in the female samples. The

differentiated-cell-specific pMRs have higher percentage of fully-methylated Cs in

embryonic stem cells and the likes than those in the differentiated cells. This

indicated that the conserved pMRs are not suppressed by fully-methylated Cs,

gender-specific pMRs are suppressed by fully-methylated Cs in male samples and

differentiated-cell-specific pMRs are suppressed by fully-methylated Cs in embryonic

stem cells and the likes. Consistent with the findings from all cell-lines, conserved

pMRs and gender-specific pMRs have lower percentage of fully-methylated Cs in

female

embryonic stem cell-line H9, while differentiated-cell-specific pMRs have higher

percentage of fully-methylated Cs in H9. Next, we characterized the pMRs with the

histone modification data [245] from the cell-line H9. Figures 4.9b and 4.9c show that

the active histone marks H3K4me3 and H3K27ac are enriched in the conserved

pMRs and gender-specific pMRs, but not enriched in the differentiated-cell-specific
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pMRs. The findings are consistent with the profile of the fully-methylated Cs in the

cell-line H9. Since conserved pMRs and gender-specific pMRs in the cell-line H9

have both high percentage of partially-methylated Cs and relatively low percentage of

fully-methylated Cs, they are expected to associate with both active histone marks

and potentially active chromatin regions. For the differentiated-cell-specific regions,

Figure 4.9a indicates that the differentiated-cell-specific pMRs have high percentage

of fully-methylated Cs in H9; hence, they are expected to be suppressed and, thus, the

histone marks H3K4me3 and H3K27ac are depleted in H9.

Lastly, we checked the distribution of pMRs relative to gene models (Appendix

Figure A1.4) and the expressions of genes whose promoter regions overlapped with

pMRs. Figure 4.9d shows that, conserved pMRs and gender-specific pMRs are

enriched around gene promoter regions and inter-genic regions. Differentiated-cell-

specific pMRs are enriched in inter-genic regions and introns.

Figure 4.9e shows the boxplots of the expression levels of genes in the cell-line H9

[218] whose promoter regions overlapped with the conserved pMRs, gender-specific

pMRs, and differentiated-cell-specific pMRs. The figure also shows the boxplots of

gene expression levels of the 1/3 highly expressed genes, 1/3 intermediately

expressed genes and 1/3 lowly expressed genes in the cell-line H9. Clearly, the genes

overlapped with conserved pMRs and gender-specific pMRs have intermediate

expression levels (the expression levels are similar to that of the 1/3 intermediately

expressed genes and higher than that of the 1/3 lowly expressed genes). Also, as

expected, the genes associated with differentiated-cell-specific pMRs have low

expression levels in the cell-line H9. Table 4.8 summarizes the properties of the

conserved pMRs, gender-specific pMRs and differentiated-cell-specific pMRs studied.
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Figure 4.8. Cell specificity of partial methylation. a) Heatmap of percentages of partially-methylated Cs from gender-specific partially-methylated regions. b)
Screenshot of gender-specific partial methylation around gene AMELX. c) Heatmap of percentages of partially-methylated Cs from differentiated-cell-
specific partially-methylated regions. d) Screenshot of partial methylation around gene PCDHB12 for differentiated-cell-specific partial methylation. Refer to
Table A1.1 for male/female cell-lines, and refer to Figure 4.6d for embryonic stem cells and differentiated cells.
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Figure 4.9. Histone modification profile and gene expressions of partially-methylated regions from embryonic stem cell H9. (a) Boxplot of the percentage of
fully-methylated Cs from all the cell-lines and cell-line H9. a: average percentage of fully-methylated Cs across samples; a.au: average percentage of fully-
methylated Cs across samples overlapped with conserved pMRs; a.g.m: average percentage of fully-methylated Cs across male samples overlapped with
gender-specific pMRs; a.g.f: average percentage of fully-methylated Cs across female samples overlapped with gender-specific pMRs; a.Ed.E: average
percentage of fully-methylated Cs across embryonic stem cells and the likes overlapped with differentiated-cell-specific regions; a.Ed.d: average percentage
of fully-methylated Cs across differentiated samples overlapped with differentiated-cell-specific regions; H9: percentage of fully-methylated Cs from cell line
H9; H9.au: percentage of fully-methylated Cs from cell line H9 overlapped with pMRs; H9.g: percentage of fully-methylated Cs from cell line H9 overlapped
with gender-specific pMRs; H9.Ed: percentage of fully-methylated Cs from cell line H9 overlapped with differentiated-cell-specific pMRs; (b-c) Profiles of
histone marks H3K4me3 (b) and H3K27ac (c) around conserved pMRs, gender-specific pMRs, and differentiated-cell-specific pMRs. (d) distribution of
pMRs around gene models; (e) Boxplot of gene expressions from cell-line H9: 1/3 highly expressed genes(high), 1/3 intermediately expressed genes (inter),
1/3 lowly expressed genes (low), genes whose promoter regions overlapped with conserved pMRs (pMRs.c), gender-specific pMRs (pMRs.g), and
differentiated-cell-specific pMRs (pMRs.d).
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Table 4.8. Characterization of partial methylated region (pMRs)

Conserved
pMRs

Gender-specific
pMRs

Differentiated-cell-specific
pMRs

Male Female ESC cells Differentiated
Cells

Percentage of
partially-methylated

Cs
High Low High Low High

Percentage of fully-
methylated Cs Low High Low High Low

Number of regions 94 210 272
Overlap of promoters
(+/- 5Kb around TSS) 32 102 33

H3K4me3 in cell-line
H9 Enriched Enriched Depleted

H3K27ac in cell-line
H9 Enriched Enriched Depleted

Gene expression in
cell-line H9 Intermediate Intermediate Low

4.5.2 Methods and Material on Prediction of Imprinting Genes

4.5.2.1 Data used

18 bisulfite-treated DNA methylation libraries from next-generation sequencing were

used in this study, which were summarized in Appendix Table A1.1. H9 histone

modification and transcription factor ChIP-Seq data were extracted from [245] with GEO

accession number GSE24447. The H9 gene expression data and 27K array DNA

methylation data were from [218].

4.5.2.2 Mapping of DNA methylation bisulfite sequence reads

BatMeth [239] was used for efficient and accurate bisulfite sequence reads mapping. At

most three non-bisulfite mismatches were allowed for each read; bisulfite mismatch was

defined as a T in the read and a C in the reference genome at their corresponding

genomic locations. Only uniquely-mapped reads were kept for further processing. In

addition, each C needs to be supported by three or more tags before it is interrogated for

downstream analysis. The methylation level of the individual C is defined as the
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percentage of reads whose Cs are not modified by the bisulfite treatment, which ranges

from full methylation (100%) to no methylation (0%).

4.5.2.3 Validation of methylation callings

To validate our methylation callings, the methylation levels of the Cs in the 27K array are

partitioned into the same five categories as in the bisulfite sequencing. Based on the 5

categories of Cs in methylation callings, there are 25 possible combinations of

methylation callings from bisulfite sequencing and 27K array. The total numbers of

different combinations are counted for all the common sites from our methylation calling

and 27K array methylation calling. ~77% of the Cs called by both platforms have the

same methylation categories. To show how the categories from our methylation callings

and 27K array are consistent in general, we generated the ratio of the real counts in each

of the 25 combinations and the expected numbers of the counts in the corresponding

categories in Figure 4.5b.

4.5.2.4 Conserved partially-methylated regions

We used a sliding window of 5Kb to scan the genome. For each window, we computed

the percentage of the partially-methylated Cs over the covered Cs in CpGs in each cell-

line. From all the candidate regions, we calculated the average percentage of partially-

methylated Cs over the covered Cs from all samples. Regions enriched with partially-

methylated Cs were determined by the QQ plot (the cutoff was 0.15) and the regions

within distance less than 5Kb were merged. Then, the regions were filtered out, if they

had more than 40% overlap with RepeatMasker repeat regions [240].

To evaluate the significance of the overlap of the partially-methylated regions with

imprinting genes, we randomly generated the same number of 5Kb regions, and counted

the number of the randomly-generated regions overlapped with the known imprinting
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genes. Such simulations were repeated 1000 times and the empirical p-value was defined

as the number of times of simulations with more regions overlapped with known

imprinting genes.

4.5.2.5 Gender-specific partially-methylated regions and Differentiated-cell-

specific partially-methylated regions

For the 5Kb sliding windows across the genome, we performed t-test on the percentage

of partially-methylated Cs between male and female cells. A sliding window was selected

as a gender-specific partially-methylated region if the t-test p-value is less than 0.001,

and the average percentage of partially-methylated Cs from male cells or female cells is

more than 0.15. The gender-specific regions were further merged if their distance is less

than 5Kb. The regions were filtered out if they had more than 40% overlap with

RepeatMasker repeat regions. The calling of differentiated-cell-specific partially-

methylated regions is similar to that of gender-specific pMRs, except that the t-test was

performed between the DNA methylation libraries from the embryonic stem cells and

differentiated cells and the cutoff for t-test p-value as 0.0001.

4.6 Discussion

DNA methylation is an important biological process. Mapping the BS reads from next-

generation sequencing has enabled us to study DNA methylation at single-base resolution.

Our proposed method aims to develop efficient and accurate methods to map BS reads.

This study employed three methods to evaluate the performance of BS read mapping

methods. The first method measured the ratio of correct and wrong unique unambiguous

mappings. This method only applies to simulated data when the actual locations of the

reads are known. For real data, the number of unambiguous mappings alone may not be a

good criterion to evaluate accuracy (we can map more reads at a higher mismatch number,
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which results in lower specificity). The second method evaluated the accuracy using the

number of reads that were mapped in consistent pairs, and can only be employed when

paired-end read information is available. The third method used the directionality of the

mapped reads from SOLiD sequencing. For the SOLiD reads, we mapped reads

unbiasedly onto both forward and reverse directions of our reference genome. From the

unambiguous mappings, we estimated the error rate of our unique mappings from the

proportion of reverse direction unique mappings in the result sets. All these measures

were used on different sets of simulated and real data and they suggest that BatMeth

produces high quality mapping results.

For future work, our team will be working on more time-efficient data structures to better

streamline our algorithm.

4.7 Conclusions

We report a novel, efficient and accurate general-purpose BS sequence mapping program.

BatMeth can be deployed for the analysis of genome-wide BS sequencing using either

base reads or color reads. It allows asymmetric BS conversion to be detected by labeling

the corresponding reference genome with the hit. The components discussed in the

Materials and methods section, such as list filtering, mismatch stage filtering, fast

mapping onto two indexes, handling hypo- and hyper-methylation sites and other

heuristics have offered increased speed and mappability of reads. In addition, BatMeth

reduces biased detection of multiple CpG heterogeneous and CpH methylation across the

whole reference by mapping onto both fully converted and non-CpG references and then

labeling the reference to which the hits are from to aid biologists to discriminate each hit

easily. Users can also choose to bias against either reference with varying mismatch scans.

In assessing the uniqueness of a hit for BS color reads, BatMeth considers both strands of

the DNA simultaneously while B-SOLANA considers both DNA strands separately.
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Hence, BatMeth has a stronger uniqueness criterion for hits as B-SOLANA may produce

two hits for a read, one hit for each separate DNA strand. Lastly, BatMeth uses an

optimal DP algorithm to convert the color read to base space to check for non BS

mismatches.
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Chapter 5

5Gapped Alignment Problem

5.1 Introduction

Genomic variations include insertions [246], deletions [247] and polymorphisms. These

genomic variations can be captured by second-generation sequencing (SGS) at a high

resolution. However, these genomic variations introduce mismatches and gaps when the

SGS reads are aligned on to a reference genome. Hence, it is a challenge to accurately

align SGS reads on to a reference genome. Furthermore, indels represent 7-8% of human

polymorphisms [248]. This motivates us to develop an accurate gap-aligner.

Alignment tools can be divided into two main categories as mismatch-only and gapped

aligners. A number of mismatch-only mapping algorithms have been proposed, including

SOAP [104], RMAP [93], Bowtie [102], PerM [155], and BatMis [219]. They enable us

to map reads allowing SNVs and sequencing errors.

However, mismatches cannot capture all types of genomic variations. Technically, indels

may introduce a contiguous chain of mismatches in a read, with respect to a reference,

which is computationally expensive for aligners to handle. With the increasing evidence
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of indels being involved in a number of diseases [249], it is important to produce accurate

mapping results for downstream variant callers such as VarScan [250], SAMtools [81],

microindels [251] and Dindel [252].  Hence, it is important to align reads which have a

mixture of mismatches and indels efficiently and accurately.

5.2 Related Work

Many gapped-aligners have been designed to allow both mismatches and indels in an

alignment, including GEM [140], SeqAlto [112], ZOOM [117], BWA [100, 101],

SHRiMP2 [116], Stampy [107], Bowtie2 [103] and others [144, 158, 180, 253]. Here we

review some of the most popular officially published gapped aligners. GEM is currently

the fastest published method and is based on filtration to leverage string matching with

increased efficiency and precision. Based on FM-index, GEM implements a region-based

adaptive filtering, tailored for each read, by leaving out regions which yield too many

candidate matches that need to be checked, resulting in efficient alignments.

BWA-short [100] is a fast and accurate gapped aligner for short reads which performs a

backward search of a read against the BWT-index of the reference. BWA-SW [101] also

uses BWT-index and it represents the reference in a prefix trie and the query read in a

prefix directed acyclic word graph (DAWG). All local matches of the query in the

reference are then found by applying Smith-Waterman (SW) algorithm between the

prefix trie and the prefix DAWG.

Stampy [107] is a hybrid method based on both BWT indexing and hash-based method.

Stampy uses BWA-short as a pre-mapping tool to map reads onto a reference. For the

remaining unmapped reads, Stampy identifies candidate genomic locations which match

the length-15 seeds of these unmapped reads; then a Single Input Multiple Data (SIMD)
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version of SW algorithm is applied to these candidate locations and the hit with the best-

score returned by the SW algorithm is reported.

Similar to the seeding approach of Stampy, Bowtie2 [103] uses a length-22 seed with no

mismatches to identify putative mapping locations and an SIMD-SSE2 implementation of

striped SW algorithm to recover the best alignment from the seeded locations. However,

such heuristics of using 0 or 1-mismatch seeds may miss the correct alignment of a read

if the seeded regions of the reads contain more than one mismatch w.r.t. the reference

genome.

SeqAlto is a method that hashes all k-mers of the reference genome. It aims to align long

reads. This is achieved by the usage of longer k-mer sizes compared to some other

approaches, examining less repetitive k-mers first and by adaptively stopping the k-mer

search. Large contiguous k-mers greatly reduce the number of locations of each k-mer in

the reference to mostly unique hits and improves accuracy of alignment too.

In summary, these methods assume that the seed does not contain gaps, have a small

number of mismatches and/or that the seed does not come from repetitive regions. This

affects the accuracy of existing methods. BatAlign is proposed by allowing high-

mismatch and/or gaps in a seed. Candidate locations of a read to repetitive regions are

also examined to avoid missing any correct alignments.

5.3 Results

5.3.1 Simulation study on variant-spanning reads

The alignment of reads in the presence of SNVs, indels, and/or SVs still remain

challenging despite developments already made by published aligners. This section
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intends to study the alignment accuracy of existing published methods using simulated

reads that span across genomic regions with high number of SNVs, indels or SVs.

Mate-pair information can falsely disambiguate alignments: Mate-pair information is

useful in aligning the two individually repetitive mate-paired reads unambiguously to the

locality of each other in the reference genome. An ideal aligner should be able to align

concordant and discordant paired-reads without bias, i.e., same rates of specificity while

maintaining high sensitivity on mapping these two types of reads. (A concordant paired-

read is a pair of reads that are sequenced from the vicinity of each other, within the

expected wet-lab insert-size, on the reference genome. A discordant paired-read is a pair

of reads that are sequenced much more than the expected insert-size from each other)

However, if mate-pair information is used too aggressively, an aligner might wrongly

align a pair of discordant read-pair concordantly onto the reference genome.

We have studied the impact of mate-pair information on alignment performance by

aligning two types of simulated paired-reads (see Simulation of data). The first set

consists of paired-reads that were simulated with a mean insert-size of  500 bp (s.d. of 50

bp) and the other set consists of paired-reads simulated with interchromosomal insert size.

Figure 5.1 reports on the differences in mapping sensitivity and specificity of each

published method between these two sets of reads. An ideal aligner should exhibit

minimal performance bias between these two types of reads. Also, we have observed that

the performance of the compared methods varied greatly from one and another between

the alignments of these two types of paired-reads. The estimated bias in sensitivity and

specificity ranges from ~13% to ~20% and ~0.1% to ~7.8% respectively among the

compared methods.
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Figure 5.1. The difference in sensitivity and specificity between mapping paired-end
datasets with simulated concordant and discordant mate-pair information.

Gapless seeding affects the alignment of indels: One delete of 1-8bp are simulated into

reads of 75 bp long from hg19 reference genome (see Simulation of Data). We have

noticed that up to ~4.9% of these reads can be represented by alternative genomic

locations gaplessly with a low mismatch count of less than 5. This percentage is a lower-

bound estimation as the seeds used in current published methods are much shorter (15-22

bp). This will affect indel callings.

To further investigate the impact of using short-seeds in aligning indels, we procured the

current set of 1 bp indel reads into two groups. The first group of reads which have failed

to be represented by alternate genomic positions with up to 5 mismatches while the

second group of reads can be. On the first group of reads, all the compared methods have

averaged sensitivity and specificity approaching 100%. However, on the second group of

reads, the compared methods only obtained an averaged sensitivity and specificity of ~48%

and ~53% respectively. As the reads are simulated with zero mismatches, the differences

in mapping performance mainly stems from a gapless seed approach employed by the

compared methods which did not capture the correct initial seeding alignment. (See

Figure 5.2a-b for the detail of the sensitivity and specificity of different aligners for these

two groups of reads.) This highlights the difficulty faced by current methods on mapping

indel reads.
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Figure 5.2. a) The sensitivity and specificity of compared methods on indel reads which
do not have an alternative alignment with up to 5 mismatches. b) The sensitivity and
specificity of compared methods on indel reads which have an alternative alignment of at
most 5 mismatches.

Simulated reads with k mismatches can be mapped with less than k mismatches

Mismatches (like SNPs) can cause misalignments of reads, especially for reads

sequenced from highly polymorphic regions, to homologous genomic regions of non-

origins., We simulated reads (see Simulation of data) to study the effects of mismatches

in producing misalignments..For each read, we reported the lowest-mismatch unique hits

(using BatMis [219], an exact k-mismatch alignment algorithm). We then compared the

number of mismatches at which the reads were simulated with (we call this value A) and

mapped at (we call this value B). Interestingly, if A=B, the respective alignments from

BatMis were mapped correctly. However, when AB, the mappings were wrong, as it

must be so due to alignment to a location different from where it was simulated.

We should note that with the increase of simulated mismatches in a read, the occurrences

of it being misaligned with a lesser number of mismatches also increases; statistically,

this is also true as mismatches act as wild-cards in string-matching problems. From the

mappings of BatMis, the rates of misalignment for reads simulated with 1 to 5

mismatches increased from 0.3% to 0.9% respectively. This result implies that, in SNV-

aberrant genomic reads, it is unwise to always pick the lowest-mismatch hit as it might

misrepresent the original location of a read.
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To further investigate the impact of high-mismatch reads on the performance of the

current published methods, we procure two groups of reads from the current set of

simulated reads. The first group and second group consist of k-mismatch reads which can

be mapped uniquely by k-mismatch and less than k-mismatch respectively.  On the first

group of reads, all the compared published methods have averaged sensitivity of ~90%

and specificity approaches 100%. However, on the second group of reads, both

sensitivity and specificity never exceeded 4%. (See Figure 5.3a-b for the graph of

sensitivity and specificity of different aligners for these two groups of reads.) This

highlights the difficulty faced by current methods on mapping high-mismatch reads.

Figure 5.3. a) The sensitivity and specificity of compared methods on k-mismatch reads
which can be mapped uniquely with k-mismatch. b) shows similar statistics to a) by
mapping k-mismatch reads which have alternate unique alignment of ≤ k-mismatch.

5.3.2 Compared methods and method of cross-comparison

We have used the following gapped alignment tools for comparison: BatAlign, Bowtie2

(2.0.6), BWA-Short, BWA-SW (0.6.1-r104), Stampy (v1.0.16), GEM (3rd release) and

SeqAlto (0.5-r123). These aligners are widely used and feature a wide range of mapping

techniques. We run Stampy without using BWA as it was reported to be more sensitive.

For each tool, the reference genome was indexed with default indexing parameters. hg19

was used for all experiments in this chapter. All experiments were run on a Linux

workstation equipped with Intel X5680 (3.33 GHz) processor and 16GB RAM.
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It was noted that GEM is the only method among the 7 compared methods that does not

assign mapping quality to its alignments. We run the default modes of the compared

programs unless otherwise stated. We have also adopted the performance measure “first

correct” (or best) alignments from GEM’s paper into our experiments to make sure our

comparisons are extensive.

In this chapter, we have compared the full spectrum of mappings using ROCs. The ROC

graphs are stratified by mapQ to visually compare the relative performances among the

different methods. However, it is hard to compare the absolute differences in

performance between methods as mapQ calculation differs from one method to another.

To resolve this problem and to present the relative differences in performance

numerically between the different methods, we will have to pick a baseline performance

indicator for all methods to compare against with. For instance, if we want to compare

the specificity of the methods, we will pick the method with the lowest number of

incorrect/discordant mappings at mapQ>0 as the baseline for the other methods to

compare with. In addition, any method that does not report a calibrated mapQ to its hits

cannot be compared as described with other methods, but will still be plotted in the ROCs.

In general, the ROCs in the later section show that if the sensitivity of a method drops, its

specificity will increase. Hence, we can pick and compare the sensitivity and specificity

of the various methods by picking a baseline as described.

5.3.3 Simulation of data

We generated three classes of simulated data. The first class mimicked Illumina-like

reads, the second class has one indel in each of its reads and the third class is ‘paired’

reads. The first class of reads were generated by ART (Huang et al. 2011) from hg19

(excluding non-chromosomal sequences). We have chosen ART for our study since the

substitution errors are simulated according to empirical, position-dependent distribution



121

of base quality scores; it also simulates insertion and deletion errors directly from

empirical distributions obtained from the training data from the 1000 genome project

[254]. Empirical read quality score distributions are provided for read lengths 75 bp, 100

bp and 250bp (these are the longest read lengths made available by ART). Although the

error rate in the 75 bp and 250 bp data are generally <4%, we cap the number of

mismatches and indels (SNVs or base-call errors or gaps) in all simulated read at 7% (an

indel is counted as 1 error).

The second class of pure-indel reads was used to demonstrate the performance of

BatAlign on the recovery of indels. 16 sets of 75 bp reads were created from hg19. Each

pure-indel data set contains 1 million reads having one indel of a fixed length (since the

average density of an indel is one in 7.2kb of DNA [247]). Indel lengths range from 1 bp

to 8 bp with inserts and deletes being considered separately.

The third class of reads was used to demonstrate the efficacy of mate-pair information on

the paired-end mapping mode of the compared programs. 6 sets of 1 million reads were

created. Each set consists of 2 x 500k x (75/100/250) bp x (concordant/discordant) reads.

The first set consists of concordant paired-end reads of mean insert size of 500 bp with a

standard deviation of 50 bp. The second set consists of discordant paired-end reads, the

‘left’ and ‘right’ ends of the paired reads are simulated from chromosome 1 and

chromosome 2 of hg19 respectively. This class of reads is to demonstrate the robustness

of BatAlign when aligning reads with mate-pair information in the presence of genomic

repetition and structural variations.

5.3.4 Evaluation on ART-simulated reads

As the original locations of simulated reads are known, we have assessed the sensitivity

and accuracy of each method using simulated reads in this section. For each method and



122

each dataset, we discarded mappings with mapQ = 0 for all methods as they are deemed

ambiguous. Then, we recorded the cumulative number of correct and wrong alignments

by their respective decreasing mapQ and plotted these results in the form of an ROC

curve; the corresponding cumulative number of correct and wrong alignments at a

particular mapQ cutoff will be the respective x-axis and y-axis values for a single data

point on the ROC curve. In addition, due to the inability to align some indels to their

exact locations and the presence of soft-clippings, an alignment will be considered as a

correct mapping if the leftmost position was within 50 bp of the position simulated by the

simulator on the same strand.

Figure 5.4 shows the ROC curve (i.e. the cumulative correct alignments against

cumulative wrong alignments) for each method and dataset. BatAlign was more sensitive

and reported less wrong alignments than other methods over a large range of mapping

quality cutoffs. We will cross-compare the methods for their sensitivity and specificity as

described in Compared methods and method of cross-comparison. In terms of sensitivity

on the 75 bp dataset, BatAlign, Bowtie2, BWA-SW, Stampy, BWA-Short and SeqAlto

reported sensitivity of 91.0%, 84.1%, 74.9%, 85.6%, 82.2% and 85.5% respectively. In

terms of specificity, BatAlign, Bowtie2, BWA-SW, Stampy, BWA-Short and SeqAlto

reported specificity of 99.998%, 99.987%, 97.168%, 99.990%, 99.944% and 99.862%

respectively. In terms of sensitivity on the 100 bp dataset (BWA-short was excluded from

this comparison as it has a sensitivity of 47.9% as compared and Bowtie2/SeqAlto still

reported higher than this level of sensitivity at their highest mapQ threshold), BatAlign,

Bowtie2, BWA-SW, Stampy and SeqAlto reported sensitivity of 91.2%, 85.1%, 76.6%,

87.8% and 88.6% respectively. In terms of specificity, BatAlign, Bowtie2, BWA-SW,

Stampy and SeqAlto reported specificity of 99.996%, 99.992%, 96.644%, 99.995% and

99.786% respectively. In terms of sensitivity on the 250 bp dataset, BatAlign, Bowtie2,
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BWA-SW, Stampy, BWA-Short and SeqAlto reported sensitivity of 88.8%, 85.1%,

85.8%, 86.4%, 88.5% and 88.0% respectively. In terms of specificity, BatAlign, Bowtie2,

BWA-SW, Stampy, BWA-Short and SeqAlto reported specificity of 99.999%, 99.887%,

99.990%, 99.863%, 99.998% and 99.997% respectively.

We know that Stampy uses a short-seed of length-15 to get the candidate hits of a read.

Based on this seeding strategy, Stampy should be able to have the correct hit among the

candidate hits represented by the short-seed. However, Stampy was unable to produce

accurate mappings and Figure 5.4 shows that over a large range of mapQ cutoffs, Stampy

actually has the lowest specificity. As expected, Bowtie2 which also uses a short-seed

mapping strategy also suffered high number of incorrect mappings within its results. It

should be noted that both methods employed low mismatch/gap costs in their affine gap

penalty cost matrix which are aimed at sensitive prediction of indels. This is done,

however, at the expense of increased false-positive rates as shown in Figure 5.4.

In order to compensate for any bias which the ROCs might place against GEM, we have

adopted the validation of first (or best) alignment used in GEM’s paper for the mappings

from all the compared methods on the 75/100/250 bp simulated datasets. Regardless of

the mapQ values, this `correctness’ measurement gives the number of mappings for

which the simulated location was correctly retrieved by the mapper. We had the methods

report the top 10 hits for each read (Stampy can only report at most 1 hit). Since all the

compared methods report hits to a read ranked by their likelihood of being the correct hit,

we improved the validation by reporting the rank of the correct hits too. The complete

breakdown of our validation by of the first (or best) alignment by rank can be found in

Table 5.1.
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Figure 5.4. Sensitivity and accuracy for aligning simulated reads from ART. Cumulative
counts of correct and wrong alignments from high to low mapping quality for simulated
Illumina-like (A) 75 bp and (B) 100 bp (C) 250bp datasets.
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From Table 5.1, we can see that BatAlign recovered the most number of correct hits

within any of its reported 10 hits on the 75 bp and 100 bp dataset. On the 250 bp dataset,

BatAlign is second to GEM by a margin of < 0.01%. Random inspection of the missing

reads showed that the difference was caused by hits which are too repetitive and it was by

chance that these hits were not ranked as any of the top 10 hits for their corresponding

read.

5.3.5 Evaluation on simulated pure-indel reads

The reads generated by ART have ~0.01% probability of containing an indel. Therefore,

Figure 5.4 does not show clearly the performance of the methods on reads containing

indels. Therefore, we used the Pure-Indel read class to further highlight the performance

of BatAlign on indel identification. For this comparison, we used sensitivity (SEN),

accuracy (ACC) and F-measure to gauge the performance of the methods:

SEN=TP/(TP+FN), ACC=TP/(TP+FP) where TP, FP and FN are true-positives, false-

positives and false-negatives, respectively; F-measure =2(SEN*ACC)/(SEN+ACC).

Figure 5.5 plots the accuracy rates (Figure 5.5A-B) and F-measure (Figure 5.5C-D)

graphs for all the compared methods across all the pure-indel datasets. BatAlign, Bowtie2

and Stampy had similar sensitivity across all the datasets of varying indel-lengths while

the other programs generally have problems maintaining sensitivity when the size of the

indel increases in our datasets. We also observed that BatAlign had the smallest drop

from 92.0% to 91.4% with respect to increasing insert-lengths in the reads. Furthermore,

the drop in sensitivity observed in BWA-SW was less than 1% on the delete-data sets but

5.4% on the insert-data sets. This hints that BWA-SW performs biased mapping of

deletes over inserts. Nevertheless, BatAlign was the only method to have the highest F-

measure and is unaffected by different indel-length in our experiments.
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Table 5.1A-C. A..Number of first (or best) alignment reported by various methods on
simulated 75bp dataset. B. Number of first (or best) alignment reported by various
methods on simulated 100bp dataset. C. Number of first (or best) alignment reported by
various methods on simulated 250bp dataset

Rank
Aligner

75bp dataset
#Correct hits Sum of

correct hits1 2 3 4 5 6 7 8 9 10
BatAlign 933560 11604 732 622 745 335 146 116 90 68 948018

Bowtie2 866410 10873 4095 1541 551 314 192 142 112 77 884307

BWA-SW 786309 2 0 0 0 0 0 0 0 0 786311

Stampy 902757 - - - - - - - - - 902757
GEM 893162 13603 5243 2231 1074 688 555 375 323 272 917526

BWA-Short 834519 10008 3535 1226 408 160 83 52 43 26 850060

Seqalto 885208 5692 1712 723 306 164 102 63 33 32 894035

Rank
Aligner

100bp dataset
#Correct hits Sum of

correct hits1 2 3 4 5 6 7 8 9 10
BatAlign 924272 7599 941 728 851 332 182 108 101 63 935177

Bowtie2 866310 8685 2833 948 254 110 69 42 23 5 879279

BWA-SW 794661 7 0 0 0 0 0 0 0 0 794668

Stampy 913874 - - - - - - - - - 913874
GEM 875333 10327 3533 1445 638 377 283 193 163 178 892470

BWA-Short 484558 5207 1747 662 211 112 79 48 20 13 492657

Seqalto 890336 1821 515 194 91 44 38 11 3 8 893061

Rank
Aligner

250bp dataset
#Correct hits Sum of

correct hits1 2 3 4 5 6 7 8 9 10
BatAlign 894799 6394 732 824 225 175 107 98 53 50 903457

Bowtie2 892350 6245 1269 346 184 131 83 62 49 34 900753

BWA-SW 894395 1 0 0 0 0 0 0 0 0 894396

Stampy 893642 - - - - - - - - - 893642
GEM 895450 5999 1203 319 201 116 92 79 50 46 903555

BWA-Short 894658 5615 800 67 0 0 0 0 0 0 901140

Seqalto 894661 3775 296 77 41 33 14 9 9 9 898924
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In terms of accuracy, Figure 5.5A-B shows that BatAlign has an average of 6.2%, 0.4%,

5.7%, 8.3%, 0.8% and 7.44% more specificity as compared to Bowtie2, BWA-SW,

Stampy, GEM, BWA-Short and SeqAlto respectively. Figure 5.5A-B also shows that

BatAlign maintained a high specificity even when the delete-insert-length increases.

In terms of F-measure, BatAlign clearly outperformed other methods and was the only

program to have a stable F-measure of 95.5% across all types of simulated pure-indel

reads. Figures 5.4 and 5.5 showed that BatAlign has better performance than the other

methods on a general dataset with a mixture of mismatches and indels, as well as in

identifying indels of various lengths. Thus, BatAlign can be used to identify a broad

spectrum of variants, in the presence of sequencing errors.

Figure 5.5. Specificity (A-B) / F-measure (C-D) of alignments using simulated Pure-Indel
reads of various indel-lengths each with 1 million 75 bp reads. A/C are delete datasets.
B/D are insert datasets.
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5.3.6 Evaluation on paired reads

Mate-pair information was provided by the experimental setup from the wet-lab and was

enabled by the paired-end sequencing capabilities of current sequencing technologies.

After the PCR-amplification step of the genomic starting materials, the amplified sample

undergoes sonication and fragments of similar size are separated with the use of

centrifugal instruments. In this section, we present the results on mapping concordant

(emulating a normal genome) and discordant (emulating large deletes and structural

variations in a diseased genome) simulated reads using the paired-end mapping mode

available in the compared methods. Due to the use of local alignment to sometime rescue

an unmapped mate read, the rescued alignment of the initially unmapped read might be

clipped at the ends and the reads cannot map to the exact locations as simulated by the

simulator. As such, similar to the previous sections, an alignment will be considered as a

correct mapping if the leftmost position was within 50 bp of the position simulated by the

simulator on the same strand. The mappings of the discordant reads was unavailable from

BWA-SW as the run did not complete after >2000 CPU hours. Post-processing are

needed for the mappings of Stampy, SeqAlto and GEM as these methods modified the

identification tags of the paired reads after their respective paired-end mapping mode.

On the dataset consisting fully of concordantly paired reads, BatAlign was more sensitive

and reported less wrong alignment than most other compared methods at reported mapQ >

0. BatAlign, Bowtie2, BWA-SW, Stampy, GEM, BWA-Short and SeqAlto reported

sensitivity with their running corresponding specificity of 98.0% (99.854%), 91.1%

(92.601%), 93.0% (98.711%), 98.1% (98.907%), 97.4% (98.183%), 60.2% (99.702%)

and 96.2% (99.881%) respectively. In the aspect of mapping concordant reads with

paired-end mapping option of the compared methods, BatAlign has the highest sensitivity

and second to SeqAlto in specificity (-0.027%). The slight loss in specificity on this
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dataset is negligible as BatAlign still performed the best in terms of F-measure with 98.9%

while SeqAlto measured at 98.0%.

On the discordant paired-end dataset, the sensitivity and specificity dropped for almost all

the compared programs as compared to the rates from the previous concordant paired-end

dataset. However, it is important to note that BatAlign now has the highest sensitivity and

specificity of 88.6% and 99.643% respectively. At mapQ > 0, the sensitivity with their

running corresponding specificity for Bowtie2, BWA-SW, Stampy, GEM, BWA-Short

and SeqAlto are 88.6% (99.643%), 71.5% (96.058%), -(-), 85.1% (91.138%), 85.2%

(96.735%), 46.7% (99.646%) and 80.7% (92.759%) respectively.

From doing paired-end mappings on these two datasets, an interesting trend of results

was observed for the compared programs except for BatAlign. The initial observation

was that methods which had lower specificity on the concordant-paired dataset, their

specificity generally suffered a smaller drop on the discordant-paired dataset. For

instance, Bowtie2 used to have a specificity of 92.601% on the concordant set but the

specificity improved to 96.058% on the discordant set. The inverse of the initial

observation on the results was also true. SeqAlto used to have the highest specificity of

99.881% on the concordant set but its specificity suffered a large drop of 7.122% to

92.759% on the discordant set. These fluctuations in specificity are due to the

aggressiveness of the pairing algorithms in the various methods to map a pair of

supposedly paired-end reads close to each other. These results showed the efficacy of

mate-pair information which was the consequences of different approaches used for

mapping paired-end reads in the different aligner. This will affect the alignment of SV-

spanning read-pairs and will directly impact the callings of SVs.
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Figure 5.6. Mappings of concordant and discordant datasets using paired-end mapping
mode of various methods. BWA-SW was unable to complete the alignment of 2 x 500k x 100bp discordantly paired reads
and is plotted as a single data point in the graph. The ‘red’ circled plots are from the discordant dataset.

Figure 5.6 summarized the performance of the compared methods on the above-

mentioned paired-end datasets. The mappings on the two datasets that are from the same

method are joined together by a line. As from the above, we can also concur that the ideal

method should not suffer any depreciation in its ability to detect the correct alignments

for the reads from any of the two datasets. Thus, graphically-speaking, Figure 5.6 shows

how biased a method is in its paired-end mapping mode in aligning reads with mate-pair

information with the length of the lines that joins the data points in Figure 5.6. Overall,

BatAlign was observed to have the smallest fluctuations in its sensitivity and specificity

of 9.4% and 0.211% respectively between the two datasets.

One would normally argue that the results on the discordant set might be skewed as the

frequency of such discordantly paired reads is too high even in a cancer genome as

subjected to inter-chromosomal fusion or intra-chromosomal rearrangements. As a real

dataset would have a mixture of concordant and discordant read-pairs in it, one can

strongly infer the robustness of the paired-end mapping mode of a method from the line

that joins the pair-data points of the corresponding method. This is why the results are
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presented as it is in Figure 5.6. The results in this subsection are obtained from running

datasets of 100 bp long. Experiments were also done using 75 bp and 250 bp datasets and

the trend of results are consistent among all three datasets.

Although the proportion of discordant read-pairs in a real dataset may vary from what we

have simulated but we still want to provide our readers the feeling of how various

aligners will perform on a general dataset which will have these SV-spanning discordant

read-pairs in them. We adjusted the proportion of discordant read-pairs to be 5% in each

datasets of 2 x 500k x 75/100/250 bp reads. We then aligned them using the compared

methods and verify the correctness of their respective alignments. Table 5.2 shows that

BatAlign can better align reads which span across large gaps/SVs with higher

performance. In terms of the number of misalignments, the other methods have at least

~0.5x to ~200x more misalignments than BatAlign. We also found out that these huge

numbers of misalignments from the other methods comes from the 5% discordant reads

which are simulated into the datasets.

Table 5.2. Alignments on a 5% discordant simulated paired-end dataset of various read-
lengths by all compared methods.

Methods BatAlign Bowtie2 BWA-short

2 
x 

50
0k

 x
Re

ad
Le

ng
th Format Wrong Correct Wrong Correct Wrong Correct

75bp 1,203 969,846 81,873 897,083 1,729 937,567
100bp 1,231 979,930 76,401 904,722 2,356 595,437
250bp 37 979,410 93,349 902,535 298 984,586

BWA-SW GEM SeqAlto Stampy
Wrong Correct Wrong Correct Wrong Correct Wrong Correct
26,409 776,090 44,271 914,696 3,992 870,479 48,798 917,596
32,488 772,499 29,194 871,661 1,912 881,189 45,047 935,131

168 978,735 9,748 987,430 51 902,875 42,599 946,378
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5.3.7 Evaluation on real reads

We have downloaded 500k reads of 2 x 76 bp (DRA accession DRR000614, Sample:

NA18943), 2 x 101 bp (SRA accession SRR315803, Sample: NGCII082 Mononuclear

blood) and 2 x 150 bp (SRA accession ERR057562, Sample: ERS054071) paired-end

datasets. The sequencing platform used for the downloaded data was Illumina Genome

Analyzer IIx for the 76/101 bp dataset and Illumina MiSeq for the 150 bp dataset.

In order to address the lack of an oracle set, we mapped the paired-end reads as single-

end reads and calculated the fraction of reads that were mapped concordantly. We

consider a pair of reads to be concordant if they have the correct orientation and maps

within 1,000 bp of each other with a mapQ > 0. (The distance 1000 is chosen since

Illumina machines normally cannot extract paired-end reads from DNA fragments of size

longer than 1000bp.) If both ends of the paired-end reads were mapped but were not

concordant, they were marked as discordant. This form of verification gauges the single-

end mapping algorithms with reads containing the true spectrum of polymorphisms,

substitutions and read errors. To plot the full spectrum of concordance/discordance in our

experiments on real data for the ROCs, we recorded the number of concordant and

discordant alignments stratified by the mapping quality of the forward read. We must also

emphasize that although the rate of concordant mappings is taken as a measure of

performance in aligning real reads, it is only a lower bound of performance when used on

mapping datasets of expectedly high paired-end concordance sequenced rates. Paired-

reads with an opposite unmapped end will not be considered as they only form a minimal

portion of the mappings and there is no oracle data to discriminate wrong mappings from

the correct mappings.

Figure 5.7 reported the mapping results on the 76 bp, 101 bp and 150bp real datasets.

BatAlign reported more concordant mappings and less discordant mappings than other
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methods over a large range of mapping quality cutoffs. We will cross-compare the

methods on their concordance and discordance respectively, as described in Compared

methods and method of cross-comparison.

In terms of concordance on the 75 bp dataset, using BWA-short as the base line of 74.1%,

BatAlign, Bowtie2, BWA-SW, Stampy and SeqAlto reported concordance rates of 77.6%,

46.8%, 71.9%, 28.0% and 72.4% respectively. In terms of concordance within the

resultant mappings, using BWA-short as the baseline of 99.334%, BatAlign, Bowtie2,

BWA-SW, Stampy and SeqAlto reported rates of 99.558%, 97.990%, 99.022.%, 96.792%

and 99.022% respectively. In terms of concordance on the 100 bp dataset, using BWA-

short as the base line of 78.6%, BatAlign, Bowtie2, BWA-SW, Stampy and SeqAlto

reported concordance rates of 81.8%, 70.6%, 80.2%, 70.3% and 79.8% respectively. In

terms of concordance within resultant mappings, using BWA-short as the baseline of

99.132%, BatAlign, Bowtie2, BWA-SW, Stampy and SeqAlto reported rates of 99.578%,

98.823%, 99.434%, 97.706% and 99.285% respectively. In terms of concordance on the

150 bp dataset, using BWA-short as the base line of 71.8%,, BatAlign, Bowtie2, BWA-

SW, Stampy and SeqAlto reported concordance rates of 82.6%, 59.9%, 79.9%, 65.9%

and 79.9% respectively. In terms of concordance within resultant mappings, using BWA-

short as the baseline of 98.531%, BatAlign, Bowtie2, BWA-SW, Stampy and SeqAlto

reported rates of 99.165%, 98.031%, 98.826 %, 98.126% and 98.908% respectively.

5.3.8 Evaluation on life-sized dataset

A life-sized dataset (GEO Accession: SRX084939, SRX084940, SRX084941) with ~33x

coverage sequenced from the gastric tumor of a gastric cancer patient (GSM 764988),

was also downloaded for comparing indel-mapping capabilities of the different methods.

A total of 1,004,087,071 reads were gathered across 28 runs of the experiments.

Duplicate mappings (mapQ>0) were removed by SAMtools (v0.1.18) within each
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Figure 5.7. Concordant and discordant alignments using real reads from Illumina.
Cumulative number of concordant and discordant alignments from high to low mapping
quality for real Illumina (A) 76 bp (B) 101 bp (C) 150bp datasets.
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sequencing run for downstream analysis. Stampy was left out from this analysis as it

could not finish mapping the library within 2 weeks. GEM was unable to report mapping

quality information which will affect the quality of variant-calling adversely and was left

out from this analysis too. Since we are comparing mappings at sites of PCR-validated

sites, we will pick the methods with the highest mappability as reported in the previous

sections. In addition, we only picked two programs, namely Bowtie2 and BWA-SW, to

compare with due to the intensive resources needed to perform variant-callings.

For purpose of variant-calling, we have used SAMtools to call variant-indels on all the

mappings from the respective methods. Cutoffs of at least 10 supporting reads and variant

score of 50 (30 for SNVs) were used to filter low-quality indels-variant calls.

5.3.8.1 Eliminating scoring bias

We have tried to eliminate mapping bias from the different methods by realigning the

resultant mappings from the respective methods with the same set of alignment costs.

First, we used Genome-Analysis-ToolKit (GATK-Lite-2.3.4) to target all the genomic

intervals which overlapped with reads supporting an indel or clustered with mismatches.

Next, all mappings which overlapped with the targeted intervals are realigned with

GATK using the same set of affine gap penalty scores.

5.3.8.2 Accuracy of mappings over PCR-validated variants

The methods were checked for their ability to detect variant-indels by counting the

number of reads which supported the 70 PCR-validated indels [71]. BatAlign was able to

map 472 reads across these indels as compared to the 431 reads by Bowtie2 and 337

reads by BWA-SW. We also checked the proportion of reads which suggested an indel to

the total number of mappings overlapping these 70 locations for each program. BatAlign,

Bowtie2 and BWA-SW had 32.2%, 28.4% and 23.9% of mappings which called indels at
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these validated sites and the concordance rate of the mappings at these validated sites

were 88.5%, 85.7% and 88.2% respectively.

The methods were also checked for sensitivity and accuracy in detecting SNVs. The

bases of each read that covered the validated SNVs were verified to see if they supported

either the nucleotide of the main or alternate alleles. Over 67 PCR-validated SNVs [71],

BatAlign, Bowtie2 and BWA-SW were able to map 2046, 2036 and 1913 reads across

these validated sites respectively with only 1 wrong support from each program over

chr1:32827126. To extend the analysis on accuracy in detecting SNVs, we took 50,000

consensus SNVs from the methods that coincide with dbSNP137 [255] to check if the

mapped base from each corresponding method was able to support the SNV represented

in dbSNP137 correctly. It turned out that BatAlign supported the consensus SNVs with

the highest accuracy; 1,307,185 correct supports and 2,986 (ACC=99.772%) wrong

supports while Bowtie2 had 1,279,525 correct supports and 2,969 (ACC=99.768%)

wrong supports, and BWA-SW had 1,080,803 correct supports and 2,504

(ACC=99.769%) wrong supports.

5.3.8.3 Sensitivity of variant-callings over PCR-validated sites across sub-

samples

The variants called from a robust method should be the least affected by sub-sampling of

its own respective mappings. We investigated the robustness of each method by

performing variant-callings on sub-samples of their resultant mappings. For each method,

by comparing the percentages of variants being called in the sub-samples to the set of

variants called from the mapping of the full dataset, we can deduce which method is most

robust. In this experiment, Table 5.3A-B shows that BatAlign has the highest counts of

detected variants from SAMtools on 9 out of 10 subsamples.
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Table 5.3A. Number of indel-variants called from the sub-samples at 70 PCR-validated
sites

read depth cutoff 2 4 6 8 10

Subsample size 20% 40% 60% 80% 100%

BatAlign 36 39 45 47 52

Bowtie2 35 40 45 47 51
BWA-SW 2 37 41 46 48

Ideal Program 70

Table 5.3B. Number of SN-variants called from the subsamples at 67 PCR-validated sites

read depth cutoff 2 4 6 8 10

Subsample size 20% 40% 60% 80% 100%

BatAlign 4 11 14 23 30

Bowtie2 4 8 14 20 28

BWA-SW 4 8 11 20 20

Ideal Program 67

5.3.8.4 Evaluation on running times

Up till now, we reported on the sensitivity/specificity (simulated data) and

concordance/discordance (real data) of various methods. BatAlign was generally

observed to have the highest performance on these two measures among the compared

methods. BatAlign was developed to focus primarily on producing accurate alignments.

However, by doing so, it trades off speed. In Table 5.4, we show that the default mode of

BatAlign can run within relatively reasonable timings as compared to some of the fastest

methods used in our comparisons.

In the spirit of accurate alignment, BatAlign trades speed for accuracy and was not as fast

as GEM and Bowtie2. From Evaluation on simulated/real reads, the ROC curves showed
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that BatAlign is more specific/concordant over a large range of mapping qualities. Since

this is so, we try to allow more flexibility of usage for users by allowing BatAlign to run

faster but with slight decrease in discordance. The analysis of runtime is also done on the

same set of real data used in the previous section to present realistic timings of all the

compared programs. Table 5.4 shows the relative runtimes and speed factors between the

programs and we conclude that GEM is the fastest aligner.

We have also observed that discordance rates increased with decreasing running times.

This was resulted from the reduction of search space in a bid for faster running times.

Since BatAlign always try to scan for all candidate hits incrementally and report the best

hit, a reduction in search space will actually discard some concordant hits prematurely

and this have caused the increased discordance rates.

Table 5.4. Comparison of running times across all discussed programs on 1 million reads
from SRR315803.

Program
Runtime
(seconds)

Speedup
factor

BatAlign - Default 583 6.3x

BatAlign - Fast 481 7.7x

BatAlign - Turbo 331 11.2x

Bowtie2 459 8.0x

BWA-Short 598 6.2x

BWA-SW 639 5.8x

GEM 214 17.3x

SeqAlto 677 5.5x

Stampy 3694 1.0x
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5.4 Methods

5.4.1 Problem definition and overview of the method

The problem of mapping genomic reads is defined ideally as given a set of genomic reads,

find the origin of each read in the reference genome, along with their correct alignments.

However, in practice, this problem cannot always be solved and we have to resort to

finding the most likely point of origin and alignment for each read.

The outline of BatAlign algorithm is as follows. As a pre-processing step, a one-time

indexing of the reference genome is done. Next, it will start scanning for the most

probable hits of the read in the reference by using Reverse-alignment. Deep-scan is then

applied to scan and pick the most probable hit of the read in the reference. BatAlign then

calculates a mapping quality (mapQ) for this hit and reports it. Below, we will discuss the

novel components that aid BatAlign to gain accuracy and speed.

5.4.2 Reverse-alignment

Seed-based aligners search for candidate hits of its seeds; then, these hits are extended

and the best alignment is selected based on a set of pre-defined criterion. In contrast,

Reverse-alignment does the opposite by searching for the best possible hits in the

reference first.  Given a read R, Reverse-alignment incrementally finds the hits of R with

the most likely combination of mismatches and indels. We define a function F such that

F(i) = (pi, qi), where pi and qi are non-negative integers representing the number of

mismatches and indels in an alignment respectively. If F(a) < F(b), then the probability of

the correct alignment of a read having  (pa, qa) mismatch/indel combination is higher than

that of  (pb, qb) mismatch/indel combination. Reverse-alignment incrementally tries to

map R allowing F(i) mismatch/indel combinations for i = 1,..,9. We will describe the

definition F(i) in the following subsection.
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5.4.3 Determining F

In real-life, the likelihood of an indel in a genome is an order of magnitude less than that

of a SNV. The likelihood of finding multiple indels within a read becomes small if the

length of R is shortened. If sequencing is error-free, we can expect mismatches in a read

R to appear at a rate equal to the expected number of SNVs in a segment of length |R| in

the reference genome. However, empirical studies show that, for Illumina and SOLiD,

the majority of mismatch errors are due to sequencing errors. A general heuristic for such

platforms is to set the mismatches in a read due to sequencing errors and/or SNVs to be

about ~5% of the read length. Furthermore, indels occur at a rate of ~0.02% [256]. Based

on these statistics, for a read of length around 75 bp, we can set one indel and four

mismatches as a reasonable upper bound for the number of indels and mismatches to be

allowed in a mapping. For the default mode of enumerating candidate hits, we have 9

levels where F(1)=(0,0), F(2)=(1,0), F(3)=(2,0), F(4)=(3,0), F(5)=(4,0), F(6)=(5,0),

F(7)=(0,1), F(8)=(1,1) and F(9)=(2, 1).

5.4.4 Deep-scan

The best-scoring alignment according to the function F need not be the correct alignment,

even if it turns out to be the only hit with such a mismatches/indel combination. It is best

if we can get the set of next-best alignments too. With these additional hits and using the

quality information of the mapping, we might be able to find the correct alignment.

Furthermore, these extra hits will help BatAlign to assess the quality of the final

alignment better. Deep-scan enumerates hits according to F. If F(k) is the first successful

mismatch/indel combination found during Reverse-alignment, and there are multiple hits,

we return all these hits. Otherwise, if there is a unique hit and k < 9, we return all hits

having the mismatch/indel combinations F(k) and F(k + 1).
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5.4.5 BatAlign algorithm

We will first describe the BatAlign algorithm for a short read (75 bp). It consists of three

steps. First it will perform a Deep-scan for each read R to build a set of candidate

alignments. Next, if a set of candidate alignments can be found, each hit is assigned an

alignment score based on quality information and the unique, highest scoring hit is

reported (if it exists). Finally, a quality score is assigned to each reported hit as described

in the next section.

5.4.6 Handling long reads

For reads longer than or equal to 150 bp, we will split the read into non-overlapping 75

bp reads. Each of the 75 bp segment will be aligned as described above. For instance, if

we are given 250 bp reads, BatAlign will obtain 3 consecutive segments of a read starting

from the first base of the read and map each of them individually. If the first or best hit

from each segment are non-repetitive and fall within the locality of each other, we will

try to align the original read onto this region of the reference. By doing this, we avoid

realigning the original read to more than one location of the reference. However, if the

first or best hits from each segment are repetitive or not mapped to the locality to one

another, BatAlign will examine and align the whole read onto the putative locations

reported by each of the segment. Among these alignments, the best-scoring hit is reported.

5.4.7 Enumerating hits

We use efficient BWT-based methods to enumerate hits corresponding to F(i). With the

restriction stated above, i.e. assuming we allow only one indel, we have two cases where

F(i) is of the form (pi, 0) or (pi, 1). When F(i) = (pi, 0), only mismatches are allowed in R,

we will use the BatMis algorithm to solve this case. BatMis is a BWT-based algorithm

that can enumerate all hits having k-mismatches exactly and efficiently.
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5.4.8 Finding indel hits.

When F(i) = (pi, 1), we allow pi mismatches along with an indel.  For all these hits of R

with a gap in them, there are two cases. The first case is that the indel appears in one half

of the read. Then the other half of the read that does not contain the indel must contain at

most pi mismatches. We map the left and the right halves of R allowing at most p i

mismatches; then a SW-extension is performed to recover alignments having pi

mismatches and one indel. The second case happens when the indel is not completely

contained in either half of the read, but is overlapping the midpoint of the read. To

identify these hits, we apply BatMis algorithm to find <0, pi> mismatch hits of the l-mer

suffix and prefix of R, where l is set to one third of |R| by default. Then, using a novel

data structure, we find the suffix and prefix locations whose total number of mismatches

do not exceed pi and are at most d bp apart, where d is set to 200 by default. These

potential hit locations are further examined by aligning R against a neighborhood of the

possible hit locations using the SW-algorithm, and those alignments with pi mismatches

and one indel are reported.

Apart from the Deep-scan criterion, we will always perform an indel-scan if (1) an indel

is detected during the full-read extension; (2) the current best alignment score is worse

than an alignment possibly having an indel; or (3) the average base quality of mismatch

positions in an alignment is higher than that of the average base quality of the read.

5.4.9 Faster semi-global alignment and SW alignment

After mapping a 75 bp seed, BatAlign can perform either SW alignment or semi-global

alignment to extend the alignment of the read. Since we have devised a semi-global

alignment method that is faster than SW-alignment by ~30%, the default mode of

BatAlign is to extend the seed using semi-global alignment. When the alignment score of

the semi-global alignment drops below 90% of the maximum alignment score (i.e. the



143

score for an exact match), a SW-alignment is done. If the user wants to perform SW-

extensions only, an option is provided to do so. Below, we describe the SW alignment

and the semi-global alignment methods.

The SW alignment is SIMD accelerated via SSE2 instructions. Our implementation is

based on an extension of SSW library [121] that modifies Farrar’s method [120]. This

algorithm determines the best alignment in two steps: First it will calculate the best SW-

score and then it will perform a banded alignment to get the optimal trace-back of the

alignment from the DP-table.

For the semi-global alignment, we designed a new algorithm assuming that there is at

most one gap in the pair-wise alignment. The algorithm will divide the read into two

halves and first assume that the indel is in the left half. If the indel is in the left half, the

right half of the read must align to the reference with only mismatches. Figure 5.8 shows

the situation for the case of a deletion. The right half of the read (Part C) maps to location

Y in the genome. Part A of the read maps to location X in the reference. Location X will

be found by BatAlign algorithm where a seed of length |R|/2 will be mapped. Assume we

allow a maximum of d bp for the indel, we will set j=1..d, and map part C of the read at j

bp away from part A of the read.

Figure 5.8. Example of recovering a delete in a reference from a read
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5.4.10 Alignment score and mapping quality

Sequencing data can contain a per-base quality score that indicates the reliability of a

base call. If the probability of a base call at position i being correct is P[i], the quality

score Q[i] assigned to location i is given by the equation P[i] = 1 − 10−Q[i]/10. Assuming

that there is no bias to a particular set of nucleotides, the probability of a base being

miscalled at location i can be calculated by the formula 1 − P[i]/3. For a given alignment,

we compute an alignment score based on an affine-gap scoring scheme, where the score

for a match or a mismatch at R[i] is the Phred scaled value of P[i].

5.4.11 Accelerating alignment

The speed of the algorithm is improved by limiting the number of SW-alignments

performed for each read. Another way is to stop performing SW-extensions when the best

alignment score has failed to increase after a determined number of attempts. To trace

back the optimal alignment path in the DP table, we need to perform a non-SIMD banded

version of SW-algorithm. This step is time consuming. However, we can skip this step if

the SW-score of the alignment falls below the current best SW-score. Furthermore, we

can also restrict the number of candidate hits to check in the Deep-scan process. These

heuristics will significantly speed-up the alignment process without much loss in

sensitivity and accuracy as shown in Evaluation on running times.

5.5 Conclusion

We presented a method, called BatAlign, for the gapped alignment of genomic reads onto

a reference genome with improved accuracy and sensitivity. The mapping strategies

discussed in the Method section, such as Reverse-alignment and Deep-scan, produced

mappings with increased accuracy as compared to other methods in both simulated

(ART-simulated and pureIndel) and real datasets. In addition, BatAlign aligned over sites

of PCR-validated indels and SNVs with more concordant mappings and coverage, and
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was also shown to be more robust in calling variants in low-coverage samples. A new

faster semi-global alignment algorithm and other heuristics have also been used to

replace the traditional SIMD-SW routine to speed up BatAlign. BatAlign also outputs a

well-calibrated mapQ score for each mapped read. In general, BatAlign is an improved

gapped aligner for accurate gapped alignment of DNA reads.

Recently, a number of aligners such as YAHA [123] and CUSHAW2 [110] are

developed to handle long reads (500 bp or more). These aligners are not able to produce

accurate results due to their use of maximal exact-match seeds. A possible future work is

to develop an accurate tool for the alignment of long reads.
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Chapter 6

6Spliced Alignment Problem

6.1 Introduction

RNA, together with DNA and proteins, is one of the three major macromolecules that are

needed for life. Pre-mRNA is synthesized from the DNA through transcription and is

matured by having its introns removed [161]. In mammalian genomes, alternate splicing

of the same gene region adds onto the genomic complexity by generating multiples

variants of a single gene known as mRNA isoforms [162]. The disruption in the synthesis

of mRNA isoforms can cause genetic disease [163, 164]. Hence, it is critically important

to accurately identify and quantify the splicing sites in both normal and diseased cell

states.

RNA-seq can interrogate gene expression levels at genome-wide scale. De novo detection

of splice junctions and quantification of novel gene expression was also not possible with

microarray technologies before. Each sequencing run, from next-generation-sequencing

(NGS) technologies, of an RNA-seq experiment can yield up to hundreds of millions of

bases, allowing the accurate relative quantification of expressed transcripts. In all, RNA-
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seq has provided a quantum leap to the analysis of novel features in the transcriptome [34]

from hybridization-based  microarray techniques.

6.2 Challenges in Spliced Alignment

The first step to analyzing RNA-seq data is to align the sequenced reads back onto a

known reference genome or annotated transcriptome. The alignment of RNA-seq also

brought along an additional set of challenges as compared to aligning DNA-seq data. The

first challenge is to align in the presence of large gaps due to the presence absence of

introns from the sequenced reads with respect to the reference genomic text which we are

aligning the reads onto. From empirical studies, ~38% of 100 bp RNA-seq reads can span

across two or more exons that can be thousands of bases apart [176]. Due to splicing

junctions between adjacent exons in a read, different subparts of a read can map to

different adjacent exonic regions of the reference genome but with a large intronic gap in

between them. Other than the presence of large intronic gaps, alignment is further

complicated by the presence of polymorphisms, indels and sequencing errors. In addition,

it was also observed that ~25.8% of 100 bp long reads, has an exon-exon boundary

within 10 bp on either ends of a read. This short residual exon, which we call short

‘overhang’, can be represented spuriously by the reference genome and is both

computationally and algorithmically hard for aligner to accurately locate its correct

alignment efficiently. Short exons can also appear in the middle of a read, sandwiched

between two exon-exon boundaries within a single read. Without loss of generality,

RNA-seq reads poses a new set of challenges for aligners to work with as compared to its

siblings of DNA-seq aligners.

Other than intronic gaps, pseudogenes also make splice alignment harder than DNA

gapped alignment. Pseudogenes are dysfunctional relatives of genes which are highly

similar to RNA sequences [257]. An ideal RNA-seq aligner should be able to avoid
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aligning reads to processed pseudogenes at all times as pseudogenic regions do not

transcribe to mRNA sequences. The authors of TopHat2 [42] has also found that ~26.9%

of reads in the RNA-seq data from [258] can be aligned to the full length of pseudogenic

regions with at least 80% identity.  This poses a challenge to us as reads can sometimes

be aligned to pseudogenic locations with higher percentages of identity than to their

original location of transcription. For instance, a read can align in an ungapped fashion

onto a pseudogenic region as an exact match but the correct alignment should be exact

matches of two non-overlapping and adjacent substrings of the read marked by an exon-

exon boundary (intronic gap on the reference genome) between them.

6.3 Related Work

Several alignment algorithms have been developed to align mRNA-seq reads [35-39, 41,

177, 180]. Here, we review some of the published RNA-seq aligners which we compared

our methodology with in this section of the thesis. MapSplice uses consecutive

contiguous 20-25 bp long seeds of a read to determine the candidate alignments of the

mRNA read. Based on the seed locations, MapSplice will determine the most likely

alignment of each mRNA read to a reference genome. Similar to SpliceMap, OLego also

uses sub-sequences of a read to obtain anchor locations of an mRNA read. However,

OLego uses relatively shorter seeds of 12-14 bp long and is aimed at sensitive recovery

of micro-exon (~20 bp). STAR uses the idea of finding a Maximal Mappable Prefix

(MMP) as its seed finding routine. This concept is similar to the maximal exact unique

match used by genome alignment tools Mummer [135] and MAUVE [259]. Due to this,

STAR is very efficient. However, the use of small seeds and MMP as the seed finding

routine may produce spurious candidate locations, which are hard to disambiguate, and

correct candidate locations may be missed respectively. This affects the accuracy of

existing methods.
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Our work described in this chapter, BatRNA, is based on a fast BWT data-structure for

efficient detection of splice junctions and focuses on distinguishing spliced reads from

exonic reads by using phased aligned strategies to handle each type of reads

automatically with high sensitivity and accuracy. BatRNA is also the fastest method

among the compared programs which use similar amount of physical working memory.

6.4 Results

The simulated data is produced by BEERS using hg19 configuration files which can be

downloaded from the RUM website. The performance of aligning real data was evaluated

with reads from ERP00196 (Sample: 11T). We will report the performance of BatRNA

based on evaluation of aligning simulated and real data below.

6.4.1 Setup of experiments and performance measures used

In order to evaluate the performance of our method, we have benchmarked against the

following programs: OLego v1.1.1, MapSplice v2.1.2, STAR 2.3.0e and TopHat2

v2.0.8b. Some RNA-seq reads can map to multiple genomic locations and since a read

can only come from at most one point of origin we only validate unambiguous mappings

which were indicated by a non-zero mapping quality.

Whenever ground truth is available, we will use F-measure to compare the mapping

performance of all the compared methods. F-measure is defined as (2 ∗ ( ∗ )/( +)), where R is Recall and P is Precision. As for real datasets, we will use the cumulative

number of spliced mappings over edit-distances of ≤ 3 to compare the performance of the

methods.

To address the lack of ground truth for the alignments of real data, we have adopted a

variant of validation used in TopHat2 paper [42] which we will further elaborate in the

later section to evaluate the alignment performance on real data.
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All our experiments were run on a server equipped with Intel Xeon X5680 @ 3.33GHz

and 48 GB of RAM. We allowed the same CPU threads on all the compared programs in

our experiments. Other parameters were kept at default.

6.4.2 Evaluation on the simulated RNA-seq Illumina-like reads

We have used BEERS in the RUM package to simulate two datasets of 75 bp and 100 bp

read-lengths. We aligned the reads in these datasets and summarized the number of

correct and wrong alignments in Figure 6.1.

In terms of recall, BatRNA is second to MapSplice with ~1% lower recall on the

simulated datasets. In terms of precision, BatRNA and OLego tied as the methods with

the best precision. However, BatRNA was able to obtain the highest F-measures on

aligning these two simulated datasets. This can be seen from Figure 6.1, that MapSplice

being the best recall method, was ranked 4th out of our 5-methods comparison on

precision. Despite having good prevision, OLego was ranked last for its low recall rates.

Figure 6.1. The counts of (a) correct alignments and (b) wrong alignments from the
compared methods on 76 bp and 100 bp BEERS-simulated datasets.

The precision of alignments generally increases with increasing read-lengths as reads of

longer read-lengths can be represented more uniquely on the reference that it is simulated
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from than its shorter counterparts [114]. From Figure 6.1, we can observe such a general

trend of increased specificity across all the compared methods except for TopHat2. Table

6.1 reports the F-measure of the various methods using oracle information available from

the two simulated datasets.

Table 6.1. The F1-scores of the compared methods on BEERS-simulated 2M datasets.

Method
F-measure

76 bp 100 bp
BatRNA 96.51% 96.32%
OLego 94.84% 94.75%
MapSplice 96.11% 96.07%
STAR 94.75% 94.98%
TopHat2 94.97% 94.28%

RNA-seq datasets generally contain unequal proportions of exonic and spliced sequenced

reads. When the read-length increases, the chances of a read spanning across an exon-

exon boundary increase. At current popular RNA-seq read-lengths of ~100 bp, the

proportion of exonic reads is expected to be ~82.2% from empirical studies of simulated

reads using BEERS. As exonic reads are the dominant portion of alignments sequenced

from a typical un-diseased human sample using reads of length ~100 bp, the accurate

quantification of transcript abundance can be achieved solely with an unspliced aligner

albeit the inability to identify exon-exon junctions in the sampled data. In order to gauge

the true alignment performance of the compared splice alignment methods, we will

procure the previously discussed simulated datasets, segregate the exonic and spliced

reads from each other, align them and present their alignment results in Table 6.2

separately. Without loss of generality, this enabled us to gauge the alignment

performance of the compared methods with better granularity on RNA-seq reads.
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Table 6.2. Breakdown of alignment performance by exonic and spliced reads using
simulation.

The best-2 recalls and precisions scores of each experiment for this table are in bold.

Apart from reporting on non-ambiguous (mapQ > 0) hits, we also report on the sensitivity

of the top-10 hits reported by each method to determine if multi-mappings from the other

programs can correctly quantify transcript abundance. In addition to showing the rank of

the reported correct hit among the top-10 multi-hits that a method has reported for a read,

the tabulated statistics in Table 6.3a also indirectly showed the cumulative number of

wrong hits that an aligner has reported by allowing the report of multi-hits. For instance,

if aligner A was to report k number of rank-2 hits, it would also mean that aligner A has

also reported k number of top-rank (rank-1) for k reads. It should also be noted that the

correct hit for a read should preferentially be reported as a rank-1 hit. From Table 6.3a,

BatRNA reported the least number of non rank-1 hits indicating its ability to

discriminating against spurious hits effectively. Correspondingly, Table 6.3b tabulates the

number of wrong multi-hits that were reported alongside with a rank-k correct hit.

Methods

Spliced

read

count

Exonic

read

count

Sensitivity

(Spliced)

Precision

(Spliced)

Sensitivity

(Exonic)

Precision

(Exonic)

2M x
76 bp

BatRNA

355811 1644189

85.84% 92.93% 96.39% 99.76%
OLego 71.05% 90.93% 95.85% 99.83%

MapSplice 86.31% 90.93% 97.57% 97.85%
STAR 77.91% 82.46% 97.47% 98.22%

TopHat2 75.51% 93.28% 96.13% 98.39%

2M x
100 bp

BatRNA

447170 1552830

83.75% 94.80% 96.99% 99.76%
OLego 72.64% 93.95% 96.39% 99.84%

MapSplice 84.58% 93.14% 97.97% 98.26%
STAR 78.70% 87.52% 98.05% 98.55%

TopHat2 76.97% 94.54% 96.57% 96.91%
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Table 6.3a. Tabulation of correct hits ranked by the order in which they were reported for
a read.

Methods

Rank
of

hits

75bp dataset

#Correct hits
1 2 3 4 5 6 7 8 9 10

BatRNA

Splic
ed

335922 1272 312 96 56 49 23 14 5 2

OLego 280648 2381 651 197 111 66 26 23 18 6

MapSplice 336955 2232 462 122 48 29 5 2 1 0

STAR 335195 4085 826 241 170 104 38 21 7 5

TopHat2 283938 2278 627 133 77 27 6 21 20 11

BatRNA

Exon
ic

1585428 480 11 1 8 1 2 0 2 0

OLego 1595295 15038 2456 378 7 0 0 0 1 0

MapSplice 1604210 18779 5071 1986 1058 746 377 237 184 161

STAR 1603880 19726 5123 2059 1001 569 255 134 52 30

TopHat2 1582341 18820 5102 1971 1044 784 397 295 201 181

Table 6.3b. Tabulation of wrong hits being reported alongside a rank-k correct hit.

Methods

Rank
of

hits
(k)

75bp dataset

Cumulative #Wrong hits for reported correct rank-k hit
1 2 3 4 5 6 7 8 9 10

BatRNA

Splice
d

0 1272 624 288 224 245 138 98 40 18

OLego 0 2381 1302 591 444 330 156 161 144 54

MapSplice 0 2232 924 366 192 145 30 14 8 0

STAR 0 4085 1652 723 680 520 228 147 56 45

TopHat2 0 2278 1254 399 308 135 36 147 160 99

BatRNA

Exoni
c

0 2163 940 306 208 115 54 63 88 0

OLego 0 480 22 3 32 5 12 0 16 0

MapSplice 0 15038 4912 1134 28 0 0 0 8 0

STAR 0 18779 10142 5958 4232 3730 2262 1659 1472 1449

TopHat2 0 19726 10246 6177 4004 2845 1530 938 416 270

k is an integer from 1 to 10 inclusive. k is used to denote the order of a hit in which it is reported. A correct hit of rank-k will also mean that
it has generated (k-1) * #correct_rank-k_hits.

6.4.3 Evaluation on real RNA-seq Illumina-like reads

Although the lack of ground truth makes our validations much more difficult on real data,

we would still like to use real data to provide a measure of corresponding performance in

practice as if we were dealing with simulated data.
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6.4.3.1 Edit-distance as a measure of correctness in real-data set

Figure 6.2. Chromosome-1 reads were mapped to a chromosome-1-deficit hg19. False
positive rate was calculated by the number of simulated reads that were mapped to the
modified hg19, divided by the total number of reads.

Due to the lack of ground truth, we adopted one experiment from TopHat2 paper

whereby the authors estimated the performance of real-read alignment with cumulative

number of alignments with edit distances of ≤ 3; assuming these candidate hits with low

edit distance are correct. But first, we would have to study the behavior of this validation

using simulated data. Using simulated reads from chromosome 1 of hg19, we mapped

these reads back to a chromosome 1-deficit reference genome to investigate how

increasing edit-distances actually correlate with the noise rates in our alignments. Figure

6.2 shows the false mapping rates of these simulated chromosome-1 reads, of various

read-lengths, increased when the allowed maximum edit distance to their respective

alignments also increased. As the false positive mapping rates for the reads become

significant when edit distance of more than 3 was allowed for the alignments, we will

only assume alignments with edit distance lower than or equals to 3 as correct in our

experiments on real data.
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First, we will apply this validation to the simulated dataset to observe the relationships of

sensitivity and specificity with increasing edit-distances of alignments. Figure 6.3 is

generated from the results of the immediate preceding section on simulated data. It gave

us a feeling of how the trend of results for a method would behave with more/less and

correct/wrong alignments. As we can see from Figure 6.3, the gain in recall rates is

marginal as the edit distance of the alignments approaches 3. To add on, the relatively

large drop in specificity with respective to the number of correct alignments with higher

edit-distances discouraged us from using alignments with high edit-distance for

downstream analysis too.

Using edit distances to test the goodness of spliced alignments is far from satisfactory as

the results from Figure 6.3 and 6.4 do not agree with each other. From Figure 6.3, a

method with many wrong and low edit distance alignments will have its wrong alignment

eluded for scrutiny if they are represented as what has already been shown in Figure 6.4.

Upon deeper investigation, we found out that the pseudogenic regions caused the

disparity between the results. The reads were mapped to pseudogenic regions either with

a lower edit distance or it is mapped preferentially without splicing junctions in them. For

instance, a 0-edit distance spliced read can be mapped to a pseudogenic region in an

unspliced fashion, both locations will yield 0-edit distance alignments, and still be

considered as a good alignment under this form of validation. From this observation, the

validation of alignment on real RNA-seq reads using edit distances will be more

appropriate if it was applied solely to spliced alignments. This will directly prevent the

wrong classification of spurious unspliced alignments as correct hits.
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Figure 6.3. The counts of correct and wrong alignments for simulated RNA-seq 76bp and
100bp of 2 million reads each stratified by edit-distances of 0 to 3.

Figure 6.4. The cumulative counts, over edit distances of 0-3, of all non-ambiguous
mappings from the various spliced mappers on 2 million real reads taken from Sample
11T of ERP00196.
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Figure 6.5. The cumulative counts, over edit distances of 0-3, of all non-ambiguous
spliced mappings from the various spliced mappers on 2 million real reads taken from
Sample 11T of ERP00196.

The results from the section on simulated data now coincide with the results shown in

Figure 6.5. Without loss of generality, BatRNA was reported as the top performing

method for both simulated and spliced alignments.

6.5 Evaluation on running time

The same sample of 2 millions reads, from the simulated datasets and patient 11T of

ERP00196, were used to determine the runtime efficiency of the compared methods. The

index-loading time was not recorded, as it does not reflect mapping efficiency and will be

amortized to negligible timing over an actual life-sized dataset. The start time, wall-clock

times, were recorded when the threads reached ~100% efficiency (indicating the
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complete loading of the primary index of the reference genome) and the end times were

marked by the termination of their execution. Table 6.4 reports the recorded wall-clock

times for dataset of different origins and read-lengths. STAR is the fastest method due to

the search for MMP on a 29.8 GB human reference genome index. The runner-up method,

in terms of running time, would be BatRNA. We also executed Tophat2 with the

parameters “--no-sort-bam” and “--no-convert-bam” to avoid it from incurring additional

execution times due to non-mapping related operations.

Table 6.4. Wall-clock time of compared methods on different sets of 2 million reads.

Method

Runtime on 2 million reads (seconds)

BEER 76 bp BEER 100 bp Real 90 bp

BatRNA 72 82 92

OLego 239 237 272

MapSplice 235 277 418

STAR 13 14 11

TopHat2 630 709 694

We have also observed that although only ~20% of the reads will have their primary

candidate locations passed onto the second phase, this small portion of reads will take up

more than 80% of the total runtime needed to run datasets with read-length of ~100 bp.

Overall, BatRNA offers considerable improvements in alignment efficiency over the

other compared methods with similar physical working memory footprint of << 30 GB.

6.6 Methods

BatRNA (Basic Alignment Tool for RNA-seq) was developed to address the issues of

efficiency and accuracy on performing spliced-alignment of RNA-seq reads. BatAlign

was used to align and produce candidate alignments of the reads. By emulating paired-

end information in a single-read, an efficient pairing data structure was used to

exhaustively search for the presence of splice junctions in a read. The putative mappings
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from both BatAlign and the splice-detection algorithm were then ranked according to

their alignment score and reported to the users.

6.6.1 Simulation of data and validation of simulated data

The BEERS package in RUM is used to simulate the RNA-seq reads used in our

benchmarks. 2 millions reads are simulated for current popular read lengths of 76bp and

100 bp. We have used BEERS as the simulator as it is built on an extensive platform of

oracle information from 11 sets of annotations, namely, AceView, Ensembl, Geneid,

Genscan, NSCAN, RefSeq, SGP, Transcriptome, UCSC, Vega, Other RefSeq databases.

BEERS was also trained from these annotations and is able to simulate ~1.7M exons and

~1.1 introns, based on ~672K distinct gene models, with ground truth for validation.

For the aligned location of the simulated reads to be considered correct, the reported

locations must be within 50 bp of the locations generated by the simulator. For simulated

spliced reads, in additional to the condition required for simulated exonic reads to be

considered correct, we required that at least one of its simulated intronic gap(s) correctly

identified before its reported alignment is considered correct, else our verifier will

consider the reported alignment as an erroneous alignment.

We have also further broken down the mixture of exonic and spliced reads in the

BEERS-simulated dataset for clearer illustrations of how the compared spliced aligner

perform on each type of these reads.

6.6.2 Overview of Method

RNA-seq aligners can be classified into two main approaches: Exon-first and Seed-

extend approaches. To the best of our knowledge, BatRNA is the first method that uses a

pre-mapping tools meant for DNA-seq reads but can still be considered as a seed-extend

approach. The reason that we developed BatRNA as a seed-extend approach is that it
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provides an unbiased mapping over both exonic and spliced reads. BatRNA is a three-

phased method whereby the first phase is to find the list of candidate locations for the

contiguous exonic region within a read, the second phase is to map the unmapped reads

or low quality hits from the initial phase using a k-mer splicing seed-extend strategy and

the last phase is to refine the alignments, from the previous phases, to identify splice

junctions accurately. Figure 6.6 shows the schematic workflow of aligning RNA-seq

reads using the methodology implemented in BatRNA.

Figure 6.6. A schematic flowchart showing how input RNA-seq reads is aligned using the
3-phased methodology of BatRNA.

6.6.3 Motivation for using BatAlign as a seeding tool

As we have observed from BEERS-simulated reads of 100 bp long, ~62% of them can be

mapped as if they are DNA-seq reads without the presence of large intronic gaps within

them. Aside from this, less than 5% of exons have lengths shorter than 42 bases. This

means that BatAlign can be used to seed the mapping location of the longest exonic



162

region within a junction read successfully with its long mismatch-gapped seed on a 100

bp RNA-seq fragment.

The efficacy of using BatAlign is further highlighted by its ability to accurately align

genomic reads. On the dataset of 100 bp RNA-seq reads, it was able to map 97.3% and

74.4% of the simulated exonic and spliced junction reads with an accuracy of 99.8% on

the exonic reads; leaving only 9.4% of the dataset unmapped. The percentage of reads,

from a general 100 bp RNA-seq dataset, that was delegated onto the later phases of

BatRNA to align is ~18%.

6.6.4 Phase 1 – Resolve exonic region within a single read

The first phase of BatRNA is to use BatAlign as a seeding tool to align the input RNA-

seq reads. For the putative alignments from BatAlign, we will assign a mapping quality

score and a text-edit CIGAR string to each of them. If the mapping quality score is low,

Phase-2 and Phase-3 of BatRNA will remap these reads, and this could mean three things.

Firstly, the putative exonic alignment is repetitive due to its location in repeat or

pseudogenic regions. Secondly, the alignment is weak due to high number of text-edit

operations required to align the read back onto the reference genome. Thirdly, the

putative alignment is heavily clipped with only a small percentage of the read being

aligned to the reference genome by a local alignment routine. The last, unmentioned and

trivial case of a read from BatAlign is that it is left unmapped by BatAlign.

Figure 6.7 shows the possible alignments of an RNA-seq read which spans across single

or multiple exon-exon boundaries. This figure shows the possibility of using a DNA-seq

gapped aligner as a pre-mapping tool for RNA-seq reads but still retains the unbiased

alignment property towards both exon and junction reads of the seed-extend methodology

towards RNA-seq alignment. Unlike TopHat1/2 that only realign primary candidate
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alignments with a certain threshold of edit distance on them from pre-mapping tools,

BatRNA takes into account for the existence of splice junctions even at the DNA-seq

gapped alignment step.

Figure 6.7. Possible alignments on RNA-seq read from BatAlign.

An example CIGAR string given to a simulated junction read by BatAlign would be

“66M34S”. The largest matching segment will be the first 66 bases of the read and this

matching sequence will be treated as an exonic transcript that lies on the left of an exon-

exon boundary of the sample transcriptome. As described later, Phase-2 of BatRNA will

align the rest of the remaining clipped 34 bases of the read downstream, at most 20 kbp

away, of the anchored longest exonic region of this read.

6.6.5 Phase 2 – Search for junctions from an anchored region

There are two types of reads that will be passed into this phase of BatRNA: low-quality

alignments and unmapped alignments from Phase-1. Figure 6.8 shows a flowchart on

how these two types of reads are processed by the splice alignment algorithm in BatRNA.

We will start to explain Phase-2 with the similar but simpler case of unmapped

alignments. BatRNA’s splice mapping algorithm is based on a perfect-matching seed-

extend-pairing strategy. It will first align the first two adjacent non-overlapping 18-mer
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of a read segment. If the first 18-mer cannot be anchored, then 5 bases are trimmed from

the 5’ end of the read for each time it fails to anchor itself. If the first 18-mer is anchored

then the second 18-mer of the read will be aligned and be paired using an efficient pairing

(shown in Figure 6.9a) data structure to form a 36 bp exonic segment of the read.

However, if the immediate 18-mer cannot be anchored (shown in Figure 6.9b), Phase-2

will try to pair the anchored portion of the read with the next adjacent and non-

overlapping 18-mer of the read, this will continue until the end of the read. In the event

that two 18-mer can be paired up successfully within the neighbor of each other (within

20 kbp), we will extend the paired candidate alignments of the two 18-mers, called gap-

filling (shown in Figure 6.9c), towards each other, while respecting the donor-recipient

canonical/non-canonical splicing signals. In the event, whereby there are more than one

possible candidate location which can be paired with the anchored region of the read, the

splice junctions detected by the gap-filling procedure are stored in a candidate junction

files for use in Phase-3.

The second type of input to Phase-2 is partial-alignments from Phase-1. If the longest

contiguous matching sequence of the partial-alignment is at least 25 bp then the partial-

alignment is discarded and the read is treated as unmappable by Phase-1. We have

decided on this threshold because the smallest seed used in BatAlign is 25 bp. From here,

the longest contiguous matched sequence is treated as the anchored alignment and due to

the presence of clippings in the partial-alignments, a junction is assumed to exist within

or before the next 18-mer that needs to be aligned. Hence, the second 18-mer away from

the clipped location will be aligned and paired with the already anchored partial

alignment. If the 18-mer can be paired up then it will be extended towards the previously

found partial-alignment (as shown in Figure 6.9d); if not, the algorithm will recursively

proceed to the next non-overlapping 18-mer as described in the preceding paragraph.
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Figure 6.8: A flowchart showing how the splice alignment algorithm in BatRNA
performs splice alignment.

During the extension of the partial-alignments, short-overhanging exons can exist at the

ends of the reads that are due to the presence of splice junctions being sequenced into the

near-ends of the reads, these short-overhangs will be soft-clipped by Phase-2. Phase-3

will refine these exon-exon junctions that appears as soft-clippings in the reads from both

Phase-1 and Phase-2.

6.6.6 Phase 3 – Refine alignments due to splice junctions near ends of reads

Alignment has always been an independent event between reads until TopHat devised the

idea of exon-islands to localize putative splice junctions without annotations. By

assembling the consensus of regions covered by the alignments of exonic reads from a
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Figure 6.9. Schematic sketches of some possible scenarios that can happen in BatRNA
splice algorithm. a) Adjacent non-overlapping seeds do not span across exon-exon
junctions. b) Anchored seed is near to an exon-exon junction and next immediate 18-mer
is used to seed the alignment. c) After successfully pairing of seeds within spanning
distance of 20 kbp, alignments are extended towards each other to recover the splice
junction on the reference genome. d) New seed is selected for the continual extension of a
current partially anchored alignment.

Bowtie, exon islands can be obtained. Splice-junctions are then localized near the vicinity

of these exon-islands.

Different from TopHat, the gap-filling component in Phase-2 of BatRNA has already

identified the putative splice junctions. The unsupervised learning of splice junctions is

done whenever two adjacent non-overlapping 18-mers from a read are aligned more than

20 bp apart and a gap-filling procedure is done to identify the splice junctions. These

splice junctions are stored in a putative bed-coverage file for Phase-3 to refine the

alignments of short-overhangs. For instance, the cigar string “12M2439N88M” was

previously “11S89M” for read “CGAGAGCTAAAGGAGGTCTTTGGTGATGAC

TCTGAGATCTCTAAAGAATCATCAGGAGTAAAGAAGCGACGAATACCCCGTT

TTGAGGAGGTGGAACAAG”. The 11 clipped bases are then locally aligned to each of

the candidate splice junctions, within 20 kbp of the anchored 89 contiguous exonic bases,
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recorded by Phase-2. Figure 6.10 shows the possible inputs into Phase-3 that are

realigned around a putative splice junction from the splice alignment algorithm in Phase-

2. After which, the mappings are scored similarly with a scoring function similar to

BatAlign. In the event that there are more than two candidate alignments to a read, the

donor-recipient splicing signals will precede over the total intronic gap sizes in an

alignment as a tiebreaker.

Figure 6.10. Possible short overhangs being recovered with local alignment by using
preceding prediction as a guide in an unsupervised manner.

The coverage or the transcript-abundance of the dataset simulated or sequenced will

matter for the performance of this realignment step. If the depth of coverage is low,

Phase-2 may not be able to detect the splicing junctions needed for the realignment of

short-overhang in a read. As such, the same read with alignment CIGAR “11S89M” will

be left unchanged after Phase-3 is complete.

6.6.7 Data structure for efficient pairing of genomic coordinates

As the entire array of genomic locations is too large to fit into the main memory of

common personal computers, genomic locations are often sampled at a fixed k interval to

keep the index compact. However, after the alignment of a read is done on the suffix
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array, the intermediate suffix-interval can only be converted to a genomic location by

referencing the sampled array in (log| |) time. If s is the number of steps

needed to invert the suffix-interval back onto a sampled location, then the actual location

of the alignment can be calculated from [( ) − ]. As each occurrence

of the aligned read needs to be inverted back to a genomic location seperately and

independently, the total time needed to find all the genomic locations represented by the

suffix-intervals is (| | . log| |) time.

However, if we pre-compute and hash the genomic locations of the k-length string, the

genomic locations can be retrieved in (| | + log| |) time

instead. Furthermore, if we pre-process the hashed genomic locations by sorting them, we

can pair the genomic locations for two k-length strings within a distance D in(| |) time. The data-structure used is a hash-map with the suffix-array

interval and genomic locations as a key and value pair respectively. The building of this

data structure is only a 1-time off effort. In order to avoid large memory overhead, only

strings that have occurrences of more than 1 and less than 200 are hashed by our index-

building routine. This data structure will incur 2.5 GB of the total memory footprint of

BatRNA.

6.6.8 Details of implementation

The length of the seed is chosen as 18 bp long to represent more than 99% of UCSC

RefSeq exon-lengths on a genomic reference without spanning over an exon-exon

boundary [175, 176]. As 18 bp fragment can be over-represented spuriously on the

reference genome for BatRNA to align efficiently, we do not allow any mismatches

or/and gap in the 18-mer seed in our splice alignment algorithm. For the efficiency of the

method, the maximum distance between adjacent exons within a read has to be within 20
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kbp to each other. This threshold on the intronic gap size constitutes for less than 6.1% of

the human genome [260].

6.6.9 Discussion

In this chapter, we represented BatRNA; a method that emulates pair-end information

within a single RNA-seq read for efficient alignment of high throughput datasets from

next generation sequencing technologies. Since the introduction of high throughput

sequencing technologies, the dominant improvements brought about by it are increase in

throughput and read-length. However, with longer read-lengths, RNA-seq alignment

algorithms has to be developed to account for the long intronic gap that can exist in a

RNA-seq read which are much larger than an indel gap in DNA-seq read. In order to

handle these large intronic gaps, pioneering alignment tools for RNA-seq reads align

reads gaplessly onto a pre-constructed reference of known transcripts, which is also

known as transcriptome. This strategy is very efficient as gapless alignment can be

performed efficiently using gapless BWT-based aligner in O(Read-Length) time for each

read. However, using the transcriptome as the reference text to align RNA-seq reads with

a gapless aligner will void us of doing de novo detection of novel splice junctions. Albeit

a non de novo methodology, this strategy was extended and gave birth to the

development of popular exon-first strategy such as TopHat (using Bowtie as premapping

tool). By weeding out the exonic seeds out before the computationally dominant splice

alignment algorithms align the unmapped spliced reads, exon-first approaches generally

align faster than seed-extend approaches.

The main shortcoming of exon-first is that it favors towards the alignment of exonic reads

over spliced reads. In other words, exonic reads from RNA-seq experiments may align

more often to pseudogenic regions erroneously than seed-extend methods. TopHat2 tried

to minimize this error rate by realigning reads of a certain threshold of edit-distance
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(capped at 3) from its DNA-seq gapped aligner through its seed-extend splice alignment

routine in hope of realigning the same read with an exonic alignment to a splice

alignment instead. Seed-extend was introduced by pioneering methods such as BLAT and

exonerate to unbiasedly map RNA-seq reads regardless of the existence of splice

junctions in the reads to the genomic reference. By picking the correct seed length and

the intervals between each subsequent seeds on a read are critical to the success of a seed-

extend approach. A long read-length will cause the seed to incur a high edit distance and

miss the correct alignment. The lengths of the seeds are generally short in order to

achieve good sensitivity. Specificity is dependent on how well the seeds are sampled such

that the short seeds can capture the correct alignment of the read. For instance, BLAT

indexes all the non-overlapping 11 bp tiles to achieve good alignment of long EST/cDNA

sequences [32]. Additional heuristics such as perfect seed matches are also used to limit

the number of preliminary partial alignments for post-processing for reasonable

alignment efficiency.

BatRNA was developed as a hybrid between exon-first and seed-extend approaches. This

was done to complement the shortcomings of both approaches under one unified method.

In order to reduce the number of computationally expensive splice alignments needed to

recover splice junctions, Phase-1 uses a gapped aligner that can align ~91% of reads in a

general 100 bp read-length RNA-seq dataset. From here, the unmapped and low quality

alignments from Phase-1 are realigned with our splice algorithm.  Next, we reckon that

18 bp will produce a lot of spurious partially alignment to post-process and, as such, an

efficient pairing data-structure was developed to align pairs of 18 bp in our splice

alignment efficiently. Using our pairing data structure, we are effectively aligning a much

longer seed of 36 bp (2 x 18 bp) than the current seed-extend methods seed-lengths of 10-

25 bp such as SubRead [160].
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In summary, our experiments have shown that BatRNA have achieved better sensitivity

and specificity in handling RNA-seq reads of current common read-lengths on a

reference genome than other compared methods. BatRNA is also the most efficient

program among the compared methods of similar memory footprints.
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Chapter 7

7Conclusion

In this chapter, we review on the main contributions of this thesis and discuss some of the

possible future directions that can be adopted to further improve on the proposed

methodologies.

You should have already known, the purpose of this thesis is to report on new

methodologies that provide accurate alignment of sequence reads from various genomic

origins. In this thesis, we have handled bisulfite-treated, gapped and spliced reads.

7.1 BatMeth

The alignment of a read, against a reference genome indexed by the FM-index, comprises

of two main sequential steps. The first step involves the retrieval of the suffix-array

intervals that represents the occurrences of the read in the reference-index. The second

step, where the bulk of computation takes place, involves the conversion of the indices to

genomic locations that will then be reported to the user.
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In BatMeth, List Filtering performs the alignment of a read solely by counting the

number of occurrences of the reads on each possible orientation of the DNA without

using the second step of alignment. Counter-intuitively, List Filtering improved the

sensitivity, specificity and speed of the methods. BatMeth was also developed to account

for mismatches attributed from deamination or/and sodium bisulfite-induced base

conversion in both base-space (Illumina reads) and color-space reads (SOLiD reads)

correctly. Experiments have also shown that BatMeth aligned two types of sequenced

reads on different genomic context (CG, CHH, CHG; where H ≠ G) and different levels

of induced methylation with less bias. Bisulfighter [261] has also commented that

BatMeth is the current best method in making the binary decision on whether a base is

methylated or unmethylated.

7.2 BatAlign

The pioneering aligners for next generation sequencing reads were originally designed to

handle only mismatches, with respect to the reference genome, in the reads. As genomic

polymorphism can also comprises of indels and genomic rearrangements, gapped aligners

were developed to better study the complex nature of polymorphisms in both normal and

diseased genomes.

Since a sequenced read can be transformed back to the reference genome through a

sequential order of text-edit operations, we can also score such a transformation by

assigning scores to the text-edit operations, namely, match, mismatch and gap-open. By

enumerating the number of text-edit operations to a read, we can rank the possible

combinations of edit operations needed to align a read. BatAlign uses Reverse-alignment

to incrementally align a read in increasing order of alignment cost with the combination

of match/mismatch/gap defined by the scores assigned to them. In addition, Deep-scan

was developed so that BatAlign will be able to better differentiate a real-SNP mismatch
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from a false base-call mismatch during alignment. Experiments have shown that

BatAlign was able to map SNV- and indel-spanning reads (75 to 250 bp long) with high

sensitivity and accuracy over a large range of assigned mapping quality scores.

Paired-reads are first aligned in a single-read fashion and are later paired up unbiasedly to

yield accurate alignments. Chimeric/supplementary alignments are also reported for a

single read, under the pair-end mapping mode of BatAlign, to better support the

identification of breakpoints caused by genomic rearrangements. In general, BatAlign is

an improved method for gapped reads.

7.3 BatRNA

The advent of RNA-seq allows scientists to quantify gene expression on a genome-wide

scale. As RNA-seq reads can span across different exons, they can be challenging to be

aligned back onto a reference genome.

BatRNA was developed as a hybrid between both exon-first and seed-extend

methodologies. BatAlign was used as a non-splice pre-mapping aligner and a splice-

alignment routine, which emulated paired-end information within a single read, was used

to align the clipped and unmapped reads from BatAlign. The experiments have also

shown that BatRNA has achieved accurate alignments on both exonic and spliced reads

from the human transcriptome. It is also time-efficient when compared to other methods

of similar memory usage.

7.4 Future Developments

As sequencing technologies continue to develop, the error profiles, which come along

with these technologies, will also evolve with them. For instance, when read length gets

longer from the oncoming third generation sequencing technologies, the total edit

distance in a single read will require re-development of existing algorithms to better
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handle such challenges. Homopolymers might be a prevalent type of sequencing errors

over wrong base-calls too and aligners will have to handle these types of gap-errors

efficiently too.

Alongside with sequencing technologies and alignment algorithms, genomic assemblers

are also producing better scaffold reference genomes for scientists to work with. For

instance, the recent release of the GRCh38 human genome has included 261 alternate loci,

which are highly similar to the main loci of the GRCh19 genome. The alignment of read

to the newer, GRCh38, genome will of course yield more non-unique alignments as these

261 alternate loci are supposed to be of high similarity to the main chromosomal

sequences. In the future, aligners should be aware if an alignment is from either the main

or alternate loci and should not assign marked it with a low uniqueness score if a read is

aligned to such regions.

Alignment of genomic reads can also be tackled from the reference index’s point of view.

Since metagenomic projects are producing whole genome data of high similarity,

compressing algorithms and data structures can be developed for more efficient memory

usage without comprising on alignment efficiency.



177

Bibliography
1. Darwin C: On the origins of species by means of natural selection. London:

Murray 1859.
2. Mendel G: Versuche über Pflanzenhybriden. Verhandlungen des

naturforschenden Vereines in Brunn 4: 3 1866, 44.
3. Avery OT, MacLeod CM, McCarty M: Studies on the chemical nature of the

substance inducing transformation of pneumococcal types induction of
transformation by a desoxyribonucleic acid fraction isolated from
pneumococcus type III. The Journal of experimental medicine 1944, 79:137-
158.

4. Watson JD, Crick FH: Molecular structure of nucleic acids. Nature 1953,
171:737-738.

5. Franklin RE, Gosling RG: Evidence for 2-chain helix in crystalline structure
of sodium deoxyribonucleate. Nature 1953, 172:156-157.

6. Wilkins MH, Seeds WE, Stokes AR, Wilson HR: Helical structure of
crystalline deoxypentose nucleic acid. Nature 1953, 172:759-762.

7. Sanger F: DNA Sequencing with Chain-Terminating Inhibitors. Proceedings
of the National Academy of Sciences 1977, 74:5463-5467.

8. Maxam AM: A New Method for Sequencing DNA. Proceedings of the National
Academy of Sciences 1977, 74:560-564.

9. Noble I: Human genome finally complete. In BBC News; 2003.
10. Maher B: ENCODE: The human encyclopaedia. Nature 2012, 489:46-48.
11. Bernstein BE, Birney E, Dunham I, Green ED, Gunter C, Snyder M: An

integrated encyclopedia of DNA elements in the human genome. Nature 2012,
489:57-74.

12. Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes CA, Hutchison
CA, Slocombe PM, Smith M: Nucleotide sequence of bacteriophage phi X174
DNA. Nature 1977, 265:687-695.

13. Sanger F, Coulson AR: A rapid method for determining sequences in DNA by
primed synthesis with DNA polymerase. J Mol Biol 1975, 94:441-448.

14. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M: Comparison of
next-generation sequencing systems. J Biomed Biotechnol 2012, 2012:251364.

15. Shendure J, Porreca GJ, Reppas NB, Lin X, McCutcheon JP, Rosenbaum AM,
Wang MD, Zhang K, Mitra RD, Church GM: Accurate multiplex polony
sequencing of an evolved bacterial genome. Science 2005, 309:1728-1732.

16. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J,
Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV,
Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML,



178

Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM,
Lei M, Li J, et al: Genome sequencing in microfabricated high-density
picolitre reactors. Nature 2005, 437:376-380.

17. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG,
Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, Bryant J, Carter RJ,
Cheetham RK, Cox AJ, Ellis DJ, Flatbush MR, Gormley NA, Humphray SJ,
Irving LJ, Karbelashvili MS, Kirk SM, Li H, Liu XH, Maisinger KS, Murray LJ,
Obradovic B, Ost T, Parkinson ML, Pratt MR, et al: Accurate whole human
genome sequencing using reversible terminator chemistry. Nature 2008,
456:53-59.

18. McKernan KJ, Peckham HE, Costa GL, McLaughlin SF, Fu Y, Tsung EF,
Clouser CR, Duncan C, Ichikawa JK, Lee CC, Zhang Z, Ranade SS, Dimalanta
ET, Hyland FC, Sokolsky TD, Zhang L, Sheridan A, Fu H, Hendrickson CL, Li
B, Kotler L, Stuart JR, Malek JA, Manning JM, Antipova AA, Perez DS, Moore
MP, Hayashibara KC, Lyons MR, Beaudoin RE, et al: Sequence and structural
variation in a human genome uncovered by short-read, massively parallel
ligation sequencing using two-base encoding. Genome Res 2009, 19:1527-
1541.

19. Ronaghi M: DNA SEQUENCING:A Sequencing Method Based on Real-
Time Pyrophosphate. Science 1998, 281:363-365.

20. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P,
Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S,
Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C,
Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, et al: Real-
time DNA sequencing from single polymerase molecules. Science 2009,
323:133-138.

21. Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG,
Carnevali P, Nazarenko I, Nilsen GB, Yeung G, Dahl F, Fernandez A, Staker B,
Pant KP, Baccash J, Borcherding AP, Brownley A, Cedeno R, Chen LS,
Chernikoff D, Cheung A, Chirita R, Curson B, Ebert JC, Hacker CR, Hartlage R,
Hauser B, Huang S, Jiang Y, Karpinchyk V, et al: Human Genome Sequencing
Using Unchained Base Reads on Self-Assembling DNA Nanoarrays. Science
2010, 327:78-81.

22. Thompson JF, Steinmann KE: Single molecule sequencing with a HeliScope
genetic analysis system. Curr Protoc Mol Biol 2010, Chapter 7:Unit7 10.

23. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C, Shaffer T,
Wong M, Bhattacharjee A, Eichler EE, Bamshad M, Nickerson DA, Shendure J:
Targeted capture and massively parallel sequencing of 12 human exomes.
Nature 2009, 461:272-276.

24. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD,
Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ: Exome
sequencing identifies the cause of a mendelian disorder. Nat Genet 2010,
42:30-35.

25. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF: PCR-induced
sequence artifacts and bias: insights from comparison of two 16S rRNA
clone libraries constructed from the same sample. Appl Environ Microbiol
2005, 71:8966-8969.

26. Ingram VM: A Specific Chemical Difference Between the Globins of Normal
Human and Sickle-Cell Anæmia Hæmoglobin. Nature 1956, 178:792-794.

27. Niidome T, Huang L: Gene therapy progress and prospects: nonviral vectors.
Gene Ther 2002, 9:1647-1652.



179

28. Riddihough G, Zahn LM: Epigenetics. What is epigenetics? Introduction.
Science 2010, 330:611.

29. Bernstein BE, Meissner A, Lander ES: The mammalian epigenome. Cell 2007,
128:669-681.

30. Treangen TJ, Salzberg SL: Repetitive DNA and next-generation sequencing:
computational challenges and solutions. Nat Rev Genet 2012, 13:36-46.

31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215:403-410.

32. Kent WJ: BLAT - The BLAST-like alignment tool. Genome Res 2002, 12:656-
664.

33. Animal cell structure en by LadyofHats
[http://commons.wikimedia.org/wiki/File:Animal_cell_structure_en.svg#mediavi
ewer/File:Animal_cell_structure_en.svg]

34. Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10:57-63.

35. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras TR: STAR: ultrafast universal RNA-seq aligner.
Bioinformatics 2013, 29:15-21.

36. Wu J, Anczukow O, Krainer AR, Zhang MQ, Zhang C: OLego: fast and
sensitive mapping of spliced mRNA-Seq reads using small seeds. Nucleic
Acids Research 2013.

37. Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X,
Mieczkowski P, Grimm SA, Perou CM, MacLeod JN, Chiang DY, Prins JF, Liu
J: MapSplice: accurate mapping of RNA-seq reads for splice junction
discovery. Nucleic Acids Research 2010, 38:e178.

38. Zhang Y, Lameijer EW, t Hoen PA, Ning Z, Slagboom PE, Ye K: PASSion: a
pattern growth algorithm-based pipeline for splice junction detection in
paired-end RNA-Seq data. Bioinformatics 2012, 28:479-486.

39. De Bona F, Ossowski S, Schneeberger K, Ratsch G: Optimal spliced
alignments of short sequence reads. Bioinformatics 2008, 24:i174-180.

40. Au KF, Jiang H, Lin L, Xing Y, Wong WH: Detection of splice junctions from
paired-end RNA-seq data by SpliceMap. Nucleic Acids Research 2010,
38:4570-4578.

41. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with
RNA-Seq. Bioinformatics 2009, 25:1105-1111.

42. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2:
accurate alignment of transcriptomes in the presence of insertions, deletions
and gene fusions. Genome Biol 2013, 14:R36.

43. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H,
Salzberg SL, Rinn JL, Pachter L: Differential gene and transcript expression
analysis of RNA-seq experiments with TopHat and Cufflinks. Nature
Protocols 2012, 7:562-578.

44. Li B, Dewey CN: RSEM: accurate transcript quantification from RNA-Seq
data with or without a reference genome. Bmc Bioinformatics 2011, 12:323.

45. Anders S: HTSeq: Analysing high-throughput sequencing data with Python.
URL http://www-huber embl de/users/anders/HTSeq/doc/overview html 2010.

46. Bohnert R, Ratsch G: rQuant.web: a tool for RNA-Seq-based transcript
quantitation. Nucleic Acids Research 2010, 38:W348-351.

47. Nicolae M, Mangul S, Mandoiu, II, Zelikovsky A: Estimation of alternative
splicing isoform frequencies from RNA-Seq data. Algorithms Mol Biol 2011,
6:9.



180

48. Szulwach KE, Li XK, Li YJ, Song CX, Han JW, Kim S, Namburi S, Hermetz K,
Kim JJ, Rudd MK, Yoon YS, Ren B, He C, Jin P: Integrating 5-
Hydroxymethylcytosine into the Epigenomic Landscape of Human
Embryonic Stem Cells. Plos Genetics 2011, 7.

49. Crick F: Central dogma of molecular biology. Nature 1970, 227:561-563.
50. Chargaff E, Zamenhof S, Green C: Composition of human desoxypentose

nucleic acid. Nature 1950, 165:756-757.
51. Meselson M, Stahl FW: The replication of DNA in Escherichia coli.

Proceedings of the National Academy of Sciences 1958, 44:671-682.
52. DNA replication en by LadyofHats

[http://commons.wikimedia.org/wiki/File:DNA_replication_en.svg#mediaviewer
/File:DNA_replication_en.svg]

53. Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, Merrill SH,
Penswick JR, Zamir A: Structure of a Ribonucleic Acid. Science 1965,
147:1462-1465.

54. Kowalczyk J, Domal-Kwiatkowska D, Mazurek U, Zembala M, Michalski B,
Zembala M: Post-transcriptional modifications of VEGF-A mRNA in non-
ischemic dilated cardiomyopathy. Cellular & Molecular Biology Letters 2007,
12:331-347.

55. Darnell JE, Jr.: Implications of RNA-RNA splicing in evolution of eukaryotic
cells. Science 1978, 202:1257-1260.

56. Burset M, Seledtsov IA, Solovyev VV: Analysis of canonical and non-
canonical splice sites in mammalian genomes. Nucleic Acids Research 2000,
28:4364-4375.

57. Early P: Two mRNAs can be produced from a single immunoglobulin μ gene
by alternative RNA processing pathways. Cell 1980, 20:313-319.

58. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ: Deep surveying of alternative
splicing complexity in the human transcriptome by high-throughput
sequencing. Nat Genet 2008, 40:1413-1415.

59. Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD:
Amplification of complex gene libraries by emulsion PCR. Nature Methods
2006, 3:545-550.

60. Schuster SC: Next-generation sequencing transforms today's biology. Nature
Methods 2008, 5:16-18.

61. Ronaghi M, Karamohamed S, Pettersson B, Uhlen M, Nyren P: Real-time DNA
sequencing using detection of pyrophosphate release. Anal Biochem 1996,
242:84-89.

62. Pennisi E: Genomics. Semiconductors inspire new sequencing technologies.
Science 2010, 327:1190.

63. Purushothaman S, Toumazou C, Ou CP: Protons and single nucleotide
polymorphism detection: A simple use for the ion sensitive field effect
transistor. Sensors and Actuators B-Chemical 2006, 114:964-968.

64. Metzker ML: Emerging technologies in DNA sequencing. Genome Res 2005,
15:1767-1776.

65. Sambrook J, Russell DW: Fragmentation of DNA by sonication. CSH Protoc
2006, 2006.

66. Sambrook J, Russell DW: Fragmentation of DNA by nebulization. CSH Protoc
2006, 2006.

67. Adessi C, Matton G, Ayala G, Turcatti G, Mermod JJ, Mayer P, Kawashima E:
Solid phase DNA amplification: characterisation of primer attachment and
amplification mechanisms. Nucleic Acids Research 2000, 28:E87.



181

68. Mardis ER: Next-generation DNA sequencing methods. Annu Rev Genomics
Hum Genet 2008, 9:387-402.

69. Huang YF, Chen SC, Chiang YS, Chen TH, Chiu KP: Palindromic sequence
impedes sequencing-by-ligation mechanism. BMC Syst Biol 2012, 6 Suppl
2:S10.

70. Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A,
Swerdlow HP, Gu Y: A tale of three next generation sequencing platforms:
comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq
sequencers. Bmc Genomics 2012, 13:341.

71. Nagarajan N, Bertrand D, Hillmer AM, Zang ZJ, Yao F, Jacques PE, Teo AS,
Cutcutache I, Zhang Z, Lee WH, Sia YY, Gao S, Ariyaratne PN, Ho A, Woo XY,
Veeravali L, Ong CK, Deng N, Desai KV, Khor CC, Hibberd ML, Shahab A,
Rao J, Wu M, Teh M, Zhu F, Chin SY, Pang B, So JB, Bourque G, et al: Whole-
genome reconstruction and mutational signatures in gastric cancer. Genome
Biol 2012, 13:R115.

72. Adams M, Kelley J, Gocayne J, Dubnick M, Polymeropoulos M, Xiao H, Merril
C, Wu A, Olde B, Moreno R, et a: Complementary DNA sequencing:
expressed sequence tags and human genome project. Science 1991, 252:1651-
1656.

73. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ,
McMahon S, Karlsson EK, Kulbokas EJ, 3rd, Gingeras TR, Schreiber SL,
Lander ES: Genomic maps and comparative analysis of histone modifications
in human and mouse. Cell 2005, 120:169-181.

74. Bird AP: CpG-rich islands and the function of DNA methylation. Nature
1986, 321:209-213.

75. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X,
Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES:
Genome-scale DNA methylation maps of pluripotent and differentiated cells.
Nature 2008, 454:766-770.

76. Frommer M, Mcdonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy
PL, Paul CL: A Genomic Sequencing Protocol That Yields a Positive Display
of 5-Methylcytosine Residues in Individual DNA Strands. Proceedings of the
National Academy of Sciences of the United States of America 1992, 89:1827-
1831.

77. Ferragina P, Manzini G: Opportunistic data structures with applications. 41st
Annual Symposium on Foundations of Computer Science, Proceedings
2000:390-398.

78. Burrows M, Wheeler D: A block-sorting lossless data compression algorithm.
1994.

79. Smith TF, Waterman MS: Identification of common molecular subsequences.
J Mol Biol 1981, 147:195-197.

80. Needleman SB, Wunsch CD: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol 1970,
48:443-453.

81. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis
G, Durbin R: The Sequence Alignment/Map format and SAMtools.
Bioinformatics 2009, 25:2078-2079.

82. Vingron M, Waterman MS: Sequence alignment and penalty choice. Review
of concepts, case studies and implications. J Mol Biol 1994, 235:1-12.

83. Ewing B, Hillier L, Wendl MC, Green P: Base-calling of automated sequencer
traces using phred. I. Accuracy assessment. Genome Res 1998, 8:175-185.



182

84. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res 2008, 18:1851-1858.

85. Pelizzola M, Ecker JR: The DNA methylome. FEBS Lett 2011, 585:1994-2000.
86. Lim JQ, Tennakoon C, Li G, Wong E, Ruan Y, Wei CL, Sung WK: BatMeth:

improved mapper for bisulfite sequencing reads on DNA methylation.
Genome Biol 2012, 13:R82.

87. Ondov BD, Cochran C, Landers M, Meredith GD, Dudas M, Bergman NH: An
alignment algorithm for bisulfite sequencing using the Applied Biosystems
SOLiD System. Bioinformatics 2010, 26:1901-1902.

88. Krueger F, Andrews SR: Bismark: a flexible aligner and methylation caller
for Bisulfite-Seq applications. Bioinformatics 2011, 27:1571-1572.

89. Harris EY, Ponts N, Levchuk A, Roch KL, Lonardi S: BRAT: bisulfite-treated
reads analysis tool. Bioinformatics 2010, 26:572-573.

90. Harris EY, Ponts N, Le Roch KG, Lonardi S: BRAT-BW: efficient and
accurate mapping of bisulfite-treated reads. Bioinformatics 2012, 28:1795-
1796.

91. Chen PY, Cokus SJ, Pellegrini M: BS Seeker: precise mapping for bisulfite
sequencing. BMC Bioinformatics 2010, 11:203.

92. Lee TF, Zhai J, Meyers BC: Conservation and divergence in eukaryotic DNA
methylation. Proc Natl Acad Sci U S A 2010, 107:9027-9028.

93. Smith AD, Chung WY, Hodges E, Kendall J, Hannon G, Hicks J, Xuan Z, Zhang
MQ: Updates to the RMAP short-read mapping software. Bioinformatics
2009, 25:2841-2842.

94. Campagna D, Telatin A, Forcato C, Vitulo N, Valle G: PASS-bis: a bisulfite
aligner suitable for whole methylome analysis of Illumina and SOLiD reads.
Bioinformatics 2013, 29:268-270.

95. Xi Y, Li W: BSMAP: whole genome bisulfite sequence MAPping program.
BMC Bioinformatics 2009, 10:232.

96. Kreck B, Marnellos G, Richter J, Krueger F, Siebert R, Franke A: B-SOLANA:
An approach for the analysis of two-base encoding bisulfite sequencing data
(In Press). Bioinformatics 2011.

97. Kondrashov AS, Rogozin IB: Context of deletions and insertions in human
coding sequences. Hum Mutat 2004, 23:177-185.

98. Ma L, Zhang TT, Huang ZR, Jiang XQ, Tao SH: Patterns of nucleotides that
flank substitutions in human orthologous genes. Bmc Genomics 2010, 11.

99. Sung WK, Zheng H, Li S, Chen R, Liu X, Li Y, Lee NP, Lee WH, Ariyaratne PN,
Tennakoon C, Mulawadi FH, Wong KF, Liu AM, Poon RT, Fan ST, Chan KL,
Gong Z, Hu Y, Lin Z, Wang G, Zhang Q, Barber TD, Chou WC, Aggarwal A,
Hao K, Zhou W, Zhang C, Hardwick J, Buser C, Xu J, et al: Genome-wide
survey of recurrent HBV integration in hepatocellular carcinoma. Nat Genet
2012, 44:765-769.

100. Li H, Durbin R: Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 2009, 25:1754-1760.

101. Li H, Durbin R: Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 2010, 26:589-595.

102. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol 2009,
10:R25.

103. Langmead B, Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nature
Methods 2012, 9:357-359.



183

104. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment
program. Bioinformatics 2008, 24:713-714.

105. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an
improved ultrafast tool for short read alignment. Bioinformatics 2009,
25:1966-1967.

106. Novocraft: Novoalign. www.novocraft.com.
107. Lunter G, Goodson M: Stampy: a statistical algorithm for sensitive and fast

mapping of Illumina sequence reads. Genome Res 2011, 21:936-939.
108. Campagna D, Albiero A, Bilardi A, Caniato E, Forcato C, Manavski S, Vitulo N,

Valle G: PASS: a program to align short sequences. Bioinformatics 2009,
25:967-968.

109. Liu Y, Schmidt B, Maskell DL: CUSHAW: a CUDA compatible short read
aligner to large genomes based on the Burrows-Wheeler transform.
Bioinformatics 2012, 28:1830-1837.

110. Liu Y, Schmidt B: Long read alignment based on maximal exact match seeds.
Bioinformatics 2012, 28:i318-i324.

111. Gontarz PM, Berger J, Wong CF: SRmapper: a fast and sensitive genome-
hashing alignment tool. Bioinformatics 2013, 29:316-321.

112. Mu JC, Jiang H, Kiani A, Mohiyuddin M, Bani Asadi N, Wong WH: Fast and
accurate read alignment for resequencing. Bioinformatics 2012, 28:2366-2373.

113. Cox A: ELAND: Efficient Local Alignment of Nucleotide Data. 2006.
114. Smith AD, Xuan ZY, Zhang MQ: Using quality scores and longer reads

improves accuracy of Solexa read mapping. Bmc Bioinformatics 2008, 9.
115. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M: SHRiMP:

accurate mapping of short color-space reads. PLoS Comput Biol 2009,
5:e1000386.

116. David M, Dzamba M, Lister D, Ilie L, Brudno M: SHRiMP2: sensitive yet
practical SHort Read Mapping. Bioinformatics 2011, 27:1011-1012.

117. Lin H, Zhang ZF, Zhang MQ, Ma B, Li M: ZOOM! Zillions of oligos mapped.
Bioinformatics 2008, 24:2431-2437.

118. Malhis N, Butterfield YS, Ester M, Jones SJ: Slider--maximum use of
probability information for alignment of short sequence reads and SNP
detection. Bioinformatics 2009, 25:6-13.

119. Malhis N, Jones SJ: High quality SNP calling using Illumina data at shallow
coverage. Bioinformatics 2010, 26:1029-1035.

120. Farrar M: Striped Smith-Waterman speeds database searches six times over
other SIMD implementations. Bioinformatics 2007, 23:156-161.

121. Zhao M, Lee WP, Marth GT: SSW Library: An SIMD Smith-Waterman
C/C++ Library for Use in Genomic Applications. arXiv preprint
arXiv:12086350 2012.

122. Zhang Z, Schwartz S, Wagner L, Miller W: A greedy algorithm for aligning
DNA sequences. J Comput Biol 2000, 7:203-214.

123. Faust GG, Hall IM: YAHA: fast and flexible long-read alignment with
optimal breakpoint detection. Bioinformatics 2012, 28:2417-2424.

124. Baeza-Yates RA, Perleberg CH: Fast and practical approximate string
matching. In Combinatorial Pattern Matching. Springer; 1992: 185-192.

125. Ma B, Tromp J, Li M: PatternHunter: faster and more sensitive homology
search. Bioinformatics 2002, 18:440-445.

126. Li H, Homer N: A survey of sequence alignment algorithms for next-
generation sequencing. Brief Bioinform 2010, 11:473-483.



184

127. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, Shiwa Y, Ishikawa
S, Linak MC, Hirai A, Takahashi H, Altaf-Ul-Amin M, Ogasawara N, Kanaya S:
Sequence-specific error profile of Illumina sequencers. Nucleic Acids
Research 2011, 39:e90.

128. Burkhardt S, Karkkainen J: Better filtering with gapped q-grams. Fundamenta
Informaticae 2003, 56:51-70.

129. Jokinen P, Ukkonen E: Two algorithms for approxmate string matching in
static texts. In Mathematical Foundations of Computer Science 1991. Springer;
1991: 240-248

130. Weese D, Emde AK, Rausch T, Doring A, Reinert K: RazerS--fast read
mapping with sensitivity control. Genome Res 2009, 19:1646-1654.

131. Weese D, Holtgrewe M, Reinert K: RazerS 3: faster, fully sensitive read
mapping. Bioinformatics 2012, 28:2592-2599.

132. Siragusa E, Weese D, Reinert K: Fast and accurate read mapping with
approximate seeds and multiple backtracking. Nucleic Acids Research 2013,
41:e78.

133. Manber U, Myers G: Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing 1993, 22:935-948.

134. Weiner P: Linear pattern matching algorithms. 1973:1-11.
135. Delcher AL, Kasif S, Fleischmann RD, Peterson J, White O, Salzberg SL:

Alignment of whole genomes. Nucleic Acids Research 1999, 27:2369-2376.
136. Meek C, Patel JM, Kasetty S: OASIS: an online and accurate technique for

local-alignment searches on biological sequences. In Proceedings of the 29th
international conference on Very large data bases - Volume 29. pp. 910-921.
Berlin, Germany: VLDB Endowment; 2003:910-921.

137. Farach M: Optimal suffix tree construction with large alphabets. 38th Annual
Symposium on Foundations of Computer Science, Proceedings 1997:137-143.

138. Abouelhoda MI, Kurtz S, Ohlebusch E: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms 2004, 2:53-86.

139. Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF,
Hackermuller J: Fast Mapping of Short Sequences with Mismatches,
Insertions and Deletions Using Index Structures. PLoS Comput Biol 2009, 5.

140. Marco-Sola S, Sammeth M, Guigo R, Ribeca P: The GEM mapper: fast,
accurate and versatile alignment by filtration. Nature Methods 2012, 9:1185-
1188.

141. Lam TW, Sung WK, Tam SL, Wong CK, Yiu SM: Compressed indexing and
local alignment of DNA. Bioinformatics 2008, 24:791-797.

142. Luebke D, Harris M, Govindaraju N, Lefohn A, Houston M, Owens J, Segal M,
Papakipos M, Buck I: GPGPU: general-purpose computation on graphics
hardware. 2006:208.

143. Liu CM, Wong T, Wu E, Luo R, Yiu SM, Li Y, Wang B, Yu C, Chu X, Zhao K,
Li R, Lam TW: SOAP3: ultra-fast GPU-based parallel alignment tool for
short reads. Bioinformatics 2012, 28:878-879.

144. Homer N, Merriman B, Nelson SF: BFAST: an alignment tool for large scale
genome resequencing. PLoS One 2009, 4:e7767.

145. Chaisson MJ, Tesler G: Mapping single molecule sequencing reads using
basic local alignment with successive refinement (BLASR): application and
theory. Bmc Bioinformatics 2012, 13:238.

146. Schatz MC: CloudBurst: highly sensitive read mapping with MapReduce.
Bioinformatics 2009, 25:1363-1369.



185

147. Liu Y, Schmidt B: CUSHAW2-GPU: empowering faster gapped short-read
alignment using GPU computing. IEEE Design & Test 2013:1-1.

148. Clement NL, Snell Q, Clement MJ, Hollenhorst PC, Purwar J, Graves BJ, Cairns
BR, Johnson WE: The GNUMAP algorithm: unbiased probabilistic mapping
of oligonucleotides from next-generation sequencing. Bioinformatics 2010,
26:38-45.

149. Ahmadi A, Behm A, Honnalli N, Li C, Weng L, Xie X: Hobbes: optimized
gram-based methods for efficient read alignment. Nucleic Acids Research
2012, 40:e41.

150. Eaves HL, Gao Y: MOM: maximum oligonucleotide mapping. Bioinformatics
2009, 25:969-970.

151. Lee W-P, Stromberg M, Ward A, Stewart C, Garrison E, Marth GT: MOSAIK:
A hash-based algorithm for accurate next-generation sequencing read
mapping. 2013.

152. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F,
Kitzman JO, Baker C, Malig M, Mutlu O, Sahinalp SC, Gibbs RA, Eichler EE:
Personalized copy number and segmental duplication maps using next-
generation sequencing. Nat Genet 2009, 41:1061-1067.

153. Hach F, Hormozdiari F, Alkan C, Birol I, Eichler EE, Sahinalp SC: mrsFAST: a
cache-oblivious algorithm for short-read mapping. Nature Methods 2010,
7:576-577.

154. Hormozdiari F, Hach F, Sahinalp SC, Eichler EE, Alkan C: Sensitive and fast
mapping of di-base encoded reads. Bioinformatics 2011, 27:1915-1921.

155. Chen Y, Souaiaia T, Chen T: PerM: efficient mapping of short sequencing
reads with periodic full sensitive spaced seeds. Bioinformatics 2009, 25:2514-
2521.

156. Kim YJ, Teletia N, Ruotti V, Maher CA, Chinnaiyan AM, Stewart R, Thomson
JA, Patel JM: ProbeMatch: rapid alignment of oligonucleotides to genome
allowing both gaps and mismatches. Bioinformatics 2009, 25:1424-1425.

157. Frousios K, Iliopoulos CS, Mouchard L, Pissis SP, Tischler G: REAL: an
efficient REad ALigner for next generation sequencing reads. 2010:154.

158. Jiang H, Wong WH: SeqMap: mapping massive amount of oligonucleotides
to the genome. Bioinformatics 2008, 24:2395-2396.

159. Ning Z, Cox AJ, Mullikin JC: SSAHA: a fast search method for large DNA
databases. Genome Res 2001, 11:1725-1729.

160. Liao Y, Smyth GK, Shi W: The Subread aligner: fast, accurate and scalable
read mapping by seed-and-vote. Nucleic Acids Research 2013, 41:e108.

161. Sharp PA: The discovery of split genes and RNA splicing. Trends Biochem Sci
2005, 30:279-281.

162. Breitbart RE, Andreadis A, Nadal-Ginard B: Alternative splicing: a ubiquitous
mechanism for the generation of multiple protein isoforms from single genes.
Annu Rev Biochem 1987, 56:467-495.

163. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA: Multiple
isoforms of human microtubule-associated protein tau: sequences and
localization in neurofibrillary tangles of Alzheimer's disease. Neuron 1989,
3:519-526.

164. Licatalosi DD, Darnell RB: Splicing regulation in neurologic disease. Neuron
2006, 52:93-101.

165. Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP,
Gingeras TR: Large-scale transcriptional activity in chromosomes 21 and 22.
Science 2002, 296:916-919.



186

166. Pan Q, Shai O, Misquitta C, Zhang W, Saltzman AL, Mohammad N, Babak T,
Siu H, Hughes TR, Morris QD, Frey BJ, Blencowe BJ: Revealing global
regulatory features of mammalian alternative splicing using a quantitative
microarray platform. Mol Cell 2004, 16:929-941.

167. Kwan T, Benovoy D, Dias C, Gurd S, Provencher C, Beaulieu P, Hudson TJ,
Sladek R, Majewski J: Genome-wide analysis of transcript isoform variation
in humans. Nat Genet 2008, 40:225-231.

168. Slater GS, Birney E: Automated generation of heuristics for biological
sequence comparison. Bmc Bioinformatics 2005, 6:31.

169. Vanin EF: Processed pseudogenes: characteristics and evolution. Annu Rev
Genet 1985, 19:253-272.

170. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 2008,
5:621-628.

171. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF,
Schroth GP, Burge CB: Alternative isoform regulation in human tissue
transcriptomes. Nature 2008, 456:470-476.

172. Nagalakshmi U, Waern K, Snyder M: RNA-Seq: a method for comprehensive
transcriptome analysis. Curr Protoc Mol Biol 2010, Chapter 4:Unit 4 11 11-13.

173. Cloonan N, Xu Q, Faulkner GJ, Taylor DF, Tang DT, Kolle G, Grimmond SM:
RNA-MATE: a recursive mapping strategy for high-throughput RNA-
sequencing data. Bioinformatics 2009, 25:2615-2616.

174. Wood DL, Xu Q, Pearson JV, Cloonan N, Grimmond SM: X-MATE: a flexible
system for mapping short read data. Bioinformatics 2011, 27:580-581.

175. Pruitt KD, Tatusova T, Maglott DR: NCBI Reference Sequence (RefSeq): a
curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic Acids Research 2005, 33:D501-504.

176. Pruitt KD, Tatusova T, Brown GR, Maglott DR: NCBI Reference Sequences
(RefSeq): current status, new features and genome annotation policy.
Nucleic Acids Research 2012, 40:D130-135.

177. Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP, Stoeckert CJ,
Hogenesch JB, Pierce EA: Comparative analysis of RNA-Seq alignment
algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 2011,
27:2518-2528.

178. Denoeud F, Aury JM, Da Silva C, Noel B, Rogier O, Delledonne M, Morgante M,
Valle G, Wincker P, Scarpelli C, Jaillon O, Artiguenave F: Annotating genomes
with massive-scale RNA sequencing. Genome Biol 2008, 9:R175.

179. Huang S, Zhang J, Li R, Zhang W, He Z, Lam TW, Peng Z, Yiu SM:
SOAPsplice: Genome-Wide ab initio Detection of Splice Junctions from
RNA-Seq Data. Front Genet 2011, 2:46.

180. Wu TD, Nacu S: Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics 2010, 26:873-881.

181. Bryant DW, Jr., Shen R, Priest HD, Wong WK, Mockler TC: Supersplat--
spliced RNA-seq alignment. Bioinformatics 2010, 26:1500-1505.

182. Philippe N, Salson M, Commes T, Rivals E: CRAC: an integrated approach to
the analysis of RNA-seq reads. Genome Biol 2013, 14:R30.

183. Cortes C, Vapnik V: Support-vector networks. Machine Learning 1995,
20:273-297.

184. Jean G, Kahles A, Sreedharan VT, De Bona F, Ratsch G: RNA-Seq read
alignments with PALMapper. Curr Protoc Bioinformatics 2010, Chapter
11:Unit 11 16.



187

185. Schneeberger K, Hagmann J, Ossowski S, Warthmann N, Gesing S, Kohlbacher
O, Weigel D: Simultaneous alignment of short reads against multiple
genomes. Genome Biol 2009, 10:R98.

186. Dimon MT, Sorber K, DeRisi JL: HMMSplicer: a tool for efficient and
sensitive discovery of known and novel splice junctions in RNA-Seq data.
PLoS One 2010, 5:e13875.

187. Iwasaki R, Kiuchi H, Ihara M, Mori T, Kawakami M, Ueda H: Trans-splicing as
a novel method to rapidly produce antibody fusion proteins. Biochem
Biophys Res Commun 2009, 384:316-321.

188. Lou SK, Ni B, Lo LY, Tsui SK, Chan TF, Leung KS: ABMapper: a suffix
array-based tool for multi-location searching and splice-junction mapping.
Bioinformatics 2011, 27:421-422.

189. Yeo G, Burge CB: Maximum entropy modeling of short sequence motifs with
applications to RNA splicing signals. J Comput Biol 2004, 11:377-394.

190. Bao H, Xiong Y, Guo H, Zhou R, Lu X, Yang Z, Zhong Y, Shi S: MapNext: a
software tool for spliced and unspliced alignments and SNP detection of
short sequence reads. Bmc Genomics 2009, 10 Suppl 3:S13.

191. Hu J, Ge H, Newman M, Liu K: OSA: a fast and accurate alignment tool for
RNA-Seq. Bioinformatics 2012, 28:1933-1934.

192. Tang S, Riva A: PASTA: splice junction identification from RNA-sequencing
data. Bmc Bioinformatics 2013, 14:116.

193. Chen LY, Wei KC, Huang AC, Wang K, Huang CY, Yi D, Tang CY, Galas DJ,
Hood LE: RNASEQR--a streamlined and accurate RNA-seq sequence
analysis program. Nucleic Acids Research 2012, 40:e42.

194. Wang L, Wang X, Liang Y, Zhang X: Observations on novel splice junctions
from RNA sequencing data. Biochem Biophys Res Commun 2011, 409:299-303.

195. Ameur A, Wetterbom A, Feuk L, Gyllensten U: Global and unbiased detection
of splice junctions from RNA-seq data. Genome Biol 2010, 11:R34.

196. Li Y, Li-Byarlay H, Burns P, Borodovsky M, Robinson GE, Ma J: TrueSight: a
new algorithm for splice junction detection using RNA-seq. Nucleic Acids
Research 2013, 41:e51.

197. Law JA, Jacobsen SE: Establishing, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet 2010, 11:204-220.

198. Keshet I, Lieman-Hurwitz J, Cedar H: DNA methylation affects the formation
of active chromatin. Cell 1986, 44:535-543.

199. Reik W, Dean W, Walter J: Epigenetic reprogramming in mammalian
development. Science 2001, 293:1089-1093.

200. Li E, Beard C, Jaenisch R: Role for DNA methylation in genomic imprinting.
Nature 1993, 366:362-365.

201. Heard E, Clerc P, Avner P: X-chromosome inactivation in mammals. Annu
Rev Genet 1997, 31:571-610.

202. Walsh CP, Chaillet JR, Bestor TH: Transcription of IAP endogenous
retroviruses is constrained by cytosine methylation. Nat Genet 1998, 20:116-
117.

203. Gopalakrishnan S, Van Emburgh BO, Robertson KD: DNA methylation in
development and human disease. Mutat Res 2008, 647:30-38.

204. Hultén MA, Papageorgiou EA, Ragione FD, D’Esposito M, Carter N, Patsalis PC:
Non-invasive prenatal diagnosis: An epigenetic approach to the detection of
common fetal chromosome disorders by analysis of maternal blood samples
In Circulating Nucleic Acids in Plasma and Serum. Edited by Gahan PB; 2011:
133-142



188

205. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH,
Ecker JR: Highly integrated single-base resolution maps of the epigenome in
Arabidopsis. Cell 2008, 133:523-536.

206. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD, Pradhan S,
Nelson SF, Pellegrini M, Jacobsen SE: Shotgun bisulphite sequencing of the
Arabidopsis genome reveals DNA methylation patterning. Nature 2008,
452:215-219.

207. Chung CAB, Boyd VL, McKernan KJ, Fu Y, Monighetti C, Peckham HE, Barker
M: Whole methylome analysis by ultra-deep sequencing using two-base
encoding. PLoS ONE 2010, 5:e9320.

208. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald OG,
Wen B, Wu H, Liu Y, Diep D, Briem E, Zhang K, Irizarry RA, Feinberg AP:
Increased methylation variation in epigenetic domains across cancer types.
Nat Genet 2011, 43:768-775.

209. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, Grigg GW, Molloy
PL, Paul CL: A genomic sequencing protocol that yields a positive display of
5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S
A 1992, 89:1827-1831.

210. Pedersen B, Hsieh TF, Ibarra C, Fischer RL: MethylCoder: software pipeline
for bisulfite-treated sequences. Bioinformatics 2011, 27:2435-2436.

211. Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008,
26:1135-1145.

212. Homer N, Merriman B, Nelson SF: Local alignment of two-base encoded DNA
sequence. BMC Bioinformatics 2009, 10:175.

213. Krueger F, Kreck B, Franke A, Andrews SR: DNA methylome analysis using
short bisulfite sequencing data. Nature Methods 2012, 9:145-151.

214. Ondov BD, Varadarajan A, Passalacqua KD, Bergman NH: Efficient mapping
of Applied Biosystems SOLiD sequence data to a reference genome for
functional genomic applications. Bioinformatics 2008, 24:2776-2777.

215. Karp RM, Rabin MO: Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development 1987, 31:249–260.

216. Smith AD, Xuan Z, Zhang MQ: Using quality scores and longer reads
improves accuracy of Solexa read mapping. BMC Bioinformatics 2008, 9:128.

217. Sherman [http://www.bioinformatics.bbsrc.ac.uk/projects/sherman/]
218. Laurent L, Wong E, Li G, Huynh T, Tsirigos A, Ong CT, Low HM, Kin Sung

KW, Rigoutsos I, Loring J, Wei CL: Dynamic changes in the human
methylome during differentiation. Genome Res 2010, 20:320-331.

219. Tennakoon C, Purbojati RW, Sung WK: BatMis: A fast algorithm for k-
mismatch mapping. Bioinformatics 2012.

220. Bird A, Taggart M, Frommer M, Miller OJ, Macleod D: A fraction of the mouse
genome that is derived from islands of nonmethylated, CpG-rich DNA. Cell
1985, 40:91-99.

221. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery
JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V,
Millar AH, Thomson JA, Ren B, Ecker JR: Human DNA methylomes at base
resolution show widespread epigenomic differences. Nature 2009, 462:315-
322.

222. Stadler MB, Murr R, Burger L, Ivanek R, Lienert F, Scholer A, Wirbelauer C,
Oakeley EJ, Gaidatzis D, Tiwari VK, Schubeler D: DNA-binding factors shape
the mouse methylome at distal regulatory regions. Nature 2011, 480:490-495.



189

223. Hellman A, Chess A: Gene body-specific methylation on the active X
chromosome. Science 2007, 315:1141-1143.

224. Paulsen M, Ferguson-Smith AC: DNA methylation in genomic imprinting,
development, and disease. J Pathol 2001, 195:97-110.

225. Swain JL, Stewart TA, Leder P: Parental legacy determines methylation and
expression of an autosomal transgene: a molecular mechanism for parental
imprinting. Cell 1987, 50:719-727.

226. Ehrlich M: DNA methylation in cancer: too much, but also too little.
Oncogene 2002, 21:5400-5413.

227. Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG:
Aberrant patterns of DNA methylation, chromatin formation and gene
expression in cancer. Hum Mol Genet 2001, 10:687-692.

228. Gao W, Kondo Y, Shen L, Shimizu Y, Sano T, Yamao K, Natsume A, Goto Y,
Ito M, Murakami H, Osada H, Zhang J, Issa JP, Sekido Y: Variable DNA
methylation patterns associated with progression of disease in hepatocellular
carcinomas. Carcinogenesis 2008, 29:1901-1910.

229. Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D,
Malik S, Pan F, Noushmehr H, van Dijk CM, Tollenaar RA, Laird PW: Genome-
scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res
2012, 22:271-282.

230. Zheng S, Chen P, McMillan A, Lafuente A, Lafuente MJ, Ballesta A, Trias M,
Wiencke JK: Correlations of partial and extensive methylation at the
p14(ARF) locus with reduced mRNA expression in colorectal cancer cell
lines and clinicopathological features in primary tumors. Carcinogenesis
2000, 21:2057-2064.

231. Dittrich B, Robinson WP, Knoblauch H, Buiting K, Schmidt K, Gillessen-
Kaesbach G, Horsthemke B: Molecular diagnosis of the Prader-Willi and
Angelman syndromes by detection of parent-of-origin specific DNA
methylation in 15q11-13. Hum Genet 1992, 90:313-315.

232. Lalande M: Parental imprinting and human disease. Annu Rev Genet 1996,
30:173-195.

233. Robertson KD: DNA methylation and human disease. Nat Rev Genet 2005,
6:597-610.

234. Lister R, Pelizzola M, Kida YS, Hawkins RD, Nery JR, Hon G, Antosiewicz-
Bourget J, O'Malley R, Castanon R, Klugman S, Downes M, Yu R, Stewart R,
Ren B, Thomson JA, Evans RM, Ecker JR: Hotspots of aberrant epigenomic
reprogramming in human induced pluripotent stem cells. Nature 2011,
471:68-73.

235. Li Y, Zhu J, Tian G, Li N, Li Q, Ye M, Zheng H, Yu J, Wu H, Sun J, Zhang H,
Chen Q, Luo R, Chen M, He Y, Jin X, Zhang Q, Yu C, Zhou G, Huang Y, Cao H,
Zhou X, Guo S, Hu X, Li X, Kristiansen K, Bolund L, Xu J, Wang W, Yang H,
et al: The DNA methylome of human peripheral blood mononuclear cells.
PLoS Biol 2010, 8:e1000533.

236. Hon GC, Hawkins RD, Caballero OL, Lo C, Lister R, Pelizzola M, Valsesia A,
Ye Z, Kuan S, Edsall LE, Camargo AA, Stevenson BJ, Ecker JR, Bafna V,
Strausberg RL, Simpson AJ, Ren B: Global DNA hypomethylation coupled to
repressive chromatin domain formation and gene silencing in breast cancer.
Genome Res 2012, 22:246-258.

237. Hodges E, Molaro A, Dos Santos CO, Thekkat P, Song Q, Uren PJ, Park J,
Butler J, Rafii S, McCombie WR, Smith AD, Hannon GJ: Directional DNA



190

methylation changes and complex intermediate states accompany lineage
specificity in the adult hematopoietic compartment. Mol Cell 2011, 44:17-28.

238. Molaro A, Hodges E, Fang F, Song Q, McCombie WR, Hannon GJ, Smith AD:
Sperm methylation profiles reveal features of epigenetic inheritance and
evolution in primates. Cell 2011, 146:1029-1041.

239. Lim J-Q, Tennakoon C, Li G, Wong E, Ruan Y, Wei C-L, Sung W-K: BatMeth:
Improved Mapper for Bisulfite Sequencing Reads on DNA Methylation
(accepted). Genome Biology 2012.

240. RepeatMasker Open-3.0, http://www.repeatmasker.org
241. Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ:

Computational and experimental identification of novel human imprinted
genes. Genome Res 2007, 17:1723-1730.

242. McLean CY, Bristor D, Hiller M, Clarke SL, Schaar BT, Lowe CB, Wenger AM,
Bejerano G: GREAT improves functional interpretation of cis-regulatory
regions. Nat Biotechnol 2010, 28:495-501.

243. Tuskan RG, Tsang S, Sun Z, Baer J, Rozenblum E, Wu X, Munroe DJ, Reilly
KM: Real-time PCR analysis of candidate imprinted genes on mouse
chromosome 11 shows balanced expression from the maternal and paternal
chromosomes and strain-specific variation in expression levels. Epigenetics
2008, 3:43-50.

244. Maslov S, Ispolatov I: Propagation of large concentration changes in
reversible protein-binding networks. Proc Natl Acad Sci U S A 2007,
104:13655-13660.

245. Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J: A
unique chromatin signature uncovers early developmental enhancers in
humans. Nature 2010, 470:279-283.

246. Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE: Natural genetic
variation caused by transposable elements in humans. Genetics 2004,
168:933-951.

247. Mills RE, Luttig CT, Larkins CE, Beauchamp A, Tsui C, Pittard WS, Devine SE:
An initial map of insertion and deletion (INDEL) variation in the human
genome. Genome Res 2006, 16:1182-1190.

248. Bhangale TR, Rieder MJ, Livingston RJ, Nickerson DA: Comprehensive
identification and characterization of diallelic insertion-deletion
polymorphisms in 330 human candidate genes. Hum Mol Genet 2005, 14:59-
69.

249. Yang H, Zhong Y, Peng C, Chen JQ, Tian D: Important role of indels in
somatic mutations of human cancer genes. BMC Med Genet 2010, 11:128.

250. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER,
Weinstock GM, Wilson RK, Ding L: VarScan: variant detection in massively
parallel sequencing of individual and pooled samples. Bioinformatics 2009,
25:2283-2285.

251. Krawitz P, Rodelsperger C, Jager M, Jostins L, Bauer S, Robinson PN:
Microindel detection in short-read sequence data. Bioinformatics 2010,
26:722-729.

252. Albers CA, Lunter G, MacArthur DG, McVean G, Ouwehand WH, Durbin R:
Dindel: accurate indel calls from short-read data. Genome Res 2011, 21:961-
973.

253. Rizk G, Lavenier D: GASSST: global alignment short sequence search tool.
Bioinformatics 2010, 26:2534-2540.



191

254. Durbin RM, Altshuler D, Abecasis GR, Bentley DR, Chakravarti A, Clark AG,
Collins FS: A map of human genome variation from population-scale
sequencing. Nature 2010, 467:1061-1073.

255. Sherry ST, Ward M, Sirotkin K: dbSNP-database for single nucleotide
polymorphisms and other classes of minor genetic variation. Genome Res
1999, 9:677-679.

256. Zhang ZDD, Du J, Lam H, Abyzov A, Urban AE, Snyder M, Gerstein M:
Identification of genomic indels and structural variations using split reads.
Bmc Genomics 2011, 12.

257. Karro JE, Yan Y, Zheng D, Zhang Z, Carriero N, Cayting P, Harrrison P,
Gerstein M: Pseudogene.org: a comprehensive database and comparison
platform for pseudogene annotation. Nucleic Acids Research 2007, 35:D55-60.

258. Chen R, Mias GI, Li-Pook-Than J, Jiang L, Lam HY, Miriami E, Karczewski KJ,
Hariharan M, Dewey FE, Cheng Y, Clark MJ, Im H, Habegger L,
Balasubramanian S, O'Huallachain M, Dudley JT, Hillenmeyer S, Haraksingh R,
Sharon D, Euskirchen G, Lacroute P, Bettinger K, Boyle AP, Kasowski M,
Grubert F, Seki S, Garcia M, Whirl-Carrillo M, Gallardo M, Blasco MA, et al:
Personal omics profiling reveals dynamic molecular and medical phenotypes.
Cell 2012, 148:1293-1307.

259. Darling AC, Mau B, Blattner FR, Perna NT: Mauve: multiple alignment of
conserved genomic sequence with rearrangements. Genome Res 2004,
14:1394-1403.

260. Gudlaugsdottir S, Boswell DR, Wood GR, Ma J: Exon size distribution and the
origin of introns. Genetica 2007, 131:299-306.

261. Saito Y, Tsuji J, Mituyama T: Bisulfighter: accurate detection of methylated
cytosines and differentially methylated regions. Nucleic Acids Research 2014,
42:e45.



192

Appendix A
A.1 Additional information on profiling methylation libraries

Figure A1.1. Percentage of partially methylated Cs with regards to CpG islands.
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Figure A1.2. Genomic profile of partially methylated Cs along chromosome 1.
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Figure A1.3. Proportion of partially methylated CpGs in different chromosomes
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Figure A1.4. Definition of gene model used in our results.

Table A1.1. Bisulfite libraries information.

library
label cell line/tissue gender differentiation stage

H9 WA09 (H9) female embryonic stem cell

PEL fibroblast derived
from H9 female fibroblast

NUFF
Newborn Human

Foreskin
Fibroblasts

male Human Foreskin Fibroblasts

H1 H1 male embryonic stem cell
IMR90 IMR90 female lung fibroblast cell

H1NPC

H1 cell line
differentiated into
neural progenitor

cells

male Neural progenitor cells

iPS19.1
1

induced
pluripotent cell male induced pluripotent cell

Blood blood male blood
HCC195

4 HCC1954 female breast cancer cell

HMEC HMEC female primary human mammary epithelial cells
Bcell B cell female mature lymphocyte
HSPC HSPC female progenitor

Neutrop
hil neutrophil female mature granulocyte

H1_BM
P4 H1_BMP4 male embryonic stem cell differentiated by treatment

with BMP4
H1_Mes
endoder
m_BMP

4

H1_mesendoder
m_BMP4 male embryonic stem cell differentiated into

mesendoderm cells

HSF1 HSF1 male ES cells
Sperm1 sperm male sperm
Sperm2 sperm male sperm



196

Table A1.2. Statistics of bisulfite library mapping and partial-methylation calling

Library Total reads Uniquely
mapped reads

Covered Cs
(with 3+

coverage)

Partially-
methylated

Cs

Covered Cs
in CpGs
(with 3+

coverage)

Partially-
methylated
Cs in CpGs

H9 1,252,758,376 732,304,916 580,002,008 6,452,534 37,291,772 2,090,486

PEL 1,280,156,574 745,344,788 553,556,046 3,260,351 37,474,915 2,723,454

NUFF 1,321,093,122 663,911,302 536,680,438 4,021,523 36,734,335 3,584,060

H1 1,982,672,531 769,544,786 825,145,315 4,256,866 38,592,912 1,068,386

IMR90 2,817,649,029 742,213,396 833,934,828 4,342,363 40,914,135 4,183,597

H1NPC 1,970,863,133 1,024,456,755 926,880,865 1,161,963 49,664,560 967,331

iPS19.11 1,538,561,338 1,204,375,563 921,432,358 3,437,386 50,148,798 1,117,622

blood 1,587,460,142 935037280 915,203,119 5,604,701 39,927,494 4,760,027

HCC1954 2102598758 828619155 975,795,104 3,160,520 50,192,769 3,031,062

HMEC 1097792043 513359748 904,200,716 3,794,719 48,107,820 3,649,696

Bcell 1137586034 288198282 671,197,198 2,851,116 31,434,935 1,723,629

HSPC 650891167 325956458 1,010,825,010 4,173,993 46,540,622 2,306,948

neutrophil 662515394 308367492 758,996,943 2,887,905 41,439,759 1,738,892

H1_BMP4 1067309814 574658246 998,414,735 1,735,532 50,841,639 1,189,300

H1_mesen
doderm_B
MP4

1,248,076,985 950443316 958,197,979 1,626,897 48,331,716 1,175,966

HSF1 2063178999 89540695 71,222,576 1,302,939 4,670,588 403,290

Sperm_GS
M752295

628135142 175265542 489,550,470 1,632,161 27,975,180 861,352

Sperm_GS
M752296

940852056 204267987 406,088,738 2,914,756 25,880,438 1,650,318


