
BIOINFORMATICS Vol. 00 no. 00 2017
Pages 1–8

MapReduce for accurate error correction of
next-generation sequencing data
Liang Zhao1,2, Qingfeng Chen1, Wencui Li2, Peng Jiang1, Limsoon Wong3, ∗,
Jinyan Li4, ∗

1School of Computing and Electronic Information, Guangxi University, Nanning 530004, China.
2Taihe Hospital, Hubei University of Medicine, Hubei 442000, China.
3School of Computing, National University of Singapore, Singapore 117417, Singapore.
4 Advanced Analytics Institute and Centre for Health Technologies, University of Technology
Sydney, PO Box 123, Broadway, NSW 2007, Australia.
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Next-generation sequencing platforms have produced
huge amounts of sequence data. This is revolutionizing every aspect
of genetic and genomic research. However, these sequence datasets
contain quite a number of machine-induced errors—e.g., errors due
to substitution can be as high as 2.5%. Existing error-correction
methods are still far from perfect. In fact, more errors are sometimes
introduced than correct corrections, especially by the prevalent k-
mer based methods. The existing methods have also made limited
exploitation of on-demand cloud computing.
Results: We introduce an error-correction method named MEC,
which uses a two-layered MapReduce technique to achieve high
correction performance. In the first layer, all the input sequences are
mapped to groups to identify candidate erroneous bases in parallel.
In the second layer, the erroneous bases at the same position are
linked together from all the groups for making statistically reliable
corrections. Experiments on real and simulated datasets show that
our method outperforms existing methods remarkably. Its per-position
error rate is consistently the lowest, and the correction gain is always
the highest.
Availability The source code is available at bioinformatics.

gxu.edu.cn/ngs/mec.
Contact: wongls@comp.nus.edu.sg, jinyan.li@uts.edu.au

1 INTRODUCTION
The high throughput and low cost of next-generation sequencing
(NGS) have turned many previously-difficult problems into easily-
dissected problems, e.g., the studies on genome-wide association
between single-nucleotide polymorphisms and diseases (The
1000 Genomes Project Consortium, 2010). However, NGS
platforms (Mardis, 2013) are error prone, with poor single-pass
sequencing read error rates (Molnar and Ilie, 2014).

Poor error rates of NGS data. NGS machines produce raw data
called reads, which are short stretches of nucleotides representing
some small segments of the genome being sequenced. Two types of
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errors widely reside in these reads (Yang et al., 2013): substitutions
and indels (insertions and deletions). Figure 1(a) shows an example,
where substitutions are coloured in orange and indels are coloured
in light blue or green for insertion into or deletion from the reference
sequence (the long sequence in black). For Illumina machines,
the majority errors are substitutions, with a rate from 0.5% to
2.5% (Kelley et al., 2010); while the indel error rate is negligible. On
the other hand, for PacBio technology, the major error type is indel.
The error rate can be as high as 30% in some extreme cases (Mardis,
2013). As Illumina machines dominate the market, we focus on
substitution-error correction in this work.

Complexity introduced by the errors. A major step in the
analysis of NGS data is to assemble these short reads into the true
long genome sequence as accurately as possible. Current genome-
assembly methods are mainly based on de Bruijn graph (Compeau
et al., 2011). A k-dimensional de Bruijn graph G of a sequence S
is a directed graph representing the overlaps of all the substrings of
length k (k-mers) of S. The vertices are the k-mers, and the edges
are the overlaps between these k-mers. Two k-mers si1...k and sj1...k
are said to overlap if si2...k = sj1...(k−1) or sj2...k = si1...(k−1).
In the former case, there is an edge pointing from si to sj , while
in the latter the edge is pointing from sj to si. Sequence errors
can complicate a de Bruijn graph and the derivation of the true
genome sequence from it. Figure 1(b) shows the de Bruijn graph
constructed from the error-containing reads in Figure 1(a), for k = 4.
For comparison, Figure 1(c) shows the de Bruijn graph constructed
from the reads after error correction. The error-containing de Bruijn
graph is much more complicated than the error-free graph.

Limits of existing error-correction methods. Error correction
for NGS data has attracted intensive research. Many methods
tackle the problem from an “algorithm and data structure” point
of view. Yang et al. (2013) further categorized these methods
based on whether they use (i) k-mers, (ii) suffix array/tree,
or (iii) multiple-sequence alignment. The key idea of the k-
mers methods is to decompose the raw reads into k-mers, then
correct untrusted k-mers to the nearest trusted ones. Representative
methods include Quake (Kelley et al., 2010), Reptile (Yang et al.,
2010), Hammer (Medvedev et al., 2011), BLESS (Heo et al.,
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Fig. 1. An example of NGS data and its de Bruijn graph. The short stretches of sequences in Panel (a) are the reads generated from an NGS platform, while
the long sequence is the reference. The reference is often unknown but, for ease of illustration, it is shown here to demonstrate substitutions (coloured in
orange), insertions (green) or deletions (light blue) errors. There is no “-” in the real-life reference and sequenced reads, but it is shown here also for better
understanding. Panel (b) is the de Bruijn graph constructed from all the short sequences in Panel (a) with a k-mer size of 4. Panel (c) is the simplified
error-corrected version of the de Bruijn graph of Panel (b). The numbers along the edges represent their multiplicities.

2014), DecGPU (Liu et al., 2011), Euler (Pevzner et al., 2001),
Musket (Liu et al., 2013), RACER (Ilie and Molnar, 2013), BFC (Li,
2015), and ACE (Sheikhizadeh and de Ridder, 2015). These
methods only differ in terms of how they count the frequency of
k-mers, how they determine the trusted k-mers, and most critically
what they use as the value of k and what they use as the threshold of
k-mer. The suffix array/tree methods, e.g. SHREC (Schröder et al.,
2009), HiTEC (Ilie et al., 2011) and Hybrid-SHREC (Salmela,
2010), avoid these issues to some extent. By these methods, the
value of k is flexible and only the threshold of the coverage matters
in determining the erroneous bases of the reads. This idea partially
mitigates the impact of k on performance. However, the huge
memory requirement by these methods restricts their applicability a
lot. The methods based on the idea of multiple-sequence alignment,
e.g. Coral (Salmela and Schröder, 2011), ECHO (Kao et al., 2011)
and Karect (Allam et al., 2015), make the k parameter almost
free from consideration. These methods use a k-mer as a seed to
align reads that share the same k-mer, to determine the consensus
sequence of the aligned sequences. Those bases of reads differing
from the consensus sequence are corrected. The major bottleneck
of these methods is the multiple-sequence alignment, which is too
time- and memory-consuming to handle large datasets.

Our MapReduce approach. We introduce a two-layered
MapReduce-based error corrector (MEC) for correcting substitution
errors contained in Illumina NGS datasets. In the first layer, all
possible k-mers of the input data are used as keys to map raw reads
into groups such that all the reads in each group contain the same
k-mer. The prospective erroneous positions are then identified by
conducting multiple alignments of the reads within each group. In
the second layer, the erroneous bases are identified and corrected
based on the aligned prospective erroneous positions from all the
groups.

The main computational steps of MEC—mapping raw reads
into groups, identifying erroneous bases, and correcting erroneous
bases—can be all carried out in parallel. Another point of novelty of
MEC is that it uses the complete list of reads that cover an erroneous
position. In contrast, many existing k-mer methods are unable to use
all the reads that cover an erroneous position to correct the erroneous
bases in the reads at this position.

2 MEC: FRAMEWORK
In recent years, MapReduce (Dean and Ghemawat, 2008) has
become a popular model for parallel and distributed processing of
large datasets on large computing clusters. The model contains two
procedures: “Map” and “Reduce”. “Map” accounts for filtering and
sorting operations. “Reduce” is a summary operation on the results
of Map. Reduce is typically commutative and associative—i.e. its
outcome is independent of the order of arrival of the results of
Map—enabling Map to be massively and easily data parallelized
while providing correctness guarantee. We take the essential idea of
MapReduce, but not the programming model itself, to develop the
two-layered MapReduce framework; cf. Figure 2.

In the first layer, we map the set R of raw reads into a number
of groups. The groups are in one-to-one correspondence with
the set of all k-mers occurring in the raw reads. Each k-mer
occurrence is assigned to the group associated with that k-mer (and
the corresponding read of that k-mer occurrence is also mapped to
that group). More precisely, let κ be a k-mer and rj be the jth read in
R. An occurrence of κ at the ith position of rj is denoted as (κ, j, i).
We consider single-end reads here to simplify exposition; paired-
end reads are discussed in the next section. The group corresponding
to κ is denoted as Gκ, and κ is called the key of the group. The set
of k-mer occurrences assigned to Gκ is denoted by G(κ). And for
every κ, i, and j, it is the case that (κ, j, i) ∈ G(κ) if and only if
κ occurs at the ith position of rj ∈ R. As an example, suppose the
coloured short bars (blue, purple or green) in Figure 2 are the distinct
keys (i.e. k-mers). Then all the long bars (raw reads) are mapped
into subgroups by checking whether they contain the corresponding
keys.

By definition—in particular, the “if and only if” condition
above—every raw read is mapped to multiple groups (one group
for each distinct k-mer that occurs in the read), and the read can
be mapped to the same group multiple times (when the k-mer
corresponding to that group occurs in multiple positions of that
read). This guarantees that no raw read is missed during error
correction. Existing error-correction methods generally do not have
such a completeness-of-coverage guarantee.

After mapping the reads into groups, the reads within each
group are aligned into one, or very likely multiple, alignments
to identify erroneous bases (i.e. the substitution errors in a read).
See alignment1, alignment2 and alignment3 of the raw reads in
Figure 2. For single-end reads, a simple ungapped alignment is
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Fig. 2. The two-layered MapReduce framework for correcting errors in
NGS data. In the first layer, all raw reads (light-blue bars) are mapped to
groups according to the groups’ k-mer keys (crosshatched short bars). The
reads in each group are aligned and the discordant bases are determined.
Subsequently, the discordant bases at each position are merged and passed to
the second MapReduce layer for building supporting graphs. In the second
layer, these graphs are decomposed into small connected graphs for error
correction. For each connected graph, the orange nodes are the candidate
erroneous bases to be corrected, while the unfilled ones are considered as
correct bases.

used: For each pair of occurrences (κ, j, i) and (κ, j′, i′) in G(κ),
j 6= j′, an alignment of rj to rj′ is generated so that position
h + i in rj is aligned to position h + i′ in rj′ for all h, provided
the resulting alignment has a high sequence identity. Subsequently,
prospective erroneous bases as well as their candidate corrections
are summarized as an input for the second layer of MapReduce
processing for error correction.

In the second layer, the candidate erroneous bases distributed
over many groups are mapped together. The keys are the aligned
positions and the values are the bases (contained in the reads)
covering the corresponding positions. By this technique, the
supporting reads used to correct erroneous bases are much more
complete than those used by the existing approaches.

At each position, each base with small support (viz. the number of
reads covering that position) is considered a prospective erroneous
base, and we draw direct edges from the corrections (i.e. bases with
large supports) to the erroneous base (a diagram is shown in the
lower panel of Figure 2). The graphs constructed in this way are
mostly isolated (e.g. graph3 in Figure 2) with exceptions caused by
repeats (e.g., graph2 in Figure 2) and multiple errors at the same
position (e.g. graph1 in Figure 2). The erroneous bases are then
corrected by a log-likelihood ratio statistics.

This two-layered MapReduce framework has the following
optimality guarantee. Let κx be the k-mer beginning at an arbitrary
position x in the genome. According to the given sequencing depth
d, and the per-base error probability e, κx is expected to be correctly
read d ∗ (1− e)k times. Now let y be a position in the genome that
is spanned by a read rj ∈ R and rj is incorrect for this position.
Let κy be the k-mer immediately after y in the genome. Then κy
is expected to be correctly read d ∗ (1 − e)k times. Since the read
length is l, and k < l, we expect (l−1)/l of these d∗(1−e)k reads
to span position y; this is because among reads that cover position
y + 1, only those starting at position y + 1 cannot cover position
y. This means that for any erroneous base in a read (e.g. the base in
rj corresponding to position y in the genome sequence), we expect
there is an alignment comprising of n = ((l − 1)/l) ∗ d ∗ (1− e)k
reads that span the position in the genome corresponding to this

base. And in this alignment, 1 − e of the n bases corresponding
to this position are correct. In other words, we expect the erroneous
base to be in an alignment where there are ((l−1)/l)∗d∗(1−e)k+1

correct bases that can be used to build a consensus to correct the
erroneous base. For example, suppose d = 30, l = 101, k = 23,
and e = 0.01, then we expect 23 correct bases that are aligned to
each erroneous base. Thus every erroneous base in every read can be
corrected with high probability by our method. In fact, the alignment
of ((l− 1)/l) ∗ d ∗ (1− e)k+1 correct bases to each erroneous base
is the maximum achievable guarantee. That is, no method requiring
at least one conserved k-mer can guarantee an alignment which can
be expected to contain more than ((l−1)/l)∗d∗(1−e)k+1 correct
bases that are aligned to each erroneous base. In the supplementary
notes (particularly Figure S2), the incomplete coverage taken by the
existing approaches is illustrated in detail.

3 MEC: DETAILS
NGS raw reads are paired-end reads in most cases. So our implementation
is for paired-end reads. The details are described below. There are two main
steps in each layer of our two-layered MapReduce framework. So there are
four main steps in total: (1) map the input reads into small groups associated
with the set of k-mers occurring in the reads; (2) align the reads in every
group and identify the prospective erroneous bases; (3) map the erroneous
bases to candidate corrections; and (4) replace the erroneous bases with the
suggested correction candidates.

Step 1: Mapping paired-end reads into groups
A paired-end read consists of two components, one component is a read
of the up-stream end of the reference sequence, the other is a read at the
down-stream end. The nucleotides between the two ends are not sequenced.
The distance between the two components is called insert size, which varies
depending on the library construction and technology used.

Let rj denote the jth paired-end read in the input set R. Given a k-mer
κ, we denote an occurrence of κ starting at the ith position of the read at the
up-stream end of rj by (κ, j, i, 0). Similarly we denote an occurrence of κ
starting at the i′th position of the down-stream end of rj′ by (κ, j′, i′, 1). A
hash function is used to map a k-mer κ to a group Gκ, which corresponds
to a node in the computing cluster, thus sending all tuples (κ, j, i, ι) that
denote occurrences of κ in the paired-end reads to the group Gκ.

For a paired-end read, a window of size k is used to slide along the read
to generate all the distinct k-mers contained in the read. Note that a paired-
end read is mapped into n groups if it contains n distinct k-mers. And it
can also be mapped to a group Gκ m times if there are m occurrences of
κ in that paired-end read. Similarly, we denote the set of tuples in group
Gκ by G(κ). We also say a paired-end read rj is mapped to group Gκ if
(κ, j, i, ι) ∈ G(κ) for some i and ι.

Some groups G(κ) are much larger than other groups. In such a case, the
k-mer κ is likely from repeat regions or has low sequence complexity. We
discard such groups. The rationale and the detailed instructions are shown in
the supplementary notes.

Step 2: Aligning paired-end reads and identifying errors
For this step, we need the concept of an “anchored” alignment. An anchored
alignment is made up of an anchor occurrence (κ, j, i, ι) of some k-mer κ
and a list of occurrences (κ, j1, i1, ι), ..., (κ, jn, in, ι) of the k-mer κ, along
with pairwise alignments A1, ..., An of paired-end reads rj1 , ..., rjn with
rj such that the occurrences (κ, j1, i1, ι), ..., (κ, jn, in, ι) are aligned to the
occurrence (κ, j, i, ι) of the k-mer κ. Note that j 6∈ {j1, ..., jn}; i.e. we do
not align two occurrences of κ in the same read. Such an anchor alignment
induces a multiple alignment A of the paired-end reads rj , rj1 , ..., rjn by a
simple stacking up of the pairwise alignments A1, ..., An. Thus, a position
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x in rj is aligned to a position y in rjg in A if and only if the position x in
rj is aligned to the position y in rjg in Ag , for any x, y, and g. A set of
positions {x in rj , x1 in rj1 , ..., and xn in rjn} is called a “column” ofA if
x1, ..., xn are aligned to x inA. Also, we call rj the anchor paired-end read
of the anchored alignment and rj1 , ..., rjn the member paired-end reads of
the anchored alignment.

Given a group Gκ, one or more anchored alignments of the paired-end
reads mapped to the group are generated based on the occurrences of the
k-mer κ. The procedure is as follows, after initializing the set of anchored
alignments to empty:

1. Randomly select a tuple (κ, j, i, ι) in G(κ) that has not yet been
assigned to any anchored alignment.

2. For each anchor (κ, j′, i′, ι′) of the current set of anchored alignments,
where ι = ι′, apply the penalty-aware pairwise alignment algorithm
(described in the supplementary notes) to generate the pairwise
alignment of rj and rj′ that respects (κ, j, i, ι) and (κ, j′, i′, ι′).
Let the anchor (κ, j′, i′, ι′) be the one that yields the pairwise
alignment with the highest score. If the identity between rj and r′j
according to this pairwise alignment is at least 95% of the alignment
length, (κ, j, i, ι) along with this pairwise alignment is assigned to the
anchored alignment anchored by (κ, j′, i′, ι′). Otherwise, (κ, j, i, ι) is
made an anchor of a new (empty) anchored alignment.

3. Repeat the two steps above until all tuples in G(κ) have been assigned
to some anchored alignments.

4. Some cleaning up of the anchor alignments is performed if there is
more than one occurrence of the k-mer κ in any paired-end read rj . In
such a case, only the occurrence associated with the highest pairwise
alignment score among all occurrences of κ in rj is kept.

5. The prospective erroneous positions are identified from the multiple
alignments induced by the anchor alignments. This is done by looking
down a column in an induced multipe alignment; if not all the bases
have the same value, then the position corresponding to this column
is regarded as a prospective erroneous position and the bases of this
column as prospective erroneous bases. A prospective erroneous base is
represented as a tuple (g, x, 0) if it is at position x of the read at the up-
stream end of the paired-end read rg . It is represented as (g, x, 1) if it is
at position x of the read at the down-stream end of the paired-end read
rg . In our implementation, an identifier for the prospective erroneous
position is also created and attached to the tuple. This identifier serves
as a simple key that links all the prospective erroneous bases for this
position together; it is also used for distributing the tuples for this
position to the same computing node. For convenience, we denote the
identifier attached to a prospective erroneous base (g, x, ι)—and thus
the corresponding prospective erroneous position—by ϕ(g, x, ι).

Step 3: Mapping erroneous bases to candidate
corrections
The core idea of using k-mers to correct errors by existing methods (Heo
et al., 2014; Ilie and Molnar, 2013; Li, 2015) is to link the erroneous k-mers
(i.e. those having low frequency) to the closest solid k-mer (i.e. those having
high frequency), and correcting the former based on the latter. However,
this way of using k-mers does not guarantee the full inclusion of reads for
error correction, due to both sequenced errors and the choice of k-mers. The
sequenced errors give rise to mutated k-mers. Thus, the full inclusion of
reads containing the errors cannot be guaranteed. On the other hand, the k-
mer itself most likely also causes an incomplete inclusion of paired-end reads
due to the partial coverage of k-mer at the end of each read. We present the
detailed explanation in the supplementary Figure S2.

Our method, MEC, is less sensitive to these issues. In particular, in the
second-layer MapReduce, all paired-end reads covering each prospective
erroneous position are considered. From the previous step, if ϕ(g, x, ι) =

ϕ(g′, x′, ι) we know (g, x, ι) and (g′, x′, ι) are prospective erroneous bases
for the same prospective erroneous position, even when (g, x, ι) is from a
groupGκ and (g′, x′, ι) is from a different groupGκ′ . Thus, the prospective
erroneous bases identified by different groups for the same prospective
erroneous position can be easily collected together.

Given a prospective erroneous position and the prospective erroneous
bases at this position, the value that is most common among these
prospective erroneous bases is identified as the reference value (i.e. the
reference genome is hypothesized to have this value at this position). If
there are more than one most-common value, one is picked arbitrarily as the
reference value. The prospective erroneous bases that have a value different
from the reference value are identified as the erroneous bases. Considering
the subclones of a cancer genome might result in multiple correct references
at a specific position, we only correct the candidate bases having frequency
not larger than three. This restriction results in the same, even slightly better,
correction accuracy. The rationale is explained in the supplementary notes.

A mapping between the erroneous bases and the reference bases is then
created (cf. the graphs in Figure 2). As each prospective erroneous position is
independent and only reads covering that position are involved, the mapping
of erroneous bases and the reference bases can be handled separately in
parallel for each position. This mapping gives the candidate corrections for
the erroneous bases, whereby the values of the reference bases are proposed
as the correct values for the respective erroneous bases.

Step 4: Correcting errors
Given a candidate correction that proposes to correct an erroneous base
(having value x) by a reference value x0 at a prospective erroneous position,
a log likelihood ratio is calculated and the correction is made only when the
ratio is very small.

Let j range over all the bases (both erroneous and reference bases) at the
given prospective erroneous position. Let ĵ denote the value of the base j.
Let I(true) = 1 and I(false) = 0 be the indicator function. Let pj be the
probability that the base j is called correctly by the sequencing machine—
pj can be calculated based on the Phred score q of the base as pj = 1 −
10−q/10. Then the log likelihood ratio is calculated as:

Lx/x0 = log

∏j I(ĵ = x) ∗ pj + I(ĵ 6= x) ∗ (1− pj)/3∏j I(ĵ = x0) ∗ pj + I(ĵ 6= x0) ∗ (1− pj)/3

Take Figure 2 as an example. The erroneous bases “0” and “1” in graph1
will be replaced by the reference value. The base “2” in graph2, but not “0”
and ”1”, will be replaced by the reference value. And the base “0” in graph3
will be replaced by the reference value.

4 PERFORMANCE EVALUATION
Four real datasets and four simulated datasets are collected for
evaluating the performance of MEC. The simulated datasets are
used because of three reasons. Firstly, the absolute ground truth of
a genome is usually unknown. Secondly, some very complicated
regions in a genome cannot be sequenced, or the sequenced
data cannot be matched correctly to the reference. Thirdly, the
ground truth of simulated genome sequences is known and can
be controlled. As the simulated data not only can mimic the
real sequencing data but also can track where the sequences
come from, a solid comparison between the corrected sequences
and their raw sequences can be conducted. An error model-
aware simulator, GemSim (McElroy et al., 2012), is employed
to produce the simulated NGS data. Four simulated datasets are
constructed in this study from three genomes: Escherichia coli
(E.coli), Saccharomyces cerevisiae (S.cerevisiae) and chromosome
22 of Homo sapiens (H.sapiens 22). These datasets have different
levels of complexity. Some other details of these datasets are listed
in Table 1. The four real datasets have been used in the renowned
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Table 1. Datasets used for evaluating the performance of error-correction methods.

Data Genome Genome Read Coverage Number of Per base Per position
set name size (mbp†) length (bp‡) paired-end reads error rate (%) error rate (%)
R1 S. aueus 2.8 101 46.3× 1,294,104 1.17 28.1
R2 R. sphaeroides 4.6 101 33.6× 766,646 1.28 30.0
R3 H. sapiens 14 88.3∗ 101 38.3× 16,757,120 0.86 22.5
R4 B. impatiens 249.2 124 150.8× 303,118,594 0.96 27.4
D1 E.Coli 4.6 101 30.0× 689,927 1.35 34.2
D2 S.cerevisiae 12.4 101 60.2× 3,599,533 1.53 58.8
D3

H.sapiens 22 41.8∗ 101 30.0× 6,209,209 1.47 36.1
D4 150 60.0× 8,361,240 1.59 64.7

† million base pairs; ‡ base pair; ∗ the genome regions marked as “N” are excluded.

NGS-data assembly project, GAGE (Salzberg et al., 2011). They are
named Staphylococcus aureus (S. aureus), Rhodobacter sphaeroides
(R.sphaeroides), chromosome 14 of Homo sapiens (H.sapiens 14)
and Bombus impatiens (B. impatiens). A pre-process was applied
before our evaluation procedure: (1) removed sequences containing
undecided base(s); (2) mapped all the remaining sequences to the
reference genome using BWA (Li and Durbin, 2009) and excluded
those which are unaligned or aligned to multiple places.

4.1 Evaluation metrics
The performance of an error-correction method is assessed using
gain (gain), recall (reca), and precision (prec). The measure gain
is defined as (TP − FP )/(TP + FN), recall is defined as
TP/(TP + FN), and precision is defined as TP/(TP + FP ),
where TP is the number of errors that are correctly corrected, FN
is the number of errors that are not corrected and FP is the number
of errors introduced. These definitions have been widely used by the
literature error-correction methods (Yang et al., 2013), and the most
important performance measure is gain.

Per-base error rate (pber) and per-position error rate (pper) are
calculated as additional measurements. Per-base error rate is defined
as Ne

b /Nb, and per-position error rate is defined as Ne
p/Np, where

Ne
b is the number of erroneous bases, Nb is the number of all

bases, Ne
p is the number of erroneous positions (i.e. the number of

positions that are covered by at least one erroenous base), and Np is
the number of all positions. Nb is equal to 2∗N ∗L andNp is equal
to the length of the genome. N and L are the number of paired-end
reads and read length, respectively.

4.2 Error-correction quality
The results of our experiments are reported in Table 2. Our method
MEC has a remarkable correction performance for substitutional
sequencing errors. The average per-base error rate for the eight
datasets before correction is 1.28%, which is reduced to 0.17%
after correction by MEC, making a 8-fold decrease. The per-position
error rate is also reduced significantly after error correction by MEC.
E.g., this error rate is 64.7% for dataset D4, which is reduced to
1.6% after error correction by MEC.

MEC’s performance is better on datasets R1, R2, D1, D2,
D3, and D4 than on the datasets R3 and R4. This may be
attributed to the complexities of the genomes: the genomes of Homo
sapiens and Bombus impatiens are much more complicated than
the genomes of Escherichia coli, Saccharomyces cerevisiae and

Rhodobacter sphaeroides, particularly at the rich repeat regions
in the genome of Homo sapiens (International Human Genome
Sequencing Consortium, 2004). It is also noteworthy that MEC’s
performance on the simulated datasets D1 to D4 are much better
than that on the real datasets R1 to R4, indicating that the real
datasets are more complicated than the simulated data, even when
only the mapped sequences are considered.

Five representative error-correction methods are included to
benchmark the performance of MEC. These representative methods
are Coral (Salmela and Schröder, 2011), Racer (Ilie and Molnar,
2013), BLESS (Heo et al., 2014), BFC (Li, 2015) and
SGA (Simpson and Durbin, 2012). They are chosen as they use
different strategies, and all of them have claimed to perform very
well. Coral is a multiple sequence alignment-based error corrector.
Racer uses k-mers to correct errors. BLESS corrects errors using
Bloom filter. BFC uses the blocked Bloom filter. SGA employs
overlap graphs to correct errors. The default parameters for each
method are used.

As shown in Table 2, the performance of these five existing
error-correction methods on datasets D1 and D2 is excellent and
very close. Our method MEC is only slightly better than them. On
datasets R1 to R4, D3 and D4, the performance of these five methods
varies significantly. E.g., on the simulated datasets D3 and D4,
Racer performs much worse than other approaches. In particular, the
gains of Racer on these two datasets are even negative, indicating
more errors are introduced than corrected. However, on the four
real datasets R1 to R4, Racer produces competitive results. For our
method MEC, its performance is superior to all these five methods in
terms of gain on all the datasets, especially on the more complicated
datasets. The superior performance of MEC is attributed to the
following reasons. Firstly, as explained in Section 2, all the reads
are guaranteed to be used; thus no position is missed out. Secondly,
also explained in Section 2, more reads originating from the same
position are included; thus more trustworthy results can be obtained.
In addition, the paired-end information is considered which, to a
certain extent, can reduce the false alignment of repeat reads coming
from different regions. We also attempted to use the suffix tree-
/array-based error corrector, HiTEC, to test on the eight datasets.
However, segmentation faults occurred when the program was
executed.
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Table 2. Error-correction performance comparison between MEC, Coral,
Racer, BLESS, BFC and SGA.

data corrector reca prec gain pber(%) pper(%)

R1

MEC 0.893 0.924 0.874 0.103 2.3
Coral 0.803 0.858 0.728 0.210 12.6
Racer 0.822 0.929 0.760 0.190 3.4

BLESS 0.409 0.650 0.189 0.879 13.7
BFC 0.817 0.927 0.753 0.196 8.3
SGA 0.815 0.922 0.746 0.196 11.2

R2

MEC 0.944 0.963 0.894 0.120 2.9
Coral 0.663 0.970 0.642 0.460 12.0
Racer 0.921 0.949 0.872 0.150 4.0

BLESS 0.722 0.989 0.714 0.340 9.0
BFC 0.726 0.990 0.716 0.323 8.9
SGA 0.641 0.985 0.631 0.460 12.0

R3

MEC 0.874 0.937 0.814 0.260 2.1
Coral 0.690 0.779 0.495 0.430 8.0
Racer 0.797 0.890 0.699 0.230 4.3

BLESS 0.558 0.965 0.538 0.390 9.9
BFC 0.641 0.966 0.613 0.319 7.1
SGA 0.663 0.967 0.641 0.310 6.9

R4

MEC 0.836 0.885 0.746 0.271 3.1
Coral - - - - -
Racer 0.541 0.703 0.313 0.484 8.3

BLESS 0.018 0.003 -0.517 0.862 11.2
BFC 0.457 0.636 0.195 0.607 9.1
SGA 0.690 0.823 0.542 0.289 6.5

D1

MEC 0.999 0.996 0.995 0.007 0.075
Coral 0.998 0.986 0.984 0.024 0.23
Racer 0.998 0.981 0.980 0.032 0.66

BLESS 0.980 0.998 0.979 0.033 0.89
BFC 0.991 0.999 0.990 0.016 0.41
SGA 0.990 0.999 0.989 0.016 0.41

D2

MEC 0.997 0.984 0.983 0.031 0.35
Coral 0.995 0.954 0.947 0.081 1.1
Racer 0.994 0.957 0.949 0.077 2.7

BLESS 0.984 0.997 0.981 0.029 1.5
BFC 0.970 0.997 0.968 0.043 2.2
SGA 0.958 0.998 0.956 0.067 2.8

D3

MEC 0.987 0.915 0.896 0.340 1.7
Coral 0.973 0.762 0.670 0.510 5.0
Racer 0.880 0.466 -0.130 1.800 24.0

BLESS 0.881 0.892 0.774 0.350 8.0
BFC 0.883 0.907 0.792 0.340 7.9
SGA 0.854 0.957 0.815 0.290 6.7

D4

MEC 0.996 0.939 0.928 0.281 1.6
Coral 0.971 0.783 0.702 0.467 5.0
Racer 0.883 0.487 -0.017 1.610 31.2

BLESS 0.909 0.897 0.795 0.328 7.6
BFC 0.891 0.889 0.819 0.316 8.9
SGA 0.846 0.965 0.807 0.297 12.1

Coral is unable to run data set R4 on our computer due to memory limitation. reca:
recall; prec: precision; pber: per-base error rate; pper: per-position error rate.

4.3 Effect of k-mer size on error correction
Instead of using k-mers to determine the erroneous bases, MEC uses
k-mers as the key to map the raw reads into groups. Thus, the k-mer
factor does not play the same central role that it has in the existing
k-mer methods. Nonetheless, the size of the groups mapped by k-
mers is determined by the value of k. The smaller k is, the larger
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Fig. 3. The gain of MEC, Coral, Racer, BLESS, BFC, and SGA on subset
reads of R3 having various coverage.

number of reads is contained in a group. The group size can have an
impact on MEC’s error-correction performance and running speed.

As MEC makes corrections based on all alignments, the value
of k has only small effect on its error-correction performance.
Figure S4 shows that an increasing k-mer size only slightly
decreases MEC’s error-correction performance. The extreme
situation is: every group contains only one read when k increases
to a big number. Under this extreme situation, none of the groups
can be used to correct any erroneous read.

To understand the impact of k-mer size on other error-correction
methods, the performance of BLESS, BFC and SGA on the real
datasets R1 to R4 with various k-mer sizes is also studied. The
results are shown in Table S1. It can be observed that the size
of k has a significant impact on the error-correction performance
of these k-mer methods. E.g., for R3, when k = 15 the gain of
BLESS is only 0.042, and SGA even introduces more false-positive
corrections. This evaluation is not applicable to Racer and Coral,
because Racer learns the optimal size of k with a built-in procedure,
while Coral does not use k-mers.

4.4 Effect of coverage on error correction
Coverage is an important factor that affects error-correction
performance. The coverage of existing NGS data is reasonably high,
usually around 30× but can be up to 200×. However, the coverage
is not uniformly distributed over the genome, and can be very low
in both GC-rich and GC-poor regions (Ross et al., 2013).

To understand the effect of coverage on the performance of error
correction, we sample subsets of the reads from R3 to obtain
datasets with various coverage. The datasets having coverage of
10, 15, 20, 25 and 30 are randomly sampled, and the six error
correctors are applied on these datasets. This process is repeated five
times to understand the variability of the approaches. The results are
shown in Figure 3. It is clear that MEC consistently outperforms
over other approaches, particularly on the datasets with a low
coverage. For instance, the average gain of MEC on datasets with
the coverage of 10 is 0.598, while this gain is only 0.136 for BFC.
Figure 3 also shows that all the correctors have increasingly better
performance given a higher coverage. Interestingly, a coverage of≥
15 seems necessary for human chromosome 14—the performance
of all methods drops markedly below this coverage level.
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5 DISCUSSION
The performance of error correction can be evaluated in many
perspectives. Besides gain, recall, precision, per-base error rate,
and per-position error rate that have been used above, speed and
memory usage are another two important ones. To compare the
speed and memory usage of the five algorithms with our method
MEC, we carried out experiments on one computer, which has
two six-core Intel Xeon X5690 3.47GHz CPUs and 96G random-
access memory, running the Red Hat 6.5 operating system. The
experimental results are shown in the supplementary Figure S5
and S6. For every dataset, BLESS and BFC run the fastest,
Coral the slowest. MEC and SGA have similar speed. Under the
same configuration, BFC uses the least memory, but Coral always
consumes the largest amount of memory. MEC and Racer usually
take similar amount of memory. BLESS always consumes similar
amounts of memory for different datasets due to the parameter
settings. Although the time and space complexity of MEC are not
ranked the best, it is straightforward to deploy it on large clusters to
overcome these limitations.

To demonstrate the scalability of MEC in large computing
clusters, we have carried out experiments on a cluster having five
physical nodes. Each node has two six-core Intel Xeon E5-2620
CPUs and 64GB random-access memory, running the Ubuntu 12.04
operating system. Taking these resources, one master node and four
worker nodes are created each having 12 cores and 60GB RAM.
The parallel computing processes are managed by using the Apache
Spark (Zaharia et al., 2010).

For each dataset, we run MEC on the cluster having the worker
nodes varying from one to four. This procedure is applied to all the
datasets. Figure 4 shows the execution time of MEC for the eight
datasets on the cluster. It is obvious that, increasing the number
of worker nodes can significantly reduce the execution time. For
instance, by using one worker node, the running time for R4 is
19.8 hours, while this time is reduced to 5.0 hours when all the
four worker nodes are used. It is noteworthy that the execution
time of R4 is longer than the expected time, as the RDDs (resilient
distributed datasets) are unable to fit the available RAM provided by
the single worker node. For this situation, the RDD’s StorageLevel
is set to MEMORY ONLY SER, while the default parallelism level
is increased to 3 per core. Obviously, the most effective approach to
handle the big memory usage is to increase the number of worker
nodes. However, in the situation where the resource is limited, we
can tune the Spark configurations to solve the problem.

De novo sequence assembly results can be also used to evaluate
the performance of error correction. It has been reported that
the error correction can significantly improve the quality of
sequence assembly (Sameith et al., 2016) as well as downstream
analysis (Fujimoto et al., 2014; Yang et al., 2013). To assess the
impact of MEC as well as the representative error correctors on
sequence assembly, we run Velvet (Zerbino and Birney, 2008)
on the raw reads as well as on the corrected reads. Unlike other
assemblers, Velvet is released without built-in error corrector.
Hence, it is appropriate to use Velvet to examine the impact of the
error correctors.

The experiments are conducted on the eight datasets and the
corresponding corrected datasets. The result reveals that the N50
size increases significantly after error-correction by MEC, with
an improvement ranging from 2 folds to 4 folds. The maximum
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number of worker nodes.

length of the assembled sequences also increases markedly. E.g., the
maximum assembled sequence length of D2 increases from 74,526
to 316,460. Besides assessing the error-correction effectiveness
for MEC, other error-correction methods are also examined. The
comparative experiments carried out on the R1 and R2 demonstrate
that all error correctors improve the quality of sequence assembly
with MEC and Racer considerably outperforming the rest. Although
Racer produces longer contigs, its lower NGA50 value suggests that
these might be mis-assemblies. More results are presented in the
supplementary Table S3.

6 CONCLUDING REMARKS
Error correction plays an important role in next-generation
sequencing data analysis. Existing error-correction methods have
serious drawbacks. In this study, we have proposed a two-layered
MapReduce method, named MEC, to correct the substitution errors
in NGS datasets. Given an input data set, MEC maps the raw
reads into groups using all of the distinct k-mers, and then it aligns
the reads within each group to identify erroneous bases. At the
second layer, the erroneous bases are mapped to their corrections
and then corrected using a statistics technique. MEC is superior to
five existing methods in correction accuracy.

Funding: This work is collectively supported by the National
Natural Science Foundation for Young Scientists of China (Grant
No. 31501070), the Natural Science Foundation of Guangxi
Province, China (Grant No. 2016GXNSFCA380006), and the
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1 MEC: DETAILS
Due to the page limitation, we present more detail of the constituent steps of MEC as follows.

Step 1: Mapping paired-end reads into groups
We use the tuple (κ, j, i, ι) to denote an occurrence of the k-mer, κ, starting at the ith position of the paired-end read rj having mate
index ι. The indices i and j are 0-based. For example, suppose the input set of paired-end reads is R = {AGTTCG· · ·GGCTCA,
TTCGAC· · ·GAGGAC, TCTCAG· · ·TTAGGC}. Then the tuples representing occurrences of the 3-mer TCA are (TCA, 0, 3, 1) and
(TCA, 2, 2, 0).

A hash function is used to map a k-mer κ to a group Gκ, which corresponds to a node in the computing cluster. The set of tuples in group
Gκ is denoted byG(κ). Some groupsG(κ) are much larger than other groups. In such a case, the k-mer κ is likely from repeat regions or has
low sequence complexity. We discard such groups. The threshold on group size for the decision to discard a group is determined as follows.
The mean and standard deviation of the number of paired-end reads of each group are estimated from a subset containing 1000 groups. When
the number of paired-end reads in a group is more than 5 standard deviations higher than the mean, the group is discarded. This threshold
is dataset-dependent, and is mostly around 200 in our study. Similar to the reads from repeat regions, the reads mapping to multiple places
causing huge G(κ) are discarded as well.

Step 2: Aligning paired-end reads and identifying errors
We have described the whole procedure of identifying prospective erroneous base by using penalty-aware multiple sequence alignment.
It remains to describe the detail of the alignment algorithm mentioned in the main context. Let (κ, i, a, ι) and (κ, j, b, ι), i 6= j, be two
occurrences of the k-mer κ in the group Gκ. An alignment between ri and rj respecting these two occurrences of κ is generated using a
penalty-aware sliding algorithm. We use Figure S1 as an example to help us describe the penalty-aware sliding algorithm. Let ri = Ri1 · · ·Ri2
and rj = Rj1 · · ·R

j
2 be two paired-end reads that we want to align with respect to a k-mer κ (shown in purple in the figure) that occurs at

position a in Ri1 (i.e. at position a of the read at the up-stream end of ri) and position b in Rj1 (i.e. at position b of the read at the up-stream
end of rj).

First, Ri1 and Rj1 are aligned by setting the two said occurrences of κ (shown in purple) directly on top of one another. That is, every
position h+ a in Ri1 is aligned to the position h+ b in Ri1. This causes a segment of length b− a at the end of Ri1 (or Rj1 if a > b) to stick
out into the insert region of rj (or ri if a > b). Let x = b− a.

Next, Ri2 and Rj2 are aligned by sliding one on top of the other by y bases. That is, every position h in Ri2 is aligned to the position h+ y
in Rj2. By convention, y is negative if the start of Ri2 is aligned to a position down-stream of the start of Rj2 (i.e. a segment of length y at the
start of Rj2 sticks out into the insert region of ri); and y is positive otherwise (and a segment of length y at the start of Ri2 sticks out into the
insert region of rj).

The alignment is given a score which is defined as the number of matched bases minus the number of mismatched bases and an insertion
penalty. The sum x+y represents the amount of insertions made by the alignment, if every paired-end read has the same insert size. However,
the insert size of paired-end reads is not a constant. So we moderate x + y by the variance σ2

0 of insert size of the paired-end reads in the
input setR, and define the insertion penalty as s = c0 ∗(x+y)2/σ2

0 . Here c0 is a multiplicative factor to make it easier to distinguish tandem
repeats. In this study, the average size of tandem repeats is assumed to be 5, and we set c0 > σ2

0/5
2.
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Fig. S1. An illustration of the penalty-aware alignment of paired-end reads. The mean and standard deviation of the insert size of the paired-end reads are µ0
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Fig. S2. An illustration of incomplete inclusion of reads by using k-mers. The k-mer of interest is in blue, while the mutated one (having errors) is in purple.

The final pairwise alignment is the one having the maximum score among all possible alignments (by trying different values for y). A
“bandwidth” search is used to accelerate the alignment. That is, for each possible value of y, a few positions (≤ 5) are tested at the start of
the alignment, and the alignment is continued only if the partial alignment is highly matched.

Step 3: Mapping erroneous bases to candidate corrections
Existing approaches which use k-mers to correct errors cannot guarantee the full inclusion of reads covering the erroneous position; see
Figure S2 for an example. On one hand, the sequences are error prone. As a result, a read that comes from a sequence containing the k-mer κ
is not mapped to the groupGκ if it contains an error where κ is located. E.g. if the 3-mer AGT of the paired-end read AGTTCG· · ·GGCTCA
mutates to ACT, then this paired-end read does not get included in the group with 3-mer AGT as the key. As illustrated by Figure S2, the
read R2 is not included by the k-mer colored in blue as the original k-mer has mutated to another one. On the other hand, the k-mer itself
most likely also causes an incomplete inclusion of paired-end reads due to the partial coverage of k-mer at the end of each read. E.g. if the
paired-end read shown above shifts one position to the left (i.e. the read at the up-stream end starts with “GTT”), then this paired-end read
gets excluded when the 3-mer AGT is used for the mapping. Take Figure S2 for an example, the reads R5 and R6 are not included by the
k-mer in blue color as only partial sequence of them overlaps with the k-mer. We can also see that the performance of existing methods is
sensitive to the size of k-mers.

We have described how to fish out the prospective erroneous bases denoted by (g, x, ι), in the main text. Now, it remains to cluster all the
bases, including the erroneous bases and supportive bases, to correct the erroneous bases.

Per the main text, the position of (g, x, ι) is denoted by ϕ(g, x, ι). However, the value of ϕ(g, x, ι)—let us call this a position reference—
is generated independently on different computing nodes. Thus the same position gets a different position reference on different computing
nodes. We need to map these different position references for the same position to the same value. LetDu denote the set of entries of the form
(position reference, positions) generated at computing node u, where each entry (ϕ, {p1, . . . , pm}) means each positions pi = (gi, xi, ιi),
i = 1 . . .m, has been mapped to the position reference ϕ. The total size of D1, D2, ..., Dn (for all n computing nodes) can be too huge to
be processed by in-memory algorithms. In this study, we proposed the external-memory algorithm. It is composed of two steps:

1. Conduct the self-joint of Du produced by each computing node u. A self-join of Du is defined as

min{(ϕ1,
⋃

(ϕ2,P2)∈Du,P1∩P2 6={}

P2) | (ϕ1, P1) ∈ Du}.
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Here, (ϕi, Pi) ∈ minR if and only if for every (ϕj , Pj) ∈ R such that Pi = Pj , it is the case that ϕi ≤ ϕj . In other words, all entries
in Du that share at least one position are merged into a unique entry. Note that the above self-join is only a mathematical definition; it
can be implemented efficiently using disjoint set.

2. Recursively do the binary-joint of two Du and Dv , until only one remains. Based on the self-joint, it can be guaranteed that the
intersection of any two entries ofDu orDv is empty. Hence, it is safe to merge each entry ofDv toDu progressively in order to achieve
the binary-joint ofDu andDv . To make it more efficient, we create indies for all the P s against their ϕs, say I(P ). For each (ϕv, Pv) of
Dv , we check the existence of P iv against I(P ). In case there exists a (ϕu, Pu), such that P ju ∈ Pu, P ju = P iv , we output (ϕu, Pu∪Pv).
This process is repeated until all entries in Dv are exhausted; at this point, all remaining entries in Du are copied to the output. If Du is
too large to be loaded into the main memory, we split it into small chunks and apply the above process to each chunk and Dv .

Per the above processes, we can collect all the reads covering prospective erroneous positions. Now it remains to figure out the reference
base value as well as the prospective erroneous base values. Clearly, but not perfectly, taking the most common base value as the reference
is optimal. However, considering all the rest base values as erroneous is not very ideal. Several scenarios can demonstrate the exceptions.
Firstly, the subclones of cancer genomes may result in multiple correct reference values at the same prospective erroneous position. Secondly,
the position containing errors in the heterozygous allel of a diploid genome has exactly two correct reference values. Thirdly, the reads from
imperfect repeat regions will produce multiple illusive reference values. To diminish the confusion, we further restrict the prospective
erroneous base as the one having frequency no larger than three. The rationale is as follows. Suppose reasonably that the per base error rate
of the sequencing technology is 1%, and the substitution chance of the other three wrong base values is equal. Then the chance that a given
position in a read has a specific wrong value is 1/3 ∗ 1%, and the chance that this same position has the same specific wrong value in k reads
is (1/3 ∗ 1%)k. Suppose the genome size is 1 billion bases, and the sequencing coverage is 30x. Then the expected number of positions
having exactly three reads bearing the same specific wrong value for it is 1, 000, 000, 000∗30∗ (1/3∗1%)3 ' 1, 100; that of having exactly
four reads bearing the same erroneous base is ∼ 4; and that of having exactly five reads bearing the same erroneous base is ∼ 0.01.

Step 4: Correcting errors
Based on the results produced from the Step 3, the corrected bases are recorded. Per the main text, it is denoted as (g, x, ι, β), where β is
the corrected base. We use g as the key, and the set of (x, ι, β) as the value to map all the corrections of each paired-end read together. Later,
they are distributed to different computing nodes according to the key g. Finally, all the paired-end reads are distributed to the computing
nodes the same way as distributing g, and the erroneous bases are replaced by the correct ones according to the values of g.

2 EXPERIMENTAL RESULTS
2.1 Effect of k-mer size on error correction
Instead of using k-mers to determine the erroneous bases, MEC uses k-mers as the key to map the raw reads into groups. Thus, the k-mer
factor does not play the same central role that it has in existing k-mer-based methods. Nonetheless, the size of the groups mapped by k-mers
is determined by the value of k. The smaller k is, the larger number of reads contained in a group. And group size can have an impact on
MEC’s error-correction performance and running speed.

However, since MEC makes corrections based on all alignments, the value of k only has small effect on its error-correction performance.
The experimental results carried out on the eight data sets are shown in Figure S4. It shows that increasing k-mer size only slightly decreases
MEC’s error-correction performance. The extreme situation is when every group only contains one read when k increases to a big number.
Under this extreme situation, none of the groups can be used to correct any erroneous read.

To understand the impact of k-mer size on other error-correction methods, the performance of BLESS, BFC and SGA on the real datasets
R1 to R4 with various k-mer sizes is studied. The results are shown in Table S1. It can be observed that the size of k has a significant impact
on the error-correction performance of these k-mer-based methods. E.g., when k = 15, the gain of BLESS on R3 is only 0.042, and SGA
even introduces more false-positive corrections. This evaluation is not applicble to Racer and Coral, because Racer learns the optimal size of
k with a built-in procedure, while Coral does not use k-mers.

2.2 Speed and memory usage
Speed and memory usage are another two important factors which we have assessed, as real-world datasets are huge (sometimes up to
hundreds of gigabytes, even terabytes). To compare the speed and memory usage of the five algorithms and our method MEC, we carried
out all the experiments on the same computer, which has two six-core Intel Xeon X5690 3.47GHz CPUs and 96G random-access memory,
installed with the Red Hat 6.5 operating system.

The speed of these six methods running with 12 threads is shown in Figure S4. For every dataset, BLESS and BFC run the fastest, Coral the
slowest, while MEC and SGA have similar speed. It is clear that the sequence alignment-based approaches are slower than the k-mer-based
methods.

Under the same configuration, the memory usage for all six methods are shown in Figure S5. For all the datasets, BFC uses the least
memory, while BLESS consistently consumes similar amounts of memory due to the parameter settings. Coral always consumes the largest
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Fig. S3. The gain of MEC on the eight datasets with various size of k-mers.

Table S1. Error-correction performances of BLESS, BFC and SGA on dataset R1 to R4 with various size of k.

k corrector
reca prec gain pber(%) pper(%)

R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4 R1 R2 R3 R4

15
BLESS 0.031 0.089 0.055 0.002 0.308 0.571 0.533 0.001 0.013 0.051 0.042 -0.862 1.120 1.202 0.845 0.973 27.5 29.3 21.7 27.6

BFC 0.051 0.059 0.050 0.039 0.356 0.521 0.513 0.001 0.047 0.067 0.043 0.019 1.117 1.195 0.825 0.923 27.3 29.4 21.5 26.7
SGA 0.057 0.025 0.047 0.053 0.241 0.253 0.300 0.241 0.008 0.012 -0.063 0.004 1.067 1.140 0.903 0.894 26.9 29.1 23.9 26.2

17
BLESS 0.120 0.241 0.177 0.006 0.443 0.701 0.695 0.002 0.063 0.205 0.165 -0.823 0.932 1.105 0.767 0.921 23.5 24.2 19.0 22.7

BFC 0.243 0.214 0.189 0.135 0.413 0.635 0.617 0.001 0.198 0.201 0.163 0.045 0.906 1.024 0.751 0.882 22.9 24.1 19.1 23.5
SGA 0.386 0.274 0.337 0.349 0.485 0.530 0.658 0.517 0.153 0.177 0.162 0.139 0.786 0.934 0.745 0.807 23.2 23.7 18.8 21.4

19
BLESS 0.209 0.372 0.265 0.009 0.497 0.774 0.762 0.002 0.097 0.332 0.252 -0.767 0.906 0.529 0.627 0.903 19.7 16.4 17.0 19.2

BFC 0.446 0.376 0.307 0.214 0.789 0.854 0.786 0.487 0.337 0.325 0.297 0.076 0.534 0.591 0.632 0.476 14.9 15.4 16.1 17.3
SGA 0.623 0.467 0.553 0.572 0.787 0.842 0.899 0.676 0.582 0.501 0.491 0.402 0.317 0.472 0.437 0.429 13.9 15.2 10.5 9.3

21
BLESS 0.317 0.614 0.437 0.012 0.517 0.815 0.793 0.002 0.127 0.526 0.417 -0.611 0.892 0.351 0.453 0.882 14.2 11.7 11.9 13.2

BFC 0.717 0.603 0.510 0.337 0.838 0.901 0.837 0.510 0.609 0.593 0.507 0.137 0.252 0.384 0.403 0.292 9.3 10.7 9.5 11.2
SGA 0.716 0.547 0.566 0.601 0.841 0.914 0.907 0.739 0.656 0.572 0.538 0.479 0.237 0.391 0.376 0.352 12.3 13.9 8.3 7.6

23
BLESS 0.410 0.724 0.523 0.019 0.649 0.987 0.943 0.003 0.183 0.698 0.527 -0.531 0.872 0.327 0.405 0.878 13.8 9.8 10.2 11.7

BFC 0.793 0.705 0.637 0.454 0.912 0.986 0.957 0.627 0.739 0.705 0.601 0.188 0.207 0.332 0.327 0.208 8.7 9.2 8.0 9.9
SGA 0.793 0.631 0.652 0.684 0.913 0.976 0.957 0.814 0.726 0.625 0.630 0.532 0.201 0.482 0.320 0.307 11.7 13.1 7.4 6.9

reca: recall; prec: precision; pber: per-base error rate; pper: per-position error rate.

amount of memory. Regarding MEC and Racer, they usually take similar amount of memory. The memory usage of MEC is related to
raw-read volume, coverage and k-mer size. Thus its space consumption increases along with expansion of data size.

Although the time and space complexity of MEC are not ranked the best, naturally it is straightforward to deploy it on large clusters to
overcome the limitations. Experimental results carried out on a cluster having five nodes show that MEC has good scalability in terms of
execution time and memory usage. The detailed results are shown in the discussion section of the main manuscript. For instance, using one
worker node, the running time for R4 is 19.8 hours, while this value reduces to 5.0 hours when all the four worker nodes are used. In case
the RAM usage exceeds the limit of the worker nodes, we can tune the StorageLevel of RDDs (resilient distributed datasets) as well as the
default parallelism level of Spark (Zaharia et al., 2010).

2.3 Error correction improves genome assembly
Error correction can significantly improve the quality of sequence assembly, as well as downstream analysis (Fujimoto et al., 2014;
Yang et al., 2013). Thus, we conduct error correction using MEC, and then assemble the short paired-end reads into long contigs using
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Fig. S4. Speed comparison between the error-correction methods. The result of Coral is not obtained for some datasets because the amount of RAM required
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Fig. S5. Memory usage comparison between the error-correction methods. The result of Coral is not obtained for some datasets because the amount of RAM
required is beyond the available limit.

Velvet (Zerbino and Birney, 2008). Unlike other assemblers that are released with either standalone or built-in error corrector, e.g., Quake
(Kelley et al., 2010) and SOAPdenovo (Li et al., 2010), Velvet does not come with an error corrector. Hence, it is appropriate to use Velvet
to examine the impact of MEC.

The experiments are conducted on the eight datasets and the corresponding corrected datasets. The assembly is evaluated using N50 value,
NGA50 value and maximum length of assembled sequences. N50 is defined as the maximum length of the sequences at which the collection
of those sequences not shorter than this length contains at least half of the sum of the lengths of all the sequences (Miller et al., 2010).
NGA50 is introduced by QUAST (Gurevich et al., 2013), which is an aligned N50 with respect to the size of reference genome instead of
the assembled length. Both the N50 and NGA50 are computed based on the contigs produced by Velvet having length greater than 100bp.

The results for datasets R1 to R2 and D1 to D2 are shown in Table S2, while the results are not obtained for datasets R3, R4, D3 and D4 as
Velvet cannot handle such large data on our computers. It can be seen that the N50 size increases significantly after error-correction by MEC,
with the improvement ranging from 2 to 4 folds. Regarding the maximum length of the assembled sequences, it is also increased markedly.
E.g., the N50 of D2 is 17,357 before error correction, but this value is increased to 69,954 after error correction, and the maximum assembled
sequence length is increased from 74,526 to 316,460. These results confirm that MEC is effective for correcting errors in next-generation
sequencing data.

Besides assessing the error-correction effectiveness for MEC, the other error-correction methods are also examined. The comparative
experiments are carried out on the real datasets R1 and R2 for all the methods. The results are presented in Table S3. On the two datasets,
MEC and Racer considerably outperform the other methods. Although Racer produces longer contigs, its lower NGA50 value suggests that
these tend to be mis-assemblies. Datasets D1 and D2 are not used in this comparison as the performance of all methods are very good,
indicating almost all the errors are corrected perfectly. Thus, very similar assembly results would be produced on D1 and D2. Regarding
datasets R3, R4, D3 and D4, the results are unable to obtained due to memory requirement of Velvet is beyond the limitation of our computer.
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Table S2. Impact of MEC on sequence assembly.

Dataset
Before correction After correction

N50 max length N50 max length

D1 45,236 173,805 87,665 269,712
D2 17,357 74,526 69,954 316,460
R1 974 13,081 2,483 35,964
R2 1,029 17,184 2,865 43,594

Velvet is unable to run on the datasets R3, R4, D3 and D4 on our computer with 96G random access memory.
The results are obtained with contig length greater than 100bp.

Table S3. Error-correction performance comparison with respect to sequence assembly on datasets R1 and R2.

Corrector
N50 NGA50 max length

R1 R2 R1 R2 R1 R2

MEC 2,236 2,865 2,997 3,287 39,972 43,594
Coral 613 547 1,295 1,175 19,183 22,029
Racer 3,356 3,979 1,479 1,656 31,278 35,129

BLESS 886 979 1,378 1,437 30,037 29,305
BFC 996 1,271 1,464 1,773 28,634 30,217
SGA 745 674 1,736 1,275 23,821 21,924

The results are obtained with contig length greater than 100bp.

3 MATERIALS
The four real sequencing data sets are downloaded from the GAGE (Salzberg et al., 2011) website:

• S. aueus: http://gage.cbcb.umd.edu/data/Staphylococcus_aureus;

• R. sphaeroides: http://gage.cbcb.umd.edu/data/Rhodobacter_sphaeroides;

• H. Chromosome 14: http://gage.cbcb.umd.edu/data/Hg_chr14;

• B. impatiens: http://gage.cbcb.umd.edu/data/Bombus_impatiens.

4 COMMANDS
The commands used for running Coral, Racer, BLESS, BFC, and SGA on the eight data sets are as follows.

R1

coral -fq R1 1 2.fastq -o R1 coral 1 2.fastq -illumina -p 12
racer R1 1 2.fastq R1 racer 1 2.fastq 2800000
bless -read1 R1 1.fastq -read2 R1 2.fastq -prefix R1 bless -kmerlength 23
bfc -s 3m -t12 R1 1 2.fastq > R1 bfc 1 2.fastq
sga preprocess –pe-mode 1 –permute-ambiguous –no-primer-check -o tmp.fq R1 1.fastq R1 2.fastq
sga index -a ropebwt -t 12 tmp.fq
sga correct -t 12 -o R1 sga 1 2.fastq tmp.fq

R2

coral -fq R2 1 2.fastq -o R2 coral 1 2.fastq -illumina -p 12
racer R2 1 2.fastq R2 racer 1 2.fastq 4600000
bless -read1 R2 1.fastq -read2 R2 2.fastq -prefix R2 bless -kmerlength 23
bfc -s 5m -t12 R2 1 2.fastq > R2 bfc 1 2.fastq
sga preprocess –pe-mode 1 –permute-ambiguous –no-primer-check -o tmp.fq R2 1.fastq R2 2.fastq
sga index -a ropebwt -t 12 tmp.fq
sga correct -t 12 -o R2 sga 1 2.fastq tmp.fq

R3

coral -fq R3 1 2.fastq -o R3 coral 1 2.fastq -illumina -p 12
racer R3 1 2.fastq R3 racer 1 2.fastq 88300000
bless -read1 R3 1.fastq -read2 R3 2.fastq -prefix R3 bless -kmerlength 23
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bfc -s 88m -t12 R3 1 2.fastq > R3 bfc 1 2.fastq
sga preprocess –pe-mode 1 –permute-ambiguous –no-primer-check -o tmp.fq R3 1.fastq R3 2.fastq
sga index -a ropebwt -t 12 tmp.fq
sga correct -t 12 -o R3 sga 1 2.fastq tmp.fq

R4

coral -fq R4 1 2.fastq -o R4 coral 1 2.fastq -illumina -p 12
racer R4 1 2.fastq R4 racer 1 2.fastq 249200000
bless -read1 R4 1.fastq -read2 R4 2.fastq -prefix R4 bless -kmerlength 23
bfc -s 250m -t12 R4 1 2.fastq > R4 bfc 1 2.fastq
sga preprocess –pe-mode 1 –permute-ambiguous –no-primer-check -o tmp.fq R4 1.fastq R4 2.fastq
sga index -a ropebwt -t 12 tmp.fq
sga correct -t 12 -o R4 sga 1 2.fastq tmp.fq

D1

coral -fq D1 1 2.fastq -o D1 coral 1 2.fastq -illumina -p 12
racer D1 1 2.fastq D1 racer 1 2.fastq 4600000
bless -read1 D1 1.fastq -read2 D1 2.fastq -prefix D1 bless -kmerlength 23
bfc -s 5m -t12 D1 1 2.fastq > D1 bfc 1 2.fastq
sga preprocess –pe-mode 1 –permute-ambiguous –no-primer-check -o tmp.fq D1 1.fastq D1 2.fastq
sga index -a ropebwt -t 12 tmp.fq
sga correct -t 12 -o D1 sga 1 2.fastq tmp.fq

D2

coral -fq D2 1 2.fastq -o D2 coral 1 2.fastq -illumina -p 12
racer D2 1 2.fastq D2 racer 1 2.fastq 12400000
bless -read1 D2 1.fastq -read2 D2 2.fastq -prefix D2 bless -kmerlength 23
bfc -s 13m -t12 D2 1 2.fastq > D2 bfc 1 2.fastq
sga preprocess –pe-mode 1 –permute-ambiguous –no-primer-check -o tmp.fq D2 1.fastq D2 2.fastq
sga index -a ropebwt -t 12 tmp.fq
sga correct -t 12 -o D2 sga 1 2.fastq tmp.fq

D3

coral -fq D3 1 2.fastq -o D3 coral 1 2.fastq -illumina -p 12
racer D3 1 2.fastq D3 racer 1 2.fastq 41800000
bless -read1 D3 1.fastq -read2 D3 2.fastq -prefix D3 bless -kmerlength 23
bfc -s 42m -t12 D3 1 2.fastq > D3 bfc 1 2.fastq
sga preprocess –pe-mode 1 –permute-ambiguous –no-primer-check -o tmp.fq D3 1.fastq D3 2.fastq
sga index -a ropebwt -t 12 tmp.fq
sga correct -t 12 -o D3 sga 1 2.fastq tmp.fq

D4

coral -fq D4 1 2.fastq -o D4 coral 1 2.fastq -illumina -p 12
racer D4 1 2.fastq D4 racer 1 2.fastq 41800000
bless -read1 D4 1.fastq -read2 D4 2.fastq -prefix D4 bless -kmerlength 23
bfc -s 42m -t12 D4 1 2.fastq > D4 bfc 1 2.fastq
sga preprocess –pe-mode 1 –permute-ambiguous –no-primer-check -o tmp.fq D4 1.fastq D4 2.fastq
sga index -a ropebwt -t 12 tmp.fq
sga correct -t 12 -o D4 sga 1 2.fastq tmp.fq
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