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Abstract 

 

 
Protein complexes are vital in many organisms because they play a crucial part in biological 

functions, processes and pathways. Recent growth in interactome datasets has spurred 

developments in methods to use this information to infer protein complexes. These 

interaction data are often measured in-vitro and contain “hub” proteins that interact with 

many other proteins. Some of these interactions do not occur at the same space and time in-

vivo. The challenge is to group these interactions into subgroups to infer them as protein 

complexes. Existing methods for making use of such information have been published. 

However, these methods have low coverage of real protein complexes. In this study, we 

examine a method to improve one of the existing algorithms for predicting protein complexes, 

namely the CMC algorithm. We show that our work, the PCF algorithm, produced an 

improvement in coverage of true protein complexes. 
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1 Introduction 

Recent completion of the Human Genome Project has marked a great leap in 

computational biology. As we move from pre-genomic era to the post-genomic era, more and 

more emphasis has been put on proteomics – the large scale study of protein structures and 

functions (Roded et al, 2007). This is in part due to the fact that most genomic sequences can 

be made available via cheaper sequencing methods and also in part due to the fact that 

genomic sequences contain no functional information. Moreover, in complex organisms the 

mechanism of alterative splicing has resulted in poor correlation of mRNA to expressed 

proteins (Nie et al, 2006). Experiments conducted by biologists, include studies to determine 

interaction between two proteins. The interactions between proteins in an organism make up 

the interactome.  

Although there are many web-lab methods to detect protein-protein interactions, only a 

few methods exist for web-lab determination of protein complexes. Protein complexes are a 

group of two of more proteins which interact with one another in the same space at the same 

time. Web-lab determination of protein complexes, for example the Tandem Affinity 

Purification method suffers from inconsistent results due to low reproducibility (Andrzej et al, 

2003).  

Recently, interactome databases have seen a growth in information, especially after the 

availability of high-throughput methods. For example, the BioGRID database has now 

529,018 proteins with 229,375 interactions collected over 22 organisms. The availability of 

this information has motivated a number of computational methods to infer protein function 

and protein function modules.  This report is concerned with making use of such interactome 

information to elucidate protein functional modules, also known as protein complexes. 

 

1.1 Research Background 

Many different methods have been used to determine interactome information. For 

example, two-hybrid systems, affinity capture-MS and co-localization experiments (not 

exhaustive) have been used. Information derived from such wet-lab experiments has been 

used in computational analysis and prediction. However, a potential caveat for interpreting 

such data is that all such wet-lab methods are known to produce some amount of false 

positives and false negatives. Methods to assess the reliability of protein interactions have 

been developed (Chua et al, 2008).  
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As of today, different computational methods have also been available for inferring 

protein complexes from interactome information. Most of these methods, for example 

Markov Clustering (MCL), Molecular Complex Detection (MCODE) and Restricted 

Neighborhood Search Clustering (RNSC), are based on clustering. A recent publication to 

access the robustness of these methods showed that MCL is most robust in comparison with 

other methods (Brohee et al, 2006). In addition, another class of complex prediction 

algorithms, Clustering based on Maximal Cliques (CMC) (Liu et al, 2008) and Protein 

Complex Predicton (PCP) (Chua et al, 2006) are based on maximal clique finding in 

interaction networks and has shown to produce good results on certain datasets. In 

comparison with MCL, the CMC has been shown to produce better matching results (Liu et 

al, 2008). The primary limitation of CMC is its recall. Like other methods, recall is low on 

certain datasets such as the MIPS dataset. 

 

1.2 Research Motivation 

The motivation for research arises from the fact that low recall values of CMC and other 

protein complex prediction methods indicates poor coverage of total real protein complexes. 

In addition, most of the works discussed so far has been concerned with yeast interactome 

and complexes. While such studies have its uses in elucidating protein function in yeast, very 

little information can be inferred on human beings. This is primarily due to the reason that 

human is a much more complex multi-cellular eukaryote as compared to unicellular yeast. 

We suggest that determining human complexes and hence the possibility of elucidating 

human protein function can be a useful in understanding some human diseases. It is thus 

worthy to find methods to improve protein complex coverage and investigate the application 

of complex finding in the human interactome. 

 

1.3 Research Contributions 

We believe that our paper makes the following research contributions: 

1. We investigate the causes of low coverage in existing methods like MCL, PCP 

and CMC. 

2. We investigate the possibility of merging interactome datasets across different 

organisms. 

3. We further explain why and which organisms produced better results by merging. 
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4. We suggest an improvement to CMC that produces better coverage of protein 

complexes predicted. 

5. We also demonstrate that protein complex finding based on interaction network 

alone may not be sufficient for accurate results. External information may aid to 

produce better results. 

 

1.4 Datasets 

The interactome datasets used in this study were taken from the BioGRID database and 

the real complexes where taken from the MIPS database. We partitioned the BioGRID 

interactome dataset according to organisms. In particular, we only used yeast, mouse and 

human interactome data. The size distribution of human complexes taken from MIPS is 

shown in figure 1. 

 

Figure 1. Human complexes size distribution (MIPS database) 

 

1.5 Outline of Report 

The report will be organized in two following manner. In section 2, we discuss the MCL, 

PCP and CMC algorithms together with an analysis of the strengths and limitations of such 

algorithms. Section 3 discusses other methods that have been considered but were discarded 

as there were no results. In section 4, we propose methods to improve on current existing 

approaches. In section 5, we describe the results after validation with complexes obtained 

from the MIPS database. In section 6, we discuss practical aspects and use of complex 

prediction. In section 7, we discuss some of the improvements that can be further made. 
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2 Related Work 

Protein complex finding in a given graph, where nodes represent proteins and edges 

represent interactions between proteins, can be defined as a clustering problem. The aim is to 

find a cluster of nodes of a graph such that there are many edges within the same cluster but 

very little edges between two different clusters. In this section, we discuss three of the current 

available methods - the MCL, PCP and CMC algorithms. In sections 2.1-2.3 we give a brief 

overview of existing algorithms and in section 2.4, we compare these methods to analyze 

some of the strengths and limitations inherent to these methods. 

 

2.1 The MCL algorithm 

 The MCL algorithm has been originally proposed by Van Dongen in a Ph.D thesis (Van 

Dongen, 2000). The key idea behind the MCL algorithm is that random walks in a graph have 

a possibility of capturing dense regions in a graph. A random walk is defined as a path on a 

graph constructed by taking successive random steps. When a number of random k-length 

paths are chosen, defined at small k (integer), they have a higher probability of beginning and 

ending in the same dense region. The MCL algorithm consists of two steps, the expansion 

step and the contraction step. The expansion step allow nodes to visit more neighbors, the 

contraction step ranks neighbors that are more favorable. The infinite sequence of alternating 

expansion and contraction make up the Markov Clustering process. The process is stopped 

when the transition matrix become near idempotent (converges). Van Dongen further 

explained the methods to obtain clustering information based on the transition matrix when 

the algorithm halts. The technical details of the algorithm are beyond the scope of this project 

and will not be discussed. However, we note that the MCL assigns clusters based on the fact 

that many k-length paths exist within it. 

 

2.2 The PCP algorithm 

A novel method for prediction of protein complexes was introduced in 2006. Remarkably, 

the idea behind the algorithm was simple and mainly based on maximal clique finding and 

clique merging (Chua et al, 2006). This method was based on the assumption that proteins 

that form complexes should interact with each other, or in other words, form a complete 

subgraph. While, this is not always the case, the authors Chua et al used two ideas in an 

attempt to handle cases where complexes do not form complete subgraphs. In essence, the 
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two interesting ideas are a data preprocessing step and a clique finding and merging step. We 

describe these two features of the algorithm following: 

2.2.1 Weighting of network using FS-weight 

FS-Weight can be defined as follows: 
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Nu represents the direct neighbors of u including u itself. These definitions allow 

us to see that the FS-weight measures the similarity of two nodes based on how 

many direct neighbors they share. The impetus of introducing the value λu,v is to 

penalize protein pairs that have little direct neighbors.  

The use of FS-weight to weigh edges of a protein-protein network has been shown 

to be able to filter unreliable interactions as well as introduce interactions that are 

predicted to be useful in another independent article (Chua et al, 2006). 

2.2.2 Finding and Merging of Cliques 

The maximal cliques in a given network can be found via an exhaustive search. 

Although maximal clique finding in graphs is a known NP-complete problem, the 

authors have shown that enumerating maximal cliques in sparse graphs like the 

protein interaction network is not a problem. The author allowed no overlaps 

between any two maximal cliques by removing the clique that has lower average 

FS-weight. For any two maximal cliques that are not overlapping, there is a 

possibility of the cliques being highly interconnected. For this reason, the authors 

also proposed a method to merge these cliques based on the inter-cluster density 

score defined as follows: 
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The algorithm halts when no other merging operations can be made for a defined 

merging threshold 

 

2.3 The CMC algorithm 

The CMC algorithm proposed by Liu et al, 2008, extends directly from the PCP algorithm. 

The similarity with CMC and PCP is in fact the way that both algorithms use clique finding 

and merging techniques to find protein complexes in a protein-protein network. The 
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differences of the two algorithms lie in different weighting measures as well as different 

clique merging procedures. 

2.3.1 Weighting of network using iterated AdjustCD 

 

 

 

The iterated AdjustCD can be also similarly defined for FS-weight. In non-

iterated scoring, the function on nodes x and y counts the number of shared 

neighbors between the two nodes. In iterated scoring, the function on two nodes x 

and y, counts the score of the edges from one node to their shared neighbors 

which was calculated in the previous iteration. The difference is that instead of 

using 1 and 0 to represent an edge, the function now uses a score to represent an 

edge. This method has advantages over non-iterated version because informative 

scores are used instead of binary numbers. This method has been shown (Liu et al, 

2008) to enhance functional homogeneity and localization coherence which are 

factors strongly correlated to true in-vivo protein interactions and protein 

complexes. 

 

2.3.2 Merging of Cliques 

Clique merging in CMC differs from PCP in a way that overlapping cliques 

were not discarded if their overlapping score is less than a specified overlapping 

threshold. The overlapping score is defined as follows: 
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than a specified merging threshold. Otherwise, the lower score cluster is discarded. 

The inter-cluster score is defined as follows: 
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Where w(u,v) represents a score taken from AdjustCD(u,v) as described above. 

The meaning behind the inter-cluster score is that cliques that are highly inter-

connected have a higher score than cliques that have lower score. 

 

2.4 Analysis of Related Algorithms 

At first sight, the maximal clique finding approach of the CMC and PCP looked 

astounding. This is particularly because there really is no biological evidence of proteins 

forming the stringent cliquish requirement. One might think that the pre-processing step 

aided clique detection method by allowing nearly-cliquish clusters to form a complete clique. 

However, the authors (Liu et al, 2008) discovered that adding new edges do not affect the 

algorithm so much. Rather, it was due to the clique merging step that allowed the algorithm 

to capture complexes that were not clique-like. 

Although the CMC and PCP algorithms are slightly similar, the tradeoffs between the two 

algorithms are between precision and recall. The main difference between the two is that PCP 

disallows overlapping clusters whereas in CMC, overlapping clusters might be retained or 

merged. In a recent publication, the CMC showed an improvement in recall values on the 

MIPs dataset as compared to results published by authors of the PCP algorithm (Liu et al, 

2008). However, the validation results were not really comparable because the two results 

were validated using different validation methods. Authors of the CMC algorithm used the 

Jaccard co-efficient, whereas the authors of the PCP algorithm used the validation criteria 

defined by Badger et al, 2003.  

Jaccard Co-efficient: 

||

||

VcVs

VcVs




 

Bader’s Criteria: 
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In comparison with MCL, the CMC also performed better as reported by Liu et al, 2008. 

The reason that MCL did not performed as well was described by Liu et al, due to the fact 

that MCL also did not allow overlap between clusters. Sources that describe MCL’s 
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robustness to noisy data showed that MCL’s performance is peak when clusters correspond to 

regions with many k-length paths within. At this point, there has been no evidence showing a 

direct correlation between dense k-length paths and protein complexes within interaction 

network. There has also been very little biological evidence to suggest such a correlation 

could represent clusters of protein complex. 

However, there can be limitations to the CMC algorithm. We list them as follows: 

1. There might be a possibility of discarding clusters that are important before merging 

them with other clusters. 

2. Some initial cliques may have already a good representation of a particular protein 

complex but when merged into a larger cluster, the final result is a false negative. 

 

3 Possible Approaches – A Prelude to PCF 

There can be many possible alternatives to infer protein complexes from interaction 

network. Some of these approaches have been considered and have possibilities of producing 

results. However, they were discarded either because of complexity issues or because there 

has been no biological evidence to support these alternatives. 

 

3.1 Frequent Subgraph Mining 

Frequent subgraph mining (FSM) has been a hot research topic in data mining. The idea 

of FSM stems from frequent pattern mining, where a popular apriori algorithm that mines for 

association rules is derived (Han et al, 2004). Details of the apriori algorithm are beyond the 

scope of this project and will not be discussed. The aim of FSM is to discover a pattern of 

subgraph in a database of graphs. In essence, the apriori-based approach consists of only two 

steps. In the first step, candidate subgraphs are generated. In the second step, the candidate 

subgraphs are compared to the database of graphs to count the associated statistic. If the 

subgraph is frequently occurring above a certain threshold, the subgraph is considered a 

frequent subgraph. 

We can make use of FSM to infer protein complexes from interaction networks using the 

following method: 

1. Mine for subgraph patterns in a database of complexes. 

2. Filter these mined subgraphs for interesting patterns. 

3. Discover these subgraph patterns in an interaction network. 

4. Iteratively improve the clusters using some scoring function. 
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The FSM technique could allow us to see interesting patterns that really occurred in real 

complexes. However, there are a few complications. Firstly, the process of subgraph 

isomorphism testing required in step 1 is a known NP-complete problem. Secondly, even if 

patterns could be mined in an efficient manner, patterns could exist in the network without 

being a complex itself. Moreover, such a method would be hard to validate since the complex 

structures were used in the mining process to infer complexes. Lastly, even if validation 

options could be extended to a different organism, there is no biological evidence that protein 

complexes are co-related in two different organisms. 

3.2 Classification of Cliques in Feature Space 

Another possibility could be to improve the CMC algorithm by mapping predicted cliques 

into a feature space to determine the possibility of being a complex even before the merging 

process. We propose to stop the merging process if a clique has a high possibility of a protein 

complex. This might be a solution to the low recall problem mentioned earlier. The main task 

of such an approach would be to map a set of real complexes as well as randomly generated 

complexes (negative samples) into a feature space. In order to do that, we need to generate 

features from a given set of proteins. We selected the following features: 

1. Maximum molecular weight protein of proteins in the complex 

2. Minimum molecular weight protein of proteins in the complex 

3. Average molecular weight of the protein complex  

4. Degree of connection of the protein having the maximum molecular weight in the 

complex 

5. Degree of connection of the protein having the minimum molecular weight in the 

complex 

6. Average degree of connection in a protein complex 

The features were selected based on our hypothesis that proteins that come together to 

from complexes obey certain laws of size and connection. We hypothesize that complexes 

which contain a disproportionate amount of heavy and light weight proteins will cause a 

change in protein conformation that breaks the complex formation. This means that a 

randomly generated complex would have very different features as compared to those of a 

real complex. We created a visualization tool to help us see how protein complexes are 

locally connected within the complex itself as well as to view these features. A snapshot of 

the program is provided in appendix A. 
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In order for classification to work, we require some negative samples to allow us to 

discriminate a complex from a non-complex. This can be done by generating some random 

complexes. Generation of random complex is not a trivial task because we had to make sure 

the random complexes were generated close to the same distribution as that of a real complex. 

In addition, we also need to provide a random interaction network to account for the negative 

samples.  

We analyzed the set of human complexes provided by the BioGRID database. We found 

that the number of proteins in a complex followed a gamma distribution and estimated the 

parameters α=2.5793 and β=1.665 by curve fitting in matlab. By sampling from such a 

gamma distribution, we created complexes of particular size based on the random number 

sampled. 

We investigated the accuracy of the support vector machine classifier on features 

extracted from both the positive and negative set. The 10 fold cross validation results were 

remarkably good, with accuracy reaching 83.97%, and sensitivity of 0.837 on the positive 

class and 0.842 on the negative class. 

These results might mean that our hypothesis were correct. However, a potential caveat 

arises because the randomly generated complexes might be too far from true negative 

complexes. A corrected version of the randomization process would require a generation of a 

random interaction network with the degree of edges that closely resembled a real interaction 

network. This can be done by mutating edges in a real interaction network such that the 

newly formed edges are connected to nodes that have similar degree. 

Even with a randomly generated interaction network, complications would still arise 

when one attempts to select random nodes within the network to form a complex. We 

demonstrate this using an example. Suppose we found that the average connections within a 

complex follow a particular probability distribution. Ideally, we would like to perform the 

following steps: 

1. Sample from complex size distribution. Let the random number be p. 

2. Sample from average connection distribution. Let the random number be q. 

3. Proceed to select nodes in a uniformly random manner such that the random 

complex has size p and have average connection satisfy q. 

4. If such a set of nodes are found, add it into collection. 

5. Otherwise repeat step 3. 
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An observant reader will realize that if there are only a few combinations of nodes that 

satisfy the average connection of q, the algorithm will take a very long time to generate 

enough negative samples. To make it even more convincing, suppose the network consists of 

5,000 proteins. Suppose p=5, then there are 
5000

C5 (2.599x10
16

) possible combination of 

complexes. If for a particular q, there are only 5 examples of node sets satisfying this 

condition, it would not be feasible to expect the random complex generator to halt. 

4 Protein Complex Finder – The PCF algorithm 

The PCF algorithm was created in an attempt to improve on the works done by the 

authors of CMC algorithm. In this section, we describe the steps taken to increase the 

performance of the CMC algorithm. 

 

4.1 Data Pre-processing 

4.1.1 Merging Datasets across Organisms 

The human interactome is known to be lacking in data. This is because very few web-

lab experiments have been conducted to determine human proteins interaction. In contrast, 

a vast majority of the interaction data belongs to the yeast organism. In our study, we 

attempted to merge interaction data across two different species as demonstrated in figure 

2. 

 

Figure 2. Merging interaction networks by homology 

 

The merging of interaction networks can be done based on homology. There can be 

two ways to merge interaction networks, resulting in different complexities. We present 

the naïve method first, as follows: 

Given Gyeast<Vyeast,Eyeast>, Ghuman<Vhuman,Ehuman> 

Homologous 

map 

Species A 

Species B 

Homologous 

map 
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For each Vertexhuman α 

Find Vertexhuman β s.t. Edgehuman(α,β) does not exist 

For each such Edgehuman(α,β) 

Let A = Homolog(α), B = Homolog(β) 

If Edgeyeast(A,B) exist 

Add Edgehuman(α,β) to Ghuman 

End if 

End for 

End for 

Algorithm 1. Naïve algorithm for merging interactions between yeast and human 

We also define a process of merging with less complexity as follows: 

Given Gyeast<Vyeast,Eyeast>, Ghuman<Vhuman,Ehuman> 

For each Edgeyeast(A,B) 

Let α = Homolog(A), β = Homolog(B) 

If Edgehuman(α,β) does not exist 

Add Edgehuman(α,β) to Ghuman 

End if 

End for 

Algorithm 2. Merging interactions between yeast and human with less complexity 

 

Note that in the above pseudocodes, we did not define the function Homolog. The 

main problem of this pre-processing step is to define homology.  

Homologous proteins can be divided into two subclasses, orthologous and paralogous. 

Orthologs result from diverging genes between species that derive from a common 

ancestral organism, maintaining same function. Paralogs result from gene duplication 

events and have diverged functions. In our study, we are more interested in orthologs, 

from this point; we use the term homologs and orthologs interchangeably. Tatusov et al, 

published findings of orthologous proteins called Clusters of Orthologous Groups (COG). 

Much of their works were based on sequence comparison (Tatusov et al, 2004).  

 

4.1.1.1 The COG database 

Using the COG database to infer homologous proteins has its limitations. The 

challenging problem arises due to the fact that we were using different databases with 

different unique identifiers. Moreover, the mapping between any two unique identifiers 
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may not be a 1-1 relationship. We demonstrate this complexity using an entity-

relationship model as in figure 3. 

 

 

Figure 3. Database entity-relationship model 

 

Essentially, we face two technical problems:  

Firstly, the BioGRID interaction data is presented with unique entrezgene_ids 

obtainsed from the NCBI database. However, COG presents its findings in terms 

of protein_gi_ids (NCBI) and CYGDids (yeast). The 1-many relationship often 

results in mapping one edge in the interaction network to many possible edge 

combinations of a protein_gi_ids.  

Secondly, even if we could resolve the ambiguity mentioned earlier, the COG 

maps one yeast protein to many homologous human protein. Consider {α1...αn}, 

the set of homologs of A and {β1…βn}, the set of homologs of B. Another 

ambiguity arises to decide which of the homologs of A should interact with 

homologs of B. In practice, we take the Cartesian product to infer that every 

possible combination is a potential interaction. 

Based on the discussion above, it may not be feasible to use the COG database to 

infer homologous proteins across different species. 

 

4.1.1.2 BLASTp 

Due to the limitations described above, alternative methods have been investigated to 

infer homologous proteins. The problem of finding homologous proteins can be redefined 

as a database search problem. We formulate the problem as follows. Given a sequence x, 

1 n 1 n 

n 

m 
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we want to find the most similar sequence (allowing some mismatch) in a database. This 

is a fundamental problem in computational biology and has been explored by many 

researchers. 

In essence, database search methods originated from the smith-waterman algorithm 

which allows a local alignment of two sequences using dynamic programming in O(N
2
) 

time. Clearly, the use of smith-waterman is not practical in database settings where size of 

database can be as large as 4 million. This gave rise to approximation methods like 

FASTA, PatternHunter and BLAST which sacrificed sensitivity for speed. It has been 

found that BLAST is the de facto standard for sequence comparison by virtue of 

sensitivity and speed (Anderson et al, 1999). Technical details of BLAST will not be 

discussed in detail in this paper, however an interested reader would find papers by 

Altschul et al useful (Altschul et al, 1990). In order to capture homologous information, 

we used bi-directional BLAST. For example, we BLAST a protein κ from species A 

against all other proteins in species B. Suppose we found the best match protein η, which 

is belonging to species B. We then perform BLAST again on protein η to see if protein κ 

is the best match. If it is, we infer homology, otherwise not. 

 

We now describe the process for inferring homologous proteins using BLASTp 

For each non-human protein A in non-human network 

Let α be the top hit returned by BLASTp over all human proteins 

Add pair (A,α) to Collection C 

End for 

For each pair (A,α) in C 

Let B be the top hit of α returned by BLASTp over all non-human proteins 

If B equals to the corresponding A 

Define Homology(A,α) 

End If 

End for 

Algorithm 3. Inferring homologous proteins across species 

 

The main advantage of using BLASTp over the COG database is that each human 

protein is given exactly one yeast homolog. This prevents unnecessary noise introduced 

by a large number of edge additions. In total, after merging, we have 3 sets of data, listed 

as follows: 
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1. Original Human Interaction Network 

2. Human & Mouse Merged Interaction Network 

3. Human & Yeast Merged Interaction Network 

 

4.1.2 Weighting Interactome Network with Iterated AdjustCD 

Merging interactome networks across different species would be helpful if proteins 

are similar enough to form complexes between two different organisms. The method 

described in the previous section does not ensure that proteins with that correspond to the 

first hit in BLASTp will always exist in a complex. This may induce some false positives 

or false negatives. In order to access to the total reliability of the merged networks, we 

used the iterated AdjustCD score as described by the authors of the CMC algorithm. 

For each set of data after merging, we performed iterated AdjustCD (iterated twice) 

on the edges and removed edges below a certain threshold as well as add edges above that 

threshold. We used a threshold of 0.4, as it was reported have best performance in an 

earlier study (Liu et al, 2008). 

 

4.1.3 Analysis Of Dataset After Pre-processing 

In order to ensure that the interactions in the network were coherent before mining for 

complexes, we used gene ontology (GO) terms to measure function coherence. GO terms 

are attributes that describe a protein. For example, a protein may belong to particular 

cellular localization or having a particular function etc. GO terms can be classified as a 

tree structure where a more specific GO term is a child of a more general GO term. Some 

of these GO terms may be too general and does not provide useful information with 

respect to function coherence. Hence, we need to find informative GO terms to describe 

functional coherence. In essence, there are two methods to do so, which we describe 

following: 

1. Count the number of interactions that share GO terms that are 3 nodes away 

from the root of the GO term tree structure. 

2. Count the number of proteins that belong to a GO term g, such that g has 30 

other annotated proteins and each child of g has less than 30 proteins.  

We took approach 2 as it was statistically reasonable. Before merging the human 

interaction network, it originally consisted of 31493 interactions, of which 6487 

interactions did have any GO annotation. The remaining 25006 had 14004 interactions 
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with one or more informative GO term, which makes up about 56%. After merging, we 

obtain 34214 new interactions, of which 8667 have no GO annotation. The remaining 

25547 had 16804 interactions with one or more informative GO term, making up about 

65%. The percentage increases, when we filtered the network using AdjustCD score, to 

about 72%. This might suggest that the dataset is good enough to be used for complex 

prediction. 

4.2 Modification of the CMC algorithm 

In general, the CMC algorithm suffers in terms of recall in the MIPS complex dataset. 

The limitations of the CMC have been described earlier (reader might want to review section 

2.3.2). In this section, we modify the CMC algorithm to solve one of the limitations. In 

particular, we want to recover the cliques that might have been discarded and try to merge 

them if possible. 

To recover cliques that were discarded, we first remove interactions that were predicted 

as protein clusters. Edges can be removed from a network based on the assumption that there 

will be no overlap in interactions in two different complexes. However, based on observation, 

this is not true. Instead, certain protein interactions can be observed in more than one 

complex. If we remove the wrong pair of edges, there is a possibility that we cannot recover 

cliques representative of protein complexes. We demonstrate this fact using the diagram as in 

figure 4. (Note that the diagram is only representative of a subgraph of the entire network, 

which contains many other nodes and edges.) 

 

Figure 4. Pitfalls in removing edges from an interaction network 

 

Hence, we need to find a reasonable method such that important edges are preserved. 

How can we tell which edges are important? We hypothesize that proteins that belong to 
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many clusters may participate in one or more complexes. Edges connecting to these proteins 

have a high possibility of becoming part of a clique-like structure, which is critical to the 

success of our algorithm. Because of this reason, we identify the number of clusters that each 

protein belongs to. Proteins that belong to clusters that deviate by more than one standard 

deviation from the mean are considered core proteins. Edges connecting to these core 

proteins would not be removed. 

 

We modified the CMC algorithm as follows: 

Given G 

 Clusters = CMC(G, overlap_thres, merge_thres); 

Count, Average, Stdev = 0; 

Hashtable core_protein_info; 

/* Find how many clusters each protein belongs to */ 

For each protein p in G 

For each cluster c in Clusters 

If p is in c 

Count++; 

End If 

End For 

Core_protein_info  (p,count); 

End For 

<Average, Stdev> = getStatistics(core_protein_info); 

/* Remove edges of predicted clusters */ 

For each cluster c in Clusters 

For each protein p in c 

If (core_protein_info(p) <= Average+1Stdev) 

Remove edges from p to all other p’ in c from G 

End If 

End For 

End For 

Cluster2 = CMC(G, overlap_thres, merge_thres); 

PredictedResults = Cluster2 UNION Cluster; 

Algorithm 4. Modified CMC algorithm 
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4.3 Post-processing 

In general, we find that the modified CMC algorithm gives much more predicted clusters 

than actual protein complexes. The predicted set can be reduced by finding the percentage of 

proteins in a cluster that share informative GO terms (reader might want to review section 

4.1.3 for a description of GO terms). For a particular cluster, if the proteins do not share 

many informative GO terms, we can decide to remove this cluster. 

 

5 Results 

In our study, we first compare the CMC algorithm with MCL on human interaction data 

filtered with iterated AdjustCD as described in section 4.1.2. We also compared the CMC 

algorithm using a combination of merged interaction data (merging was described in section 

4.1.1). We also compared the CMC algorithm with the PCF algorithm (modified CMC 

described in section 4.2).  

We used the same criteria of validation (Jaccard co-efficient described in section 2.4) as 

proposed by Liu et al, 2008. In addition, we filtered off certain real complexes that were non-

existing in the protein interaction network. This is because there is no way to infer complexes 

if the data does not even exist. 

The level of recall allows us to measure the coverage of the algorithms on real complexes. 

The MCL gave a maximum recall of 12%, whereas CMC gave a much better recall reaching 

58% using overlapping and merging thresholds of 0.5. The precision of all the algorithms 

compared were all lower than 50%. We suggest that the level of precision might not be a 

good indicator of performance because the list of complexes given in the MIPS database 

might not be a good representative of total protein complexes in existence. This might be 

because some have not been found or discovered yet. 

When we compare CMC on human and yeast merged network, we found that the 

maximum recall dropped to 30%. This might be indicative that the merged interactions are 

representative of noise in the network. When human and mouse merged interaction data were 

used on CMC, there were no significant change in recall. However, when we use the PCF 

algorithm, the merged human and mouse merged network gave a 10% higher recall than 

when run on the original human interaction network. Figure 5 shows the precision vs. recall 

charts on various settings as described earlier. 
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Figure 5. Precision vs Recall Charts. First number represents overlap threshold, second number represents 

merging threshold. Comparison between MCL and CMC (Top left). Comparison between CMC on human vs. 

human+yeast (Top right). Comparison between CMC on human vs. human+mouse (Bottom left). Comparison 

between CMC and PCF (Bottom right). 

 

The human and mouse merged network performed better on PCF probably because 

human and mouse proteins are highly similar, since they are closer in the evolutionary tree 

whereas human and yeast are further apart in the evolutionary tree. This might account for the 

noisy effects of human and yeast merged interaction network on CMC. However, as a side 

note, we also discover certain areas of our pre-processing that might have resulted in the 

noisy yeast dataset. In particular, we assumed that when doing bi-directional blast, the top hit 

always represented something significant. This is not always true. For example, blast results 

with a low E-value might be representative of occurrence by chance. We did not filter results 

with low E-values and this might have caused problems. Based on this, we expect mouse 

dataset to perform better because a blast comparison between mouse and human might 

contain fewer hits with low E-values than when the comparison was done between yeast and 

human. We also note that using blast to infer homolog might have its limitations. This is 
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because blast is a local alignment method and a match is found as along as a functional 

domain is shared. However, there might be other domains which are not common. An 

ortholog should have all their domains in common. This might present some side-effects 

which may also affect the human and mouse merged dataset. However, we have not been 

able to observe this anomaly in our studies.  

The precision and recall charts might be hard to interpret because of the fact that some 

algorithms produced much more predictions than others. Due to this problem, we sorted the 

predicted clusters according to their average FS-weighted scores and compared the number of 

matches obtained out of the top n
th
 predictions. We omitted MCL since it was performing 

much worse than CMC in general. The comparison is shown in table 1. From the table, we 

find that using overlapping and merging thresholds of 0.25 produced much less predictions 

than using 0.5 thresholds. This is expected because if the thresholds are small, most of the 

cliques would be merged, resulting in small number of predictions. When the thresholds are 

big, the cliques would not be merged so easily, resulting in bigger number of predictions. We 

also noticed that the PCF performed better consistently. 

 

 Top n
th
 Predictions 

535 887 1505 1877 4051 

Pure Human CMC 0.25 0.25 66/289 - - - - 

Human+Yeast CMC 0.25 0.25 61/339 77/339 - - - 

Human+Mouse CMC 0.25 0.25 64/289 - - - - 

Pure Human CMC 0.5 0.5 97/289 149/289 174/289 - - 

Human+Yeast CMC 0.5 0.5 33/339 70/339 132/339 168/339 168/339 

Human+Mouse CMC 0.5 0.5 90/289 141/289 168/289 - - 

Human+Mouse PCF 0.5 0.5 0.5 0.5 126/289 174/289 227/289 242/289 - 

Table 1. Coverage of predicted complexes. Algorithm parameters: first number represents overlapping threshold, 

second number represents merging threshold. Results: numerator represents number of hits, denominator 

represents the total real protein complexes 

 

An avid reader might question whether complexes can be discovered by chance since for 

certain thresholds, CMC predicted up to 4051 predictions when there are only 339 true 

complexes. We argue that this probability is very small. Suppose there are 5000 proteins, 

then there are 
5000

Cx possible ways to form a complex of size x. The probability to select one 

true complex by random is given as: 
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Where n is the number of real complexes, i is the size of a complex and m is the largest 

possible complex. This number is very small because the denominator values dominate in the 

equation. For example, suppose the maximum size is 3 and total true complex is 339. Then 

the probability of 4051 complexes occurring by chance is 6.5x10
-5

, which is small enough to 

be considered negligible. The probability becomes even smaller when maximum size 

increases. Figure 6 shows the probability of choosing 4051 complexes over maximum size. 

 

Figure 6. Probability of finding 4051 complexes by random chance 

 

6 Application 

The methods presented thus far allow us to infer protein complexes from an interaction 

network. One may ask, “What is the use of predicting protein complexes?” To show how 

useful protein complex prediction can be, we discuss possible practical applications of using 

predicted complexes for biological or clinical analysis. Firstly, some proteins might have no 

annotations at the moment. Using complex prediction, we can isolate groups of proteins and 

check if most of them have similar functional annotations. If so, we can guess that the un-

annotated protein probably has the same annotation. Secondly, medical researchers who 

might be interested in looking out for groups of proteins that forms a complex with a 

particular protein that is inherent to a disease. This can be useful if the researcher has a target 

protein, he can then proceed to find clusters of proteins containing his target protein. The 

cluster of proteins found might be useful for drug development and related experiments. 
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7 Future Work 

In this study, we presented a modification to solve one of the limitations of CMC. The 

modification can be further improved by allowing iterative removal of detected clusters and 

performing CMC iteratively using different overlapping thresholds and merging thresholds. 

The other possible improvement could be to use a classifier to stop the algorithm from 

merging clusters. This method has been discussed under section 3.2, but was difficult to 

implement due to the fact that negative samples were hard to generate. Instead, negative 

samples could be obtained by false positives generated by the algorithm which can be 

mapped to a feature space as previously discussed. However, this method might require 

robust validation methods because negative samples would be used to train a classifier to 

which the same negative samples might be subjected to testing. We also propose to re-

evaluate our data-preprocessing method, as blast E-values need to be taken into consideration. 

Finally, we note that validation results were good because we filtered off true complexes that 

are totally not present in a network. Thus, for such cases, there is no way to infer them using 

interaction networks. Instead, more information would be required if we want to cover such 

complexes as well. 

In conclusion, we have demonstrated the possibility of merging protein interaction 

networks based on homology and have shown that it increases the performance of the PCF 

algorithm. We showed that merged interaction networks of species nearer to each other in the 

evolutionary tree produced better results whereas merging interaction networks of species 

further away in the evolutionary tree produced worse results. Results might be further 

enhanced if errors in our merging operations were corrected. We also showed that the PCF 

algorithm, which is essentially a modified version of the CMC algorithm, allowed us to 

obtain higher coverage of complexes. The PCF might be useful for biologists who are 

interested in studying unknown complexes. 
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Appendix A - Visualizing complexes and their features 

 

 

 


