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1. Introduction

Extracting nontrivial common features from a wide range of dif-
ferent networks and generating network models properly reflect-
ing such features are essential to research on complex networks.
The generated models enable in-depth studies on the effects of
the extracted common features and their correlations with other
properties of networks. Without good understanding of such criti-
cal issues, research on different systems such as neural, metabolic,
and ecological networks [1–5], World Wide Web, power grids, and
transport networks [6–8] may not have spawned the new research
area of complex networks [9].

Earlier studies on network generation were mainly for gener-
ating network models with requested nodal-degree distributions
[10–14]. Extended work includes fulfilling other parameters such
as clustering coefficient [15]. It was found that two-point corre-
lation, also known as degree–degree correlation, may profoundly
influence the structure of complex networks and the dynamics
taking place on them [16–19]. In reality almost all the empiri-
cal networks have a nontrivial two-point correlation structure. By
adopting a simple rewiring method, R. Xulvi-Brunet et al. proposed
an algorithm for adjusting the assortative coefficient, a global pa-
rameter describing the two-point correction, to any value without
changing the degree distribution [20]. In 2007, S. Weber et al.
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proposed an efficient algorithm for generating random networks
with an a priori defined two-point-correlated structure on undi-
rected network [21]. In the algorithm, links are inserted between
randomly selected nodes subject to the given nodal-degree distri-
bution and a conditional joint degree–degree distribution which
captures the two-point correction. Further progress was made by
A. Pusch et al., who proposed an algorithm for generating an
undirected network with required degree–degree correlation and
an adjustable level of clustering defined by the degree-dependent
clustering coefficient [22].

Many real-life networks, such as the World Wide Web, neu-
ral, metabolic and ecological networks, are directed networks
[3,5,23–25]. In such networks, influences between individuals go
in one direction but not the opposite. As a result, both static and
dynamic properties of directed networks may become significantly
different from those of the undirected ones. Since the correla-
tion is an important property of complex networks, it is necessary
to develop algorithms for generating directed networks with the
specified correlation. Inspired by existing results for undirected
networks such as those reported in [21,22], in this Letter we intro-
duce measures of correlation in directed networks and propose an
algorithm for constructing directed networks with specified two-
point correlation. Necessary theoretical analysis is also developed.

Another important structural feature that we would reflect in
the generation of directed networks is network modularity, which
measures the existence and distribution of densely connected
groups of vertices with sparse connections between them [26–28].
Modularity is considered as one of the main organizing principles
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of many real-life networks, e.g., biological networks [29,30] and
social networks [5]. In 2008, A. Kreimer et al. calculated the mod-
ularity scores (quantified by using Newman’s algorithm [28]) of
more than 300 bacterial metabolic networks and found that they
are generally of quite high values [31]. Recently several methods
were proposed for generating networks with predefined commu-
nity structures, such that the performance of various community
detection algorithms can be tested [32,33]. However the issue of
constructing a network with a given modularity score yet without
a predefined community structure has not received the attention it
deserves. In this Letter, based on the generated directed network,
we propose a method to further adjust the network modularity
score without changing its correlation level. We use artificial and
real network data to validate our algorithms. Specifically, correla-
tion values and modularity scores are derived from artificial and
real-life networks and then be used to generate networks. It is
found that the generated networks coincide with the original ones.

The above two parts of contributions combined together en-
able an efficient and reliable algorithm for generating complex
networks with any assortative coefficients and modularity scores.
Such an algorithm may find wide applications in different areas
including social sciences, communication engineering and ecology,
etc. For example, recently it was found that certain network struc-
tures and assortativity/clustering properties may strongly encour-
age cooperations between individuals [34–37]. Such observations
may help explain the wide existences of emerging cooperations
under the dilemma situations. A flexible network generator shall
be of help to research on such interesting topics. Other examples
include studies on the effects of assortativity and modularity on
distributed search [38] and stability of ecological systems [39], etc.

The layout of this Letter is as follows. Measures of correlation in
directed networks are introduced in Section 2. The relationship be-
tween them is also briefly discussed. We propose the algorithm for
generating a directed network with any given two-point correla-
tion in Section 3. In Section 4, the algorithm for tuning modularity
without changing the two-point correlation is presented. Section 5
concludes the Letter.

2. Correlation in directed networks

In this Letter, we call a link as an arc in a directed network,
and as an edge in an undirected network. Extended from that
for undirected networks [21], two-point correlation of a directed
network can be statistically described by its joint degree distribu-
tion p( jin, jout;kin,kout), which denotes the probability that a ran-
domly chosen arc going from a node with an in-degree jin and an
out-degree jout (hereafter termed as with a degree ( jin, jout)) to
another node with a degree (kin,kout). Later we shall show that
nodal-degree distribution, denoting the probability that a randomly
selected node has a certain degree of ( jin, jout), can be derived
from the joint degree distribution.

The joint degree distribution p( jin, jout;kin,kout) is generally
asymmetric, i.e.,

p
(

jin, jout;kin,kout) �= p
(
kin,kout; jin, jout).

Obviously, p( jin, jout;kin,kout) = 0 if jout = 0 or kin = 0. However,
when jin = 0 or kout = 0, the joint degree distribution may be not
zero. By summing over all the kin and kout , one obtains that

pl
(

jin, jout) =
∑

kin,kout

p
(

jin, jout;kin,kout), (1)

which denotes the probability that a randomly chosen arc is em-
anated from a node with a degree ( jin, jout). Similarly, we have

pr
(
kin,kout) =

∑
in out

p
(

jin, jout;kin,kout), (2)

j , j
which denotes the probability that a randomly chosen arc ends
at a node with a degree (kin,kout). The average nodal-degree of
the network 〈k〉, defined as the ratio between the number of arcs
M and the number of nodes N , and the nodal-degree distribu-
tion pn( jin, jout) can be calculated by using pl and pr . Specifically,
when jout �= 0, we have

pn
(

jin, jout) = 〈k〉 pl( jin, jout)

jout
. (3)

Similarly, when kin �= 0, we have

pn
(
kin,kout) = 〈k〉 pr(kin,kout)

kin
. (4)

As Eq. (4) contains the case of jout = 0 and Eq. (3) contains the
case of kin = 0, they combined together cover all the different cases
for calculating pn( jin, jout). Specifically, from the conservation con-
dition

∑
jin, jout

pn
(

jin, jout) = 1

and Eqs. (3) and (4), we have

pn
(

jin, jout) =
{ 〈k〉pl( jin, jout)/ jout if jout � 1,

〈k〉pr( jin,0)/ jin if jout = 0
(5)

and

〈k〉 = 1(∑
jin�0, jout�1

pl( jin, jout)

jout + ∑
jin�1

pr( jin,0)

jin

) . (6)

With the nodal-degree distribution, we can further calculate
out-degree distribution pout( jout) and in-degree distribution pin( jin),
defined as the probabilities that a randomly chosen node has an
out-degree jout or an in-degree jin respectively:

pin( jin) =
∑
jout

pn
(

jin, jout),

pout( jout) =
∑

jin

pn
(

jin, jout). (7)

The above degree distributions enable the calculations of single-
point correlation, defined as the correlation of the in-degrees and
out-degrees of network node quantified by the Pearson correlation:

rn = 1

σ 2
n

∑
jin, jout

jin jout[pn
(

jin, jout) − pout( jout)pin( jin)]. (8)

The factor 1
σ 2

n
is to ensure that rn fall into the range of [−1,1];

σ 2
n = σ out · σ in , where

(
σ out)2 =

∑
jout

(
jout)2 · pout( jout) −

(∑
jout

jout · pout( jout))2

,

(
σ in)2 =

∑
jin

(
jin)2 · pin( jin) −

(∑
jin

jin · pin( jin))2

. (9)

When rn > 0 (rn < 0), network nodes tend to have similar (differ-
ent) in- and out-degrees. For the special case where rn = 0, there
is no correlation between in- and out-degrees of each node. Hence
pn( jin, jout) = pin( jin)pout( jout).

By using the Pearson correlation, we can also define the arc
correlation as follows:
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re =
∑

jin,kout

{
1

σ 2
e

∑
jout,kin

joutkin[p
(

jin, jout;kin,kout)

− pl
(

jin, jout)pr
(
kin,kout)]}. (10)

The normalizing factor σ 2
e = σ in

e · σ out
e has

(
σ out

e

)2 =
∑
jout

(
jout)2 · pl

(
jin, jout)

−
(∑

jout

(
jout) · pl

(
jin, jout))2

,

(
σ in

e

)2 =
∑
kin

(
kin)2 · pr

(
kin,kout)

−
(∑

kin

(
kin) · pr

(
kin,kout))2

. (11)

When re > 0 (re < 0), a node with a certain out-degree trends to
connect to a node with a similar (different) in-degree. For the spe-
cial case where re = 0, there is no arc correlation. Therefore,

p
(

jin, jout;kin,kout) = pl
(

jin, jout)pr
(
kin,kout)

= pn
(

jin, jout) jout

〈k〉 pn
(
kin,kout) kin

〈k〉 . (12)

When both rn and re equal to 0, denoting the distribution
p( jin, jout;kin,kout) for this special uncorrelated case as puc( jin,

jout;kin,kout), we have

puc
(

jin, jout;kin,kout)

= pin( jin)pout( jout) joutkin

〈k〉2
pin(kin)pout(kout). (13)

As pointed out in [21], to avoid neglecting a very small p( jin, jout;
kin,kout) in numerical computations, we may adopt in calculations
the relative joint degree distribution f ( jin, jout;kin,kout) that

f
(

jin, jout;kin,kout) = p( jin, jout;kin,kout)

puc( jin, jout;kin,kout)
. (14)

3. Algorithm for generating a directed network with requested
two-point correlation

Most existing methods for generating networks adopt the fol-
lowing framework: firstly a number of nodes with stubs are setup.
Then two stubs are chosen to be connected with an edge between
them at a certain probability (e.g., depending on the degrees of the
two nodes [12,13]). We call such a framework as adopting a node
dominant procedure.

In this section, by adopting the same framework, we propose a
new algorithm for constructing directed networks with given joint
degree distribution. The main idea of the algorithm is as follows.

Since

p
(

jin, jout;kin,kout) = pl
(

jin, jout)p
(
kin,kout

∣∣ jin, jout), (15)

where pl( jin, jout) is obtained from Eq. (1) and

p
(
kin,kout

∣∣ jin, jout) = p
(

jin, jout;kin,kout)/pl
(

jin, jout),
to generate a directed network with the requested joint degree
distribution p( jin, jout;kin,kout), we select two nodes with nodal-
degrees ( jin, jout) and (kin,kout) at probabilities of pl( jin, jout) and
p(kin,kout| jin, jout), respectively. Then an arc is inserted to con-
nected these two nodes.

Note that for any finite-size network with given nodal-degrees,
the joint degree distributions that can be exactly realized (here-
after termed as realizable distributions) form into a finite set.
Other distributions however may be approximately reached. Since
finding the realizable joint degree distribution closest to an ar-
bitrarily requested one is difficult, we propose to find the re-
alizable pn( jin, jout) (hereafter denoted as p(d)

n ( jin, jout)) close
to the requested one and then calculate approximate, realizable
p(d)

l ( jin, jout) and p(d)
r ( jin, jout), respectively. Below we present the

construction algorithm in detail.
Assume that the number of nodes N and the joint degree dis-

tribution are given.
(1) Use Eqs. (1) and (2) and then Eqs. (5) and (6) to calcu-

late pn( jin, jout) and the number of the arcs M which equals to
N〈k〉. Calculate p(d)

n ( jin, jout). A simple method is to adjust each
pn( jin, jout) to the nearest or the second nearest integer multiples
of 1/N subject to the conservation condition. Different algorithms
can be developed for the adjustments. In our experiences, how-
ever, different algorithms make minor differences when N is large.
Assign each node an in-degree and an out-degree simultaneously
according to p(d)

n ( jin, jout).
(2) Calculate p(d)

l ( jin, jout) and p(d)
r ( jin, jout) by using Eqs. (3)

and (4). Specifically, we have

p(d)

l

(
jin, jout) = p(d)

n
(

jin, jout) jout/〈k〉
and

p(d)
r

(
jin, jout) = p(d)

n
(

jin, jout) jin/〈k〉.
From Eq. (15), we have

p
(
kin,kout

∣∣ jin, jout) = p( jin, jout;kin,kout)

pl( jin, jout)

= f
(

jin, jout;kin,kout)pr
(
kin,kout).

Hence the approximate value of the conditional probability p(kin,

kout| jin, jout), denoted as p(d)(kin,kout| jin, jout), can be calculated
as follows:

p(d)
(
kin,kout

∣∣ jin, jout)

= f ( jin, jout;kin,kout)p(d)
r (kin,kout)∑

kin,kout f ( jin, jout;kin,kout)p(d)
r (kin,kout)

. (16)

(3) Randomly choose a node with a degree ( jin, jout) at a prob-
ability of p(d)

l ( jin, jout). Denote the chosen node as A and its ac-
tual degree as ( jin

A , jout
A ). Then choose another node with degree

(kin,kout) at a probability of p(d)(kin,kout| jin
A , jout

A ). Denote the ac-
tually chosen node as B . Insert an arc from A to B if the constraint
of no self-loop and no multi-connection is fulfilled; otherwise, re-
peat Step (3).

(4) Once an arc is created, the joint degree distribution and
the distributions of p(d)

l ( jin, jout) and p(d)(kin,kout| jin, jout) for the
arcs to be further inserted are revised accordingly. Specifically, de-
note M′ p(d)

l ( jin, jout), M′ p(d)
r (kin,kout) and M′ p(d)(kin,kout| jin, jout)

as the corresponding distributions of p(d)

l ( jin, jout), p(d)
r (kin,kout)

and p(d)(kin,kout| jin, jout) when there are M ′ links remained to
be inserted. The equations for updating the first two distributions
when one more arc has been inserted are as follows:

M ′ p(d)

l

(
jin

A , jout
A

) = M ′ + 1
′

[
M ′ p(d)

l

(
jin

A , jout
A

) − 1
′

]
,

M M + 1
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Fig. 1. (Color online.) The plot of the correlation function fref ( jin, jout;kin,kout) of
the empirical network versus the correlation function f ( jin, jout;kin,kout) of the
corresponding random network as generated by the algorithm for all indices jin ,
jout and kin , kout . The line y = x is for reference.

M ′ p(d)
r

(
kin

B ,kout
B

) = M ′ + 1

M ′

[
M ′ p(d)

r
(
kin

B ,kout
B

) − 1

M ′ + 1

]
. (17)

The coefficient M′+1
M′ is to keep the normalization of the distribu-

tions. With M′ p(d)
r (kin,kout), the distribution M′ p(d)(kin,kout| jin, jout)

then can be recalculated by Eq. (16).
Repeat Steps (3) and (4) until the requested number of links

have been inserted; or in other words, M ′ = 0.
We test the proposed algorithm in two example networks:

(i) a directed BA model, which is generated in nearly the same
way as that for the classic BA model by growth and preferen-
tial attachment [40]. The only difference is that coming with net-
work growth, directed arcs rather than undirected edges are added
pointing from newly added nodes to the existing ones. In such a
network, the out-degree of the initial nodes is 0 while the out-
degree of the rest nodes is m, where m denotes the number of arcs
attached to each newly added node. Without loss of generality, we
assume that m is also the number of initial nodes. The in-degree
distribution still obeys the power law with an exponent of −3.
In our example, the network size N = 1000 and m = 3, thus the
number of arcs M � 3000; (ii) Ythan Estuary food-web network,
the data of the network is downloaded from [41]. After omitting
all the multiple connections and self-loops, it contains 135 nodes
and 601 edges. We measure the joint degree distribution of each
network and use it as input for the construction algorithm. The
directed networks generated by the algorithm are expected to dis-
play the similar distributions as those of the original ones.

A proper test of the simulation results is to compare the rel-
ative joint degree distributions f ( jin, jout;kin,kout) of the origi-
nal networks and of the generated networks respectively. Denote
f ( jin, jout;kin,kout) in the original network as fref ( jin, jout;kin,

kout), and in the generated network as f ( jin, jout;kin,kout). To fa-
cilitate comparisons, we introduce a parameter γ where

γ =
∑

jin, jout,kin,kout fref · f

(
∑

jin, jout,kin,kout f 2
ref

∑
jin, jout,kin,kout f 2)1/2

. (18)

Having a value of γ closer to 1 generally denotes a better match
between the original and the generated network. In our simula-
tions, γ remains to be equal to 1 for all the example cases, which
reveals a perfect agreement. A density plot of the reference rela-
tive joint degree distribution fref versus the resulting f is shown
in Fig. 1, which verifies the satisfactory agreement between them.

4. Algorithm for tuning modularity without changing the
two-point correlation

In this section, we introduce an algorithm for tuning the mod-
ularity without changing the two-point correlation. The main idea
Fig. 2. Schemes of the algorithm of tuning modularity without changing the two-
point correlation. Sub-figures (a), (b) and (c) shown three different cases. The same
symbols represent the nodes with the same degree. Nodes in the same oval box
means they are in the same community. To increase network modularity score, the
black solid links are going to be replaced by the red dotted links, and vice versa.
(For interpretation of colors in this figure, the reader is referred to the web version
of this Letter.)

Fig. 3. (Color online.) The rewiring operations where directions of all the arcs are
reversed in Fig. 2(a).

is as follows: detect communities and calculate the correspond-
ing modularity score. Compare the calculated score to the target
value. If the score needs to be increased, increase the connections
within communities while reducing the connections between com-
munities by rewiring some arcs. The operations are reversed if the
modularity score is to be lowered. Repeat the above procedure un-
til the target score is achieved or until no further feasible rewiring
can be found though the target score is not achieved yet (in which
case the algorithm fails). Without loss of generality, we let the
modularity score be calculated by using the community detection
method introduced in [42].

Fig. 2 illustrates a few simple rewiring operations we have
adopted. Specifically, for any given two communities, let the same
symbol represent the nodes with the same degree. To increase
modularity score, we shall try to find a few arcs shown as solid
lines and replace them by dotted lines; to decrease modularity
score, the dotted lines are replaced by the solid lines. Apparently
such rewiring operations do not change the two-point correlation
of the network. For convenience, we term the approaches shown
in Figs. 2(a), 2(b) and 2(c) as type-I, type-II and type-III rewiring
respectively. Though more complicated rewiring operations cer-
tainly can be further introduced, in our practice the three types
of rewiring can already ensure achieve quite high or low modu-
larity scores in most network models. Therefore they are sufficient
for most real-life applications.

Since the rewiring is in directed networks, the directions of the
arcs are of important concern. Fig. 3 shows an example of rewiring
where directions of all the arcs in Fig. 2(a) are reversed.

Below we present the algorithm in detail. To simplify the cal-
culations, we adopt the simple rule that type-II rewiring is not
adopted unless arc pairs for type-I rewiring cannot be found, and
type-III rewiring is not adopted unless type-II rewiring has been
exhausted.

(1) First separate the nodes into G groups (either randomly or
by using the algorithm in [42]). Label the nodes from 1 to N , and
the outgoing (incoming) links of each node i from 1 to kout (kin),
i i
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where kout
i (kin

i ) denotes the number of outgoing (incoming) links
of node i, i = 1,2, . . . , N .

(2) Carry out a rewiring operation. For type-I rewiring, the pro-
cedure is as follows: Randomly choose two groups G A and G B .
Denote the number of nodes in them as NG A and NG B , respec-
tively. Randomly choose an arc j A sourced from a certain node i A

in G A and an arc jB sourced from a certain node iB in G B . Starting
from these two arcs, we search through all the arc pairs belonging
to two different groups (e.g., in a round-robin manner) until a fea-
sible solution for type-I rewiring is found.

One possible searching sequence is as follows: First fix j A , then
test through all the links sourced from iB in the sequence of
jB , . . . ,kout

iB
,1, . . . , jB−1. If not successful (i.e., no type-I rewiring

can be carried out), move on to the next node of G B and repeat
the above procedure, until the search is successful or all the nodes
in G B has been tested in the sequence of iB , . . . , NG B ,1, . . . , iB−1.
The above procedure is repeated by firstly changing the selection
of j A in the sequence of j A, . . . ,kout

i A
,1, . . . , j A−1, and then chang-

ing the selection of i A in the sequence of i A, . . . , NG A ,1, . . . , i A−1.
In this way, all the arc pairs in G A and G B are examined. Finally,
the selection of G B is changed in the sequence of G B , . . . , G,1, . . . ,

G B − 1 and then G A in the sequence of G A, . . . , G,1, . . . , G A − 1
subject to the condition that G A �= G B . All the arc pairs eligible for
type-I rewiring are therefore exhaustively searched.

Once a feasible solution is found, the rewiring operation is
carried out accordingly. If all arc pairs have been exhaustively
searched yet no feasible solution has been found, the algorithm
will proceed to carry out type-II rewiring, and later if necessary,
type-III rewiring as well.

Type-II and type-III rewiring can also apply round-robin ex-
haustive search. Detailed descriptions of them are very lengthy and
therefore omitted.

(3) Calculate the temporary modularity score Q temp of the net-
work. The modularity score function is defined as [42]

Q temp = 1

M

∑
i, j

[
aij − kin

i kout
j

M

]
δgi ,g j , (19)

where aij equals to one if there is an arc from node j to node
i and zero otherwise; M denotes the number of arcs in the net-
work; δi j denotes the Kronecker delta; and gi the label of group to
which node i is assigned. A higher value of modularity score cor-
responds to a stronger community structure. Compare Q temp with
the requested modularity level, denoted as Q obj . If they match each
other within a predefined precision range, go to Step (4); other-
wise, go to Step (2). The algorithm however should be terminated
if all the three types of rewiring have been exhausted.

(4) Use the community detection method in [42] to detect com-
munities and obtain the corresponding modularity score, denoted
as Q . If the requested modularity is achieved, i.e., |Q − Q obj| � ε
where ε is the requested precision, then stop; otherwise, take
the newly detected communities as the starting groups and go to
Step (2).

The iterative approach of Steps (2)–(4) makes sure that the
communities for modularity score calculation are detected by us-
ing a well-accepted method rather than arbitrarily defined.

As mentioned earlier, more complicated rewiring operations can
be designed if such is needed. In our practice, however, even be-
fore we need to adopt type-III rewiring, type-I and type-II rewiring
usually can already drive the network to be with a rather high or
low modularity score, e.g., 0.65 in the directed BA model (see be-
low). Considering that the modularity scores of real-life networks
do not often go extremely large or small [43], the proposed algo-
rithm is expected to have a wide applicable range.

Another concern in the algorithm design is that, since in each
iteration the modularity score is recalculated based on reseparated
Fig. 4. (Color online.) Results of modularity adjustment of directed BA model.
(a) Q obj is the objective modularity score. Q is the measurement of the networks
generated by our algorithm. The sizes of the error bar are smaller than those of the
symbols. (b) Average number of tested arcs during rewiring process for each Q obj .
(c) Number of iterations R versus Q obj . The results are averaged over 30 realizations
with the precision ε = 0.003. Lines are just guide for the eyes.

communities, there may be fluctuations in the modularity scores
preventing the algorithm from converging to the objective value.
Theoretically speaking, the problem can be fixed by limiting to
a small number of rewirings in each iteration, though at a cost
of longer computational time. In our practice, such a strategy has
never been implemented: the algorithm always converges quickly.
More details are presented in Fig. 4.

To validate the algorithm, we firstly test it in the directed
BA model. An objective modularity value is set, e.g., Q obj =
0.4, . . . ,0.65. Then the proposed algorithm is adopted to rewire
the arcs until Q obj is achieved. In this Letter, unless otherwise
specified, we start the calculations by randomly separating all the
network nodes into four communities with equal or nearly the
equal sizes. Fig. 4(a) shows the comparison between Q obj and the
modularity score Q obtained from the proposed method. The re-
sults come from 30 independent realizations. We can see they are
in good agreement.

Now we briefly discuss the complexity of the proposed algo-
rithm. From Eq. (19), it can be seen that the maximum number of
rewirings needed is in the order of O (M). To find a set of rewirable
arcs, in the worst case we may need to search through all the
arcs. In average this number however is much lower. Use the type-
I rewiring as an example: when there are l pairs of rewirable
arcs, approximately M2/l arcs need to be tested before a pair of
rewirable arcs are found. Denote the average number of arcs tested
for each rewiring as 〈d〉. The average complexity of arc rewiring
operations is then O (M〈d〉). For most cases, 〈d〉 is much smaller
than M . To demonstrate, we show in Fig. 4(b) the average num-
ber of arcs tested for finding each set of rewirable arcs during the
rewiring process in the directed BA model. We observe that 〈d〉
increases with a larger value of Q obj , which can be easily under-
stood: achieving a high modularity level tends to exhaust rewirable
arcs and consequently makes the later-stage search more difficult.
When 〈d〉 � M , the main computational time in fact is for execut-
ing the community detection method with a moderate complexity
of O ((M + N)N log(N)), essentially identical to that of the corre-
sponding algorithm for undirected networks [28]. Apparently, the
number we have to run the community detection algorithm equals
to the number of iterations. Fig. 4(c) shows the relation between
the number of iterations, denoted as R , and Q obj . We see that
the average value of R peaks at Q obj = 0.475 and goes below 5
when Q obj > 0.525. Such observations can be understood: when
Q obj is relatively small, in each iteration the obtained community
structure in Step (3) is less distinct, which tends to induce larger
fluctuations in community detections in Step (4) and consequently
affects the calculation of modularity scores. When Q obj is large, on
the other hand, the dense connections within most communities
make them be easily detectable by the community detection algo-
rithm. The calculations therefore converge quickly. Note that even
in most difficult cases the propose algorithm converges quickly in
an average of no more than 10 iterations.
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Fig. 5. (Color online.) Temporary results of modularity adjustment in a single re-
alization. In the R-th iteration, Q (R) is the modularity score detected in Step (4)
and d(R) is the average number of arcs tested for each rewiring. (a) and (b) show
the results obtained in directed BA model with Q obj = 0.4, 0.5 and 0.6. (c) and (d)
show the results obtained from three metabolic networks with code names AA, AB
and MT respectively. Lines are just guide for the eyes.

Fig. 5 shows in more detail the temporary results of each it-
eration in the directed BA model as well as a few metabolic net-
works [3]. The metabolic network data is downloaded from [44].
For each metabolic network, we firstly calculate its two-point cor-
relation. Then we use the algorithm in Section 3 to generate a new
network with the same correlation. Finally we measure the modu-
larity of the original network and then tune the modularity of the
new network to be the same.

Fig. 5(a) shows the modularity scores detected in Step (4) in the
R-th iteration, denoted as Q (R), in the directed BA model where
Q obj = 0.4, 0.5 and 0.6 respectively. We see that Q (R) gets close to
Q obj in the first iteration, and after a few iterations with small fluc-
tuations, quickly converges to the objective value. Fig. 5(b) shows
in the same network and for the same values of Q obj , the average
numbers of arcs tested for each rewiring in different iterations, de-
noted as d(R). We see that d(R) tends to be larger in the first
several iterations. This can be explained: in the first several it-
erations, a large number of arcs need to be rewired before the
objective value can be reached. As discussed earlier, having a larger
number of rewiring operations tends to exhaust rewirable arcs and
consequently makes the later-stage search more difficult.

Figs. 5(c) and 5(d) show the simulation results in the metabolic
networks. Simulation results for three different networks with
code names AA, AB and MT respectively are illustrated. We see
that basically all the conclusions above still hold, though fluctu-
ations in simulation results are larger, especially in network AB.
More simulation results for a larger number of metabolic networks
are summarized in Table 1, which shows a few important param-
eters and calculation results. Good matching has been consistently
achieved.

Finally, Ythan Estuary food web is also simulated. Again we
calculate its modularity score and then adjust the modularity of
the corresponding network generated in Section 3. The modularity
score of the resulting network is 0.362, which matches well with
the original value of 0.361.

5. Conclusion

In this Letter, we presented an algorithm for generating di-
rected networks with given two-point correlation defined by joint
degree distribution. Furthermore, an algorithm was developed to
Table 1
Summaries of the original and generated networks respectively: number of nodes
N and arcs M , modularity value Q r of original networks and Q g of the generated
networks, and the value of the parameter γ .

Organism code N M Q r Q g γ

AA 414 1911 0.445 0.442 1.000
AB 620 2516 0.459 0.461 0.998
AG 653 2754 0.487 0.487 0.999
AT 348 1424 0.460 0.460 1.000
BS 1048 4680 0.476 0.477 0.998
CA 734 3137 0.468 0.470 0.997
CE 618 2659 0.469 0.469 0.999
CJ 612 2468 0.482 0.481 0.998
CT 563 2302 0.483 0.483 0.999
CY 801 3414 0.464 0.465 0.998
DR 1086 4815 0.477 0.478 0.997
EF 601 2589 0.466 0.468 0.999
EN 377 1704 0.436 0.434 1.000
HI 511 2421 0.433 0.431 0.998
MB 421 1894 0.441 0.441 1.000
ML 417 1904 0.437 0.437 1.000
MT 580 2738 0.469 0.471 1.000
NM 375 1798 0.418 0.420 0.998
OS 289 1218 0.470 0.472 0.999
PF 313 1384 0.450 0.452 0.999
PG 417 1835 0.447 0.449 0.994
PH 320 1401 0.456 0.459 1.000
PN 409 1962 0.419 0.422 0.996
RC 664 3139 0.451 0.450 0.999
RP 206 824 0.485 0.487 1.000
SC 552 2789 0.439 0.442 1.000
ST 395 1915 0.421 0.420 0.996
TH 427 2022 0.451 0.452 1.000
TM 333 1543 0.454 0.451 1.000
TP 204 864 0.454 0.457 0.997

tune the modularity without changing the two-point correlation.
Artificial and real-life networks have been adopted to test the pro-
posed algorithms. It is manifested that the correlation and modu-
larity of the generated networks coincide with those of the origi-
nal ones. As degree–degree correlation and modularity may affect
many dynamic processes in complex systems, our algorithms are
expected to provide a useful tool for in-depth studies on such ef-
fects.
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