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Summary

With more and more biological information generated, theshpoessing task of bioinformatics
has become to analyse and interpret various types of datading nucleotide and amino acid
sequences, protein structures, gene expression pro lmgsso on. In this thesis, we apply
the data mining techniques of feature generation, featlextion, and feature integration with
learning algorithms to tackle the problems of disease plypealassi cation and patient survival
prediction from gene expression pro les, and the problemhfunctional site prediction from

DNA sequences.

When dealing with problems arising from gene expressiorlggowe propose a hew fea-
ture selection process for identifying genes associatél avsease phenotype classi cation or
patient survival prediction. This metho&RCOF (Entropy-based Rank sum test and COrre-
lation Filtering), aims to select a set of sharply discriating genes with little redundancy by
combining entropy measure, Wilcoxon rank sum test and Beagsrrelation coef cient test.
As for classi cation algorithms, we focus on methods built the idea of ensemble of decision
trees, including widely used bagging, boosting and randarests, as well as newly published
CS4. To compare the decision tree methods with other sfateeeart classi ers, support vector
machines (SVM) and -nearest neighbour are also used. Various comparisonscadifierent
feature selection methods and different classi cationoathms are addressed based on more

than one thousand tests conducted on six gene expressites@od one proteomic data.

In the study of patient survival prediction, we present a i®a of selecting informative
training samples by de ning long-term and short-term sumws. ERCOF is then applied to
identify genes from these samples. A regression functidbdouthe selected samples and genes

by a linear kernel SVM is worked out to assign a risk score tthgmtient. Kaplan-Meier plots

Xii



for different risk groups formed on the risk scores are thenvd to show the effectiveness of the
model. Two case studies, one on survival prediction forgmsi after chemotherapy for diffuse

large-B-cell lymphoma and one on lung adenocarcinomas;@rducted.

In order to apply data mining methodology to identify fuocil sites in biological se-
guences, we rst generate candidate features uskggam nucleotide acid or amino acid pat-
terns and then transform original sequences respect tetheonstructed feature space. Feature
selection is then conducted to nd signal patterns that datingjuish true functional sites from
those false ones. These selected features are furtheratagdgvith learning algorithms to build
classi cation and prediction models. Our idea is used tagaize translation initiation sites
and polyadenylation signals in DNA and mRNA sequences. &oh @pplication, experimental
results across different data sets (including both pultiesoand our own extracted ones) are

collected to demonstrate the effectiveness and robustfiess method.
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Chapter 1

Introduction

The past few decades witness an explosive growth in bickbgndformation generated by the
scienti c community. This is caused by major advances in ghaof molecular biology, coupled
with advances in genomic technologies. In turn, the hugeusstnaf genomic data generated not
only leads to a demand on the computer science communityipcstare, organize and index the
data, but also leads to a demand for specialized tools to aiehanalyze the data.

“Biology in the 21st century is being transformed from a pyrab-based science to an
information science as well[3].

As a result of this transformation, a new eld of science was¥) in which biology, com-
puter science, and information technology merge to forrmglsidiscipline [3]. This isioin-
formatics

“The ultimate goal of bioinformatics is to enable the disepy of new biological insights
as well as to create a global perspective from which unifypnigciples in biology can be dis-

cerned” [3].

1.1 Motivation

At the beginning, the main role of bioinformatics was to teeand maintain databases to store
biological information, such as nucleotide and amino aegugnces. With more and more data
generated, nowadays, the most pressing task of bioinfasiads moved to analyse and interpret

various types of data, including nucleotide and amino aeguences, protein domains, protein



structures and so on. To meet the new requirements arisingtfre new tasks, researchers in the
eld of bioinformatics are working on the development of nalgorithms (mathematical formu-
las, statistical methods and etc) and software tools whiellesigned for assessing relationships
among large data sets stored, such as methods to locate wifjginea sequence, predict protein
structure and/or function, understand diseases at gemessipn level and etc.

Motivated by the fast development of bioinformatics, thisdis is designed to apply data
mining technologies to some biological data so that thevasiebiological problems can be
solved by computer programs. The aim of data mining is toraatially or semi-automatically
discover hidden knowledge, unexpected patterns and ne@s frdm data. There are a variety
of technologies involved in the process of data mining, saststatistical analysis, modeling
techniques and database technology. During the last tas,yé&a mining is undergoing very
fast development both on techniques and applications.ygiisdl applications include market
segmentation, customer pro ling, fraud detection, (eieity) loading forecasting, credit risk
analysis and so on. In the current post-genome age, unddirsa oods of data in molecular bi-
ology brings great opportunities and big challenges to naténg researchers. Successful stories
from this new application will greatly bene t both computscience and biology communities.

We would like to call thidiscovering biological knowledge “in silico” by data mirgn

1.2 Work and Contribution

To make use of original biological and clinical data in théadaining process, we follow the
regular process ow in data mining but with emphasis on thstaps of feature manipulation,
viz. feature space generation, feature selection andrieattegration with learning algorithms.

These steps are important in dealing with biological andiadil data.

(1) Some biological data, such as DNA sequences, have niciefphtures that can be easily
used by learning algorithms. Thus, constructing a featpeees to describe original data

becomes necessary.

(2) Quite a number of biological and clinical data sets pssseany features. Selecting sig-
nal features and removing noisy ones will not only largeljuee the processing time and

greatly improve the learning performance in the later stagealso help locate good pat-



terns that are related to the essence of the study. For e®ainpyjene expression data
analysis, feature selection methods have been widely ased tyenes that are most as-

sociated with a disease or a subtype of certain cancer.

(3) Many issues arising from biological and clinical datettie nal analysis, can be treated as

or converted into classi cation problems and then can besxbby data mining algorithms.

In this thesis, we will mainly tackle gene expression pre End DNA sequence data.

For gene expression pro les, we apply our method to solvekinds of problems: pheno-
type classi cation and patient survival prediction. Ins$legwo problems, genes serve as features.
Since pro le data often contains thousands of genes, we qutdrd a new feature selection
method ERCOF to identify genes most related to the probleRC@&F conducts three-phase
of gene ltering. First, it selects genes using an entropgdal discretization algorithm, which
generally keeps only 10% of discriminating genes. Secoitldgse remaining genes are further
Itered by Wilcoxon rank sum test, a hon-parametric statistiternative to the-test. Genes
passing this round of Itering are automatically divideddrtwo groups: one group consists of
genes that are highly expressed in one type of samples (sucanae) while another group
consists of genes that are highly expressed in another fyg&naples (such ason-cancey. In
the third phase, correlated genes in each group are dettrhinPearson correlation coef cient

test and only some representatives of them are kept to foermti set of selected genes.

When applying learning algorithms to classify phenotypesfocus on classi ers built on
the idea of an ensemble of decision trees, including theynpubblished CS4 [63, 62], as well as
state-of-the-art Bagging [19], Boosting [38], and Randames$ts [20]. More than one thousand
tests are conducted on six published gene expression pgodata sets and one proteomic data
set. To compare the performance of these ensembles ofatetise methods with those widely
used learning algorithms in gene expression studies, imeetal results on support vector ma-
chines (SVM) and -nearest neighbour {NN) are also collected. SVM is chosen because it is
a representative of kernel function:NN is chosen because it is the most typical instance-based
classi er. To demonstrate the main advantage of the datisi#e methods, we present some of
decision trees induced from data sets. These trees areesieyglicit and easy to understand.
For each classi er, besides ERCOF, we also try featureswaldoy several other entropy-based

Itering methods. Therefore, various comparisons of légralgorithms and feature selection

3



methods can be addressed.

In the study of using gene expression pro les to predictgratsurvival status, we present
a new idea of selecting informative training samples by degn‘long-term” and “short-term”
survivors. After identifying genes associated with suavivia ERCOF, a scoring model built on
SVM is worked out to assign risk score to each patient. Kaplaier plots for different risk

groups formed on the risk scores are then drawn to show thetifiness of the model.

Another biological domain to which the proposed 3-stepuieaimanipulation method is
applied is the recognition of functional sites in DNA seques) such as translation initiation
sites (TIS) and polyadenylation (poly(A)) signal. In thtady, we put our emphasis on feature
generation — -gram nucleotide acid or amino acid patterns are used tatrmhghe feature
space and the frequency of each pattern appearing in thersegis used as value. Under the
description of the new features, original sequence dattharetransformed to frequency vector
data to which feature selection and classi cation can bdiegp In TIS recognition, we test
our methods on three independent data sets. Besides trewvaladation within each dat set,
we also conduct the tests across different data sets. Irdémdiication of poly(A) signal, we
make use of both public and our own collected data and bufférdint models for DNA and
MRNA sequences. In both studies, we achieve comparablett@r lpgediction accuracy than
those reported in the literature on the same data sets. iticadve also verify some known

motifs and nd some new patterns related to the identi cataf relevant functional sites.

The main contributions of this thesis are

(1) articulating a 3-step feature manipulation method teessome biological problems;

(2) putting forward a new feature selection strategy totifiegood genes from a large amount

of candidates in gene expression data analysis;

(3) presenting a new method for the study on patient surgvedliction, including selecting
informative training samples, choosing related genes aildibg an SVM-based scoring

model;

(4) applying the proposed techniques to published geneesgjn pro les and proteomic
data, and addressing various comparisons on classi catimhfeature selection methods

from a large amount of experimental results;
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(5) pointing out signi cant genes from each analysed datacgenparing them with literature

and relating some of them to the relevant diseases;

(6) recognizing two types of functional sites in DNA sequemata by using -gram amino
acid or nucleotide acid patterns to construct feature spadevalidating learning models

across different independent data sets.

1.3 Structure

Chapter 2 rstde nes terms and introduces some conceptadivised machine learning. Then
it reviews some learning algorithms and techniques, inotpudupport vector machines (SVM),
-nearest neighbour {NN) and decision tree induction. Presenting methods ofrae deci-
sion trees is the emphasis of this chapter and state-adsthadgorithms, such as Bagging, Boost-
ing, Random forests, are described in detail. Newly impleted and published CS4 (cascading-
and-sharing for decision trees) is illustrated at the ertdclvmakes use of different top-ranked

features as the root node of a decision tree in an ensemble.

Chapter 3 surveys feature selection techniques for datmgitt begins with introducing
two broad categories of selection algorithms — lter and pyper, and indicating that Iter is
more suitable to solve biological problems. Then it presentariety of common Iter methods,
such as-statistic measure, Wilcoxon rank sum test, entropy-basedsures, principal compo-
nents analysis and so on. Following these methods, therex&RCOF, our proposed 3-phase
feature ltering strategy for gene expression data analy3ihe chapter ends with a discussion

on applying feature selection to bioinformatics.

Chapter 4 is a literature review of microarray gene expoesgata studies. The idea of mi-
croarray experiments and the problems arising from geneesgjon data are introduced before
the extensive survey on various technologies that haveibeelved in this research area. These
technologies are described in terms of data preprocesgeng selection, supervised learning,
clustering, and patient survival analysis.

Chapter 5 describes in detail my experimental work on phgreotlassi cation from gene

expression data. The chapter starts with illustrating ttoppgsed feature selection and super-

vised learning scenarios, experimental design and evwatuatethods. Then, it presents more



than 1,000 experimental results obtained from six geneessmn pro les and one proteomic
data. For each data set, not only the classi cation and ptiedi accuracy is given, but also the
selected discriminatory genes are reported and relatelaetditerature and the disease. Some
comparisons among feature selection methods and learlgngthms are also made based on
the large amount of experimental results. ERCOF and CS4hmwrsto be the best feature

selection method and ensemble tree algorithm, respectivel

Chapter 6 presents my work on patient survival predictiangigene expression data. A
new method is illustrated in detail according to the ordesalécting informative training sam-
ples, identifying related genes and building an SVM-baszatisg model. Case studies, on
survival prediction for patients after chemotherapy fdfudie large-B-cell lymphoma and Stage

| and Il lung adenocarcinomas, are presented followingdgseription of the method.

Chapter 7 is my work on applying data mining technologiesetmgnize functional sites
in DNA sequences. The chapter begins with describing ouhoaktf feature manipulation for
dealing with sequence data, with the stress on feature gmeiusing -gram nucleotide acid or
amino acid patterns. Then the method is applied to identdgdation initiation site (TIS) and
polyadenylation (poly(A)) signal. The presentation orétareach application is: background
knowledge, data sets description, experimental resultsgdescussion. For both TIS and poly(A)
signal recognitions, results achieved by our method arepeoable or superior to previously
reported ones, and several independent data sets are ussttte effectiveness and robustness

of our prediction models.
Chapter 8 makes conclusions and suggests future work.

Figure 1.1 shows the structure of this thesis in a graph.
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Chapter 2

Classi cation — Supervised Learning

Data mining is to extract implicit, previously unknown anotgntially useful information from
data [134]. Itis a learning process, achieved by buildingygoter programs to seek regularities
or patterns from data automatically. Machine learning fles the technical basis of data mining.
One major type of learning we will address in this thesis Ifedaclassi cation learning, which
is a generalization of concept learning [122]. The task afcept learning is to acquire the
de nition of a general category given a set of positive clasd negative class training instances
of the category [78]. Thus, it infers a boolean-valued fiorcfrom training instances. As a more
general format of concept learning, classi cation leaghitan deal with more than two class
instances. In practice, the learning process of classboais to nd models that can separate
instances in the different classes using the informatiaviged by training instances. Thus,
the models found can be applied to classify a new unknowrangst to one of those classes.
Putting it more prosaically, given some instances of thetipesclass and some instances of
the negative class, can we use them as a basis to decide if ani@ewn instance is positive
or negative [78]. This kind of learning is a process from gehto speci ¢ and is supervised
because the class membership of training instances aréydteawn.

In contrast to supervised learning is unsupervised legrnirhere there is no pre-de ned
classes for training instances. The main goal of unsupedvisarning is to decide which in-
stances should be grouped together, in other words, to foentclasses. Sometimes, these two
kinds of learnings are used sequentially — supervised ilegmaking use of class information

derived from unsupervised learning. This two-step strategs achieved some success in gene



Table 2.1: An example of gene expression data. There are &wiples, each of which is
described by 5 genes. The class label in the last columnatetiche phenotype of the sample.

Genel Gene2 Gene3 Gene4 Geneblass
298 654 1284 800 163| ALL
2947 1811 198 679 225| AML

expression data analysis eld [41, 6], where unsupervidedtering methods were rst used
to discover classes (for example, subtypes of leukemiah&ostupervised learning algorithms
could be employed to establish classi cation models andyass phenotype to a newly coming

instance.

2.1 Data Representation

In atypical classi cation task, data is represented as k& tatsamplegalso known agnstanceks
Each sample is described by a xed numbefasHturegalso known asttributeg and a label that
indicated itsclass[44]. For example, in studies of phenotype classi catioeng expression data
on genesfor mRNA samples is often summarized by an table :
where  denotes the expression level of genen mMRNA sample , and is the class (e.g.
acute lymphoblastic leukemia) to which sampleelongs ( and ).

Table 2.1 shows two samples from a leukemia data set.

2.2 Results Evaluation

Evaluation is the key to making real progress in data minit@4]. To evaluate performance
of classi cation algorithms, one way is to split samplesoittvo sets, training samples and test
samples. Training samples are used to build a learning mekig test samples are used to
evaluate the accuracy of the model. During validation, $estples are supplied to the model,
having their class labels “hidden”, and then their prediattass labels assigned by the model
are compared with their corresponding original class Rb®licalculate prediction accuracy. If
two labels (actual and predicated) of a test sample are gharethe prediction to this sample is
counted as auccessotherwise, it is arerror [134]. An often used performance evaluation term

is error rate, which is de ned as the proportion of errors made over a whketef test samples. In
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A B

true positive false negative
actual class

B false positive | true negative

Figure 2.1: Confusion matrix for two-class classi catioroplem.

some cases, we just simply use number of errors to indicatedtformance. Note that, although
the error rate on test samples is often more meaningful to&ea model, the error rate on the

training samples is nevertheless useful to know as welksihe model is derived from them.

Let's see the confusion matrix illustrated in Figure 2.1 dfv@-class problem. Theue
positive(TP) andtrue negative(TN) are correct classi cations in samples of each class, espe
tively. A false positive(FP) is when a class sample is incorrectly predicted as a class
sample; dalse negativdFN) is when a class sample is predicted as a classsample. Then
each element of a confusion matrix shows the number of tesplsa for which the actual class
is the row and the predicted class is the column. Thus, ther eate is just the number of
false positives and false negatives divided by the totallmemof test samples (i.e. error rate =

).

Error rate is a measurement of overall performance of aiatation algorithm (also known
as a classi er); however, a lower error rate does not necdssaply better performance on a
target task. For example, there are 10 samples in claasd 90 samples in class If
and , then , and error rate is only 10%. However, in classthere are
only 50% samples are correctly classi ed. To more impdstialaluate the classi cation results,

some other evaluation metrics are constructed:

1. True positive rate (TP rate) = , also known asensitivityor recall, which

measures the proportion of samples in claghat are correctly classi ed as class

2. True negative rate (TN rate) = , also known aspeci city, which measures

the proportion of samples in classthat are correctly classi ed as class

3. False positive rate (FP rate) =

11
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Figure 2.2: A sample ROC curve. The dotted line on the 45 dedjsgonal is the expected curve
for a classi er making random predictions.

4. False negative rate (FN rate) =

5. Positive predictive value (PPV) , also known agprecision which mea-

sures the proportion of the claimed classamples are indeed classsamples.

In classi cation, it is a normal situation that along with @her TP rate, there comes a higher FP
rate, and same to the TN rate and FN rate. Thus, the receieeatopy characteristic (ROC) curve
was invented to characterize the tradeoff between TP raté-Brrate. The ROC curve plots TP
rate on the vertical axis against FP rate on the horizonial &ith an ROC curve of a classi er,
the evaluation metric will be the area under the ROC curve [@lger the area under the curve
(the more closely the curve follows the left-hand border tiiedop border of the ROC space), the
more accurate the test. Thus, the ROC curve for a perfeci@dabas an area of 1. The expected
curve for a classi er making random predictions will be aglian the 45 degree diagonal and its
expected area is 0.5. Please refer to Figure 2.2 for a samigizdarve. ROC curve is widely used
in bioinformatics domain, for example, it has been adopteidiplement the evaluation scoring
system of KDD Cup 2001http://www.cs.wisc.edu/"dpage/kddcup2001/ ) and
KDD Cup 2002 http://www.biostat.wisc.edu/ craven/kddcup/ ), both of them
were about classifying biological data.

If the number of samples for training and testing is limitadstandard way of predicting
the error rate of a learning technique is to use strati efibld cross validation. In -fold cross
validation, rst, a full data set is divided randomly intodisjoint subsets of approximately equal

size, in each of which the class is represented in approgigntiie sample proportions as in the
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full data set [134]. Then the above process of training asting will be repeated times on
the data subsets. In each iteration, (1) one of the subsetsdhgin turn, (2) the classi er is
trained on the remaining subsets to build classi cation model, (3) the classi catierror
of this iteration is calculated by testing the classi catimodel on the holdout set. Finally, the
number of errors are added up to yield an overall error esim@bviously, at the end of cross

validation, every sample has been used exactly once fangest

A widely used selection for is 10. Why 10? “Extensive tests on numerous different data
sets, with different learning technigues, have shown #iratg about the right number of folds to
get the best estimate of error, and there is also some tiedretidence that backs this up” [134].
Although 10-fold cross validation has become the standagthod in practical terms, a single
10-fold cross validation might not be enough to get reliadri®r estimate [134]. The reason is
that, if the seed of the random function that is used to diddt into subsets is changed, the
cross validation with the sample classi er and data set@ftibn produce different results. Thus,
for a more accurate error estimate, it is suggested to repedtO-fold cross validation process
ten times and average the error rates. This is called tewol@iCzfoss validation and naturally, it

is a computation-intensive undertaking.

Instead of running cross validation ten times, another@gugr for a reliable results is called
leave-one-outross validation (LOOCV). LOOCYV is simply-fold cross validation, where is
the number of samples in the full data set. In LOOCYV, each &ingturn is left out and the
classi er is trained on all the remaining samples. Classi cation error for each iteration is
judged on the class prediction for the holdout sample, fscoefailure. Different from -fold
( ) cross validation, LOOCV makes use of the greatest possilnleunt of samples for

training in each iteration and involves no random shuf irffggamples.

2.3 Algorithms

There are various ways to nd models that separate two or rdate classes, i.e. do classi ca-
tion. Models derived from the same sample data can be veigreliit from one classi cation

algorithm to another. As a result, different models repnesize knowledge learned in different
formats as well. For example, decision trees representtbeliedge in a tree structure; instance-

based algorithms, such as nearest neighbour, use thedestremselves to represent what is
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learned; naive Bayes method represents knowledge in the dbiprobabilistic summaries. In
this section, we will describe a number of classi cationalthms that have been used in the
biomedical domain, including-nearest neighbour, support vector machines and decisen t

induction methods.

2.3.1 -nearest neighbour

-nearest neighbour {NN) is a typical instance-based classi cation and predicalgorithm.
Learning in this kind of methods consists of simply storihg training data [78]. When a new
instance comes, a set of similar related instances isvettifom memory and used to classify
the new instance. By-NN, the class label of a new testing sample is decided by thienity
class of its closest training samples. The distance between two saligptesasured by a certain
metric. Generally, the standard Euclidean distance is.ué¢ldere are features to describe a
sample and denotes the value ofh feature ( ), then the Euclidean distance

between two samples and is de ned to be , where

Note that using above distance metric assumes that therdeatine numeric, normalized and
are of equal importance. If different features are measoredifferent scales and Euclidean
distance is still used directly, the effect of some featungght be completely dwarfed by others
that have larger scales of measurement. Therefore, in siseh mormalization must be conducted
in advance. For nominal features whose values are symlaiherthan numeric, the distance
between two values is often taken to be 1 if the values areamoésto be 0 if the values are same.
No scaling is necessary in this case since only the valuesl @ @me used. As for the selection
of , it can be done by running cross validation on training sasmplThe for which the cross

validation error rate is smallest is retained for use orhferrtesting and prediction. In practice,

1, 3 and 5 are the generally adopted values for

Although the class prediction for a new sample relies on itéosest neighbours, the con-
tribution of these neighbours could not be treated equally since some of thaghtrbie a bit far

from the target sample while some are closer to it. Thus, emmement to -NN algorithm is
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to weight the contribution of each of thenearest neighbours according to their distance to the
testing sample, assigning bigger weight to closer neigitobor example, use as
the weight.

The nearest neighbour idea originated many decades ago;ldhdstarted to be analyzed
by statisticians in early 1950s [134]. Fix and Hodges phiaiistheir pioneering analysis of the
nearest neighbour in 1951 [37], and Johns rst reported $&@ge in classi cation problem in
1961 [52]. Recently, -NN has been widely used in classifying biomedical data —ef@mple,
gene expression data [135, 67, 140, 35, 10], and translatitation site prediction in DNA

sequences [142, 72]. However, there are some disadvardghigesance-based approaches.

(1) Generally, the cost of classifying new instances cani@k. hThis is due to the fact that
almost all computation happens at the classi cation timhieathan when the training

samples are loaded.

(2) Since there is no separate learning phase, all trairimgpkes have to be stored in the
memory when class prediction for a new sample is done. Thisgoasume a long-term

unrealistic amounts of storage.

(3) Typically, instance-based algorithms, especialdN, consider all features when nding

similar training samples from memory. This makes them vensgive to feature selection.

(4) Most of the algorithms do not output explicit knowleddmatt is learned. When dealing
with biomedical data, this drawback is conspicuous sinceprehensible knowledge is

expected by biologists and medical doctors.

2.3.2 Support vector machines

Support vector machines (SVM) is a kind of a blend of lineardelmg and instance-based
learning [134], which uses linear models to implement medr class boundaries. It originates
from research in statistical learning theory [130]. An SVBlexts a small number of critical
boundary samples from each class of training data and baiidear discriminant function (also
called maximum margin hyperplapehat separates them as widely as possible. The selected
samples that are closest to the maximum margin hyperplaneatiedsupport vectorsThen the

discriminant function for a test sample is a linear combination of the support vectors and
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maximal margin hyperplane

negative samples

support vectors

Figure 2.3: A linear support vector machine.

its constructed as:

where the vectors are the support vectors, are the class labels (which are assumed to have
been mapped to 1 or -1) of , vector represents a test sample. () is thedot product

of the test sample with one of the support vectors . and are numeric parameters (like
weights) to be determined by the learning algorithm. PleaseFigure 2.3 for representation of

a linear SVM.

In the case that no linear separation is possible, the mgidata will be mapped into a
higher-dimensional space and an optimal hyperplane will be constructed there. Thexinggs
performed by a kernel function which de nes an inner product in . Different mappings

construct different SVMs. When there is a mapping, the digoant function is given like:

An SVM is largely characterized by the choice of its kerneidiion. There are two types of
widely used kernel functions [24polynomialkernel and Gaussiamdial basis functiorkernel

(RBF).

A polynomial kernel is , the value of power is called
degree and generally is set as 1, 2 or 3. Particularly, thackéecomes a linear function
if . It is suggested to choose the value of degree starting wéthdlincrement it

until the estimated error ceases to improve. However, itleas observed that the degree
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of a polynomial kernel plays a minor role in the nal resulOp] and sometime, linear
function performs better than quadratic and cubic kernaks td over tting of the latter

kernels.

An RBF kernel has the form —— , where isthe width of the
Gaussian. The selection of parameteman be conducted via cross validation or some other
manners. In [23], when using SVM with RBF kernel on gene esgion data analysis,
Brownet alset equal to the median of the Euclidean distances from eackiysample
(sample with class label as 1) to the nearest negative saisgueple with class label as

1),

Besides polynomial kernel and Gaussian RBF kernel, otharekdunctions include sigmoid
kernel [108], -spline kernel [108], locality-improved kernel [145], asd on. A tutorial of
SVM can be found in [24].

In order to determine parametersand in (2.3), the construction of the discriminant
function nally turns out to be a constrained quadratic gesb on maximizing the Lagrangian

dual objective function [131]:

under constraints

where is the number of samples in training data. However, the guadprogramming (QP)

problem in equation (2.4) can not be solved easily via st@htichniques since it involves a
matrix that has a number of elements equals to the square oitinber of training samples. To
ef ciently nd the solution of the above QP program, Plativedoped the sequential minimal op-
timization (SMO) algorithm [93] — one of the fastest SVM treig methods. Like other SVM

training algorithms, SMO breaks the large QP problem interaes of smaller possible QP prob-
lems. Unlike other algorithms, SMO tackles these small @Blems analytically, which avoids
using a time-consuming numerical QP optimization as anritoap. The amount of memory
required by SMO is linear with number of training samples][98BMO has been implemented

into Weka a data mining software package [134].
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SVMs have been shown to perform well in multiple areas ofdgalal analysis, such as
detecting remote protein homologies, recognizing trdimsidnitiation sites [145, 142, 72], and
prediction of molecular bioactivity in drug design [132].e€ently, more and more bioinfor-
maticians employ SVMs in their research on evaluating aralyaing microarray expression
data [23, 39, 140]. SVMs have many mathematical featurdsntate them attractive for gene
expression analysis, including their exibility in choosj a similarity function, sparseness of so-
lution when dealing with large data sets, the ability to Hahakge feature spaces, and the ability
to identify outliers [23]. Among many published works inghdrea, Browret al [23] studied
an expression data set from 2467 genes from the budding $aasharomyces cerevisiae mea-
sured in 79 different DNA microarray hybridization expeents. Their results show that SVMs
outperformed Parzen window, Fisher's linear discrimireamd two decision tree classi ers (C4.5
and MOC1). Fureyet al[39] analysed three data sets: ovarian cancer [109], c@docar [84]
and subtype leukaemia [41]. They reported low test errorthese data sets despite the small
number of tissue samples available for investigation.

On the other hand, in [76], Meyeat al did a bench mark study on comparison of SVMs
with 16 classi cation methods based on their performanc@bdata sets from widely used UCI
machine learning database [15]. These classi ers includdN, classi cation trees (bagging,
random forests and multiple additive regression treesgali/quadratic discriminant analysis,
neural networks and so on. For SVMs, they used the C++ lidtdBB VM at http://www.
csie.ntu.edu.tw/"cjlin/libsvm . They evaluated the performance of an algorithm by
classi cation error and mean squared error. They drew tbafrclusions that: “support vector
machines yielded good performance, but were not top rankeadl alata sets. Simple statistical
procedures and ensemble methods proved very competitos)ynproducing good results “out
of the box" without the inconvenience of delicate and corapiahally expensive hyperparameter
tuning. ...... In short, our results con rm the potential ®/Ms to yield good results, but their
overall superiority can not be attested”.

In many practical data mining applications, success is oredsmore subjectively in terms
of how acceptable the learned description — rules, decisi@es, or whatever — are to a hu-
man user [134]. This measurement is especially importabidmedical applications such as

cancer studies where comprehensive and correct ruleswrialcio help biologists and doctors
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understand the disease.

2.3.3 Decision trees

Decision tree induction is among the most popular classiocamethods. As mentioned above,
decision tree has an important advantage over other matdangng algorithms such asNN

and SVM, in a qualitative dimension: rules produced by desidree induction are easy to
interpret and understand, and hence, can help greatly ireeipging the underlying mechanisms

that separate samples in different classes.

In general, decision trees try to nd an optimal partitiogiaf the space of possible obser-
vations, mainly by the means of subsequent recursive splitsst of the algorithms implement
this induction process inp-downmanner: (1) determining the root feature that most discrim-
inatory with regard to the entire training data; (2) using tbot feature to split the data into
non-overlapping subsets; (3) selecting a signi cant featf each of these subsets to recursively
partition them until reaching one of stopping criteria. Sidea was rst developed by Ross Quin-
lan and his classic paper was published in 1986 [96]. Figutés2a decision tree example from
a study of gene expression in two subtypes of acute leukeragsge lymphoblastic leukemia
(ALL) and acute myeloid leukemia (AML). To classify a new gale a decision tree sorts the
sample down the tree from the root to some leaf node, whichiges the classi cation of the
sample. Established decision trees can also be re-prdsastsets off-then rules to improve
human readability. For example, from the left-most branfcthe decision tree illustrated in Fig-
ure 2.4, a decision rule can be derived asAifribute2233 80.34 and Attribute4847 506.77

thenthe sample is an ALL sample

Among many decision tree based classi ers, C4.5 [97] is &esthblished and widely used
algorithm. C4.5 uses the informatigyain ratio criterion to determine the most discriminatory
feature at each step of its decision tree induction prodessach round of selection, the gain ratio
criterion chooses, from those features with an averadeetier information gain, the feature that
maximizes the ratio of its gain divided by its entropy. C4tdps recursively building sub-trees
when (1) an obtained data subset contains samples of oniglass( then the leaf node is labeled
by this class); or (2) there is no available feature (thenlebé node is labeled by the majority

class); or (3) when the number of samples in the obtainedesishkess than a speci ed threshold
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Attribute2233

<=80.34 > 80.34

Attribute4847

<=506.77 > 506.77

Figure 2.4: A decision tree for two types (ALL v.s. AML) acukeukemias classi cation.
Branches correspond to the values of attributes (genesjedandicate classi cations.

(then leaf node is labeled by the majority class). The pesgésnition and calculation formulae
of information gain and gain ratio are given in Section 3.2Zbapter 3. After obtaining a
learned decision tree, C4.5 conducts fpest-pruningto make a decision tree simple and reduce
the probability of over- tting the training data.

This pruning is known aseduced error pruning For each of the nodes in the tree, the
traditional process of this pruning consists of removing shibtree rooted at a node, making it
a leaf node and assigning it the most common class of tharigagamples af liated with that
node. A node is removed only if the resulting pruned treegoeré no worse than the original
over the cross validation set [78]. Since the performanaméasured on validation set, this
pruning strategy suffers from the disadvantage that theahtiee is based on less data. However,
in practice, C4.5 makes some estimate of error based oringaitata itself — using the upper
bound of a con dence interval (by default is 25%) on the resiiltion error. The estimated
error of the leaf is within one standard deviation of thereated error of the node. Besides
reduced error pruning, C4.5 also provides another prunptipio known assubtree raising In
subtree raising, an internal node might be replaced by ormeodés below and samples will
be redistributed. For a detailed illustration on how C4.Bdwgts its post-pruning, please refer
to [97, 134].

Other algorithms for decision tree induction include ID8(gecessor of C4.5) [96], C5.0
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(successor of C4.5), CART (classi cation and regressierd) [22] bttp://www.salford
-systems.com/ ), LMDT (Linear Machine Decision Trees) [128], OC1 (obligakassi er
1) [81] and so on. This group of algorithms are most succé$sfuanalysis of clinical data
and diagnosis from clinical data. Some examples includatilog protein coding regions in
Human DNA [104], prediction of post-traumatic acute lunguig [99], identi cation of acute
cardiac ischemia [110], prediction of neurobehavioralcoate in head-injury survivors [120].
More recently, they have been used to learn from gene expredata to reconstruct molecular

networks [117] or classify tumors [35].

2.3.4 Ensemble of decision trees

Ensemble methodse learning algorithms that construct a set of classi exd then classify new
samples by taking a vote of their predictions [33]. Gengrsleaking, an ensemble method can
increase predictive performance over a single classi er.[33], Dietterich gave three funda-
mental reasons for why ensemble methods are able to outpesioy single classi er within the
ensemble — in terms of statistical, computational and sepr&tional issues. Besides, plenty
of experimental comparisons have been performed to showaagt effectiveness of ensemble

methods in improving the accuracy of single base classi@8s 13, 34, 20, 107].

The original ensemble method is Bayesian averaging [33]bagging (bootstrap aggre-
gation) [19] and boosting [38] are two of most popular tegiis for constructing ensembles.
Next, we will introduce how these two ideas and some othegrabe methods are implemented

to generate decision tree committees.

Bagging of decision trees

The technigue of bagging was coined by Breiman [19], whostigated the properties of bag-
ging theoretically and empirically for both classi catiaand numeric prediction. Bagging of
trees combines several tree predictors trained on boptsénaples of the training data and gives
prediction by taking majority vote. In bagging, given amiag set with samples, a new train-
ing set is obtained by drawing samples uniformly with replacement from When there

is a limited amount of training samples, bagging attemptseigtralize the instability of single

decision tree classi er by randomly deleting some samphekraplicating others. The instability
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Generation of trees

Let be the number of samples in the training data

For each of iterations:
Obtain a new training set by drawing samples with replacement from
Apply the decision tree algorithm to .
Store the resulting tree.

Classi catior
Given a new sample.
For each of the trees:
Predict class of sample according to the tree.
Return class that has been predicted most often.

Figure 2.5: Algorithm for bagging.

inherent in learning algorithms means that small chang#setéraining set cause large changes

in the learned classi er. Figure 2.5 is the algorithm for bing.

Boosting of decision trees

Unlike bagging where individual trees are built indeperijeeach new tree generated in boost-
ing is in uenced by the performance of those built previgu8oosting encourages new trees to
become “experts” for samples handled incorrectly by eadies [134]. When making classi -

cation, boosting weights a tree's contribution by its parfance, rather than giving equal weight

to all trees which is adopted by bagging.

There are many variants on the idea of boosting. The versimaduced below is called
AdaBoostM1which was developed by Freund and Schapire [38] and desigpeci cally for
classi cation. The AdaBoostM1 algorithm maintains a setwafights over the training data set

and adjusts these weights after each iteration learningeobase classi er. The adjustments
increase the weight of samples that are misclassi ed anckdse the weight of samples that are
properly classi ed. By weighting samples, the decisioresrare forced to concentrate on those
samples with high weight. There are two ways that AdaBoosthéhipulates these weights to
construct a new training set to feed to the decision tree classi er [134]. One way is ahlle
boosting by samplingin which samples are drawn with replacement fromwith probability
proportional to their weights. Another way li®osting by weightingin which the presence of

sample weights changes the error calculation of tree aaisst using the sum of the weights
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Generation of trees
Let be the number of samples in the training data
Assign equal weight  to each sample in.
For each of iterations:
Apply decision tree algorithm to weighted samples.
Compute error of the obtained tree on weighted samples.
If isequal to zero:
Store the obtained tree.
Terminate generation of trees.
If is greater or equal to 0.5:
If the obtained tree is the rst tree generated:
Store the obtained tree.
Terminate generation of trees.
For each of samples in:
If sample is classi ed correctly by the obtained tree:
Multiply weight of the sample by
Normalize weight of all samples.

Classi cation
Given a new sample.
Assign weight of zero to all classes.
For each of the tree stored:
Add to the weight of the class predicted by the tr
Return class with highest weight.

19%
®

Figure 2.6: Algorithm for AdaBoostM1.

of the misclassi ed samples divided by the total weight dfsaimples, instead of the fraction of
samples that are misclassi ed. Please refer to Figure 2.8 fietailed algorithm of AdaBoostM1
using boosting by weighting.

Please note that the approach of boosting by weighting caisdée only when the learning
algorithm can cope with weighted samples. If this is not th&e¢ an unweighted data set is gen-
erated from the weighted data by resampling. Fortunatelys @ecision tree induction algorithm
has been implemented to deal with weighted samples. For datadls about this, please refer
to [98].

Besides bagging and boosting, Dietterich put forward agrmditive but very simple idea,
randomization trees, to build ensemble trees. With thig,idke split at eaclnternal node
is selected at random from the(20 by default) best splits. In case of continuous attribute
each possible threshold is considered to be a distinct splithe best splits may all involve

splitting on the same attribute. Experimentally, Dietteii34] also compared randomization with
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bagging and boosting of constructing ensembles of C4.5idectrees using 33 data sets. His
experimental results showed that (1) when there is littleamclassi cation noise, randomization

is competitive with (sometime is slightly superior to) baggbut not as accurate as boosting;
(2) where there is substantial classi cation noise, baggsmuch better than boosting, and

sometimes better than randomization.

Random forests

Random forestss based on bagged trees, but in addition uses random feslaetion at each

node for the set of splitting variables [20].

A more precise de nition of random forests given in [20] is fandom forest is a classi er
consisting of a collection of tree-structured classi ers ( ), where the are
independent identically distributed random vectors archdeee casts a unit vote for the most
popular class at input ”. Using random forests, in theth iteration, a random vector is
generated, independent of the past random vectors but létegme distribution. For instance,

is generated by drawing samples with replacement from raldiraining data. Based on
the bootstrapped data, in [20], the forests using randoedgcted attribute or combinations of
attributes at each node were studied. In the former casechtrede, number of candidate
features are selected from all features and the best split on these is used to split the
node. is de ned by the user, and has the same value for each treengrothe ensemble.
It can take any value in the range of 1 ta In [20], two values of were tried — 1 and
. The experimental results illustrated that the algoritemdt very sensitive to the
value of . In the latter case, more features are de ned by taking ramliftear combinations
of a number of the original input attributes. This approastused when there are only a few
attributes available so that higher correlations betwadividual classi ers are expected. After
a splitting feature is determined, random forests grow ke tising CART [22] methodology to
maximum size and do not prune. Different from C4.5, CART &slgplitting feature using GINI

impurity criterion. Please refer to Figure 2.7 for the gahatgorithm of random forests.

In [21], Breiman claimed that “in random forests, there isweed for cross-validation or a
separate test set to get an unbiased estimate of the test@eét Ehe reason was as follows. In

each of iterations, about one-third of the samples are left out efrtew bootstrap training set
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Generation of trees
Let be the number of samples in the training data
be the number of trees to grow,
be an integer and , ( is the number of features).
For each of iterations:
Obtain a new training set by drawing samples with replacement from
Grow a tree, where at each node, the best split is chosen amongandomly selected features.

Classi catiort
Given a new sample.
For each of the trees:
Predict class of sample according to the tree.
Return class that has been predicted most often.

Figure 2.7: Algorithm for random forests.

and not used in the construction of the tree [20]. These sk called “out-of-bag” (OOB)
samples to which the tree built in this iteration will be g@pglto get classi cation. In this way, a
test set classi cation is obtained for each sample in abaetthird of the constructed trees. The
nal classi cation for a sample is the class having the mostes from the trees in the forest.
Then the nal classi cations are compared with the real sldabels of the OOB samples to

achieve an OOB error estimation.

Although in random forests, the feature selection at eacle i@ random, an upper bound
for its generalization error still can be derived in termssbengthof the individual decision
tree classi ers and theicorrelations[20]. This not only measures how accurate the individual
classi ers are and the dependence between them, but ales gigight into the ability of the
random forest to predict. The estimation for strength andetation is conducted by the above
out-of-bag idea. Please see Appendix Il of [20] for more finfation about this issue. Random
forests was claimed to achieve comparable or better agctinao AdaboostM1 did. Besides, it
is [20] (a) relatively robust to outliers and noise, (b) éaghan bagging and boosting, (c) simple
and easily parallelized. In addition, (d) useful internsiimates of error, strength, correlation

and variable importance are possible to obtain.
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CS4 — a new method of ensemble of decision trees

CS4 stands focascading-and-sharing fattecision trees. It is a newly developed classi cation
algorithm based on an ensemble of decision trees. The maéndtithis method is to use dif-
ferent top-ranked features as the root node of a decisienitran ensemble (also named as a
committee) [62, 63]. Different from bagging or boosting aihiuses bootstrapped data, CS4 al-
ways builds decision trees using exactly the same set offigasamples. The difference between
this algorithm and Dietterich's randomization trees ialery clear — the root node features
of CS4 induced trees are different from each other whileyemeember of a committee of ran-
domized trees always shares the same root node featureaftbemn selection of the splitting
feature is only applied to internal nodes). On the other haathpared with the random forests
method which selects splitting features randomly, CS4gigk root node features according to
their rank order of certain measurement (such as entropy,rgéo). Thus, CS4 is claimed as a
novel ensemble tree method.

In detail, to construct number of decision trees ( , is the number of features

describe the data), we have following steps:

(1) Ranking all the features according to a certain criterion, with the beduieaat the rst

position.
2
(3) Using the th feature as root node to construttt decision tree using base classi er.

4) If , iIncreasing by 1 and goto (3); otherwise, stop.

In this thesis, we use C4.5 as the base classi er of CS4 amdniationgain ratio (Sec-
tion 3.22 of Chapter 3) as the measure to rank features.

In the classi cation phase, CS4 de nes theverageof a rule in a tree as the percentage of
the samples in its class satisfying the rule. Suppose we #liaeevered decision trees from
our training set containing class and class samples. Then, all the rules derived from the
trees can be categorized into two groups: one group onhagong rules for samples, another

containing rules for samples. In each group, we rank the rules in descending aoderding
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to their coverage, such as

and

Given a test sample, each of the trees will have a rule to t this sample and therefore, give
a prediction for this sample. Suppose thasatis es the following rules of class samples

and of class samples:

and

Where and . The order of these rules is also based on their coverage.

When we make a prediction for, two scores will be calculated as follows:

If , then will be predicted as a class sample; Otherwise, pre-
dicted as a class sample. In practice, the tie-score case occurs rarely [62].

The algorithm of CS4 can be easily applied to solve mults€lproblems. If the given data
set contains classes samples (), similarly, we can sort groups of top rules according
to their coverage. When classifying a samplethose rules in the trees which are satis ed by

are found and sorted. Then the classi cation score for aigpelass is calculated by

The effectiveness of CS4 has been tested on some UCI dafaSts well as some public
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gene expression pro les that are described by more tharD@0gatures [62]. One of the main
works of this thesis is to do further comparison of CS4 withdiag, boosting, random forests
as well as SVM and -NN using a huge number of experimental results obtaineah frarious

biological data sets.

2.4 Chapter Summary

In this chapter, we introduced the concept of classi caiiodata mining as well as the ways to
evaluate the classi cation performance. We selected tegmtin detail some of classi cation al-
gorithms — putting the emphasis on several methods usirenanle of decision trees, including
bagging, boosting, randomization tree, random foreststadewly invented CS4. Besides, two
widely used classi ers, SVM and-NN were also described so that comparisons among decision
tree methods, kernel function approaches and instanaatiashniques can be addressed in the

later chapters using experimental results.
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Chapter 3

Feature Selection for Data Mining

A known problem in classi cation (in general machine leagji is to nd ways to reduce the
dimensionality of the feature space to overcome the riskvef-dting. Data over- tting happens
when the number of features is large (“curse of dimensityialand the number of training
samples is comparatively small (“curse of data set spdysityn such a situation, a decision
function can perform very well on classifying training dabat does poorly on test samples.

Feature selection is concerned with the issue of distilgagssignal from noise in data analysis.

3.1 Categorization of Feature Selection Techniques

Feature selection techniques can be categorized accdalimgumber of criteria [46]. One pop-
ular categorization is based on whether the target claggon algorithm will be used during the
process of feature evaluation. A feature selection mettad makes an independent assessment
only based on general characteristics of the data, is nartted {134]; while, on the other hand,

if a method evaluates features based on accuracy estintatédqal by certain learning algorithm
which will ultimately be employed for classi cation, it wibe named as “wrapper” [55, 134].
With wrapper methods, the performance of a feature subsetésured in terms of the learning
algorithm's classi cation performance using just thosattees. The classi cation performance
is estimated using the normal procedure of cross validatiorthe bootstrap estimator [134].
Thus, the entire feature selection process is rather catipotintensive. For example, if each

evaluation involves a 10-fold cross validation, the clasgion procedure will be executed 10
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times. For this reason, wrappers do not scale well to dataceettaining many features [45].
Besides, wrappers have to be re-run when switching from lassiccation algorithm to another.

In contrast to wrapper methods, lters operate indepengaftany learning algorithm and the
features selected can be applied to any learning algoritithealassi cation stage. Filters have
been proven to be much faster than wrappers and hence, caplexao data sets with many
features [45]. Since the biological data sets discusseleddater chapters of this thesis often
contain a huge number of features (e.g. gene expressiotegjpwe concentrate on Iter meth-

ods.

Another taxonomy of feature selection techniques is tors¢palgorithms evaluating the
worth or merit of a subset features from those of individealtfires. Most of the feature selection
methods introduced in this chapter evaluate how well arviddal feature contributes to the
separation of samples in different classes and produce @esieature ranking. However, there
is also one method in this chapter, correlation-based featiection, that assesses and selects a
subset of features. We will also present a new feature smheatgorithm, ERCOF, which rst
evaluates features individually and then forms the naresgntative feature set by considering

the correlations between the features.

There are some other dimensions to categorize featuretiselenethods. For example,
some algorithms can handle regression problem, that is;léss label is humeric rather than
a discrete valued variable; and some algorithms evaluateark features independently from
class, i.e. unsupervised feature selection. We will retstir study to the data sets with discrete
class label since this is the case of the biological problenasysed in later chapters of this thesis,

though some algorithms presented can be applied to nunass kabel as well.

3.2 Feature Selection Algorithms

There are various ways to conduct feature selection. Letarswsith introducing some often

used methods conducted by analysing the statistical giepeaf the data.

30



3.2.1 -test, signal-to-noise and Fisher criterion statistical reasures

Highly consistent with the well-known ANOVA principle, a &ia concept for identifying a rele-
vant feature from an irrelevant one is the following: if tredues of a feature in samples of class
are signi cantly different from the values of the same featin samples of class, then the
feature is likely to be more relevant than a feature that ivaflas values in  and . More
speci cally, in order for a feature to be relevant, its mean value in  should be signi cantly
different from its mean value in . However, if the values of a featurevaries greatly within
the same class of samples, even if differs greatly from , the feature is not a reliable one.

This situation leads us to a second basic concept: the sthddsiation and variance

of in and the standard deviation and variance of in should be small.

The classical -statistic is constructed to test the difference betweeana®f two groups
of independent samples. So if samples in different classemdependent, thestatistic can be
used to nd features that has big difference in mean level/ben the two classes. These features

can be then considered to have ability to separate samplesdre different classes.

Given a data set consisting of sample vectors:

where , is the number of features and is the class label of . Each sample
belongs to one of two classes(i.e. )and (i.e. ) (such agumorv.s. norma).
Similarly, a feature in the data set can be denoted ad  stands for its value in sample
( ). In addition,  (resp. ) is the number of samples in class(resp. ). For
each feature ,the mean (resp. ) and the standard deviation (resp. ) using only the

samples labeled (resp. ) are calculated by
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A score for feature then can be obtained by

The -test statistical measure is known [105] to follow a Stud#stribution with

degrees of freedom. A feature can be considered better than a feature if

. Thus, when making feature selection, we can simply sortlidate features by their
scores and pick those with largest scores. In [82f;ore is used to select important genes for
classi cation after applying the algorithm of partial léasjuares to the original high dimension
gene expression data.

In [41, 116, 39], a slightly different statistical measurem -test was proposed to nd
discriminatory genes that can distinguish tumor cells froonmal ones using gene expression

pro lings. This test is namedsignal-to-noisestatistical measure and is constructed as

As with -test, when using signal-to-noise statistical measur@atufe can be considered

better than a feature if , SO we always pick those features with largest

scores. Compared withtest, the statistical property of signal-to-noise is nityfunderstood.
Another statistical measure that is closely related to ttest is theFisher criterion score

de ned as

A feature can be considered better than a feature if . In
[68], Fisher criterion score is used to select genes tongjsish two subtypes of leukemia from
expression pro lings.

-test, signal-to-noise and Fisher criterion statisticabsures are easy to compute and thus
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straightforward to use. However, there are three condidesathat may make them ineffective
for feature selection [72]. The rst consideration is thaeuof these tests are justi ed only
if it can be assumed that the data have a normal distributiod, this is almost not the case
of biological data. The second consideration is that thepsarsizes and  should be

suf ciently large; otherwise, underestimates of the stadddeviations and variances will occur.

The third consideration is more subtle and we illustratesibhg an example.

Let and be two features. Suppose has values ranging from 0 to 99 in classwith
and has values ranging from 100 to 199 in claswith . Suppose has
values ranging from 25 to 125 in classwith and has values ranging from 100 to 175
in class with . We see that . Suppose the variances
of and in and arecomparable. Then according to the and measures, is
better than . However, we note that the values of are distributed so that all those inare
below 100 and all those in are at least 100. In contrast, the values oin  and overlap in
the range 100 to 125. Then clearly should be preferred. The effect is caused by the fact that
, and are sensitive to all changes in the values pincluding those changes that may
not be important. When dealing with gene expression dawpbthe pre-processing works is to
transform the data into the space of log-ratios by takinddgarithm of each gene (i.e. feature)
divided by the median of that gene across a set of experinj88is It has been shown that
the rankings of same set of candidate features, that based am statistical measures,

might be different before and after this logarithm transfation.

3.2.2 Wilcoxon rank sum test

In order to avoid the assumption that feature values havelltmrf normal distribution, one can
use non-parametric tests. One of the best known non-paniartestts isWilcoxon rank sum test
or the equivalent Mann-Whitney test. Wilcoxon rank sum [&88] is an alternative to-test for
testing the quality of two populations' mean or medianss k kind of non-parametric test since
it is based on rank of samples rather than distribution patara such as mean and standard
deviation. It does not require the two populations to comf@éo a normal distribution, but to
the same shape [105]. However, it may not be as powerfultast, signal-to-noise or Fisher

criterion statistical measures, if the normality assuompts correct [105].
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The Wilcoxon rank sum test statistical measure of afeatyre  , can be obtained using

following procedure:

(1) Sort the values of across all the samples in ascending order.
(2) Assign rank (from 1) to each value above and use average of the ranks for ties.
Then,

(3) Use the sum of the ranks for the class, which has smalletbeu of samples, as test

statistic, . For example, class has fewer samples than classthen

where s the class label of sample . If the number of samples is same in each class,

the choice of which class to use for the test statistic istiayi

To use the Wilcoxon rank sum test to decide if a featuiie relevant, we set up the null
hypothesis that: the values ofhave the same continuous distribution irand . Then is
used to accept or reject the hypothesis. To decide whetlagcept or reject the null hypothesis,
we compare with the upper and lower critical values derived from a siganit level . For
small numbers of samples in classand , e.g. , the critical values have been tabulated
and can be found in most of textbooks of statistics, such @s][1f either or s larger
than what is supplied in the table, the following normal apmation can be used [105]. The

expected value of is (assuming class has fewer samples than classloes):

The standard deviation of is:

The formula for calculating the upper and lower criticalues is:
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where isthe score for signi cant level . If a feature 's test falls in the range given
by the upper and lower critical values, then we accept thehyplothesis; otherwise, we reject
the hypothesis, and this indicates that the values of featimave different distribution between
samples in class and . Thus, those features whose Wilcoxon rank sum test statijects
the hypothesis will be considered as signals.

The non-parametric Wilcoxon rank sum test has several dalgas over-test, signal-to-
noise and Fisher criterion statistical measures [87]. Teeone is its robustness. Because it uses
ranks rather than actual values of a feature, it is more tdbumutliers. This feature is important
to biological data, which may need many steps of experimiantise laboratory and may have
many potential sources of error. The second advantageai®delo data transformation, such as
normalization and logarithm transformations that arerofteed in preprocessing of microarray
gene expression data. The rank sum test is not affected bgfahgse transformations since the

ordering of the expression levels remains unchanged.

3.2.3 statistical measure

measure evaluates features individually by measuring thestatistic with respect to the
class. Different from the preceding methods, measure can only handle features with discrete

values. measure of a featurewith  discrete values is de ned as

where is the number of classes, is the number of samples witth value of in th class,

is the expected frequency of and

is the number of samples havintlp value of , is the number of samples in théh class,
and is the total number of samples.
We consider a feature to be more relevant than a feature if
Obviously, the worst  value is 0 if the feature has only one value. The degree ofifnee

of the -statistic measure is [71]. With the degree of freedom known, the
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critical value for certain signi cant level can be found finomost statistics books, such as [105].

However, note that, the value might be varied from feature to feature.

To apply  measure to numeric features, a discretization preprowgs$sis to be taken.
The most popular technique in this area is the state-oftgréryised discretization algorithm
developed by Fayyad and Irani [36] based on the idea of entitsame time, feature selection
can be also conducted as a by-product of discretization.

3.2.4 Entropy based feature selection algorithms

Entropy is a measure commonly used in information theoryclvbharacterizes the (im)purity
of a collection of samples [112, 78]. Given a collectioncontaining samples in classes, the

entropy of relative to this classes classi cation is de ned as

where s the proportion of belonging to class. There are several points worth noting.

1. The logarithm is base 2 because entropy is a measure okfieeted encoding length

measured in bits [112].
2. Inall calculations involving entropy, we de ne

3. reaches its minimum value O, if all the samples dfelong to the same class. For

example, all samples are in classthen

Thus,

4. reaches its maximum value ,if contains equal number of samples in each

class. In this case, , for any . Thus,
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Figure 3.1: Entropy function of a two-class classi cation,is the proportion of samples in one

class, with range [0,1].

Figure 3.1 shows the form of the entropy function when  (i.e. two classes), as varies

between 0 and 1.

Fayyad's discretization algorithm

The essential idea of this discretization algorithm is tal some cut point(s) for a numeric
feature's value range to make the resulting value interaalpure as possible. Formally, let cut

point of feature partition the sample setinto subsets and . Then, theclass information

entropyof the partition, denoted , IS given by [36]:
where is the class entropyof a subset . Assuming there are classes
, let be the proportion of samples in that have class . According to

the de nition in (3.14),

A binary discretization for is determined by selecting the cut pointfor which
is minimal amongst all the candidate cut points [36]. Thes@n of can be achieved by re-
cursively partitioning the ranges and until some stopping criteria is reached. A stopping

criteria is needed because otherwise, we can always agbétect entropy by partitioning the
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range into many small intervals, each containing exactly ssmple. A commonly used stop-
ping criteria is the so-calleghinimal description lengtfiMDL) principle described in [101, 36].
According to this principle, recursive partitioning witha range stops iff is partitioned into

ranges and such that:

where is the number of samples in the setand,

and

where is the number of class labels represented in the rangédn the right side of (3.19),
the rst component is the amount of information needed tocBpehe partitioning point; the
second one is a correction due to the need to transmit whadse$ correspond to upper and
lower subintervals [36, 134]. With MDL principle, a featurecan not be discretized, if there is
no such kind of cut point whose (de ned in (3.20)) is greater than or equal to

the right side of (3.19).

In [71], Setiono and Liu noted that discretization has thieptial to perform feature selec-
tion among numeric features. If the distribution of a numésature's value is relatively random,
then the feature would be treated as irrelevant to the damsd can be safely removed from
the data set. In this case, there is no suitable cut pointlitofsgture's value range, or, in other
words, the feature can be only discretized to a single v&uethe other hand, if a resulting value
interval induced by the cut points of a feature contains dméysame class of samples, then this
partitioning of this feature has an entropy value of 0. Thiai ideal case since the feature can
clearly distinguish samples in the different classes. $dleafer to Figure 3.2 for an illustration
on entropy measure, cut point and intervals. Generallyeuttte entropy measure, feature
is more useful than feature if . Thus, when using

entropy measure to select features, we sort the class gritrgm ascending order and consider
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&: class 1 sample, O: class 2 sample

(a) A feature with high entropy.
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(b) A feature with low entropy.
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(c) A feature with zero entropy.
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Figure 3.2: We place the values of a feature on the horizaxial There are 13 samples in two
classes, class 1 and class 2. (a) shows a feature that is aigoaland there is no cut point can
be found to distinguish samples in the different classessliows a feature that is a potentially
good signal and indicates a possible cut point. (c) showstaife that is a strongest signal and
indicates a cut point — different resulting intervals camsasamples of different class.

those features with lowest values. In most of the cases, &/isr interested in features having
cut point(s) found for their value range.

For discrete features, we still can use entropy measureleégtsieatures since the “cut
points” for each feature have been given naturally. Thusthss entropy of a feature with

different values, can be simply derived by

where through  are the subsets of samples resulting from partitioning oby and
can be calculated from (3.18).
Actually, measure is one of the re nements of entropy measure. Otlagrtthe class
entropy value of a feature, it uses the -statistic of the partitons and  of the feature

induced by the class entropy. Some other re nements incloftemation gain measure and
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information gain ratio measure that are used respectivelp3 [96] and C4.5 [97] to induce the

splitting node of a decision tree.

Information gain and information gain ratio

Information gainis simply the expected reduction in entropy by partitioning samples accord-

ing to this feature, that is the amount of information gaibgdboking at the value of this feature.

More precisely, the information gain of a feature , relatively to a set of samples,
is de ned as
where can be calculated from equation (3.14) and is the class entropy

of the feature (for a numeric feature s the best partition to's value range under certain
criteria, such as MDL principle). Since is a constant once is given, the information
gain and entropy measures are equivalent when evaluatnglivance of a feature. In contrast
to the rule “the smaller the class entropy value, the moreoiapt the feature is” that is used
in entropy measure, we consider a feature¢o be more relevant than a feature if

. In fact, the ID3 [96] decision tree induction algorithm ssefor-
mation gain as the measure to pick discriminatory featwesrée nodes. Besides, information
gain is also involved in some recent studies of feature seteon biological data. For exam-
ples, Xinget al [136] used it as one lIter to select genes from gene exprasdata and the
winner of KDD Cup 2001 [25] also employed it as a measuremenéduce the dimensionality
of a feature space containing 139,351 binary features inoanthin data set provided by Dupont
Pharmaceuticals Research Laboratories.

However, there is a natural bias in the information gain mesas— it favors features with
many values over those with few values. An extreme exam@éddature having different values
in different samples. Although the feature perfectly sefes the current samples, it is a poor
predictor on subsequent samples. One re nement measurddkabeen used successfully is
calledinformation gain ratio The gain ratio measure penalizes features that with mamgsa

by incorporating amount afplit information which is sensitive to how broadly and uniformly
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the feature splits the data [78]:

where through are the subsets of samples resulting from partitioning dby -valued
discrete or -value-intervaled numeric feature Then, thegain ratio measure is de ned in

terms of the earlier information gain measure and this gglirmation, as follows:

Note that split information is actually the entropy ofvith respect to the values of featureand

it discourages the selection of features with many valugk For example, if there are total num-
ber of samplesin , the splitinformation of a feature , which has different values in different
samples, is . In contrast, a boolean feature that splits the same samples exactly in half
will have split information of 1. If these two features preduthe equivalent information gain,
then clearly feature will have a higher gain ratio measure. Generally, a featuie considered
to be more signi cant than a feature if . When
using gain ratio measure (or information gain measure) lecséeatures, we sort the values of
gain ratio (information gain) in an descending order andsier those features with highest

values.

3.2.5 Principal components analysis

Principal components analysid®CA) [53] is widely used in signal processing, statisticsl a
neural computing. It selects features by transforming abmmof original (high-dimensional)
features into a smaller number of uncorrelated featurdsd@kincipal components. The rst
principal component accounts for as much of the variabilitghe data as possible, and each
succeeding component accounts for as much of the remaiaimapility as possible. The math-
ematical technique used in PCA is called eigen analysis T2l eigenvector associated with
the largest eigenvalue has the same direction as the ratipal component; the eigenvector
associated with the second largest eigenvalue deterntieedittection of the second principal

component, and so on.
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Feature selection through PCA can be performed in follovgiengral steps.

(1) Calculating the covariance matrixof a data collection de ned in Equation (3.1), where
is a matrix with rows (i.e. samples) and columns (i.e. features). Each column data
of may have to be normalized. Each elemenf( ) of matrix is the
linear correlation coef cient between the elements of cohis (i.e. features)and of

and is calculated as:

where () isthe element incolumn ()of ,and ( )and ( ) arethe
mean and standard derivation of colum) of |, respectively. It is easy to prove that

the covariance matrix is real and symmetric.

(2) Extracting eigenvalues ( ) by equation,

where is an identity matrix.

(3) Computing eigenvectors ( ), which are the so-called “principal compo-

nents”, from

(4) Ranking eigenvectors according to the amount of vamain the original data that they

account for, which is given by

(5) Selecting features that account for most of the vamaiticthe data. In this step, eigenvec-
tors (i.e. principal components) that account for somegmaege (for example: 95%) of

the variance in the original data will be chosen while the festures will be discarded.

Indeed, it can be proven that the representation given byiB@Aoptimal linear dimension

reduction technique in the mean-square sense [53]. It itwumting that, different from other
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methods introduced in this chapter, PCA iswarsupervisedin contrast tasupervisejl feature

selection method since it makes no use of the class attribute

3.2.6 Correlation-based feature selection

All of the preceding measures evaluate features in termsedf individual relevance to separat-
ing samples in different classes. However, rather thanimgnkdividual features, we can also
scores the worth of subsets of featur€srrelation-based feature selectig@FS) [44] is such a

method which is built on the belief that “good feature subseintain features highly correlated
with the class, yet uncorrelated with each other”. At therthefthe CFS algorithm is a sub-
set evaluation heuristic that takes into account not orgyusefulness of individual features for

predicting the class, but also the level of inter-correlatamong them [46].

CFS rst calculates a matrix of feature-class and featew@tfre correlations. Then a score

of a subset of features is assigned using the following beciri

where is the heuristic merit of a feature subsetontaining features;— is the average
feature-class correlation, and™ is the average feature-feature inter-correlation. Theerator
can be thought of as giving an indication of how predictive sibset of features are while the

denominator indicates how much redundancy there is amamg fA6].

In order to apply Equation (3.30), it is necessary to cateuthe correlation between fea-
tures. In this step, CFS ussgmmetrical uncertaintieto estimate the degree of association
between discrete features or between features and clagges he formula (3.31) below mea-
sures the inter-correlation between two features or theeladion between a feature and a class

which is in the range ( and are both presented features or one is feature, one is class).

where the numerator is the information gain between featane classes, is the entropy of
the feature de ned in (3.14). CFS starts from the empty set of featuras uses the best- rst-

search heuristic with a stopping criterion of 5 consecuiiMg expanded non-improving subsets.
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The subset with the highest merit found during the searchbeiselected.

3.2.7 Feature type transformation

At the end of introduction on feature selection methodsigtlage several points that need to be

addressed:

Converting feature type from discrete to numeric. This ldhdonversion will be useful for
those algorithms that can only handle numeric feature$) asictest, signal-to-noise, PCA
and so on. When dealing with avalued discrete feature, one can convert it tbinary
features. Each of these new features has a “1” for every permee of the corresponding
th value of the original discrete feature, and a “0” for a@t values [46]. Then the new

binary features are treated as numeric features.

Converting feature type from numeric to discrete. Someufeaselection methods, such
as -statistic measure, need numeric features to be disadetZayyad's algorithm de-

scribed in Section 3.2.4 or other discretization method® lha be applied.

Dealing with multiple classes problem. If a data set costaiore than two class samples,

a pairwised feature selection has to be conducted.

3.3 ERCOF: Entropy-based Rank sum test and COrrelation Filer-
ing

In this section, we will put forward a new strategy to condigetture selection, mainly aiming
to nd signi cant genes in supervised learning from gene mgsion data. In our strategy, we
combine the above presented methods of entropy measure itwakdv rank sum test, as well
as Pearson correlation coef cient test together to formraetphase feature selection process.
We name this combined feature selection procedsRISOF— stands for Entropy-based Rank

sum test and COrrelation Filtering.

In phase |, we apply Fayyad's entropy-based discretizagigorithm described in Sec-
tion 3.2.4 to all the numeric features. We will discard a dieet if the algorithm can not nd a

suitable cut point to split the feature's value range. Oniatpteeds to be emphasized here is that
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we will use numeric features all the way, though a discrétmaalgorithm is involved to Iter

out some features in this phase.

In phase I, we conduct Wilcoxon rank sum test only on featuwetput from phase I.
For a feature , the test statistical measure  can be calculated by the way described in
(3.2.2). If falls outside the interval , Where and are the lower
and upper critical test values that given in Formula (3.&8) will reject the null hypothesis and
this indicates that the values of featurare signi cantly different between samples in different
classes. In the calculation of the two critical values and , the standard 5% or 1%
signi cant level is generally used. Therefore, by this phawe are left with two groups of
features: one group contains featuressuch that , the other group contains
features such that . Features in same group are supposed to have similar
behavior — having relatively larger values in one class ofigias and relatively smaller values
in another class of samples. In a gene expression data emnatyis of a great interest to nd
which genes are highly expressed in a special type of sarfgeh as tumor samples, or patients
with certain disease).

In phase I, for each group of features, we examine coigglatof features within the
group. For those features that are in the same group and ghily ltiorrelated, we select only
some representatives of them to form the nal feature setgdne expression study, high cor-
relation between two genes can be a hint that the two genead&b the same pathway, are
co-expressed or are coming from the same chromosome. “Braglemwe expect high correlation
to have a meaningful biological explanation. If, e.g. geAegnd B are in the same pathway,
it could be that they have similar regulation and therefamglar expression pro les” [51]. We
propose to use more uncorrelated genes for classi catiorest we have lots of genes from one
pathway, the classi cation result might be skewed.

Since with entropy measure, one is more likely to selecthaldenes in a primary path-
way and neglect those of secondary pathways, we have to sgrtmut the genes that passed
Phase | and Phase Il Iterings into pathways. Currently, wiepd the commonly used Pear-
son correlation coef cient to measure the correlation lestw features. It has been applied
to analyse gene expression data by some researchers [16Pd@ison correlation coef cient

(also known as the centred Pearson correlation coef cisrd)linear correlation metric. In gen-
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eral, the Pearson correlation coef cient between any tvatuies and

(de ned in (3.1)), , IS given as:

where ( )and ( ) are the mean and standard derivation of ), respectively. The
value of is between -1 and 1. In our case, we just consider two featoreg correlated if
their correlation coef cient is 1 or near 1 and ignore negattorrelations since the features in
same group are expected to have similar behavior. A thrdshalf is set in advance, so that if

, then feature and are considered correlated.

Given a group of features, we subgroup features in this gbaged on correlation coef -
cient. First, we sort the features according to their claggopy measure in an ascending order
(i.e., with best feature at rst position). Then we pick ugthest feature , and calculate its
Pearson correlation coef cient with all other featuresefhwe form a subgroup consisting of
and all features that are correlated to The features that have been assigned to this subgroup are
not considered again in the later rounds of correlation testhe second round of subgrouping,
we pick up the best one from remaining features, and formhematubgroup of features. This
correlation test proceeds until all the features in the grbave been assigned to a subgroup.
Note that it is possible for a subgroup to have only one feat@®o, the groups of features are
sub-grouped; in each subgroup, features are all correfatadest feature such as. Figure 3.3
gives the pseudo codes of this method.

Next, we select representative features from each subgmigrm the nal feature set.
In each subgroup, since the features are sorted by thes efdsopy measure, we calculate the
average of the entropy values of all these features (namezth entropy valuef this subgroup)
and choose those top ones whose entropy measure is smahethib mean entropy value. In
case of only one feature in a subgroup, this feature is autoatis selected. These representative
features from all the subgroups are our nal set of featuBee Figure 3.4 for a whole picture of
feature identi cation and selection by ERCOF.

Using ERCOF in gene expression data analysis where thefteis more than thousands
of features, we expect to identify of a subsesbérply discriminatingeatures witHittle redun-

dancy The entropy measure is effective for identifying discniating features. After narrowing
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1. .
2. Rank all features in group on class entropy in an ascending order,
3. Let and remove from
4. For each

calculate Pearson correlation coef cient :

if

add into andremove it from ;

5. and goto step 2 until

Figure 3.3: Feature subgrouping by correlation testings the Pearson correlation coef cient
threshold, which should be near 1.0.

down by the Wilcoxon rank some test, the remaining featuszpime sharply discriminating.
Then, with the correlation examination, some highly cated features are removed to reduce
redundancy. We do not use CFS introduced in Section 3.2.6aseé?1ll of ERCOF, because
CFS sometimes returns too few features to comprehensivelgratand the data set. For exam-
ple, CFS selects only one feature if the class entropy offé@ture is zero. However, Pearson
correlation coef cient also has a shortcoming — the caltataof correlation is dependent on
the real values of features — it is sensitive to some datafoamation operations. Therefore,

other algorithms are being implemented to group correltgatiires.

3.4 Use of Feature Selection in Bioinformatics

The feature selection techniques reviewed in the precesliagions have been used as a key
step in the handling of high-dimensional biomedical datar €xample, their use is prevalent
in the analysis of microarray gene expression data (an gxtenreview on this can be found in
Chapter 4). Besides, they have been also used in the poediitimolecular bioactivity in drug
design [132], and more recently, in the analysis of the cdrikrecognition of functional site in
DNA sequences [142, 72, 69].

One issue should be addressed here is the so-called “reuttiphparisons problem” [85]
which happens when we select features by choosing a statisbin dence level (like standard
5% or 1%) for -test, -test, and other statistical measures. The descriptioheoptoblem is:
when performing multiple independent signi cance tests, each at thievel, the probability

of making at least one Type | error (rejecting the null hygsik inappropriately) is
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All features

ok
Fayyad’s discretization algorithm
based on class entropy
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Features without Features with
cut point found cut point found
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correlation for F; and F,,
respectively
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features from each subgroups
Y

v

Output repre-
sentative features

Figure 3.4: A diagram of ERCOF: Entropy-based Rank sum tegt@Orrelation Filtering, a
three-phase feature selection process combining conoégistropy, Wilcoxon rank sum test
and Pearson correlation coef cient.

For example, suppose we consider features and perform independent statistic tests to
each of them at the standard level, then the probability of getting at least one signnta
result is [85]. So, when we get a signi cant feature among the tests, ho

can we believe that it is “indeed” signi cant. In fact, undéis setting, we would still expect to

observe approximately 10 ( ) “signi cant” features, even when there were actually
no features that can distinguish the two classes. Obviptisyproblem becomes serious when
the total number of considered features is large, whichésctise in some biological data such

as gene expression pro lings.
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A standard conservative solution to this problem is the Boohi correction [100], which
divides the test signi cant level by the number of tests, i.e . In the above example, it will be
. Thus, for 200 features, the cutoff for signi cance would®e0025 instead

of previous 0.05! In spite of its simplicity, the Bonferramiethod has some shortcomings [91].

The biggest problem is that it is too conservative: eachviddal test is held to an unreasonably
high standard and this will increase the probability of a@yperror where legitimate signal
features will fail to be discovered. On the other hand, théhagtis applicable only to tests with
known statistical distributions. For measures with unknatatistical distribution, permutation-

based approaches are practically used .

In a permutation-based method, the adjusted signi canell¢also known as -values)
based on the number of tests undertaken is also computed) away less conservative than
the Bonferroni method. When conducting permutation, werassthat there is no relationship
between features and classes so that new samples can belraeassigning permuted class
labels to original data. Thevalue then can be calculated based on the feature statstimany
these kind of pseudo data sets. However, the conclusionthaeally want to draw from the
permutation test might bef we have selected features using a particular statistic, what pro-
portion of these features are likely to be false pos®iv€o make such a conclusion, one can
follow the steps illustrated in Figure 3.5 for a testing devel. Alternatively, in stead of single
cutoff value, we can set up a series of thresholds and contipeitevalue for each of them based
on the permutation test, so that a tablef threshold versus-value can be created. If we want
no more than  of the features selected in the original (non-permutedesrpent to be false
positive, then we should look up tableusing for the threshold and use as the statistic

threshold to pick up features from original experiment.

Although the permutation is designed to take the place oBtaferroni correction, it is
often found that the critical values determined in this rodthre nearly as conservative as those
based on the Bonferroni adjustment [85]. However, it hasssum@ption on the distribution of
the selected test statistic. As indicated earlier, anathigcal consideration of the permutation
test is that the procedure does not address whether featgresrrelated. In the case of a large
number of strongly correlated features versus a relativalsramber of samples, the test statistic

on each permutation will not signi cantly change. Then tlegrputation becomes meaningless.
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1. Select a statistic which will be used to measure diffegsrizetween classes.
2. Determine the threshold of the statistic according taisignt level
3. Calculate the test statistic for each of totafeatures
4. Get the number of features selected by the thresholdideso .
5. For th permutation test iteration ( ):
generate a pseudo data set by randomly permuting the claeds tf all the sampled,
calculate the same test statistic for every feature,
record how many features are selected by the thresholdialdras

6. Compute the percentage of features selected during theupsgion test, —
calculate to be the expected number of false positive.

Figure 3.5: A diagram of a permutation-based method forufeaselection. In practice, the
signi cant level is often set as 5% or 1%, the permutation timeshould be very large, say
10,000 times, or for all possible permutations of the clabgls.

Unfortunately, in many biological domain, features haversy correlations from sample to sam-

ple.

3.5 Chapter Summary

In this chapter, we reviewed feature selection techniqoesldta mining. There are two broad
categories of selection algorithms, Iter and wrapper, avel indicated that Iter approaches
are more suitable to be applied to solve biological problem& presented a variety of Iter
methods, such asstatistic measure, Wilcoxon rank sum test, entropy-basedsures, principal
components analysis and so on. We also put forward a newéesdlection strategy, ERCOF,
which is a 3-phase feature ltering process aiming to idigrdi subset of sharply discriminating
features with little redundancy from gene expression @®.l The chapter was ended with a

discussion on using feature selection in bioinformatics.
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Chapter 4

Literature Review on Microarray Gene

Expression Data Analysis

One of the important recent breakthroughs in experimentééaular biology is microarray tech-
nology. This novel technology allows the monitoring of eegsion levels in cells for thousands of
genes simultaneously and has been increasingly used iercaasearch [7, 41, 6] to understand
more of the molecular variations among tumors so that a nadigbte classi cation becomes
possible.

There are two main types of microarray systems [35]: the cDheroarrays developed
in the Brown and Botstein Laboratory at Stanford [32] and high-density oligonucleotide
chips from the Affymetrix company [73]. The cDNA microarsagre also known as spotted ar-
rays [77], where the probes are mechanically depositedronth ed glass microscope slides us-
ing a robotic arrayer. Oligonucleotide chips are synthesbin silico (e.g., via photolithographic
synthesis as in Affymetrix GeneChip arrays). For a moreildetantroduction and comparison

of the biology and technology of the two systems, please tefgl7].

Gene expression data from DNA microarrays are charactebgenany measured variables
(genes) on only a few observations (experiments), althdnagih the number of experiments and
genes per experiment are growing rapidly [82]. The numbgeaks on a single array is usually
in the thousands while the number of experiments is only atéaw or hundreds. There are
two different ways to view data: (1) data points as genes,(a8hdata points as samples (e.g.

patients). In the way (1), the data is presented by expressiels across different samples, thus
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there will be a large number of features and a small numbearoptes. In the way (2), the data
is represented by expression levels of different genes, tthel case will be a large number of
samples with a few attributes. In this thesis, all the distrss and studies on gene expression

pro les are based on the rst manner of data presentation.

Microarray experiments raise many statistical questiomaany diversi ed research elds,
such as image analysis, experimental design, cluster amdirdinant analysis, and multiple
hypothesis testing [35]. The main objectives of most mimaastudies can be broadly classi ed

into one of the following categories: class comparisorsiiscovery, or class prediction [77].

Class comparisors to establish whether expression pro les differ betwelasses. If they
do, what genes are differentially expressed between teeedai.egene identi cation For

example, which genes are useful to distinguish tumor sasripden non-tumor ones.

Class discoverys to establish subclusters or structure among specimeasiong genes,

for example, to de ne previously unrecognized tumor subt/pil, 140].

Class predictioris to predict a phenotype using information from a gene esgio® pro-
le [77]. This includes assignment of malignancies into imoclasses (tumor or non-
tumor) or tumor samples into already discovered subtypesligtion of patients outcome
such as which patients are likely to experience severe axigity versus who will have
none, or which breast cancer patients will relapse withia years of treatment versus who

will remain disease free. Figure 4.1 shows a work ow of clpssdiction.

In this thesis, we will focus on the class comparison andsctaediction. For these two
tasks, supervised analysis methods that use known classniafion are most effective [77]. In
practice, feature selection techniques are used to igetlistriminatory genes while classi ca-
tion algorithms are employed to build models on training glas and predict the phenotype of

blind test cases.

4.1 Preprocessing of Expression Data

As with most of the data fed to machine learning algorithmenegexpression data also need

necessary preprocessing before being further analysest:dRBan the characteristics of the exper-

52



/./v-?

/

. Class
Learning o
—- . — | Prediction
Algorithm Rule
Y
+or-

Figure 4.1: Awork ow of class prediction from gene expressdata. A collection of expression
pro les with known class label (+ or -) is the input of a supeed learning algorithm. After
being trained on these pro les, the prediction model bujitlwe learning algorithm will be able
to predict the class label of a new case of expression prd e picture is captured from [77].

imental data, the normal preprocessing steps include seaisformation, data normalization,

missing value management, replicate handling and so on [49]

4.1.1 Scale transformation and normalization

In cDNA microarray experiments utilizing “spotted arraysfie two mRNA samples, known as
targets, are reverse transcribed into cDNA (labeled usimgdifferent uorophores — usually
a red uorescent dye cyanine 5 and a green uorescent dyeiggaB), and mixed in equal
proportions and hybridized simultaneously to the glasdes|B5]. Intensity values generated
from hybridization to individual DNA spots are indicativé gene expression levels. Then the
ratio of the red and green uorescence for each spot is usedeasure the change between
samples. In order to accurately and precisely measure genession changes, it is important to
understand sources of variance in expression data. In aviergarray experiment, experimental
randomness and systematic variations [139] are the two smairces of variance. For example,
a well-known systematic variation originates the biaseseiated with the different uorescent
dyes. If two identical MRNA samples are labeled with différdyes and hybridized to the same
slide, it is rare to have the dye intensities equal acrosspalls between these two samples [139].
Since we are looking at expression ratios, we expect therpatin an asymmetrical scale:
over-expressions will have values between 1 and in nitelevhinder-expression will between 0
and 1. In order to give the same weight to both over-exprassimd under-expressions, we need
to transform the scale. A simple and common way is to do lagsformation. Normally this is

done by taking  of the ratio, such as . Besides, considering data in log-space
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can also help reduce the effects of outliers [85].

In order to minimize systematic variations in gene expmssevels of two co-hybridized
MRNA samples, normalization should be conducted for sgatieNA microarrays. This will
help easily distinguish biological differences between samples and make the comparison of
expression levels across slides reasonable. There amaleays to conduct normalization. For
example, in one of the general methods, the intensity vedmesormalized according to the
formula; , Where is the normalized value, the raw
value, ( ) the minimum (maximum) intensity among all samples for thaey After the
normalization, each intensity value is to fall within thega of 0 to 1. Another common practice
is to center the data by the median or mean ratio, and podsildlgale the data by the standard
deviation [85]. Recently, Yangt al proposed a composite normalization procedure in [139],
based on robust local regression, to account for intensitlyspatial dependence in dye biases
for different types of cDNA microarray experiments. Thewstucted a novel control sample
named MSP including all genes present on the microarraytitiatkd it over the intensity range
of a microarray experiment. Under the composite idea, Idenisity values will be normalized
based on all genes in the corresponding intensity rangeevkigher values will be normalized

based on the MSP titration series.

When we illustrate our work on some gene expression prodioge by one in the next
chapter, we will indicate whether a preprocessing (logdfarmation, normalization and so on)
has been conducted on a particular data set. However, asisastated in [85], the normaliza-
tion is not technically required, though it will help reduite effects of varying dynamic range

from sample to sample for cDNA microarray data.

4.1.2 Missing value management

One of the characteristics of the gene expression pro laésaxistence of missing values in the
data set. There are diverse reasons that cause missing,vialdeding insuf cient resolution,

image corruption, or simply due to dust or scratches on ide §125]. In practice, missing data
also occur systematically as a result of the robotic methusesl to create them. Unfortunately,
many data analysis algorithms require a complete matrixenégrray values as input [125]. For

example, standard hierarchical clustering methods amkans clustering are not robust to the
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excess of missing values since the calculations in the ighgos are based on a distance matrix.
Even with a few missing values, they may lose effectivendssre strictly, some methods like
principal components analysis can not deal with missingeglat all. Therefore, methods for
imputing missing data are needed, not only to minimize tfecebf incomplete data on further

analyses, but also to increase the range of data sets to ghicting algorithms will be applied.

There are some general solutions to impute missing valbesigh there is not a large
literature that were speci ¢ to gene expression data. Heedist four commonly used strategies:
(1) lling blanks with zeros; (2) replacing with the gene'vexage expression levels over all
experiments; (3) replacing with the median of the gene'sesgion levels over all experiments;
(4) using weighted -NN imputation method. The-NN-based method is to use thenearest
neighbours to estimate the missing values, whegea user-de ned parameter. The selection of
“neighbours” can be done via calculating certain simijanitetric between genes, such as widely
used Euclidean distance, Pearson correlation, variangienization and etc [125]. For example,
if gene has one missing value in experiment 1, thBIN-based method will nd other genes,
which have a value present in experiment 1 and have mosesiexpression values toin other
experiments. The values of thes@mearest genes in experiment 1 are then averaged by a weight
metric and used as the estimated value of gerie experiment 1. In the weighted average, the

contribution of each gene is weighted by similarity of itpeession levels to gene.

Troyanskayaet al [125] compared three missing value imputation methods &tynig them

on three microarray data sets. Three imputation methode gierple gene average, weighted

-NN and their proposed singular value decomposition (SV&yedl method. The mechanism
of SVD-based algorithm is to (1) use singular value decortipasto obtain a set of mutually
orthogonal expression patterns that can be linearly cosekiio approximate the expression of all
genes in the data set, (2) refer these patterns as eigendjkagsincipal components) and select

most signi cant eigengenes by sorting their correspondiiggenvalue, (3) estimate a missing
value in gene by regressing gene against the eigen genes and then use the coef cients
of the regression to reconstruct a replacement value fromearl combination of the eigen
genes. Their results showed that weightebdIN appeared to be the most accurate and robust
method, and both weightedNN and SVD-based techniques surpass the commonly usetesimp

average method. This conclusion is very natural since timming methods take advantage of
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the correlation structure of the data to estimate missipgession values.

Although we can ef ciently handle missing values in micn@ar data by using weighted
NN imputation method, the method itself requires that weshewough complete genes (clones)
(i.e. genes with no missing values) in the data set so thahgudeal neighbours can be ensured.
When there are too many missing values in an original dataoeetcan consider to lter some
genes based on amount of missing elements. For example,tutya an diffuse large-B-cell
lymphoma addressed in [60], genes (clones) having more2@#nmissing values were removed
before any analysis being conducted. Please note that, 1#{8, the missing values in the gene

expression data sets were excluded in the analyses.

4.1.3 A web-based preprocessing tool

An interactive web-based software for preprocessing raitay gene expression data was intro-
duced in [49], which was implemented in a Perl CGlI script. iBes the functions mentioned
above, such as log-transformation, normalization andingsglues management, it also pro-
vides a way to handle replicate. The replicate here meansaime cDNA clone that spotted
several times or different cDNAs representing the same genthe cDNA array. The usage
of replicates is mainly for quality checking. Generally, dn experiment, several expression
values of a replicated gene will be output, though only oneeieded in the further analysis.
How to derive a proper expression level from several out@ies? The provided solution
is quite simple: using the average or the median value ohallréplicates upon checking the
consistency among them. During the consistency checkiregirtedian of all the values is cal-
culated and then the replicates whose expression valuegyanbehe threshold from the me-
dian are removed. The threshold is a user-de ned value. Téle wterface of this tool is at

http://gepas.bioinfo.cnio.es/cgi-bin/preprocess

4.2 Gene ldenti cation and Supervised Learning

Supervised learning algorithms are used to establish rmddetlassify samples in different
classes of gene expression pro les while gene identi aadi@answer which genes are differ-

entially expressed between the classes, i.e. featuretiselecsenerally, gene identi cation is
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carried out before learning algorithms are used.

4.2.1 Gene identi cation

In a pioneer study in 1999, Golwt al[41] analysed gene expression pro les of 27 Acute Lym-
phoblastic Leukemia (ALL) samples and 11 Acute Myeloid Lemka (AML) samples. They
identi ed genes with differential expression between ALhdaAML samples using the signal-
to-noise measure that we introduced in Section 3.2.1 of teh&p According to signal-to-noise

statistic, the coef cient correlation between genand classes, |, is de ned as:

where and are the mean and standard deviation of the gene expresdims\ar gene
for all the patients of class (ALL) or class (AML). Large positive value of  indicates
strong correlation with class whereas large negative value of indicates strong correlation
with class [41]. Then an equal number of genes with positive and withatieg correlation
values were selected to integrate into the learning algoritThe number of informative genes
they chose was 50, but they stated in the paper that “theipiet results were insensitive to
the particular choice: predictors based on between 10 abdj@0es were all found to be 100%

accurate, re ecting the strong correlation of genes with AML-ALL distinction”.

Similar to Golubet al, there were some other researchers who used statistid¢altbodis-
cover differentially expressed genes between sampleedasach as-statistic and its variation
(like signal-to-noise, Fisher criterion score), Wilcoxamk sum test and so on. For examples,
in [12], genes selected bystatistic were fed to a Bayesian probabilistic framewarkdample
classi cation. Olsheret al [85] suggested to combinestatistic, Wilcoxon rank sum test or the

-statistic with a permutation-based model to conduct getecgon. In their model, the sig-
ni cance of genes is determined by the associated statistita critical value calculated on the
same statistic using the permuted labels. The permutatisarople class labels were conducted
for a few thousands times. Wilcoxon rank sum test is anothesiqure favored by researchers
mainly due to its non-parametric characteristic.

Park et al built a scoring system in [87] to assign each gene a scoredbasdraining

samples. For a gene, they rst sorted training samples daugtto the expression levels of this
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gene — from the smallest expression level to the largest 8aeond, they swap the class labels
of the samples to make the gene into a perfectly discrimigatnarker — all high expression
values belong to one class of samples and all low expressilues belong to the other class.
Then the score of the gene was the minimum number of the reeyessaps. Finally, a small set
of differently expressed genes, which had smaller scoreg discovered. They claimed that this
scoring approach was robust to outliers and different nbzatéon schemes because it used ranks
rather than actual expression levels. Essentially, tlisesis identical to Wilcoxon rank sum test
statistic [51]. Some researchers also conducted comparisetween Wilcoxon rank sum test
and some other statistical measures on gene selectionx&woipée, Troyanskayat al compared
-statistic, Wilcoxon rank sum test and a heuristic methagedaon Pearson correlation in [126].
Their results showed that overall speaking, the rank sutrafgseared most conservative, which
may be advantageous if the further biological or clinicalges of the identi ed genes are taken

into account.

Jaegetret al [51] designed three pre- Itering methods to retrieve grewmb similar genes.
Two of them are based on clustering and one is on correlafictatistical test then was applied
to these groups to nally select genes. The statisticaktased in their study included Fisher
criterion score, signal-to-noise, Wilcoxon rank sum testfatistic and TnoM (Thresholded-
number-of-Misclassi cations), which calculates a mininearor decision boundary and counts
the number of misclassi cations done with this boundary.s&hon the test results on three
public gene expression data sets using the selected geshegggport vector machines classi ca-
tion algorithm, they concluded that feature selection caaty help improve the classi cation
accuracy, but there is no absolute winner among their peapgse- Itering methods and the
ve statistical tests. Another comparison of using differstatistics in gene identi cation was
conducted by Thomaet alin [121], they presented a statistical regression modelpygroach to
discover genes that are differentially expressed betweerckasses of samples. Their modeling
approach used known sample group membership to focus oessipn pro les of individual
genes. They tested their methodology on the AML-ALL leukemata set of Golub [41] and
compared their results with those obtained usirgatistic or Wilcoxon rank sum test. Their
model made no distributional assumptions about the dataeoounted for high false-positive

error rate. However, in practice, the-scores they proposed are expected to be similar to
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statistics, when the distribution of expression levelslwaapproximated by the normal distribu-
tion. In a recent review of several statistical methods imtef their effectiveness to discover
differentially expressed genes, Pan [86] comparsthtistic, the regression modeling approach
against a mixture model approach proposed by him. Diffefhemh -statistic and the above
regression modeling approach that sets strong assumpiiotise null distribution of the test
statistics, the mixture model estimated the null distidoutdirectly. He pointed out that although
the three methods were all based on using the two-sarrgilistic or its minor variations, they
differed in how to associate a statistical signi cance leweethe corresponding statistic so that
large differences in the resulting signi cance levels ahd humbers of genes discovered were
possible [86]. The Bonferroni method described in Sectidro8 Chapter 3 was used in his study

to adjust the signi cant level.

SAM (Signi cance Analysis of Microarrays), a software déyged at Stanford Univer-
sity (http://www-stat.stanford.edu/ tibs/SAM/ ), is designed to nd signi cant
genes in a set of microarray experiments based on stronstiststudy on genes [127]. SAM
rst computes a statistic to each gene on the basis of chamgerne expression relative to the
standard deviation of repeated measurements for the gémm for those genes whose statistic
is greater than an adjustable threshold, SAM uses perrongatif the data to estimate the per-
centage of genes identi ed by chance (known as false disgaete (FDR)). The threshold for
signi cance is determined by @mning parameter , chosen by the user based on FDR, dold
changeparameter to ensure that the selected genes change at frass@eci ed amount [26].
Besides gene expression pro les for phenotype classiacgtSAM can be applied to other types
of experimental data [127]. For example, to identify genbsse expression correlates with sur-
vival time, the assigned score is de ned in terms of Cox'sgamtional hazards function, which
is a popular method for assessing a covariate's effect dergatremain alive or censored dur-
ing the follow-up at the time of the study. To identify genelsose expression correlates with a
guantitative parameter (e.g. a numeric type class lab#t)) as tumor stage, the assigned score

can be de ned in terms of the Pearson correlation coef cient

Besides statistical measures, other dimension reductigthads were also adopted to se-
lect genes from expression data. Nguyaral [82] proposed an analysis procedure for gene

expression data classi cation, involving dimension reitut using partial least squares (PLS)
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and classi cation using logistic discrimination (LD) andadratic discriminant analysis (QDA).
They compared PLS to the well known dimension reduction oubthf principal components
analysis (PCA). PCA reduced the high dimensional data tp arfitw gene components which
explained as much of the observed total gene expressioatiearias possible and PLS chose
components to maximize the sample covariance betweendke ahd a linear combination of
the genes. The essential difference between these two dsaththat PLS is a supervised method
while PCA is an unsupervised method since it selects femituithout regard to the class infor-
mation of the samples. For more about PCA, please refer ttoBe®.2.5 in Chapter 3. After
applying PLS to original high dimension data, a simpkatistics was used to conduct a further

gene selection. Finally, 50 genes were provided to theidatien step.

4.2.2 Supervised learning to classify samples

Various machine learning algorithms have been applied talect classi cation from gene ex-
pression data. Let's still start with the AML-ALL leukemidusly conducted by Golulet al
in [41]. The classi cation method they proposed was a waidhgene voting scheme, which
was a combination of multiple “univariate” classi ers [43]|n detail, they de ned
(re ects the correlation between the expression levels arieg and distinction), and
(the average of the mean expression values in the two c)assbe

was the signal-to-noise measure of gernthat they used to select genes. When doing prediction
for a new sample , let denote the expression value of genia the sample. The vote of gene

was , With a positive value indicating a vote for classand a negative value
indicating a vote for class. The total vote for class was obtained by adding up the absolute
values of the positive votes over the selected informatieeg, while the total vote for class
was obtained by adding up the absolute values of the negatites. In order to avoid arbitrary
prediction when the margin of victory is slight, they de n&atediction strength” (PS) to mea-
sure the margin of a winner class. A threshold of PS was ésttetol to minimize the chance of

making an incorrect prediction.

Dudoit et al [35] conducted a comparison of using some discriminant auttior classi -
cation of gene expression data. These well-known clasbnanethods included Fisher linear

discriminant analysis (FLDA), maximum likelihood disciimant rules (such as linear discrimi-
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nant analysis (LDA), diagonal quadratic discriminant geal (DQDA) and diagonal linear dis-
criminant analysis (DLDA, also known as naive Bayesjhearest neighbours {NN) classi er,
classi cation and regression trees (CART) and aggregd@iAdRT trees by boosting procedure.
Before classi cation, a gene ltering was performed basedtiwe ratio of genes between-group

to within-group sums of squares. For a genéhis ratio, , was given by

where was the class label of sampland was an indicator function — equaling 1 if the
condition in the following parentheses was true and O otfserw and  were the average ex-
pression level of geneacross all the samples and across samples belonging to abadys[35].
Then a certain number of genes with the largest BW ratios s&lexted for classi cation. They
did experiments on three data sets. Their results showéed4Kal classi ers and DLDA had the
lowest error rates, whereas FLDA had the highest. CART«belssssi ers performed intermedi-
ately, with aggregated classi ers being more accurate ¢haimgle tree. They explained that the
poor performance of FLDA was most likely caused by the faat thata sets contained a large
number of genes but a limited number of samples. Under suitbaiisn, the ratios of between-
group and within-group sums of squares and cross-prodecinie quite unstable and provided
poor estimates of the corresponding population quantitielsey also showed that the perfor-
mance of FLDA improved when the number of selected genes wazased to 10. Although
CART-based classi ers did not achieve the best performathes could exploit and reveal inter-
actions between genes as well as relationship between gadgshenotypes. Most importantly,
decision trees/rules output by these methods are easyetpiiet and understand. In addition,
their results also demonstrated that the unstablenessiogle slassi cation tree on prediction

could be greatly improved when it was used in combinatiomaggregation techniques.

As mentioned previously in Chapter 2, support vector mahifsVM) have been exten-
sively used in biological data analysis. It is also playingeay active role in classifying gene
expression data. SVM has many mathematical features thet ihattractive for gene expres-
sion analysis, such as its exibility in choosing a simitgrfunction, sparseness of solution when
dealing with large data sets, the ability to handle largéufeaspaces, and the ability to identify

outliers [23]. For example, in an early work done by some aegeers in MIT [80], a linear
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SVM classi er with a rejection level based on con dence v@guwvas applied to classify Golub's
AML-ALL subtypes leukemia disease. They achieved a betegfopmance on this task than
Golubet al did [41]. Fureyet al[39] further tested the ef ciency of SVM on several other gen
expression data sets and also obtained good results. Biterofselected discriminatory genes

via signal-to-noise measure.

Besides the above techniques, Bayes model, a classicalffmotive method, has been
also applied to gene expression study. For example, two regigdan classi cation algorithms
were investigated in Lét al [68] which automatically incorporated a feature selectiwocess.
The fundamental technigque of the algorithms was a Baysiproagh named automatic relevance
determination (ARD), which was employed to construct asilasthat was sparse in the number
of samples, i.e. the relevance vector machine (RVM). Letval [68] adopted the idea of ARD
to gene expression study. They developed two algorithmse Was the standard RVM with
sparsity obtained in the feature set. Another performetiifeaselection by isolating the feature
dependence in the log-marginal likelihood function. Theatosion they obtained was that these

algorithms had comparable performance to SVM when dealitiy gene expression data.

4.2.3 Combing two procedures — wrapper approach

In some studies, procedures of gene selection and supgieiaming were not separated dis-
tinctly. Similar to the wrapper approach illustrated in @tea 3, identi cation of signi cant
genes were incorporated with learning process. For exardstonet al[131] integrated fea-
ture selection into the learning procedure of SVM. The feagelection techniques they used
included Pearson correlation coef cients, Fisher crirrscore, Kolmogorov-Smirnov test and
generalization selection bounds from statistical leayrireory. Going a step further, Guyet

al [43] presented an algorithm called recursive feature elaton (RFE), by which features were
successively eliminated during the training of a sequef@&@/d classi ers.

There are some other examples of using the wrapper idea eaygmession data analysis.
Gene selection was performed in [50] by a sequential seargime, evaluating the goodness of
each gene subset by a wrapper method. The method executsdpievised algorithm to ob-
tain its accuracy estimation by a leave-one-out process.stipervised classi cation algorithms

reported in this paper included IB1 (i.e. 1-NN), Naive-Bay€4.5 and CN2. The paper demon-
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strated that the accuracy of all these learning algorithas signi cantly improved by using the
gene selection procedure. Another example of using theperamethod was [67], where let

al combined a genetic algorithm (GA) and theNN method to identify a subset of genes that
could jointly discriminate between different classes ahples. First, GA was used to obtain
many such “near optimal” subsets of differentially expessgenes independently. Then, the
relative importance of genes for sample classi cation waresen by examining the frequency

of membership of the genes in these sets.

Culhaneet al [31] applied Between-Group Analysis (BGA) to microarrayalaBGA was
based on conducting an ordination of groups of samplesgusstandard method such as corre-
spondence analysis (COA) or principal components anafi’&I#\). For groups, BGA could
nd eigenvectors (or axes) to maximize the between-groupnegiaEach of eigenvectors
could be used as a discriminator to separate one of the gfoupsthe rest. After a BGA, the
samples are separated along axes. The genes that were spostgible for separating the groups
were those with the highest or lowest coordinates alongeth@ss. One advantage of BGA is
that it can be safely used with any combinations of numbergeokes and samples so that no

advanced gene selection is necessary.

PAM (Prediction Analysis for Microarrays), developed at@ord University fittp:
[Iwww-stat.stanford.edu/"tibs/PAM/ ), is a class prediction software for genomic
expression data mining. It performs sample classi catimnT gene expression data based on
the nearest shrunken centroithethod proposed by Tibshiraet al [123]. This method com-
putes a standardized centroid for each class — the averageegpression for each gene in each
class divided by the within-class standard deviation fat tiene. This standardization has the
effect of giving higher weight to genes whose expressiortable within samples of the same
class [123]. The main feature of nearest shrunken centtagbiccation from standard nearest
centroid classi cation is that it "shrinks” each of the ctasentroids toward the overall centroid
for all classes by an amount namiégleshold The selection of the threshold can be determined
by the results of cross-validation for a range of candidalees. When classifying a new sam-
ple, it follows the usual nearest centroid rule, but usirgghrunken class centroids. The idea of
shrinkage has two advantages: (1) it achieves better pesfoce by reducing the effect of noisy

genes, and (2) it does automatic gene selection. In patidfila gene is shrunk to zero for all
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classes, then it will be removed from further considerati®\M has been applied to several
DNA microarray data sets to do classi cation [123, 124], Isias small round blue cell tumor
data of childhood [54], diffuse large B-cell ymphoma [6]MA-ALL leukemia [41]. Recently,

PAM is also used to classify patients into appropriate cihsubgroups (e.g. high risk and low

risk groups) identi ed by clustering algorithms on gene egsion pro les [11].

4.3 Applying Clustering Techniques to Analyse Data

Another early work on analyzing gene expression data wae grAlon et al [7]. Their data
contained the expression of the 2000 genes with highestmalnintensity across 62 tissues,
including 22 normal and 40 colon cancer. Their study wasdasetop down hierarchical clus-
tering, a method of unsupervised learning. They demoiestrato kinds of groupings that (1)
genes of related functions could be grouped together byecing according to similar temporal
evolution under various conditions, and (2) differentuiss formed different clusters, i.e. most
normal samples clustered together while most cancer sarmjistered together. Although they
showed that some genes are correlated with the normal veasicer separation, they do not

suggest a speci ¢ method of gene selection in the paper.

Since [7], quite a few researchers have applied clustegopniques to gene expression
data, including self organizing maps, simulated anneamdygraph theoretic approaches. In [111],
the input data was represented as a weighted graph, whdreesecorresponded to samples
and edge weights re ected pairwise similarity between thaasponding samples. Then the
weight of an edge was believed to re ect the likelihood thaténdpoints originated from the
same clustering under some simpli ed probabilistic asstiomg [111]. An algorithm named
CLICK (CLuster Identi cation Connectivity Kernels) wasveanted to partition the graph using
a minimum-cut algorithm, which minimizes the sum of the vidgof the edges joining the two
parts. However, one disadvantage of this approach is that ik little guarantee that the algo-
rithm will not go astray and generate partitions that ardnlyiginbalanced. To avoid this, Xing
et al [136] proposed CLIFF (CLustering via Interactive FeatuilteRng) to combine clustering
and feature selection in a bootstrap-like process. Thgordhm interacted between feature |-
tering process and clustering process in a such way thatgachss used the output of the other

process as an approximate input. They applied Approximatenidlized Cut, a graph partition
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algorithm, to generate a dichotomy of samples during eachtion. In the feature selection pro-
cess, they used the unsupervised independent featureingtithnique to rank all features in
terms of their power to discriminate. Then an initial p#titbased on the most discriminative
features was generated (valueas pre-de ned). Based on this partition, they applied suped
algorithms, information gain ranking and Markov blanketeting, to determine feature subset
from which new partition would be generated. In turn, the lyegenerated partition could be
used to further improve the feature selection. CLIFF wasieghfpy another paper [135] to se-
lect genes from the leukemia data set [41] and good clagdsbeaesults were obtained via three
learning algorithms: a Gaussian classi er, a logistic emgion classi er and a nearest neighbour

classi er.

In a recent work conducted by Xat al[137], gene expression data was presented as a Min-
imum Spanning Tree (MST), a concept from graph theory. By pihésentation, each cluster of
the expression data corresponded to one subtree of the M#dh wgorously converted a highly
computationally intensive multi-dimensional clusteripgpblem to a simpli ed tree partitioning
problem. Based on the MST representation, they developeardoer of ef cient clustering al-
gorithms and integrated them into a software named EXCAVRTEXpression data Clustering

Analysis and VisualizATion Resource).

4.4 Patient Survival Analysis

Gene expression pro les with clinical outcome data enab@itoring of disease progression
and prediction of patient survival at the molecular levelfev published studies have shown
promising results for outcome prediction using gene exgioespro les for certain diseases [102,
14,129, 140, 88, 60].

Cox proportional hazard regression [30, 74] is a common atkth study patient out-
comes. It has been used by Rosenwatldl to analyse survival after chemotherapy for diffuse
large-B-cell lymphoma (DLBCL) patients [102], and by Begral to predict patient out of lung
adenocarcinoma [14]. With this method, genes most relatexintvival are rst identi ed by a
univariate Cox analysis, and a risk score is then de ned asal weighted combination of the

expression values of the identi ed genes.
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Ando et al [9] fed gene expression pro les to a fuzzy neural network KBNystem to
predict survival of patients. Their method contained savsteps. (1) Predicting the outcome
of each patient using one gene at one time. (2) Ranking genéselr accuracy — the gene
with the highest prediction accuracy had the highest radkSélecting partner genes for highest
ranked gene. They xed the gene with the highest rank (namsédst gene”) and used a similar
prediction method to select a partner gene (hamed as “2rel'\g@ho gave the highest accuracy
in combination with the “1st gene”. Similarly, they xed “dgene” and the “2nd gene” to nd
a 3rd gene. This procedure stopped after six rounds or whega thas no gain on accuracy. (4)
Applying the procedure described in (3) to the ten highested genes. (5) Using each of the ten
highest ranked genes and its selected partner genes todictipmre. (6) Optimizing the resulting

ten FNN models built on the combinatorial genes by the baokgyation method.

Parket al [88] linked gene expression data to patient survival timgiagithe partial least
squares regression technique, which is a compromise betwraeipal component analysis and
ordinary least squares regression. Sheppl[114] employed the weighted voting algorithm to
identify cured versus fatal for outcome of diffuse large &@tymphoma. The algorithm calcu-

lated the weighted combination of selected informativekmagenes to make a class distinction.

In a recent publication [60], LeBlaret al developed a gene index technique to identify the
associations between gene expression levels and patitinoe. Genes were ordered based on
linking their expression levels both to patient outcome tara speci ¢ gene of interest. To select
such a reference gene, one was recommended to considemtnhéhge had been identi ed to be
most strongly related to the outcome or suggested frommadtelata such as a protein analysis
or other experimental work. The core of their proposal wasoimbine the correlation between
genes with the correlation between genes and patient oetasrwell as class membership. They
demonstrated their method using the DLBCL data set colidoyeRosenwalabt al consisting of

160 patients [102].

4.5 Chapter Summary

Using gene expression data to analyse human malignandestthacted many researchers these
years. In this chapter, we did an extensive review on thenolgies applied to gene expression

studies, focusing on data preprocessing, gene selectibaample supervised learning. The op-
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erations of data preprocessing mainly include scale toamsftions, data normalization, missing
value management, replicate handling, and at patterrrittg. In the studies of gene selection,
statistical methods were widely adopted while feature yweapdea and clustering algorithms
also demonstrated their ef ciency. To solve the classiicatproblem arising from gene expres-
sion data, many traditional and newly invented supervieadhing approaches have been applied
to distinguish tumor from non-tumor samples, one subtypefother subtypes of certain dis-
ease and so on. From the extensive literature review in lizgipter, we can see that approaches to
gene expression data analysis were not uniform; indeedshlevery paper presented a different

method or described a novel manner/procedure to analysis.
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Chapter 5

Experiments on Microarray Data —

Phenotype Classi cation

In this chapter, our proposed gene selection process ER@€IRilIEd technology description
can be found in Section 3.3 of Chapter 3) and the ensemblecidide trees method CS4 (Sec-
tion 2.3.4 of Chapter 2) will be applied to some bench-markrodrray gene expression and
proteomic data sets to classify phenotypes. Phenotypsi clat$on is typically performed on
binary type, such as tumor against non-tumor (i.e. nornfad).each data set, experimental re-
sults using some other related feature Itering methodsd@asisi cation algorithms will also be

presented, so that reasonable comparisons can be addressed

5.1 Experimental Design

We test our methodology on several high-dimensional data sdich were published recently
in Science, Natureand other prestigious journals. All these data sets have desumulated at
http://sdmc.i2r.a-star.edu.sg/rp/ and transformed into .data, .names format that
is widely used by the software programs for data mining, rimechearning and bioinformatics.

See Appendix B for more detail about this data repository.
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5.1.1 Classi ers and their parameter settings

In order to compare CS4 with other ensemble of decision tresthods, Bagging, AdaBoostM1
and Random forests are also run on the same data sets. Wihadystate-of-the-art machine
learning algorithms in gene expression analysis, suppstov machines (SVM) and near-
est neighbours (NN are tested as well. The software implementation of theassi cation
algorithms (except CS4) used in the experiment¥Veka(Bagging, AdaBoostM1, SVM and
-NN in version 3.2 and Random forests in version 3.3.6), a {tader GNU) machine learn-
ing software package written in Java and developed at Usityeof Waikato in New Zealand

(http://www.cs.waikato.ac.nz/ "ml/weka/ ).

For most of the algorithm parameters, we adopt the defatlihgeof Wekd implementa-
tion. Particularly,Wekaimplemented SVM using sequential minimal optimization @Malgo-
rithm [93] to train the model (see section 2.3.2 for more iinfation about SMO). Other default
settings of SVM include: conducting data normalizatioringgolynomial kernel functions, and
transforming the output into probabilities by a standagirsiid function. Most of the time, the
linear kernel function is used unless stated otherwise.0As-NN, we also use normalized data
and set the value of to 3 (default value is 1)— i.e. 3 nearest neighbours (i.e.Ng-Will be used
in prediction.

Breiman noted in [19] that most of the improvement from baggis evident withinten
replications. Therefore, we set 20 (default value is 10hasnumber of bagging iterations for
Bagging classi er, the number of maximum boost iteratioos AdaBoostM1, and the number
of trees in the forest for Random forests algorithm. Below,list the default settings iWeka

for these three classi ers.

Bagging. The random seed for resampling is 1.
AdaBoostM1. Usdoosting by weighting

Random forests. The number of feature candidate to conisider( ), where

is the total number of features. The random seed to pick uptareis 1.

In addition, the implementation of the base classi er C/hSekaversion 3.2 was based

on its revision 8, which was the last public version beforevdts commercialized. We follow
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the default settings that tree pruning and subtree raisieg@nducted. The CS4 algorithm was
implemented usingVekaAPls (Version 3.2) and has been integrated Mtekapackage as one
of its classi ers. By default, we also build 20 trees from ledtne of learning. In case the
number of available features is less than 20, the numbeee$ will be decreased accordingly

and automatically.

5.1.2 Entropy-based feature selection

In the feature selections conducted by ERCOF, we select §8beant level (for Wilcoxon rank
sum test) and 0.99 Pearson correlation coef cient threshebr each data set, besides ERCOF,

we also try the following entropy-based Itering scenartoonduct feature selection.

All-entropy : choose all the features whose value range can be partitione intervals
by Fayyad's discretization algorithm [36] (also see Set8d.4 of Chapter 3), i.e. all the
output features from the Phase | of ERCOF.

Mean-entropy: choose features whose entropy measure is smaller thanethe emtropy

value of all the genes selected by above “all-entropy” stga{64].

Top-number-entropy: choose a certain number of top-ranked features accordirg-

tropy measure, such as top 20, 50, 100 and 200 genes.

In addition, performance on original intact data (i.e. véi@ature space, no gene selection)
are also obtained and presented under coldthin the result table of each data set. Please note

that the type of features is always numeric.

5.1.3 Performance evaluation

Since the number of samples (i.e. experiments) is small e g@xpression pro les, we simply
usenumber of misclassi ed sampl@s each class as the main evaluator. The format of perfor-
mance presentation is ,Where (or )is number of misclassi ed samples in the rst
(or second) class and . Other evaluation measures, such as sensitivity, spégi ci
and precision are also calculated when necessary. In mastses, we present results obtained

from a 10-fold cross validation on all samples of each data Bee samples are shuf ed (with
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Input data

‘ Randomly divide data into k equal size by disjoint folds
i=1

‘ i th fold for test, others for trainingf

I Training data

| Gene selection ‘

i= i+
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l Output error

Figure 5.1: A process diagram forfold cross validation.

random seed 1) and strati ed Byekaprogram version 3.2. In a 10-fold cross validation, since
the feature selection is conducted for each fold indepehdéehe identi ed genes on same data
set will be vary from fold to fold. Figure 5.1 is a diagram ofrqurocess to conduct-fold cross
validation on gene expression data. Especiallypld cross validation becomdsave-one-out

cross validation (LOOCYV, also known as “jack-knife”) wherquals the number of samples.

5.2 Experimental Results

Here, we will present our experimental results of severalipgene expression pro les and one
proteomic data set.
5.2.1 Colon tumor

This data set was rst analysed by Al@halin [7]. Its task is to distinguish cancer from normal
tissue using microarray data (Affymetrix oligonucleot@eay). 2000 out of around 6500 genes

were selected based on the con dence in the measured exprésgels. These 2000 genes have
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Table 5.1: Colon tumor data set results (22 normal versusig®i) on LOOCV and 10-fold
cross validation. Numbers presented in bold type is thereestt achieved by the corresponding
classi er among 8 gene selection scenarios.

Classi er All All-entropy  Mean-entropy Top-number-enpy ERCOF
20 50 100 200
Loocv
SVM 10(5:5) 12(5:7) 9(4:5) 9(4:5) 8(4:4) 9(4:5)  13(8:5) 7(3:4)
3-NN 18(11:7) 10(5:5) 12(6:6) 10(6:4) 12(6:6) 10(5:5) 10(5:5) 10(4:6)
Bagging 10(7:3) 11(7:4) 11(7:4) 11(5:6) 11(5:6)10(5:5) 10(5:5) 10(5:5)
AdaBoostM1 13(8:5) 11(6:5) 13(8:5) 13(8:5) 13(7:6) 13(8:5) 14(9:5) 11(6:5)
RandomForests  16(11:5) 15(10:5) 15(10:5) 14(8:6) 14(8:8H(8:7) 14(8:6) 13(8:5)
Cs4 11(7:4) 11(7:4) 11(7:4) 12(7:5) 11(7:4) 11(7:4)9(6:3) 12(4:8)
10-fold cross validation
SVM 11(5:6) 9(5:4) 9(5:4) 8(4:4) 8(4:4) 9(5:4) 10(5:55) 8(4:4)
3-NN 19(12:7) 9(5:4) 11(5:6) 12(8:4) 10(5:5) 10(5:5) 11(6:5) 9(5:4)
Bagging 12(7:5) 12(7:5) 10(5:5) 11(5:6) 12(7:5) 10(5:5)9(4:5) 10(5:5)
AdaBoostM1 12(8:4) 10(5:5) 12(8:4) 14(8:6) 13(7:6) 13§8:514(9:5) 9(5:4)
RandomForests  12(5:7) 13(6:7) 13(9:4) 15(9:611(7:4) 13(8:5) 12(6:6) 12(7:5)
Cs4 14(9:5) 11(7:4) 12(7:5) 13(8:5) 12(7:5)9(5:4) 13(8:5) 10(5:5)

highest minimal intensity across the 62 tissues collectedh fcolon-cancer patients, including
40 tumor biopsies from adenocarcinoma and 22 normal bigfiiien healthy parts of the colons
of the same patients [7]. The raw data can be fourdtat//microarray.princeton.

edu/oncology/affydata/index.html.

Table 5.1 shows the performance of different classi ers agntotal 8 gene selection sce-
narios. For this data set, since it contains a relativelyiigmaumber of samples, we list out both

LOOCV and 10-fold cross validation results.

There are 7 common genes selected by each fold ERCOF featantien in 10-fold cross
validation test. Table 5.2 lists their feature series numBenBank accession number, sequence
and name. Several of these identi ed features, such asré&=afr7, 625 and 1772, were also
highlighted in [68], where Bayesian algorithms incorpimgtfeature selection were applied to
the same data set. Particularly, the nding of feature 37t torresponds to the mRNA for
uroguanylin precursor, is consistent with the statemen84r that “guanylin and uroguanylin
are markedly reduced in early colon tumors with very low eggion in adenocarcinoma of the

colon and also in its benign precursor, the adenoma”.

The best performance on LOOCYV is achieved by SVM under ERGfkufe selection
scenario (7 biopsies are misclassi ed, including 3 nornmal 4 tumor samples). So far, this is

also among the best prediction accuracy on this data set edmapared with published results.
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Table
colon

5.2: 7 common genes selected by each fold of ERCOF fol@i@Gross validation test for
tumor data set. UTR stands for untranslated region.

Feature Accession Sequence Name
number number

377
780
513
625

158
177
177

750753 gene H.sapiens mRNA for GCAP-Il/uroguanylircprsor
H40095 3'UTR MACROPHAGE MIGRATION INHIBITORY FACTOR (HMAN)
M22382 gene MITOCHONDRIAL MATRIX PROTEIN P1 PRECURSOR{(MAN)
X12671 gene Human gene for heterogeneous nuclear dlemmpuotein (hnRNP)
core protein Al
2 X63629 gene H.sapiens mRNA for p cadherin
1 J05032 gene Human aspartyl-tRNA synthetase alphbtgumRNA, complete cds
2 H08393 3'UTR COLLAGEN ALPHA 2(XI) CHAIN (Homo sapiens)

Although CS4 performs worse than SVM does in terms of acguiaprovides some learning

rules.

For example, Figure 5.2 gives a decision tree outpl@®4 on this data set. From this

tree, 5 rules can be derived directly:

(1)

)

®3)

(4)

(®)

5.2.2

“If attribute625 226.6 thenthe sample is normal There are 11 of normal samples

(labeled as “positive”) that satisfy this rule.

“If attribute625 226.6 attributel772 82.0 attribute377 224.], thenthe sample is

tumor’. This rule is true for 10 of the tumor samples (labeled agyaiwe”).

“If attribute625 226.6 attributel772 82.0 attribute377 224.1 attribute625 331.]

thenthe sample is tum®r This rule is true for 2 of the tumor samples.

“If attribute625 226.6 attributel772 82.0 attribute377 224.1 attribute625 331.]

thenthe sample is normal There are 10 of the normal samples that satisfy this rule.

“If attribute625 226.6 attributel772 82.0 thenthe sample is tumd&r This is a domi-
nant rule for tumor samples since it is true for 28 (70%) ohth@owever, there is also 1

normal sample meets this rule.

Prostate cancer

Prostate tumors are among the most heterogeneous of cabognshistologically and clini-

cally [115]. Here, we will study gene expression patterosnfi52 tumor and 50 normal prostate

specimens. The data was obtained from oligonucleotideaaicays containing probs for ap-

proximately 12,600 genes and ESTs. According to the suppiéhdocuments of [115], where
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Figure 5.2: A decision tree output from colon tumor data $at upper part is the tree presented
in text format while the lower is the same tree in tree fornTdite pictures are captured from the
result panel ofVeka In this chapter, we will mostly use the text format to ilkage a decision
tree.

the data was rst analysed, all expression les in a givenaipent were scaled to a refer-
ence le based upon the mean average difference for all gpressent on the microarray. All
genes with average differences (calculated by Affymetren&Chip software) below the mini-
mum threshold of 10 were set at the minimum threshold whaetlaximum threshold was set at
16,000. The raw data can be downloaded fiuttyp://microarray.princeton.edu/
oncology/affydata/index.html.

Table 5.3 shows our 10-fold cross validation performancéhimprostate cancer data set.
SVM achieves 95% accuracy (5 errors out of total 102 samplitis,2 misclassi ed tumor sam-
ples and 3 misclassi ed normal samples) under both ERCOFtapdLO0 genes selected by
entropy measure. CS4 also obtains good accuracy as higl¥as/iB 7 classi cation errors. In
[115], greater than 90% LOOCV accuracy was claimed by ussmall number of genes (from 4
to 256) selected by signal-to-noise measure anéarest neighbours classi cation algorithm. In
fact, our LOOCYV accuracy under ERCOF is also 95% for SVM arfh 38 CS4 using average

500 genes (detailed data not shown).

There are 54 common genes selected by each fold ERCOF featandion in 10-fold cross
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Table 5.3: Prostate cancer data set results (52 tumor vB@snermal) on 10-fold cross valida-
tion.

Classi er All All-entropy  Mean-entropy Top-number-enfryp ERCOF
20 50 100 200
SVM 7(5:2) 8(5:3) 6(4:2) 6(4:2) 7(4:3) 5(3:2) 7(3:4)  5(3:2)
3-NN 18(8:10) 10(6:4) 8(5:3) 9(3:6) 8(4:4) 7(4:3) 9(5:4) 8(5:3)
Bagging 10(8:2) 9(7:2) 10(5:5) 8(4:4) 8(4:4) 11(5:6) 9(5:4) 9(5:4)
AdaBoostM1 14(7:7) 10(6:4) 8(5:3) 9(5:4) 12(6:6) 14(3:11) 10(4:6) 10(6:4)
RandomForests  21(10:11) 11(7:4) 11(6:5) 9(5:4) 10(7:3) 5:4( 7(4:3) 10(5:5)
Cs4 9(7:2) 9(7:2) 8(6:2) 8(4:4) 7(5:2) 9(6:3) 9(6:3) 8(6:2)

Table 5.4: Classi cation errors on the validation set ofgurancer data, consisting of 149 sam-
ples (15 MPM versus 134 ADCA).

Classi er All All-entropy  Mean-entropy Top-number-enpyp ERCOF
20 50 100 200
SVM 1(0:1) 1(0:1) 0 1(0:1) 2(1:1) 1(0:1) 0 0
3-NN 3(2:1) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 0 1(1:0) 1(1:0)
Bagging 4(0:4) 5(0:5) 5(0:5) 20(3:17) 12(2:10) 8(1:7) 6(0:6) 6(0:6)
AdaBoostM1 27(4:23) 27(4:23) 27(4:23) 27(4:23) 27(4:23)7(4&23) 27(4:23) 27(4:23)
RandomForests 5(0:5) 7(0:7) 3(2:1) 8(1:7) 3(1:2) 3(1:2) 2(0:2) 2(0:2)
Cs4 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2) 3(1:2)

validation test. Table A.1 in the Appendix lists their prahenber, GenBank accession number,
and name. Some of them were also announced by [115] as signiigenes to distinguish tumor
from normal prostate samples. For examples, AF037643, I88,78L031228, and X07732 and

SO on.

5.2.3 Lung cancer

This data set is about the distinction between malignantralenesothelioma (MPM) and adeno-
carcinoma (ADCA) of the lung by using the gene expressiongsmn 181 tissue samples (31
MPM and 150 ADCA) obtained from oligonucleotide chips. Eaample is described by 12,533
genes. In [42], where this data was rst studied, samplesdixaded into a training set consist-
ing 16 MPM and 16 ADCA, and a validation set containing thd &9 samples. The raw data
can be found fronhttp://www.chestsurg.org/microarray.htm. Table 5.4 shows

the errors on test set using our proposed scenarios.

This data set has several features: (1) The size of traimhgs small, but the number of
samples in each class is balanced. Test set contains moréhtiea times samples than those in

the training set, and the number of MPM samples is only onghmifithat of ADCA samples. (2)
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There are as many as 16 genes having zero entropy value nimgraamples. This means that
using any one of them can separate MPM and ADCA completelysTim the construction of a
C4.5 decision tree, a tree will contain only one feature arules, one rule for MPM samples
and another one for ADCA samples. In this case, since thedassi er C4.5 has no training
error, the algorithm of AdaBoostM1 will not proceed to gexternew trees and therefore, it is
equivalent to C4.5. Unfortunately, none of these genes €@8olclassify the samples in the
validation set alone — the best one misclassi es 4 samplakleTs.5 gives the cut point for each
of these 16 genes that can separate MPM and ADCA samples trathing set completely, as
well as the testing error of C4.5 decision tree built only leaittgene. The cut point is the middle
point of the gene's boundary expression value in each cl&ss. example: if the maximum
expression value of a gene having zero entropy in MPM claspss is 100 while the minimum
expression value of the same gene in ADCA samples is 500 ttieerut point value of this gene
will be 300 and we say the gene has lower expression level iMMBmples and higher level
in ADCA samples. (3) Although there is no single gene thatgiaa 100% correct prediction
on the testing samples, the combination of all of them wiidd¢o a near perfect accuracy —
99.3% prediction accuracy with only one MPM sample miséladsby SVM and 3-NN. (4)
Furthermore, when more genes are considered, 100% acoomaegting is achieved by SVM
using mean-entropy, top 200 entropy or ERCOF selectedriegtor by 3-NN using top 100

entropy measure genes.

In the study on the data set in [42], marker genes with a higlggi cant difference (
fold) in average expression levels between 16 MPM and 16 ADRf@ing

samples were explored. From them, 8 genes with the mosst&taliy signi cant differences
and a mean expression level600 in at least one of the two training sample sets were chosen
to form 15 expression ratio patterns. The best test accusgmyrted was also 99.3% (with 1
error). Among the 8 signi cant genes, we nd 3 of them with a@mtropy. They are highlighted
with bold font in Table 5.6 where the probe name, GenBankssior number and gene name
of those 16 zero entropy genes are listed. The remaining &sgaiso have relatively smaller
entropy values, they are X56667 (GenBank accession nupd@rppy rank 31; X16662, rank
32; AJ011497, rank 33; AB023194, rank 37; and U43203, rank 56

By the way, we also obtain the 10-fold cross validation rssoih this data set and list them
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Table 5.5: 16 genes with zero entropy measure in the trais@igof lung cancer data. Cut
point is the expression value of the gene that can be useg#wate MPM and ADCA samples
completely. The column “lower” ( or “higher”) indicates tlutass that all of its samples have
their expression values of this genet greater thar(or greater tharn the cut point.

Probe Name CutPoint Lower Higher TestError

2047s.at 571.1 MPM  ADCA 27(4:23)
266.s.at 76.95 MPM  ADCA 20(2:18)
32046at 103.2 MPM  ADCA 16(3:13)
32551at 73.45 MPM  ADCA 15(1:14)
33245at 48.3 MPM  ADCA 12(1:11)
33833at 453.7 ADCA MPM  10(2:8)
35330at 25.3 ADCA MPM  31(1:30)
36533at 19325  ADCA MPM  8(2:6)
37205at 78.8 ADCA MPM  14(3:11)
37716at 197.75  ADCA MPM  4(4:0)
39795at 1167 ADCA MPM  14(1:13)
40936at 430.6 ADCA MPM  9(3:6)
41286at 415 MPM  ADCA 28(2:26)
41402at 54.6 MPM  ADCA 26(2:24)
575s.at 149.75 MPM  ADCA 8(1:7)
988at 31 MPM  ADCA 17(2:15)

in Table 5.7. Many scenarios have less than 4 misclassi etptes, achieving overall accuracy

above 98%. Remarkably, random forests makes no error uskag+@antropy selected genes.

5.2.4 OQvarian cancer

Different from other data sets studied in this chapter, tiié®ase analysis is about usipg-
teomicspectra generated from mass spectrometer for ovarianrcdeimetion. The initial publi-
cation [92] on this new diagnostic approach wasamcetin February 2002, in which analysis
of serum from 50 unaffected women and 50 patients with omaréncer were conducted and a
proteomic pattern that completely discriminated canaemfnon-cancer was identi ed. As de-
scribed in [29], when we use proteomic patterns to diagnassade, the sample drawn from the
patient is rst applied to a protein chip which is made up opaa ¢ chromatographic surface,
and then analysed via mass spectrometry. The result is\simpiass spectrum of the species
that bound to and subsequently desorbed from the arraycsurfdne pattern of peaks within the
spectrum is studied to diagnose the source of the biologamalple. A process diagram of how
to diagnose disease using proteomic patterns is captured[#9] and given in Figure 5.3. One
obvious advantage of this process is that raw bio uids, sa&hrine, serum and plasma, can be

directly applied to the array surface. On the other handopaggd out in [29], there are criticisms
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Table 5.6: GenBank accession number and name of 16 genegemilentropy measure in the
training set of lung cancer data. Three genes in bold fonewtso selected by [42].

Probe Accession  Gene name

name number

2047sat M23410 Human plakoglobin (PLAK) mRNA, complete cds

266sat  L33930 Homo sapiens CD24 signal transducer mRNA, complét and 3 region

32046at D10495 Homo sapiens mRNA for protein kinase C delta-tgpmplete cds

32551at  U03877 Human extracellular protein (S1-5) mMRNA, conmgplats

33245at  AF004709 Homo sapiens stress-activated protein kinas@MA, complete cds

33833at  J05243 Human nonerythroid alpha-spectrin (SPTAN1) mRédnplete cds

3533Qat AJ012737 Homo sapiens mMRNA for lamin, muscle isoform

36533at  D83402 Homo sapiens gene for prostacyclin synthase

37205at  AB020647 Homo sapiens mRNA for KIAA0840 protein, partes

37716at  X05323 Human MRC OX-2 gene signal sequence

39795at D63475 Human mRNA for KIAA0109 gene, complete cds

40936at  Al651806 Homo sapiens cDNA, 3'end

41286at  X77753 H.sapiens TROP-2 gene

41402at  AL080121 Homo sapiens mRNA; cDNA DKFZp56400823 (frommedKFZp56400823)

575sat  M93036 Human (clone 21726) carcinoma-associated antigef8&-2 (GA733-2) mRNA,
exon 9 and complete cds

988 at X16354 Human mRNA for transmembrane carcinoembryortigam BGPa (formerly TM1-CEA)

Table 5.7: 10-fold cross validation results on whole lungaea data set, consisting of 31 MPM
and 150 ADCA samples.

Classi er All All-entropy  Mean-entropy Top-number-enpy ERCOF
20 50 100 200
SVM 1(1:0) 1(1:0) 1(1:0) 1(1:0) 2(2:0) 2(2:0) 1(1:0) 1(1:0)
3-NN 11(11:0) 3(3:0) 2(2:0) 1(1:0) 2(2:0) 2(2:0) 2(2:0) 1(1:0)
Bagging 6(5:1) 6(5:1) 6(5:1) 7(5:2) 5(4:1) 5(4:1) 6(5:1) 6(5:1)
AdaBoostM1 6(3:3) 7(3:4) 5(2:3) 3(2:1) 2(1:1) 2(1:1) 3(2:1)  6(3:3)
RandomForests 2(2:0) 2(2:0) 0 1(1:0) 2(2:0) 1(1:0) 1(1:0) 1(1:0)
Cs4 2(2:0) 2(2:0) 1(1:0) 3(3:0) 1(1:0) 2(2:0) 2(2:0) 1(1:0)

of using proteomic patterns for diagnostic purpose — mdielgause the identity of the proteins
or peptides giving rise to the key m/z features is not knowaweler, this debate is beyond the
scope of this thesis.

After the rst publication about using proteomic spectradigtect cancer, a series of new
data and discussions on proteomic patterns were put on tAeNKTI Clinical Proteomics Pro-
gram Databank web site lttp://clinicalproteomics.steem.com/. Recently (up-
dated in August 2003), an important development about wshigher resolution mass spectrom-
eter to generate proteomic patterns was announced pulfliolppared with the con guration of
the old Ciphergen instrument (about 100 to 200 spots), tlsemdremendous increase in resolu-
tion of the new Q-Star instrument Q000 at m/z 1500). Besides, mass accuracy is also improved

— Q-Star 10ppm versus Ciphergen 1000ppm.
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Figure 5.3: Disease diagnostics using proteomic pattdpicture is from [29]. m/z stands for
mass to charge ratio and SELDI-TOF MS for surface-enhareset desorption/ionization time-
of- ight mass spectrometry.

Here, we apply our proposed feature selection and machaneitey approach to an ovarian
proteomic data set named “6-19-02". This sample set indu@ie controls and 162 ovarian
cancers. The raw SELDI (surface-enhanced laser desafiptioration) data constructed using
the Ciphergen WCX2 ProteinChip had 15154 molecular m/z $niascharge ratio) identities
ranging from 0.0000786 to 19995.513. The relative ampditoithe intensity at each m/z identity
was normalized against the most intense and the least ent@hses in the data stream according

to the formula

where NV is the normalized value, V the raw value, the minimum and the maximum
raw data of the identity across all the samples, respegtividter this linear normalization, all
the m/z intensities fell within the range [0,1]. Table 54&dithe 10-fold cross validation results
on 253 samples with normalized intensities using our prepasenarios. Notably, both SVM
and CS4 achieve 100% accuracy under certain feature selentthods. This may indicate that

machine learning technologies can also be used to nd pnoiepatterns.

In the above mentioned web site, associated with this “®@ABevarian cancer data, there

was also a list of seven key m/z values which was announced asaanple of the best models
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Table 5.8: 10-fold cross validation results on “6-19-02&ao&an proteomic data set, consisting of
162 ovarian cancer versus 91 control samples.

Classi er All All-entropy  Mean-entropy Top-number-enpy ERCOF
20 50 100 200

SVM 0 0 0 4(1:3) 0 0 0 0
3-NN 15(6:9) 11(3:8) 10(3:7) 4(1:3) 2(0:2) 3(0:3) 4(0:4) 3(1:2)
Bagging 7(3:4) 6(3:3) 5(3:2) 7(4:3) 5(3:2) 6(3:3) 5(3:2) 6(3:3)
AdaBoostM1 10(4:6) 9(4:5) 8(4:4) 6(4:2) 4(4:0) 5(4:1) 6(4:2) 5(4:1)
RandomForests  19(6:13) 8(1:7) 5(0:5) 7(3:48(0:3) 4(0:4) 6(1:5) 5(1:4)
Cs4 0 0 1(0:1) 5(2:3) 1(0:1) 0 0 0

found to 100% correctly separate ovarian cancer and nocecaamples. These m/z identities
are: MZ2760.6685, MZ19643.409, MZ465.56916, MZ6631.70M214051.976, MZ435.4652
and MZ3497.5508. However, among these seven M/Z values, nde3 of them will be |-
tered out by the Phase | of ERCOF, i.e. the entropy algoritamreot nd cut point for their
value ranges. They are: MZ2760.6685, MZ19643.409 and MZ6®&3. With the remaining
4 identities, SVM can still achieve 100% accuracy on 10-foioss validation and some simple
rules are found to separate cancer and non-cancer samphggetely by decision tree method.
For example, the simple rule, “MZ435.46452 0.335733 MZ465.56916 0.666745 thenthe

sample is ovarian canckris true for 148 of 162 cancer samples.

A recent paper presented the work on this data set is [118Ehaised non-parametric
Wilcoxon rank sum test statistics and stepwise discrintirmaralysis to develop patterns and
rules from proteomic pro ling. Using Wilcoxon test, the papreported that 685 out of total
15154 m/z values differing between the cancer and non-cgqugrilations with a -value of less
than . On the other hand, refer to our 10-fold cross validatiomltesn Table 5.8, the top
50 entropy measure selected features can lead to a 100%eg@ird we further nd there are
as many as 39 common m/z values among each time featureigeléunt 10 folds. These 39
m/z identities are all in the ERCOF selected common featiareR)-fold cross validation. In the
Appendix, we list in Table A.3 these m/z values, their cquoesling Wilcoxon test-values and
entropy measure on the entire data set. Tivalues are derived from the supplementary gures
of paper [118]. Notably, their Wilcoxon-values are all very small ( ). With these 39
m/z identities, CS4 outputs several decision trees, and eathem can separate cancer from

non-cancer completely. Figure 5.4 shows only four of them.
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Figure 5.4: Four decision trees output by CS4 using 39 confieatares selected by top 50 en-
tropy measure on 10-fold cross validation on ovarian capoatieomic pro ling. All these trees
are constructed on the entire 253 samples and can sepanagy ead non-cancer completely.

5.2.5 Diffuse large B-cell ymphoma

Diffuse large B-cell ymphoma (DLBCL) is the most common sgde of nhon-Hodgkin's lym-
phoma. Although around 40% of DLBCL patients are cured witirent therapy and have pro-
longed survival, the remainder succumb to the disease geRtly, DLBCL was widely studied
at molecular level using gene expression pro lings [6, 10P24]. Alizadehet al [6] identi ed

two distinct forms of DLBCL which had gene expression paisendicative of different stages
of B-cell differentiation. Germinal center B-likdDLBCL expresses genes normally seen in ger-
minal center B cells, whilactivated B-likeDLBCL expresses genes that are induced duiing
vitro activation of peripheral blood B cells. They showed thatguas with germinal center B-
like DLBCL had a signi cantly better overall survival thahdse with activated B-like DLBCL.
Thus, accurately classifying germinal center B-like DLB@hd activated B-like DLBCL will

help with survival prediction.

The DLBCL gene expression data studied in [6] contains 40fteg across 47 samples,
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Table 5.9: 10-fold cross validation results on DLBCL dath sensisting of 24 germinal center
B-like DLBCL versus 23 activated B-like DLBCL.

Classi er All All-entropy  Mean-entropy Top-number-enpy ERCOF
20 50 100 200
SVM 6(3:3) 3(1:2) 2(1:1) 6(4:2) 3(1:2) 4(2:2) 3(1:2) 2(1:1)
3-NN 13(1:12) 5(2:3) 5(2:3) 5(3:2) 5(3:2) 3(1:2) 5(2:3) 4(2:2)
Bagging 6(3:3) 6(3:3) 7(3:4) 8(3:5) 8(3:5) 8(3:5) 6(3:3) 8(3:5)
AdaBoostM1 11(4:7) 11(5:6) 10(4:6) 8(4:4) 9(4:5) 11(5:6) 10(4:6) 10(5:5)
RandomForests 5(4:1) 1(0:1) 4(3:1) 3(2:1) 4(3:1) 6(2:4) 3(2:1) 3(2:1)
Cs4 5(2:3) 5(2:3) 5(2:3) 6(2:4) 4(2:2) 5(2:3) 5(2:3) 5(2:3)

including 24 germinal center B-like DLBCL and 23 activatedilg@ DLBCL. The data and
associated information can be foundhatp://Ilmpp.nih.gov/lymphoma/ . The raw
data were originally Itered by several criteria and logwtisformed (base 2). For details of data
preprocessing, please refer to [6]. Table 5.9 shows theoltefross validation results on this
DLBCL data set under our proposed scenarios. The resultemgnate that, overall speaking,
germinal center B-like DLBCL and activated B-like DLBCL che classi ed. Random forests
achieves best cross validation results — having only ongolamisclassi ed using all entropy
measure selected genes. SVM still performs well — givingydwo misclassi ed samples in
two cases. In addition, using ERCOF as feature selectiohadethe number of misclassi ed
samples in LOOCYV test for SVM, CS4 and random forests arelp(4(2:2) and 3(2:1), respec-
tively.

Table 5.10 lists the 9 common genes selected by each fold ERE€&ure selection in the
10-fold cross validation test. All of them are in the “listlzdst class-predicting genes supporting
the GC-B Like v.s. Activated B-Like class distinction” of per [6] (see supplemental Figure 3
on the data web site given above). Besides, our identi ecegeare also highly consistent with
those reported in [126], wherdest, Wilcoxon rank sum test and a heuristic method wergeapp
to select genes on the same data set. Notably, we nd that ENE3207X (or FLIP), whose
products inhibit programmed cell death, highly expresseattivated B-like DLBCL. According
to [6], “FLIP is a dominant-negative mimic of caspase 8 (FE)@vhich can block apoptosis
mediated by Fas and other death receptors.....FLIP isyhaggressed in many tumor types and
its constitutive expression in activated B-like DLBCLs tinhibit apoptosis of tumor cells
induced by host T cells expressing Fas ligand”. On the otaedhsimply using these 9 genes, 3-

NN and Random forests can separate 24 germinal center BMIBELL from 23 activated B-like
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Table 5.10: 9 common genes selected by each fold of ERCOFfald@ross validation test on
DLBCL data set. The third column indicates the DLBCL subssl¢hat the gene was relatively
highly expressed.

GID Gene name HighlyExpressed in
GENE3328X  Unknown UG Hs.136345 ESTs; Clone=746300 GC-R Lik
GENE3314X *Unknown; Clone=1353041 GC-B Like
GENE1252X *Cyclin D2/KIAK0002=3' end of KIAKO002 cDNA; Cloe=1357360 activated B-like
GENE3325X  Unknown UG Hs.120245 Homo sapiens mRNA for GCHeeLi
KIAA1039 protein, partial cds; Clone=1268870
GENE3946X *PTP-1B=phosphotyrosyl-protein phosphat&dene=472182 activated B-like
GENE2106X  Similar to intersectin=adaptor protein with two GC-B Like
EH and ve SH3 domains; Clone=1339781
GENE2291X  Unknown; Clone=1340742 activated B-like
GENE3258X *JAW1=lymphoid-restricted membrane proteifgri@=815539 GC-B Like
GENE1207X *FLICE-like inhibitory protein long form=I-FIGE=FLAME-1 activated B-like

=Casper=MRIT=CASH=cFLIP=CLARP; Clone=711633

DLBCL completely while both SVM and CS4 only misclassify oaetivated B-like DLBCL.

Figure 5.5 displays some decision trees output from run@i8g on these 9 genes.

5.2.6 ALL-AML leukemia

This leukemia data rst reported by Gol@b al[41] is among the most extensively analysed gene
expression pro lings. Many researchers have tested thestering, gene selection and/or clas-
si cation algorithms on this bench mark data set [39, 136,223, 86, 85, 31, 68, 82, 51]. The
original training data consists of 38 bone marrow samplah @7 ALL (acute lymphoblastic
leukemia) and 11 AML (acute myeloid leukemia) from adultigails. The test data set con-
sisted of 24 bone marrow samples and 10 peripheral bloodnspes from adults and children,
including 20 ALL and 14 AML. The gene expression pro le werbtained from Affymetrix
high-density oligonucleotide microarrays containing 9obes for 6817 human genes. The
raw data can be downloaded framitp://www.broad.mit.edu/cgi-bin/cancer/

datasets.cgi

In Table 5.11, we list results on 34 test samples as well a®ltiOeross validation and
LOOCYV on entire 72 samples using our proposed gene seleatidrclassi cation scenarios.
Our best result of both testing and cross validation is takassify only one sample. In fact, this
misclassi ed AML sample was reported by most of other inigegbrs.

ERCOF selects 280 genes from training set samples. TablanAtde Appendix lists

the probe and name of these genes. In [41], 50 genes foundybsl40-noise measurement
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Figure 5.5: Four decision trees output by CS4 using 9 comreatufes selected by ERCOF on
10-fold cross validation on DLBCL data. All these trees arestructed on the entire 47 samples,
including 24 germinal center B-like DLBCL and 23 activatedilge DLBCL.

that most highly correlated with ALL and AML distinction fno the training samples were re-
ported. Remarkably, 49 of them are also in our 280 genesrbtirrdicated with bold font in
Table A.4. In addition, Olshen and Jain [85] reported 40 isignt genes identi ed by -test
with a permutation-based adjustment. These genes arekltlad in our list, but some of them
(13 out of 40) are not in Golub's 50-gene list. On the otherdhdhere are 80 common genes
selected by ERCOF in each fold of 10-fold cross validatiortt@nentire 72 samples. Fifty of
them are in the list of Table A.4 in the Appendix. Based omirgj set samples, there is one gene
(Zyxin) with zero entropy (1017.58 is the cut point and ittiligexpressed in AML samples).
However, with only this one gene, classi cation algoritho@ not achieve good testing results
on validation set. At this point, Goluet al commented “in any case, we recommend using at
least 10 genes ...... Class predictors using a small nunflgem@s may depend too heavily on
any one gene and can produce spuriously high predictiongitrs”.
Using SAM described in Section 4.2.1, a statistical soferdesigned for identifying signif-

icant genes in a set of microarray experiments, total of 285¥s are output with the threshold

at 0.4789. Table 5.12 lists the classi cation results on&gtihg samples using different top
genes ranked by SAM score. We can see that SVIMN and random forests can not achieve

good testing results using SAM selected genes on this dathwgeAdaBoostM1 achieves bet-
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Table 5.11: ALL-AML leukemia data set results (ALL versus AMbn testing samples, as well
as 10-fold cross validation and LOOCYV on the entire set.

Classi er All All-entropy  Mean-entropy Top-number-enpy ERCOF
20 50 100 200
Test
SVM 5(0:5) 1(0:1) 1(0:1) 4(0:4) 5(1:4) 1(0:1) 1(0:1) 1(0:1)
3-NN 10(1:9) 6(0:6) 2(0:2) 3(0:3)  4(1:3)  2(0:2) 1(0:1) 1(0:1)
Bagging 3(0:3) 4(0:4) 4(0:4) 2(1:1) 4(0:4) 4(0:4) 4(0:4) 4(0:4)
AdaBoostM1 3(2:1) 3(2:1) 3(2:1) 3(2:1)  3(2:1) 3(2:1) 3(R:1 3(2:1)
RandomForests  9(0:9) 4(0:4) 6(0:6) 4(1:3) 5(0:5)2(0:2) 2(0:2)  3(0:3)
Cs4 4(0:4) 4(0:4) 3(0:3) 2(1:1) 4(0:4) 3(0:3) 3(0:3) 3(0:3)
10-fold cross validation
SVM 1(0:1) 2(1:1) 2(1:1) 2(1:1) 5(2:3) 3(2:1) 2(1:1) 2(1:1)
3-NN 10(1:9) 2(0:2) 1(0:1) 4(3:1) 4(2:2)  4(2:2) 2(1:1) 2(0:2)
Bagging 5(0:5) 6(0:6) 5(0:5) 4(0:4) 6(1:55) 6(1:5) 6(1:5) 6(2:4)
AdaBoostM1 13(6:7) 11(5:6) 12(5:7)  6(3:3) 7(4:3) 10(6:4) 10(5:55) 9(4:5)
RandomForests  6(0:6) 5(0:5) 4(1:3) 4(0:4) 4(1:3)3(0:3)  5(0:5) 5(2:3)
Cs4 1(0:1) 2(0:2) 2(0:2) 3(1:2)  2(1:1) 1(0:1)  2(0:2) 2(1:1)
LooCcV
SVM 1(0:1) 1(0:1) 2(1:1) 4(2:2) 5(2:3) 4(2:2) 2(1:1) 1(0:1)
3-NN 10(1:9) 1(0:1) 1(0:1) 4(3:1) 5(3:2) 2(1:1) 3(2:1) 1(0:1)
Bagging 7(3:4) 6(1:5) 5(0:5) 5(0:5) 5(0:5) 6(1:5) 6(1:5) 5(1:4)
AdaBoostM1 11(6:5) 10(5:5) 11(5:6) 6(3:3) 6(3:3) 7(4:3) 10(5:5) 7(4:3)
RandomForests  8(0:8) 6(2:4) 4(1:3) 4(0:4) 5(2:3) 5(2:3) 6(3:3) 4(1:3)
CS4 2(1:1) 2(1:1) 2(1:1) 1(0:1)  1(0:1) 2(1:1) 2(1:1) 1(0:1)

ter results (with top 350, 280 or 200 genes) than using oupqeed gene selection schemes.
Remarkably, bagging makes no testing error on top 350 SAkctsd genes. As for CS4, the
performance is relatively stable by using 100 to 350 SAM&elkkgenes. When we compare the
genes identi ed by SAM with those 280 selected by ERCOF, wig ard 125 and 17 common
genes from all 2857 and top 280 SAM selected genes, resphctiv

Using PAM described in Section 4.2.3, a class predictiotwsok for genomic expression

data mining based on nearest shrunken centroid methodyifdhset al reported 2 misclassi ed

Table 5.12: ALL-AML leukemia data set results (ALL versus AMon testing samples by using
top genes ranked by SAM score. *: the number is approximatbeacnumber of all-entropy
selected genes; **: the number is approximate to the numberean-entropy selected genes;
***: the number is approximate to the number of ERCOF selgégienes.

Classi er 2857 800 350 280 200 100 50 20
SVM 3(0:3) 4(0:4) 4(1:3) 5(1:4) 6(2:4) 10(4:6) 11(3:8) 11(0:11)
3-NN 11(1:10) 11(1:10) 10(0:10) 10(0:10) 10(0:10) 11(0:11) 13(1:12) 12(0:12)
Bagging 2(0:2) 2(0:2) 0 2(1:1) 2(1:1) 2(1:1) 9(0:9) 8(1:7)
AdaBoostM1 3(0:3) 3(1:2) 1(0:1) 1(0:1) 1(0:1) 2(0:2) 12(4:8) 8(1:7)
RandomForests  13(0:13) 9(0:9) 8(0:8) 6(0:6) 6(0:6) 6(0:6) 11(0:11) 11(0:11)
CS4 6(1:5) 4(1:3)  2(0:2) 3(0:3) 4(0:4) 2(1:1) 8(0:8) 9(2:7)
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test samples by using only 21 genes with an amount of shrinkagj4.06 [123]. This value is
not the optimal one where the minimum cross-validationrerozcurs since there will be more
than 1000 genes associated with the optimedlue. Anyway, our classi cation results are very

competitive on this data set — misclassifying only 1 testsiam

5.2.7 Subtypes of pediatric acute lymphoblastic leukemia

Pediatric acute lymphoblastic leukemia (ALL) is the mostoaon form of childhood cancer.
However, with modern cancer therapy, its overall long-tewent-free survival rates is as high
as 80% [140]. Treatment of pediatric ALL is based on the cphoé tailoring the intensity of
therapy to a patient's risk of relapse. Thus, it becomes iraportant to accurately assign indi-
vidual patients into speci c risk groups; otherwise, it idcause under-treatment (which causes
relapse and eventual death) or over-treatment (which sae&ere long-term side-effects). Al-
though current risk assignment is mainly dependent on atyaof clinical and laboratory param-
eters requiring an extensive range of procedures includgimigohology, immunophenotyping, cy-
togenetics, and molecular diagnostics, it has been noti@dhe genetic alterations that under-
lie the pathogenesis of individual leukemia subtypes ae playing important roles [95, 140].
Though it looks identical under the microscope, pediatiid As a highly heterogeneous disease,
with as many as 6 different subtypes that have widely diifgtreatment outcome. The purpose
of the analysis on this data set is to accurately classifyypals of pediatric ALL using gene
expression pro ling so that the correct intensity of thgrayan be delivered to ensure that the

child would have the highest chance for cure.

The data is a collection of 327 gene expression pro les ofigied ALL diagnostic bone
marrows with Affymetrix oligonucleotide microarrays caitting 12,600 probe sets [140]. The
raw data can be found frommtp://www.stjuderesearch.org/data/ALL1/ . These
samples contain all known biologic ALL subtypes, includindineage leukemiasTfALL), B
lineage leukemias that contain t(9;2BGR-ABL), t(1;19) E2A-PBX), t(12;21) TEL-AMLY),
rearrangement in the MLL gene on chromosome 11, band 238, and a hyperdiploid kary-
otype (i.e. chromosomesHyperdip 50) [140]. In [140], where the data was rst analysed,
327 samples were divided into two groups — a training groupsisting of 215 samples and a

testing group consisting of 112 samples. Table 5.13 ligstimber of samples of each subtype
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Table 5.13: Number of samples in each of subtypes in pediatiite lymphoblastic leukemia
data set.

Subtype Number of training samples  Number of testing sasnpltotal
T-ALL 28 15 43
E2A-PBX1 18 9 27
TEL-AML1 52 27 79
BCR-ABL 9 6 15
MLL 14 6 20
Hyperdip 50 42 22 64
Rest 52 27 79
Total 215 112 327

in training and testing groups, and the diagnostic sampkasdiid not t into any one of the above

subtypes are put under “Rest”.

In [140], classi cation was designed following a decisioed format, in which the rst
decision was T-ALL (T lineage) versus non-T-ALL (B lineaga)d then within the B lineage
subset. If a case is decided to be a non-T-ALL, it will be sedjadly classi ed into the known
risk groups characterized by the presence of E2A-PBX1, ARl-1, BCR-ABL, MLL, and
lastly hyperdip 50. A very high prediction accuracy on the blinded test sasmplas achieved
for each ALL subtypes using SVM and genes selected-statistic,  -statistic or other met-
rics: 100% on T-ALL, E2A-PBX1 and MLL samples, 99% on TEL-AMlsamples, 97% on
BCR-ABL samples, and 96% on Hyperdip0 samples. However, in this thesis, we will not fol-
low this tree structure to sequentially classify samplestdad, we will treat all subtypes equally
and distinguish one subtype samples from all the other sssnprherefore, for each of the 6
classi cation problems, number of training and testing pbes are always 215 and 112, respec-
tively. For example, for subtype BCR-ABL, the 215 trainingmgples consist of 9 BCR-ABL
cases versus 206 “OTHERS” while 112 testing samples conisgsBCR-ABL cases versus 106
“OTHERS”. The samples labeled as "OTHERS" here includeraidases other than BCR-ABL.
Next, we will report classi cation results on the validatisamples and 10-fold cross validation

on the entire data set under our proposed gene selectiorlassil cation scenarios.

T-ALL versus OTHERS

The training set contains ZBALLand 1870THER $amples while the test set containsTtALL

and 970THERS Table 5.14 shows the results of this test. Under most of cemavios, the T-
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Table 5.14: Pediatric ALL data set results (T-ALL versus GERE) on 112 testing samples, as
well as 10-fold cross validation on the entire 327 cases.

Classi er All All-entropy  Mean-entropy Top-number-enpy ERCOF
20 50 100 200
Test
SVM 0 0 0 0 0 0 0 0
3-NN 3(3:0) 0 0 0 0 0 0 0
Bagging 0 0 0 0 0 0 0 0
AdaBoostM1 0 0 0 0 0 0 0 0
RandomForests 4(4:0) 0 0 1(1:0) 0 0 1(1:0) 0
Cs4 0 0 0 0 0 0 0 0
10-fold cross validation
SVM 1(1:0) 0 0 1(1:0) 0 0 0 0
3-NN 8(8:0) 3(3:0) 0 1(1:0) 1(2:0) 1(1:0) 0 1(1:0)
Bagging 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(:0) 1(1:0) 1(1:0
AdaBoostM1 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(:0) 1(1:0) 1(1:0)
RandomForests  11(11:0) 0 0 0 0 0 1(1:0) 0
Cs4 1(0:1) 1(1:0) 1(1:0) 0 2(1:1)  3(2:1)  2(2:0) 0

ALL samples can be distinguished completely from non-T-Addses. Remarkably, we nd one
gene, AA919102 (GenBank accession number), has zero gntedpe from training samples
with cut point 20062.86 (highly expressed in T-ALL cases)l dmis gene can also completely
separates T-ALL from all other ALL cases in the testing séiisene was also reported in [140]
where other feature selection metrics were used. Besitegenes selected by ERCOF in each
fold testing of 10-fold cross validation are highly coneistf having as many as 253 common
genes. However, it seems that using small amount of goodrésaidenti ed by entropy measure
is enough to separate T-ALL cases in this application, weli$ in Table 5.15 the top 20 genes

found from training samples.

E2A-PBX1 versus OTHERS

The training set contains 1B2A-PBX1and 1970THERSsamples while the test set contains 9
E2A-PBXland 1030THERS Table 5.16 shows the results of this test. With featurectels,
the testing E2A-PBX1 samples can be distinguished comiplétem other subtypes of ALL
cases. Similarly, in 10-fold cross validation test, there guite a few scenarios that achieve
100% accuracy. There are 5 genes whose entropy value isre&nairiing samples. With these
genes, all the classi cation algorithms can achieve 100@gljgtion accuracy on testing samples.
In table 5.17, we list all of them. In addition, all these 5 gerare in the “good genes list”

reported in [140] to distinguish E2A-PBX1 cases. In the semgntal documents of [140],
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Table 5.15: Top 20 genes selected by entropy measure frotraihang data set of T-ALL versus
OTHERS in subtypes of pediatric ALL study. The last columdidates the sample class in
which the gene is relatively highly expressed.

Probe Accession No.  Description HighlyExp in

38319at AA919102 Homo sapiens cDNA, 3' end T-ALL

1096 g.at M28170 Human cell surface protein CD19 (CD19) gene OTHERS

38242at AF068180 Homo sapiens B cell linker protein BLNK mRNA, CHRS
alternatively spliced

41723sat M32578 Human MHC class Il HLA-DR beta-1 mRNA (DR2.3), 5den  OTHERS

32794g.at  X00437 Human mRNA for T-cell speci c protein T-ALL

37988at M89957 Human immunoglobulin superfamily member B ceteygor OTHERS
complex cell surface glycoprotein (IGB) mRNA

37344 at X62744 Human RING6 mRNA for HLA class Il alpha chain-likeeguct OTHERS

38095i_at M83664 Human MHC class Il lymphocyte antigen (HLA-DP) CHRIS
beta chain mRNA

38017at u05259 Human MB-1 gene OTHERS

35016at M13560 Human la-associated invariant gamma-chain gene THERS

36277at M23323 Human membrane protein (CD3-epsilon) gene T-ALL

39318at X82240 H.sapiens mRNA for Tcell leukemia/lymphoma 1 OR&E

38147at AL023657 Homo sapiens SH2D1A cDNA, formerly known as DSHP T-ALL

32649at X59871 Human TCF-1 mRNA for T cell factor 1 (splice form C) -ALL

38833at X00457 Human mRNA for SB classlI histocompatibility ayetin OTHERS
alpha-chain

33238at U23852 Human T-lymphocyte speci c protein tyrosine ldaa T-ALL
p56Iick (Ick) abberant mMRNA

37039at J00194 human hla-dr antigen alpha-chain mrna & ivs fragsne OTHERS

38051at X76220 H.sapiens MAL gene exon 1 (and joined CDS) T-ALL

38096f.at M83664 Human MHC class Il lymphocyte antigen (HLA-DP) CHRIS
beta chain mRNA

2059s at M36881 Human lymphocyte-speci c protein tyrosine ki@as T-ALL
(Ick) mRNA

good genes identi ed by the self-organizing map (SOM) arstdminant analysis with variance

(DAV) programs to separate each of the six known subtypes Wete reported.

TEL-AML1 versus OTHERS

The training set contains 5EEL-AML1and 1630THERSsamples while the test set contains 27
TEL-AML1land 850THERS Table 5.18 shows the results of this test. Although thededitbn
result on classi cation of TEL-AML is not as good as that ofosgpe T-ALL or E2A-PBX1,
there are still some proposed scenarios can accuratelyglisgsh TEL-AML and non-TEL-AML
cases. Notably, using ERCOF selected features, SVM, 3-NiXdBmM forests and CS4 achieve
100% prediction accuracy on the testing samples. The nupofifeatures selected by ERCOF
from training cases is around 400 and they include 37 of 4@&gedhat reported in [140] to

separate TEL-AML1 from other subtypes of ALL cases undeir thmposed tree structure of
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Table 5.16: Pediatric ALL data set results (E2A-PBX1 vel®U$IERS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classi er All All-entropy  Mean-entropy Top-number-enpy ERCOF
20 50 100 200
Test
SVM 0 0 0 0 0 0 0 0
3-NN 0 0 0 0 0 0 0 0
Bagging 0 0 0 0 0 0 0 0
AdaBoostM1 0 0 0 0 0 0 0 0
RandomForests 3(0:3) 0 0 0 0 0 0 0
Cs4 0 0 0 0 0 0 0 0
10-fold cross validation
SVM 1(1:0) 1(1:0) 1(1:0) 0 0 0 0 0
3-NN 1(1:0) 1(1:0) 1(1:0) 0 0 1(1:0) 1(1:0) 0
Bagging 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(:0) 1(1:0) 1(1:0
AdaBoostM1 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(:0) 1(1:0) 1(1:0
RandomForests  16(16:0) 3(3:0) 1(1:0) 0 0 0 0 0
Cs4 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(2:0) 1(2:0) 1(1:.0) O

Table 5.17: Five genes with zero entropy measure on thdrigatata set of E2A-PBX1 versus
OTHERS in subtypes of pediatric ALL study. The last columdidates the sample class in
which the gene is highly expressed (above the mean valussaaliche samples).

Probe Accession No.  Description HighlyExpressed in

32063at M86546 H.sapiens PBX1a and PBX1b mRNA E2A-PBX1

41146at J03473 Human poly(ADP-ribose) synthetase mRNA E2A-PBX1

43Qat X00737 Human mRNA for purine nucleotide E2A-PBX1
phosphorylase (PNP; EC 2.4.2.1)

1287at  J03473 Human poly(ADP-ribose) synthetase mRNA E2A-PBX1

33355at  AL049381 Homo sapiens mMRNA; cDNA DKFZp586J2118 E2A-PBX1

(from clone DKFZp586J2118)

classi cation. In Table A.10 of the Appendix, we list these Bighlighted genes. In Figure 5.6,
we present some decision trees output by CS4 using ERCO&textlfeatures. It can be seen

that CS4 makes use of different features as root node andicemthem to achieve a perfect

prediction accuracy on the testing samples.

BCR-ABL versus OTHERS

The training set contains BCR-ABLand 2060 THERSsamples while the test set contains 6
BCR-ABLand 1060THERSTable 5.19 shows the results of this test. Since the nunflamad-
able BCR-ABL cases is very small, most error predicationslerare on BCR-ABL samples in
almost all the scenarios. This leads to a very low sengitigigpecially in 10-fold cross validation

test. However, under ERCOF and some other gene selectidrod®tSVM and CS4 still can
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Table 5.18: Pediatric ALL data set results (TEL-AML1 verQUBHERS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classi er All All-entropy  Mean-entropy Top-number-enfryp ERCOF
20 50 100 200
Test
SVM 10(0:10) 0 0 2(1:1) 1(0:1) 1(0:1) 1(0:1) 0
3-NN 5(4:1) 0 0 1(1:0) 1(1:0) 1(1:0) 1(1:0) 0
Bagging 1(1:0) 2(2:0) 2(2:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 2(2:0)
AdaBoostM1 4(2:2) 4(3:1) 3(2:1) 2(2:0)  4(2:2) 4(3:1) 5(2:3) 4(3:1)
RandomForests  11(11:0) 0 1(1:0) 1(1:0) 2(2:0) 0 1(1:0) 0
CS4 2(1:1) 2(1:1) 2(1:1) 3(3:0) 1(1:0) 1(1:0) 1(1:0) O
10-fold cross validation

SVM 4(1:3) 3(1:2) 4(1:3) 7(2:5) 8(2:6) 5(2:3) 5(2:3) 2(0:2)
3-NN 14(5:9) 4(0:4) 4(0:4) 8(3:5) 6(2:4) 7(3:4) 4(1:3) 3(0:3)
Bagging 12(5:7) 11(5:6) 10(4:6) 11(5:6) 10(4:6) 11(5:6) 11(5:6) 10(4:6)
AdaBoostM1 9(4:5) 13(7:6) 14(9:5) 8(3:5)  8(5:3) 13(10:3) 13(8:5) 10(4:6)
RandomForests  20(17:3) 7(3:4) 7(3:4) 5(0:5) 5(1:4) 4(0:4) 6(2:4)  4(1:3)
CS4 6(2:4) 6(2:4) 6(2:4) 10(5:5) 5(1:4) 6(2:4) 6(2:4) 5(1:4)

correctly predict most of the testing samples with only or&RBABL case misclassi ed. This

misclassi ed BCR-ABL sample was also reported by [140]. Hluenber of features selected by
ERCOF from training cases is around 70 and they include 11 gfehes that reported in [140]
to separate BCR-ABL from other subtypes of ALL cases undeir ffroposed tree structure of

classi cation. In Table 5.20, we list these 11 highlightezhgs.

MLL versus OTHERS

The training set contains IMLL and 2010THERSsamples while the test set contain$16L
and 1060THERSTable 5.21 shows the results of this test. Most of our siesachieve 100%
accuracy on testing samples to separate MLL from other peltpf ALL cases. Using only 20
genes selected by entropy measure, SVM, 3-NN, Bagging addc@$make perfect prediction.
These genes can be found in Table A.11 of the Appendix. Wheapply Pearson correlation
coef cient to the 20 genes (all of them can pass Wilcoxon raumk test) , we Iter out only one
gene . With the remaining 19 genes, 100% prediction can @sachieved. On the other hand,
there are 34 genes reported in [140] to be signi cant to spaviLL from other ALL subtypes
under their proposed tree structure classi cation. Amdreq, 24 genes are also selected by our
ERCOF and we list them in Table A.12 of the Appendix, wheregiees with bold font are also

appear in Table A.11.
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Table 5.19: Pediatric ALL data set results (BCR-ABL versU$HBRS) on 112 testing samples,
as well as 10-fold cross validation on the entire 327 cases.

Classi er All All-entropy  Mean-entropy Top-number-enfryp ERCOF
20 50 100 200
Test
SVM 4(4:0) 1(1:0) 2(1:1) 2(1:1) 2(1:1) 1(1:0) 1(1:0) 1(1:0)
3-NN 6(6:0) 3(3:0) 2(2:0) 1(1:0) 4(4:0) 4(4:0) 4(4:0) 2(2:0)
Bagging 5(5:0) 3(3:0) 2(2:0) 1(1:0) 4(4:0) 3(3:0) 3(3:0) 3(3:0)
AdaBoostM1 8(4:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4) 5(1:4)
RandomForests 6(6:0) 6(6:0) 2(2:0) 1(1:0) 2(2:0) 6(6:0) 4(4:0) 2(2:0)
Cs4 6(6:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0) 1(1:0)
10-fold cross validation

SVM 12(12:0) 8(6:2) 8(7:1) 6(5:1) 9(7:2) 4(4:0) 8(6:2) 6(5:1)
3-NN 15(14:1) 9(9:0) 10(9:1) 9(7:2) 10(9:1) 8(8:0) 10(10:0 7(7:0)
Bagging 13(13:0)  12(11:1) 12(11:1) 10(10:0) 12(11:1) 11(11:0) 12(11:1) 10(10:0)
AdaBoostM1 22(13:9) 18(11:7) 15(10:5)  8(7:1)  15(10:5) 16(9:7) 16(10:6) 16(12:4)
RandomForests  15(15:0) 10(10:0) 7(7:0) 6(6:0) 7(7:0) 11(11:0) 12(12:0) 9(9:0)
Cs4 8(8:0) 7(7:0) 6(6:0) 8(7:1) 5(5:0) 6(6:0) 7(7:0) 7(6:1)

Table 5.20: Eleven genes selected by ERCOF on training ssngid reported in [140] to
separate BCR-ABL from other subtypes of ALL cases in peidi&tL study. All these genes
are relatively highly expressed (above the mean value satdghe samples) in BCR-ABL
samples.

Probe Accession No.  Description
3760Qat U68186 Human extracellular matrix protein 1 mRNA
38312at  AL050002 Homo sapiens mMRNA; cDNA DKFZp5640222
3973Qat  X16416 Human c-abl mRNA encoding p150 protein
40051at D31762 Human mRNA for KIAAOO57 gene
40504at  AF001601 Homo sapiens paraoxonase (PON2) mRNA
34362at  M55531 Human glucose transport-like 5 (GLUT5) mRNA
36591at  X06956 Human HALPHA44 gene for alpha-tubulin, exons 1-3
40196at  D88153 Homo sapiens mRNA for HYA22
1635at u07563 Human proto-oncogene tyrosine-protein

kinase (ABL) gene, exon 1la and exons 2-10
1636g.at U07563 Human proto-oncogene tyrosine-protein

kinase (ABL) gene, exon 1la and exons 2-10
33Qs.at HG2259- Tubulin, Alpha 1, Isoform 44

HT2348
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Figure 5.6: Six decision trees output by CS4 using ERCOFRctmlefeatures on TEL-AML
subtype classi cation of pediatric ALL data.

Hyperdip 50 versus OTHERS

The training set contains 42yperdip and 1730THERSsamples while the test set contains
22 Hyperdip and 900THERS Table 5.22 shows the results of this test. Although thescros
validation results is not very encouraging, some of our adeas still achieve 100% prediction
accuracy on the testing samples, such as SVM using allfgntneean-entropy, top 200 entropy
and ERCOF selected features. Based on training cases, ER&€&Hs around 300 genes, which
include 19 of the 26 genes that reported in [140] to separgqmetdlip 50 from other subtype
ALL cases. These 19 highlighted genes are listed in Tabl& Afthe Appendix.

A brief summary

As mentioned, different from [140] where the pediatric ALhtd set was rst analysed and
the classi cation was based on a given tree structure toesgplly classify a new case into a
subtype of ALL, our study focused on distinguishing a subtgpsamples from all other cases.

Therefore, the number of samples in the different classesnare unbalanced in both training
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Table 5.21: Pediatric ALL data set results (MLL versus OTHEIRN 112 testing samples, as
well as 10-fold cross validation on the entire 327 cases.

Classi er All All-entropy  Mean-entropy Top-number-enfryp ERCOF
20 50 100 200
Test
SVM 0 0 0 0 0 0 0 0
3-NN 2(2:0) 0 0 0 1(1:0) 0 0 0
Bagging 2(2:0) 1(1:0) 0 0 0 0 0 0
AdaBoostM1 4(2:2) 1(0:1) 1(0:1) 2(1:1) 2(1:1) 1(0:1) 1(0:1) 1(0:1)
RandomForests 5(5:0) 2(2:0) 1(1:0) 0 1(1:0) 0 1(1:0) 1(1:0)
Cs4 0 0 0 0 0 0 0 0
10-fold cross validation

SVM 7(7:0) 2(2:0) 2(1:1) 7(6:1) 2(1:1) 0 2(1:1) 2(2:0)
3-NN 9(9:0) 5(5:0) 4(3:1) 8(7:1) 7(6:1) 8(8:0) 5(4:1) 4(2:2)
Bagging 10(9:1) 9(8:1) 8(7:1) 8(7:1) 9(8:1) 9(8:1) 8(7:1) 5(5:0)
AdaBoostM1 13(7:6) 14(9:5) 18(13:5) 14(12:2)12(10:2) 14(12:2) 18(13:5) 13(6:7)
RandomForests  18(18:0) 10(10:0) 7(7:0) 9(8:1) 7(6:1) 8(7:1) 9(9:0) 9(9:0)
CS4 7(6:1) 5(4:1) 6(5:1) 7(6:1) 10(7:3) 5(4:1) 5(4:2) 4(4:0)

Table 5.22: Pediatric ALL data set results (Hyperdi® versus OTHERS) on 112 testing sam-
ples, as well as 10-fold cross validation on the entire 3Z2ésa

Classi er All All-entropy  Mean-entropy Top-number-enpryp ERCOF
20 50 100 200
Test
SVM 18(18:0) 0 0 4(1:3) 4(1:3) 1(0:1) 0 0
3-NN 4(3:1) 2(0:2) 0 5(1:4) 1(1:0) 2(2:0) 2(1:1) 3(1:2)
Bagging 6(4:2) 6(4:2) 5(4:1) 6(4:2) 7(4:3) 9(4:5) 8(4:4) 6(3:3)
AdaBoostM1 10(4:6) 12(3:9) 10(4:6) 5(3:2) 2(1:1) 3(1:2) 2(2:0) 10(4:6)
RandomForests 9(8:1) 3(2:1) 3(2:1) 5(2:3) 3(2:1) 3(2:1) 1) 1(1:0)
CS4 4(3:1) 4(3:1) 3(2:1) 8(3:5) 5(1:4) 2(1:1) 2(1:1) 3(2:1)
10-fold cross validation
SVM 11(8:3) 9(6:3) 11(9:2) 15(8:7)  15(10:5) 15(10:5) 18@M1 8(6:2)
3-NN 21(16:5) 13(9:4) 16(13:3) 15(9:6) 14(9:5)  17(11:6)12(9:3)  12(8:4)
Bagging 19(16:3) 19(15:4) 20(16:4) 17(11:6) 17(12:5) 18(12:6) 18(14:4) 19(15:4)
AdaBoostM1 23(14:9)  24(16:8) 14(10:4) 17(9:8)  17(10:7) 14(9:5) 17(11:6)) 14(9:5)
RandomForests 31(28:3)  19(15:4) 15(12:3) 17(11:6)  14{10:18(13:5) 15(10:5) 13(9:4)
Cs4 14(10:4) 14(10:4) 15(11:4) 20(10:10)  17(9:8)  17(10:712(9:3)  14(10:4)
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Table 5.23: Total number of misclassi ed testing samplesraix subtypes of pediatric ALL
study. Number with bold font in each row indicates the bestiteachieved by the corresponding
classi er.

Classi er All  All-entropy Mean-entropy  Top-number-enpp  ERCOF
20 50 100 200

SVM 32 1 2 8 8 3 2 1
3-NN 20 5 2 8 7 7 6 5
Bagging 14 12 9 8 12 13 12 11
AdaBoostM1 26 22 19 13 13 13 13 20
RandomForests 38 11 7 8 8 9 9 4
CSs4 12 7 6 12 7 4 4 4

and testing sets, which is easier to cause bias in predictitmwever, some of our proposed
classi cation algorithms and feature selection methodkasthieved excellent testing results on
all the six known subtypes classi cation. In addition, fd-fold cross validation on the entire
data set we also obtained very good results on classi caif@ubtypes T-ALL, E2A-PBX1 and

MLL.

In Table 5.23, for each of our scenarios, we add up the numberistlassi ed testing
samples over all six known subtypes. Remarkably, SVM, Ramfidwests and CS4 achieved their
best prediction accuracy under ERCOF — misclassi ed 1, 44tebting samples, respectively.
In addition, we also demonstrated the advantage of CS4 septiag some of the decision trees

output by the algorithm.

5.3 Comparisons and Discussions

We have conducted more than one thousand experiments oarsixexpression pro les and one
proteomic data set using proposed feature selection asdi clation methods. From the large
amount of results presented above, we can address varioyzsadgsons and discussions. In the
following comparisons, we will use the results of these 2@ste(1) 10-fold cross validation on
colon tumor, prostate cancer, lung cancer, ovarian dis€ddeCL, ALL-AML leukemia and six
subtypes of pediatric ALL (total 12 tests); (2) validation the testing samples of lung cancer,

ALL-AML leukemia and six subtypes of pediatric ALL (total 84ts).
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5.3.1 Classi cation algorithms

We employed six classi cation algorithms in the experingerfour ensemble of decision trees

methods, SVM and-NN.

Comparison among ensemble of decision trees methods

First, let's do a comparison among the four ensemble of aetisees classi cation methods —
Bagging, AdaBoostM1, Random forests and CS4. Table 5.24sti® best classi er(s) (of these
four methods) for each experiment under different featakection scenarios. From the summary
in the last row of the table, We can see that under every pempfsature selection scenario, the
performance of CS4 was much superior than that of BaggingfalaBoostM1. Besides, CS4
performed much better than Random forests did under fowureaelection scenarios and did
equally good under the other cases. On the other hand, e€8450nly makes use of unchanged
original training samples (in contrast to bootstrapped)dahe decision trees/rules output are
more reliable. This concern is crucial in bio-medical agpgions, such as understanding and
diagnosis of a disease.

Note that, AdaBoostM1 performed poorly in these experimeiihe main reason is that,
when its base classi er C4.5 makes no training error, Adaidd only constructs a single tree
and thus loses the power of combining different decisioastré\ typical example can be found
in the prediction on lung cancer validation samples wheraBabstM1 made 27 misclassi ed
predictions under every feature selection scenario, wihifict, is the same as C4.5. Recall that,
with the training samples of this data set, there are 16 gaesméng zero entropy value. This leads
to a very simple decision tree consisting only one featui tsaving 100% training accuracy.
Unfortunately, this feature is not good enough to give gawdligtion on testing samples. By the

way, let's explore more on the prediction power of combinilegision trees in CS4.

Power of combining decision trees in CS4

In each experiment, CS4 built 20 decision trees using diffefeatures as the root node. First,
let's look at the prediction power of each single decisiaetrTable 5.25 illustrates the number
of misclassi ed training and testing samples of each sitigde in the experiments on the pedi-

atric ALL data to classify TEL-AML1 and Hyperdip50 subtypes using ERCOF selected genes.
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Table 5.24: Comparison among four ensemble of decisios trexthods under different feature
selection scenarios using the results of the 640 (=4x8x20¢réments on the six gene expres-
sion pro les and one proteomic data set. Symbol “C” standsHagging classi er, “D” for
AdaBoostM1, “E” for Random forests, and “F” for CS4. Each aadlicates the symbol(s) of the
classi er(s) that achieved best performance in the releeaperiment under the corresponding
feature selection scenario. For each feature selectiamagoe the last row indicates the total
number of experiments that individual decision tree basaskcer achieved best prediction ac-
curacy (including tie cases). If we add up the numbers aaigtt feature selection scenarios,
the nal result is — Bagging 42, AdaBoostM1 36, random foseg® and CS4 108.

Experiment All All-entropy  Mean-entropy Top-number-agy ERCOF
20 50 100 200
ColonTumor CDLE D C C E F C D
Prostate F CF DF CF F EF E F
Lung test F F EF F E,F EF E E
Lung E,F E,F E E E E E E,F
Ovarian F F F F F F F F
DLBCL EF E E E EF F E E
ALLAML test C,D D D,F C,F D E E D,E,F
ALLAML F F F F F F F F
Pediatric ALL data — test
T-ALL C,D,F C,DE/F C,D,E,F C,D,F CDEF CDEF C,D/F CHF
E2A-PBX1 C,D,F C,D,EF C,D,E,F CDEF CDEF CDEF E&DB» CDEF
TEL-AML1 C E E C,E C,F E C,E,F E,F
BCR-ABL C F F C,EF F F F F
MLL F F C,F C,EF C,F C,EF C,F C,F
Hyperdip 50 F F E,F D,F D F D,E,F E
Pediatric ALL data — 10-fold cross validation
T-ALL CDF E E E,F E E E E
E2A-PBX1 C,D,F C,D,F C,D,E,F E E E E E,F
TEL-AML1 F F F E E,F F E E
BCR-ABL F F F E F F F F
MLL F F F F E F F F
Hyperdip 50 F F D C,D,E C,D,F D F E
Sum C:8 C:4 C:5 C:9 C:5 C:3 C:5 C:3
D:6 D:5 D: 6 D: 4 D:5 D:3 D:3 D: 4
E:3 E:6 E:9 E: 11 E: 10 E: 10 E: 11 E: 12
F:16 F: 15 F:14 F:12 F:13 F:14 F:11 F:13

From the gures displayed in the table, we can observe tHatthese single decision trees con-
structed using different good features as root node possesiar merit with little difference.
Although some single trees gave much better prediction teeg no. 5) while other trees did
very bad (e.g. tree no. 2) on the same test (TEL-AML1 versuslERS), there are no rules that
can be drawn across experiments. Especially, the rst s@ei always the best one. (2) A single
tree can achieve good training accuracy, but poor testisigitee such as tree no. 1 and tree no.
2 of the test on Hyperdip50. (3) A single tree contains fewer number of features sbitha
easy to be understood and interpreted. However, as showiguneFs.4, 5.5 and 5.6, different

trees produce different rules so that giegle coverage constraimroblem in a single tree can
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Table 5.25: The training and testing errors of 20 single slenitrees generated by CS4 using
ERCOF selected features on testings of TEL-AML1 versus ORBENd Hyperdip 50 versus
OTHERS in pediatric ALL data set. The row “No. features” gitbe number of features used
in the tree.

Tree No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
TEL-AML1 versus OTHERS — testing

Train 0 3 0 1 1 2 2 3 0 3 0 1 1 0 1 1 3 0 2

Test 8 12 3 5 1 5 8 8 4 6 5 11 8 4 9 4 11 2 7

No. features 4 3 4 4 4 3 4 4 5 3 5 5 5 6 5 5 3 6 4
Hyperdip 50 versus OTHERS — testing

Train 0 0 2 1 2 1 3 3 3 1 1 1 0 0 1 2 3 1 0

Test 10 10 11 112 7 15 13 11 6 15 7 13 7 7 12 9 9

No. features 7 7 8 8 8

TEL-AML1 -~
Hyperdip>50 <—

number of errors

1 3 5 7 9 11 13 15 17 19
number of trees

Figure 5.7: Power of ensemble trees in CS4 — number of cordhirees versus number of
misclassi ed testing samples.

be recti ed. Single coverage constraint means every tngisiample is covered by exactly one
rule [66].

Secondly, we examine the performance of combining theggesinees. For the test on
TEL-AML1 versus OTHERS, if we combine the rst four trees, £&ill make 6 mistakes; if we
combine the rst ve trees, the number of mistake prediciairops to 1 and to 0 when using the

rst seven trees. In Figure 5.7, we plot the curves of numbieombined trees versus number of
misclassi ed testing samples for TEL-AML1 and Hyperdip0 subtypes prediction. The curves
show an obvious decreasing trend on the number of testimgsewhen rst several trees are
combined to give prediction and after that, the accuracgigea be stable. Therefore, intuitively,
we see the power of using our ensemble of decision trees th&@Bd. Besides, the two curves

also demonstrate that 20 trees are enough to give good poedic
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Table 5.26: Comparison between CS4 and SVM under differeatufe selection scenarios
using the results of the 320 (=2x8x20) experiments on th@eshe expression pro les and one
proteomic data set. Symbol “A’ stands for SVM classi er ariel for CS4. Each cell indicates
the symbol(s) of the classi er(s) that achieved best penfamce in the relevant experiment
under corresponding feature selection scenario. For esthre selection scenario, the last row
indicates the total number of experiments in which SVM perfed better, CS4 did better and
the tie case. If we add up the numbers across feature selext@narios, the nal result is —
SVM won 86, CS4 won 22, and tie 52.

Experiment All All-entropy  Mean-entropy Top-number-apgy ERCOF
20 50 100 200
ColonTumor A A A A A A A A
Prostate A A A A AF A A A
Lung test A A A A A A A A
Lung A A AF A F AF A AF
Ovarian AF AF A A A AF AF AF
DLBCL F A A AF A A A A
ALLAML test F A A F F A A A
ALLAML AF AF AF A F F AF AF
Pediatric ALL data — test
T-ALL AF AF AF AF AF AF AF AF
E2A-PBX1 AF AF AF AF AF AF AF AF
TEL-AML1 F A A A AF AF AF AF
BCR-ABL A A F F F AF AF AF
MLL AF AF F AF AF F AF AF
Hyperdip 50 F A A A A A A A
Pediatric ALL data — 10-fold cross validation
T-ALL AF A F F A A A AF
E2A-PBX1 AF AF A A A A A AF
TEL-AML1 A A A A F A A A
BCR-ABL F F A A F A F A
MLL AF A AF AF A A A A
Hyperdip 50 A A A A A A F A
Sum A7 A:13 A:12 A:l2 A9 Al2 A1l A0
F:5 F:1 F:3 F:3 F:6 F:2 F:2 F:0
Tie:8 Tie:6 Tie:5 Tie:5 Tie:5 Tie:6 Tie:7 Tie:10

Comparison of CS4 with SVM and -NN

First, we compare CS4 with SVM. Table 5.26 lists the claggsg (of SVM and CS4) that
achieved best validation accuracy for each experiment.rallvgeaking, the performance of
SVM is superior to that of CS4.

Secondly, similarly, we compare CS4 witiNN. Table 5.27 lists the classi er(s) (0fNN
and CS4) that achieved best validation accuracy for eactriempnt. Among 160 cases;NN
won 48, CS4 won 55, and tie 57. The performance of CS4 is $litpetter than that of -NN.

SVM s the representative of the classi ers built on kerngldtions while -NN is the most

typical instance-based learning algorithm. Differentirdecision tree methods which use only
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Table 5.27: Comparison between CS4 antliN under different feature selection scenarios
using the results of the 320 (=2x8x20) experiments on th@she expression pro les and one
proteomic data set. Symbol “B” stands foNN classi er and “F” for CS4. Each cell indicates
the symbol(s) of the classi er(s) that achieved best penfmce in the relevant experiment
under corresponding feature selection scenario. For esthre selection scenario, the last row
indicates the total number of experiments in whicANN performed better, CS4 did better and
the tie case. If we add up the numbers across feature selextenarios, the nal result is —
-NN won 48, CS4 won 55, and tie 57.

Experiment All All-entropy  Mean-entropy Top-number-agy ERCOF
20 50 100 200
ColonTumor F B B B B B B B
Prostate F F B,F F F B B,F B,F
Lung test B,F B B B B B B B
Lung F F F B F B,F B,F B,F
Ovarian F F F B F F F F
DLBCL F B,F B,F B F B B,F B
ALLAML test F F B F B,F B B B
ALLAML F B,F B F F F B,F B,F
Pediatric ALL data — test
T-ALL F B,F B,F B,F B,F B,F B,F B,F
E2A-PBX1 B,F B,F B,F B,F B,F B,F B,F B,F
TEL-AML1 F B B B B,F B,F B,F B,F
BCR-ABL B,F F F B,F F F F F
MLL F B,F B,F B,F F B,F B,F B,F
Hyperdip 50 B,F B B B B B,F B,F B,F
Pediatric ALL data — 10-fold cross validation
T-ALL F F B F F B B F
E2A-PBX1 B,F B,F B,F B B B,F B,F B,F
TEL-AML1 F B B B F F B B
BCR-ABL F F F F F F F B,F
MLL F B,F B F B F B,F B,F
Hyperdip 50 F B F B B B,F B,F B
Sum B:0 B:6 B:9 B:10 B:6 B:6 B:5 B:6
F:15 F.7 F:5 F:6 F:10 F:6 F:3 F:3
Tie:5 Tie:7 Tie:6 Tie:d Tie:d Tie:8 Tie:l2 Tie:ll

a small subset of features, SVM aneNN involve all the features in their classi cation models.
Although the overall performance of SVM is better than tHaC84, prediction models built by
SVM are dif cult to understand, interpret and apply to pieat disease diagnosis. In this aspect,

CS4 has its big advantage over SVM.

SVM — linear versus quadratic kernel

“Will quadratic polynomial kernel functions perform bat?é To answer this question, we apply
SVM with the quadratic polynomial kernel function to the al@ets. The results show that in

most of cases, SVM with quadratic kernel function perforims $game as that with the simple
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linear kernel; and in some cases, it even does worse. Forxiheriments described in this
chapter, quadratic kernel seldom performs better thammalikernel. For example, among the
twenty experiments using ERCOF selected features, linearek achieved better accuracy in 7
of them while they tied in the rest 13 cases (detailed datatishown). Note that, quadratic

kernels need much more time on training process, espeémlhigh-dimensional data.

5.3.2 Feature selection methods

The experimental results show that for all the classi ensiost of cases, they performed better
(or not worse) with the selected features than they did withdriginal feature space. In the
following discussions, we will focus on comparing our ERC®@ith other proposed entropy-

based feature selection methods.

Comparison of ERCOF with all-entropy and mean-entropy

Since ERCOF is built on all-entropy (the Phase | featurerittg of ERCOF), rst, let's compare
the performance of ERCOF and all-entropy. Table 5.28 llsfeéature selection method(s) (of
ERCOF and all-entropy) that achieved best validation aagufor each experiment. Among 120
cases, all-entropy won 4, ERCOF won 60, and tie 56. Obviotistyperformance of ERCOF is
better than that of all-entropy.

In our previous work presented in [64], mean-entropy metivad claimed to be superior
to all-entropy on high-dimensional biomedical data. Newx¢ will compare the performance
of ERCOF with mean-entropy. Table 5.29 lists the featurectin method(s) (of ERCOF and
mean-entropy) that achieved best validation accuracydoh experiment. Among 120 cases,
mean-entropy won 18, ERCOF won 42, and tie 60. Overall spgaktie performance of ERCOF
is better than that of mean-entropy, though among 50% okdagsy had equal performance.

Note that, compared with all-entropy, mean-entropy and BRQse fewer features. To
have an intuitive sense of amount of features selected e ttheee methods, in Table 5.30 we
list number of features in the original data sets as well ghéndimensional-reduced data sets.

From the table, we can see that:

(1) Feature reduction is mostly done by the entropy meagigeur “base” selection method,

entropy measure (i.e. All-entropy) on the average ltersasimany as 88.5% (=1-11.5%)
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Table 5.28: Comparison between ERCOF and all-entropy wigelifferent classi ers using the
results of the 240 (=2x6x20) experiments on the six geneesgin pro les and one proteomic
data set. Symbol “A” stands for feature selection usingatiopy method and “C” for ERCOF.
Each cell indicates the symbol(s) of the feature selecti@thod(s) that achieved minimum
number of misclassi ed samples in the relevant experimeimgirelevant classi er. For each
classi er, the last row indicates the total number of exgenmts in which all-entropy performed
better, ERCOF did better and the tie case. If we add up the arsydrross classi ers, the nal
result is — all-entropy won 4, ERCOF won 60, and tie 56.

)

@)

Experiment SVM  3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C A,C C C C C
Prostate C C AC AC C C
Lung test C AC A AC C AC
Lung AC C A,C C C C
Ovarian A,C C A,C C C AC
DLBCL C C A C A A,C
ALLAMLtest A,C C A,C A,C C C
ALLAML AC AC A,C C A,C A,C
Pediatric ALL data — test
T-ALL AC A,C A,C A,C A,C A,C
E2A-PBX1 A,C A,C A,C A,C A,C A,C
TEL-AML1 A,C A,C A,C A,C A,C C
BCR-ABL A,C C A,C A,C C A,C
MLL A,C A,C C A,C C C
Hyperdip 50 A,C A AC C C C
Pediatric ALL data — 10-fold cross validation
T-ALL AC C A,C A,C A,C C
E2A-PBX1 C C A,C A,C C C
TEL-AML1 C C C C C C
BCR-ABL C C C C C AC
MLL A,C C C C C (o
Hyperdip 50 C C AC C C AC
Sum A0 A:l A2 A0 Al A0
C:8 C:12 C:5 c:10 C:14 Cc:11
Tie:12 Tie:7 Tie:13 Tie:10 Tie:5 Tie:9

of the features in original data. From the above performamagysis, this round of heavy

dimensionality reduction not only brings us much fasteresbef classi cation, but also

leads to more accurate predictions.

During the second phase of Itering in ERCOF, 33% of altrepy selected features are

further removed by Wilcoxon rank sum test. After this rouficharrow down, the remain-

ing features become sharply discriminating.

After the correlation checking in Phase lll, the nal ERE keeps only 4.5% representa-

tive features of original data. This means that 40% of théllgigorrelated features left in

Phase Il are deducted in this round of ltering.



Table 5.29: Comparison between ERCOF and mean-entropyr widelifferent classi ers
using the results of the 240 (=2x6x20) experiments on th@eshe expression pro les and one
proteomic data set. Symbol “B” stands for feature seleatigsing mean-entropy method and “C”
for ERCOF. Each cell indicates the symbol(s) of the featetection method(s) that achieved
minimum number of misclassi ed samples in the relevant eixpent using relevant classi er.
For each classi er, the last row indicates the total numb@xperiments in which mean-entropy
performed better, ERCOF did better and the tie case. If waipdtle numbers across classi ers,
the nal result is — mean-entropy won 18, ERCOF won 42, and@e

Experiment SVM  3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C C B,C C C C
Prostate C B,C C B C B,C
Lung test B,C B,C B B,C C B,C
Lung B,C C B,C B B B,C
Ovarian B,C C B C B,C C
DLBCL B,C C B B,C C B,C
ALLAML test B,C C B,C B,C C B,C
ALLAML B,C B B C B B,C
Pediatric ALL data — test
T-ALL B,C B,C B,C B,C B,C B,C
E2A-PBX1 B,C B,C B,C B,C B,C B,C
TEL-AML1 B,C B,C B,C B C C
BCR-ABL C B,C B B,C B,C B,C
MLL B,C B,C B,C B,C B,C B,C
Hyperdip 50 B,C B B B,C C B,C
Pediatric ALL data — 10-fold cross validation
T-ALL B,C B B,C B,C B,C B,C
E2A-PBX1 C C B,C B,C C C
TEL-AML1 C C B,C C C C
BCR-ABL C C (3 B B B
MLL B,C B,C C C B C
Hyperdip 50 C C C B,C C C
Sum B:0 B:3 B:6 B:4 B:4 B:1
C:7 Cc:9 C:4 C5 C:10 C:7
Tie:13 Tie:8 Tie:10 Tie:11 Tie:6 Tie:12

(4) Number of features selected by mean-entropy is venedimghat by ERCOF — only 40%
of all-entropy selected features are kept. Note that, dvepaaking, both mean-entropy

and ERCOF performed better than all-entropy did.

Comparison of ERCOF with top-number-entropy

For each data set, we also did experiments on some numberg fefatures selected by entropy
measure. Here, for each test, we will pick up the best onearhtto compare with ERCOF.
Table 5.31 shows that among 120 comparisons, ERCOF won & hetst top-number-entropy
won 45, and they did equally good in more than 50% of them. Hewehe best top-number-

entropy is different from data to data and from classi er tassi er. There is no regular pattern
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Table 5.30: Number of features selected by each method. Emvss validation, the average
number of the selected features in each fold's test is usemlun@h All gives the number of
features in the original intact data. Under ERCOF, the nundieremaining features after
Wilcoxon rank sum test (i.e. Phase Il) is given in Coluafter RSTwhile the nal number of
selected features (i.e. Phase lll) is in ColuFinal. The percentage of the selected features on
original feature space is indicated in the brackets. ThetasAverages the average percentage
across the total 20 tests.

Experiment All All-entropy Mean-entropy ERCOF
after RST Final

ColonTumor 2000 131(6.6%) 58(2.9%) 77(3.9%) 58(2.9%)
Prostate 12600 1429(11.3%) 528(4.2%) 963(7.6%) 516(4.1%)
Lung test 12533 2173(17.3%) 777(6.2%) 1116(8.9%) 673(5.4%
Lung 12533 4530(36.1%) 1747(13.9%)  3169(25.3%) 1728¢13.8
Ovarian 15154 5930(39.1%) 2752(18.2%)  4016(26.5%) 2&8B1301)
DLBCL 4026  392(9.7%) 141(3.5%) 199(4.9%) 112(2.8%)
ALLAML test 7129  866(12.1%) 350(4.9%) 519(7.3%) 280(3.9%)
ALLAML 7129 890(12.5%) 397(5.6%) 618(8.7%) 322(4.5%)

Pediatric ALL data — test
T-ALL 12558 1309(10.4%) 415(3.3%) 869(6.9%) 458(3.7%)

E2A-PBX1 12558 718(5.7%) 235(1.9%) 404(3.2%) 235(1.9%)

TEL-AML1 12558 1309(10.4%) 427(3.4%) 721(5.7%) 461(3.7%)

BCR-ABL 12558 84(0.6%) 31(0.2%) 84(0.6%) 76(0.6%)

MLL 12558 327(2.6%) 124(0.9%) 147(1.2%) 86(0.6%)

Hyperdip 50 12558 914(7.3%) 328(2.6%) 691(5.5%) 315(2.5%)
Pediatric ALL data — 10-fold cross validation

T-ALL 12558 1667(13.3%) 731(5.8%) 1329(10.6%) 695(5.5%)
E2A-PBX1 12558 1021(8.1%)  401(3.2%) 604(4.8%) 326(2.6%)
TEL-AML1 12558 1563(12.4%) 698(5.6%) 1351(10.8%) 748%)6
BCR-ABL 12558  147(1.2%) 56(0.5%) 96(0.7%) 50(0.4%)
MLL 12558 519(4.1%) 147(1.2%) 350(2.8%) 196(1.6%)
Hyperdip 50 12558 1222(9.7%)  536(4.3%) 1013(8.1%) 787(6.3%)
Average 11.5% 4.6% 7.7% 4.5%

to follow. To further illustrate this point, for each of si¥assi ers, in Figure 5.8, we draw the
plots of top number of entropy selected features versus puoflprediction errors on the testing
samples of the ALL-AML leukemia data set and Hyperd§® subtype of the pediatric ALL data
set. From the plots, there is no optimal number of featurasesfound.

After above comparisons, we can claim that ERCOF is an dfittigay to select features
from high-dimensional gene expression data. In Phase | @R entropy-based method elim-
inates those genes who do not separate the samples wellpbiitaye observed that using all-
entropy selected genes does not give the best results. iipies that some features with small
entropy are not useful. To avoid restricting ourselves t@uoitrary cut off (like top-number-
entropy), in Phase Il of ERCOF, we resort to a non-paramstagstical test to help decide

which of the genes left in Phase | are more relevant than eitAdre Phase Il of ERCOF corre-
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Table 5.31: Comparison between ERCOF and top-numbergniice. top 20, 50, 100 and

200) under six classi ers using the results of the 600 (=2xexperiments on the six gene
expression pro les and one proteomic data set. Symbol “@hds for ERCOF and “D” for the

best feature selection of top-number-entropy. Each cditates the symbol(s) of the feature
selection method(s) that achieved best performance inelegant experiment using relevant
classi er. For each classi er, the last row indicates theatawumber of experiments in which
ERCOF performed better, top-number-entropy did better thedtie case. If we add up the
numbers across classi ers, the nal result is — ERCOF won thgé, best top-number-entropy

won 45, and tie 58.

Experiment SVM  3-NN Bagging AdaBoostM1 RandomForests CS4
ColonTumor C,D C C C D D
Prostate C,D D D D D D
Lung test C,D D C,D C,D C,D C,D
Lung C,D C,D D D C,D C,D
Ovarian C,D D D D D C,D
DLBCL C D D D C D
ALLAML test C,D C,D D C,D D D
ALLAML C,D C,D D D D D
Pediatric ALL data — test
T-ALL C,D C,D C,D C,D C,D C,D
E2A-PBX1 C,D C,D C,D C,D C,D C,D
TEL-AML1 C C D D C,D C
BCR-ABL C,D D D C,D D C,D
MLL C,D C,D C,D C,D D C,D
Hyperdip 50 C,D D CD D C D
Pediatric ALL data — 10-fold cross validation
T-ALL C,D C,D C,D C,D C,D C,D
E2A-PBX1 C,D C,D C,D C,D C,D C
TEL-AML1 C C C,D D C,D C,D
BCR-ABL D C C,D D D D
MLL D C C D D C
Hyperdip 50 C CD D CD C D
Sum C4 C5 C:2 C:1 C:2 C:3
D:2 D:7 D:9 D:10 D:9 D:8
Tie:14 Tie:8 Tie:9 Tie:9 Tie:9 Tie:9

sponds to some biological considerations — sorting outélagufes into pathways and for each

pathway, picking out suf cient number of genes to repredbat pathway.

5.3.3 Classi ers versus feature selection

Here, we will discuss two issues: (1) which feature selectiethod is in favour of which clas-

si cation algorithm, and (2) sensitivity of the classi ets the feature selection methods. To
have an overall and intuitive feeling of the relationshigween the performance of classi ers
and feature selection methods, for each of the classi eescount for each of the feature selec-

tion methods (includind\ll where all features were used) the total number of winningsieind
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Figure 5.8: Plots of top number of features versus numberrofse made on testing samples
of (A) ALL-AML leukemia data and (B) Hyperdip50 subtype of pediatric ALL data. In (A),

mean-entropy and all-entropy selected 350 and 866 featumestraining data, respectively. In

(B), mean-entropy and all-entropy selected 328 and 914ifesit respectively. The two plots on
the left side are drawn for four ensemble of decision treasstlers while the two on the right

side are for SVM and 3-NN.

misclassi ed samples across the 20 validation tests oniihgene expression pro les and one

proteomic data set. The results are summarized in Table 5.32

Now, we start to address the rst issue. In terms of both tetaining times and number
of misclassi ed samples, among eight feature selectiorhodd, ERCOF is the best for SVM,
3-NN, Random forests and CS4. Besides, under ERCOF, Bagginigved its smallest total
number of misclassi ed samples. AdaBoostM1 performedtradly better using top 20 features
selected by entropy measure, but compared with the otheclagsi ers, its performance is not
good. As mentioned earlier, the main reason might be thagtb@ploses its power of using multi-
ple decision trees when the single C4.5 tree has no erroainirtg samples. When this happens,
boosting is equivalent to the single tree C4.5 method. Waf@ately, in high-dimensional data,
we often see that single C4.5 trees have perfect trainingracg. A special case is that there

are features having zero entropy value on training samglet as lung cancer data and T-ALL,
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Table 5.32: A summary of the total winning times (including ¢ases) of each classi er (under
different feature selection methods) across the 20 vadidaests on the six gene expression
pro les and one proteomic data set. The number with bold fiomtach row indicates the feature
selection method that owns most winning times for the relegkassi er. In the brackets, there
is the total number of misclassi ed samples across the seineaRdation tests. Similarly, the
gure with bold font in the brackets in each row is the minimumamber of total misclassi ed
samples among feature selection methods for the classi er.

Classi er All All-entropy  Mean-entropy Top-number-enpy ERCOF
20 50 100 200
SVM 4(100) 9(52) 11(48) 6(76) 6(74) 11(52) 11(59) 16(38)
3-NN 1(187) 5(87) 8(77) 6(88) 4(81) 6(77) 5(73) 12(61)
Bagging 7(123) 5(117) 8(115) 11(123) 11(122) 7(122) 9(114) 812
AdaBoostM1 5(191) 8(181) 8(166) 11(138) 10(144) 10(157) 9(162) 10(154)
RandomForests  0(228) 5(111) 5(93) 6(96) 7(83) 8(96) 5(90)9(80)
Cs4 5(87) 6(77) 6(76) 7(101) 10(81) 9(74) 8(74) 12(66)

E2A-PBX1 subtypes of pediatric ALL data.

Let's move to the second issue. From Table 5.32, we obsemtestime classi ers are
sensitive to the feature selection. The good examples ak¢ &d -NN — their classi cation
performances were improved signi cantly by using seledeedures; however, on the other hand,
they could not achieve good performance either if the feaspace is too small. Thus, feature
selection is important to SVM andNN when dealing with high-dimensional biomedical data.
This conclusion is in consistent with the principles of tlidtbalgorithms that all the features are
used in the classi cation models. Again, ERCOF is a suitdibtaure selection method for these
two classi ers. Different from SVM and -NN, decision tree methods do not use all the input
features in their classi cation models (i.e. decision §ego that they are relatively not sensitive
to the feature selection. For example, Bagging and CS4 peeitd quite reasonably well on the
original intact data. As illustrated in Table 5.25, a demisiree often contains very few number
of features, say around 5 in each tree. We called these é&sassbuilt-in features[65]. The
selection of these built-in features is dependent on thiwithehl decision tree algorithms. For
example, information gain ratio measure is employed by Gab base decision tree classi er.
This round of feature selection conducted by the classtg#lf might be one of the main reasons
that classi ers based on decision tree are relatively tasisto other “pre-feature-selections”.
Nevertheless, properly selecting features can also hefpowve the performance of ensemble
of decision trees methods — Random forests and CS4 achiergdyood classi cation results

using ERCOF selected features.
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5.4 Chapter Summary

In this chapter, we applied some entropy-based featuretg@enethods and classi cation tech-
nigues to six gene expression pro les and one proteomic ddtese data sets are described by at
least 2000 features and some of them are by more than 12 8@ds. For each data set, we car-
ried out various experiments and compared our results htlptiblished ones (where available).
The large amount of experimental results showed that in wlosases, our proposed methods
achieved comparable or better classi cation performaree tthose previously reported. Be-
sides, we also listed the good features (i.e. genes for @l#fta sets except ovarian disease)
identi ed by our method, compared them with literature, aelhted some of them with the dis-
ease studied. To emphasize the advantages of decisiomretleads in bio-medical domain, we

presented many simple, explicit and comprehensible tezgadd from the data.

We also addressed various comparisons among classi erfeahde selection methods. In
the aspect of classi ers, SVM demonstrated its power orscleation accuracy and our ensem-
ble of decision trees method CS4 also achieved good regutteng the decision tree methods,
the performance of CS4 is superior to Bagging, AdaBoostMd Random forests. The main
advantage of CS4 over SVM is that its output is easy to beprééed and applied to practical
disease diagnosis. We also clearly observed the perfoeniamgrovements of all the classi-
ers under the proposed feature selection scenarios. Antleagarious entropy-based feature
selection methods, ERCOF has demonstrated its ef ciendyrabhustness when dealing with

high-dimensional gene expression data.
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Chapter 6

Experiments on Microarray Data —

Patient Survival Prediction

In this chapter, a new computational process for patienialmprediction using microarray gene
expression data will be presented. Different from all ppagiworks, in the rst step, we carefully
form the training set samples by selecting oshort-term survivorsvho died within a short
period andong-term survivoravho were still alive after a relatively long follow-up timéhis
idea is motivated by our belief that short-term and longatsurvivors are more informative and
reliable (than those cases in between) for building and nstaeding the relationship between
genes and patient survival. In the second step, ERCOF istasdentify genes most associated
with survival. In the third step, a linear kernel supportteeenachine (SVM) is trained on the
selected samples and genes to build a scoring model. Thel assigns each validation sample

a risk score to predict patient survival.

6.1 Methods

We will describe in detail the new method for patient surljmeediction, focusing on selecting

an informative subset of training samples and building Sk&ded scoring function.
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6.1.1 Selection of informative training samples

One of the main features of our new method is to select infowm#raining samples. Since our
focus is on the relationship between gene expression anivalithe survival time associated
with each sample plays an important role here — two typestoéme cases, patients who died in
a short period (termed asHort-term survivor§ and who were alive after a long period (termed
as ‘fong-term survivory, should be more valuable than those in the “middle” staflisus, we
use only a part of samples in training and this is clearlyediffit from other approaches that use

all training samples.

Formally, for a sample , if its follow-up time is and its status at the end of follow-up

time is , then

short-term survivor,  if
long-term survivor,  if

others, otherwise
stands for “dead” or an unfavorable outcome, stands for “alive” or a
favorable outcome, and are two thresholds of survival time for selecting shortrteand
long-term survivors. Note that long-term survivors alsduide those patients who died after the

speci ed long period.

The two thresholds, and , can vary from disease to disease, from data set to data set.
For example, in the survival study of early-stage lung adarmnomas that will be presented
later, we choose short-term survivors as those who diedwithe follow-up year (i.e. is
1 year) and long-term survivors as those who were alive afeefollow-up years (i.e. is5
years). There are total 31 extreme training samples (1G-&ron survivors and 21 long-term
survivors) among a total of 86 available primary lung adancoomas. These 21 long-term
survivors include 2 patients whose status at the end ofvfellp time was “dead”, but follow-up
times were 79.5 months and 84.1 months, respectively. Quic baide lines for the selection of

and are that the informative subset should (1) contain enowjhitig samples for learning

algorithms to learn (typically 15 samples in each class and total is between one third and one
half of all available samples), but (2) not have too many damo avoid including non-extreme

cases.
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After choosing informative training samples, we apply ERC©O them to identify genes
most associated with survival status. With the selectedbkssrand genes, in the next step, we

will build a scoring function to estimate the survival risi fevery patient.

6.1.2 Construction of an SVM scoring function

The regression scoring function proposed for survival @stimation is based on support vector
machines (SVM) described in Section 2.3.2 of Chapter 2. Réuat the nal discriminant
function for a test sample given in Formula (2.3) of Chapter 2. If the linear kernel
function is used, will become a linear combination of the expression valugb®fdenti ed
genes. In this study, we map class label of “short-term sarsf to 1 and “long-term survivors”
to -1. Note that if the sample is more likely to be a “short-term survivor”, and

if the sample is more likely to be a “long-term survivor”.

To normalize , we use a transformation function de ned as:

Thus, is normalized by into the range . Note that the smaller the  value is,
the better survival the patient corresponding to sampleill have. We term the risk score

of

If one only categorizes patients into high risk or low rislogps, the value 0.5 is a natural

cutoff for , Where if then the patient corresponding to sampleill have higher
risk; otherwise, the patient will have lower risk. If morethtwo risk groups are considered —
such as high, intermediate, and low — then other cutoffs easdb based on the risk scores of
training samples. E.g., in training set, if most of shortytesurvivors have a risk score greater
than and most of long-term survivors have a risk score smaller thathen,

high risk, if

low risk, if

intermediate risk, if
Generally, , , and they can be derived from the risk scores assigned to the

training samples.

To evaluate the results, after assigning patients inteifft risk groups, we draw Kaplan-
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Meier plots [8] to compare the survival characteristicsagstn groups.

6.1.3 Kaplan-Meier analysis

Kaplan-Meier analysis estimates a population survivaledrom a set of samples. A survival
curve illustrates the fraction (or percentage) survivadah time. Since in realistic clinical trial
it often takes several years to accumulate the patientshéotrial, patients being followed for
survival will have different starting times. Then the patgewill have various length of follow-up
time when the results are analysed at one time. Therefaauttvival curve can not be estimated
simply by calculating the fraction surviving at each timer Example, in the following study of

lung adenocarcinomas, the patients follow-up time is vayyiom 1.5 months to 110.6 months.

A Kaplan-Meier analysis allows estimation of survival otiene, even when patients drop
out or are studied for different lengths of time [1]. For exden an alive patient with 3 years
follow-up time should contribute to the survival data foethst three years of the curve, but
not to the part of the curve after that. Thus, this patienukhbe mathematically removed from
the curve at the end of 3 years follow-up time and this is dalinsoring” the patient. On a
Kaplan-Meier survival curve, when a patient is censoreel ctirve does not take a step down as
it does when a patient dies; instead, a tick mark is geneusid to indicate where a patient is
censored and each death case after that point will caugkedlitlarger step down on the curve.
An alternative way to indicate a censored patient is to sh@wniumber of remaining cases “at
risk” at several time points. Patients who have been cedsoralied before the time point
are not counted as “at risk”. In Figure 6.1, picture (A) is anpdete sample of Kaplan-Meier
survival curve with a tick mark representing a censoredepaficaptured fronfttp://www.
cancerguide.org/scurve_km.html ), while picture (B) illustrates how to calculate the
fraction of survival at a time (captured from [1]).

To compare the survival characteristics between differisktgroups for our survival pre-
diction study, we draw Kaplan-Meier survival curves of tigkrgroups in one picture and use
logrank testto compare the curves. The logrank test generatesalue testing the null hypoth-
esis that the survival curves are no difference between twopg. The meaning of-value is
that “if the null hypothesis is true, what is the probabilitiirandomly selecting samples whose

survival curves are different from those actually obta?iedin this chapter, all the Kaplan-Meier
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(A)

(B)
Figure 6.1: Samples of Kaplan-Meier survival curves. (Apisexample of a Kaplan-Meier

survival curve. This group of patients has a minimum follopvof a little over a year. (B) is an
illustration on how to calculate the fraction of survivaleatime.
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Figure 6.2: A process diagram of patient survival studyuding three training steps as well as
testing and results evaluation.

survival curves are generated BraphPad Prism(http://www.graphpad.com ) and we
always indicate the two-tailed-value. Figure 6.2 shows a diagram of patient survival [otézh

using our proposed method.

6.2 Experiments and Results

We apply the procedure of survival study above to two geneessgion data sets.

6.2.1 Lymphoma

Survival after chemotherapy for diffuse large-B-cell lyingona (DLBCL) patients was previ-
ously studied by Rosenwalet al [102] using gene expression pro ling and Cox proportional-
hazards model. In that study, expression pro les of biopgmgles from 240 patients were
used [102]. The data include a preliminary group consistind60 patients and a validation

group of 80 patients, each of them is described by 7399 miepdeatures.
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Survival curves showing clear distinction

As an initial step, we pre-process the data to remove thosesgihat are absent in more than
10% of the experiments in the preliminary group. There rendP37 features after having 2462

genes removed.

Then, we select short-term survivors and long-term surgito construct an informative
subset of training samples. For this study, we set  year and years in Formula
(6.1). Among the preliminary 160-patient group, 47 shertyt survivors (who died within one
follow-up year) and 26 long-term survivors (who were alifieaeight follow-up years) are thus
chosen. So, a total of 73 samples are in this informativeedutfsraining samples (46% of the
preliminary group) .

In the second step, we apply ERCOF to these 73 samples antifyidé® genes that are
related to patient survival status at 5% signi cant levar(¥ilcoxon rank sum test) and 0.99
Pearson correlation coef cient threshold. Some of ourdelk genes are also listed in Table 2
of [102], where these genes were found to be signi cantlyeisded with survival ( ).
E.g., AA8B05575 (GenBank accession number) ig@nminal-center B-cell signaturex00452
and M20430 inMHC class Il signature and D87071 is inymph-node signature The gene
signatures were formed by a hierarchical clustering aligarin [102]. Besides, some top-ranked
genes (with smaller entropy value) identi ed by ERCOF as®ah one of these gene signatures.
E.g.,BC012161, AF061729 and U34683 aretioliferation signature BF129543 is irgerminal-
center B-cell signatureand K01144 and M16276 are MHC class Il signature

In the third step, an SVM model is trained on the 73 extremiaitrg samples with the 78
identi ed features. We nd that the well-learned linear ket SVM can separate the 47 short-
term survivors and 26 long-term survivors completely — thedst risk score assigned to the
short-term survivors is above 0.7 and most of the long-tarmaigors has risk score lower than
0.3. Then, we calculate risk scores for all the other sampkasely the remaining (non-extreme)
87 samples in the original preliminary group and the 80 samjl the validation group. These

167 samples are treated as our test set.
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(A) Test cases ( ) (B) All cases ( )

Figure 6.3: Kaplan-Meier plots illustrate the estimatidroeerall survival among different risk
DLBCL patients in the testing set containing 167 samplesé¢P@\)) and all 240 samples (Panel
(B)). The risk groups are formed on our SVM-based scoringtion. A tick mark on the plot
indicates that one sample is censored at the corresporidieg The 5-year overall survival for
high risk versus low risk groups of patients for testing skass 32% versus 91%, for all samples
is 20% versus 95%.

We categorized patients into four risk groups as follows:

high risk, if

intermediate-high risk, if

intermediate-low risk,  if

low risk, if
where the threshold 0.5 is the mean value of 0.7 and 0.3. TipdaKdVeier curves of overall
survival are drawn in Figure 6.3, where we can see cleardiffees at the ve-year survival rates
for the high risk and low risk groups, in both testing samglie(Ranel (A)) and all samples (Panel
(B)). Although we cannot see distinct overall survival beeén the two intermediate groups, the
5-year survival rates of these two groups are obvioushedsfiit from that in the high risk group
or the low risk group. This also suggests that three or two gi®ups would be suf cient for
these DLBCL samples. So in the rest of this study, we simplygen&igh and intermediate-high
risk patients into a single high risk category, and low artérimediate-low risk patients into a
single low risk category.

Having the risk score, when a new case comes, we will be akdsdign it to the corre-
sponding risk group easily. This kind of prediction was ndtli@ssed in [102] where the DL-
BCL patients were ranked by their gene-expression-bastmbme-predictor score but divided
into several groups with equal number of samples. For an pkarB0 samples in the validation
group were strati ed according to the quartiles of the ssamith each of quartiles consisting of

20 patients. With that kind of categorization, one cannal an explicit measure to evaluate a
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new case.

Comparison with International Prognostic Index

Various clinical features — such as stage, performancesstédctate dehydroginase levels —
which are known to be strongly related to patient survivalyehbeen combined to form the
International Prognostic Index (IP1) [113]. The IPI has medfectively adopted to separate
aggressive lymphomas into several groups with signi ganifferent responses to therapy and
survival. Since IPI is only built on the consideration ohatial factors, it provides little insight
into disease biology [60].

The risk score obtained from our method is based on gene siprein biopsy specimens
of the lymphoma, so it is an independent predictor from IRKalct, we nd that patients in the
high IPI group — and similarly for the intermediate and the I&| groups — when partitioned
by our risk score into high risk and low risk categories, haigni cantly different outcomes.
In Figure 6.4, Kaplan-Meier plots show signi cant diffex@on overall survival for our high
risk and low risk groups among the patients with IPI low (amdilarly for intermediate and
high) risk index. In particular, among 21 IPI high risk patiin our testing set, 15 of them are
assigned by our method to the high risk category and 6 of tletinet low risk category. When
we check the survival status of these patients, we nd 14 eflth patients belonging to our high
risk category are indeed dead while only 2 of the 6 patientsniging to our low risk category are
dead. Similarly, for all 32 patients in the whole data sehwigh IPI, 23 of them (22 dead) are
assigned by our method to the high risk category and 9 (5 dddtdem are assigned to low risk
category. This suggests that our method may be a more géqmtedictor of DLBCL survival

outcome than the IPI.

6.2.2 Lung adenocarcinoma

Adenocarcinoma is the major histological subtype of nomdsoell lung cancer (NSCLC). There

is a need to better predict tumor progression and clinicidayae in lung adenocarcinoma. The
lung adenocarcinoma data set contains 86 primary lung adecinomas. These experiments
include 67 stage | and 19 stage Ill tumors, each of them isridbestby 7129 genes. The data

set was rst analysed in [14] where a risk index was derivedeldaon the top 50 good genes
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(A) IPI low - test cases ( ) (B) IPI intermediate - test cases ( )

(C) IPI high - test cases ( ) (D) IPI low - all cases ( )

(E) IPIl intermediate - all cases ( ) (F) IPI high - all cases ( )

Figure 6.4: Kaplan-Meier Estimates of survival among highk and low risk DLBCL patients
(according to our method) in each IPI de ned group. Plots, (@) and (C) are based on 167
testing samples while (D), (E) and (F) are for all 240 cases.
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(A) Test cases ( ) (B) All cases ( )

Figure 6.5: Kaplan-Meier plots illustrate the estimatidroeerall survival among high risk and
low risk lung adenocarcinoma patients in the testing setainimg 55 samples (Panel (A)) and
all 86 samples (Panel (B)).

that were identi ed to be most related to survival by uniedei Cox analysis. In that study, tests
were conducted by randomly splitting 86 samples into eqgaabstraining and testing sets and
by “leave-one-out” cross validation.

First, we form our training set by setting year and years in Formula (6.1).
10 short-term survivors and 21 long-term survivors are thasen. Applying ERCOF to these
31 training samples, we nd 402 genes that are related toomotc Our top-ranked feature by
entropy measure, the ATRX gene, is a putative transcriptegulator. It is also reported by
Borczuket alin their recent paper [17] on NSCLC. Our second-ranked geNg&P2, is part of
stress pathways involved in oncogenesis. Yengl [138] also detected it in NSCLC.

Then we train a linear kernel SVM to obtain the weight for ealgnti ed gene based on
the training data. The trained SVM can separate these 31lleawgry well, assigning very high
risk scores to short-term survivors (lowest score is as agyf.73) while very low risk scores to
long-term survivors (highest score is as low as 0.25).

After training, we calculate risk score for each of the ramraj 55 samples which are used
for test purpose. These samples are then classi ed as higlyroup consisting sampleswith

, or as low risk group consisting sampleswith . The Kaplan-Meier
curves in Figure 6.5 show clear difference of survival fatigras in our high and low risk groups
for both testing cases and all cases. Since we pick out ait-tf1on and long-term survivors
to form the training set, there is no “death” event happemeithé rst 12 months time and no
sample censored after 60 months time in the plot drawn ontpeiest cases (Panel (A)).

In order to understand the relationship between our priedieind tumor stage (I or 1ll). We
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(A) Stage | - test cases ( ) (B) Stage | - all cases ( )

(C) Stage Il - test cases ( ) (D) Stage I - all cases ( )

Figure 6.6: Kaplan-Meier plots illustrate the estimatidroeerall survival among high risk and
low risk lung adenocarcinoma patients conditional on tustage.

also draw Kaplan-Meier curves to delineate survival ddfere between our high and low risk
patients conditioned on tumor stage. From Figure 6.6, wesearthat outcomes of patients with
stage | lung adenocarcinoma in our high and low risk groufferdrom each other, for both test
cases (Panel(A)) and all cases (Panel(B)). Again remayksl 13 stage Il cases in the testing
set, we assigned 11 (5 dead, 6 alive) of them to high risk graog the 2 of them assigned to
low risk group were all alive at the end of the follow-up tim&mong all 19 stage Il cases, 17

(11 dead, 6 alive) of them were assigned to high risk groupralatg to our risk score.

6.3 Discussions

In the step of training set construction, we select only twinegne cases — long-term and short-
term survivors. See Table 6.1 for size change trends fronottiggnal training samples to the
informative training samples on DLBCL and lung adenocacias data sets. The gures illus-
trate that we used a small part of samples as training.

On the other hand, if we do not select those extreme casednstedd use all available
training samples, then what will be the results? To illustthis, we select genes and train SVM

model on the 160 samples in the preliminary group of DLBCLldgtuAlthough the training
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Table 6.1: Number of samples in original data and selectéatrimative training set. (*):
there are 48 DLBCL samples, whose relevant patient was dietigk @&nd of follow-up time,
are selected as informative, 47 of them are short-term wnviwhile 1 of them is long-term
survivor. (**): there are 12 lung adenocarcinomas, whoseesponding patients were dead,
are selected as informative, 10 of them are short-termwnwiwhile 2 of them are long-term
survivors.

Application Data set Status Total
Dead Alive
DLBCL Original 88 72 160
Informative | 47+1(*) 25 73
Lung Original 24 62 86
adenocarcinoma Informative | 10+2(**) 19 31

(A) All genes ( ) (B) ERCOF selected genes ( )

Figure 6.7: Kaplan-Meier plots illustrate no clear diffece on the overall survival among high
risk and low risk DLBCL patients formed by the 80 validatiangples based on their risk scores
that assigned by our regression model built on all 160 tngisamples. (A) Using all genes. (B)
Using genes selected by ERCOF.

accuracy is good, Kaplan-Meier plots do not show signi cauatvival difference between the
high and low risk groups formed by the 80 validation samplasel on their risk scores that
assigned by the trained SVM model. In detail, using all 498e3, the value of the survival
curves is 0.21 ((A) in Figure 6.7); using 40 genes selecteEHREOF, the value is 0.38 ((B) in
Figure 6.7). Therefore, we claim that our proposed idealettiag informative training samples
is an effective method.

As pointed out in Section 6.1.1, we have some basic guide tmdetermine the thresholds
and that de ned in Formula (6.1). Bearing these minimum constgain mind, we try
several and values in our study. In Table 6.2;value (of the logrank test) associated with

the Kaplan-Meier survival curves of validation samplesemdifferent selections of the and
from DLBCL study are listed. All results are based on ERCOEded genes. We can see

that (1) for arange of and (i.e. less than 3 years and greater than 8 years), we can
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Table 6.2: Results for different thresholds(years) and (years) on DLBCL study. All results
are based on ERCOF selected genes and on validation samptes o

-value No. short-term survivors No. long-term survivors .Nenes

1 5 0.2962 47 57 121
1 7 0.0110 a7 36 79
1 8 0.0067 a7 26 78
1 9 0.0570 a7 22 40
2 8 0.0049 61 26 55
3 8 0.0761 76 26 51

achieve better predictions by selecting extreme sampBsA petter -value (0.0049) obtained
at 2yearsand 8 years than that we reported in Section 6.2.1 for 1 year and

8 years. However, when we trace back to the risk scores ofiigaisamples, one of the long-
term survivors selected under 2 years and 8 years has a risk score as high as 0.73. In
addition, the number of selected short-term survivors 4st@nes of the number of long-term
survivors under this choice. In any case, the selection aind can be further re ned by

running cross-validation on training samples.

In the step of gene identi cation, built on statistical knledge, our three-phase Itering
process discards many unrelated genes and only keeps ansimdier of informative representa-
tives. According to our experience on gene expression aetlysis, generally, entropy measure
can lter out about 90-95% of the total number of genes [64jisTpoint has been veri ed again
in this study on survival prediction: entropy measure retainly 132 genes in DLBCL study
(there are around 5000 genes after removing missing vatresB84 genes in lung adenocar-
cinoma study (original data contain 7129 genes). Aftetrtltering by Wilcoxon rank sum
test and Pearson correlation coef cient test, the nal sild genes are with smaller size and
less correlated with each other. Table 6.3 shows the nustimrge trend of features from the
entropy selection, to Wilcoxon test, and to correlationfoient selection. It can be seen that
the feature reduction is mostly by the entropy selection.

For comparison, in DLBCL study, we also do experiments ualhthe 4937 genes, the 132
genes output from the Phase | of ERCOF, and the 84 genes dudputhe Phase Il of ERCOF.
The results show that in each of these cases, the overalvaudifference between the high
and low risk groups formed by our risk scores on the testimgpéas can be seen as well. In

Figure 6.8, we draw the corresponding Kaplan-Meier suhduaves. Although the model built

124



Table 6.3: Number of genes left after feature Itering focbaghase of ERCOF. The percentage
in the brackets indicates the proportion of the remainingegeon original feature space. (*): the
number is after removing genes who were absent in more thgnaf@he experiments.

Gene selection  DLBCL  Lung adenocarcinoma

Original 4937(*) 7129
Phase | 132 (2.7%) 884 (12.4%)
Phase Il 84 (1.7%) 591 (8.3%)
Phase IlI 78 (1.6%) 402 (5.6%)

on 3-phase ERCOF makes use the smallest number of gendsigitexbest value. Again, the
good results also demonstrate the effectiveness of sabettte informative samples. In addition,
in the study of lung adenocarcinoma, using all genes (i.thaui gene selection) cannot predict

outcome at all ( ).

In the step of prediction, a simple linear kernel SVM is tealron the selected samples and
genes to build a regression model. The model then assighsvaiidation sample a risk score
to predict patient outcome. Based on the training resukéscan derive explicit thresholds (e.g.,
0.5, 0.3, 0.7) of our risk score to categorize patients iiffergnt risk groups. Thus, when a new
case comes, we are able to assign it to the correspondingnasio easily according to its risk

score. This prediction ability is important in patient sual study.

For both studies on DLBCL and lung adenocarcinoma, we assoour results with some
clinical features. For example, in the DLBCL study, our hagtd low risk groups also demon-
strate signi cantly different outcomes in the analysis atipnts with low or intermediate risk
according to their International Prognostic Index (IPIpr&s constructed on some clinical fea-
tures. E.g., for patients having high IPI, we assign mosheit into our high risk category and
some into our low risk category, and our assignment is betimelated to survival outcome of
these patients. Some of the genes identi ed to have strosgcagion with survival by ERCOF
also fall within four biologic groups de ned on the basis arge expression signatures. In the
lung adenocarcinoma study, most of the samples are frone $tagnors. Among these sam-
ples, although our high and low risk groups differ signi ¢ignfrom each other, we put quite
a few of them into high risk group. This ndingiridicates the important relationship between
gene expression pro les and patient survival, indepenaéidisease stagewhich is one of the

conclusions drawn in [14].
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(A) All genes ( ) (B) Genes of Phase | ERCOF ( )

(C) Genes of Phase Il ERCOF ( ) (D) Genes of Phase Il ERCOF ( )

Figure 6.8: Kaplan-Meier plots illustrate the estimatidroeerall survival among high risk and
low risk patients in the validation group of DLBCL study. (A)sing all 4937 genes. (B) Using
132 genes output from the Phase | of ERCOF. (C) Using 84 geamgsitofrom the Phase Il of
ERCOF. (D) Using 78 genes output from the Phase Ill of ERCOF.

6.4 Chapter Summary

In this chapter, we have applied statistical and machinaileg technologies to predict patient
survival using gene expression pro les. Different fromathvorks, we rst picked out extreme

cases to form the training set, consisting of only shomtsurvivors and long-term survivors.

Naturally, if there are genes indeed associated with outconen the different expression values
of these genes should be monitored by analysing these twes tyfisamples. Secondly, ERCOF
was applied to the selected informative samples to idegfyes most associated with survivals.
Thirdly, linear kernel SVM was trained on the selected sa®pind genes to form a regression
model, which can calculate a risk score to each sample. @moged methodology was tested
on two gene expression pro les: diffuse large-B-cell lyropia and lung adenocarcinoma. For
both studies, the Kaplan-Meier plots showed clear sundifidrence on high and low risk group

patients that formed by the assigned risk scores.
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Chapter 7

Recognition of Functional Sites In

Biological Sequences

Not all biomedical data contain explicit signals or featuas those in the classi cation problems
arised by gene expression pro lings. For example, DNA saqae and protein sequences rep-
resent the spectrum of biomedical data that possess naigxXphitures. Generally, a genomic
sequence is just a string consisting of the letters “A’, “G3, and “T” in a “random order”.
Yet a genomic sequence possesses biologically meaningifatibnal sites, which play impor-
tant roles in the process of protein synthesis from DNA segeg. Figure 7.1 shows a picture
of this process (captured from the “bioinformatics clastegbof Dr. Nina Rosario L. Rojas
at http://aegis.ateneo.net/nrojas/ ). This process can be divided into two stages:

transcription and translation.

1. Transcription . In this stage, the information in DNA is passed on to RNA slthkes place
when one strand of the DNA double helix is used as a templatbdRNA polymerase
to create a messenger RNA (mMRNA). Then this mMRNA moves froennilcleus to the
cytoplasm. In fact, in the cell nucleus, the DNA with all theoas and introns of the gene
is rst transcribed into a complementary RNA copy named ‘leac RNA” (nRNA). This
is indicated as “primary transcription” in the picture ofybire 7.1. Secondly, non-coding
sequences of base pairs (introns) are eliminated from thang®sequences (exons) by
RNA splicing The resulting mRNA is the edited sequence of nRNA aftecsmi The

coding mMRNA sequence can be described in terms of a unit eéthucleotides called a
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Figure 7.1: Process of protein synthesis.

codon.

2. Translation. In this stage, the information that has been passed to ROA DNA is used
to make proteins. At thmitiation phase of translation, ribosome binds to the mRNA when
it reaches an AUG (adenine, uracil, guanine) sequence oRIi#e strand in a suitable
context. The ribosome is made of protein and ribosomal RNENE). The start codon
AUG is called translation initiation site (TIS) and is oncognized by the initiator tRNA
(transfer RNA). After binding to the mRNA, the ribosome peeds to th@longationphase
of protein synthesis by sequentially binding to the apgeiprcodon in mRNA to form
base pairs with the anticodon of another tRNA molecule. ldewith the ribosome moving
from codon to codon along the mRNA, amino acids are added pmad, translated into
polypeptide sequences. At the end, the newly formed stréraino acids (complete
polypeptide) is released from the ribosome when a releaserfainds to the stop codon.

This is theterminationphase of translation.

The functional sites in DNA sequences include transcripstart site (TSS), translation
initiation site (TIS), coding region, splice site, polyagtation (cleavage) site and so on that are
associated with the primary structure of genes. Recogndfahese biological functional sites

in a genomic sequence is an important bioinformatics agiidin [72].
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In order to apply traditional machine learning technigqueahiove functional sites recogni-
tion problem, we propose a 3-step work ow as follows. In thst step, candidate features are
generated using-gram nucleotide acid or amino acid patterns and then segudsita are trans-
formed with respect to the newly generated feature spadbelsecond step, a small number of
good features are selected by a certain algorithm. In tine gtép, a classi cation model is built

to recognize the functional site.

7.1 Method Description

The rstand the mostimportant step of our method is to geteaaiaew feature space under which
the original sequences can be transformed to the format ihvgeneral machine learning tools

can be easily applied.

7.1.1 Feature generation

We generate the new feature space usisggam ( ) nucleotideor amino acid pat-
terns A -gram is simply a pattern of consecutive letters, which can be amino acid symbols
or nucleic symbols [143, 72]. We use eaclgram nucleotide or amino acid pattern as a new
feature. For example, nucleotide acid pattern “TCG” is a@gpattern while amino acid pat-
tern “AR” is a 2-gram pattern constituted by an alanine folld by an arginine. Our aim is to
recognize functional site in a sequence by analysifggam patterns around it. Generally, up-
stream and down-streamgram patterns of a candidate functional site (for examplery ATG

is a candidate of translation initiation site) are treatedlifferent features. Therefore, if we use
nucleotide patterns, for eachthere are possible combinations of-gram patterns; if we
use amino acid patterns, since there are 20 standard aniifsopdics 1 stop codon symbol, there
are possible -gram patterns for each. If the position of each -gram pattern in the
sequence fragment is also considered, then the numbertofdeavill increase dramatically. We
call these features as position-speci egram patterns. Besides;gram can also be restricted

thosein-frameones.

Thefrequencyof a -gram pattern is used as the value of this feature. For exampl

1. UP-X(DOWN-X), which counts the number of times the leMeappears in the up-stream
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(down-stream) part of a functional site in its nucleotidelamr amino acid sequence.

2. UP-XY (DOWN-XY), which counts the number of times the tvaitérs XY appear as a
substring in the up-stream (down-stream) part of a funetisite in its nucleotide acid or

amino acid sequence.

where X and Y range over the 4 nucleotide acid letters or thedstrd 20 amino acid letters and

the special stop codon symbol.

In the framework of the new feature space, the initial nudlieosequences need to be
transformed. The transformation is constructed as follddigen a DNA nucleotide sequence, a
sequence window is set aside for each candidate functidtealvih it in the center and certain
bases up-stream (named @s-stream window sizeand certain bases down-stream (named as
down-stream window sike If a candidate functional site does not have enough wgastror
down-stream context, we pad the missing context with theggguate number of dont-care (“?”)

symbols.

If features are made from amino acid patterns, we will coderetriplet nucleotides, at
both up-stream and down-stream of the centered candidatéidnal site in a sequence window,
into an amino acid using the standard codon table. A triplet torresponds to a stop codon is
translated into a special “stop” symbol. Thus, every nualieosequence window is coded into
another sequence consisting of amino acid symbols and™stopbol. Then the nucleotide or
amino acid sequences are converted into frequency seqdatzeinder the description of our
new features. Later, the classi cation model will be apglie the frequency sequence data,

rather than the original cDNA sequence data or the interate@dmino acid sequence data.

7.1.2 Feature selection and integration

In most cases, the number of candidate features in the éegpaice is relatively big. It is reason-
able to expect that some of the generated features woulddbeviant to our prediction problem
while others are indeed good signals to identify the fumeticsite. Thus, in the second step,
feature selection is applied to the feature space to nddtsignals most likely to help in dis-
tinguishing the true functional site from a large numberaddidates. Besides, feature selection

also greatly speeds up the classi cation and predictiortgss, especially when the number of
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samples is large. Among the many feature selection techaigtesented in Chapter 3, we em-
ploy the simpleentropy measuréSection 3.2.4) in our following two applications. As used i
gene expression data analysis (with name “all-entropy8 chwose all the features whose value
range can be partitioned into intervals by Fayyad's digzagibn algorithm [36] (Section 3.2.4
of Chapter 3).

To achieve the ultimate goal of predicting the true fundiaite, our next step is to integrate
the selected features by a classi cation algorithm. At gtéep, in the following two applications,
we will focus on the results achieved by support vector meeh{SVM) (with linear or quadratic
polynomial kernel function) and our ensemble method CS4tailzel techniques of SVM and

CS4 can be found in Section 2.3.2 and Section 2.3.4 of Chaptespectively.

In the following two sections, we will make use of our propwsgork ow to predict

translation initiation site and polyadenylation signals.

7.2 Translation Initiation Site Prediction

7.2.1 Background

The translation initiation site (TIS) prediction problemabout how to correctly identify TIS in
MRNA, cDNA, or other types of genomic sequences. At the tation stage of protein synthesis
process, in eukaryotic mRNA, the context of the start codanrfially “AUG”) and the sequences
around it are crucial for recruitment of the small ribosombuwit. Thus, the characterization
of the features around TIS will be helpful in a better undmding of translation regulation and
accurate gene predication of coding region in genomic antlAIBDNA sequences. This is an
important step in genomic analysis to determine proteinngpffom nucleotide sequences.
Since 1987, the recognition of TIS has been extensivelyietugsing biological approaches,
data mining techniques, and statistical models [56, 5788839, 103, 83, 145, 90, 48, 142]. Ped-
ersen and Nielsen [89] directly fed DNA sequences into arceaitneural network (ANN) for
training the system to recognize true TIS. They achievedsalref 78% sensitivity on start
ATGs (i.e. true TISs) and 87% speci city on non-start ATG® (i false TISs) on a vertebrate
data set, giving an overall accuracy of 85%. Zatral [145] studied the same vertebrate data

set, but replaced ANN with support vector machines (SVMjpgslifferent kinds of kernel func-
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tions. They believe that carefully designed kernel fundiare useful for achieving higher TIS
prediction accuracy. One of their kernel functions is ahllimcality-improved” kernel, which
emphasizes correlations between any two sequence pgsitiahare close together, and a span
of 3 nucleotides up- and down-stream is empirically deteaniias optimal. Recently, Hatzigeor-
giou [48] built a multi-step ANN system named “DIANA-TIS” &tudy the recognition problem.
This ANN system combines a consensus ANN and a coding ANN thiglribosome scanning
model. They obtained an overall accuracy of 94% on a datacseaining full-length human
cDNA sequences. All of these methods use nucleotide sequdata directly; they do not gen-

erate any new and explicit features for the differentiatietween true and false TISs.

There are some related works that use statistical featlites programATGpr[103] uses
a linear discriminant function that combines some statisfieatures derived from the sequence.
Each of those features is proposed to distinguish true Td8 ffalse TIS. In a more recent
work [83], an improved version cATGpr called ATGpr.sim was developed, which uses both
statistical information and similarities with other knownoteins to obtain higher accuracy of
fullness prediction for fragment sequences of cDNA clotesur previous study [72], the same

vertebrate data set was analyzed by generating features mscleotide acid patterns.

7.2.2 Data

We collected three data sets for this study.

The rst data set (data set I) is provided by Dr. Pederserorisists of vertebrate sequences
extracted from GenBank (release 95). The sequences dnerfpriocessed by removing possible
introns and joining the remaining exon parts to obtain threesponding mMRNA sequences [89].
From these sequences, only those with an annotated TIS, &incatMeast 10 up-stream nu-
cleotides as well as 150 down-stream nucleotides are cnesidn our studies. The sequences
are then Itered to remove homologous genes from differeganisms, sequences added multi-
ple times to the database, and those belonging to same geitie$a Since the data are processed
DNA, the TIS site is ATG — that is, a place in the sequence wh&HeT”, and “G” occur in
consecutive positions in that order. We are aware that sd®sies may be non-ATG; however,

this is reported to be rare in eukaryotes [59] and is not ctamed in this study.

An example entry from this data set is given in Figure 7.2. réhere 4 ATGs in this

132



299 HSU27655.1 CAT U27655 Homo sapiens
CGTGTGTGCAGGACTGCAGCTGCCCCAAGCGRTNGAACACTGACTCCCAGCTGTG 80
CCCAGGGCTTCAAAGACTTCTCAGCTTCGAGCATETGGCTGTCAGGGCAGCTGTA 160
GGAGGCAGAAGAAGAGGGAGAOITCTTGGAGGAAGGGAAGGGGCCTGGTGCCGAGGA 240
CCTCTCCTGGCCAGGAGCTTCCTCCAGGACAAGACCTTCCACCGRAZ@T
............................................................ 80
................................ iEEEEEEEEEEEEEEEEEE EEEEEEEEE 160
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 240
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

Figure 7.2: An example annotated sequence from data setel.4Téccurrences of ATG are
underlined. The second ATG is the TIS. The other 3 ATGs areTi&n The 99 nucleotides
up-stream of the TIS are marked by an overline. The 99 nudentdown-stream of the TIS
are marked by a double overline. The “.”, “i", and “E" are atett@ns indicating whether the
corresponding nucleotide is up-stream (.), TIS (i), or destneam (E).

example. The second ATG is the TIS. The other 3 ATGs are n@fHise TIS). ATGs to the
left of the TIS are termedp-stream ATGsSo the rst ATG in the gure is an up-stream ATG.
ATGs to the right of the TIS are termetbwn-stream ATGsSo the third and fourth ATGs in the
gure are down-stream ATGs. The entire data set contain® 3@huences. In these sequences,
there are a total number of 13375 ATGs, of which 3312 ATGs7@%) are true TISs, while
10063 (75.24%) are false. Of the false TISs, 2077 (15.5%)psstream ATGs.

The second data set (data set Il) is provided by Dr. Hatzgigeor The data collection
was rst made on the protein database Swissprot. All the huprateins whose N-terminal
sites are sequenced at the amino acid level were collectechanually checked [48]. Then the
full-length mMRNAs for these proteins, whose TIS had beeriréatly experimentally veri ed,
were retrieved. The data set consists of 480 human cDNA segsén standard FASTA format.
In these sequences, there are as many as 13581 false TIS¥06f5otal number of ATGs.

However, only 241 (1.8%) of them are up-stream ATGs.

Besides these two data sets that have been analyzed by, otteeedso formed our own
genomic data set (data set Ill) by extracting a number of-algdiracterized and annotated human
genes of Chromosome X and Chromosome 21 from Human Genorta8BU(ir0]. Note that we
eliminated those genes that were generated by other goedicbls. The resulting set consists
of 565 sequences from Chromosome X and 180 sequences froomGsome 21. These 745
sequences containing true TIS are used as positive data expariment. Meanwhile, in order

to get negative data, we extracted a set of sequences arb¥Tdss in these two chromosomes
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but excluded annotated ones.

7.2.3 Feature generation and sequence transformation

As every 3 nucleotides code for an amino acid, in this studyuse -gram ( ) amino
acid patterns as candidate features. Thus, there are 924 ( ) possible amino acid
patterns, i.e. new features.

In the sequence transformation, we set both up-stream wisdm®e and down-stream win-
dow size to 99 bases — given a cDNA or mRNA nucleotide sequenctaining ATGs, a window
is set for each ATG with the ATG in the center and 99 bases ngaust and 99 bases down-stream
(excluding the ATG itself) aside. As such, for data set |, we312 sequence windows contain-
ing true TIS and 10063 containing false TIS; for data set80) 4equence windows containing
true TIS and 13581 containing false TIS. All the windows hasene size, i.e. containing 201
nucleotides. For ease of discussion, given a sequence wing® refer to each position in the
sequence window relative to the target ATG of that windowe TA in the target ATG is num-
bered as +1 and consecutive down-stream positions — thatttse right — from the target ATG
are numbered from +4 onwards. The rst up-stream positionhat ts, to the left — adjacent
to the target ATG is —1 and decreases for consecutive positmwards the 5' end — that is, the
left end of the sequence window [72]. These sequence windontgining nucleotide letters are
further transformed to amino acid sequences by coding dviphgt nucleotides into an amino
acid or a stop codon. At last, the amino acid sequences akeited into frequency sequence
data under the description of feature space.

Apart from the -gram amino acid patterns, we also derive three new feaftoassome
known bio-knowledge: two are based on the famous Kozak'seosus matrix and one is on the
scanning model. From the original work for the identi catiof the TIS in cDNA sequences,
Kozak developed the rst weight matrix from an extended ection of data [56]. The consensus
motif from this matrix is GCCAG]CCATGG, where (1) a G residue tends to follow a true TIS,
which indicates that a “G” appears in position +4 of the ar@jisequence window; (2) a purine
(A or G) tends to be found 3 nucleotides up-stream of a true Wwtich indicates that an “A” or
a “G” appears in position -3 of the original sequence wind&so, according to the ribosome

scanning model [27, 57, 4], an mMRNA sequence is scanned &éni@) to right (3), and the
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scanning stops as soon as an ATG is recognized as TIS. Thefrdst ATGs in the mRNA
sequence to the right of this ATG are then treated as nonTid$ncorporate these knowledge
to our feature space, we add three Boolean features “DOWN4IB3-AorG” and “UP-ATG".
Here, UP-ATG means whether an in-frame up-stream ATG exibisa nucleotide sequence
window extracted for each candidate TIS, we call those Bagrim positions , -9, -6, and -3,
the in-frame up-stream 3-gram patterns; and those 3-gramssitions +4, +7, +10, , the
in-frame down-stream 3-gram patterns. Finally, there @i&fBatures in the new feature space.
After this process of feature generation and data transftom, we get 3312 true TIS
samples and 10063 false TIS samples from data set |, 480 tisamples and 13581 false
TIS samples from data set Il. Each sample is a vector of 92¢éms and three boolean values.

Figure 7.3 presents a diagram for the data transformatitmregpect to our new feature space.

7.2.4 Experiments and results

To verify the effectiveness of our method from differentexs, we designed a series of experi-

ments on the three data sets:

a. Conducting computational cross validations in data aatlidata set Il separately.

b. Selecting features and building classi cation modehgsilata set |. Applying the well-

trained model to data set Il to obtain a blind testing acgurac
c. Incorporating the idea of ribosome scanning into thestleegtion model.

d. Applying the model built in experiment-b to genomic seupes.

Validation in different data sets

To strictly compare with the results presented in [142, W&, conduct the same 3-fold cross
validation. Table 7.1 shows our results on the data set | ataigbt Il using the features selected
by the entropy-based algorithm. With the simple linear keéfanction, SVM achieves accuracy
of 92.04% at 81.13% sensitivity and 95.63% speci city onadaet I. This is better than the
accuracy of 89.4% at 74.0% sensitivity and 94.4% speci,aithich is the previous best result

reported on the same data set [142]. On data set Il, SVM aghiaa accuracy of 98.42% at

135



False TIS
(upstream

v

True TIS

False TIS
(downstream

v

4 ffGGACGG ATGACTGCCffCTCGAT ATGGCACCTffTTGCTA ATGACAATAff

sequence window generation

ffGGACGG (FalseACTGC

99bps

Cff
99bps

a (false) TIS window

coding

ffCTCGAT (True)GCACC

99bps

99bps

Tf f

a (true) TIS window

ffGR (False)TAff

33aa 3aa

amino acid sequence

fFLD (True) APff

3§aa

33aa

amino acid sequence

further transformation u

New feature space (total of 927 features + clasbikl)

42 1-gram amino| 882 2-gram amino| 3 bio-know- class
acid patterns acid patterns ledge patterns|  label
UP-A, UP-R, UP-AA, UP-AR, f., DOWN4-G True,
f.UP-N, DOWN- | UP-NN, DOWN-AA, | UP3-AorG, False
A, DOWN-R, f., DOWN-AR, f, UP-ATG
DOWN-N DOWN-NN (boolean type,
(numeric type) (numeric type) Y or N)
Frequency as values
1,3,504,f 6,2,7,0,5, f N, N, N, False
6,5790,f 2,0,3,10,0, f Y.V, Y, True

Validation across two data sets

on data set Il to get a test accuracy.

on this data set under similar cross validation.
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Figure 7.3: A diagram for data transformation aiming for thescription of the new feature

63.33% sensitivity and 99.66% speci city. Note that we can md previously reported results

The good cross validation results achieved within the iiddial data set encourage us to extend
our study to span the two data sets. In this experiment, wehgsehole data set | as training

data to select features and build the classi cation motieln twe evaluate the well-trained model

To reduce theimilarity between the training and testing dat&laASTsearch between the




Table 7.1: The results by 3-fold cross validation on the twatadsets (experiment-a).
SVM(linear/quad) means the classi cation model is builtlimear/quadratic polynomial kernel
function.

Data Algorithm Sensitivity Speci city Precision Accuracy

I SVM(linear)  81.13% 95.63% 85.93%  92.04%
SVM(quad) 80.19% 96.17% 87.34%  92.22%
Cs4 76.18% 96.14% 86.67%  91.20 %

Il SVM(linear)  63.33% 99.66% 86.86%  98.42%
SVM(quad) 71.25% 99.42% 81.24%  98.46%
Cs4 83.54% 97.67% 55.93%  97.19%

Table 7.2: Classi cation accuracy when using data set | aiittg and data set Il as testing
(experiment-b). The row of II** is the testing accuracy ortalaet Il before similar sequences
being removed.

Data Algorithm Sensitivity Speci city Precision Accuracy
| (train) SVM(linear)  80.68% 96.75% 89.10%  92.77%
SVM(quad) 86.05% 98.14% 93.84%  95.15%
Cs4 85.54% 97.91% 93.10%  94.85%
Il (test) SVM(linear)  96.28% 89.15% 25.31%  89.42%
SVM(quad) 94.14% 90.13% 26.70%  90.28%
Cs4 92.02% 92.71% 32.52%  92.68%
II** (test) SVM(linear)  95.21% 89.74% 24.69%  89.92%
SVM(quad) 94.38% 89.51% 24.12%  89.67%
Cs4 87.70% 93.26% 28.60%  92.11%

data set | and Il is performed. Two sequences are considargldrsif they produce a BLAST
hit with an identity 75%. We nd 292 similar sequences and removed them from dzitH.s
As a result, after being removed similar sequences, dathamitains 188 real TIS, while there
are total number of 5111 candidates [70].

We train SVM model on data set | and obtain training accuraty P% at 80.68% sensi-
tivity and 96.75% speci city. Using this model, we get a testturacy of 89.42% at 96.28%
sensitivity and 89.15% speci city on data set Il. We notet tihe testing accuracy on the original
data set Il (without the removal of the similar sequencegjuite similar. See Table 7.2 for a
summary of these results.

Remarkably, this cross-validation spanning the two dataaehieves a much better sensi-
tivity on data set Il than that obtained in the 3-fold crosdidation on this data set. A reason
may be that only 3.41% of candidate ATGs in data set Il are Ti$s, which leads to an ex-

tremely unbalanced numbers of samples between the twaeslalewever, this bias is recti ed
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signi cantly by the model built on data set | where the popigla size of true TIS versus false

TIS is more balanced.

Incorporation of scanning model

Hatzigeorgiou [48] reported a high accuracy on data set kibyntegrated method which com-
bines a consensus ANN with a coding ANN together with a ripmsscanning model. The
model suggests to scan from the 5' end of a cDNA sequence &ulitfs TIS at the rst ATG in
a good context [27, 57, 4]. The rest of the ATGs in the cDNA sege to the right of this ATG
are then automatically classi ed as non-TIS. Thus, one arilglane ATG is predicted as TIS per

cDNA sequence.

We also incorporate this scanning model into our experimditiis time, in a sequence,
we test ATGs in turn from left to right, until one of them is sfhed as TIS. A prediction on a
sequence is correct if and only if the TIS itself is predicteda TIS. Since the scanning model
indicates that the rst ATG that in an optimal nucleotide taxt would be TIS, a higher prediction
accuracy is expected if only up-stream ATGs and true TIS seel in training. Thus, we ignore
all down-stream ATGs in data set | and obtain a new trainingeetaining only true TISs and
their up-stream ATGs. Then feature selection and classoocamodel learning are based on this

new training data. Table 7.3 shows our results with scanmiadel being used.

Under this scanning model idea, Artemis reported that 94%hefTIS were correctly pre-
dicted on data set Il [48]. As mentioned in her paper [48],da&@ set was split into training and

testing parts in some way, the results reported there ardimsatily comparable with our results.

Testing on genomic sequences

In order to further evaluate the feasibility and robustneseur method, we apply our model
built in experiment-b to our own prepared data (data set\Which contain gene sequences of
Chromosome X and Chromosome 21. Using the simple lineaekéunction, SVM gives 397
correct prediction out of a total of 565 true TISs found in @hpsome X while 132 correct
prediction out of a total of 180 true TISs in Chromosome 21e $ansitivities are 70.27% and
73.33%, respectively. To obtain the speci city of our majelve randomly select the same

number of sequences containing non-start ATGs (false Tt8h four own extracted negative
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Table 7.3: Classi cation accuracy under scanning modelnue@ng data set | (3312 sequences)
as training and data set Il (188 sequences) as testing (mgudrc). The row of 1I** is the
testing accuracy on data set Il before similar sequenceg) lbemoved (480 sequences). NoCor-
rectlyPredicted is the number of sequences whose TIS iedtypredicted.

Data  Algorithm NoCorrectlyPredicted Accuracy

I SVM(linear) 3161 95.44%
(train) SVM(quad) 3156 95.29%
Cs4 3083 93.09%

I SVM(linear) 174 92.55%
(test) SVM(quad) 172 91.49%
Cs4 176 93.62%

I*  SVM(linear) 453 94.38%

(test) SVM(quad) 450 93.75%
Cs4 452 94.17%

sensitivity

04 | | | |

0 0.2 0.4 0.6 0.8 1
1-specificity

Figure 7.4: ROC curve of SVM and CS4 on prediction TIS in geitaata Chromosome X and
Chromosome 21 (experiment-d). The SVM model is built on ithedr kernel function. The area
under the ROC curve: SVM 0.837, CS4 0.772.

data set. SVM correctly predicts 626 of these 745 non-staite# obtaining a speci city at
84.02%. In the same test, CS4 achieves 52.48% sensitivity8ar80% speci city. One point
needs to be addressed here is that in this validation, weuwethe feature built on the ribosome
scanning model since that model is not true for genomic dedallustrate the tradeoff between
the prediction sensitivity and speci city, Figure 7.4 givéhe ROC curves of SVM and CS4

showing the changes of prediction accuracy on true and Ta8e.

139



7.2.5 Discussion
Signi cant Features

“What are the key features to predict TIS?” To answer thisstios, let us have a look of an
interesting discovery on the features selected in the @dobss validation on data set | in our
experiment-a. Table 7.4 shows the ranking positions of hif-ranked features based on their
entropy value for the each fold. Observe that they are theedaatures though their ordering is
slightly different from one fold to another. This suggesiatithese features, or exactly amino acid
patterns, are indeed patterns around true or false TISthdtarore, “UP-ATG” can be explained
by the ribosome scanning model [27, 4] — seeing such an eastIATG makes the candidate
ATG less likely to be the TIS. “DOWN-STOP” is the in-frame gtoodons down-stream from
the target ATG and it is consistent with the biological psxef translating in-frame codons
into amino acids stops upon encountering an in-frame stdprce— seeing such a down-stream
stop codon makes the candidate protein improbably shoR3“BorG” is correspondence to the
well-known Kozak consensus sequence [56]. Most of the deures were also identi ed in
our previous study [142], in which the feature space is lliifictly on nucleotides. Remarkably,
these amino acid patterns, except “DOWN-L", all contain ‘@%idue. Note also that “UP-M"
is one of the top features in each fold, but we exclude it asrédundant given that UP-ATG is
true if and only if UP-M 0. The signi cance of these features is further veri ed whea nd
that both sensitivity and speci city drop down greatly iethe features are all excluded from the
classi cation model. However, we do not observe obviouselase when we remove any one of
them from the model. This may suggest that in real biologratess of translation there are
some factors other than Kozak consensus that may regu&atedbgnition of TIS.

In addition to the result when only selected features ard,wse also obtain cross-validation
results on the whole feature space (i.e. without featuectieh). We nd that using the whole
feature space can not let us achieve better results on allraperiments. For example, SVM
with linear kernel function achieves accuracy 90.94% a86% sensitivity and 94.58% speci-
city for data set | when running 3-fold cross validation oatd set I. This result is not as good

as that on the selected features.
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Table 7.4: Ranking of the top 10 features based on their gyntvalue as relevant in each of
the 3 folds of data set I. Feature “UP-ATG” indicates whetirein-frame up-stream ATG exists
(boolean type). Feature “UP3-AorG” tests whether puring & ¢ends to be found 3 nucleotides
up-stream of a true TIS (boolean type). Feature “UP(DOWNEXunts the occurrence that an
in-frame (relative to the candidate ATG) triplet coding fbe amino acid letter X appears in the
up-stream (down-stream) part of a candidate ATG. Featu@WDI-STOP” is the occurrence of
in-frame stop codons down-stream of a candidate ATG.

Fold UP- DOWN- UP3- DOWN- DOWN- UP- DOWN- DOWN- DOWN- UP-

ATG STOP  AorG A \Y A L D E G
1 1 2 4 3 6 5 8 9 7 10
2 1 2 3 4 5 6 7 8 9 10
3 1 2 3 4 5 6 8 9 7 10

Classi cation algorithms

For the classi cation methods, overall speaking, SVM perfe slightly better than our CS4

method, in terms of prediction accuracy. However, CS4 aelsierery good sensitivity when

running 3-fold cross validation on data set Il where the nendf true TISs is much less than the
number of false TISs. On the prediction of TIS in genomic semes, the performance of CS4
is close to that of SVM. This can be illustrated by the ROC esrdrawn in the Figure 7.4 — the
areas under the curves are SVM 0.837 and CS4 0.772, resdectesides, decision trees can
output comprehensive rules to disclose the essence ofrigaaind prediction. Some discovered

interesting and biologically sensible rules with large @age are listed below.
1. If UP-ATG="Y'andDOWN-STOP 0, then prediction ifalse TIS
2. IfUP3-AorG="N'andDOWN-STOP 0, then prediction ifalse TIS
3. If UP-ATG="N'andDOWN-STOP 0 andUP3-AorG="Y", then prediction isrue TIS

On the other hand, in our series of experiments, SVM built sadgatic polynomial ker-
nels do not show much advantage over those built on simpedikernel functions. Note that
guadratic kernels need much more time on training process.

Comparison with model built on nucleotide acid patterns

In [142], data set | was studied usinggram nucleotide acid patterns and several classi cation

methods including SVMs, Naive Bayes, Neural Network andsilec tree. In that study, feature
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selection was also conducted, but by CFS (Correlationeb&sature Selection) which is intro-
duced in Section 3.2.6 of Chapter 3. The best accuracy aathien the 3-fold cross validation
was 89.4% at 74.0% sensitivity and 94.4% speci city when e@mram nucleotide acid pat-
terns were used. This result is not as good as that presantkis isection — 92.45% accuracy
at 80.19% sensitivity and 96.48% speci city. However, tlaod features selected by these two
experiments are highly consistent. Besides those 3 feahwiét on bio-knowledge, CFS picked
out down-stream TAA (stop codon), TAG (stop codon), TGA jgstmdon), CTG (amino acid
L), GAC (D), GAG (E) and GCC (A). If we code these 3-gram nutild® patterns into 1-gram
amino acid patterns, we will nd they are all among the besttidiees listed in Table 7.4. On
the other hand, although there are no 2-gram amino acidrpattenong the 10 best features in
Table 7.4, some of them are indeed included in the set ofteeldeatures that has been used to
achieve better results in this study. Note that, our prevgiudy [142] also illustrated that using

4-gram, 5-gram nucleotide acide patterns could not helpargothe prediction performance.

Comparison with ATGpr

As mentioned earlietATGpr[103, 83] is a TIS prediction program that makes use of a finea
discriminant function, several statistical measuresveerifrom the sequence and the ribosome
scanning model. It can be accessedhtig://www.hri.co.jp/atgpr/ . When search-
ing TIS in a given sequence, the system will output severaly(Befault) ATGs in the order of
decreasing con dence. Let us take the ATG with highest cemck as TIS. Then for the 3312
sequences in our data seATGprcan predict correctly true TIS in 2941 (88.80%) of them. This
accuracy is 6.64% lower than that we achieved. For our dath, seue TIS in 442 (92.0%) of
480 sequences are properly recognized, which is about 2l@8&6 than the accuracy obtained
by us. Our results quoted here are based on SVM model usidméae kernel function.

When we feed the genomic data used in our experimentAd (@pr, the program gives cor-
rect TIS predictions on 128 (71.11%) of 180 Chromosome 2& gequences and 417 (73.81%)
of 565 Chromosome X gene sequences, giving the overalltadéiysas 73.15%. On the other
hand,ATGprachieves 70.47% prediction accuracy on the same numbergatine sequences
that were used in our experiment-d. From the ROC curves sliWwigure 7.4, we can nd our

prediction speci cities are around 80% (SVM) and 73% (CS4ew sensitivity is 73.15% —
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9.5% and 2.5% higher than that AT Gpron speci city. This indicates that our program may

also outperformATGprwhen dealing with genomic data sequences.

7.3 Polyadenylation Signal Prediction

7.3.1 Background

The general polyadenylation machinery of mammalian cells been well studied for decades.
The polyadenylation (poly(A)) reaction of mammalian pr&NAs proceeds in two phases: the
cleavage of pre-mRNA and the addition of poly(A) tail to trewty formed 3' end. The cleav-

age reaction requires the cleavage/poly(A) speci citytdad CPSF), the cleavage stimulation
factor (CStF), the cleavage factors | and Il (CF | and CF I @oly(A) polymerase (PAP) in

most cases. CPSF, PAP and poly(A) binding protein 2 aremebin poly(A) [144]. The as-

sembly of the cleavage/poly(A) complex, which contains hwosall of the processing factors
and the substrate RNA, occurs cooperatively. CPSF cordigtsur subunits and binds to the
highly conserved AAUAAA hexamer up-stream of the cleavaigee SCStF, which is necessary
for cleavage but not for the addition of poly(A) tail, inteta with the U/GU rich element located
down-stream of the AAUAAA hexamer. Two additional factdis cleavage factor | and Il (CF
I and CF II) act only in the cleavage step. CF | has been puriedomogeneity and shown to
be an RNA-binding factor. CF Il has been only partially ped so far, and its function is not

known.

After the formation of the cleavage/polyadenylation comxpkhe selection of poly(A) site
is primarily determined by the distance between a hexanpailg(A) signal (PAS) of sequence
AAUAAA (or a one-base variant) and the down-stream elenuemi¢ted as DSE). The spacing
requirements for the PAS and DSE re ect the spatial requéneis for a stable interaction be-
tween CPSF and CStF. The DSE is poorly conserved and two yaés thave been described
as a U-rich, or GU-rich element, which locates 20 to 40 basasestream of the cleavage site
(for reviews, please refer to [28, 144, 141]). DSE is presermt large proportion of genes and
can affect the ef ciency of cleavage [75, 141]. Although ifiesv cases, an up-stream element
(denoted as USE) is required for the poly(A) signal to beyfatitivated [5, 18, 79], the position

and sequence of the USE are unde ned. In summary, the omg#onizof mammalian poly(A)
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Figure 7.5: Schematic representation of PAS in human mRMNA®processing site. Distances
are as described in [28].

sites may have an unexpected exibility and their activigpends on not only the hexameric
signal but also the up/down elements. Figure 7.5 is a sclhenmegresentation of PAS in human

MRNA 3'end processing site [144].

There are several software programs that have been dedelomietect PASes in human
DNA and mRNA sequences by analysing the characteristicp-atieam and down-stream se-
guence elements around PASes. In one of early studies, Keabasi Zhang [119] developed
a program name#®olyadq which nds PASes using a pair of quadratic discriminantdtions.
Besides, they also created a database of known active padjtes and trained their program on
280 mRNA sequences and 136 DNA sequences. In their testsdafignPASes, they claimed a
correlation coef cient of 0.413 on whole genes and 0.51himlast two exons of geneBolyadq
is available ahttp://argon.cshl.org/tabaska/polyadq_form.html . Recently,
Legendre and Gautheret [61] used bioinformatics analysESY and genomic sequences to
characterize biases in the regions encompassing 600 tidele@round the cleavage site. The
computer program they developed is callagin which uses 2-gram position-speci ¢ nucleotide
acid patterns to analyse 300 bases up-stream and dowmstegéon of a candidate PAS. Being
trained by 2327 terminal sequencé&dpin was reported to achieve a prediction speci city of
75.5% to 90.4% for a sensitivity of 56% on several sets ofdaion data. The program can be

found athttp://tagc.univ-mrs.fr/pub/erpin/

In this study, we will apply our method to characterize thatdees in the regions encom-
passing 200 nucleotides around the PAS, i.e. with PAS in¢hére and both up-stream window

size and down-stream window size as 100 bases.
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7.3.2 Data

In a series of experiments, a large number of sequencesetdaisain and test our classi cation

model. They are from two sources.

(1) Training and testing sequences used by prodegom [61]. The training set contains 2327
terminal sequences including 1632 “unique” and 695 “sttqray(A) sites. The testing
set consists of 982 positive sequences containing andoB&&es from EMBL and four
sets of same sized negative sequences: 982 CDS sequerZzasr®8ic sequences of the
rst intron, 982 randomized UTR sequences of sameorder Markov model as human
3' UTRs, and 982 randomized UTR sequences of same mono tideemmposition as
human 3' UTRs. The 2327 training sequences can be downldaoiecttp://tagc.
univ-mrs.fr/pub/erpin/ and have been trimmed in accordance to our window
segments i.e. every sequence contains 206 bases, havirfg ia Bfe center. We obtained

testing data sets from Dr Gautheret via personal commuaitat

(2) Human RefSeq mRNA data set: we obtained 312 human mRNéesegs from RefSeq
[94] release 1. Each of these sequences contains a “poty#aiSifeature tag carrying an
“evidence=experimental” label. We use these sequencasitbrbodel for PAS prediction
in MRNA sequences. Besides, we also extracted a set of hurRdAmsequences from
RefSeq containing a “polyA-site” feature tag carrying amience=experimental” label.
In this set, we removed the sequences that have been inclndeé training set used
in building our model. We use these sequences for testingoger assuming that the
annotated PAS positions are correct. Our negative dataaetenerated by scanning for
the occurrences of AATAAA at coding region and those AATAAKes near the end of

sequence were excluded purposely.

7.3.3 Experiments and Results

First, we use simple 1-gram, 2-gram and 3-gram nucleotid @atterns to construct feature

space [69]. Thus, there are 168 ( ) features.
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Table 7.5: Validation results by different programs on aafe®82 annotated UTR sequences
from the EMBL database [61]. TP is the number of true positivEN is the number of false
negatives.

Program TP FN  Sensitivity
Erpin 549 433 55.9%
Polyadg 547 435 b55.7%
Ours 553 429 56.3%

Preliminary results

In the rst experiment, we use the 2327 sequences introdircell] (data source (1)) as our
true PAS training data. To obtain negative sequences, simee flse PAS data is randomly
selected from our own extracted negative data set (dataes@)). Using entropy-based feature
selection algorithm and linear kernel SVM classi er, thesidivity and speci city of 10-fold
cross-validation on training data are 89.3% and 80.5% eas@ly. In order to compare with
other programs, we test our model on the same validationdeise testing results on programs
Erpin andPolyadgwere reported in [61]. As described in data source (1) , thaldation sets
include true PASes sequences came from 982 annotated UTRewrsame sized control sets
known not to contain PASes: coding sequences (CDS), intnadsrandomized UTRs (simply
shufed UTRs and  order Markov model UTRSs). For a direct comparison, we algosidhe
prediction sensitivity on the 982 true PASes to around 56s0%hat evaluation can be made on

the predictions for those four control sets.

Table 7.5 shows the validation results on true PASes andcTablillustrates the results on
four control sets. Figure 7.6 is the ROC curve for this sesfaests. All the numbers regarding to
the performance of prograntspin andPolyadqin Table 7.5 and Table 7.6 are copied or derived
from [61]. The results in Table 7.6 demonstrate that our rhoale give better performance than
Erpin andPolyadqgdid on false PASes prediction of CDS, intron and simple simgf sequences,
and almost same prediction accuracy on sequences witirder Markov randomization.

In this experiment, we select 113 features via entropy nreastihese features are then
integrated with SVM to form the classi cation and predictionodel. Table 7.7 lists the top
10 of these features ranking by their entropy values (the tlee entropy value is, the more
important the feature is). Some of these top features cantbmieted by those reported motifs,

for example, it clearly visualizes both USE and DSE as chiaraed by G/U rich segments since
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Table 7.6: Validation results by different programs on efiint sequences not contain-
ing PASes: coding sequences (CDS), introns, and two typesawflomized UTR se-
guences (simple shufing and order Markov simulation) [61]. TN is the number of
true negatives. FP is the number of false positives. CC iselation coef cient, and
. Calculations of Precision and CC use TP and

FN from Table 7.5.

Data set Program TN FP  Specicity Precision CC
CDSs Erpin 880 102 89.6% 84.3% 0.483
Polyadq 862 120 87.8% 82.0% 0.459
Ours 887 95 90.3% 85.4% 0.497
Introns Erpin 741 241 75.5% 69.5% 0.320
Polyadg 718 264 73.1% 67.5% 0.293
Ours 775 207 78.9% 72.8% 0.363
Simple shufing  Erpin 888 94 90.4% 85.4% 0.494
Polyadqg 826 156 84.1% 77.8% 0.415
Ours 942 40 95.9% 93.3% 0.570
Markov ~ order Erpin 772 210 78.6% 72.3% 0.354
Polyadq 733 249 74.6% 68.7% 0.309
Ours 765 217 T77.9% 71.9% 0.351
1 T T T I
1]
0.8 - s
£os6 | -
z tron —
3041 istMarkov &— |
simple —<—
0.2 ]
0 E | | | |
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1-specificity

Figure 7.6: ROC curve of our model on some validation setsrieed in [61] (data source (1)).

UP-TGT, UP-T, DOWN-TGT, DOWN-T, UP-TG and UP-TT are amonpg features.

Model for prediction PAS in mRNA sequences

When we apply our model to 312 true PASes that were extracted MRNA sequences by
ourselves (data source (2)), the results obtained are rmat go only around 20% of them can
be predicted correctly. Besides, the progfamin performs even worse on these PASes — with
prediction accuracy at only 13%. These poor results maycatdithat the good features used

in the model for PAS prediction in DNA sequences are not eintifor mRNA. Therefore, we
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Table 7.7: The top 10 features selected by entropy-baségréeselection method for PAS clas-
si cation and prediction in human DNA sequences.

Rank 1 2 3 4 5 6 7 8 9 10
Feaure UP  DOWN UP UP DOWN DOWN UP UP DOWN UP
TGT A T -AG -TGT T TG -TT -AA - -A

decide to build another model for mRNA sequences withouy(@9ltails. This model is also

expected to provide a new way for predicting the mRNA cleawsite/poly(A) addition site.

Since the new model is aimed to predict PASes from mRNA sempgewe only consider
the up-stream elements around a candidate PAS. Therefi@me, are only 84 features (instead
of 168 features). To train the model, we use 312 experimigniali ed true PASes and same
number of false PASes that randomly selected from our peelra@gative data set. The validation
set comprises 767 annotated PASes and same number of féies Biso from our negative data
set but different from those used as training (data sourfe Tais time, we achieve reasonably
good results. Sensitivity and speci city for 10-fold cregslidation on training data are 79.5%
and 81.8%, respectively. Validation result is 79.0% seiitsitat 83.6% speci city. Besides, we
observe that the top ranked features are different fronethisted in Table 7.7 (detailed features

not shown).

Since every 3 nucleotides code for an amino acid when DNAesszps translate to mRNA
sequences, it is legitimate to investigate if an alteradipproach that generating features based
on amino acids can produce more effective PASes predicibmRNA sequence data. In fact,
this idea is also encouraged by the good results we achievi iTIS prediction described in
the previous section.

Similarly as what we did in TIS prediction, we transform thgstream nucleotides of a
sequence window set for each cadidate PAS into an amino aqidesce segment by coding
every triplet nucleotides as an amino acid or a stop codom féhture space is constructed by
using 1-gram and 2-gram amino acid patterns. Since onlyrepss elements around a candidate
PAS are considered, there are 462 ( ) possible amino acid patterns. In addition to these
patterns, we also present existing knowledge via an additifeature — denoting number of T

residue in up-stream as “UP-T-Number”. Thus, there are 4B8lidate features in total.

In the new feature space, we conduct feature selection amd$VM on 312 true PASes

and same number of false PASes. The 10-fold cross-validagisults on training data are 81.7%
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Figure 7.7: ROC curve of our model on PAS prediction in mRN4usnces.

sensitivity with 94.1% speci city. When apply the trainedbdel to our validation set contain-
ing 767 true PASes and 767 false PASes, we achieve 94.4%iggnsiith 92.0% speci city
(correlation coef cient is as high as 0.865). Figure 7.7hHe ROC curve of this validation. In
this experiment, there are only 13 selected features and-NBmber is the best feature. This
indicates that the up-stream sequence of PAS in mRNA sequaay also contain T-rich seg-
ments. However, when we apply this model built for mMRNA semes using amino acid patterns
to predict PASes in DNA sequences, we can not get as goodgesuthat achieved in the pre-
vious experiment. This indicates that the down-stream etgmare indeed important for PAS

prediction in DNA sequences.

7.4 Chapter Summary

In this chapter, we proposed a machine learning methoddtoglentify functional site in biolog-
ical sequences. Our method comprises three sequentiat gi9pgenerating candidate features
using -gram nucleotide acid patterns or amino acid patterns ag tdansforming original se-
guences respect to the new generated feature space; @)raplelevant features using certain
feature selection algorithm; and (3) building classi catimodel to recognize the functional
site by applying classi cation techniques to the selectedtdres. Our idea is different from
traditional methodologies because it generates new feamd also transforms the original nu-
cleotide sequence data tegram frequency vectors. The feature selection step doeeniyp
greatly shorten the running time of classi cation progrdmt also help to obtain explicit impor-

tant features around the functional site and lead to a manerate prediction.

We applied our idea to predict translation initiation sitéS) and polyadenylation signal
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(PAS) in DNA and mRNA sequences. For each application, batilip data sets and our own
extracted sequences were used to test the effectivenegslaustness of the method. The ex-
perimental results achieved are better than those repprésibusly using the same data sets (if
available). The important features captured are highl\sisd@nt with those reported in the lit-
erature. Most importantly, we not only conducted the cr@dilation within the individual data
sets separately, but also established the validation sithesdifferent data sets. The success of
such a validation indicates that there are predictablepataround TIS or PAS.

In addition, a web-based toolbox to recognize TIS and PAS fBNA sequences has been
implemented based on the techniques presented in thissch@pis toolbox is named &3NAF-

SMinerand more information about it can be found in Appendix B.
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Chapter 8

Conclusions

8.1 Summary

This thesis is about how to effectively apply data mininghtemlogies to biological and clinical
data. Some problems arising from gene expression pro langd DNA sequence data are stud-
ied in depth using data mining techniques of feature geioerateature selection, and feature

integration with learning algorithms.

In order to identify genes associated with disease phepaotigssi cation or patient sur-
vival prediction from gene expression data, a new featuexgen strategyERCOF(Entropy-
based Rank sum test and COrrelation Filtering), is workedogicombining entropy measure,
Wilcoxon rank sum test and Pearson correlation coef ciest.t ERCOF conducts three-phase
feature Itering aiming to nd a subset of sharply discrinaiting genes with little redundancy. In
the rst phase, it selects genes using an entropy-basedoahditiat generally keeps only 10% of
the features. In the second phase, a non-parametric isstisiled the Wilcoxon rank sum test
is applied to the features kept by the rst phase to furthéerlout some genes and divide the
remaining ones into two groups — one group consists of gdrasate highly expressed in one
type of samples (such aance) while another group consists of genes that are highly agae
in another type of samples (such @en-cance). In the third phase, correlated genes in each
group are determined by Pearson correlation coef ciertt aesl only some representatives of

them are chosen to form the nal set of selected genes.

In Chapter 5, ERCOF is applied to six published gene expmegsio ling data sets and
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one proteomic data set to identify genes for phenotype iataien. For comparison purpose,
several other entropy-based feature selection methoddsareun. The classi cation algorithms
used include four ensemble of decision trees approachpppguwector machines (SVM) and
-nearest neighbour {NN). The four decision tree methods are the newly implee@r@S4

(cascading-and-sharing for decision trees) and statkesért Bagging [19], Boosting, and Ran-
dom forests. More than one thousand tests are conducted aarikty of comparisons among
different feature selection methods and different classion algorithms are addressed. For each
data set, some identi ed discriminating features are adported and related to the literature and
the disease. To demonstrate the advantage of the decisemdver the other classi cation algo-
rithms, some simple, explicit and comprehensible tregrinduced from the data sets are also

presented and analysed.

In the study of patient survival prediction described in ftea 6, we present a new idea of
selecting informative training samples by de ning longreand short-term survivors. ERCOF
is then applied to these samples to identify genes assdaidth survival status. A regression
function built on the selected samples and genes by lingaek&VM is implemented to assign
a risk score to each patient. Kaplan-Meier plots for différesk groups formed on the risk
scores are then drawn to show the effectiveness of the mddelcase studies, one on survival
prediction for patients after chemotherapy for diffusgéaB-cell lymphoma and one on lung

adenocarcinomas, are conducted.

In Chapter 7, data mining methodologies are applied to ifjefitnctional sites in DNA
sequences. Feature generation is emphasized in this ajpiicsince sequence data generally
contain no explicit features. We rst construct feature @pasing -gram nucleotide acid or
amino acid patterns and then transform original sequencdsruthe new constructed feature
space. Feature selection is then conducted to nd signétpest that can distinguish true func-
tional sites from those false ones. In the third step, cleetidn and prediction models are
built on the training data sets with the selected featuras. methodology is used to recognize
translation initiation sites and polyadenylation sigrial®NA and mRNA sequences. For each
application, experimental results across different data @ncluding both public ones and own

extracted ones) are collected to demonstrate the effeetsgeand robustness of our method.
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8.2 Conclusions

In this thesis, we successfully make use of data mining teogies to solve some problems
arising from biological and clinical data. We have articathexplicitly the 3-step frame work of
feature generation, feature selection and feature iniegrevith learning algorithms and demon-
strated its effectiveness when dealing with phenotypesctaion and patient survival predic-
tion from gene expression data, and functional sites ratogrin DNA sequences.

From large amount of experiments conducted on some higleftiinnal gene expression
data sets, we clearly observe the improvements on perfamsaof all the classi cation algo-
rithms under the proposed feature selection scenarios.ngriese gene identi cation methods,
we claim ERCOF is an effective approach.

In the aspect of classi cation algorithms, no single alfori is absolutely superior to all
others, though SVM achieves fairly good results in most ststeCompared with SVM, decision
tree methods can provide simple, comprehensive rules ambavery sensitive to feature selec-
tions. Among the decision tree methods, the newly implesge@S4 achieves good prediction
performance and provides many interesting rules.

Feature generation is important for some kinds of bioldgieda. We illustrate this point
by properly constructing new feature space for functiofitglssrecognition in DNA sequences.
Some of the signal patterns identi ed from the generatetufeaspace are highly consistent with
related literature or biological knowledge. The rest mibbtuseful for biologists to conduct

further analysis.

8.3 Future Work

There are many ongoing and future explorations regardiniggtevorks presented in this thesis.
Currently, our proposed gene selection method ERCOF is matngparametric measure
since the expression values are used in the third phaséndtevhen evaluating the correlations
between genes. To avoid this, other metrics and clusteljogithms to measure the relationships
of genes are under development.
With more and more high quality gene expression pro les ggablished, we expect to

further test the effectiveness of our proposed frame work the robustness of various gene
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selection and classi cation algorithms on many other data.g~or some particular diseases, we
will further extract biological meanings of the genes idedtto be most associated with the

phenotypes or patient survival status.

Future works in identifying translation initiation siteadapoly(A) signals from DNA se-
guences are planned as follows. (1) We are considering imdegatterns containing “dont care”
symbols into feature space. Here, a “dont care” symbol @dst for any symbol of amino acid
or nucleotide acid. Thus, more general signal patterns higfound around functional sites. (2)
Some parameters used in constructing feature space aadtexgrsequences around a candidate
functional site will be adjusted so that their impacts on ¢hessi cation performance will be
known. These parameters include thealue of -gram patterns used as features, the up-stream
window size and the down-stream window size of the sequesgpmant extracted for each can-
didate, and so on. (3) The classi cation models built will tested on more EST (Expressed
Sequence Tags) and genomic sequences. (4) Meanwhile, wem@reting the 3-step frame work
of feature manipulations will achieve good results on theogaition of other functional sites,
such as splice site and etc.

In the aspect of using classi cation methods to solve bimagproblems, we will try to
provide insight and limitations of different algorithms addition to the good performance, how
easy itis for users to understand the learning processieipiet the output classi cation models,
and to incorporate domain knowledge are also importanbfadh measuring the classi cation

power of an algorithm.
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Appendix A

Lists of Genes Identi ed in Chapter 5
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Table A.1: 54 common genes selected by each fold of ERCOFoltiG:ross validation test for
prostate cancer data set.

Probe Accession  Gene name

name number

40435at J03592 Human ADP/ATP translocase mMRNA, 3'end, clone pBHAT

40419at X85116 H.sapiens epb72 gene exon 1

31444sat M62895 Human lipocortin (LIP) 2 pseudogene mRNA, congptets-like region

3772Qat M22382 Human mitochondrial matrix protein P1 (nuclearceted) mRNA, complete cds

32634sat U38260 Human islet cell autoantigen ICAp69 mMRNA, con®lets

34608at M24194 Human MHC protein homologous to chicken B compl@atgin mRNA, complete cds

33137at Y13622 Homo sapiens mRNA for latent transforming growittdr-beta binding protein-4

40436g.at  J03592 Human ADP/ATP translocase mRNA, 3'end, clone pB1AT

34784 at 283844 Human DNA sequence from clone 37E16 on chromos@@oAatains a novel gene,
a gene similar to SH3-binding protein, LGALS1 (14 kDa betdagtoside-binding lectin)
gene, part of a gene similar to mouse p116Rip, ESTs, STSss &®8Btwo CpG islands

1676s at M55409 Homo sapiens pancreatic tumor-related proteihlmRartial cds

36587at 711692 H.sapiens mRNA for elongation factor 2

33614at X80822 H.sapiens mRNA for ORF

38814at AF038954 Homo sapiens vacuolar H(+)-ATPase subunit mRigfplete cds

33668at AF037643 Homo sapiens 60S ribosomal protein L12 (RPL&&)gogene, partial sequence

40024 at D86640 Homo sapiens mRNA for stac, complete cds

39756g.at 7293930 Human DNA sequence from clone 292E10 on chromo22nq#El-12. Contains the XBP1
gene for X-box binding protein 1 (TREBS5), ESTs, STSs, GS$kaputative CpG island

34853at ABO007865 Homo sapiens KIAA0405 mRNA, complete cds

3382Q0g.at X13794 H.sapiens lactate dehydrogenase B gene exon 1 and 2

40856at U29953 Human pigment epithelium-derived factor genmpete cds

31538at M17885 Human acidic ribosomal phosphoprotein PO mRNAmete cds

36601at M33308 Human vinculin mRNA, complete cds

33134at AB011083 Homo sapiens mRNA for KIAA0511 protein, partds

32076at D83407 ZAKI-4 mRNA in human skin broblast, complete cds

31545at AL031228 dJ1033B10.4 (40S ribosomal protein S18 (RPRES3))

33328at W28612 49b3 Homo sapiens cDNA

39416at u90913 Human clone 23665 mRNA sequence

40607at U97105 Homo sapiens N2A3 mRNA, complete cds

769s at D00017 Homo sapiens mRNA for lipocortin II, complete cds

32412at M13934 Human ribosomal protein S14 gene, complete cds

37819at AF007130 Homo sapiens clone 23750 unknown mRNA, padigl ¢

1521 at X17620 Human mRNA for Nm23 protein, involved in developrat regulation
(homolog. to Drosophila Awd protein)

1513at Antigen, Prostate Speci ¢, Alt. Splice Form 3

39939at D21337 Human mRNA for collagen

35776at AF064243 Homo sapiens intersectin short form mRNA, ceteptds

31527at X17206 Human mRNA for LLRep3

33408at AB023151 Homo sapiens mRNA for KIAA0934 protein, partids

3484Qat AI700633  we38g03.x1 Homo sapiens cDNA, 3'end

39315at D13628 Human mRNA for KIAAOOO3 gene, complete cds

35119at X56932 H.sapiens mRNA for 23 kD highly basic protein

575s at M93036 Human (clone 21726) carcinoma-associated an@Gger33-2 (GA733-2) mRNA,
exon 9 and complete cds

262 at M21154 Human S-adenosylmethionine decarboxylase mRbi#plete cds

37639at X07732 Human hepatoma mRNA for serine protease hepsin

32243g.at AL038340 DKFZp566K1921 Homo sapiens cDNA, 3'end

36864at AJ001625 Homo sapiens mRNA for Pex3 protein

38044at AF035283 Homo sapiens clone 23916 mRNA sequence

38098at D80010 Human mRNA for KIAA0188 gene, partial cds

39366at N36638 yx88f05.r1 Homo sapiens cDNA, 5'end
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Table A.2: 54 common genes selected by each fold of ERCOFoldiGcross validation test for
prostate cancer data set (continued 1).

Probe Accession  Gene name

name number

32206at AB007920 Homo sapiens mRNA for KIAA0451 protein, comelet

3955Qat AB011156 Homo sapiens mRNA for KIAA0584 protein, partial

34304s.at  AL050290 Homo sapiens mMRNA; cDNA DKFZp586G1923 (fromnedKFZp586G1923)
3773Qat U22055 Human 100 kDa coactivator mMRNA, complete cds

41288at AL036744 DKFZp564116631 Homo sapiens cDNA, 5'end

31583at X67247 H.sapiens rpS8 gene for ribosomal protein S8

172 at U57650 Human SH2-containing inositol 5-phosphatasél(RBMRNA, complete cds
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Table A.3: 39 common m/z identities among top 50 entropy mneeselected features in 10-fold
cross validation on ovarian cancer proteomic pro ling. Fheorresponding Wilcoxon test
-values are derived from paper [118].

M/Z identity Wicoxon -value Entropy measure

244.95245 1.16115E-30 0.13998
245.8296 7.59262E-30 0.16299
245.24466 1.59454E-30 0.17846
244.66041 1.30324E-30 0.18037
245.53704 2.25194E-30 0.18209
435.46452 5.16697E-30 0.23104
246.41524 3.70287E-29 0.23574
246.12233 1.70497E-29 0.23743
247.00158 1.00124E-28 0.23968
417.73207 1.03527E-27 0.25183
434.68588 1.7291E-29 0.25791
435.07512 3.1774E-30 0.25839
435.85411 1.65702E-29 0.26475
246.70832 6.49125E-29 0.27451
261.88643 6.58307E-29 0.28096
418.11364 6.48304E-27 0.28419
247.295 1.45824E-28 0.30174
247.88239 1.30577E-27 0.31365
434.29682 9.27807E-28 0.31648
262.18857 2.34772E-27 0.32680
261.58446 1.5817E-27 0.33865
247.58861 2.33737E-28 0.34268
244.36855 2.11132E-26 0.34343
436.24386 5.43042E-28 0.34656
464.76404 5.64673E-26 0.35072
464.36174 2.34956E-26 0.36228
222.69673 7.50798E-26 0.37045
417.35068 1.30456E-26 0.37647
463.95962 1.13655E-25 0.38043
465.16651 5.44957E-25 0.38914
222.41828 4.20921E-27 0.39731
222.14001 3.27501E-25 0.40447
418.49538 9.26396E-25 0.40599
262.49088 2.6516E-23 0.41769
436.63379 2.16083E-25 0.42559
25.589892 1.80877E-24 0.43315
463.55767 4.42152E-23 0.44623
4003.6449 5.09873E-22 0.45153
220.75125 3.25692E-24 0.46876

170



Table A.4: 280 genes identi ed by ERCOF from training sarspe ALL-AML leukaemia data
set. Probes with bold font were also reported in [41].

Probe Gene name

X95735at Zyxin

M5515Q0 at FAH Fumarylacetoacetate

M311l66at PTX3 Pentaxin-related gene, rapidly induced by IL-1 beta

M27891 at CST3 Cystatin C (amyloid angiopathy and cerebral hemoghag

U46499at GLUTATHIONE S-TRANSFERASE, MICROSOMAL

L09209 s at APLP2 Amyloid beta (A4) precursor-like protein 2

X70297 at CHRNAY Cholinergic receptor, nicotinic, alpha polypdpt7

M77142at NUCLEOLYSIN TIA-1

J0393Qat ALKALINE PHOSPHATASE, INTESTINAL PRECURSOR

M92287_at CCND3 Cyclin D3

U22376cds2s.at C-myb gene extracted from Human (c-myb) gene, completegusirnds,
and ve complete alternatively spliced cds

M27783 s._at ELAZ2 Elastatse 2, neutrophil

D14874at ADM Adrenomedullin

M16038 at LYN V-yes-1 Yamaguchi sarcoma viral related oncogene hogol

U50136rnal_at Leukotriene C4 synthase (LTC4S) gene

M98399 s at CD36 CD36 antigen (collagen type | receptor, thrombodjporeceptor)

M21551 rnalat Neuromedin B mRNA

Y1267Qat LEPR Leptin receptor

M83652 s at PFC Properdin P factor, complement

M23197_at CD33 CD33 antigen (differentiation antigen)

U46751at Phosphotyrosine independent ligand p62 for the Lck SH2 dom&NA

D88422at CYSTATIN A

M54995 at PPBP Connective tissue activation peptide IlI

U0202Qat Pre-B cell enhancing factor (PBEF) mRNA

M31523 at TCF3 Transcription factor 3 (E2A immunoglobulin enhancielding factors E12/E47)

X04085rnal_at

M81933 at
U12471cdslat
M91432 at
X59417 at
M12959 s at
X74262at
L27584 s at

HG4316-HT4586at

J05243at
M31303.rnal_at
X62654 rnalat
X90858 at
M84526_at
J04615at
D26308at
LO8177.at
X14008rnalf_at
X87613at
M80254 at
M96326.rnal_at
J04990at
U62136at
D10495at
X52142 at
U73737at
X74801at
U32944 at
X15949 at

Catalase (EC 1.11.1.6) 5' ank and exon 1 mapping to chromasal1,
band p13 (and joined CDS)

CDC25A Cell division cycle 25A

Thrombospondin-p50 gene extracted from Human throndralip-1 gene, partial cds
ACADM Acyl-Coenzyme A dehydrogenase, C-4 to C-12 straididin
PROTEASOME IOTA CHAIN

TCRAT cell receptor alpha-chain

RETINOBLASTOMA BINDING PROTEIN P48

CAB3b mRNA for calcium channel beta3 subunit
Transketolase-Like Protein

SPTANL1 Spectrin, alpha, non-erythrocytic 1 (alpha-fodr
Oncoprotein 18 (Op18) gene

ME491 gene extracted from H.sapiens gene for Me491/CD6§emn
Uridine phosphorylase

DF D component of complement (adipsin)

SNRPN Small nuclear ribonucleoprotein polypeptide N

NADPH- avin reductase

CMKBR7 Chemokine (C-C) receptor 7

Lysozyme gene (EC 3.2.1.17)

Skeletal muscle abundant protein

PEPTIDYL-PROLYL CIS-TRANS ISOMERASE, MITOCHONDRIAL PRBIRSOR
Azurocidin gene

CATHEPSIN G PRECURSOR

Putative enterocyte differentiation promoting factd®NA, partial cds
PRKCD Protein kinase C, delta

CTPS CTP synthetase

GTBP DNA GT mismatch-binding protein

T-COMPLEX PROTEIN 1, GAMMA SUBUNIT

Cytoplasmic dynein light chain 1 (hdlc1) mRNA

IRF2 Interferon regulatory factor 2
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Table A.5: 280 genes identi ed by ERCOF from training sarspe ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (cardohl).

Probe Gene name

M31158 at PRKAR2B Protein kinase, cCAMP-dependent, regulatopety, beta

M1578Qat GB DEF = DNA/endogenous human papillomavirus type 16 (HBNA,
right ank and viral host junction

X6232Qat GRN Granulin

D4995Qat Liver mRNA for interferon-gamma inducing factor(IGIF)

U37055rnals.at Hepatocyte growth factor-like protein gene

D88378at Proteasome inhibitor hPI131 subunit

X61587at ARHG Ras homolog gene family, member G (rho G)

X07743at PLECKSTRIN

AFFX-HUMTFRR/M115073.at AFFX-HUMTFRR/M115073_at (endogenous control)

L42572 at Motor protein

769881 at Adenosine triphosphatase, calcium

M63138 at CTSD Cathepsin D (lysosomal aspartyl protease)

M2817Qat CD19 CD19 antigen

L4187Qat RB1 Retinoblastoma 1 (including osteosarcoma)

D26156s at Transcriptional activator hNSNF2b

M11722 at Terminal transferase mMRNA

U09087s.at Thymopoietin beta mMRNA

M2954Q at CARCINOEMBRYONIC ANTIGEN PRECURSOR

L47738 at Inducible protein mMRNA

D38073at MCM3 Minichromosome maintenance de cient (S. cerevisiae)

HG4321-HT4591at Ahnak-Related Sequence

U41813at HOXA9 Homeo box A9

X85116rnal_s.at Epb72 gene exon 1

X58431rna2s.at HOX 2.2 gene extracted from Human Hox2.2 gene for a homephuiein

M2813Qrnal_s at Interleukin 8 (IL8) gene

Y00787.s.at INTERLEUKIN-8 PRECURSOR

u82759at GB DEF = Homeodomain protein HOxA9 mRNA

U16954at (AF1g) mRNA

Z48501s at GB DEF = Polyadenylate binding protein Il

M62762 at ATP6C Vacuolar H+ ATPase proton channel subunit

M2296Qat PPGB Protective protein for beta-galactosidase (gaadidosis)

M28209 at RAS-RELATED PROTEIN RAB-1A

u85767at Myeloid progenitor inhibitory factor-1 MPIF-1 mRNA

M13792 at ADA Adenosine deaminase

LO5148at Protein tyrosine kinase related mMRNA sequence

L08246 at INDUCED MYELOID LEUKEMIA CELL DIFFERENTIATION PROTEIN MCL1

M19045f_at LYZ Lysozyme

M20203 s at GB DEF = Neutrophil elastase gene, exon 5

U67963at Lysophospholipase homolog (HU-K5) mRNA

JO3801f_at LYZ Lysozyme

X51521 at VIL2 Villin 2 (ezrin)

M13452 s at LMNA Lamin A

D87076at KIAA0239 gene, partial cds

LO7648at MXI1 mRNA

HG2810-HT2921at Homeotic Protein P12

L38608 at ALCAM Activated leucocyte cell adhesion molecule

L28821 at MANAZ2 Alpha mannosidase Il isozyme

U7396Qat ADP-ribosylation factor-like protein 4 mRNA

M94633 at GB DEF = Recombination acitivating protein (RAG2) gerest exon

S50223at HKR-T1

Z15115at TOP2B Topoisomerase (DNA) Il beta (180kD)

u84487at CX3C chemokine precursor, mRNA, alternatively spliced

u65928at JUN V-jun avian sarcoma virus 17 oncogene homolog

U53468at NADH:ubiquinone oxidoreductase subunit B13 (B13) mRNA

U72936s.at X-LINKED HELICASE I
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Table A.6: 280 genes identi ed by ERCOF from training sarspie ALL-AML leukaemia data

set. Probes with bold font were also reported in [41] (cardoh?2).

Probe Gene name

X66401cdslat LMP2 gene extracted from H.sapiens genes TAP1, TAP2, LMR®7 and DOB
X66533at GUANYLATE CYCLASE SOLUBLE, BETA-1 CHAIN

AF009426at Clone 22 mRNA, alternative splice variant alpha-1

U90546at Butyrophilin (BTF4) mRNA

U28833at Down syndrome critical region protein (DSCR1) mRNA

M63488 at RPAL Replication protein Al (70kD)

u02493at 54 kDa protein mRNA

D86479at Non-lens beta gamma-crystallin like protein (AIM1) mRNrartial cds

M31211 s at MYL1 Myosin light chain (alkali)

U26266s_at DHPS Deoxyhypusine synthase

U05259rnal_at MB-1 gene

M58297 at ZNF42 Zinc nger protein 42 (myeloid-speci ¢ retinoic @eresponsive)
D6388Qat KIAA0159 gene

U38846at Stimulator of TAR RNA binding (SRB) mRNA

M81695 s at ITGAX Integrin, alpha X (antigen CD11C (p150), alpha polgtide)

D14664at KIAA0022 gene

X16546.at RNS2 Ribonuclease 2 (eosinophil-derived neurotoxinNED

HG627-HT5097s at Rhesus (Rh) Blood Group System Ce-Antigen, Alt. Splideti

M22324 at ANPEP Alanyl (membrane) aminopeptidase (aminopepidgsaminopeptidase M,

HG?2981-HT3127s.at
749194 at
HG1612-HT1612at
X77533at
U20998at
X17042at
HG2788-HT2896at
HG2855-HT2995at
U29175at
J03589at
U41767s.at
X06182s.at
M57731 s at
M24400 at
M69043 at
D4395Qat
M19507 at
M5982Q at
D83785at
U50733at
D80001at
M29696 at
U72621at

M63438 s_at
X62535at
M84371rnals.at
L13278at
X1485Qat
J03473at
U79274at
D86983at
X63469at
D8827Qat
X5935Qat
U35451at
X6197Qat

microsomal aminopeptidase, CD13)

Epican, Alt. Splice 11

OBF-1 mRNA for octamer binding factor 1
Macmarcks

Activin type Il receptor

SRP9 Signal recognition particle 9 kD protein
PRG1 Proteoglycan 1, secretory granule
Calcyclin

Heat Shock Protein, 70 Kda (Gb:Y00371)
Transcriptional activator h\SNF2b
UBIQUITIN-LIKE PROTEIN GDX

Metargidin precursor mMRNA

KIT V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogdromolog
GRO2 GRO2 oncogene

CTRB1 Chymotrypsinogen B1

MAJOR HISTOCOMPATIBILITY COMPLEX ENHANCER-BINDING PROTHEN MAD3

T-COMPLEX PROTEIN 1, EPSILON SUBUNIT

MPO Myeloperoxidase

CSF3R Colony stimulating factor 3 receptor (granulocyte
KIAA0200 gene

Dynamitin mRNA

KIAAQ179 gene, partial cds

IL7R Interleukin 7 receptor

LOT1 mRNA

GLUL Glutamate-ammonia ligase (glutamine synthase)
DAGK1 Diacylglycerol kinase, alpha (80kD)

CD19 gene

CRYZ Crystallin zeta (quinone reductase)

HISTONE H2A.X

ADPRT ADP-ribosyltransferase (NAD+; poly (ADP-ribog@)lymerase)
Clone 23733 mRNA

KIAA0230 gene, partial cds

GTF2E2 General transcription factor TFIIE beta subunitkB4
GB DEF = (lambda) DNA for immunoglobin light chain
CD22 CD22 antigen

Heterochromatin protein p25 mRNA

PROTEASOME ZETA CHAIN
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Table A.7: 280 genes identi ed by ERCOF from training sarspe ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (cardoh3).

Probe Gene name

uU66838at Cyclin A1 mRNA

U94836at ERPROT 213-21 mRNA

X54326at MULTIFUNCTIONAL AMINOACYL-TRNA SYNTHETASE

D55654 at MDH1 Malate dehydrogenase 1, NAD (soluble)

U31556at E2F5 E2F transcription factor 5, p130-binding

X8349Qs at GB DEF = Fas/Apo-1 (clone pCRTM11-Fasdelta(3,4))

M83667.rnals.at NF-IL6-beta protein mRNA

D38522at KIAA0080 gene, partial cds

76874 7at GB DEF =Imogen 38

X64072s at SELL Leukocyte adhesion protein beta subunit

M65214 s at TCF3 Transcription factor 3 (E2A immunoglobulin enhargieding factors E12/E47)

M29194 at LIPC Lipase, hepatic

M86406 at ACTN2 Actinin alpha 2

U16307at Glioma pathogenesis-related protein (GliPR) mRNA

U26173s.at BZIP protein NF-IL3A (IL3BP1) mRNA

L11669at Tetracycline transporter-like protein mRNA

X15573 at PFKL Phosphofructokinase (liver type)

X56411rnalat ADH4 gene for class Il alcohol dehydrogenase (pi subuex®n 1

X96752at L-3-hydroxyacyl-CoA dehydrogenase

U90552at Butyrophilin (BTF5) mRNA

HG4582-HT4987at  Glucocorticoid Receptor, Beta

AF005043at Poly(ADP-ribose) glycohydrolase (hPARG) mRNA

U47077at DNA-dependent protein kinase catalytic subunit (DNAeBKMRNA

M83233 at TCF12 Transcription factor 12 (HTF4, helix-loop-heliatscription factors 4)

X16832at CTSH Cathepsin H

D00763at GAPD Glyceraldehyde-3-phosphate dehydrogenase

u2746Qat Uridine diphosphoglucose pyrophosphorylase mRNA

X63753at SON SON DNA binding protein

Z21507at EEF1D Eukaryotic translation elongation factor 1 delta
(guanine nucleotide exchange protein)

U57721at L-kynurenine hydrolase mRNA

S68134s at GB DEF = CREM=cyclic AMP-responsive element modulatdaligoform
[human, mRNA, 1030 nt]

U81556at Hypothetical protein A4 mRNA

X97335at Kinase A anchor protein

D86967at KIAA0212 gene

X66899 at EWSR1 Ewing sarcoma breakpoint region 1

M37435at CSF1 Colony-stimulating factor 1 (M-CSF)

J03798at SMALL NUCLEAR RIBONUCLEOPROTEIN SM D1

U30521at FRAP FK506 binding protein 12-rapamycin associatedemot

U50939at Amyloid precursor protein-binding protein 1 mRNA

U8341Qat CUL-2 (cul-2) mRNA

X59543 at RIBONUCLEOSIDE-DIPHOSPHATE REDUCTASE M1 CHAIN

S71043rnals.at Ig alpha 2=immunoglobulin A heavy chain allotype 2 constagion, germ line
[human, peripheral blood neutrophils, Genomic, 1799 nt]

L49229f at GB DEF = Retinoblastoma susceptibility protein (RB1)@enith a 3 bp deletion in
exon 22 (L11910 bases 161855-162161)

M95678 at PLCB2 Phospholipase C, beta 2

U4902Qcds2s.at MEF2A gene (myocyte-speci ¢ enhancer factor 2A, C9 foexiracted from
Human myocyte-speci ¢ enhancer factor 2A (MEF2A) genet e¢eding

u00802s_at Drebrin E

M93056 at LEUKOCYTE ELASTASE INHIBITOR

M95178 at ALPHA-ACTININ 1, CYTOSKELETAL ISOFORM

L25931s at LBR Lamin B receptor

M32304 s.at TIMP2 Tissue inhibitor of metalloproteinase 2

D38128at PTGIR Prostaglandin 12 (prostacyclin) receptor (IP)
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Table A.8: 280 genes identi ed by ERCOF from training sanspa ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (cargth4).

Probe Gene name

D87742at KIAA0268 gene, partial cds

M63379at CLU Clusterin (complement lysis inhibitor; testostexanepressed prostate
message 2; apolipoprotein J)

X80907 at GB DEF = P85 beta subunit of phosphatidyl-inositol-3asia

AF012024s at Integrin cytoplasmic domain associated protein (IcaprARNA

JO4621at SDC2 Syndecan 2 (heparan sulfate proteoglycan 1, céicgdassociated, broglycan)

M80899 at AHNAK AHNAK nucleoprotein (desmoyokin)

U97105at Dihydropyrimidinase related protein-2

M30703s.at Amphiregulin (AR) gene

U43292at MDS1B (MDS1) mRNA

U05572s.at MANB Mannosidase alpha-B (lysosomal)

D31887at KIAAO062 gene, partial cds

X97748s.at GB DEF = PTX3 gene promotor region

Y00339s. at CAZ2 Carbonic anhydrase Il

X52056.at SPI1 Spleen focus forming virus (SFFV) proviral integmaioncogene spil

M92357 at B94 PROTEIN

AFFX-HUMTFRR/M1150ZM_at AFFX-HUMTFRR/M11507M _at (endogenous control)

X6661Qat ALPHA ENOLASE, LUNG SPECIFIC

U07139at CAB3b mRNA for calcium channel beta3 subunit

HG4535-HT4940s at Dematin

X64364 at BSG Basigin

HG3162-HT333%t Transcription Factor lia

X5142Qat TYRPL1 Tyrosinase-related protein 1

D50918at KIAA0128 gene, partial cds

AJ00048Qat GB DEF = C8FW phosphoprotein

J04027at Adenosine triphosphatase mRNA

S76638at NFKB2 Nuclear factor of kappa light polypeptide gene ewea in B-cells 2 (p49/p100)

U28042at DEAD box RNA helicase-like protein mRNA

M11147 at FTL Ferritin, light polypeptide

HG4755-HT5203s at Spinal Muscular Atrophy 4

X65644 at IMMUNODEFICIENCY VIRUS TYPE | ENHANCER-BINDING PROTEIN?

D26579at Transmembrane protein

u88964at HEM45 mRNA

U07132at Orphan receptor mRNA, partial cds

L20941 at FTH1 Ferritin heavy chain

M83221 at TRANSCRIPTION FACTOR RELB

L09235at ATP6A1 ATPase, H+ transporting, lysosomal (vacuolatg@rg@ump),
alpha polypeptide, 70kD, isoform 1

Z32765at GB DEF = CD36 gene exon 15

M5771Qat LGALS3 Lectin, galactoside-binding, soluble, 3 (gale@)n

L22075at Guanine nucleotide regulatory protein (G13) mRNA

K03195 at (HepG2) glucose transporter gene mRNA

M21119s at LYZ Lysozyme

U61836at Putative cyclin G1 interacting protein mRNA, partial segce

U77396at No cluster in current Unigene and no Genbank entry for 98{guali er U77396at)

L41067at Transcription factor NFATx mMRNA

L33930Qs.at CD24 signal transducer mRNA and 3' region

M22898 at TP53 Tumor protein p53 (Li-Fraumeni syndrome)

M92439 at 130 KD LEUCINE-RICH PROTEIN

M61853 at CYP2C18 Cytochrome P450, subfamily 1IC (mephenytoirydrbxylase),
polypeptide 18

X66171at CMRF35 mRNA

AF015913at GB DEF = SKB1Hs mRNA
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Table A.9: 280 genes identi ed by ERCOF from training sarspe ALL-AML leukaemia data
set. Probes with bold font were also reported in [41] (cardoh5).

Probe Gene name

U50928at PKD2 Autosomal dominant polycystic kidney disease type |

D63874at HMG1 High-mobility group (nonhistone chromosomal) eintl

X8224Qrnalat TCL1 gene (T cell leukemia) extracted from H.sapiens mROA
Tcell leukemia/lymphoma 1

U79285at GLYCYLPEPTIDE N-TETRADECANOYLTRANSFERASE

U21858at HISTONE H3.3

L76702at Protein phosphatase 2A 74 kDa regulatory subunit (delBi"csubunit)

M19888 at SPRR1B Small proline-rich protein 1B (corni n)

U31814at Transcriptional regulator homolog RPD3 mRNA

X77307.at 5-HYDROXYTRYPTAMINE 2B RECEPTOR

U49844 at Protein kinase ATR mRNA

uU6541Qat Mitotic feedback control protein Madp2 homolog mRNA

D14658at KIAA0102 gene

YO07604.at Nucleoside-diphosphate kinase

M60527 at DCK Deoxycytidine kinase

X58072at GATA3 GATA-binding protein 3
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Table A.10: Thirty-seven genes selected by ERCOF on trgiséimples and reported in [140] to
separate TEL-AMLL1 from other subtypes of ALL cases in peitiadLL study. All these genes
are relatively highly expressed (above the mean value albgbe samples) in TEL-AML1

samples.
Probe Accession No.  Description
34481at AF030227 vav proto-oncogene, exon 27
36239at 749194 H.sapiens mRNA for oct-binding factor
37470at  AF013249 Homo sapiens leukocyte-associated Ig-likeptee-1 (LAIR-1) mMRNA
38203at u69883 Human calcium-activated potassium channel hSKJ} hRNA
3857Qat X03066 Human mRNA for HLA-D class Il antigen DO beta chain
38578at M63928 Homo sapiens T cell activation antigen (CD27) mRNA
38906 at M61877 Human erythroid alpha-spectrin (SPTAL1) mRNA
40745at  L13939 Homo sapiens beta adaptin (BAM22) mMRNA
41381at AB002306 Human mRNA for KIAA0308 gene
41442at  AB010419 Homo sapiens mRNA for MTG8-related protein MB5&1
31898at D86967 Human mRNA for KIAA0212 gene
3266Qat  AB002340 Human mRNA for KIAA0342 gene
34194at  AL049313 Homo sapiens mMRNA; cDNA DKFZp564B076 (from @dbKFZp564B076)
35614at  AB012124 Homo sapiens TCFL5 mRNA for transcription fadike 5
35665at 746973 H.sapiens mRNA for phosphatidylinositol 3-kmas
36524at AB029035 Homo sapiens mRNA for KIAA1112 protein
36537at  AB011093 Homo sapiens mRNA for KIAA0521 protein
3728Qat  U59912 Human chromosome 4 Mad homolog Smadl mRNA
4120Qat  Z22555 H.sapiens encoding CLA-1 mRNA
32224at  AB018312 Homo sapiens mRNA for KIAAQ769 protein
36985at X17025 Human homolog of yeast IPP isomerase
38124at  X55110 Human mRNA for neurite outgrowth-promoting pnote
4057Qat  AF032885 Homo sapiens forkhead protein (FKHR) mRNA
41498at  AB020718 Homo sapiens mRNA for KIAA0911 protein
41814 at M29877 Human alpha-L-fucosidase
32579at U29175 Human transcriptional activator (BRG1) mRNA
33162at X02160 Human mRNA for insulin receptor precursor
1779sat M16750 Human pim-1 oncogene mRNA
1488at L77886 Human protein tyrosine phosphatase mMRNA
1336s.at  X06318 Human mRNA for protein kinase C (PKC) type beta |
1299 at X93512 H.sapiens mRNA for telomeric DNA binding proteinfg)
1217gat X07109 Human mRNA for protein kinase C (PKC) type beta Il
932i_at L11672 Human Kruppel related zinc nger protein (HTF1ORNA
880.at M34539 Human FK506-binding protein (FKBP) mRNA
755 at D26070 Human mRNA for type 1 inositol 1,4,5-trisphosphaiceptor
577.at M94250 Human retinoic acid inducible factor (MK) gene exd-5
160029at X07109 protein kinase C beta 1
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Table A.11: Top 20 genes selected by entropy measure onngjagamples to separate MLL
from other subtypes of ALL cases in pediatric ALL study. Tastlcolumn indicates the sample
class in which the gene is highly expressed (above the mdaea &eoss all the samples).

Probe Accession No.  Description HighlyExp

34306at ABO007888 Homo sapiens KIAA0428 mRNA MLL

36777at AJ001687 Homo sapiens NKG2D gene, exons 2-5 and MLL
joined mRNA and CDS

33412at AI535946 vicpro2.D07.r Homo sapiens cDNA, 5' end MLL

657_at L11373 Human protocadherin 43 mRNA, MLL
complete cds for abbreviated PC43

32207at M64925 Human palmitoylated erythrocyte membrane OTHERS
protein (MPP1) mRNA

33847s.at AlI304854 Homo sapiens cDNA, 3' end MLL

34337sat  AJ010014 Homo sapiens mRNA for M96A protein OTHERS

1389at J03779 Human common acute lymphoblastic OTHERS
leukemia antigen (CALLA) mRNA

34861at D63997 Homo sapiens mRNA for GCP170 OTHERS

40518at Y00062 Human mRNA for T200 leukocyte common antigen MLL
(CD45, LC-A)

40913at W28589 Homo sapiens cDNA OTHERS

31898at D86967 Human mRNA for KIAA0212 gene OTHERS

38413at D15057 Human mRNA for DAD-1 MLL

2062at L19182 Human MAC25 mRNA MLL

794 at X62055 H.sapiens PTP1C mRNA for protein-tyrosine phatgde 1C  MLL

40519at Y00638 Human mRNA for leukocyte common antigen (T200) MLL

41747sat  U49020 Human myocyte-speci ¢ enhancer factor 2A (MEF8A&he MLL

3816Qat AF011333 Homo sapiens DEC-205 mRNA MLL

37692 at Al557240 Homo sapiens cDNA, 3' end MLL

40797 at AF009615 Homo sapiens ADAM10 (ADAM10) mRNA MLL
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Table A.12: Twenty-four genes selected by ERCOF on traisiggples and reported in [140]
to separate MLL from other subtypes of ALL cases in pediatid. study. All these genes
are relatively highly expressed (above the mean value absse samples) in MLL samples
except U70321 (accession number). Genes with bold fontrao:g top 20 features selected by
entropy measure and can be found in Table A.11 as well.

Probe Accession No.  Description
36777at AJ001687 Homo sapiens NKG2D gene, exons 2-5 and joined mREACDS
39424 at u70321 Human herpesvirus entry mediator mRNA
40076at AF004430 Homo sapiens hD54+ins2 isoform (hD54) mRNA
40493at L05424 Human hyaluronate receptor (CD44) gene
40506sat U75686 Homo sapiens polyadenylate binding protein mRNA
40763at uss5707 Human leukemogenic homolog protein (MEIS1) mRNA
40797at AF009615 Homo sapiens ADAM10 (ADAM10) mRNA
40798sat 748579 H.sapiens mRNA for disintegrin-metalloprotegseatial)
41747sat  U49020 Human myocyte-speci ¢ enhancer factor 2A (MEF2A)gerst coding
32193at AF030339 Homo sapiens receptor for viral semaphorirepig/ESPR) mRNA
32215i_at  AB020685 Homo sapiens mRNA for KIAA0878 protein
33412at Al535946 Homo sapiens cDNA, 5' end
34306at ABO007888 Homo sapiens KIAA0428 mRNA
34785at AB028948 Homo sapiens mRNA for KIAA1025 protein
35298at U54558 Homo sapiens translation initiation factor elB68 pubunit mMRNA
37675at X60036 H.sapiens mRNA for mitochondrial phosphate eaptotein
38391at M94345 Homo sapiens macrophage capping protein mRNA
38413at D15057 Human mRNA for DAD-1
2062at L19182 Human MAC25 mRNA
2036s.at M59040 Human cell adhesion molecule (CD44) mRNA
1914 at u66838 Human cyclin A1 mRNA
1126s at L05424 Human cell surface glycoprotein CD44 (CD44) gene,
3' end of long tailed isoform
1102s.at M10901 Human glucocorticoid receptor alpha mRNA
657.at L11373 Human protocadherin 43 mRNA, complete cds for aliared PC43

179



Table A.13: Nineteen genes selected by ERCOF on trainingplesnand reported in [140] to
separate Hyperdip50 from other subtypes of ALL cases in pediatric ALL studyl tAkse genes
are relatively highly expressed (above the mean value abske samples) in Hyperdip50
samples.

Probe Accession No. Description

38518at Y18004 Homo sapiens mRNA for SCML2 protein

39628at Al671547 Homo sapiens cDNA, 3'end

31863at D80001 Human mRNA for KIAA0179 gene

37543at D25304 Human mRNA for KIAAO0O06 gene

38968at AB005047 Homo sapiens mRNA for SH3 binding protein

39039s.at AI557497 Homo sapiens cDNA, 3' end

39329at X15804 Human mRNA for alpha-actinin

39389at M38690 Human CD9 antigen mRNA

32207at M64925 Human palmitoylated erythrocyte membrane pnqtdiPP1) mRNA
32236at AF032456 Homo sapiens ubiquitin conjugating enzyme G2HRG2) mRNA
32251at AA149307 Homo sapiens cDNA, 3'end

3662Qat X02317 Human mRNA for Cu/Zn superoxide dismutase (SOD)
36937sat U90878 Homo sapiens carboxyl terminal LIM domain pro{€hiM1) mRNA
3735Qat AL031177 26S Proteasome subunit p28 (Ankyrin repeaeprpt(isoform 1)
38738at X99584 H.sapiens mRNA for SMT3A protein

39168at AB018328 Homo sapiens mRNA for KIAA0785 protein
40903at AL049929 Homo sapiens mRNA; cDNA DKFZp54700510
(from clone DKFZp54700510)
32572at X98296 H.sapiens mRNA for ubiquitin hydrolase
306s at J02621 Human non-histone chromosomal protein HMG-14 /RN
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Appendix B

Some Resources

B.1 Kent Ridge Biomedical Data Set Repository

All the gene expression pro les and proteomic data desdriimeChapter 5, and some DNA
sequences used in Chapter 7 can be found irkKthe Ridge Biomedical Data Set Repositaty
http://sdmc.i2r.a-star.edu.sg/rp/ . In this data repository, we have collected gene
expression data, protein pro ling data and genomic seqeiéiata that are related to classi cation
and are published recently 8cience, Naturand other prestigious journals. As the le formats
of these original raw data are different from common onesl usemost of machine learning
softwares, we have transformed these data sets into theasthdata and .namesformat and
stored them in this repository. Besides, we also provida datarff format which is used by
Weka a machine learning software package developed at UniyexsiWaikato in New Zealand.
Detailed information of Weka can be found tetp://www.cs.waikato.ac.nz/"ml/

weka/ .

B.2 DNAFSMiner

The DNAFSMinen(DNA Functional Site Miner) is a web-based toolbox for reaitign of func-
tional sites in DNA sequences. It was built on the techn@sgiresented in Chapter 7 and written
in Java and Perl languages. It can be accesseldtypd/sdmc.i2r.a-star.edu.sg/

DNAFSMiner/ . Currently, it can be used to identify translation initbatisite TISMine)) in ver-
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tebrate mMRNA, cDNA, and DNA sequences and polyadenylatigmas (Poly(A) Signal Miney

in human sequences.
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