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Abstract. Linkage disequilibrium mapping is a process of inferring the disease gene location from 
observed associations of marker alleles in affected patients and normal controls. In reality, the presence of 
disease-associated chromosomes in affected population is relatively low (usually 10% or less). Hence, it is a 
challenge to locate these disease genes on the chromosomes. In this paper, we propose an algorithm known 
as LinkageTracker for linkage disequilibrium mapping. Comparing with some of the existing work, 
LinkageTracker is more robust and does not require any population ancestry information. Furthermore our 
algorithm is shown  to find the disease locations more accurately than a closely related existing work, by 
reducing the average sum-square error by more than half (from 80.71 to 30.83) over one hundred trials. 
LinkageTracker was also applied to a real dataset of patients affected with haemophilia, and the disease 
gene locations found were consistent with several studies in genetic prediction. 

1 Introduction 

Linkage disequilibrium mapping has been used in the finding of disease gene locations in many recent 
studies [6][13]. The main idea of linkage disequilibrium mapping is to identify chromosomal regions with 
common molecular marker alleles1 at a frequency significantly greater than chance. It is based on the 
assumption that there exists a common founding ancestor carrying the disease alleles, and is inherited by 
his descendents together with some other marker alleles that are very close to the disease alleles. The same 
set of marker alleles is detected many generations later in many unrelated individuals who are clinically 
affected by the same disease. In a realistic setting, the occurrence of such allele patterns is usually very low, 
and most often consist of errors or noise. For instance, the hereditary mutations of BRCA-1 and BRCA-2 
genes only account for about five to ten percent of all breast cancer patients[12]. Assuming that we know 
that BRCA-1 gene resides somewhere on chromosome 17,  the finding of the exact location of BRCA-1 
gene on chromosome 17 based on a set of sample sequence collected from breast cancer patients where at 
most ten percent of the sample sequence exhibit allelic association or linkage disequilibrium is a nontrivial 
task. To further complicate this task, the linkage disequilibrium patterns also consist of errors due to sample 
mishandling and contamination.   

Due to errors and low occurrence of linkage disequilibrium patterns, existing data mining and artificial 
intelligence methods involving training and learning will not be applicable. In this paper, we propose a 
novel method known as LinkageTracker for the finding of linkage disequilibrium patterns and inference of 
disease gene locations. First of all, we identify the set of linkage disequilibrium patterns using a heuristic 
level-wise neighbourhood search and score each pattern by computing their p-values to ensure high 
discriminative powers of each pattern. After which, we infer the marker allele that is closest to the disease 
gene based on the p-value scores of the set of linkage disequilibrium patterns. LinkageTracker is a 
nonparametric method as it is not based on any assumptions about the population structure. The method is 
robust to cater for missing or erroneous data by allowing gaps in between marker patterns. Comparing our 
method with Haplotype Pattern Mining (HPM) which was reported by Tiovonen et. al. [16], 

                                                           
1 A molecular marker is an identifiable physical location on the genomic region that either tags a gene or tags a piece of 

DNA closely associated with the gene. An allele is any one of a series of two or more alternate forms of the marker. 
From the data mining aspect, we could represent markers as attributes, and alleles as attribute values that each 
attribute could take on. 



LinkageTracker outperforms HPM by reducing the average sum-square error by more than half (from 80.71 
to 30.83) over one hundred trials.  

Organization of this paper. In the next section, related work will be introduced, followed by a 
technical representation of the problem and a detailed description of the LinkageTracker algorithm. Next, 
the optimal number of gaps to set on LinkageTracker to achieve good accuracy will be discussed. We will 
then evaluate the performance of LinkageTracker with a recent work known as Haplotype Pattern Mining 
(HPM). Finally, we conclude our paper with a summary and the directions for future work.   

2 Related Works 

There are generally two methods used for detecting disease genes, namely, the direct and the indirect 
methods. Techniques used in the direct method include allele-specific oligonucleotide hybridization 
analysis, heteroduplex analysis, Southern blot analysis, multiplex polymerase chain reaction analysis, and 
direct sequencing. A detailed description of these techniques is beyond the scope of this paper but is 
available in [3] and [10]. Direct method requires that the gene responsible for the disease be identified and 
specific mutations within the gene characterized. As a result, direct method is frequently not feasible, and, 
the indirect method is used. The indirect methods such as [7], [14], and [16] involves the detection of 
marker alleles that are very close to or are within the disease gene, such that they are inherited together 
with the disease gene generation after generation. Such marker alleles are known as haplotypes. Alleles at 
these markers often display statistical dependency, a phenomenon known as linkage disequilibrium or 
allelic association [5]. The identification of linkage disequilibrium patterns allows us to infer the disease 
gene location. Most commonly, linkage disequilibrium mapping involves the comparison of marker allele 
frequencies between disease chromosomes and control chromosomes. 

Kaplan et. al. [7] developed a maximum likelihood method for linkage disequilibrium mapping which 
estimates the likelihood for the recombination fraction between marker and disease loci by using a Poisson 
branching process. The likelihood of the haplotypes observed among a sample of disease chromosomes 
depends on their underlying genealogical relationships, the rates of recombination among markers, and the 
time since the mutation arose. Although likelihood methods have many desirable properties when used on 
data whose population ancestry is well understood, it is difficult to evaluate the likelihood when the data is 
arising from a huge number of possible ancestries.  

DMLE+ proposed by Rannala & Reeve [14] uses Markov Chain Monte Carlo methods to allow 
Bayesian estimation of the posterior probability density of the position of a disease mutation relative to a 
set of markers. As similar to the maximum likelihood method, DMLE+ has many good properties when 
applied to data whose population ancestry is well understood. However, DMLE+ requires some prior 
information such as the fraction of the total population of present-day disease chromosome, growth rate of 
population and the age of the mutation, which may not be readily available. Furthermore, it is assumed that 
every sample sequence carries the disease mutation, although the authors claimed that this assumption can 
be relaxed, details on the extent that this assumption can be relaxed was not discussed.    

Recently, Tiovonen et. al. [16] introduced a linkage disequilibrium mapping algorithm known as 
haplotype pattern mining (HPM). Firstly, HPM uses the association rule mining algorithm [1] to discover a 
set of highly associated patterns by setting the Support threshold to a certain value. Next, HPM uses chi-
square test to discriminate disease association from control association. Finally, HPM computes the marker 
frequency for each of the markers. The frequency for each marker is computed by counting the number of 
associated patterns consisting of that specific marker. The marker with the largest frequency is predicted as 
closest to the disease gene. The main drawback of this algorithm is that it suffers from the rare item 
problem. As it uses association rule mining algorithm to discover highly associated patterns, and such 
patterns are relatively rare in the problem of linkage disequilibrium mapping. As a result the support 
threshold will need to be set at a very low value in order to discover those highly associated patterns.  

Comparing LinkageTracker with the maximum likelihood method and DMLE+, the two methods require 
information about the population ancestry and assumes that the disease mutation occurs in most (or all) 
sample sequences, whereas LinkageTracker does not require any population ancestry information and 
allows for the disease mutation to occur in as low as 10% of the sample sequences. When compared to 
HPM, the LinkageTracker dose not use Support in the assessment of marker patterns, instead 
LinkageTracker uses a statistical method known as odds ratio to detect discriminating patterns that are 



highly associated within the patient data but not in the control data. Hence, the finding of 
candidate/potential linkage disequilibrium patterns and scoring their degree of associations are combined 
into a single step. Also as mentioned by Tamhane & Dunlop [15], chi-square test only indicate whether 
there exists statistically significant association, but it does not account for the magnitude of association. It 
is thus possible to have a significant chi-square statistics although the magnitude of association is small. 
The most common measure of the magnitude of association is the odds ratio method. LinkageTracker 
infers the marker closest to the disease gene by combining the p-values of association patterns consisting of 
that marker using a method recommended by Fisher [4], and not based on the marker frequency as in the 
HPM algorithm.   

3 Technical Representation of LinkageTracker 

The general framework of the LinkageTracker can be represented as a quintuple <D, Ω, L, Ψ, T> where 
• D is a dataset consisting of M vectors <x1,…, xM>, where each xi is a vector <di1,…, din> that describes 

the allele values of n genes/markers in a particular biological sample. 
• For each position d*j, ωj = {v1,…, vt} denotes the set of all possible expression values that d*j could take 

on, and Ω is a collection of {ω1,…, ωn}. 
• A labelling for D is a vector L = <l1,…, lM>, where the label li associated with xi is either abnormal (a 

biological sequence derived from an individual exhibiting abnormality) or normal (a biological sequence 
belonging to a normal control).   

• Ψ is the neighbourhood definition. The neighbourhood determines the maximum allowable gap size 
within each pattern. The gap setting is to enable LinkageTracker to be robust to noise. In a very noisy 
environment, larger gap size is required for better accuracy by extending the search space, at the expense 
of computational speed. 

• T∈ ℜ+ is the threshold value for accepting a particular pattern. In statistical terms, T is the level of 
significance of the test. When the pattern score is less than T, the pattern is considered as significant, and 
will be kept for further processing.     

 
The output P is a set of linkage disequilibrium patterns with high discriminative powers. A pattern 

p=<d*i, d*j,…,d*k> where p ∈ P, such that i < j < k. Based on the set of patterns in P,  we infer the marker 
allele that is closest to the disease gene. For each marker allele, we combine the p-values of all patterns in P 
that consist of that marker allele. The method to combine p-values was first introduced by Fisher [4], and 
will be described in detail in the next section. 

4 LinkageTracker Algorithm 

There are two main steps in the LinkageTracker algorithm. Step 1 identifies a set of linkage disequilibrium 
patterns which are strong in discriminating the abnormal from the normal, and step 2 infers the marker 
allele that is closest to the disease gene based on the linkage disequilibrium patterns derived in step 1. 

4.1 Step 1: Discovery of Linkage Disequilibrium Pattern  

LinkageTracker uses a statistical method known as odds ratio to score each potential/candidate pattern. If 
the p-value of a pattern is below the threshold T, then it is considered as having a significant discriminative 
power, and will be kept for further processing. Odds ratio provides a good measure of the magnitude of 
association between a pattern and the binary label L, which is crucial in determining the discriminative 
power and the allelic associations of a pattern. In this section, we will first of all describe the odds ratio 
method; follow by the details of level-wise neighbourhood searches for potential/candidate patterns and 
scoring them.  

Odds Ratio. Given a pattern x, odds ratio computes the ratio of non-association between x and the label 
L, to the association between x and L based on a set of data. For example, given a pattern, say (1,3), we are 



interested in finding out whether the marker pattern (1,3) is strongly associated with the label abnormal. 
Table 1 shows the contingency table for our example; odds ratio is defined as follows: 

Odds Ratio, θ =
1001

0011

ππ
ππ  (1) 

To test the significance of the magnitude of association, we compute the p-value of each pattern, and 
compare the p-value against T, if the p-value is less than or equals to T, the pattern is significant and we 
will use it for marker inference in the later stage. If the p-value is greater than T, the pattern is not 
significant, and will be discarded. The threshold T that we use has been adjusted using a method called 
Bonferroni Correction [11] in order to guarantee that the overall significance test is still at level T despite 
that we have made independent tests on each of the pattern. 

 Abnormal Normal 

not(1,3) π00 π01 
(1,3) π10 π11 

 
LinkageTracker Algorithm. LinkageTracker mines patterns of the form <d*i, d*j,…,d*k>, for example, 

(3,5,6,*,*,4) is a marker pattern of length 4.  The symbol “*” represents missing or erroneous marker allele, 
and will not be taken into consideration when testing for significance of the pattern. Also the symbol “*” 
will not be considered when computing the length of a marker pattern. Therefore, marker patterns (1,*,*,3), 
(1,*,3), and (1,3) are all considered as having length of 2. 

A gap is a “*” symbol in between two known marker alleles. For instance, the marker patterns (1,*,*,*3) 
has three gaps, (1,*,3) has one gap, and (1,3) has no gaps. The maximum number of gaps for this marker 
pattern (1,*,*,3,*,*,*,*,5) is four, as there are at most four gaps in between any two known marker alleles. 
The user is able to set the maximum number of gaps for the marker patterns. However, we recommend that 
a maximum allowable gap to be 6, giving the highest accuracy if the markers are spaced at 1 cM2. The 
detail of such a recommendation is given in the later section. 

To find linkage disequilibrium patterns using odds ratio, one of the way is to use the brute force method. 
That is, we could enumerate all possible marker patterns of length one, two, and three etc, and compute the 
odds ratio of each of the pattern and select those patterns that are significant. However, there are some 
practical difficulties to this approach: for n markers each with m alleles, there are km

k

n
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ marker patterns of 

length k, which we need to test for significance. Combinatorial explosion occurs as the length of marker 
patterns increases. 

The enumeration of all possible marker patterns is in fact unnecessary. This is because, base on studies 
by Long & Langley [9], allelic associations are detectable within a genomic region of 20cM, allelic 
associations beyond 20cM are weak and are not easily detectable. Therefore, enumerating marker patterns 
whose marker alleles are more than 20cM apart is unlikely to yield significant results. Based on this 
observation, LinkageTracker uses a heuristic search method which allows the user to restrict its search 
space by controlling the maximum allowable gap size between two marker alleles. As described in section 
3, the gap size setting Ψ helps to define the search space of LinkageTracker as well as to enable its 
robustness to noise. For simplicity of illustration, all examples in this paper assume that the markers are 
spaced at 1cM apart, furthermore, the markers in the simulated datasets (generated by Toivonen et. al. [16]) 
applied by LinkageTracker are all spaced at 1cM apart.    

LinkageTracker is a heuristic level-wise search method which allows only significant marker patterns 
(or linkage disequilibrium patterns) of length i-1 at level i to join with their neighbors (of length 1) whose 
join would satisfy the maximum gap constraint Ψ to form candidate/potential marker patterns of length i, 
where 1 ≤ i ≤ n and n is the number of markers. We call the procedure of joining linkage disequilibrium 
patterns at each level to form longer patterns the neighborhood join. Note that in neighborhood join, only 

                                                           
2 cM stands for centimorgan. It is the unit of measurement for genomic distance. In human genome, 1 centimorgan is 

approximately equivalent, to 1 million base pairs.  

Table 1. : 2x2 contingency table 



the marker patterns of length i-1 need to be significant, the neighbors that they join with need not be 
significant and may be several markers apart.  

A marker allele exhibits significant allelic association with the disease gene under two conditions. 
Firstly, it is significant on its own when tested (i.e. at level 1). Secondly, when combine with other marker 
alleles that exhibit allelic associations with the disease gene, it become significant when tested.  

The former condition is trivial to detect, the latter condition is concerned with a marker allele who shows 
significant allelic association with the disease gene when combine with other significant marker alleles but 
is insignificant when assessed alone. Let us denote this maker allele as Mx. This problem can be further 
divided into 2 cases. The first case is that Mx is close to a neighbor Mi that is significant when tested alone. 
The term “close” here means that Mx will be selected to join with Mi directly to form marker patterns for 
the immediate next level. For example, two markers say Mx and My are both not significant at level 1, 
hence they will be discarded when forming marker patterns for level 2. Now, we have Mi which is an 
immediate neighbor of My showing significant allelic association in level 1 (assuming that the markers are 
ordered as follows: Mi, My and Mx).  Hence, in level 2, Mi will be made to combine with its neighbors to 
form marker patterns of length 2. Since My is the immediate neighbor of Mi, My will be selected to form 
pattern with Mi. Although Mx is one marker away from Mi, Mx will also be selected, because 
LinkageTracker allows joining with markers that are some gaps away as described above. Hence, in level 2, 
both My and Mx are included in the marker patterns.  

The second case is that Mx is very far from a marker allele Mz that is significant when tested alone.  The 
term “far” here means that Mx is less than 20 markers away from Mz, but is far enough such that Mx will 
not be selected by Mz to form marker pattern for the immediate next level. For example, from Figure 1, Mx 
and Mz is 8 markers apart. Assuming that the maximum allowable gap size is set to 2, Mz is made to 
combine with Ma, Mb, and Mc to form patterns of length 2. Assuming that (Mz,Mc) is tested significant, 
then (Mz,Mc) will combine with Md, Me,and Mf to form patterns of length 3.  Assuming that (Mz,Mc,Mf) is 
tested significant, then  (Mz,Mc,Mf) will combine with Mg, Mh, and Mx to form patterns of length 4. 
Hence, Mx will ultimately be detected to form marker patterns under the condition that there are sufficient 
significant “intermediate” allele markers such as Mc and Mf, to facilitate the detection of allelic associative 
marker alleles that are much further away (i.e. Mx). Nevertheless, as in accordance with the studies by 
Long & Langley [9], most marker alleles exhibiting allelic associations with the disease gene will occur 
within a distance of 20cM from the disease gene, which means that marker alleles exhibiting allelic 
associations with the disease gene are quite densely packed within the 20 makers region. Hence, the 
chances of LinkageTracker detecting significant marker alleles within the range of 20 markers are 
relatively high even though LinkageTracker is a heuristic method.  

4.2 Step 2: Marker Inference 

As mentioned in the earlier section, we infer the marker closest to the disease gene by combining the p-
values of the highly associated patterns. Now, let us describe how we could combine p-values from n 
patterns to form a single p-value. R.A. Fisher’s method [4] specifies that one should transform each p-value 
into c = -2 * LN(P), where LN(P) represents the natural logarithm of the p-value. The resulting n c-values 
are added together, and their sum, ∑(c), represents a chi-square variable with 2n degree of freedom. For 
example, to find the marker closest to the disease gene, we compute the combine p-value and the frequency 
for each marker allele. In Figure 2a, Marker 2 has allele 4 occurring four times, its combined p-value is 1.4 
* 10-6, which is the chi-square distribution of ∑(c) = 9.4211 + 10.0719 + 11.6183 + 10.8074 = 41.9186 with 
8 degree of freedom. Figure 2b depicts the combined p-value for each of the marker alleles from Figure 2a. 
As we can see Marker 2 allele 4 has the lowest combined p-value, and hence we infer that Marker 2 is 

Fig. 1. Illustration of marker positions 



closest to the disease gene. If more than one marker alleles have the same lowest p-value, then the marker 
with the highest frequency is selected as the marker closest to the disease gene. 

 
Marker 1  2  3  4  5  6 P-Value c = -2 * ln(P) 
Pattern01 *  4  3  *  *  * 0.0090 9.4211 
Pattern02 2  4  *  *  6  1 0.0065 10.0719 
Pattern03 2  4  3  5  *  * 0.0030 11.6183 
Pattern04 *  *  3  5  *  1 0.0100 9.2103 
Pattern05 2  4  *  5  6  * 0.0045 10.8074 

(a) 
    
 Freq ∑(c) Combine P-Value 
Marker 1 allele 2 3 32.4975 1.3098E-05 
Marker 2 allele 4 4 41.9186 1.4027E-06 
Marker 3 allele 3 3 30.2497 3.5236E-05 
Marker 4 allele 5 3 31.6390 1.9160E-05 
Marker 5 allele 6 2 10.0719 0.0392 
Marker 6 allele 1 2 19.2822 0.007 

(b) 

Fig. 2. a) Example of 5 linkage disequilibrium patterns. b) Combine p-value of 
each marker allele from (a). 

5 Setting the Optimal Number of Gaps   

To accurately find the marker closest to the disease gene, it is important to determine the optimal number of 
gaps to use. The marker alleles that show significant allelic associations with the disease gene (within 20 
markers region) should minimize the number of joins with neighbors beyond the 20 markers region. This is 
because the joining of a significant marker allele with some neighbors that are beyond the 20 markers 
region will inevitably introduce some false positive marker patterns or noise. Such false positive marker 
patterns will result in the reduction in accuracy during marker inference. On the other hand, we want to be 
as robust as possible, that is, to maximize the total possible gaps so as to cater for erroneous marker alleles. 
Based on these two conditions, we compute the Score for each gap setting g as follows for patterns of 
length 2: 

 

Score(g) = 

∑

∑

=

=
g

i
i

g

i
i

Noise

Robustness

0

0
 (2) 

 
Figure 3 shows the Score values for gap settings between 0 to 20. Different gap settings will result in 

different values for Noise and Robustness. We shall now illustrate how the values of Noise and Robustness  
were computed with examples.  

Noise. Noise is defined as the maximum possible number of patterns consisting of markers beyond the 
20 markers region. Figure 4 shows a disease gene that is very close to marker M1, markers M21 and M22 
are in dotted boxes as they are beyond the 20 makers region from the disease gene. Assuming that marker 
M2 shows significant association with the disease gene, and we set the maximum allowable gaps to 1, then  
M2 can join with its neighbors M3 and M4 to form patterns of length 2, i.e. (M2,M3) and (M2,M4). Recall 
that the joining of a significant marker with some neighbors that are beyond the 20 markers region will 
introduce Noise. In this case, if markers M19 and M20 are significant, they will join with M21 and M22 to 
form patterns of length 2. We can see from Figure 4 that M19 and M20 will join with M21 and M22 in three 
ways, as illustrated by the dotted arrows. Hence, the maximum possible number of patterns consisting of 



markers beyond the 20 markers region (i.e. ∑
=

1

0i
iNoise ) is 3 when the gap setting is 1. The Noise values for 

gap settings from 2 to 20 were computed similarly. 
 

Num. of Gaps 
(g) Noise Num. Of patterns p 

form with g gaps 
Robustness  
= p × g Score(g) 

0 1 19 0 0 

1 2 18 18 6 

2 3 17 34 8.67 

3 4 16 48 10 

4 5 15 60 10.67 

5 6 14 70 10.95 

6 7 13 78 11 

7 8 12 84 10.89 

8 9 11 88 10.67 

9 10 10 90 10.36 

10 11 9 90 10 

11 12 8 88 9.59 

12 13 7 84 9.14 

13 14 6 78 8.67 

14 15 5 70 8.17 

15 16 4 60 7.65 

16 17 3 48 7.11 

17 18 2 34 6.56 

18 19 1 18 6 

19 20 0 0 0 

20 21 0 0 0 

 
Robustness. Before computing the Robustness values, we need to compute the maximum possible 

number of patterns p formed within the 20 markers region when the gap setting is g. When the gap setting g 
is set to 1, we can have at most 18 patterns (i.e. p = 18) as illustrated by the arrows in Figure 5. With the 
values of p for different values of g, we define Robustness as the maximum number of patterns formed 
within the 20 markers region weighted by the gap setting g itself:  

 

Robustness = p× g. (3) 

Recall that it is desirable to have wider gaps so as to cater for erroneous marker alleles, hence the value 
of Robustness increases as the value of g increases. As we can see from Figure 3 that the gap setting of 6 
has the highest Score value, hence we recommend that for a dataset with more than 20 markers to each 
chromosome (i.e. more than 20 attributes to each record) and each marker is spaced at 1cM apart, the 
optimal allowable gap setting should be 6.  

 

Fig. 3. Score values for 0 to 20 gaps 



 
To verify our above recommendation, we evaluated the performance of LinkageTracker by varying the 

gap settings from 2 to 10 on 100 realistically simulated datasets generated by Tiovonen et. al. [16] (details 
in the next section). The sum-square errors were computed for different gap settings g when applied to the 
100 datasets. We found that the gap setting of 6 has the lowest sum-square error, which means that it has 
the highest accuracy. This is in compliance with our above recommendation.  

6. Evaluation 

6.1 Generated datasets  

The datasets used in our experiments are generated by Tiovonen et. al. [16] and are downloadable from the 
following URL: http://www.genome.helsinki.fi/eng/research/projects/DM/index-ajhg.html. The 
simulated datasets correspond with the realistic isolated founder populations which grow from 300 to about 
100,000 individuals over a period of 500 years. The simulation of isolated population is suited to linkage 
disequilibrium studies as recommended by Wright et. al. [17].   

There are altogether 100 datasets each consists of 400 biological sequences where 200 sequences were 
labeled “abnormal” and 200 labeled “normal”, each biological sequence consists of 101 markers. The 
datasets were generated such that each dataset has a different disease gene location, and our main task is to 
predict the marker (or attribute) that is nearest to the disease gene for each dataset.  

6.2 Comparison of Performance on Generated Datasets   

Figure 6 shows the performance of HPM (proposed by Tiovonen et. al. [16]) and LinkageTracker when 
applied to the generated datasets. Each point on the graph depicts the predicted disease gene location by 
HPM if marked “◊” and the predicted disease gene location by LinkageTracker if marked “+”, for the 100 
dataset. The straight line depicts that the predicted location is the same as the actual location, the closer the 
“◊” or “+” marks to the straight line the more accurate is the prediction. As we can see that the accuracy of 
LinkageTracker is reasonably good with only one significant outlier, whereas HPM has two significant 
outliers. The same outlier was encountered by LinkageTracker when tested on different gap settings, which 
means that there may exists some errors in this dataset such that a “pseudo region” occurs that differentiate 
itself from the normal population that is much more significant than the true region with the disease gene.  
The average sum-square error for HPM is 80.71, and the average sum square error for LinkageTracker is 
30.83. Hence, LinkageTracker outperforms HPM in general with lower sum-square error. Even after we 
remove the common outlier between LinkageTracker and HPM, LinkageTracker continues to outperform 
HPM with an average sum-square error of 6.40, as compared to HPM with an average sum-square error of 
15.47. 

Fig. 5. Joining of markers when gap setting g is 1 

Fig. 4. The darken circle indicates the disease gene location 



6.3 Performance on Real Dataset  

We applied our algorithm on a real dataset, consisting of patients affected by hemophilia from Singapore3, 
and a set of matching unaffected individuals. Hemophilia A is an X-linked recessive bleeding disorder that 
results from deficiency and/or abnormality of coagulation factor VIII (FVIII) [2]. The FVIII gene spans 
186 kb of DNA and resides on 0.1% of the X chromosome (band Xq28). 

A set of markers located on chromosome Xq28 which tags the hemophilia A disease gene were collected 
and analyzed from 47 patients and 47 matched normal controls. The LinkageTracker detected Bcl I RFLP 
marker as the closest to the disease susceptible gene. Our prediction results showing Bcl I association was 
found and confirmed through elaborate biological experiments, as Bcl I is an intragenic SNP (single 
nucleotide polymorphism) in intron 18 of FVII gene and is linked to hemophilia A disease phenotype [8].  
LinkageTracker is able to guide or narrow the investigation in identifying the polymorphic markers that tag 
the disease genes. 

7. Conclusions and Future Work 

We have introduced a new method of inferring the location of disease genes based on observed associations 
known as LinkageTracker. LinkageTracker has shown to be highly accurate in both simulation-generated 
and real genetic datasets. We have also recommended the optimal number of gaps to set on LinkageTracker 
to achieve good accuracy. Comparing with the maximum likelihood method and DMLE+, the two methods 
require information about the population ancestry and assume that the disease mutation occurs in most or 
all sample sequences, whereas LinkageTracker does not require any population ancestry information and 
allows for the disease mutation to occur in as low as 10% of the sample sequences. Comparing the 
performance of LinkageTracker with a recent work known as HPM, LinkageTracker outperforms HPM 
with lower average sum-square error. Even after we remove the common outlier, the sum-square error of 
LinkageTracker remains significantly lower than the average sum-square error of HPM. In the future, we 
plan to extend this work to identify boundaries in which all the significant patterns can be bounded and 
ultimately guarantees that all significant patterns can be found. 

                                                           
3 Data is obtained from Department of Pediatrics, National University Hospital, National University of Singapore. 

Fig. 6. Comparison of prediction accuracies between HPM and 
LinkageTracker 



Acknowledgements 

This research is partially supported by a Research Grant No. R-252-000-111-112/303 from the Agency for 
Science, Technology, and Research (A*Star) and the Ministry of Education in Singapore. 

References 

 [1] R. Agrawal, and R. Srikant. Fast algorithm for mining association rules. In Proceedings of the Very Large Data 
Bases (VLDB) Conference, 1994. 

 
[2] S. Antonarakaris, H. Kazazian, E. Tuddenham. Molecular etiology of factor VIII deficiency in hemophilia A. 

Human Mutation, 5:1-22,1995. 
 
[3] A. Beaudet, C. Scriver, W. Sly, D.Valle. Genetics, biochemistry, and molecular basis of variant human phenotypes. 

In: Scriver CR, Beaudet AL, Sly WS, et al, eds. The Metabolic and Molecular Basis of Inherited Disease. 7th ed. 
New York, NY: McGraw-Hill, Inc; 2351-2369, 1995. 

 
[4] R. Fisher. Statistical methods for research workers, 14th edition. Hafner/MacMillan, New York, 1970. 
 
[5] D. Goldstein, and M. Weale. Population genomics: Linkage disequilibrium holds the key. Current Biology, 

11:R576-R579, 2001. 
 
[6] J. Hastbacka, A. de la Chapelle, I. Kaitila, P. Sistonen, A. Weaver, and E. Lander. Linkage disequilibrium mapping 

in isolated founder populations: diastrophic dysplasia in Finland. Nature Genetics, 2:204-211, 1992. 
 
[7] N. Kaplan, W. Hill, and B. Weir. Likelihood methods for locating disease genes in non-equilbrium populations. 

American Journal of Human Genetics, 56:18–32, 1995. 
 
[8] S. Kogan, M. Doherty, J. Gitschier. An improved method for prenatal diagnosis of genetic diseases by analysis of 

amplified DNA sequences. Application to hemophilia A. New England Journal of Medicine, 317: 985-990, 1987.  
 
[9]  A. Long, and C. Langley. The power of association studies to detect the contribution of candidate genetic loci to 

variation in complex traits. Genome Research, 9: 720-731, 1999. 
 
[10] S. Malcolm. Molecular methodology. In: Rimoin DL, Connor JM, Pyeritz RE, eds. Emery and Rimoin's Principles 

and Practice of Medical Genetics. 3rd ed. New York, NY: Churchill Livingstone; 67-86, 1997. 
 
[11] R. Miller. Simultaneous statistical inference . 2nd edition. Springer Verlag, 1981. 
 
[12] National Cancer Institute. Cancer Facts. http://cis.nci.nih.gov/fact/3_62.htm. Date reviewed: 02/06/2002. 
 
[13] L. Ozelius,  P. Kramer, D. de Leon, N. Risch, S. Bressman, D. Schuback et. al. Strong allelic association between 

the torsion dystonia gene (DYT1) and loci on chromosome 9q34 in Ashkenazi Jews. American Journal Human 
Genetics 50: 619–628, 1992. 

 
[14] B. Rannala and J. Reeve. High-resolution multipoint linkage-disequilibrium mapping in the context of a human 

genome sequence. American Journal of Human Genetics 69:159-178, 2001. 
 
[15] A. Tamhane, and D. Dunlop. Statistics and data analysis: from elementary to intermediate. Prentice Hall, 2000. 
 
[16] H. Toivonen, P. Onkamo, K. Vasko, V. Ollikainen,  P. Sevon, H. Mannila, M. Herr, and J. Kere. Data mining 

applied to linkage disequilibrium mapping. American Journal of Human Genetics, 67:133-145, 2000. 
 
[17] A. Wright, A. Carothers, and M. Pirastu. Population choice in mapping genes for complex diseases. Nature 

Genetics, 23:397-404, 1999.  
 
 


