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Abstract

With the new advances in DNA microarray technology, expression levels of thousands

of genes can be simultaneously measured efficiently during important biological pro-

cess and across collections of related samples. Analyzing the microarray data to iden-

tify localized co-expressed gene patterns are essential in revealing the gene functions,

gene regulations, subtypes of cells, and cellular processes of gene regulation networks.

Hence, researchers are recently motivated to mine co-expressed gene patterns from

microarray data.

This thesis studies both the static and dynamic aspects of localized co-expressed

gene patterns and categories the patterns into three types: co-attribute patterns, co-

tendency patterns and time-lagged patterns. Designing new algorithms to identify

the three types of localized co-expressed gene patterns is the research problem of this

thesis.

We present in this thesis a series of new algorithms to mine localized co-expressed

gene patterns. First, we extend the 2D frequent closed patterns (FCPs) mining algo-

rithms from sparse data context to dense context, and propose two new algorithms

B-Miner and C-Miner to mine 2D co-attribute patterns (FCPs). We also study the

parallel schemes of the two algorithms, which is, to our knowledge, the first paral-

lel frequent closed pattern mining schemes in the literature. Second, we extend the

traditional 2D FCPs mining algorithms to the 3D context. We introduce the notion

of frequent closed cube (FCC) and formally define it. Based on this notion, we mine

3D co-attribute patterns (FCCs), which settles the new challenges coming up with

xi



xii

the spurning of 3D microarray data. We propose two novel algorithms Representa-

tive Slice Mining (RSM) and CubeMiner to mine FCCs from 3D datasets. We also

show how RSM and CubeMiner can be easily extended to exploit parallelism. Third,

we propose a quick hierarchical biclustering algorithm (QHB) to mine co-tendency

patterns (biclusters) from 2D microarray data efficiently. QHB ensures that the fi-

nal bicluster trends are not only consistent but exhibit similar degrees of fluctuation

between consecutive conditions. Moreover, QHB provides a hierarchical picture of

inter-bicluster relationships, maintains information integrity and offers users a pro-

gressive way of knowledge exploration. Finally, we propose an efficient algorithm

q-cluster to identify time-lagged patterns. The algorithm facilitates localized com-

parison and processes several genes simultaneously to generate detailed and complete

time-lagged information between genes/gene clusters.

We conduct experiments on both synthetic and real microarray datasets. Our

experiments show the effectiveness and efficiency of our algorithms in mining the

localized co-expressed gene patterns. We believe our research in this thesis delivers

valuable information and provides excellent tools for bioinformatics research.



Chapter 1

Introduction

1.1 Motivation: Microarray Technology and Mi-

croarray Data Analysis

1.1.1 Microarray Technology

DNA microarray technologies are one of the latest breakthroughs in recent experi-

mental molecular biology, which provide a powerful tool for researchers to quickly,

efficiently and accurately measure the expression levels of thousands of genes simulta-

neously during important biological process and across collections of related samples.

The cDNA microarray [47] and oligonucleotide arrays [16] are two main types of mi-

croarray experiments. The whole microarray process, as shown in Figure 1.1, contains

three basic procedures [55, 1]:

Chip Manufacture: A microarray is a small chip where thousands of DNA molecules

(probes) are attached in fixed grids. Each grid cell relates to a DNA sequence.

Target Preparation, Labelling and Hybridization: A target sample and a reference

sample are labelled with red and green dyes, respectively, and each is hybridized with

the probes on the surface of the chip.

Scanning Process : Chips are scanned by the fluorescent microscope, and with

1
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Figure 1.1: Microarray Process

image analysis, the log(green/red) signal intensities of mRNA hybridizing at each

site is measured.

Both cDNA microarray and oligonucleotide array experiments measure the ex-

pression level for each DNA sequence by the ratio of signal intensity between the

experimental sample and the reference sample. Positive values indicate higher ex-

pression in the target versus the reference, and vice versa for negative values. There-

fore, datasets resulting from both methods share the same biological semantics. In

this thesis, we will refer to both the cDNA microarray and the oligonucleotide array

as microarray technology and term the measurements collected via both methods as

gene expression data.

A microarray experiment typically assesses a large number of DNA sequences

(genes, cDNA clones, or expressed sequence tags) under multiple experimental condi-

tions. These experimental conditions may be cellular environments, or a collection of
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Figure 1.2: Gene Expression Matrix

different tissue samples (e.g., normal versus cancerous tissues), or a time series during

a biological process (e.g., the yeast cell cycle). In this thesis, we will uniformly term

the “DNA sequence” as “gene” and refer to all kinds of “cellular environments”, “tis-

sue samples”, and “time series” as “experimental conditions”. The gene expression

dataset resulting from a microarray experiment where the expression levels of genes

are measured under single category of experimental conditions can be represented

by a real-valued gene expression matrix O = {Oij|0 ≤ i ≤ n, 0 ≤ j ≤ m}, where

the rows G = {g1, g2, . . . , gn} form the expression patterns of genes, the columns

C = {c1, c2, . . . , cm} represent the expression profiles of experimental conditions, and

each cell Oij is the measured expression level of gene i under experimental condition

j. Figure 1.2 illustrates such a matrix.

Furthermore, the gene expression dataset resulting from a microarray experi-

ment where the expression levels of genes are measured under multiple categories

of experimental conditions can be represented by a real-valued gene expression cube

O = {Oij...k|0 ≤ i ≤ n, 0 ≤ j ≤ m, . . . , 0 ≤ k ≤ l}, where one dimension of the cube

G = {g1, g2, . . . , gn} forms the expression patterns of genes, the other dimensions
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Figure 1.3: Gene Expression Cube

Cj = {cj1, cj2, . . . , cjm}, . . . , Ck = {ck1, ck2, . . . , ckl} represent the expression profiles

of other experimental conditions respectively, and each cell Oij...k is the measured

expression level of gene i under several experimental conditions from j to k simul-

taneously. Figure 1.3 illustrates an example of the 3D gene-sample-time data cube

where the expression levels of n genes are measured simultaneously under m tissue

samples over a series of k time points.

1.1.2 Microarray Data Analysis

The gene expression data produced by the DNA microarray technologies are known

as microarray data. Analysis on the huge amount of valuable microarray data has

become one of the major bottlenecks in the utilization of the microarray technologies.

As various researches on mapping and sequencing genomes are reaching successful

completion, the researchers are recently focusing more on functional genomics. Initial

experiments suggest that genes of similar functions yield similar expression patterns in

microarray hybridization experiments [1]. The genes with similar expression patterns

are called co-expressed genes, while the similar gene patterns are called co-expressed
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gene patterns. Co-expressed gene patterns are essential in revealing the gene func-

tions, gene regulations, subtypes of cells, and cellular processes of gene regulatory

networks.

• First, co-expressed genes may demonstrate a significant enrichment for function

analysis of the genes. The functions of some poorly characterized or novel genes

may be better understood by testing them together with the genes with known

functions.

• Second, co-expressed genes with strong expression pattern correlations may indi-

cate co-regulation and help uncover the regulatory elements and the mechanism

of the transcriptional regulatory networks.

• Third, elucidating different co-expressed gene patterns may help reveal sub-cell

types which are hard to identify by traditional morphology-based approaches [32].

• Finally, in the co-expressed gene patterns, genes are related to specific experi-

mental conditions (cellular environments/samples/time periods) and the related

experimental conditions are grouped together as well. This helps to elucidate

the underlying knowledge in the co-effects of experimental conditions on the

co-expressed genes.

Hence, identifying the co-expressed gene patterns hidden in microarray data offers

a great opportunity for an enhanced understanding of functional genomics. Biological

studies show that many co-expressed patterns are common to a group of genes only

under specific experimental conditions. In cellular processes, subsets of genes are

usually co-expressed only under certain experimental conditions, but behave almost
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independently under other conditions. Hence, identifying co-expressed gene patterns

under the whole experimental conditions may not be useful to practical biological

application. On the contrary, discovering localized co-expressed gene patterns is the

key to uncovering many genetic pathways that are not apparent otherwise. Therefore,

researchers are motivated to extract a subset of genes that co-express under a subset

of experimental conditions.

1.2 Research Problem: Mining Localized

Co-expressed Gene Patterns

Data mining, which is a process of analyzing data in a supervised/unsupervised man-

ner to discover useful and interesting information hidden within the data, has become

one of the main techniques in the microarray data analysis. In this thesis, our research

problem is to mine localized co-expressed gene patterns from microarray data. In the

following, we give the definition of localized co-expressed gene patterns, categorize

them into three types, and detail each type respectively.

Definition 1.1: Localized Co-expressed Gene Patterns A localized co-

expressed gene pattern is made up of a subset of genes and a subset of experimental

conditions (biological attributes, samples, time series and etc.) such that the subset

of genes either (a) share the same subset of biological attributes; or (b) have the

same expressing status under the same subset of experimental conditions; or (c) have

the similar changing tendency when experimental conditions change consecutively; or

(d) have the similar changing tendency after a certain time lag.

Based on the way how genes co-regulate, we categorize the localized co-expressed
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Figure 1.4: Example: Co-attribute Pattern

gene patterns into three types: co-attribute patterns, co-tendency patterns, and time-

lagged patterns.

1.2.1 Co-attribute Pattern

The co-attribute pattern emphasizes the static co-regulations among genes. It con-

tains genes that either share the same biological attributes (case(a)), or have the same

expressing status (expressed/depressed) under specific experimental conditions (cel-

lular environments/samples/time periods) (case(b)). Given the table in Figure 1.4

for example, let the rows represent genes A,B,C,D; let the columns represent six

attributes from At1 to At6; and let cells containing “
√

” indicate that the rela-

tive genes have certain attributes, then genes A,B,D and attributes At1, At2, At4

form a co-attribute pattern. That is, the genes A,B,D share the same attributes of

At1, At2, At4, which makes them a co-attribute pattern. Since any subset of A,B,D

and At1, At2, At4 can also form co-attribute patterns but contains no new information,

in this thesis, we only focus on the “maximal” patterns. The co-attribute pattern is

“maximal” if it contains the maximal subsets of biological attributes or experimental

conditions that frequently occur in maximal subsets of genes.

Frequent closed pattern (FCP) mining technique [41] has been widely applied
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to mine the “maximal” co-attribute patterns. The resulting FCPs are the “maxi-

mal” co-attribute patterns1. Several efficient FCP mining algorithms have been pro-

posed in the literature. Some notable schemes include CLOSET [42], CLOSET+ [22],

CHARM [60], CARPENTER [39], REPT [12] and D-miner [7]. While these FCP min-

ing algorithms have been shown to perform well in their respective context, it turns

out that they have limitations in three aspects: (a) they are not particularly effective

for dense biological datasets; (b) they are all limited to 2D dataset analysis; (c) there

are no parallel closed frequent pattern mining algorithms in the literature. These

limitations motivate us to design novel methods to mine FCPs from dense datasets

effectively, extend existing 2D frequent closed pattern analysis to 3D context, and

parallelize the FCP mining process as well.

1.2.2 Co-tendency Pattern

The co-tendency pattern emphasizes the dynamic co-regulations among genes. It

contains genes that have the similar changing tendency when experimental conditions

change consecutively (case(c)). That is, the subset of genes’ expression levels rise and

fall coherently under a subset of consecutive experimental conditions. Figure 1.5

shows an example of co-tendency pattern2. With the change of time, the expression

levels of genes YBR101C and YFL006W have the similar changing tendency, and

they exhibit a fluctuation of the similar shape.

Biclustering technique [11] has been well studied in the literature to mine co-

tendency patterns. Biclustering simultaneously clusters both genes and experimental

1In the thesis, “FCPs” is termed as the counterpart of “ maximal co-attribute patterns”.
2data downloaded from http://arep.med.harvard.edu/biclustering/yeast.matrix
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Figure 1.5: Example: Co-tendency Pattern

conditions, which captures the coherence of a subset of genes under a subset of ex-

perimental conditions. The resulting biclusters are co-tendency patterns3. Some

notable biclustering algorithms include bicluster model [11], δ-cluster model [58],

pClusters [56], and DBF [63]. While these algorithms can generate co-tendency pat-

terns, they are limited in several ways: (a) they are not adequate to capture the trend

consistency of biclusters; (b) they miss out some interesting patterns; (c) they are

inefficient due to the hill-climbing paradigm; (d) they cannot provide a graphical rep-

resentation of the inter-bicluster relationships. To address these limitations, in this

thesis, we design an effective and efficient biclustering algorithm that could deliver

the inter-bicluster relationships favored by the biologists.

1.2.3 Time-Lagged Pattern

The time-lagged pattern emphasizes the delayed dynamic co-regulations among genes.

It contains genes that have the similar changing tendency after a certain time lag

(case(d)). That is, some genes’ expression levels exhibit a fluctuation of the delayed

3In the thesis, “biclusters” is termed as the counterpart of “co-tendency patterns”.
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similar shape to the other genes’. Figure 1.6 shows an example of time-lagged pat-

tern4. With the change of time, the expression levels of gene YDR224C have a similar

but delayed changing tendency with gene YGL207W, and they exhibit a fluctuation

of the delayed similar shape. From the time-lagged pattern, we could infer that the

expression of gene YGL207W may have an “activation” effect on the expression of

gene YDR224C.

While the FCP mining and biclustering techniques are employed to mine co-

attribute patterns and co-tendency patterns respectively, they cannot identify pat-

terns with time-lagged gene co-regulations. Existing work on time-lagged analysis

largely analyzes two genes at a time over all conditions and ranks the gene pairs based

on the score generated using a certain criterion, such as the Cross-Correlation Func-

tion [33] and the Needleman-Wunsch alignment algorithm [34]. The gene pairs with

higher scores are regarded as the interesting and promising pairs. Such an approach

is clearly computationally inefficient: given n genes, we would need
(

n
2

)
comparisons.

More importantly, these techniques may miss out some interesting time-lagged pat-

terns. Since the score is generated based on the analysis of the whole sequence, it is

not sensitive to the cases that a small but interesting part of the genes are co-regulated

while there is no distinct relationship between the remaining part. As a result, some

interesting gene pairs may not always be ranked higher than uninteresting ones. A

higher scoring threshold will lose out some interesting patterns while a lower one will

bring about tremendous amount of redundant pairs. In addition, there is a lack of

detailed information on co-regulated gene pairs, such as the exact lagged-time, the

4data downloaded from http://genome-www.stanford.edu/cellcycle/data/rawdata
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Figure 1.6: Example: Time-Lagged Pattern

starting and ending time points, and the number of the co-regulated patterns be-

tween two genes. Moreover, they mostly deliver co-regulations between genes, but

seldom draw relationships between gene clusters. As such, we would like to explore

new time-lagged clustering algorithm to identify localized time-lagged co-regulations

between genes and/or gene clusters efficiently.

1.3 The Contributions

To solve the research problems discussed, we propose several new algorithms in this

thesis to mine the three types of localized co-expressed gene patterns from microarray

data.

1.3.1 2D FCP from Dense Datasets: C-Miner and B-Miner

We extend the 2D frequent closed pattern (FCP) mining algorithms from sparse data

context to dense context. We introduce a framework that progressively returns FCPs

to users. The framework has the following three distinguishing features.

First, the original mining space is recursively partitioned into sub-spaces such
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that (a) each subspace can be mined independently, and (b) the union of the FCPs

obtained from all subspaces is a superset of the answer.

Second, as each subspace is mined independently, redundant FCPs (those that

may also be produced in other subspaces) and false drops (those that are FCPs in

the subspace but are not FCPs in the original space) are pruned away.

Third, because the subspaces can be mined independently, answers can be pro-

gressively returned to users as each subspace is mined. Moreover, the framework fa-

cilitates parallel mining efficiently without incurring significant communication over-

head. Based on the framework, we propose two schemes: C-Miner and B-Miner. We

have implemented C-Miner and B-Miner, and our performance study on synthetic

datasets and real dense datasets shows their effectiveness over existing schemes. We

also report experimental results on parallel versions of these two methods.

1.3.2 3D FCP: RSM and CubeMiner

We extend the traditional 2D FCP mining algorithms to the 3D context to deal

with the new challenges coming up with the spurning of 3D microarray data. Our

contributions are as follows.

First, we introduce the concept of frequent closed cube (FCC), which generalizes

the notion of 2D frequent closed pattern to 3D context.

Second, we propose two approaches to mine FCCs from 3D dataset. The first

approach is a three-phase framework, called Representative Slice Mining algorithm

(RSM) that exploits 2D FCP mining algorithms to mine FCCs. The basic idea is

to transform a 3D dataset into a set of 2D datasets, mine the 2D datasets using an

existing 2D FCP mining algorithm, and then prune away any frequent cubes that are

not closed. The second method is a novel scheme, called CubeMiner, that operates
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directly on the 3D dataset to mine FCCs.

Third, we also show how RSM and CubeMiner can be easily extended to exploit

parallelism.

Finally, we have implemented RSM and CubeMiner, and conducted experiments

on both real and synthetic datasets. The experimental results show that the RSM -

based scheme is efficient when one of the dimensions is small, while CubeMiner is

superior otherwise. To our knowledge, there has been no prior work that mine FCCs.

1.3.3 Bicluster: Quick Hierarchical Biclustering

To overcome the limitations of traditional biclustering algorithms, we propose a quick

hierarchical biclustering algorithm (QHB) to efficiently mine biclusters with both

consistent trends and trends with similar degrees of fluctuations. Compared with

previous biclustering models, we have made five main contributions.

First, we define a new bicluster quality measurement called Mean Fluctuating

Degree (MFD) to reflect the trend consistency of biclusters. Since a similarity score

is not enough to ensure trend consistency, we use our MFD only as a supplementary

control agent. Instead, the trend consistency is mainly controlled and embedded in

the partitioning strategy of QHB, which ensures the high quality of consistent trends

within each bicluster.

Second, instead of improving on only part of the “seeds”, QHB takes the entire

dataset into consideration. During the hierarchical partitioning process, all valuable

information of a parent node is kept into the child nodes without any loss.

Third, QHB adopts a partition based refinement that can simultaneously process

several rows/columns. This is much more efficient than existing techniques.

Fourth, QHB provides a very clear hierarchical inter-bicluster relationships. Such
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graphical representation of the relationships among biclusters provides more valuable

knowledge to the biologists.

Finally, the hierarchical partitioning strategy of QHB facilitates a progressive

refinement of results. Biclusters are refined from generality to details progressively.

This is very helpful in biological application. Instead of waiting long hours for all

detailed results, biologists now would be provided with a general picture of the whole

results from the upper levels of the hierarchical tree in a very short response time.

Then biologists could freely choose their focus, rolling up to generalize it or rolling

down to detail it, progressively. This would help biologists quickly focus on their

most interested patterns for further exploration.

1.3.4 Time-Lagged Pattern: q-cluster

To overcome the limitation of existing time-lagged gene co-regulation analysis al-

gorithms, we propose an efficient algorithm q-cluster to identify time-lagged co-

regulated gene clusters. The algorithm facilitates localized comparison and processes

several genes simultaneously to generate detailed and complete time-lagged informa-

tion between genes/genes clusters. Compared with previous works, we have made

three main contributions.

First, q-cluster takes localized co-regulation into consideration, which is more

detailed and valuable than traditional global analysis. In addition, it delivers a more

detailed information on co-regulated gene patterns, such as the exact lag time, the

starting and ending time points and the number of co-regulated patterns between

genes.

Second, q-cluster processes several genes simultaneously, which is much more ef-

ficient than previous algorithms that analyze only two genes each time.
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Third, q-cluster not only delivers time-lagged co-regulations between genes (as

traditional global methods), but also delivers time-lagged co-regulations between gene

clusters.

1.4 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we will review

the previous mining techniques for localized co-expressed gene pattern identification.

Chapter 3 presents the two new algorithms C-Miner, B-Miner and their parallel ver-

sions for efficient mining of frequent closed patterns (2D co-attribute gene patterns)

in 2D dense context. Chapter 4 proposes the notion of frequent closed cube and intro-

duces two novel algorithms RSM, CubeMiner and their parallel versions for frequent

closed cubes (3D co-attribute gene patterns) mining in 3D context. In Chapter 5,

we propose a quick hierarchical biclustering algorithm QHB for efficient biclusters

(co-tendency gene patterns) mining. In Chapter 6, we propose a new efficient algo-

rithm q-cluster to identify time-lagged co-regulated gene clusters (time-lagged gene

patterns). Finally, chapter 7 concludes this thesis and discusses some future research

work.

In Chapter 3, The 2D frequent closed pattern mining algorithms from dense

datasets take the material from paper [26]; the 3D frequent closed cube mining algo-

rithms in Chapter 4 adopt some material from paper [27]; Chapter 5 uses the algo-

rithm in paper [23] to mine biclusters from 2D datasets; and the q-cluster algorithm

for mining 2D time-lagged patterns take some material appearing in papers [24, 25].



Chapter 2

Literature Reviews

In this chapter, we will review some existing mining techniques for co-attribute pat-

terns, co-tendency patterns and time-lagged patterns respectively. We also review

the data preprocessing techniques which can improve the quality of the data, thereby

helping to improve the accuracy and efficiency of the subsequent mining process.

2.1 Co-attribute Patterns: Frequent Closed Pat-

tern Mining

Frequent pattern mining is an unsupervised mining technique that identifies all sub-

sets of items or attributes frequently occurring in many database records or transac-

tions. Frequent pattern mining is a fundamental step to several essential data mining

tasks, including association rule analysis [3], sequential patterns [4], episodes [37],

partial periodicity [20], and etc. As such, many efficient frequent pattern mining

algorithms have been proposed in the literature [3, 36, 50, 61]. However, frequent

pattern (FP) mining is a time-consuming process to generate too many patterns (a

large number of which are “redundant” in the sense that they do not shed additional

insights) for users to digest. To reduce the number of frequent patterns, frequent

16
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closed pattern (FCP) mining [41] was proposed to identify all maximal subsets of

items or attributes that frequently occur in maximal subsets of database records or

transactions. While the number of FCPs are much smaller than the FPs, FCPs carry

the same information as the FPs.

Several efficient FCP mining algorithms have been proposed in the literature. A-

close [41] uses a breadth-first search to find FCPs. CLOSET [42] and CLOSET+ [22]

adopt a depth-first, feature enumeration strategy. CLOSET uses a frequent pattern

tree for a compressed representation of the dataset. CLOSET+, an enhanced version

of CLOSET, uses a hybrid tree-projection method to build conditional projected

table in two different ways according to the density of the dataset. Both MAFIA [9]

and CHARM [60] use a vertical representation of the datasets. MAFIA adopts a

compressed vertical bitmap structure while CHARM enumerates closed itemsets using

a dual itemset-tidset search tree and adopts the Diffset technique to reduce the size of

the intermediate tidsets. Since these methods adopt a feature enumeration strategy,

they cannot efficiently handle datasets with a large number of features (columns) and

a small number of rows (which are common in microarray datasets).

A recently proposed FCP mining algorithm, CARPENTER [39], is designed to

deal with the special “large columns small rows” characteristic of biological datasets.

CARPENTER combines the depth-first, row enumeration strategy with some effi-

cient search pruning techniques, which results in a scheme that outperforms tra-

ditional closed pattern mining algorithms on biological data. Another algorithm,

COBBLER [40], has also been proposed to mine biological datasets. COBBLER is

designed to dynamically switch between feature enumeration and row enumeration

depending on the data characteristic in the process of mining. However, the decision
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to switch the enumeration strategies at runtime is not very precise and is costly. Yet

another algorithm is REPT [12]. REPT traverses the row enumeration tree using a

projected transposed table. The projected transposed table is represented by a prefix

tree, which is similar to the FP-tree [42]. However, unlike the FP-tree whose nodes

represent items, nodes in a prefix tree are rows. Experimental results showed that

REPT is more efficient than CLOSET+ and CARPENTER [12]. Unfortunately, all

these three algorithms do not work well when the dataset is dense.

In [7], a novel algorithm, D-miner, was proposed to identify closed sets of attributes

(or items) for dense and highly-correlated boolean contexts. As we will explore D-

Miner in this thesis, we describe the algorithm of D-Miner in details here. D-miner

mines FCPs (T, G) from data matrix A under constraints. It builds the sets T and G

and uses monotonic support threshold constraints simultaneously on the object set

O and item set P to reduce the search space. D-Miner uses H to denote a set of cell

groups which are partitions of the false values (i.e., “0”) of the boolean matrix. An

element (a, b) ∈ H is called a “cutter” if ∀t ∈ a, and ∀g ∈ b, At,g = 0. H contains

as many elements as rows in the matrix. Each element is composed of the attributes

valued by 0 in this line. Given the matrix A in Table 2.1 for example, the cutter set

H contains three elements: (t1, g1g2), (t2, g2), and (t3, g1g2).

Table 2.1: An Example Dataset (Matrix A).
O/P g1 g2 g3

t1 0 0 1
t2 1 0 1
t3 0 0 1

D-Miner starts with the whole dataset A(O,P ) and then splits it recursively using

the cutters of H until all cutters in H are used and consequently all cells in each
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resulting submatrix have the value 1. A cutter (a, b) ∈ H is used to cut a submatrix

(X,Y ) if a∩X 6= ∅ and b∩Y 6= ∅. When a submatrix (X,Y ) is split by a cutter (a, b) ∈
H, then (X\a, Y ) (the left son) and (X,Y \b) (the right son) are generated. Recursive

splitting leads to all FCPs, but also some non-maximal unclosed frequent patterns.

Figure 2.1 shows the splitting tree generated from the 2D matrix A in Table 2.1.

From Figure 2.1, we can see that the resulting submatrix (t3, g3) and (t2t3, g3) are

non-maximal unclosed frequent patterns as they have a superset (t1t2t3, g3).

(t2t3, g1g2g3) (t1t2t3, g3)

(t1t2t3, g1g2g3)

(t1, g1g2)

(t2, g2)

(t3, g1g2g3)

(t3, g1g2)

(Ф, g1g2g3)

(t2t3, g1g3)

(t2, g2)

(t1t2t3, g3)

(t3, g1g2) (t3, g1g2)

(t3, g3) (t2, g1g3) (t2t3, g3) (t1t2t3, g3)

Figure 2.1: D-Miner Splitting Tree.

To remove the unclosed patterns from the results, D-Miner employs a close check-

ing property as follows:

Property 2.1: Let (X,Y ) be a leaf of the tree and HL(X,Y ) be the set of cutters

associated to the left branches of the path from the root to (X,Y ). Then (X,Y ) is a

FCP if it contains at least one item of each element of HL(X,Y ). It means that when

trying to build a right son (X,Y ), we must check that ∀(a, b) ∈ HL(X,Y ), b∩Y 6= ∅.
According to Property 2.1, (t3, g3) and (t2t3, g3) in Figure 2.1 are pruned off in
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that they contain neither g1 nor g2.

D-miner’s effectiveness comes from the fact that it focuses on the missing items/

attributes of an attribute/item, which are actually the sparse “0” portion of the

dataset. However, the efficiency of D-miner highly depends on the number of cutters,

which is relevant to the minimum number of the dataset’s rows/columns containing

“0”. As a result, when the dataset has relatively large number of rows and columns,

D-miner loses its advantages.

Although the above algorithms may have good applications in their specific do-

mains, it turns out that they have limitations in three aspects.

First, they are not suited for applications that involve datasets with very high

density where nearly 50% or more of the cells contain ones (as we shall see, all the

real microarray datasets that we used in the performance study are dense) - they are

either very inefficient (i.e., take hours or even days to produce patterns even with high

minimum support threshold), or may even fail (i.e., run out of memory). In addition,

these methods are non-progressive, i.e., the users are swarmed with all the answer

patterns (after a very long wait) at a single time when the algorithm completes. These

limitations motivate us to mine FCPs from dense datasets efficiently and progressively.

Second, they are all limited to 2D dataset analysis, for example, the gene-time,

gene-sample biological datasets in microarray dataset analysis. With recent advances

in microarray technology, the expression levels of a set of genes under a set of sam-

ples can be measured simultaneously over a series of time points, which results in 3D

gene-sample-time microarray data [32]. This trend motivates us to extend existing

2D frequent closed pattern analysis to 3D context. In [46], a scheme is proposed to
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discover calendric association rules. Although time intervals are taken as a third di-

mension, they are pre-defined by users as calendric information. Hence, no thorough

enumeration on the third dimension is employed and no “close” constraint is put on

any dimension. In [45], sequential pattern mining is studied in multi-dimensional

context. However, it is still 2D frequent pattern mining along with multi-dimensional

projected database. The third or even the fourth dimensions do not fully enumerate

on different entries as what the two base dimensions do, and different entries on the

third/fourth dimension are only employed to divide the data records into different

projected groups. Moreover, no “close” relationships between the third/fourth di-

mension and the two base dimensions are delivered. Thus, these works cannot be

extended to mine FCCs. More recently, [32] and [64] proposed clustering algorithms

to analyze clusters on 3D microarray data, however, such algorithms cannot be em-

ployed to mine 3D frequent closed patterns.

Third, there are no parallel closed frequent pattern mining algorithms in the liter-

ature. As data mining is computationally expensive, there has also been a number of

attempts to design parallel and distributed mining algorithms. As noted in the survey

paper on parallel association mining [62], most of the previous parallel pattern min-

ing algorithms are extensions of their sequential counterparts. For example, Count

Distribution is based on Apriori, ParEclat on Eclat, and APM on DIC. However,

most of these incur significant communication overhead. Several recently proposed

parallel frequent pattern mining algorithms [15, 52], avoid such communication cost

with either new data structures or new partition methods. In [15], an algorithm called

Inverted Matrix is proposed that exploits replication across parallel nodes, and a rel-

atively small independent tree is built to summarize co-occurrences, which ensures
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minimum inter-processor communication. In [52], a parallel projection approach for

partitioning the transaction data is proposed to mine frequent patterns without com-

munication information. However, all these parallel mining algorithms are limited

to frequent pattern mining, to our knowledge, no parallel algorithms for “closed”

frequent pattern mining have been reported in the literature.

To overcome these limitations, we propose new algorithms that progressively and

efficiently return FCPs to users in Chapter 3. In Chapter 4, we introduce the con-

cept of frequent closed cube (FCC) that generalizes the notion of 2D frequent closed

pattern to 3D context, and propose novel algorithms to mine FCCs from 3D datasets.

Moreover, we study the parallel versions of these new algorithms.

2.2 Co-tendency Patterns: Biclustering

While frequent closed pattern mining algorithms are effective in static co-attribute

pattern identification, they cannot mine co-tendency patterns with dynamic changes.

Instead, clustering is a widely used technique in identifying co-tendency patterns from

microarray data.

Clustering analysis is another unsupervised mining technique that partitions a

set of objects into clusters such that objects in the same cluster are similar than

objects in other clusters. Clustering algorithms are usually classified into two cat-

egories: global clustering and subspace clustering. Many conventional clustering al-

gorithms [14, 49, 18, 28] on gene expression data analysis are classified into global

clustering as the sample space is globally shared by all resulting clusters. Recently,

interactive clustering frameworks [29, 31] are proposed to adopt the domain knowl-

edge in the mining process for higher biological accuracy. Moreover, joint mining
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algorithms on both gene expression data and protein interaction data are also pro-

posed in [44, 43] to further enhance the accuracy. However, in cellular processes,

subsets of genes are usually co-expressed only under certain experimental conditions,

but behave almost independently under other conditions. Hence, the global cluster-

ing results are limited by the existence of a number of samples where the activity of

genes is uncorrelated. For this reason, subspace clustering was first proposed in [2]

to find subsets of objects that appear together under subsets of features. The sub-

space clustering algorithm on microarray data analysis was first introduced by [11]

as “biclustering” to simultaneously cluster both genes and experimental conditions,

which captures the coherence of a subset of genes under a subset of experimental

conditions. As highlighted in [56], discovery of biclusters is essential in revealing the

significant connections in gene regulatory networks. Therefore, researchers are mo-

tivated to extract a subset of genes whose expression levels rise and fall coherently

under a subset of conditions, that is, they exhibit fluctuation of a similar shape when

conditions change, which is called “consistent trends”.

In [11], the biclustering algorithm begins with the original matrix and iteratively

masks out null values and biclusters that have been discovered. The node-deletion

and node-addition algorithms are introduced to find submatrices in expression data

that have low mean squared residue (MSR) score. Let I ⊂ X and J ⊂ Y be subsets

of genes and conditions. The pair (I, J) specifies the submatrix AIJ . The MSR of

AI,J is defined as follows:

H(I, J) = 1
|I||J |

∑
i∈I,j∈J

(dij−diJ−dIj +dIJ)2 where diJ = 1
|J |

∑
j∈J

dij, dIj = 1
|I|

∑
i∈I

dij,

dIJ = 1
|I||J |

∑
i∈I,j∈J

dij are the row and column means and the means in the submatrix

AIJ . A submatrix AIJ is called a δ-bicluster if H(I, J) ≤ δ for some δ > 0.
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Based on the idea of bicluster model, δ-cluster model [58] is proposed to further

accelerate the biclustering process. The δ-cluster model incorporates null values and a

move-based algorithm (FLOC) is proposed. FLOC starts at choosing initial biclusters

called “seeds” randomly from the original matrix and then proceeds with iterative

gene/condition deletion and addition, aiming at achieving the best potential MSR

score reduction.

Another work [56] also addresses such issue by proposing a depth-first algorithm

to mine pClusters. This method clusters dataset row-wise as well as column-wise to

find pClusters that satisfy a user specified minimum pScore. Given x, y ∈ I, and

a, b ∈ J , the pScore of a 2× 2 matrix is defined as:

pScore

([
dxa dxb

dya dyb

])
= |(dxa − dxb)− (dya − dyb)|.

Pair (I, J) forms a δ-pCluster if for any 2×2 submatrix X in (I, J), pScore(X) ≤ δ

for some δ > 0.

Beside these data mining algorithms, Getz G. et al. devised a coupled two-way

iterative clustering algorithm to identify biclusters [19]. The notion of a plaid model

is introduced in [35]. It describes the input matrix as a linear function of variables

corresponding to its biclusters and an iterative maximization process of estimating

a model is presented. Amir Ben-Dor et al. defined a bicluster as a group of genes

whose expression levels induce some linear order across a subset of the conditions,

i.e., an order preserving sub-matrix [6]. They also proposed a greedy heuristic search

procedure to detect such biclusters. Segal E. et al. described many probabilistic

models to find a collection of disjoint biclusters which are generated in a supervised

manner [48]. Moreover, the idea of bipartite graph is applied in [53] to discover
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statistically significant biclusters. A two-way interrelated clustering algorithm is pro-

posed in [54] to dynamically manipulate the relationship between the gene clusters

and sample groups while conducting an iterative clustering through both of them.

Furthermore, [30] applies a pattern-based clustering model which is a generalization

of several previous models.

More recently, a deterministic biclustering algorithm DBF is proposed [63] to fur-

ther improve the biclustering quality and efficiency. DBF is a two-phase algorithm.

In phase 1, a set of good-quality biclusters (with low mean squared residue) are gen-

erated by the frequent closed pattern mining algorithm CHARM [60]. By modelling

the changing tendency between two consecutive experimental conditions as an item,

and genes as transactions, a frequent itemset with the supporting genes essentially

forms a bicluster. All resulting biclusters are sorted based on the ratio of its mean

squared residue over its volume. Only biclusters with low MSR
V olumn

are retained as

“good seeds” for further refinement. In phase 2, the “good seeds” are iteratively

refined by a node addition heuristics. In each iteration, each bicluster is repeatedly

tested with columns and rows not included in it to determine if they can be included.

The concept of gain [58] is applied in the testing. Given a mean squared residue

threshold δ, the gain of inserting a column/row x into a bicluster c is defined as [63]:

Gain(x, c) = rc−r′c
r2

rc

+ v′c−vc

vc
where rc, r′c are the mean squared residues of bicluster

c and bicluster c′, obtained by performing the insertion respectively, and vc and v′c

are the volumes of c and c′ respectively.

At each iteration, each bicluster is repeatedly extended by an additional gene or

condition that has the most gain while keeping the MSR below the predetermined

threshold δ. A minimum row variance threshold is set to remove biclusters with trivial
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changes in trends.

The above methods on mining biclusters with consistent trends still have some

limitations.

First, the similarity measures of existing methods are inadequate to ensure the

consistent trends of biclusters. Existing methods use either MSR or pScore as the

similarity measure for biclustering process. Big volume biclusters with low MSR score

or pScore are defined as “good” biclusters, which are supposed to be generated by

the algorithms. Strategies that are based on the MSR or pScore increase the trend

consistency to some extent by pruning off bad patterns with inconsistent trends.

However, neither MSR nor pScore itself is enough to ensure trend consistency of the

whole bicluster. Patterns with higher MSR score or pScore could have more consistent

trends than those with lower MSR score or pScore. Figure 2.2 shows an example of

three patterns (a), (b) and (c) with both MSR score and pScore in increasing order.

However, we see clearly that trends in pattern (c) are more consistent than those in

pattern (b) and pattern (a).

Hence, we conclude that no single value is enough to control the trend consistency

of the whole pattern. Therefore, previous algorithms that take either MSR or pScore

as the main control agent inevitably bring in biclusters with inconsistent trends.

Second, existing methods have two aspects of information loss during mining pro-

cess. On one hand, it is due to the score (MSR or pScore) oriented row/column

removing process. Since the score of the whole pattern cannot reflect all localized

trend consistency, some good genes/conditions would inevitably be removed from the

pattern. A tight threshold on the similarity measure would prune off more poten-

tial valuable information while a loose one would result in bad patterns. On the
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(c) MSR=14.641, pScore=94.9

Figure 2.2: Trend Consistency.
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other hand, previous algorithms usually work on “part” of the whole dataset. They

generate biclusters by improving on either randomly selected “seeds” or good ranked

“seeds”. This might miss out a lot of interesting patterns and result in loss of relevant

information.

Third, existing methods are not efficient. The seed improvement process follows

the hill-climbing paradigm and can involve significant amount of computation. The

process often involves the iterative testing of whether the addition/deletion of more

rows or columns to/from the biclusters could enhance the similarity score. This testing

requires a fair bit of calculation. Moreover, the testing is random and rows/columns

are tested one by one. This would result in a long processing time before any accept-

able result is returned to users.

Finally, very few inter-bicluster relationships are delivered by previous framework

(e.g., which biclusters are closer to each other, which biclusters are remote from each

other, and which bicluster is superset/subset of another bicluster). A biclustering

algorithm that (bi)clusters a gene expression dataset and provides a graphical repre-

sentation of the inter-bicluster relationships would be more favored by the biologists.

To the best of our knowledge, no previous work has established a clear relationship

between biclusters.

Taking into consideration the above limitations of existing works, we propose a

new quick hierarchical biclustering algorithm in Chapter 5.
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2.3 Time-Lagged Patterns: Time-Lagged Cluster-

ing

There are a number of previous approaches for identifying time-lagged gene co-

regulations. The first is the Cross-Correlation Method [33]. Compared with the

traditional Pearson Correlation Coefficient Method, this method takes into account

the time lag issue. However, it is only useful in determining whether two variables

have strong global (i.e., similarity is measured over all conditions), but not local time-

lagged similarity (i.e., similarity is measured for a subset of conditions). The second

method is the Edge Detection Method [10]. This method sums up the number of edges

of two gene expression curves where the edges have the same direction within a rea-

sonable time lag to generate a score. Edges that are further apart are assigned lower

score than those that are nearer. As a result, the gene pairs with higher scores are

regarded as the promising pairs with activation relationship. Although this method

considers more localized similarities, its current form can only determine potential ac-

tivation relationships. In these two methods, the regulation direction of gene pairs is

not considered. Besides these two methods, Bayesian Networks [5] have also been ap-

plied; however, the high computational cost renders it impractical. Another approach

is the Dominant Spectral Component Method [59]. Based on the autoregressive mod-

elling technique, this method decomposes the time series expression sequences into

spectral components, and the correlation between two sequences is formulated as a

sum of scaled sub-correlations. Although this method looks into the temporal aspect

of time series microarray data, it measures only gene-to-gene relationship rather than

relationships among multiple gene clusters.

Recently, [34] proposed the Event Method to deal with some of the above-mentioned
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limitations. The algorithm marks the directional changes as an event Rising (R), Con-

stant (C), or Falling (F) by calculating the slope of the expression value at each time

interval, resulting in a string of events. Then a global sequence alignment algorithm,

Needleman-Wunsch algorithm, is employed to match the corresponding events of two

genes, based on which a numerical score is generated as an indicator of the existing

likelihood of regulatory relationship between those two genes. The alignment is run

in both directions to decide the regulator and the target gene. As for the inhibition

relationship, the event string is first re-encoded by changing each R to F, and vice

versa, while C remains unchanged. Then the alignment process is performed again

as above. This manner of processing can be regarded as “two genes one relationship

per alignment”, which means that each alignment can only decide one relationship

(activation/inhibition) between two genes. Although this method delivers more infor-

mation and is relatively efficient, its scoring system to identify promising time-lagged

gene pairs is still questionable for the following reasons: first, it cannot tell whether

a relative low score is due to a “mismatch” or a “match with a large time lag”; sec-

ond, the score cannot tell whether two sequences have frequent “short matches” or

infrequent “long sequential matches”; third, it is not sensitive to genes whose event

sequences are similar for only a small part of time period but different from each

other as a whole. Hence, some interesting time-lagged patterns are not always scored

high and may be missed out. As for the result, Event Method generates only gene

pairs without detailed information such as the exact lagged-time, and starting and

ending time of the co-regulation. Moreover, it tests all combinations of two genes,

which is not very efficient to some extent, and finally, it only provides results between

two genes, but not co-regulated relationships between gene clusters.
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The limitations of existing work on time-lagged pattern identification motivate

us to find a new time-lagged clustering algorithm to identify localized time-lagged

co-regulations between genes and/or gene clusters efficiently in Chapter 6.

2.4 Data Preprocessing

Data preprocessing is important for microarray data analysis in that the gene expres-

sion data tend to be incomplete, noisy, and inconsistent. Data preprocessing includes

data cleaning, data integration, data transformation and data reduction [21]. We

mainly review data transformation and data reduction techniques as they are closely

related to our work.

2.4.1 Data Transformation

Data transformation is a process to convert data into an appropriate form for min-

ing. Normalization is the main transformation technique that scales the values of an

attribute so that they fall within a small specified range, such as 0.0 to 1.0. Normal-

ization helps prevent attributes with initially large ranges from outweighing attitudes

with initially smaller ranges. There are many normalization methods in the literature.

We review three notable methods [21]: min-max normalization, z-score normalization,

and normalization by decimal scaling.

Min-max normalization performs a linear transformation on the original data.

Let minA and maxA be the minimum and maximum values of the attribute A. Min-

max normalization maps a value v of A to v′ in the range [new minA, new maxA] by

computing v′ = v−minA

maxA−minA
(new maxA − new minA) + new minA.

Min-max normalization preserves the relationships among the original data values.
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It will encounter an “out of bounds” error if a future input case for normalization

falls outside the original data range for A.

Z-score normalization (or zero-mean normalization) performs the attribute

value normalization based on the mean and standard deviation of the attribute val-

ues. A value v of attribute A is normalized to v′ by computing v′ = v−Ā
σA

, where Ā

and σA are the mean and standard deviation, respectively, of attribute A.

Z-score normalization is useful when the actual minimum and maximum of at-

tribute A are unknown, or when there are outliers that dominate the min-max nor-

malization.

Normalization by decimal scaling normalizes by moving the decimal point of

values of attribute A. The number of decimal points moved depends on the maximum

absolute value of A. A value v of A is normalized to v′ by computing v′ = v
10j , where

j is the smallest integer such that Max(|v′|) < 1.

In this thesis, since this is not the focus of our research, we simply adopt the ideas

of Z-score normalization and normalization by decimal scaling in the data transfor-

mation.

2.4.2 Data Reduction

Data reduction techniques can be applied to obtain a reduced representation of the

data, yet closely maintain the integrity of the original data. The use of concept hier-

archies for data discretization is an alternative form of data reduction. Discretization

techniques can be used to reduce the number of values for a given continuous attribute,

by dividing the range of the attribute into intervals. Interval labels can then be used

to replace actual data values. The numeric attributes of microarray data are usually

reduced into concept hierarchies before the mining tasks. The concept hierarchies
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for numeric attributes can be constructed automatically based on data distribution

analysis. There are five main methods for numeric concept hierarchy generation [21]:

binning, histogram analysis, cluster analysis, entropy-based discretization, and data

segmentation by “natural partitioning”.

Binning: The attribute values can be discretized by distributing the values into

bins, and replacing each bin value by the bin mean or median.

Histogram analysis: The histogram for an attribute A partitions the data dis-

tribution of A into disjoint subsets, or buckets. The buckets could be determined by

the partitioning rules such as Equiwidth, Equidepth, V-Optimal and MaxDiff. In an

Equiwidth histogram, the width of each bucket range is uniform; in an Equidepth his-

togram, each bucket contains roughly the same number of contiguous data samples;

in a V-optimal histogram, the histogram variance is a weighted sum of the original

values that each bucket represents, where bucket weight is equal to the number of val-

ues in the bucket; In a MaxDiff histogram, a bucket boundary is established between

each pair for pairs having the β − 1 largest differences, where β is user-specified.

Cluster analysis: A clustering algorithm can also partition data into groups

such that each cluster forms a node of a concept hierarchy.

Entropy-based analysis: An information-based measure called entropy can be

used to recursively partition the values of a numeric attribute A. Unlike other meth-

ods, entropy-based discretization uses class information.

Segmentation by natural partitioning: The numerical ranges are partitioned

into relatively uniform, easy-to-read intervals that appear intuitive or “natural”.

The ideas of binning, equiwidth partitioning, and natural partitioning are applied

in the algorithms of this thesis.
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2.5 Summary

This chapter reviews the existing algorithms for mining the co-attribute patterns, co-

tendency patterns and time-lagged patterns. The advantages and limitations of some

notable algorithms are analyzed, which serve as a background for our new methods

development in the following chapters. Some notable data preprocessing methods

that could improve the efficiency and ease of the mining process are also reviewed.



Chapter 3

Mining 2D Frequent Closed
Patterns from Dense Datasets

3.1 Overview

In this chapter, we address the problem of mining frequent closed patterns (FCPs)

from dense 2D datasets. As we shall see, the real microarray datasets we used are

dense where approximately 50% of the cells are ”1”s while the rest are ”0”s. Existing

techniques (as noted in Chapter 2: Literature Review) cannot handle such datasets.

We present a framework that allows us to mine FCPs from dense datasets effi-

ciently and progressively. The framework comprises two phases. In the first phase, the

mining space is partitioned into a number of smaller subspaces such that (a) each sub-

space can be mined independently, and (b) the union of the FCPs from all subspaces

is a superset of the FCPs obtained from the original space. In the second phase, each

subspace is mined independently to return the FCPs. The crucial task in this phase is

to prune away redundant FCPs (those that may also be produced in other subspaces)

and false drops (those that are FCPs in the subspace but are not FCPs in the original

space). Such a framework has two key advantages. First, it facilitates progressiveness

- as each subspace can be independently mined, we can return its answers to the users

35
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without having to wait for all subspaces to be completely processed. This means users

enjoy short initial response time, and are no longer overwhelmed by all the answers

at the same time. Second, the schemes are amiable to parallelism with little or no

synchronization (and hence negligible communication overhead) - the subspaces can

be mined independently and concurrently across a number of parallel sites. This is

critical as, to our knowledge, there is no reported work in the literature on parallel

FCP mining.

Based on this framework, we propose two algorithms, C-Miner and B-Miner, for

efficient and progressive mining of FCPs. The two schemes differ in two ways. First,

the partition methods are different: C-Miner partitions the mining space based on

Compact Rows Enumeration while B-Miner partitions the space based on Base Rows

Projection. Second, because the partitioning methods are different, different pruning

strategies are used in the second phase.

We have implemented C-Miner and B-Miner, and experimented with synthetic

datasets and three real microarray datasets. Our results show that our C-Miner and

B-Miner are superior to Closet+, REPT and D-Miner on dense datasets. We report

results on parallel versions of our proposed schemes. We also show that the FCPs

obtained from our methods are of biological significance.

The rest of this chapter is organized as follows. In the next section, we present

some preliminaries. Section 3.3 presents the proposed C-Miner and B-Miner al-

gorithms. In Section 3.4, we report experimental results obtained from comparing

C-Miner and B-Miner against some existing schemes. Finally, we conclude in Sec-

tion 3.5.



37

3.2 Preliminaries

We shall first define some notations that we will be using throughout this chapter,

and then give the problem description.

Let R = {r1, r2, . . . , rn} denote a set of rows, and C = {c1, c2, . . . , cm} denote a set

of columns. In the dataset, each row ri contains a set of columns, and each column

cj is contained in a set of rows. In this chapter, we represent a dataset by a binary

matrix O = n×m, where cell Oi,j corresponds to the relationship between row i and

column j; a value true (i.e., “1”) denotes the “containing/contained” relationship;

and a false value otherwise. Table 3.1 shows an example. In the table, r3 contains

c2 and c6, denoted as C(r3) = {c2, c6}; and c7 is contained in r5 and r6, denoted as

R(c7) = {r5, r6}.

Table 3.1: A Sample Dataset (Matrix O).
R/C c1 c2 c3 c4 c5 c6 c7

r1 1 0 0 0 1 1 0
r2 1 1 0 0 0 1 0
r3 0 1 0 0 0 1 0
r4 1 1 1 1 1 1 0
r5 1 1 0 1 0 0 1
r6 1 0 1 1 0 0 1

Definition 3.1 Column Support Set R(C ′): Given a set of columns C ′ ⊆ C,

the maximal set of rows that contain C ′ is defined as the Column Support Set R(C ′) ⊆
R.

For example, in Table 3.1, let C ′ = {c1, c4}, then R(C ′) = {r4, r5, r6} since r4, r5

and r6 contain c1 and c4, and no other rows contain both two columns.

Definition 3.2 Row Support Set C(R′): Given a set of rows R′ ⊆ R, the

maximal set of columns that contain R′ is defined as the Row Support Set C(R′) ⊆ C.
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For example, in Table 3.1, let R′ = {r1, r2}, then C(R′) = {c1, c6} since c1 and c6

are contained in r1 and r2, and no other columns are contained in both two rows.

Definition 3.3 Support |R(C ′)|: Given a set of columns C ′, the number of rows

in the dataset that contain C ′ is defined as the Support of C ′, denoted as |R(C ′)|.
Definition 3.4 Closed Patterns (CP): A set of columns C ′ ⊆ C is called a

closed pattern if there exists no C ′′ such that C ′ ⊆ C ′′ and |R(C ′′)| = |R(C ′)|.
Definition 3.5 Frequent Closed Patterns (FCP): A set of columns C ′ ⊆ C

is called a frequent closed pattern if (1) |R(C ′)|, the support of C ′, is higher than a

minimum support threshold; and (2) C ′ is a closed pattern.

For example, given that minsup = 1, the column set {c1, c5, c6} will be a frequent

closed pattern in Table 3.1 since it occurs two times which is more than the minsup

threshold. However, {c2, c3} is not a frequent closed pattern in that it has a superset

{c1, c2, c3} and |R({c1, c2, c3})| = |R({c2, c3})|.
Definition 3.6 Data Density: The Data Density (denoted as Density) is defined

as the percentage of cells containing value “1” in the (boolean) dataset.

Definition 3.7 Pattern Length: Given a frequent closed pattern, the number of

columns contained in the pattern is defined as the Pattern Length, denoted as Len. For

example, given the frequent closed pattern {c1, c5, c6}, the pattern length Len = 3.

Problem Definition (FCP Mining): Given a dataset O, our problem is to

discover all FCPs with respect to a user support threshold minsup and a user pattern

length threshold minlen.

Before leaving this section, we would like to point out that we will often need to

refer to the column support set of a FCP. As such, for convenience, we will also refer

to the submatrix R(FCP )× FCP as FCP.
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3.3 Progressive FCP Mining

In this section, we first present the basic framework for progressive FCP mining.

We then present the two schemes, C-Miner and B-Miner, that are based on the

framework. Finally, we show how the framework can be easily adapted for parallel

FCP mining.

3.3.1 A Framework for Progressive FCP Mining

Let O be the original dataset (matrix) to be mined. We shall refer to O as a space;

in this case, the original mining space. Let MineFCP (M) denote the set of frequent

closed patterns (FCPs) mined from space M . The basic idea of the framework,

as illustrated in Figure 3.1, comprises two phases - subspace generation phase, and

subspace mining phase.

In the first phase, the subspace generation phase, the original mining space O is

recursively1 split into submatrices/subspaces S1, S2, . . . , St, t ≥ 1, such that

MineFCP (O) ⊆ ∪t
i=1MineFCP (Si) (3.3.1)

In other words, the original space is split such that the union of the FCPs mined from

all the subspaces may be a superset of the actual answer. This property allows us

to mine the various subspaces independently and concurrently. In this way, answers

obtained from a subspace can be returned immediately to the users and hence realizing

progressiveness. Moreover, since a subspace is smaller than the original data space, it

can be mined more efficiently. As already mentioned, the ability to mine the subspaces

independently facilitates parallelism.

1In our current implementation, we adopt only one level of splitting.
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Figure 3.1: The progressive framework.

In the second phase, the subspace mining phase, each subspace is mined for FCPs

independently. However, as noted in Equation 3.3.1, the FCPs mined from a subspace

may contain patterns that are not answers. There are two scenarios in which this can

happen: (a) the FCPs mined from a subspace may contain false drops - a pattern is

an FCP of the subspace, but not globally (i.e., not in the original space), and (b) the

FCPs mined from a subspace is redundant, i.e., the FCP may be mined from multiple

subspaces. In other words,

MineFCP (Si) ∩MineFCP (Sj) 6= ∅

As such, a pruning mechanism must be deployed to remove such non-global and

redundant FCPs so that only answers are returned. As shown in Figure 3.1, as soon

as answers are generated from a subspace, they can be returned to users.
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In the next two subsections, we shall present two algorithms, C-Miner and B-

Miner, that are based on this framework. The two schemes differ in how the original

space is partitioned, and hence the pruning strategies.

3.3.2 Algorithm C-Miner

In this section, we shall present C-Miner which is based on Compact Rows Enumer-

ation.

Partitioning the Mining Space

The partitioning phase of C-Miner comprises four steps. In the first step, similar

rows in the original dataset O, which is an n×m binary matrix, are grouped together

by clustering. Any clustering algorithm can be employed here. In our experimental

study, we have used a well-known gene expression clustering software CLUTO2. The

number of clusters k is a user specified parameter. In CLUTO, the desired k-way

clustering solution is computed by performing a sequence of k−1 repeated bisections.

In this approach, the matrix is first clustered into two groups, then one of these

groups is selected and bisected further. This process continues until the desired

number of clusters is found. During each step, the cluster is bisected so that the

resulting 2-way clustering solution optimizes the clustering criterion function that

maximizes
∑k

i=1

√∑
v,u∈Ri

sim(v, u), where Ri is the set of rows assigned to the ith

cluster, v and u represent two rows, and sim(v, u) is the similarity between two rows.

The cluster to be selected for further partitioning is controlled by the rule that its

bisection will optimize the value of the overall clustering criterion function the most.

In the second step, rows within the same cluster are combined to form a new

2http://www-users.cs.umn.edu/∼karypis/cluto/
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compact row, called cluster-row. Let G = {r1, r2, . . . , rq} be the set of rows of a

particular cluster D. Then the cluster can be represented as D = q×m matrix. The

cluster-row of D, denoted L = {l1, l2, . . . , lm}, is formed according to the rule that

lj =
∑q

i=1

∨
di,j, where j = 1, 2, . . . , m. That is, the cell value of the cluster-row is 0

only when all of its make-up values are 0; otherwise, the cell value is 1. By the above

processing, O is transformed into a compact matrix O′ = l×m, where l is the number

of clusters and l ≤ n. Given matrix O in Table 3.1 for example, let us suppose that

its rows “r1, r2, r3” and “r5, r6” are grouped into clusters L1 and L3 respectively, then

its compact matrix O′ is shown in Table 3.2.

Table 3.2: Compact Matrix O′.
c1 c2 c3 c4 c5 c6 c7

l1(r1, r2, r3) 1 1 0 0 1 1 0
l2(r4) 1 1 1 1 1 1 0

l3(r5, r6) 1 1 1 1 0 0 1

In the third step, C-Miner applies a compact row enumeration strategy on the

compact matrix O′ to divide the space O into subspaces. In previous works, rows (or

columns) to enumerate have equal weight during processing. In C-Miner, the weight

of each cluster-row is the number of its make-up rows (i.e., number of rows of the

corresponding cluster). Hence, during the cluster-row enumeration, the Support of a

subspace is given by the sum of the weights of the corresponding cluster-rows. We

refer to the subspace generated in this step (on O′) as the Compact Subspace (CS).

While any existing row enumeration algorithm can be employed, they have to be

adapted to handle weighted enumeration. Since the process of row enumeration is

equal to the process of recursively removing from the matrix either a row or all cells
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Table 3.3: Cutters.
C(X,Y )

C(l1, c3c4c7)
C(l2, c7)

C(l3, c5c6)

valued “0” of the row, we adopt a depth-first tree splitting strategy (similar to D-

Miner [7]) for compact row enumeration, which works efficiently on dense data.

Table 3.4: Resulting CSs and Subpaces (minsup = 3,minlen = 2).
Cluster-Row Set Original Row Set Original Column Set Support Pattern Length

l1, l2 r1, r2, r3, r4 c1, c2, c5, c6 4 4
l1, l2, l3 r1, r2, r3, r4, r5, r6 c1, c2 6 2
l2, l3 r4, r5, r6 c1, c2, c3, c4 3 4

The scheme works as follows. We group all cells with value “0” in each cluster-row

together, and define each group as a cutter C(X,Y ) where X ⊆ L and Y ⊆ C. Thus,

the number of cutters is equal to the number of rows containing at least a “0” element.

Then in cutter C(X,Y ), ∀li ∈ X, both ∀cj ∈ Y, O′
i,j = 0 and ∀ck ∈ (C \ Y ), O′

i,k = 1

are satisfied. Table 3.3 shows the 3 cutters generated from the running example of

matrix O′ in Table 3.2.

The splitting tree takes the whole compact matrix O′(L,C) as the root and splits

it recursively using each cutter until all cutters are used and consequently all cells

in each resulting CS have the value “1”. A cutter C(X,Y ) is used to cut a node

(L′, C ′) if X ∩ L′ 6= ∅ and Y ∩ C ′ 6= ∅. By convention, we define the left son

of the node by (L′ \ X,C ′) and the right son by (L′, C ′ \ Y ). The resulting CSs

represent a full enumeration of cluster-rows that satisfies the support and pattern

length constraints. Only nodes not satisfying the minsup and minlen are pruned off.

Thus, no valuable information for FCP mining is removed during subspace dividing
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process. The support of a node is calculated by the weight sum of its cluster-rows

rather than the number of its cluster-rows.

Let minsup = 3 and minlen = 2. Figure 3.2 shows the splitting tree of our

running example and the CSs generated are shown in Table 3.4(made up of column

1,3,4,5).

R(l1l2l3,  c1c2)

L(l2l3,  c1c2c3c4c5c6c7) R(l1l2l3,  c1c2c5c6)

(l1l2l3, c1c2c3c4c5c6c7)

l1, c3c4c7

l2, c7

L(l3,  c1c2c3c4c5c6c7) R(l2l3,  c1c2c3c4c5c6)

l3, c5c6

L(l2,  c1c2c3c4c5c6) R(l2l3,  c1c2c3c4)

l3, c5c6

L(l1l2,  c1c2c5c6)

Figure 3.2: Splitting tree using cutters.

We note that the ordering in which cutters are applied affects performance. As a

heuristic, cutters with more 0s are applied first as it will result in a shorter tree (and

hence more efficient processing).

Finally, in step four, for each CS, its cluster-rows are “decompressed” back into

their original rows. The decompression introduces new cells that may contain 0s in

the corresponding dataset. Now, each of these datasets forms a subspace from which

we can mine the actual FCPs (of the original dataset). Considering the CSs in Ta-

ble 3.4, we have, after decompression, the resulting subspaces as shown in Table 3.4

(columns 2-5).
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Lemma 1. Let O be the original mining space. Let the subspaces generated by Phase 1
of C-Miner from O be S1, S2, . . . , St, t ≥ 1. Then MineFCP (O) ⊆ ∪t

i=1MineFCP (Si).

Proof: To prove Lemma 1 holds, we need to show that every FCP that can be de-

termined from O can be mined from one of the subspaces. Consider an arbitrary

FCP from O, say A = {r1, . . . , ru} × {c1, . . . , cv} where ri ∈ R and cj ∈ C. Clearly,

∀i, j, O(ri, cj) = 1. Let clusters C1, . . . , Cq be the clusters containing rows r1, . . . , ru,

where q ≤ u. Let l1, . . . , lq be the corresponding cluster-rows of these clusters respec-

tively. Then we get O′(li, cj) = 1 (deduced from the row combination rule). Hence,

by the cluster-row enumeration of O′, A′ = {l1, . . . , lq} × {c1, . . . , cv, cv+1, . . . , cm}
will be generated. Given that we take a full enumeration of cluster-rows using

the splitting tree, and only prune off unsatisfactory compact subspaces, the re-

sulting compact subspaces are complete. Then A′ will be decompressed into the

subspace A′′ = {r1, r
′
1, r

′′
1 , . . . , ru, r

′
u} × {c1, . . . , cv, cv+1, . . . , cm} where r1, r

′
1, r

′′
1 are

rows in Cluster 1. Clearly, the subspace A′′ is actually the superset of A. Since

A = {r1, . . . , ru} × {c1, . . . , cv} is a FCP, it will be mined out in phase 2 of C-Miner

from A′′ = {r1, r
′
1, r

′′
1 , . . . , ru, r

′
u} × {c1, . . . , cv, cv+1, . . . , cm}. Thus, Lemma 1 holds.

2

Mining Subspaces to Generate FCPs

To produce the actual FCPs, each subspace is mined independently. We used D-

Miner [7] in this phase as it is quick at picking out 0s in very dense dataset with very

few 0s.

From Lemma 1, we note that it is possible for a FCP f extracted from a subspace

Si (i.e., f ∈ MineFCP (Si)), to be a false drop (i.e., f /∈ MineFCP (O)) or f may

also be extracted from another subspace Sj (i.e., f ∈ MineFCP (Sj), i 6= j). There
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are three cases in which false drops and redundancy may occur (see Figure 3.3).

Si
f

A     G     a            a’       B

C           b                 b’      D

E                         F

Sj

Si

Sj

c             c’

f

A                        B

C                          D

E

F

G

H

a

a’

b

b’

c

c’

Si

Sjf

A                        B

C                          D

E

F

G

H

a

a’

b

b’

O O O

(1) row set unclosed                                (2) column set unclosed                                         (3) redundancy

Figure 3.3: False drops and redundancy.

• Case (1): The supporting row set of f ∈ MineFCP (Si) is not globally closed.

This case occurs when there exists a row rx ∈ R, which is outside subspace Si

but contains Cf (column set of f). Then, there must exist f ′ ∈ MineFCP (Sj)

such that f ⊂ f ′. For example, f = aa′bb′ mined from subspace Si = ABCD is

not globally row-set closed in that f ′ = aa′cc′ from subspace Sj = GBEF is f ’s

superset. Hence, we conclude that, given f = (Rf × Cf ) ∈ MineFCP (Si), if

there exists a row rx ∈ R and rx /∈ Ri (row set of Si) such that ∀cy ∈ Cf , Ox,y =

1, then f should be pruned off.

• Case (2): The column set of f = (Rf × Cf ) ∈ MineFCP (Si) is not globally

closed. Let Si = {li1, li2, . . . , liu} × Ci where Ci is the column set and lix is

the cluster-row contributing to Si. Let Li1, Li2, . . . , Liu be the corresponding

row sets (in the original dataset) from which each cluster-row is generated.

Suppose ∃lix ∈ {li1, li2, . . . , liu} such that Rf ∩ Lix = ∅, that is, some cluster-

row does not contribute to f . Then there must exist another subspace without

such contributing cluster-row Sj = ({li1, li2, . . . , liu} \ lix) × Cj where Ci ⊂ Cj.

It follows that ∃f ′ = (R′
f × C ′

f ) ∈ MineFCP (Sj) such that Rf = R′
f and

Cf ⊆ C ′
f . We defer the equality case “Cf = C ′

f” to Case (3) below. Here, if
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Cf ⊂ C ′
f , f should be pruned off in that it is not globally closed in column set.

For example, f = aa′bb′ from Si = ABCD is not globally column-set closed if

there exists f ′ = aa′cc′ from subspace Sj = EFGH.

• Case (3): f ∈ MineFCP (Si) is redundant in that f ∈ MineFCP (Sj). Fol-

lowing the prerequisites of Case (2) above, if Cf = C ′
f , then f = f ′. Hence, f

is redundant and can be pruned off from Si. For example, f = aa′bb′ can be

mined out in both Si = ABCD and Sj = EFGH.

Based on above observations, we can ensure that our final results contain all and

only the right answers. Before we prove this result, we give the definition of Compact

Row Set first.

Definition 3.8 Compact Row Set: Given a compact subspace Si = {li1, li2, . . . ,
liu} × Ci where Ci is the column set and lix is the cluster-row contributing to Si, we

define Li1, Li2, . . . , Liu as the corresponding Compact Row Set (in the original dataset)

from which each cluster-row is generated.

Given the cluster-row l1 in Table 3.2 for example, the corresponding Compact

Row Set is L1 = {r1, r2, r3}.
Now, for each FCP f generated from subspace Si, we drop redundant FCPs or

false drops based on the pruning rules given in Lemma 2: (i) condition (a) implies

that some Compact Row Set of Si does not contribute to f . The pruning by condi-

tion (a) removes any f that is either not globally closed in column set or redundant;

(ii) condition (b) implies that some other rows outside Si contain f ’s column set. The

pruning by condition (b) drops any f that is not globally closed in row set.
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Lemma 2. Let O be the original space. Let S1, . . . , St be the subspaces generated in
phase 1 of C-Miner. Let Si = Ri×Ci and let f = (Rf ×Cf ) ∈ MineFCP (Si). Then
f can be pruned if (a) ∃Lix ⊂ Ri such that Rf ∩ Lix = ∅; or (b) ∃ry ∈ (R \ Ri) such
that ∀cz ∈ Cf , Oy,z = 1.

Proof: Let f ∈ MineFCP (Si). If (a) holds, Rf ⊆ (Ri \ Lix). Since there ex-

ists another subspace Sj = (Ri \ Lix) × Cj where Ci ⊂ Cj, f ⊂ Sj. Hence,

∃f ′ = Rf × C ′
f = MineFCP (Sj). If Cf = C ′

f , f = f ′, then f can be pruned off

as redundancy; if Cf ⊂ C ′
f , f can be pruned off due to unclosed column set. If (b)

holds, then ∃f ′ = R(Cf )×Cf where ry ∈ R(Cf ). Since f = Rf×Cf ∈ MineFCP (Si),

Rf ⊂ R(Cf ), hence, f can be pruned off due to unclosed row set. 2

Lemma 3. Let O be the original space. Let S1, . . . , St be the subspaces generated
in phase 1 of C-Miner. Let P1, . . . , Pt be the set of FCPs that are pruned from the
corresponding subspaces in phase 2. Then, MineFCP (Si)− Pi ⊂ MineFCP (O).

Proof: Suppose ∃f ∈ MineFCP (Si) − Pi and f /∈ MineFCP (O). Since f /∈
MineFCP (O), there must exist a subspace Sj such that there exists f ′ = R′

f ×C ′
f ∈

MineFCP (Sj) and f ′ ∈ MineFCP (O) such that either (1) Rf = R′
f and Cf ⊂ C ′

f

or (2) Rf ⊂ R′
f and Cf = C ′

f . Since f is not pruned off, it means both conditions

(a) and (b) (in Lemma 2) are violated. Violation of condition (a) indicates that

∀Lix ⊂ Ri, Rf ∩ Lix 6= ∅, and ∀Ljx ⊂ Rj, R
′
f ∩ Ljx 6= ∅. Violation of condition (b)

indicates that Rf = R(Cf ) and R′
f = R(C ′

f ). Suppose (1) Rf = R′
f and Cf ⊂ C ′

f is

satisfied. From Rf = R′
f , we know that Si = Sj (violation of condition (a)). Since

Cf ⊂ C ′
f , f ′ instead of f will be mined out from Si, which contradicts the supposition

that ∃f ∈ MineFCP (Si)−Pi. Suppose (2) Rf ⊂ R′
f and Cf = C ′

f is satisfied. From

Cf = C ′
f , we know that Rf = R(Cf ) = R(C ′

f ) = R′
f (violation of condition (b)),

which contradicts Rf ⊂ R′
f . Hence, the supposition is violated. Thus, we conclude
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that MineFCP (Si)− Pi ⊂ MineFCP (O). 2

Theorem 1. Let O be the original space. Let S1, . . . , St be the subspaces generated
in phase 1 of C-Miner. Let P1, . . . , Pt be the set of FCPs that are pruned from the
corresponding subspaces in phase 2. Then MineFCP (O) = ∪t

i=1(MineFCP (Si) −
Pi).

Proof: The proof follows from Lemma 1- 3. 2

In our running example, after phase 2, the resulting FCPs are shown in Table 3.5.

Table 3.5: FCP(minsup = 3,minlen = 2).
support set FCP support pattern length

r1, r2, r4 c1, c6 3 2
r2, r3, r4 c2, c6 3 2
r2, r4, r5 c1, c2 3 2
r4, r5, r6 c1, c4 3 2

3.3.3 Algorithm B-Miner

We shall now examine algorithm B-Miner. B-Miner is based on Base Rows Projec-

tion.

Partitioning the Mining Space

B-Miner partitions the space O = R×C in two steps: row set partition and column

set partition. In the first step, the row set R is partitioned into several row groups,

defined as Base Row Groups (BRGs). The number of rows in each BRG is the

same, which is a user specified parameter, defined as Group Length (GL). Given

GL = k, the row set R = {r1, r2, . . . , rn} is partitioned into q BRGs: {r1, r2, . . . , rk},
{rk+1, rk+2, . . . , r2k}, . . ., {rq×k+1, rq×k+2, . . . , rq×k}, where q = bn

k
c + 1. Given a
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BRGl = {r(l−1)×k+1, r(l−1)×k+2, . . . , rl×k}, {r1, r2, . . . , r(l−1)×k} is defined as BRGl’s

Former Row Set FRSl; and {rl×k+1, . . . , rn} is defined as BRGl’s Latter Row Set

LRSl.

In the second step, by projection on each BRGs, column set C = {c1, c2, . . . , cm}
is partitioned into q column groups, defined as Base Column Groups (BCGs). For

the lth Base Row Group BRGl = {r(l−1)×k+1, r(l−1)×k+2, . . . , rl×k}, the Base Column

Group BCGl = {c′1, c′2, . . . , c′m} where {c′1, c′2, . . . , c′m} ⊆ C and ∀c′j ∈ {c′1, c′2, . . . , c′m},
∑l×k

i′=(l−1)×k+1

∨
Oi′,j′ = 1.

Each subspace is made up of three elements: BRG, LRS, and BCG. Hence, the

ith subspace Si = (BRGi∪LRSi)×BCGi, which is also equivalent to Si = LRSi−1×
BCGi. Given matrix O in Table 3.1 for example, with GL = 2, there are three

subspaces generated: S1 = {r1, r2, r3, r4, r5, r6} × {c1, c2, c5, c6}, S2 = {r3, r4, r5, r6} ×
{c1, c2, c3, c4, c5, c6}, S3 = {r5, r6} × {c1, c2, c3, c4, c7}.

FCPs will not be generated in the subspace that has fewer rows than minsup.

Hence, the number of subspaces q = b (n−minsup)
k

c + 1 rather than bn
k
c + 1. It is safe

to ignore those latter subspaces without enough rows. Column sets with enough row

support have already been covered by the former subspaces. For the above example,

if we set minsup = 3, only the first two subspaces (S1 and S2) will be mined. The

last subspace S3 with only 2 rows is safe to be dropped off.

Lemma 4. Let O be the original mining space. Let the subspaces generated by Phase 1
of B-Miner from O be S1, S2, . . . , St, t ≥ 1. Then MineFCP (O) ⊆ ∪t

i=1MineFCP (Si).

Proof: To prove Lemma 4 holds, we need to show that every FCP that can be deter-

mined from O can be mined from one of the subspaces. Consider an arbitrary FCP

from O, say A = {r1, . . . , ru}×{c1, . . . , cv} where r1 is the first row. There must exist a
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subspace Si that r1 ∈ BRGi. Hence, {r1, . . . , ru} ⊆ (BRGi∪LRSi) that rf ∈ BRGi.

According to the projection rules, rf ’s column support set rf (C
′) ⊆ BCGi. Since

{c1, . . . , cv} ⊆ rf (C
′), then {c1, . . . , cv} ⊆ BCGi. Moreover, Si = (BRGi ∪ LRSi) ×

BCGi, then A ⊆ Si. Hence, A ⊆ MineFCP (Si). Thus, Lemma 4 holds. 2

a a’

b b’

c c’

C
C

Si Sj Sk

BRGi FRSj

BRGj

FRSk

BRGk

a a’

b b’

c c’

d d’ d d’

c c’

d d’

Figure 3.4: Subspace pruning.

Mining Subspaces to Generate FCPs

Like C-Miner, any FCP mining algorithm can be applied on each subspace to mine

the FCPs. We also adopt D-Miner here. However, due to the way the space is

partitioned, some local FCPs are either globally unclosed or redundant (appearing in

several different subspaces).

Figure 3.4 shows several examples. Consider three consecutive subspaces Si, Sj,

and Sk. It is clear that a pattern mined from previous subspaces may appear again

in the latter subspaces. For example, pattern bb′dd′ from Si may also appear in Sj,

and cc′dd′ from Si may also appear in both Sj and Sk. Such are cases of redundancy.

Moreover, pattern from the latter subspaces may be unclosed if its column set is

contained in its FRS. Given bb′dd′ from Sj for example, since its column set also

exists in FRSj, it is unclosed in that pattern aa′dd′ from the former subspace Si is

its superset and is globally closed.
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To thoroughly remove the globally unclosed and/or redundant FCPs, we develop

two pruning strategies (see Lemma 5). The first condition implies that the FCP does

not contain any row of its subspace’s BRG. The pruning condition thus ensures no

redundancy, that is, FCPs from a certain subspace will not appear again in latter sub-

spaces. For example, in Figure 3.4, FCPs from Si without supporting row in BRGi

such as bb′dd′, cc′dd′ will be pruned off, while FCPs such as aa′dd′, aa′cc′ will be

retained. The second condition implies that there is a row in its subspace’s FRS that

contains the FCP’s full column set. The pruning condition thus ensures no globally

unclosed FCPs, that is, FCPs from a certain subspace will not have any superset in

its former subspaces. For example, in Figure 3.4, FCPs from Sj but with supporting

row in FRSj such as bb′dd′ will be pruned off in that it has a superset aa′dd′ in former

subspace Si.

Lemma 5. Let O be the original space. Let S1, . . . , St be the subspaces generated in
phase 1 of B-Miner. Let FCPi = {ri1, . . . , riu} × {ci1, . . . , civ} be the pattern mined
from subspace Si. Then FCPi can be pruned if (a){ri1, . . . , riu} ∩ BRGi = ∅, or
(b)∃rx ∈ FRSi, such that ∀ciy ∈ {ci1, . . . , civ}, Ox,iy = 1.

Proof: First, we prove that the FCPi can be pruned off if either (a) or (b) hold.

As for (a), FCPi ⊆ Si, hence {ri1, . . . , riu} ⊆ (BRGi ∪ LRSi). Since {ri1, . . . , riu} ∩
BRGi = ∅, thus {ri1, . . . , riu} ⊆ LRSi. Hence, there must exist a latter subspace S ′i

that ri1 ∈ BRG′
i, where ri1 is the first row of {ri1, . . . , riu}. Hence, {ri1, . . . , riu} ⊆

(BRG′
i ∪ LRS ′i). Moreover, according to the projection rules, {ci1, . . . , civ} ⊆ BCG′

i.

Hence, FCPi ⊆ S ′i. Hence, FCPi can be pruned off from Si as either a redundancy

or false drop.

As for (b), since ∃rx ∈ FRSi, such that ∀ciy ∈ {ci1, . . . , civ}, Ox,iy = 1, ∃FCPx =

{rx, ri1, . . . , riu}×{ci1, . . . civ}, such that FCPi ⊂ FCPx. Hence, FCPi can be pruned
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off from Si as a false drop. 2

We note that each subspace Si can be independently mined without any knowl-

edge of other subspaces. As such, all nodes can work in parallel when mining the

allocated subspaces.

Lemma 6. Let O be the original space. Let S1, . . . , St be the subspaces generated
in phase 1 of B-Miner. Let P1, . . . , Pt be the set of FCPs that are pruned from the
corresponding subspaces in phase 2. Then, MineFCP (Si)− Pi ⊂ MineFCP (O).

Proof: We need to prove that if ∃FCPi ∈ MineFCP (Si) − Pi, FCPi is the global

distinct closed frequent pattern. This can be proved in two aspects. First, a subspace

is not “global” for its FCP in that it drops off the Former Row Set. Since (b) ensures

that no rows in its Former Row Set contain the FCP’s full column set, the FCP is

hence global closed. Second, since (a) ensures that a FCP contains at least one row

from its Base Row Group, and the space partition method ensures that all latter

subspaces do not contain such a row, the FCP is hence ensured global distinct, not

appearing again in the former/latter subspaces. As a result, the FCPs generated are

distinct and globally closed. 2

Theorem 2. Let O be the original space. Let S1, . . . , St be the subspaces generated
in phase 1 of B-Miner. Let P1, . . . , Pt be the set of FCPs that are pruned from the
corresponding subspaces in phase 2. Then MineFCP (O) = ∪t

i=1(MineFCP (Si) −
Pi).

Proof: The proof follows from Lemma 4- 6. 2
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3.3.4 Parallel FCP Mining

As noted in the previous subsections, the progressive FCP mining framework can be

easily adapted for parallel processing. In this section, we shall present the parallel

FCP mining framework.

We use as our context a parallel environment that comprises a network of nodes

(i.e., PCs) that are loosely integrated. This would be similar to work like Seti@Home3

and Folding@Home4. Moreover, we assume that only a source node has the original

dataset; in other words, we do not assume that the dataset is partitioned across all

participating nodes. When the dataset needs to be mined, the source node will look

for nodes to parallelize the mining process. Like traditional load-balanced query pro-

cessing, our framework generates a large number of subspaces (larger than the number

of nodes) and then allocates these subspaces to nodes to be mined concurrently and

independently. It is essentially a straightforward adaptation of the progressive FCP

mining framework, and it operates in three logical phases:

• Task execution phase. The task execution phase corresponds to the subspace

generation phase of the progressive framework. Thus, the original space is par-

titioned into subspaces such that mining all the subspaces will lead to a superset

of the answers. This phase can be done at the source node (in which case, the

source node generates all the subspaces). Alternatively, we can parallelize this

phase by exploiting more and more nodes to perform the partitioning: (a) the

source node will generate t1 subspaces; (b) these subspaces are then allocated

to t1 nodes (including the source); each of these t1 nodes will further partition

3http://setiathome.berkeley.edu/
4http://folding.stanford.edu/
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the allocated subspace into t2 smaller subspaces which are then further dis-

tributed to t2 nodes; (c) the above process is repeated until sufficient number of

tasks/subspaces have been produced. For simplicity, in our experimental study,

this task is accomplished by the source node (i.e., we do not parallelize this

phase).

• Task allocation phase. In the second phase, the source node (which acts as a

coordinator) will assign a subspace to each node to mine.

• Task execution phase. Finally, in the third phase, which is similar to the sub-

space mining phase, each node independently mines the allocated subspaces.

We note that the second and third phases operate iteratively: whenever a node

completes processing its subspace, it will request the source node for another subspace.

In this way, the scheme is also load-balancing.

Now, both C-Miner and B-Miner can be parallelized under the framework. There

is, however, one issue to be addressed: in order for a node to be able to mine a subspace

Si independently, the pruning of false drops or redundant FCPs must be done without

incurring any communication overhead between nodes. To ensure this, we need to

disseminate the original dataset O to all participating nodes. This cost, fortunately,

is inexpensive (in terms of response time) as it can be done concurrently while the

data space is being partitioned. Moreover, only one copy per node is necessary even

if multiple subspaces are being allocated to a node. In addition, for our real datasets,

they are not big.
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3.3.5 Time Complexity

The problem of mining maximal frequent itemsets, which is a subset problem of

mining frequent closed patterns, has been proved to be NP-hard [57]. For the 2D

dataset O = R × C, where |R| = N , |C| = M , and η is the number of subspaces

partitioned in the mining process, the time complexity of C-Miner and B-Miner is

O(2
N
η ×M), without applying any pruning strategy. By applying minsup, minlen

and closeness constraints, the efficiency of C-Miner and B-Miner is improved greatly.

3.4 Experimental Results

We have implemented C-Miner and B-Miner, and their parallel versions (denoted as

PC-Miner and PB-Miner respectively) in C. For C-Miner, we employ CLUTO to

group rows into clusters in its phase one. For both C-Miner and B-Miner, we adapt

D-Miner [7] in phase two by incorporating the respective pruning strategies to mine

the subspaces for the exact FCPs. We conducted a performance study to evaluate

their efficiency against Closet+5, REPT [12] and D-Miner. For our experiments, we

use two real microarray datasets: the breast cancer dataset (BC) 6 and the prostate

cancer dataset (PC) 7. In such datasets, the rows represent clinical samples while the

items represent the activity levels of genes/proteins in the samples. In the BC dataset,

there are 78 tissue samples and each sample is described by the activity level of 24481

genes. In the PC dataset, there are 102 tissue samples each described by the activity

level of 12600 genes. The BC and PC datasets are discretized by doing a equal-width

partition for each column with 20 and 4 buckets respectively, resulting a dataset with

5The code is downloaded from http://illimine.cs.uiuc.edu/.
6http://www.rii.com/publications/default.htm
7http://www-genome.wi.mit.edu/mpr/prostate
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density of 49.76% (i.e., 49.76% of the cells contain one, while the rest contain zero)

and 49.18% accordingly. To study the effect of the proposed schemes on other factors

(e.g., density, scalability), we also use synthetic datasets generated by the IBM data

generator8. All the experiments are run on a Pentium 4 PC with 1 GB RAM. We

have run a large number of experiments, and shall present only representative results

here. The default number of processors for the parallel algorithms is 8.
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Figure 3.5: Variation of Density.

8The generator is available at http://www.cs.umbc.edu/c̃giannel/assoc gen.html.
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3.4.1 Varying Dataset Density

In the first set of experiments, we study the effects of dataset density on the execu-

tion time. We experiment on seven synthetic datasets generated by the IBM data

generator with 50 rows, 500 columns, and density varying from 10% to 40%. We

compare the performance of Closet+, REPT, D-Miner, C-Miner (Ncluster=5), and B-

Miner (GL = 1), PC-Miner and PB-Miner. We set minsup = 15 and minlen = 1.

Figure 3.5 shows the execution time (seconds in logarithm scale) of each algorithm.

From Figure 3.5(a), we find that Closet+ and REPT are quicker than D-Miner when

the density is below 25%, but become much slower than D-Miner when density is

above 30%. That is, although Closet+ and REPT are efficient on sparse datasets,

they lose their advantage on dense datasets compared with D-Miner. Thus, since our

focus is on dense datasets, we will not discuss them any further. Instead, we shall

compare our proposed schemes with D-Miner. Figure 3.5(b) shows that our pro-

posed schemes C-Miner and B-Miner are much quicker than D-Miner, and C-Miner

is slightly quicker than B-Miner on denser datasets. Moreover, the parallel versions

can further reduce the processing time greatly. We also note that PB-Miner is more

efficient than PC-Miner.

3.4.2 Experiments on Real Microarray Datasets

In the second set of experiments, we compare our proposed schemes against D-Miner

on real microarray datasets by variation of minsup and minlen respectively. For C-

Miner, B-Miner and their parallel versions, one of the key parameters is the number of

subspaces which affects the execution time. For C-Miner and PC-Miner, the number

of subspaces is controlled by the number of clusters. And for B-Miner and PB-Miner,
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the number of subspaces is controlled by the group length(GL). Hence, we begin by

tuning the various algorithms - C-Miner, B-Miner and their parallel versions - on

these two parameters.

Tuning the Proposed Schemes

We vary the number of clusters for C-Miner and PC-Miner. The results for the two

cancer datasets are shown in Figure 3.6, where we set minsup = 5 and minlen = 300

for BC dataset, and minsup = 10 and minlen = 1100 for PC dataset respectively.

The results show that there is a certain “optimal” cluster number for C-Miner. From

the results, we find that more clusters lead to better load balancing in parallelism.

Having more clusters, and hence more subspaces, may be beneficial as it facilitates

load balancing. Having a smaller subspace may result in some “heavy-weight” mining

subspace that dominates performance. Thus, in general, the more subspaces there

are, the better the running time for parallelism. However, when the number of clusters

increases to some point, the overall processing time keeps increasing and the advantage

in parallelism is affected as well. When the number of clusters is very large, the

number of subspaces becomes large. This means that generating the subspaces (in

phase 1) becomes costly, and processing a large number of subspaces (in phase 2) is

also costly.

As for the BC and PC datasets, C-Miner and PC-Miner keeps increasing when

the number of clusters is above 9 and 11 respectively. Hence, we suggest choosing

the number of clusters below the values. For BC dataset, the “optimal” value is 2 for

C-Miner and 8 for PC-Miner. Users may choose the value according to whether they

prefer a centralized or a parallelled scheme. As for the PC dataset, the “optimal” value

is 10 for both C-Miner and PC-Miner. We shall use Ncluster = 2 for BC dataset and
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Ncluster = 10 for PC dataset as the default when experimenting with these datasets

in all subsequent studies.
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For B-Miner and PB-Miner, the number of subspaces is determined by the

Group Length (GL). We vary GL from 1 to 5. The results for the two datasets are

shown in Figure 3.7, where we set minsup = 5 and minlen = 300 for BC dataset,

and minsup = 10 and minlen = 1100 for PC dataset respectively. As GL increases,

the number of subspaces decreases - GL = 1 indicates largest number of subspaces

(i.e., number of subspaces = number of rows) and GL = number of rows indicates

no partitioning (i.e., one single subspace). As shown in Figure 3.7, the execution time
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of both B-Miner and its parallel version (PB-Miner), increases with the increase of

GL. GL’s effect on B-Miner is relatively small. To optimize the PB-Miner, we shall

use GL = 1 as the default for the datasets.
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Figure 3.8: Variation of minsup.

Varying minsup and minlen

In this set of experiments, we study the effects of minsup and minlen on the execution

time. We experiment on BC and PC datasets and compare the performance of D-

Miner, C-Miner, B-Miner, PC-Miner and PB-Miner.

First, we set minlen = 300 and vary the minsup from 5 to 10 for BC dataset;



63

and set minlen = 1100 and vary the minsup from 6 to 16 for PC dataset. The

comparative results are presented in Figure 3.8.
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Figure 3.9: Variation of minlen.

Second, we set minsup = 5 and vary the minlen from 300 to 350 for BC dataset;

and set minsup = 10 and vary the minlen from 1050 to 1100 for PC dataset. The

comparative results are shown in Figure 3.9.

The comparative results presented in Figure 3.8 and Figure 3.9 show clearly that

the execution time decreases with increasing minsup and minlen values. Moreover,

as in the previous experiments, C-Miner, B-Miner and their parallel versions outper-

formed D-Miner. C-Miner outperformed B-Miner for both datasets. For BC dataset,
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the parallel version of C-Miner(PC-Miner) is slightly slower than PB-Miner. This

is due to the reason that the subspaces for PC-Miner is much fewer than those for

PB-Miner, considering Ncluster = 2. As for PC dataset, since Ncluster = 10, PC-Miner

has more subspaces such that the load is well balanced and hence it outperforms

PB-Miner.
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3.4.3 Varying the number of processors

We also study the effects of processor number on the execution time of PC-Miner

and PB-Miner. Since the results for both BC and PC datasets show similar relative

performance, we only show the results of PC dataset. We set the minsup = 10,

minlen = 1100, Ncluster = 10 for PC-Miner and GL = 1 for PB-Miner. Figure 3.10

shows the execution time of PC-Miner and PB-Miner with the variation of processor

number. The execution time of both algorithms decreases with the increasing of

processor number. From the experiments, we find that our schemes balance the

workload very well.
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3.4.4 Scalability

To study the scalability of our proposed schemes, we generate a synthetic dataset of

1000 rows, 100000 columns, and 10% in density using the IBM data generator. We

set Ncluster = 2 and GL = 1 to optimize C-Miner and B-Miner, and vary the minsup

and minlen for the experiments. The results are presented in Figure 3.11. From the

results, we see that our proposed schemes can scale well for large volume datasets.

B-Miner is slightly quicker than C-Miner. And PB-Miner ’s load is better balanced

due to more subspaces. As for D-Miner, it takes more than 30, 000 seconds for each

execution, and hence are not shown in the figures.
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Table 3.6: Sample of Known Co-regulated Genes from the FCPs.

M/G1 Boundary Regulated:
CLN3(YAL040C),TEC1(YBR083W), SWI5(YDR146C), ASH1(YKL185W),
SIC1(YLR079W), CTS1(YLR286C), CHS1(YNL192W), EGT2(YNL327W)
Late G1(SCB) Regulated:
TIP1(YBR067C), CLN1(YMR199W), CLN2(YPL256C)
LateG1(MCB) Regulated:
POL30(YBR088C), MCD1(YDL003W), CDC9(YDL164C), GIC2(YDR309C),
SRS2/HPR5(YJL092W), RFA3(YJL173C), PRI2(YKL045W), CLB5(YPR120C),
CDC45(YLR103C), RFA2(YNL312W), NIK1/HSL1(YKL101W)
S-phase Regulated:
HTB2(YBL002W), HTA2(YBL003C), HHF1(YBR009C), HHT1(YBR010W),
HTB1(YDR224C), HTA1(YDR225W), HHF2(YNL030W), HHT2(YNL031C)
S/G2-phase Regulated:
NUM1(YDR150W), TIR1(YER011W), CWP1(YKL096W), CWP2(YKL096W-A)
G2/M-phase Regulated:
MST2(YDR033W), SWI5(YDR146C), FAR1(YJL157C), ACE2(YLR131C)

3.4.5 Biological Significance

To test the biological significance of our proposed frameworks, we explore a known real

Yeast gene expression dataset9 with 2884 genes under 17 conditions. We preprocess

the dataset by taking genes with expression values exceeding the average expression

value under each condition as high expressed, noted as “1”, and low expressed noted

as “0”, otherwise. Thus results in a (2884× 17) binary matrix of 47.3% density.

We set the minimum support condition as 10 and minimum support gene as 1000

for the experiment. We get 6812 FCPs from which we identify some interesting co-

regulated genes that have already been established in the literature [38, 8]. Table 3.6

shows a sample of such co-regulated genes identified from our results. Among the

9The data is downloaded from http://arep.med.harvard.edu/biclustering/yeast.matrix.
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6812 FCPs, 664 FCPs fail to identify G2/M-phase Regulated Genes. 90% of the

FCPs generated contain the whole six categories of known co-regulated genes.

3.5 Summary

In this chapter, we have proposed a novel framework for mining FCPs (2D co-attribute

patterns) on dense datasets. The key idea is to partition the original datasets into

smaller subspaces such that mining the subspaces will produce the same answers as

mining from the original space. Based on this framework, we proposed two new al-

gorithms, C-Miner and B-Miner. The two schemes adopt different partitioning and

pruning strategies. We also show how the framework can facilitate parallel FCP min-

ing in a straightforward manner. Our performance study showed that both schemes

and their parallel versions are efficient and scalable. Moreover, we test the biological

significance of our frameworks on known real Yeast microarray data and identify some

interesting known co-regulated gene patterns.



Chapter 4

Mining Frequent Closed Cubes in
3D Datasets

4.1 Overview

While several efficient FCP mining algorithms have been studied in Chapter 3, those

algorithms are all limited to 2D dataset analysis, for example, the gene-time, gene-

sample biological datasets in microarray dataset analysis, and the transaction-itemset

datasets in ‘market basket’ analysis. With recent advances in microarray technology,

the expression levels of a set of genes under a set of samples can be measured simulta-

neously over a series of time points, which results in 3D gene-sample-time microarray

data [32]. New patterns delivering gene-sample-time relationships are certainly more

valuable in the study of gene pathways. Even in the traditional ‘market-basket’ anal-

ysis, it is not uncommon to have consumer information on a number of dimensions,

e.g., region-time-items data that stores the sales of itemsets in certain locations over

certain time periods. This trend motivates us to extend existing 2D frequent closed

pattern analysis to 3D context. We refer to the frequent closed pattern in 3D context

as frequent closed cube (FCC). Designing efficient algorithms to discover FCCs is the

theme of this chapter.

68
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Association analysis based on FCCs can deliver more interesting information in

3D context. Let us first take biological microarray datasets for example. Association

analysis based on FCCs can reveal patterns about how the expression of one gene

may be associated with the expression of a set of genes under a set of environments

during a set of time points. Given such information, we can easily infer that the

genes involved participate in some kind of gene networks. Moreover, such association

rules can be used to relate the expression of genes to their cellular environments

and time periods simultaneously. Such associations can help to detect cancer genes

in different cancer developing stages, especially when cancer is caused by a set of

genes acting together instead of a single gene. Like clustering, gene function can be

inferred based on the other genes in such association rule. Next, we give an example

in ‘market basket’ analysis. While the association analysis based on 2D frequent

pattern represents a set of items that are likely to be purchased together in a set of

transactions, a 3D FCC over a sales (region-time-items) dataset would represent a

set of items that are likely to be purchased together in several locations over a set

of time periods. Such information would enable suppliers to deploy their products

to chains located at different places during certain periods where consumers share

similar purchasing behaviors.

In this chapter, we tackle the problem of mining FCCs from 3D datasets. The

FCCs deliver “close” relationships among three dimensions. That is, we identify the

maximum patterns in a 3D context. The 3D pattern is maximum in that an increase in

any dimension will cause a direct decrease in at least one of the other two dimensions;

i.e., no further expansion in any dimension can be made on the pattern.
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Our contributions are as follows. First, we introduce the notion of FCC and for-

mally define it. Second, we propose two approaches to mine FCCs. The first approach

is a three-phase framework, called Representative Slice Mining algorithm (RSM) that

exploits 2D FCP mining algorithms to mine FCCs. The basic idea is to transform

a 3D dataset into a set of 2D datasets, mine the 2D datasets using an existing 2D

FCP mining algorithm, and then prune away any frequent cubes that are not closed.

The second method is a novel scheme, called CubeMiner, that operates directly on

the 3D dataset to mine FCCs. Third, we also show how RSM and CubeMiner can

be easily extended to exploit parallelism. Finally, we have implemented RSM and

CubeMiner, and conducted experiments on both real and synthetic datasets. To our

knowledge, there has been no prior work that mine FCCs. We also show the biological

significance of FCCs delivered from the real microarray datasets.

The rest of this chapter is organized as follows. In Section 4.2, we formally define

the FCC mining problem. Section 4.3 presents the proposed RSM framework, while

Section 4.4 presents the proposed CubeMiner algorithm. In Section 4.5, we show how

RSM and CubeMiner can be extended to exploit parallelism. Section 4.7 reports

experimental results on RSM and CubeMiner, and finally, we conclude in Section 4.8.

4.2 Preliminaries

We shall first define some notations that we will be using throughout this chapter,

and then give the problem description.

Let R = {r1, r2, . . . , rn} denote a set of rows, C = {c1, c2, . . . , cm} denote a set of

columns, and H = {h1, h2, . . . , hl} denote a set of heights. Then a three-dimension

dataset can be represented by a l × n×m binary matrix O = H ×R× C = {Ok,i,j}
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with k ∈ [1, l], i ∈ [1, n] and j ∈ [1,m]. Each cell okij corresponds to the relationship

among height hk, row ri, and column cj. The value true (i.e., “1”) denotes the

relationship that any two dimensions are “simultaneously contained (S-contained)”

in the third one.

Table 4.1 shows an example of a three-dimension dataset in Boolean context. In

Table 4.1, h1 and r4 are S-contained in c3 and c5, denoted as C(h1 × r4) = {c3, c5};
h2 and c5 are S-contained in r1 and r4, denoted as R(h2 × c5) = {r1, r4}; r2 and c1

are S-contained in h1 and h3, denoted as H(r2 × c1) = {h1, h3}.

Table 4.1: Example of Binary Data Context.
H = h1

R/C c1 c2 c3 c4 c5

r1 1 1 1 0 1
r2 1 1 1 0 0
r3 1 1 1 1 1
r4 0 0 1 0 1

H = h2

R/C c1 c2 c3 c4 c5

r1 1 1 1 1 1
r2 0 1 1 1 0
r3 1 1 1 1 0
r4 1 1 1 0 1

H = h3

R/C c1 c2 c3 c4 c5

r1 1 1 1 0 0
r2 1 1 1 0 0
r3 1 1 1 1 0
r4 1 1 0 1 1

Definition 4.1 Height Support Set and H-Support: Given a set of rows

R′ ⊆ R and a set of columns C ′ ⊆ C, the maximal set of heights that simultaneously

contain R′ and C ′ is defined as the Height Support Set H(R′×C ′) ⊆ H. The number of

heights in H(R′×C ′) is defined as the H-Support of (R′×C ′), denoted as |H(R′×C ′)|.
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For example, in Table 4.1, let R′ = {r1, r2} and C ′ = {c1, c2, c3}, then H(R′×C ′) =

{h1, h3} since both h1 and h3 simultaneously contain {r1, r2} and {c1, c2, c3}, and no

other heights contain them simultaneously.

Definition 4.2 Row Support Set and R-Support: Given a set of columns

C ′ ⊆ C and a set of heights H ′ ⊆ H, the maximal set of rows that simultaneously

contain C ′ and H ′ is defined as the Row Support Set R(C ′×H ′) ⊆ R. The number of

rows in R(C ′×H ′) is defined as the R-Support of (C ′×H ′), denoted as |R(C ′×H ′)|.
For example, in Table 4.1, let C ′ = {c1, c2, c3} and H ′ = {h1, h3}, then R(C ′ ×

H ′) = {r1, r2, r3} since r1, r2 and r3 simultaneously contain {c1, c2, c3} and {h1, h3},
and no other rows contain them simultaneously.

Definition 4.3 Column Support Set and C-Support: Given a set of rows

R′ ⊆ R and a set of heights H ′ ⊆ H, the maximal set of columns that simultaneously

contain R′ and H ′ is defined as the Column Support Set C(R′ × H ′) ⊆ C. The

number of columns in C(R′ ×H ′) is defined as the C-Support of (R′ ×H ′), denoted

as |C(R′ ×H ′)|.
For example, in Table 4.1, let R′ = {r3, r4} and H ′ = {h2, h3}, then C(R′×H ′) =

{c1, c2} since both c1 and c2 simultaneously contain {r3, r4} and {h2, h3}, and no

other columns contain them simultaneously.

Definition 4.4 Closed Cube: Given a set of rows R′ ⊆ R, a set of columns

C ′ ⊆ C, and a set of heights H ′ ⊆ H, a cube A = (H ′ ×R′ ×C ′) ⊆ O is defined as a

Closed Cube if (1) R′ = R(C ′×H ′); (2) C ′ = C(R′×H ′); and (3) H ′ = H(R′×C ′).

For clarity, A = (H ′ × R′ × C ′) is written as A = (H ′, R′, C ′). Moreover, conditions

(1), (2) and (3) are referred to as “closed” in row set, column set and height set

respectively. Intuitively, a closed cube is complete (with all ‘1’s inside) and maximal
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(no larger complete cubes contain it).

Definition 4.5 Frequent Closed Cube (FCC): A cube A = (H ′, R′, C ′) ⊆ O is

called a frequent closed cube if (1) the H-Support |H(R′×C ′)|, R-Support |R(H ′×C ′)|,
and C-Support |C(R′×H ′)| are higher than the minimum H-Support threshold (minH),

minimum R-Support threshold (minR), and minimum C-Support threshold (minC)

respectively; and (2) A is a closed cube.

For example, given that minH = minR = minC = 2, the cube A = {h1, h3} ×
{r1, r2, r3} × {c1, c2, c3} will be a frequent closed cube in Table 4.1. However, A′ =

{h1, h3} × {r2, r3} × {c1, c2, c3} is not a frequent closed cube in that {r2, r3} 6=
R({h1, h3} × {c1, c2, c3}) = {r1, r2, r3}. For clarity, cube A′ = {h1, h3} × {r2, r3} ×
{c1, c2, c3} is written as A′ = (h1h3, r2r3, c1c2c3).

Problem Definition: Given a three-dimension dataset O, our problem is to

discover all frequent closed cubes with respect to the user support thresholds minH,

minR, and minC.

4.3 Representative Slice Mining

In this section, we propose a framework, called Representative Slice Mining (RSM),

to mine FCCs. Under this framework, any 2D FCP mining algorithms can be adapted

to work on the 3D dataset. This framework is based on the idea that the 3D dataset

O = H ×R×C can be presented as O = H × SliceR×C . Hence, any dimension such

as H set can be enumerated first, which results in all possible combinations of slices.

Then on each combination of slices, 2D FCP algorithms can be applied on the other

two dimensions such as R and C. Finally, a post-processing strategy is applied on the

results to remove unclosed cubes due to the first enumerated dimension H. Based on
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this idea, we divide the RSM framework into three phases as shown in Algorithm 1.

In phase 1, representative slice is generated based on one-dimension enumeration and

slices combination; in phase 2, any 2D frequent closed pattern mining algorithm can

be applied to mine 2D FCPs on each representative slice; in phase 3, a post-pruning

scheme is applied to remove FCCs unclosed in the enumerated dimension. We shall

present the details of the three phases below, before discussing the correctness of the

scheme.

Algorithm 1 RSM Framework

1: Global variables: H the set of heights, R the set of rows, C the set of columns,
monotonic constraints minH, minR, and minC on H, R, C respectively. α the
set of height subsets, β the set of representative slices, γ the set of 2D FCPs. Let
MineFCP (β) denote the algorithm to mine the set of 2D FCPs for a slice β.

2: Input: 3D Matrix O with l heights, n rows and m columns.
3: Output: ξ the set of FCCs.
4: Phase 1: Representative Slice Generation
5: α ← ∅;
6: while |EnumerateSubset(H)| >= minH do
7: α ← α ∪ EnumerateSubset(H);
8: end while
9: β ← SliceCombine(α);

10: Phase 2: 2D FCP Generation
11: γ ← MineFCP (β);
12: Phase 3: Post-Pruning
13: ξ ← PostPruning(γ);

4.3.1 Representative Slice Generation

In phase 1, we first take the height dimension H as our base dimension1, and enu-

merate set H = {h1, h2, . . . , hl} to get all subsets of H (denoted H ′) such that

1Note that we can pick any of the dimensions as the base dimension. In fact, as we shall see,
because the base dimension has to be enumerated over all combinations of its values, picking the
dimension that has the smallest number of values is a good heuristic. WLOG, we shall use the
height dimension for our discussion.
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|H ′| >= minH. Given the dataset in Table 4.1 for example, let minH = 2, we

will get the subsets {h1, h2}, {h1, h2, h3}, {h1, h3}, and {h2, h3}.
Second, slices within the same subset are combined to form a new representative

slice (RS). Given a 3D dataset O = H×R×C = {Ok,i,j} with k ∈ [1, l], i ∈ [1, n] and

j ∈ [1,m], and let H ′ = {h1, . . . , hx} be the subset to be combined. Then the RS of

H ′ can be represented as a n ×m matrix such that ∀O′
i,j ∈ RS,O′

i,j =
∑x

k=1 ∩Ok,i,j

where i ∈ [1, n] and j ∈ [1,m]. That is, the cell value of the representative slice is 1

only when all of its make-up values are 1; otherwise, the cell value is 0. And we say

that the heights in H ′ “contribute to” the RS of H ′. The 2nd column of Table 4.2

shows the representative slices of the above example.

Table 4.2: RSM Example (minH = minR = minC = 2).
Height Set Representative Slices 2D FCPs 3D FCCs

h2, h3 11100 r1r3 : c1c2c3, 2 : 3
01100 r1r3r4 : c1c2, 3 : 2 h2h3 : r1r3r4 : c1c2, 2 : 3 : 2
11110 r1r2r3 : c2c3, 3 : 2
11001

h1, h3 11100 r1r2r3 : c1c2c3, 3 : 3 h1h3 : r1r2r3 : c1c2c3, 2 : 3 : 3
11100
11110
00001

h1, h2 11101 r1r4 : c3c5, 2 : 2 h1h2 : r1r4 : c3c5, 2 : 2 : 2
01100 r1r3 : c1c2c3, 2 : 3
11110 r1r2r3 : c2c3, 3 : 2
00101

h1, h2, h3 11100 r1r3 : c1c2c3, 2 : 3 h1h2h3 : r1r3 : c1c2c3, 3 : 2 : 3
01100 r1r2r3 : c2c3, 3 : 2 h1h2h3 : r1r2r3 : c2c3, 3 : 3 : 2
11110
00001
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4.3.2 2D FCP Generation

In phase 2, any existing FCP mining algorithm can be applied on each representative

slice to mine 2D FCPs based on dimensions R and C. In our experiments, we adopted

D-Miner [7] as it has been shown to be efficient on relatively dense datasets with long

patterns. After mining, we will have a set of 2D FCPs for R and C dimensions. For

our running example, the FCPs are shown in the 3rd column of Table 4.2.

4.3.3 3D FCC Generation by Post-pruning

In phase 3, 3D frequent patterns are generated by combining each 2D FCP with the

heights contributing to its representative slice. However, not all those 3D frequent

patterns are FCCs. Some of them are not closed in the height set and should be pruned

off. For example, in Table 4.2, after combining the first 2D FCP “r1r3 : c1c2c3, 2 : 3”

with the contributing heights “h2, h3”, a 3D frequent pattern “h2h3 : r1r3 : c1c2c3, 2 :

2 : 3” is generated. This 3D frequent pattern is not a FCC in that it is unclosed in

the height set and has a superset “h1h2h3 : r1r3 : c1c2c3, 3 : 2 : 3”(the 4th FCC in the

4th Column of Table 4.2). That is, the 2D FCP is not only contained in slices h2 and

h3, but also contained in slice h1.

To remove all unclosed 3D frequent closed patterns, we develop a post-pruning

strategy based on Lemma 7. If a 2D FCP is contained in other height slices besides

its contributing height slices, it is unclosed and hence can be removed; otherwise, it

is retained.

Lemma 7. Post-pruning Strategy: Let O′ = H ′ × R′ × C ′ be a 3D frequent pattern
and H be the whole height set. If ∃H ′′ ∈ (H \H ′) such that ∀hk ∈ H ′′,∀ri ∈ R′,∀cj ∈
C ′, Ok,i,j = 1, O′ is unclosed in the height set and can be pruned off; otherwise, O′ is
retained.
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Proof: ∃H ′′ ∈ (H \H ′) such that ∀hk ∈ H ′′,∀ri ∈ R′,∀cj ∈ C ′, Ok,i,j = 1. So, there

exists Os = ((H ′′∪H ′)×R′×C ′), which is the superset of O′ = (H ′×R′×C ′). Hence,

O′ is not closed in the height set, which contradicts the condition (3) of Closed Cube

definition. That is, O′ is not a closed cube and should be pruned off. 2

In the post pruning process, not all relative cells in all non-contributing slices are

checked. As shown in Algorithm 2, during each slice checking, the column checking

loop (from line 12 to 17) is terminated whenever a cell with value ‘0’ is detected,

which directly leads to the termination of the row checking loop (from lines 10 to

22). That is, any one cell with value ‘0’ can stop one slice checking. And if we detect

that any slice passes the column and row checking loops (all relative cells value ‘1’)

without early termination, the whole slice checking loop (from lines 7 to 28) can be

terminated in that the pattern is already confirmed to be unclosed. The strategy of

Algorithm 2 ensures that we finish the close checking as early as possible. For the

example in Table 4.2, after the post-pruning process, the resulting FCCs are shown

in the 4th column.

4.3.4 Correctness

Theorem 3 shows that RSM can correctly generate all and only all FCCs.

Theorem 3. Let FCCs be the set of frequent closed cubes of a 3D dataset. Let
ξ denote the resultant frequent closed cubes obtained from running RSM on the
dataset. Then FCCs = ξ. In other words, RSM correctly generates all and only all
FCCs.

Proof: Let MineFCP (RS) denote the 2D FCP mining algorithm on slice RS. First,

we prove that FCCs ⊆ ξ. Let δ be the set of unclosed 3D frequent patterns removed
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Algorithm 2 RSM Post Pruning

1: Input: 3D Pattern Set γ.
2: Output: 3D FCC Set ξ.
3: for a = 1 upto |γ| do
4: (H ′, R′, C ′) ← γ[a];
5: flag1 ← 1;
6: for k = 1 upto |H| do
7: if hk ∈ (H \H ′) then
8: flag2 ← 1;
9: for i = 1 upto |R| do

10: if ri ∈ R′ then
11: for j = 1 upto |C| do
12: if cj ∈ C ′ and Ok,i,j = 0 then
13: flag2 ← 0;
14: break;
15: end if
16: end for
17: end if
18: if flag2 = 0 then
19: break;
20: end if
21: end for
22: if flag2 = 1 then
23: flag1 ← 0;
24: break;
25: end if
26: end if
27: end for
28: if flag1 = 0 then
29: γ ← γ \ γ[a];
30: end if
31: end for
32: return γ;
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by the post-pruning strategy. Given any FCC O′ = H ′ × R′ × C ′, then there must

exist a representative slice RSH′ such that H ′ contributes to RSH′ . That is, (R′ ×
C ′) ⊆ RSH′ . Since R′ × C ′ is closed for H ′, (R′ × C ′) ⊆ MineFCP (RSH′). Hence,

O′ ∈ (ξ∪δ). As proved in Lemma 7, the post-pruning strategy only removes unclosed

3D frequent patterns, so O′ /∈ δ. Thus, O′ ∈ ξ. Hence, we conclude that FCCs ⊆ ξ.

Next, we prove ξ ⊆ FCCs by contradiction. Assume there exists a 3D pattern

O′ ∈ ξ but O′ /∈ FCCs. Then O′ is either not satisfied by monotonic support

constraints or not closed. Suppose that O′ = H ′ × R′ × C ′ does not satisfy minH

threshold, then RSH′ will be pruned off during subset enumeration, and O′ will not be

generated. Suppose that O′ does not satisfy minR or minC threshold, then (R′×C ′)

of O′ will be pruned off during 2D FCP generation, and O′ will not be generated.

This is contrary to the assumption. Hence, we gather that O′ satisfies monotonic

support constraints but it is not closed.

Suppose that O′ is not closed in the H set, then there exists a closed FCC O′′ =

(H ′ ∪ Ha) × R′ × C ′ such that ∀hk ∈ Ha, ri ∈ R′, cj ∈ C ′, Ok,i,j = 1, where Ha ∈
(H \H ′). Hence, in the post-pruning process, O′ is pruned off, which is contrary to

the assumption that O′ ∈ ξ. Thus, we conclude that O′ is closed in the H set.

Suppose that O′ is not closed in the R set, then there exists a closed FCC O′′ =

H ′× (R′∪Ra)×C ′ such that ∀hk ∈ H ′, ri ∈ (R′∪Ra), cj ∈ C ′, Ok,i,j = 1, where Ra ⊆
(R\R′). Hence, ((R′∪Ra)×C ′) ⊆ RSH′ . Then ((R′∪Ra)×C ′) ⊆ MineFCP (RSH′)

and R′ × C ′ is pruned off by the 2D FCP mining algorithm in that it is unclosed in

the row set. Hence, O′ cannot be generated, which is contrary to the assumption that

O′ ∈ ξ. Thus, we conclude that O′ is closed in the R set. Using the same logic, we

can prove that O′ is closed in the C set.
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Now that we conclude that O′ is closed and satisfies all monotonic constraints.

Hence, O′ ∈ FCCs and our assumption that there exists a 3D pattern O′ ∈ ξ but

O′ /∈ FCCs is wrong. That is, ξ ⊆ FCCs. So, our RSM framework for mining

FCCs is correct in that ξ = FCCs. 2

4.4 CubeMiner

While RSM has the advantage that it can reuse existing FCP mining algorithms, the

number of 2D slices could be large. In this section, we present a novel approach that

mine FCCs directly from the 3D dataset. We shall first present the principle behind

our proposed CubeMiner scheme. Then, we will look at the algorithm, and finally we

shall show the correctness of CubeMiner.

4.4.1 CubeMiner Principle

CubeMiner is a novel algorithm for mining FCC (H ′, R′, C ′) under constraints. It

builds the sets H ′, R′, and C ′ and uses monotonic support threshold constraints

simultaneously on H, R, and C to reduce the search space. A FCC indicates that all

its heights, rows, and columns are in “S-contained” relation. Since we are to identify

maximal cubes with all its cells valued “1”. If we could remove off useless “0s” from

the original whole data cube without changing the forms of the rest cubes, we would

narrow the search space greatly.

Figure 4.1 illustrates the principle of CubeMiner. Let cube O represent the whole

dataset and the left-corner cube O′ inside O represent the useless “0-zone” to be

removed. From the surface of cube O′, three planes α, β and γ are derived. Those
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Figure 4.1: CubeMiner Principle.

three planes could split cube O into three pieces: upper-cube A, back-cube B and

right-cube C. And the equation A ∪ B ∪ C = O \O′ is satisfied. In any of the three

pieces A,B,C, there may still exist “0-zones”. The same splitting principle can be

applied until all “0-zones” are removed off. We try to remove as many “0s” as possible

in each splitting. While scanning in the data, “0s” are summarized together on the

largest dimension for efficiency.

We use Z to denote a set of cell groups which are partitions of the false values (i.e.,

“0”) of the boolean matrix. An element (W,X, Y ) ∈ Z is called a “cutter” if ∀hk ∈ W ,

∀ri ∈ X, and ∀cj ∈ Y , Ok,i,j = 0. And we call W,X, Y the left atom, middle atom,

and right atom of cutter (W,X, Y ) respectively. We summarize the “0” cells row by

row, hence, Z contains as many cutters as rows in all height slices of the 3D data

matrix. Each cutter is composed of the cells valued by 0 in the row. Table 4.3 shows

the 10 cutters of the matrix in Table 4.1. The cutters are sorted by ascending order

of left atom first and middle atom second.

CubeMiner starts with the whole dataset O(H, R, C) and then splits it recursively

using the cutters of Z until all cutters in Z are used and consequently all cells in each
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Table 4.3: Z(cutter set).
W,X, Y
h1, r1, c4

h1, r2, c4c5

h1, r4, c1c2c4

h2, r2, c1c5

h2, r3, c5

h2, r4, c4

h3, r1, c4c5

h3, r2, c4c5

h3, r3, c5

h3, r4, c3

resulting cube have the value 1. A cutter (W,X, Y ) in Z is used to cut a cube

(H ′, R′, C ′) if W ∩ H ′ 6= ∅, X ∩ R′ 6= ∅, and Y ∩ C ′ 6= ∅. In this case, we say

that the cutter is “applicable” to the cube. By convention, we define the left son of

(H ′, R′, C ′) by (H ′ \W,R′, C ′), the middle son by (H ′, R′ \X,C ′) and the right son

by (H ′, R′, C ′ \Y ). Recursive splitting leads to all FCCs, but also some non-maximal

unclosed cubes. Pruning Strategies need to be applied to ensure that we obtain all

FCCs and only the FCCs. We shall consider how to develop such pruning strategies.

Figure 4.2 shows the tree generated from the 3D matrix in Table 4.1.

From Figure 4.2, we see that the 10 cutters in Table 4.3 split the original dataset

into the resulting leaves in 10 steps (levels). We define the steps from the root to a

node as the node’s “path”. Each node is split into three new nodes in the next level if

the cutter is applicable. We only keep and show nodes satisfying support thresholds

(given minH = minR = minC = 2) due to space limitation. However, in each level,

not all nodes generated are useful for further splitting. There are four categories of

useless nodes:

(a) Left son from a middle/right branch by the cutter whose left atom has cut
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Figure 4.2: FCC Mining Tree.
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the node’s path before. For example, the left atom h1 of cutter (h1, r2, c4c5) has

already cut the paths of left sons L(h2h3, r2r3r4, c1c2c3c4c5) (a1 in Level 2) and

L(h2h3, r1r2r3r4, c1c2c3c5) (a2 in Level 2) in Level 2. a1 from the middle branch

is unclosed in row set and a2 from the right branch is unclosed in column set. They

are to be pruned off as the subsets of node L(h2h3, r1r2r3r4, c1c2c3c4c5) (1st node in

Level 1).

(b) Middle son from a right branch by the cutter whose middle atom has cut

the node’s path before. For example, the middle atom r2 of cutter (h2, r2, c1c5) has

already cut the path of middle son M(h1h2h3, r1r3, c1c2c3) (b1 in Level 4). This

middle son is unclosed in column set and should be pruned off as the subset of node

M(h1h2h3, r1r3, c1c2c3c5) (2nd node in Level 3). Middle sons b2, b3 and b4 are all in

such cases: they are either duplicates or subsets of other nodes.

(c) Nodes that are unclosed in height set. For example, node R(h2h3, r1r3, c1c2c3)

(c1 in Level 7) is unclosed in height set because there exists its superset node R(h1h2h3,

r1r3, c1c2c3) (5th node in Level 5). Such nodes should be pruned off to ensure closure

in height set. Nodes c2, c3, c4 are all such examples.

(d) Nodes that are unclosed in row set. For example, node R(h1h2h3, r2r3r4, c1c2c3)

(d1 in Level 2) is unclosed in row set because there exists its superset node R(h1h2h3, r1

r2r3r4, c1c2c3) (6th node in Level 2). Such nodes should be pruned off to ensure closure

in row set. Node R(h2h3, r1r4, c1c2c3) (d2 in Level 7) is also one such example to be

pruned off as it is not closed due to row r3. Note that there exists some nodes that are

closed in row set although they may have a temporary superset node in the processing.

For example, node R(h1h2h3, r3r4, c3c5) (d3 in Level 3) has a temporary superset node

R(h1h2h3, r1r3r4, c3c5) (d4 in Level 3). Though node d3 appears to be temporarily
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‘unclosed’ due to row r1, we detect that after applying a later cutter (h3, r1, c4c5)

in level 7, node d4 loses its superset status, and d3’s offspring L(h1h3, r3r4, c3c5) (d5

in Level 7) just serves as a reason to remove the middle son M(h1h3, r3r4, c3c5) (b2,

an offspring of d4) safely. Hence, such row set nodes which are temporary unclosed

during processing are retained in that they are row set closed in the whole scenario.

To remove useless nodes of (a) and (b) types, we maintain two sets TL = {W1,W2,

. . . , Wp}, TM = {X1, X2, . . . , Xq} in each node to keep track of the left and middle

atoms of cutters that cut its path. And based on the two sets, we develop Left Track

Checking in Lemma 8 and Middle Track Checking in Lemma 9. In the initial status,

TL = TM = ∅ for the root. Since only left sons from a middle/right branch need to

be checked, TL set is updated only on a newly generated middle/right son. Similarly,

since only middle sons from a right branch need to be checked, TM set is updated

only on a newly generated right son. We shall denote the TL (and TM) set of node

O as TLO (and TMO).

Lemma 8. Left Track Checking: Let L = (H ′ \ W,R′, C ′) be the left son of node
O′ = (H ′, R′, C ′) by cutter z = (W,X, Y ). If W ∩ TLO′ 6= ∅, L can be pruned off.

Proof: Since W ∩ TLO′ 6= ∅, W ⊆ TLO′ , hence ∃z′ = (W,X ′, Y ′) ∈ Z cuts

O′’s ancestor O′
a = (H ′

a, R
′
a, C

′
a). Let Ol = (Hl, Rl, Cl) be the left sibling of O′

a

by cutter z′. Then, either (1) Hl = H ′
a \ W,R′

a = Rl \ X ′ ⊂ Rl, C
′
a = Cl or

(2) Hl = H ′
a \ W,R′

a = Rl, C
′
a = Cl \ Y ′ ⊂ Cl. Since cutters between z′ and z

are all with left item W , which are not applicable to Ol, Ol remains unchanged after

all z′ to z cuttings and H ′ \W = H ′
a \W = Hl, R

′ ⊆ Ra, C
′ ⊆ C ′

a. So, in both (1)

and (2), we can draw the conclusion that L ⊂ Ol. Hence, L can be pruned off. 2
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For example, in Figure 4.2, the left son L(h2h3, r2r3r4, c1c2c3c4c5) (a1 in level 2)

of parent P (h1h2h3, r2r3r4, c1c2c3c4c5) (2nd node in level 1) by cutter (h1, r2, c4c5) is

pruned off in that W ∩ TLp = {h1} 6= ∅.

Lemma 9. Middle Track Checking: Let M = (H ′, R′ \ X,C ′) be the middle son of
node O′ = (H ′, R′, C ′) by cutter z = (W,X, Y ). If X ∩ TMO′ 6= ∅, M can be pruned
off.

Proof: Since X ∩ TMO′ 6= ∅, X ⊆ TMO′ , hence ∃z′ = (W ′, X, Y ′) ∈ Z cuts O′’s

ancestor O′
a = (H ′

a, R
′
a, C

′
a). Let Om = (Hm, Rm, Cm) be the middle sibling of O′

a by

cutter z′. Then, we get Hm = H ′
a, Rm = R′

a \X,C ′
a = Cm \Y ′ ⊂ Cm. Hence, after the

application of cutters between z′ and z, the offspring of Om, say O′
m = (H ′

m, R′
m, C ′

m),

satisfies the condition that H ′
m = H ′, R′

m = R′ \X,C ′ ⊆ C ′
m. Since z is not applicable

to O′
m due to R′

m ∩ X = ∅, O′
m remains unchanged after z cutting, and M ⊆ O′

m.

Hence, M can be pruned off. 2

For example, in Figure 4.2, the middle son M(h1h2h3, r1r3, c1c2c3) (b1 in level 4) of

parent P (h1h2h3, r1r2r3, c1c2c3) (4th node in level 3) by cutter (h2, r2, c1c5) is pruned

off in that X ∩ TMp = {r2} 6= ∅.
To remove useless nodes of (c) and (d) types, we develop Close Height Set Check-

ing in Lemma 10 and Close Row Set Checking in Lemma 11.

Lemma 10. Close Height Set Checking: Let O′′ = (H ′′, R′′, C ′′) be the middle/right
son of node O′ and Z be the whole cutter set. If ∃hw ∈ (H \H ′′) (H is the full height
set of O) such that ∀({hw}, {rx}, Cy) ∈ Z where rx ∈ R′′, C ′′ ∩ Cy = ∅, then O′′ is
unclosed in the height set and can be pruned off. Since the left son never satisfies the
condition, only the middle and right sons need this checking.

Proof: ∃hw ∈ (H \H ′′) such that ∀({hw}, {rx}, Cy) ∈ Z where rx ∈ R′′ , C ′′ ∩ Cy =
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∅, that is, ∀Ow,x,y ∈ ({hw}, R′′, C ′′), Ow,x,y = 1. So, there exists Os = (H ′′ ∪
{hw}, R′′, C ′′), which is the superset of O′′ = (H ′′, R′′, C ′′). Hence, O′′ is not closed

in the height set and can be pruned off. 2

For example, in Figure 4.2, node R(h2h3, r1r2r3, c2c3) (c2 in level 7) is not closed

in the height set because there is h1 ∈ (H \ {h2, h3}) such that for cutters (h1, r1, c4)

and (h1, r2, c4c5), {c2, c3} ∩ {c4} = ∅ and {c2, c3} ∩ {c4c5} = ∅. And we find c2’s

superset in node R(h1h2h3, r1r2r3, c2c3) (5th node in level 4).

Lemma 11. Close Row Set Checking: Let O′′ = (H ′′, R′′, C ′′) be the left/right son of
node O′ and Z be the whole cutter set. If ∃rx ∈ (R \R′′) (R is the full row set of O)
such that ∀({hw}, {rx}, Cy) ∈ Z where hw ∈ H ′′, C ′′ ∩Cy = ∅, then O′′ is unclosed in
the row set and can be pruned off. Since the middle son never satisfies the condition,
only the left and right sons need this checking.

Proof:∃rx ∈ (R \R′′) such that ∀({hw}, {rx}, Cy) ∈ Z where hw ∈ H ′′, C ′′ ∩Cy = ∅,
that is, ∀Ow,x,y ∈ (H ′′, {rx}, C ′′), Ow,x,y = 1. So, there exists Os = (H ′′, R′′∪{rx}, C ′′),

which is the superset of O′′ = (H ′′, R′′, C ′′). Hence, O′′ is not closed in the row set

and can be pruned off. 2

For example, in Figure 4.2, node R(h2h3, r1r4, c1c2c3) (d2 in level 7) is not closed in

the row set because ∃r3 ∈ (R\{r1, r4}) such that for cutters (h2, r3, c5) and (h3, r3, c5),

{c1, c2, c3} ∩ {c5} = ∅. And we find d2’s superset in node R(h2h3, r1r3r4, c1c2c3) (3th

node in level 6).
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4.4.2 Algorithm CubeMiner

We are now ready to present CubeMiner algorithmically. CubeMiner is a depth-first

method to mine FCCs. Algorithm 3 contains the pseudo-code of CubeMiner. First,

the left/middle track set TL/TM is initialized with empty set and the set Z of cutters

is computed, and then the recursive function cut() in Algorithm 6 is called.

Algorithm 3 CubeMiner

1: CubeMiner()
2: Global variables: H the set of heights, R the set of rows, C the set of columns,

monotonic constraints minH, minR, and minC on H, R, C respectively.
3: Input: 3D Matrix O with l heights, n rows and m columns.
4: Output: ξ the set of FCCs.
5: TL ← empty(), TM ← empty();
6: Z and |Z| are computed from O;
7: ξ ← cut((H, R, C), Z, 0, |Z|, TL, TM);

Algorithm 4 Close Row Set Check

1: Rcheck((H ′, R′, C ′), Z)
2: Input: node (H ′, R′, C ′) and cutters list Z.
3: Output: flag β.
4: if ∃rx ∈ (R \ R′) such that ∀({hw}, {rx}, Cy) ∈ Z where hw ∈ H ′, C ′ ∩ Cy = ∅

then
5: β ← 0;
6: else
7: β ← 1;
8: end if
9: return β;

Function cut() cuts a node O′ = (H ′, R′, C ′) with the first cutter Z[i] = (W,X, Y )

that satisfies the following constraints. First, (H ′, R′, C ′) must have a non empty

intersection with Z[i]. If it is not the case, cut() is called with the next cutter.

To build the left son L = (H ′ \W,R′, C ′) (lines 9-14), three checks are required:

monotonic constraint check minH(H ′ \W ), left track check, and close row set check
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Algorithm 5 Close Height Set Check

1: Hcheck((H ′, R′, C ′), Z)
2: Input: node (H ′, R′, C ′) and cutters list Z.
3: Output: flag α.
4: if ∃hw ∈ (H \H ′) such that ∀({hw}, {rx}, Cy) ∈ Z where rx ∈ R′ , C ′ ∩ Cy = ∅

then
5: α ← 0;
6: else
7: α ← 1;
8: end if
9: return α;

(Rcheck() in Algorithm 4). If L is not pruned off by the three checks, cut() is called

to process L, and there is no update on TL, TM sets for L.

To build the middle son M = (H ′, R′ \ X,C ′) (lines 15-20), three checks are

required: monotonic constraint check minR(R′ \ X), middle track check, and close

height set check (Hcheck() in Algorithm 5). If M is not pruned off by the three

checks, cut() is called to process M , and the TL set for L is updated to TL ∪W .

To build the right son R = (H ′, R′, C ′ \Y ) (lines 21-29), three checks are required:

monotonic constraint check minC(C ′ \ Y ), close height set check and close row set

check. If R is not pruned off by the three checks, cut() is called to process R, and the

TL, TM sets for L are updated to TL ∪W,TM ∪X respectively.

Since the size of Z and the order of cutters inside Z are important to performance,

the algorithm can be optimized by preprocessing the 3D dataset. We adopt two

heuristics. First, we transpose the 3D data matrix to make |H| < |C| and |R| < |C|,
which helps to minimize the size of |Z|. Second, we sort the height slices such that

height slices with more 0s are always in front of those with fewer 0s. This helps to

accelerate the mining by pruning off the search space as early as possible.
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Algorithm 6 Cutting

1: cut((H ′, R′, C ′), Z, 0, |Z|, TL, TM)
2: Input: Node (H ′, R′, C ′), cutters list Z, iteration number i, |Z| the size of Z, left

and right atoms tracks TL and TM .
3: Output: ξ the set of FCCs.
4: (W,X, Y ) ← Z[i];
5: if i ≤ |Z| − 1 then
6: if W ∩H ′ = ∅ or X ∩R′ = ∅ or Y ∩ C ′ = ∅ then
7: ξ ← ξ ∪ cut((H ′, R′, C ′), Z, i + 1, |Z|, TL, TM);
8: else
9: if minH(H ′ \W ) satisfied and W ∩ TL = ∅ then

10: β ← Rcheck((H ′ \W,R′, C ′), Z);
11: if β = 1 then
12: ξ ← ξ ∪ cut((H ′ \W,R′, C ′), Z, i + 1, |Z|, TL, TM);
13: end if
14: end if
15: if minR(R′ \X) satisfied and X ∩ TM = ∅ then
16: α ← Hcheck((H ′, R′ \X,C ′), Z);
17: if α = 1 then
18: ξ ← ξ ∪ cut((H ′, R′ \X,C ′), Z, i + 1, |Z|, TL ∪W,TM);
19: end if
20: end if
21: if minC(C ′ \ Y ) satisfied then
22: α ← Hcheck((H ′, R′, C ′ \ Y ), Z);
23: if α = 1 then
24: β ← Rcheck((H ′, R′, C ′ \ Y ), Z);
25: if β = 1 then
26: ξ ← ξ ∪ cut((H ′, R′, C ′ \ Y ), Z, i + 1, |Z|, TL ∪W,TM ∪X);
27: end if
28: end if
29: end if
30: end if
31: else
32: ξ ← (H ′, R′, C ′);
33: end if
34: return ξ;
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4.4.3 Correctness

CubeMiner constructs the root (H, R, C) and then reduces simultaneously H, R, C to

have the collection of leaves derived from (H, R, C). Theorem 4 shows that CubeM-

iner can correctly generate all and only all FCCs.

Theorem 4. Let FCCs be the set of frequent closed cubes of a 3D dataset. Let LV
be the set of leaf nodes derived from CubeMiner on the dataset. Then, FCCs = LV .
In other words, CubeMiner can correctly generate all and only all FCCs.

Proof: First, we prove that FCCs ⊆ LV . Let (H, R, C) be the original dataset, Z be

the whole cutter set and P be the set of pruned nodes. Since FCCs ⊆ (H, R, C), and

in the tree building process, only cells valued ‘0’ are removed off by cutters (verified

by node’s son definition) and only useless nodes (subsets of other nodes) are pruned

off (verified by Lemma 8 to Lemma 11), hence, FCCs ⊆ (H, R, C) \ Z \ P , that is,

FCCs ⊆ LV .

Second, we prove LV ⊆ FCCs by contradiction. Assume there exists a leave A ∈
LV but A /∈ FCCs. Then A is either not satisfied by monotonic support constraints

or not closed. Let A = (Ha, Ra, Ca) and Zl, Zm, Zr be the set of cutters associated to

the left, middle, right branches of the path from the root to A respectively. During

the tree building process, each time we cut off a node’s height set, the monotonic

constraint minH is checked to be satisfied, hence, Ha satisfies the monotonic support

constraint. Similarly, Ra and Ca both satisfy their monotonic constraints. Hence, we

gather that A is not closed.

Suppose that A is not closed in the column set, then there exists A′ = (Ha, Ra, Ca∪
C ′

a) where C ′
a ⊆ C \ Ca, and ∀hk ∈ Ha,∀ri ∈ Ra,∀cj ∈ Ca ∪ C ′

a, Ok,i,j = 1. And

since the whole column set C is cut into Ca from the root to A by cutters in Zr,



92

so there exists a set of cutters Za ⊆ Zr to cut off C ′
a and ∀(W,X, Y ) ∈ Za, either

(a) W ⊆ H \ Ha or (b) X ⊆ R \ Ra. Given any of A’s ancestor B = (Hb, Rb, Cb)

derived from a cutter (W,X, Y ) ∈ Za. Since B is a right son, W ⊆ Hb, X ⊆ Rb, and

the TL and TM sets are updated into TL ∪W and TM ∪X respectively. For case

(a), W * Ha, there must exist a cutter in Zl to remove off W on the path from B to

A. That is, between B and A, there must exist a left-son offspring of B. However,

since the left atom of the cutter Wl ∩ TL = W 6= ∅, the left-son offspring is pruned

off and hence no A will be generated, which is contrary to the previous assumption.

For case (b), it is similar to (a): during the process to remove off X from Rb, the

middle-son offspring of B is pruned off due to Xm ∩ TM = X 6= ∅. As a result, A

will not be generated and it is contrary to the assumption too. Hence, we conclude

that the assumption is wrong and A is closed in the column set.

Suppose that A is not closed in the row set, then there exists A′ = (Ha, Ra∪R′
a, Ca)

where R′
a ⊆ R \Ra, and ∀hk ∈ Ha,∀ri ∈ Ra ∪R′

a,∀cj ∈ Ca, Ok,i,j = 1. And since the

whole column set R is cut into Ra from root to A by cutters in Zm, so there exists

a set of cutters Za ⊆ Zm to cut off R′
a and ∀(W,X, Y ) ∈ Za, either (c) W ⊆ H \Ha

or (d) Y ⊆ C \ Ca. Given any of A’s ancestor B = (Hb, Rb, Cb) obtained from a

cutter (W,X, Y ) ∈ Za. Since B is a middle son, W ⊆ Hb, Y ⊆ Cb, and the TL set is

updated into TL∪W . Case (c)’s proof is the same as case (a) above. As for case (d),

Y * Ca, there must exist cutters in Zr to remove off Y on the path from B to A. Let

B′ = (Hb, Rb, Ca) be the right-son offspring of B after removing Y . Since X ∩Rb = ∅,
and X ∩ R′

a 6= ∅, ∃ru = X ∩ R′
a such that ∀hk ∈ Ha,∀cj ∈ Ca, Ok,u,j = 1. Hence B′

is not row set closed due to ru and will be pruned off in the close row set checking of

right son building process. As a result, A will not be generated, which is contrary to
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the assumption. Hence we conclude that the assumption is wrong and A is closed in

the row set.

Suppose that A is not closed in the height set, then there exists A′ = (Ha ∪
H ′

a, Ra, Ca) where H ′
a ⊆ H \ Ha, and ∀hk ∈ Ha ∪ H ′

a,∀ri ∈ Ra,∀cj ∈ Ca, Ok,i,j = 1.

And since the whole height set H is cut into Ha from the root to A by cutters in Zl,

so there exists a set of cutters Za ⊆ Zl to cut off H ′
a and ∀(W,X, Y ) ∈ Za, either

(e) X ⊆ R \ Ra or (f) Y ⊆ C \ Ca. Like the proof in case (d), in case (e)/(f), the

ancestor of A will be pruned off as it will be unclosed in the height set checking during

middle/right son building process. Hence, A will not be generated, and it is contrary

to the assumption. We conclude that the assumption is wrong and A is closed in the

height set.

Now, we have concluded that A is closed and satisfies all monotonic constraints.

Hence, A ∈ FCCs and our assumption that there exists a leave A ∈ LV but

A /∈ FCCs is wrong. That is, LV ⊆ FCCs. So, our algorithm for mining FCCs is

correct in that LV = FCCs. 2

4.5 Parallel FCC Mining

Given that FCC mining is computationally expensive, a solution to reduce the re-

sponse time is to exploit parallelism. In this section, we shall show how our proposed

RSM and CubeMiner can be parallelized easily.

In general, a parallel algorithm typically comprises three logical phases: (a) a task

generation phase that splits the original task into smaller sub-tasks; (b) a task allo-

cation phase that assigns the sub-tasks to the processors; (c) a task execution phase
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where every processor operates on the allocated sub-tasks. An important factor in

parallelism is to minimize interference during the execution phase, so that all pro-

cessors can operate independently and concurrently without having to communicate

with one another.

It turns out that both RSM and CubeMiner fit nicely into the above framework:

tasks can be generated and allocated to processors to be executed independently.

• Parallel RSM. In RSM, the mining of each representative slice corresponds to

a task, in other words, the maximum number of tasks is the number of eumera-

tions of the base dimensions (those enumerations that do not meet the minimum

thresold requirement are dropped). Each of these tasks can be allocated to a

processor, and can be processed independently.

• Parallel CubeMiner. In CubeMiner, each branch of the tree splitting process

can be processed independently, and thus, each branch corresponds to a task. In

other words, we can allocate a branch of the tree splitting process to a processor.

For both Parallel-RSM and Parallel-CubeMiner, to ensure that the tasks can

be processed independently, each processor requires a copy of the entire dataset.

This is necessary so that the post-pruning phase can be performed independently.

Fortunately, the communication overhead (to transmit the dataset to all processors) is

not significant: (a) the dataset can be transmitted while the tasks are being generated,

so the response time is not much affected; (b) the communication cost is relatively

small compared to the mining cost.
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4.6 Time Complexity

The time complexity of mining FCCs is exponential in the number of patterns. For

the 3D dataset O = H × R × C, where |H| = L, |R| = N , |C| = M , the time com-

plexity of RSM and CubeMiner is O(2L+N ×N2 ×M) and O(2LN ×M) repectively,

without applying any pruning strategy. By applying minH, minR, minC and close-

ness constraints and early pruning strategies, the efficiency of RSM and CubeMiner

can be improved significantly.

4.7 Experimental Results

We have implemented the RSM framework and CubeMiner in C. For the RSM frame-

work, we employed D-Miner [7] in phase two as the 2D FCP mining scheme. This

is because D-Miner keeps the supporting row set of each FCP during the processing,

which is important for close check of 3D FCC. Moreover, D-Miner has been shown to

perform well in relatively dense datasets. We conducted a performance study to eval-

uate the efficiency of RSM against CubeMiner, and study the optimization of CubeM-

iner. In addition, we also study the parallel versions of RSM and CubeMiner. For our

experiments, we use two real 3D microarray datasets: the yeast cell-cycle regulated

genes [51] (http://genomewww.stanford.edu/cellcycle) in the Elutriation Experiments

and CDC15 Experiments respectively. To study the effect of the proposed schemes

on scalability, we also use synthetic datasets generated by the IBM data generator.

(The generator is available at http://www.cs.umbc.edu/∼cgiannel/assoc gen.html.)

All the experiments are run on a Pentium 4 PC with 1 GB RAM.
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4.7.1 Results from Real Microarray Datasets

In this section, we experiment on two real microarray datasets. For the Elutritration

Experiments, there are a total of 7161 genes whose expression values are measured

from time 0 to 390 minutes at 30 minute intervals (a total of 14 time points). And

for the CDC15 Experiments, there are a total of 7761 genes whose expression values

are measured from time 70 to 250 minutes at 10 minute intervals (a total of 19 time

points). Finally, we use 9 of the attributes of the raw data as the samples (e.g., the

raw values for the average and normalized signal for Cy5 and Cy3 dyes, the ratio

of those values, etc.) [64]. Thus, from the Elutritration dataset, we obtain a 3D

expression matrix of size: T × S ×G = 14× 9× 7161; and from the CDC15 dataset,

we obtain a 3D expression matrix of size: T × S ×G = 19× 9× 7761.

Data Preprocessing

We normalize the 3D datasets to make its cell value ‘1’ or ‘0’, where value ‘1’ means

high expression value and ‘0’ otherwise. For dataset O′ = T × S ×G = {O′
k,i,j} with

k ∈ [1, l], i ∈ [1, n] and j ∈ [1,m]. We normalize O′ into a T × S × G matrix O as

follows:

Ok,i,j =

{
1 if O′

k,i,j ≥
Pm

j=1 O′k,i,j

m
,

0 if O′
k,i,j <

Pm
j=1 O′k,i,j

m
.

Table 4.4 shows an example of Original Dataset O′ at time point Time = 30min.

And its normalized matrix O is in Table 4.5. After normalization, we get two 3D

datasets with a density around 30%, that is, 30% of the cells value 1.
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Table 4.4: Example of Original Data O’ (T = 30min).

G/S CH1B CH1D CH2I CH2B
YAL014C 463 301 162 374
YAL015C 528 299 229 392
YAL016W 810 321 489 734
YAL017W 478 283 195 359

Table 4.5: Example of Normalized Matrix O (T = 30min).

G/S CH1B CH1D CH2I CH2B
YAL014C 0 1 0 0
YAL015C 0 0 0 0
YAL016W 1 1 1 1
YAL017W 0 0 0 0

CubeMiner Optimization

Before comparing the performance of CubeMiner and the RSM framework, we first

study the optimization of CubeMiner. We experiment on the Elutritration dataset

and sort the original dataset by Time Slice. We first sort the time slice such that time

slices with more 0s are always in front of those with fewer 0s, which is called “Zero

Decreasing Order”; then we sort the time slice such that time slices with fewer 0s are

always in front of those with more 0s, which is called “Zero Increasing Order”. We

compare the performance of CubeMiner on the original order, Zero Decreasing Order

and Zero Increasing Order. Figure 4.3 shows the results as we vary minH, minR

and minC respectively. First, we observe that with the increase in minH, minR

and minC values, regardless of the ordering of the datasets, the processing time of

CubeMiner decreases. This is expected since a larger threshold value means that we
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can prune a larger space as the answer size is smaller. Second, in all the three cases,

we observe that CubeMiner performs best on the dataset with Zero Decreasing Order,

and worst on the dataset with Zero Increasing Order. The performance of CubeMiner

on the original dataset stays in the middle position. CubeMiner performs best when

the dataset is sorted by the Zero Decreasing Order because applying cutters with

more 0s first will remove the patterns that do not satisfy the minimum thresholds

early. That is, it helps to prune off the search space early, and hence accelerates the

mining process. Based on these results, in the following experiments, we adopt an

optimized version of CubeMiner that pre-sorts the datasets in Zero Decreasing Order

before performing FCC mining.

Vary Monotonic Constraints

In this experiment, we vary the monotonic support constraints minH, minR and

minC, and study the performance of RSM and CubeMiner respectively. For RSM, we

examine two versions using dimensions H and R as the base dimensions respectively.

We denote these versions as ‘RSM-H’ and ‘RSM-R’ respectively. As we will be

enumerating the H and R dimensions, the constraint minC on dimension C will have

a relatively smaller effect. Hence, we study the effect of minC first.

The results are shown in Figure 4.4. In Figure 4.4(a), we see clearly that RSM-

R is much faster than RSM-H. This is because |R| < |H| and a larger enumerated

dimension leads to more representative slices. Hence, the enumeration on the smallest

dimension always leads to better performance of RSM. When we refer to RSM in the

following experiments, we default it as taking the smallest dimension to enumerate.

We also see that the execution time of CubeMiner and RSM-R both decrease with

the increase of minC. Moreover, for the Elutritration dataset, RSM-R is faster than
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Figure 4.3: CubeMiner Optimization.
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Figure 4.4: Vary minC.

CubeMiner when minC is below 1000. However, CubeMiner catches up and performs

better when minC increases above 1100. Similarly, for the CDC15 dataset, RSM is

faster when minC is less than 1100. This is due to the underlying working strategies

of RSM and CubeMiner. As we know, the number of cutters in CubeMiner has an

important effect on the tree’s depth, and hence affects its performance. RSM mines

on each representative slice, which has much fewer rows compared with the number

of cutters in CubeMiner. That is, the datasets (representative slice) that RSM works

on, is much smaller than the ones (whole dataset) that CubeMiner does. And the

execution time of RSM is the sum of the execution time on each representative
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slice. This makes RSM efficient if the number of representative slices is not large.

However, the number of representative slices increases very quickly with the increase

of the dimension size to be enumerated, which limits the advantage of RSM to a great

extent. That’s why RSM runs faster when the enumerated dimension is very small

but runs much slower as the smallest dimension grows. As we may see from RSM-H

in Figure 4.4 (a), when the enumerated dimension has a size of 14, RSM-H performs

worse than CubeMiner. And, as we shall see shortly, in the synthetic datasets where

larger dimension size is used, this trend is more obvious. In application, the size of

smallest dimension in 3D dataset is usually not very small, which makes CubeMiner

more efficient than RSM in practice.

Even when the enumerated dimension has a small size of 9 for RSM, with the

increase in minC, CubeMiner catches up quickly. This is because CubeMiner directly

works on the 3D dataset which prunes off the search space as soon as possible while

RSM takes time in representative slice generation before performing space pruning.

Next, we study the variation of minH, minR on the two 3D datasets and set

minC = 1000 for the Elutritration dataset and minC = 1100 for the CDC15 dataset.

The minC values are selected such that CubeMiner has a nearly similar but little

longer processing time than RSM, to minimize the effects of minC on the performance.

Figure 4.5 and Figure 4.6 show the results respectively. The relative performance

between RSM and CubeMiner remains largely the same for the same reasons given

in the other experiments.

Effect of Parallelism

To make efficient the processing, we also propose the parallel version of RSM and

CubeMiner. In the parallel schemes, each processing node holds the whole dataset
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Figure 4.5: Vary minH.

at the initial status. Then as the tree grows, new generated branches are sent to

available nodes for processing. We only send tasks to nodes, and the tasks can

be independently executed without further information communication. Hence, the

information communication between nodes is very small.

In this experiment, we study the effect of the number of processors on the pro-

cessing time. The number of processors is varied from 1 to 32. We present the results

on the CDC15 dataset. The results are shown in Figure 4.7. First, we observe that

the parallel version of RSM-R outperforms the parallel version of CubeMiner. This

is because, for this experiment, the experimental setup favors RSM-R, i.e., this is the
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Figure 4.6: Vary minR.

setting where the uniprocessor RSM-R also outperforms CubeMiner (see Figure 4.4

where minC = 1000). Second, we note that as the degree of parallelism increases, the

response time also decreases. Moreover, as in traditional parallel processing, there is

a certain “optimal” number of processors beyond which additional parallelism leads

to only marginal gain. In this experiment, for both schemes, the speedup is good for

upto 8 processors. Beyond 8 processors, the speedup starts to degrade.
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4.7.2 Results on Synthetic Datasets

To study the scalability of our proposed schemes, we generate synthetic datasets using

the IBM data generator. Since RSM ’s efficiency depends greatly on the size of the

smallest dimension, in the first set of experiments, we study the effects of the size of

smallest dimension on the execution time. We experiment on seven synthetic datasets

with 30% density (percentage of cells with value one), 20 rows, 1000 columns, and the

number of heights varied from 8 to 20. We set minH = minR = 3, and minC = 30

for all the experiments. Figure 4.8 shows the execution time in logarithm (second)

scale. We see that the execution time of RSM and CubeMiner increase with increasing

height number. We also observe that RSM ’s execution time increases much faster as

the size of the heights increases. For larger datasets, CubeMiner is clearly much more

efficient than RSM.

To study the scalability on large dataset, we generate synthetic datasets with

100 heights, 100 rows, 10000 columns, and 10% density. We study the execution

time of RSM and CubeMiner with the variation of minH, minR, and minC. RSM

failed to finish processing after long hours even on very high support constraints,
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which is incomparable to CubeMiner. Even its parallel version takes longer time than

CubeMiner. This is because, with 100 heights, the number of slices to be enumerated

is very large. Hence, we only report the execution time of CubeMiner and its parallel

version P-CubeMiner with 8 processors (the “optimal” number) in Figure 4.9. From

the results, we can confirm that (for the dataset used) 8 processors offer very good

speedup. Moreover, we note that the parallel version of CubeMiner can reduce the

computational cost significantly.

From the experiments on synthetic datasets, we see that CubeMiner scales well

on large datasets while RSM works efficiently only on datasets with a small size in

one dimension.

4.7.3 Biological Significance

The FCCs mined from the real microarray datasets are able to deliver some inter-

esting patterns for biologists. In the final group of experiments, we set minH = 5,

minR = 5, and minC = 1200 for the Elutritration and CDC15 datasets and get

13 and 250 FCCs respectively. Some known co-regulated genes already established
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Table 4.6: Known Co-regulated Genes from Elutritration Dataset.

M/G1 Boundary Regulated:
CLN3(YAL040c), SIC1(YER120w), STE2(YFL026w)
SIC1(YER120w), STE2(YFL026w), ASH1(YKL185w)
CLN3(YAL040c), SWI5(YDR146c)
SIC1(YER120w), RME1(YGR044c)
SWI4(YER111c), SIC1(YER120w)
CDC47(YBR202w), SIC1(YER120w)
Late G1(SCB) Regulated:
PSA1(YDL055c),MNN1(YER001w),FKS1/CWH53(YLR342w),GAS1(YMR30
7w), VAN2(YGL225w)
PSA1(YDL055c), MNN1(YER001w), FKS1/CWH53(YLR342w), GAS1(YMR
307w), CLN2(YPL256c)
PSA1(YDL055c), SCD2/CHS3(YBR023c)
S-phase Regulated:
HTB2(YBL002w), HTB1(YDR224c), HTA1(YDR225w), HHF2(YNL030w), H
HT2(YNL031c), HHT1(YBR010w)
HTB2(YBL002w), HTA2(YBL003c)
G2/M-phase Regulated:
SED1(YDR077w), MST1(YBR054w)
SED1(YDR077w), SPO12(YHR152w)
SED1(YDR077w), CLB1(YGR108w)
SED1(YDR077w), SWI5(YDR146c)
SED1(YDR077w), MOB1(YIL106w)
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Table 4.7: Known Co-regulated Genes from CDC15 Dataset.

M/G1 Boundary Regulated:
CLN3(YAL040c), CDC47(YBR202w), FUS1(YCL027w), SIC1(YER120w)
FUS1(YCL027w), SIC1(YER120w), CDC46(YLR274w), AGA1(YNR044w)
TEC1(YBR083w), CDC47(YBR202w), FUS1(YCL027w)
SIC1(YER120w), CDC6(YJL194w)
SIC1(YER120w), CTS1(YLR286c)
FUS1(YCL027w), PCL2(YDL127w)
Late G1(SCB) Regulated:
PSA1(YDL055c), MNN1(YER001w), VAN2(YGL225w), KRE6(YPR159w)
PSA1(YDL055c), TIP1(YBR067c)
S-phase Regulated:
HTB2(YBL002w), HTA2(YBL003c), HHF1(YBR009c), HHT1(YBR010w),
HTB1(YDR224c), HTA1(YDR225w)
G2/M-phase Regulated:
MST1(YBR054w), MST2(YDR033w), SED1(YDR077w), CDC20(YGL116w),
CLB1(YGR108w), MOB1(YIL106w), CDC5(YMR001c)

by biological research [38, 8] are found in our resulting FCCs. Table 4.6 and Ta-

ble 4.7 show the M/G1 Boundary co-regulated genes, Late G1(SCB) regulated genes,

S-phase, and G2/M-phase co-regulated genes identified from the Elutritration and

CDC15 experimental datasets respectively. From the 13 FCCs generated from the

Elutritration datasets, 4 FCCs contain co-regulated genes of the four categories, while

9 FCCs fail to identify co-regulated genes from G2/M-phase. All 250 FCCs generated

from the CDC15 datasets contains the co-regulated genes of the four categories. Late

G1(MCB) Regulated Genes and S/G2-phase Regulated Genes fail to be identified in

the FCCs from both experiments.



109

4.8 Summary

In this chapter, we have generalized 2D frequent closed pattern mining into 3D con-

text. We defined the model of 3D frequent closed pattern – Frequent Closed Cube

(FCC). We proposed two schemes to mine FCCs - while the Representative Slice

Mining framework (RSM) enables us to reuse existing 2D frequent closed pattern

mining algorithm, CubeMiner operates on the 3D space directly. We also presented

parallel versions of the two schemes. We conducted extensive performance study on

both real and synthetic datasets. Our results showed that both schemes can mine

FCC efficiently, in particular, CubeMiner is superior for large datasets, while RSM

performs best when one of the dimensions is small. Moreover, the parallel versions of

both schemes can further reduce the computation time significantly. Furthermore, the

FCCs mined from the real microarray datasets (Elutritration and CDC15 datasets)

are able to deliver some known co-regulated genes already established by biological

research.



Chapter 5

Quick Hierarchical Biclustering on
2D Expression Data

5.1 Overview

In this chapter, we propose an efficient top-down hierarchical biclustering algorithm

called Quick Hierarchical Biclustering (QHB), to mine biclusters with consistent

trends. QHB continuously partitions the whole dataset into subsets such that genes

with more consistent trends during condition transitions are grouped together while

genes with inconsistent trends are set apart. To measure the trend consistency of a

bicluster, we define a new score that reflects the similarity of fluctuating degrees in

the changing trends. Compared with previous biclustering models, we have made five

main contributions:

First, we define a new bicluster quality measurement called Mean Fluctuating

Degree (MFD) to reflect the trend consistency of biclusters. Since a similarity score

is not enough to ensure trend consistency, we use our MFD only as a supplementary

control agent. Instead, the trend consistency is mainly controlled and embedded in

the partitioning strategy of QHB, which ensures the high quality of consistent trends

within each bicluster.
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Second, instead of improving on only part of the “seeds”, QHB takes the entire

dataset into consideration. During the hierarchical partitioning process, all valuable

information of a parent node is kept into the child nodes without any loss.

Third, QHB adopts a partition based refinement that can simultaneously pro-

cessed several rows/columns. This is much more efficient than existing techniques.

Fourth, QHB provides a very clear hierarchical inter-bicluster relationships. Such

graphical representation of the relationships among biclusters provides more valuable

knowledge to the biologists. To the best of our knowledge, no previous work has

established a clear relationship between biclusters.

Finally, the hierarchical partitioning strategy of QHB facilitates a progressive

refinement of results. Biclusters are refined from generality to details progressively.

This is very helpful in biological application. Instead of waiting long hours for all

detailed results, biologists now would be provided with a general picture of the whole

results from the upper levels of the hierarchical tree in a very short response time.

Then biologists could freely choose their focus, rolling up to generalize it or rolling

down to detail it, progressively. This would help biologists quickly focus on their

most interested patterns for further exploration.

The rest of this chapter is organized as follows. We will introduce the QHB al-

gorithm in Section 5.2. In Section 5.3, we report results of an experimental study

on the real time-series yeast gene expression data. We compare our QHB algorithm

against a recently proposed DBF scheme [63]. We also show the inter-bicluster rela-

tionships obtained from QHB. In Section 5.4, we extend the QHB scheme to process

datasets with non-consecutive condition transitions. Finally, in Section 5.5, we draw

conclusions with directions for future research.
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5.2 QHB : Quick Hierarchical Biclustering Algo-

rithm

In this section, we present the proposed QHB framework. The QHB algorithm com-

prises 3 phases. In the first phase, the original matrix is transformed into a binary

matrix that captures the changing trend of the gene expression value between each

consecutive conditions. This trend could either be a rising trend, a falling trend or

one that is considered to have no significant change. In the second phase, an iterative

partitioning procedure is applied to the transformed binary matrix such that genes

with different trends under subsets of consecutive conditions are split into different

sub-matrices. Each sub-matrix forms a “coarse” biclustering seed that reveals a sub-

set of genes exhibiting consistent rising/falling trends under a subset of consecutive

conditions. In the final phase of QHB, the trends in “coarse” seeds are further binned

such that the seeds could be further partitioned and refined into biclusters where

the trends exhibit similar degrees of fluctuation under consecutive conditions. A new

score that reflects the similarity of trends’ fluctuating degrees is defined to measure

the bicluster quality. Biclusters in which genes display consistent trends with simi-

lar degrees of fluctuation under consecutive conditions are considered as biclusters of

good quality.

In this section, for ease of presentation, we focus on datasets that emphasize the

order of conditions, e.g., time series gene expression data. For such datasets, the

gene expression values’ variation under non-consecutive conditions (time points) are

meaningless, hence we only consider a pattern’s changing trends under consecutive

conditions. We defer the discussion on extending our scheme to non-consecutive

conditions to Section 5.4.
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Table 5.1: Original Data Matrix O.

O c1 c2 c3 c4
g1 2.4 2.95 2.45 2.99
g2 1.95 1.71 1 0.29
g3 0.5 1.1 0.38 1.56

Table 5.2: Slope Angle Matrix O′.

O′ c1c2 c2c3 c3c4

g1 28.81◦ −26.57◦ 28.37◦

g2 −13.50◦ −35.37◦ −35.37◦

g3 30.96◦ −35.75◦ 49.72◦

5.2.1 Phase 1: Matrix Transformation

Let G = {g1, g2, . . . , gm} be the set of genes, and C = {c1, c2, . . . , cn} be the set of

experimental conditions (samples/time points), then the gene expression data can be

represented as an m×n matrix O with each cell Oi,j corresponding to the expression

value of gene gi under condition cj.

To measure the fluctuating degrees of trends when conditions change, the original

matrix O is first transformed into a slope angle matrix O′, such that rows of O′

represent genes while columns of O′ represent transitions between two consecutive

conditions. And the cells in O′ contain the slope angles of changing trends under

condition transitions. Given an m × n matrix O = G × C, its slope angle matrix is

an m× (n− 1) matrix O′ = G×C ′ such that C ′ = {c1c2, c2c3, . . . , cn−1cn} and O′
i,j =

arctan(Oi,j+1 − Oi,j). Given the running example O in Table 5.1, its transformed

slope angle matrix O′ is shown in Table 5.2.

In O′, a positive angle indicates a rising trend while a negative one indicates a
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falling trend. O′ is further transformed into a binary matrix O′′ as follows: each

column cicj in O′ is replaced by two binary columns cicj and (cicj)
′ in O′′ to capture

the rising and falling trends. For example, a rising trend in O′
i,j will be replaced by

two cells O′′
i,j and O′′

(i,j)′ with values “0” and “1” respectively. Similarly, a falling

trend would be represented by “1” and “0”. To eliminate trends with trivial changes,

we set an angle threshold t◦(t◦ > 0◦) to bin the rising/falling trends; the resultant

binary representations are “0” and “0”. More formally, given the m × (n − 1) slope

angle matrix O′ = G×C ′, we would get an m× 2(n− 1) binary matrix O′′ = G×C ′′

such that C ′′ = {c1c2, (c1c2)
′, c2c3, (c2c3)

′, . . . , cn−1cn, (cn−1cn)′}, and

O′′
i,j, O

′′
(i,j)′ =





0, 1 if t◦ < O′
i,j < 90◦,

1, 0 if −90◦ < O′
i,j < −t◦,

0, 0 otherwise.

90 

-90 

0 

t

-t 

R1

R2

R3

Figure 5.1: Matrix Binning Threshold: t◦.

Figure 5.1 shows how the angle threshold t◦ bins the trends. Trends with slope

angles in range R1 are binned as “rising”, in range R2 as “falling” and in range R3 as

“trivial change”. As for the running example O′ in Table 5.2, its binary matrix O′′ is

shown in Table 5.3.

From O′′, if we take “1” as “present” and “0” as “empty”, then cn−1cn could be

regarded as a falling transition and (cn−1cn)′ as a rising transition. In this way, the

rising and falling trends are divided apart into two consecutive columns while trends
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Table 5.3: Binary Matrix O′′: t = 26.5◦.

O′′ c1c2 (c1c2)
′ c2c3 (c2c3)

′ c3c4 (c3c4)
′

g1 0 1 1 0 0 1
g2 0 0 1 0 1 0
g3 0 1 1 0 0 1

with trivial change are blocked out. This transformation serves as an important basis

for the efficient processing in phase 2.

5.2.2 Phase 2: Biclustering Seed Generation

In phase 2, we generate the coarse biclustering seeds where subsets of genes show

consistent rising/falling trends under subsets of consecutive conditions. In phase 1,

the binary matrix O′′ has already set apart different trends and blocked out the trivial

trends. Hence, the mining of coarse biclustering seeds is equivalent to mining O′′’s

“maximal” submatrices with cells all valued “1”. The submatrix is “maximal” in

the sense that adding one more row/column into the submatrix will bring in cells

valued “0”. A maximal submatrix is a biclustering seed if its row set and column

set satisfy user specified minimum gene number threshold minGen and minimum

condition transition number threshold minCon respectively.

Definition 5.1 Maximal Submatrix: Let A = GA × CA be the submatrix of

O′′ = G× C ′′, if (1)∀gi ∈ GA, cj ∈ CA, O′′
i,j = 1; and (2)∀gk ∈ G \GA,∃cj ∈ CA such

that O′′
k,j = 0; and (3)∀cl ∈ C ′′ \ CA,∃gi ∈ GA such that O′′

i,l = 0 are satisfied, A is

defined as the maximal submatrix of O′′.

Definition 5.2 Biclustering Seed: Given the minimum gene number threshold

minGen and minimum condition transition number threshold minCon, if (1) A =
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GA × CA is a maximal submatrix of O′′; and (2) |GA| ≥ minGen; and (3)|CA| ≥
minCon are satisfied, A is defined as the biclustering seed.

To mine the biclustering seeds, we adapt the hierarchical partitioning framework

of D-Miner [7]. The partitioning starts at the root O′′, continuously splits the matrix

into two submatrices by removing cells valued “0” row by row (or column by column).

Whenever a row/column of “0”s is removed, the node is split into a left child sub-

matrix without the row/column, and a right child submatrix without columns/rows

containing “0”s. The whole partitioning process ends when all “0”s are removed from

all submatrices. Submatrices that are non-maximal or do not satisfy minGen and

minCon are pruned off.

Figure 5.2: Phase 2: Partitioning Process.

Figure 5.2 shows the partitioning procedure of the running example O′′ in Ta-

ble 5.3. Given minGen = minCon = 2, after removing cells valued “0”, submatrix h

is the final seed where genes g1, g2 show consistent rising trends under condition tran-

sitions (c1c2)
′, (c3c4)

′, and consistent falling trends under condition transition c2c3.

Cells valued “0” are removed row by row in this example because the number of rows
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is smaller than the number of columns (We always take the smaller dimension as it

is more efficient to do so).

The partitioning process builds up a hierarchical tree where all valuable upper

level information are kept intact into the lower level. This helps to avoid any infor-

mation loss. Moreover, the binning and partitioning ensure that genes with consistent

trends under condition transitions are kept together in the same seeds while genes

with inconsistent trends are separated apart into different seeds. This scheme helps

maintain the bicluster quality effectively.

5.2.3 Phase 3: Bicluster Refinement

In the final phase, the biclustering seeds are further refined to reflect the similarity

of trends’ fluctuating degree.

The similarity of trends’ fluctuating degrees is mainly controlled by the binning

and partitioning procedures as previous phases. Since the biclustering seeds mined

from phase 2 are assured to have consistent rising/falling trends, we need not consider

the directional movements in this phase, but only bin the trends of the seeds into

different degrees of slope angles. In our algorithm, we further bin the trends into

“steep” or “gentle” movement.

Consider a seed generated in the phase 2 as a p × q matrix S, where S =

{g1, g2, . . . , gp} × {c1, c2, . . . , cq}. As we bin the trends into two categories (“steep”

and “gentle”), we need only one more slope angle threshold t′◦(t◦ < t′◦ < 90◦).

According to the slope angle matrix O′, S is further binned into a p × 2q binary

matrix S ′ with “0,1” indicating a steep trend and “1,0” a gentle trend. Hence,

S ′ = {g1, g2, . . . , gp} × {c1, c
′
1, c2, c

′
2, . . . , cq, c

′
q} such that
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Table 5.4: 2-Bin Binary Matrix S ′h: t′ = 45◦.

S ′h c1c2 (c1c2)
′ c2c3 (c2c3)

′ c3c4 (c3c4)
′

g1 1 0 1 0 1 0
g3 1 0 1 0 0 1

S ′i,j, S
′
i,j′ =

{
0, 1 if t′◦ ≤ |O′

i,j| < 90◦,

1, 0 if t◦ < |O′
i,j| < t′◦.

90 
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Figure 5.3: Matrix Binning Threshold: t′◦.

Figure 5.3 shows how the angle threshold t′◦ bins the trends. Trends with slope

angles in range R1, R2 are binned as “steep” and in range R3, R4 as “gentle”. As for

the seed Sh in the running example in Figure 5.2, its 2-bin binary matrix S ′h is shown

in Table 5.4.

In practice, users can freely bin the trends into more details according to their

special needs. We find that the n-binned trends need n−1 more slope angle thresholds,

and result in a binary matrix with n × q columns. For example, if the trends are

further binned into three categories (“steep”, “medium”, and “gentle”), two more

slope angle thresholds t′◦ and t′′◦(t◦ < t′◦ < t′′◦ < 90◦) are needed. Thus, S is

further binned into a p × 3q binary matrix S ′ with “0,0,1” indicating a steep trend,

“1,0,0” a gentle trend, and “0,1,0” a medium trend. Hence, S ′ = {g1, g2, . . . , gp} ×
{c1, c

′
1, c

′′
1, c2, c

′
2, c

′′
2 . . . , cq, c

′
q, c

′′
q} such that
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Table 5.5: 3-Bin Binary Matrix S ′h: t′ = 35◦, t′′ = 45◦.

S ′h c1c2 (c1c2)
′ (c1c2)

′′ c2c3 (c2c3)
′ (c2c3)

′′ c3c4 (c3c4)
′ (c3c4)

′′

g1 1 0 0 1 0 0 1 0 0
g3 1 0 0 0 1 0 0 0 1

S ′i,j, S
′
i,j′ , S

′
i,j′′ =





0, 0, 1 if t′′◦ ≤ |O′
i,j| < 90◦,

0, 1, 0 if t′◦ ≤ |O′
i,j| < t′′◦,

1, 0, 0 if t◦ < |O′
i,j| < t′◦.

Taking the seed Sh in Figure 5.2 for example, its 3-bin binary matrix S ′h is shown

in Table 5.5.

To measure the bicluster similarity, in this phase, we define a new score called

Mean Fluctuation Degree (MFD). MFD is calculated from the slope angle matrix O′

generated in phase 1. Note that in the calculation of the MFD, the entries used in O′

are expressed in radians rather than degrees.

Let the submatrix A ⊂ O′ be denoted as a pair (I, J) where I ⊂ G and J ⊂ C ′.

Then the MFD of A is defined as

MFD(I, J) =

√
1

|I||J |
∑

i∈I,j∈J

(O′
ij −O′

Ij)
2 where O′

Ij = 1
|I|

∑
i∈I

O′
ij.

In a bicluster, if genes have similar degree of fluctuating trends under each con-

dition transition, the MFD of the bicluster will be relatively lower. If all genes in a

bicluster have exactly the same degree of fluctuating trend under each condition tran-

sition, the bicluster’s MFD is zero. As we have mentioned earlier, no single similarity

score is sufficient to ensure that a bicluster will exhibit consistent trends with simi-

lar degrees of fluctuations. Hence, we only employ MFD as a supplementary merit
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function to evaluate the bicluster quality and remove biclusters that do not satisfy a

user specified maximum MFD threshold maxMFD.

After re-binning the seeds, the partitioning procedure in phase 2 is applied to

each binary seed matrix. The partitioning procedure will then group together genes

that have trends with similar fluctuating degrees. In this phase, during each parti-

tioning step, the MFD of the resulting submatrix is calculated and checked against

the maxMFD threshold. The partitioning process terminates whenever the subma-

trix has an MFD lower than maxMFD. All submatrices that satisfy the minGen,

minCon and maxMFD thresholds are returned to users with their original genes

and conditions, which are the finial results of our refined biclusters. Figure 5.4 shows

the refining procedure of Seed Sh generated by the running example in Figure 5.2.

In this example, given maxMFD = 0.10, submatrix e is the finial bicluster with

MFD = 0.06.

Figure 5.4: Phase 3: Refining Process.
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5.2.4 Time Complexity

Bicluster Mining has been proved to be NP problem [11]. For the 2D dataset O =

G×C, where |G| = M , |C| = N , the time complexity of QHB is O(2N×M), without

applying any pruning strategy. By applying minGen, minCon and maximal bicluster

constraints, the efficiency of QHB is greatly improved due to the early pruning.

5.3 Experimental Results

We implemented our algorithm in C, and evaluated its effectiveness on the Yeast gene

expression dataset downloaded from http://arep.med.harvard.edu/biclustering/yeast

.matrix. The dataset consists of 2884 genes under 17 conditions, forming a (2884 ×
17) matrix. The number in each entry is obtained by scaling and logarithm x →
100 log(105x) and the result is a matrix of integers in the range between 0 and 600.

The experiments are studied on a desktop computer with an Intel Pentium 4 processor

and 1 G main memory. We compare our QHB scheme against the DBF algorithm in

[63]. As shown in [63], the DBF scheme outperforms existing algorithms in terms of

quality of biclusters and efficiency.

5.3.1 Data Prepossessing

In the transformation from original matrix O to slope angle matrix O′, instead

of applying O′
i,j = arctan|Oi,j+1 − Oi,j|, we take O′

i,j = arctan|Oi,j+1−Oi,j

δ
|, where

|max(Oi,j)

δ
| < 10. This helps to avoid the distribution of slope angles falling into a nar-

row range, hence decreasing the sensitivity of binning thresholds. Since the entries

in our experimental matrix O are in the range between 0 and 600, we set δ = 100.

Figure 5.5 shows the slope angle distribution after matrix transformation.
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Figure 5.5: Slope Angle Distribution.

Both the QHB and DBF algorithms employ the same data preprocessing phase

of getting the angles of fluctuating trends on consecutive condition transitions and

grouping similar angles into bins. We set the first angle threshold t = 10◦ for the

two algorithms, so that they have the same input (dataset of density 57.35%) for all

experiments. As for bicluster refinement, we set the second angle threshold t′ = 21.5◦

for QHB, so that 27.65% entries are gentle changes and 29.70% entries are steep

changes. And we set maxMSR = 400 and row variance β = 100 for DBF. The above

parameters are applied to all experiments.

5.3.2 Bicluster Quality Comparison
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Figure 5.6: Row Adding: the 61th bicluster by DBF.

In the first group of experiments, we compare the quality of biclusters generated
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Figure 5.7: Deleting: the 61th bicluster.

by the two algorithms. We set the minimum gene support minGene = 60, minimum

condition transition support minCon = 4, and maxMFD = 0.16. Both algorithms

generate the same 4527 biclustering seeds. DBF sorts the seeds by MSR
V olume

score in-

creasingly, and takes only the top 100 seeds as qualified seeds for further exploration.

In the second phase of DBF, the top 100 seeds are further refined by interactively

adding rows/columns if the MSR of each bicluster still satisfies the maxMSR thresh-

old. However, this MSR oriented row/column adding process inevitably destroys the

trend consistency of the original seeds. From the biclusters generated by DBF, we

find that genes have inconsistent changing trends under condition transitions. Fig-

ure 5.6 shows an example of some original genes in Seed 61 and the genes added into

Seed 61 by DBF’s MSR oriented row addition. It is clear that the additional genes
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destroy the original similar trends of the whole bicluster.

Previous work based on MSR refinement usually integrates row/column deletion

to achieve a smaller MSR value. Although the deletion scheme is not integrated

into DBF framework, we also show examples to demonstrate that the MSR oriented

deletion will remove good patterns. Figure 5.7 shows an example of MSR oriented

row/column deletion on the 61th bicluster. Figure 5.7(a) shows a portion of genes

retained and removed from the 61th bicluster. Some genes with good changing trends

have been removed, which is a great loss of valuable information. Figure 5.7(b) shows

a portion of genes finally retained after column deletion. Although the bicluster

volume decreases, there still exist inconsistent trends.
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Figure 5.8: QHB Refinement.
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Hence, we conclude that the MSR oriented row/column adding/deleting refine-

ment would destroy the trend consistency of original good seeds. Instead, our QHB

further refines the seeds to make the trends within a bicluster more similar, with-

out adding any genes with inconsistent trends. Figure 5.8 shows the whole genes

in Seed 61 and one of its refined subset bicluster. It is clear that our QHB is very

effective in enhancing the seed quality by grouping together genes that have trends

with more similar fluctuating degrees.
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Figure 5.9: Seed220: ranking out of top 100.

5.3.3 Information Integrity

In the second group of experiments, we show that DBF may result in information

loss. We set minGene = 40, minCon = 4 and maxMFD = 0.15. Recall that DBF
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only employs the first top 100 seeds. Among the seeds removed by DBF due to the

ranking, we pick up Seed 220 to refine it with QHB. From Figure 5.9, we find that,

after refinement, the bicluster pattern has very consistent changing trends, which

should not have been omitted from the whole results. Hence, the MSR
V olume

score by

DBF may not always be a good criteria to remove seeds. Instead, our algorithm can

work on all seeds without missing valuable information with efficiency. The efficiency

of QHB will be shown next.
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Figure 5.10: Execution Time.
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5.3.4 Efficiency

In this group of experiments, we set maxMFD = 0.15 and vary the minGene and

minCon thresholds and compare the execution time of QHB against DBF. The exe-

cution time for QHB includes processing all seeds while the execution time for DBF

only includes processing the top 100 seeds ranked by the algorithm. However, com-

pared with DBF, QHB is still much more efficient as shown in Figure 5.10 (time

calculated in log(Second)). This is because QHB simultaneously groups several genes

and conditions at the same time and the grouping (submatrix partition) process is

oriented by bins. This makes the whole processing very efficient. However, while

refining the seeds, DBF tends to randomly try the row/column one by one to decide

which row/column to add. This process is very time-consuming.

5.3.5 Hierarchical Structure

One important advantage of QHB is that QHB can deliver a hierarchical structure of

inter-bicluster relationship. Based on the hierarchical structure, users may freely roll

up or down to get a more general or detailed insight into biclusters. Figure 5.11 shows

an example of seed refining process in a hierarchical structure. The root bicluster

is refined further level by level, generating child biclusters with higher degree of

similarity in fluctuating trends.

5.3.6 Parameter Study

In the final group of experiments, we study the effects of QHB parameters on the

number and volume of final results. These parameters include minGen, minCon

and maxMFD. From Figure 5.12, we can see that a smaller value in minGen or

minCon will lead to more number of final biclusters. From Figure 5.12(a), we find
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that as maxMFD increases, the number of biclusters increases for a while and then

begins to decrease. As we know, maxMFD has an effect on the levels to which

the biclusters are further refined. A lower maxMFD value will cause the tree to

split into deeper levels while a higher maxMFD value will stop the tree’s splitting

early. While the tree splits into very deep levels, most biclusters cannot satisfy the

minGen or minCon threshold, and hence they are pruned off. This explains why

when maxMFD value is very low, the number of biclusters is small. As the maxMFD

increases, most biclusters will satisfy the minGen and minCon thresholds, hence

the number of biclusters increases. When maxMFD increases to a certain value,

the splitting tree stops partitioning early, hence the number of biclusters decreases

again. Figure 5.12(b) and (c) further confirm this point. Based on (a), we increase

the minGen threshold in (b). We find that the number of biclusters increases as

maxMFD increases. This is because the increased minGen thresholds prune much

more biclusters and have relatively more effect on the number of biclusters in this

group of experiments. A higher maxMFD leads to larger volume of biclusters that

tend to satisfy the minGen threshold. Moreover, based on (a), we decrease the

minCon threshold in (c). We find that with the increase of maxMFD, the number

of biclusters decreases. This is because when the minCon threshold is low, most of the

biclusters will pass the threshold and hence the number of biclusters will be affected

more by maxMFD value. Therefore, we conclude that the number of biclusters

depends on the co-effects of minGen, minCon and maxMFD.

We also study the bicluster volume distribution with different parameters in Fig-

ure 5.13. We find that a higher maxMFD keeps the average bicluster volume larger,
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while a lower maxMFD decreases the average bicluster volume. And a more con-

straint threshold (higher value) on minGen or minCon will prune off more small

volume biclusters.
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Figure 5.13: Bicluster Volume Distribution.
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Table 5.6: Known Co-regulated Genes from Biclusters.

M/G1 Boundary Regulated:
CDC47(YBR202W), CHS1(YNL192W), STE2(YPR122W)
CTS1(YLR286C), STE2(YPR122W)
ASH1(YKL185W), STE2(YPR122W)
SIC1(YLR079W), SST2(YLR452C), CHS1(YNL192W), STE2(YPR122W)
Late G1(MCB) Regulated:
PDS1(YDR113C), RFA1(YAR007C)
PDS1(YDR113C), ASF1(YJL115W)
PDS1(YDR113C), SRS2/HPR5(YJL092W)
PDS1(YDR113C), CLB6(YGR109C), SPK1(YPL153C)
PDS1(YDR113C), CLB6(YGR109C), PMS1(YNL082W)
PDS1(YDR113C), CLB6(YGR109C), GIC2(YDR309C)
PDS1(YDR113C), CLB6(YGR109C), RAD27(YKL113C), CDC21(YOR074C),
DPB2(YPR175W)
CLB6(YGR109C), ASF1(YJL115W), CDC21(YOR074C), DPB2(YPR175W)
S/G2-phase Regulated:
NUM1(YDR150W), CWP2(YKL096W-A)

5.3.7 Biological Significance

QHB is able to identify known co-regulated genes already established by biologists.

In the final experiment, we set minCon = 4, minGen = 50, and maxMFD = 0.1,

and get 604 biclusters. Table 5.6 shows some M/G1 Boundary co-regulated genes,

Late G1(MCB) regulated genes, and S/G2-phase co-regulated genes identified from

our results. From the 604 biclusters, 288 biclusters contain the known co-regulated

genes. That is, 47.68% of the resulting patterns are of biological significance regarding

to the known gene co-regulations established by the biological works [38, 8] already.
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Table 5.7: Non-consecutive Slope Angle Matrix O′.

O′ c1c2 c1c3 c1c4 c2c3 c2c4 c3c4

g1 28.81◦ 2.86◦ 30.54◦ −26.57◦ 28.37◦ 28.37◦

g2 −13.50◦ −43.53◦ −58.93◦ −35.37◦ −35.37◦ −35.37◦

g3 30.96◦ −6.84◦ 46.67◦ −35.75◦ 49.72◦ 49.72◦

5.4 Non-consecutive Conditions Adaptation

So far, we have focused on biclusters with changing trends under consecutive con-

dition transitions. However, this may be extended to other datasets whereby non-

consecutive condition transitions are to be considered as well. In such cases, the

combination of any two conditions should be considered. Given an m × n matrix

O = G×C, its non-consecutive slope angle matrix is an m×n×(n−1)
2

matrix O′ = G×C ′

such that C ′ = {c1c2, c1c3, . . . , c1cn, c2c3, . . . , cn−1cn} and O′
i,jk = arctan|Oi,k − Oi,j|.

Given the running example O in Table 5.1, its transformed non-consecutive slope

angle matrix O′ is shown in Table 5.7.
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Figure 5.14: Execution Time: Non-consecutive Biclustering.

Again this angle matrix can be binned into the binary matrix and mined by the

same partitioning methods described in Phase 2 and Phase 3 of QHB. We still take

the same yeast gene dataset for experiments. We set maxMFD = 0.15 and vary the
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minGen and minCon thresholds to test the execution time. Figure 5.14 shows the

execution time of mining biclusters with non-consecutive condition transitions. From

the results, we find that the executive time decreases with the increase of minGen

and minCon. And the adapted QHB is still efficient to mine biclusters under non-

consecutive condition transitions. Figure 5.15 illustrates an example of the bicluster

with non-consecutive condition transitions.
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Figure 5.15: Bicluster with Non-consecutive Condition Transitions.

5.5 Summary

Mining biclusters that exhibit both consistent trends and trends with similar degrees

of fluctuations is vital to bioinformatics research. In this chapter, we have re-examined

how biclusters are extracted from the gene expression data and introduced our frame-

work QHB to ensure that the final bicluster trends are not only consistent but exhibit

similar degrees of fluctuation between consecutive conditions. We have also provided

a new merit function that gauges the degree of similarity in the fluctuations of the bi-

cluster, enabling us to extract biclusters that fulfill this condition and filter off those

that have a wide range of degree fluctuations. As shown in our experiments, our

framework is able to efficiently mine biclusters of a better quality, compared with the



135

more recent DBF framework. Furthermore, QHB provides a hierarchical picture of

inter-bicluster relationships, maintains information integrity and offers users a pro-

gressive way of knowledge exploration. We also show that some known interesting

co-regulated genes are found in our results. All the above features of QHB make it

an attractive tool for microarray data analysis.



Chapter 6

Time-Lagged Clustering on 2D
Expression Data

6.1 Overview

In the last few chapters, we have seen the application of frequent closed pattern mining

techniques to identify co-attribute patterns, and biclustering techniques to mine co-

tendency patterns. However, these techniques usually consider gene expression levels

in the same conditions or time points but do not take the time-lagged relationships

into consideration. In fact, for time series gene expression data, most genes do not

regulate each other simultaneously, but after a certain time lag. That is, the products

that a gene produces during expression process may affect other genes’ expression

later. Such regulations can be divided into two types: activation and inhibition. In

the activation process, an increase in certain genes’ expression levels will increase

some other genes’ expression levels after a certain time lag. Conversely, during the

inhibition process, an increase in some genes’ expression levels will result in a decrease

in other genes’ expression levels accordingly.

In this chapter, we design a new algorithm to identify localized time-lagged co-

regulations between genes/gene clusters efficiently. Since the gene co-regulations

136
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include both “activation” and “inhibition”, we consider time-lagged patterns with

opposite changing tendency as well. Our approach is to extract clusters, which we

referred to as q-clusters, of (time-lagged) co-regulated genes over a subset of q con-

secutive conditions. Each such cluster essentially contains information of genes that

have similar expression pattern over q consecutive conditions (the q conditions may

be different for different genes). These information include the (geneID, st)-pairs

that indicate that the gene with identifier geneID has the corresponding pattern of

the q-cluster starting from the time point st. In our work, the pattern of a q-cluster is

represented as a string of (q − 1) changing tendency that reflects how the expression

value changes from condition i to condition i + 1 for the q conditions. We have dis-

cretized the changing tendency into 3 distinct classes. Thus, there are in total 3q−1

q-clusters, and each q-cluster can be easily mapped to a unique value, q-value, based

on the q conditions, where 0 ≤ q-value ≤ 3q−1.

Now, we can determine the following types of co-regulations from each q-cluster:

• All genes with the same start time point may be co-regulated.

• All genes with start time point st1 may activate those genes with start time

point st2 where st1 < st2.

Moreover, we can determine the following co-regulations/ inhibitions across q-clusters:

• All genes with start point st1 from q-cluster Q1 may inhibit the genes with start

point st2 from q-cluster Q2 if the expression pattern of Q1 is complement to that

of Q2 (i.e., the changing tendency of the q conditions in Q1 is opposite those of

Q2).

• All genes with start point st1 from q-cluster Q1 may co-regulate the genes with
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start point st2 from q-cluster Q2 if the expression pattern of the q conditions of

Q1 is similar to (but not exactly the same as) that of Q2.

Moreover, since we keep track of the start time points, we can easily determine the

detailed information of the interacting portions, e.g., how far one gene lags behind

another.

The rest of this chapter is organized as follows. In the next section, we present

the proposed q-cluster algorithm to identify time-lagged gene clusters. In Section 6.3,

we compared our scheme with the Event Method ([34]) on the time series Yeast gene

dataset, and finally, we conclude in Section 6.4.

6.2 Algorithm to Identify Time-Lagged Gene Clus-

ters

In this section, we propose to identify localized time-lagged gene clusters. We de-

velop an algorithm q-cluster that can quickly determine a set of genes that co-regulate

either simultaneously or after some time lag, as well as genes that may inhibit others.

Our basic idea is to group genes with similar patterns over a subset of consecutive

time points (conditions) together. Because these genes share similar (or opposite)

patterns (over a subset of conditions), those with earlier start time may have acti-

vated (inhibited) those with later start time. The scheme comprises three phases.

In the first phase, the original gene expression matrix is transformed to a “slope”

matrix to reflect the genes’ changing tendency along time. In phase two, we generate

q-clusters that contain information of genes with similar pattern over (any) q con-

secutive conditions. Finally, in phase three, the time-lagged information is extracted

from each q-cluster and between q-clusters. Algorithm 7 presents a summary of the



139

Algorithm 7 q-cluster

1: q-cluster()
2: Global variables: O′′ transformed matrix, O′ binned matrix, β binary sequence of

length q − 1, δ q-clusterID, (geneID, st)-pair and maxZero the maximum zeros
allowed in the pattern.

3: Input: 2D Matrix O with n rows and m columns.
4: Output: Q time-lagged q-clusters.
5: Initialization:
6: Q ← ∅;
7: for k = 0; k <= 3q−1; k + + do
8: q-cluster(k) ← ∅;
9: end for

10: Phase 1:
11: O′′ ← transform(O);
12: O′ ← bin(O′′);
13: Phase 2:
14: for i = 0; i < n; i + + do
15: for j = 0; j <= m− q; j + + do
16: β ← SlidingWindow(O′

i,j, O
′
i,j+q−2);

17: if ZeroNumber(β) <= maxZero then
18: δ ← Hash(β);
19: q-cluster(δ)← q-cluster(δ)∪(i, j)-pair
20: end if
21: end for
22: end for
23: Phase 3:
24: for k = 0; k <= 3q−1; k + + do
25: if q-cluster(k)6= ∅ then
26: Q ← Q∪Sort(q-cluster(k), st);
27: end if
28: end for
29: return Q;
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whole process. SlidingWindow(O′
i,j, O

′
i,j+q−2) is the function to scan from the start-

ing position O′
i,j to the ending position O′

i,j+q−2 while Sort(q-cluster(k), st) is the

function to sort the (geneID, st)-pairs within q-cluster(k) by the st value.

6.2.1 Phase 1: Matrix Transformation

Let T = {T1, T2, . . . , Tm} be the set of time points, and G = {G1, G2, G3, . . . , Gn}
be the set of genes. The time series gene expression data can be represented as a

O = n × m matrix, where entry Oi,j in this matrix corresponds to the expression

value of gene Gi on time point Tj. In the first phase, matrix O is transformed into

a O′ = n × (m − 1) matrix to reflect the changing tendency of each gene expression

value along time. Each entry O′
i,j in matrix O′ reflects the directional change from

the expression value Oi,j to the expression value Oi,j+1. Essentially, there are three

possible changing tendencies: an expression value may increase from time point Tj

to Tj+1; it may decrease; or it may remain unchange. As we shall see shortly, we

discretize these three changing tendencies into three classes, and denote them by 1,

-1 and 0 respectively.

The matrix O′ is obtained in two steps. In the first step, O is transformed into a

O′′ = n× (m− 1) matrix such that

O′′
i,j =





Oi,j+1−Oi,j

|Oi,j | if Oi,j 6= 0,

1 if Oi,j = 0 & Oi,j+1 > 0,

−1 if Oi,j = 0 & Oi,j+1 < 0,

0 if Oi,j = 0 & Oi,j+1 = 0.

O′′ essentially indicates how much a gene’s expression value changes from one time

point to the next (a positive value implies an increase, a negative value a decrease,

and 0 means unchange). Once matrix O′′ is generated, in step 2, we can obtain O′
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Table 6.1: Original Matrix O.

Gene/Time T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
G2163 -0.44 -0.44 0.08 0.35 0.26 0.17 -0.46 -0.13 -0.05 -0.36
G1223 -1.51 -1.57 -1.35 0.04 1.3 1.15 0.94 -0.08 -0.13 -0.72

Table 6.2: Binned Slope Matrix O′.

Gene/Time T1T2 T2T3 T3T4 T4T5 T5T6 T6T7 T7T8 T8T9 T9T10
G2163 0 1 1 0 0 -1 0 0 -1
G1223 0 0 1 1 0 0 -1 0 -1

by binning the values of the transformed matrix. Binning the values is a good way

to handle noise that may be introduced by experimental errors. Moreover, it allows

us to focus on the more general increasing or decreasing tendency of gene values. We

set a Normalization Threshold t(t > 0) to bin the new matrix as follows:

O′
i,j =





1 if O′′
i,j ≥ t,

−1 if O′′
i,j ≤ −t,

0 otherwise.

As an example, let’s take two genes from the Yeast dataset: YGL207W (G2163) and

YDR224C (G1223). The original matrix O of their expression values in the first ten

time points are shown in Table 6.1; and the resultant binned slope matrix O′ with a

Normalization Threshold t = 1.0 is shown in Table 6.2.

6.2.2 Phase 2: Generation of q-clusters

We note that each sequence of “-1”, “0” and “1” in matrix O′ provides us with an

indication of the changing pattern of a gene expression over time. Thus, two genes that
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share the same subsequence may be co-regulated. In this phase, we generate a set of

q-clusters. Each q-cluster has the following property: all genes in the cluster have the

same expression pattern over some q consecutive time points (conditions). This turns

out to be none other than finding genes that share similar subsequences of length q−1.

We note that q is a user-defined parameter. Since entries of O′ have only 3 possible

distinct values, there are at most 3q−1 q-clusters. Each q-cluster has a unique identifier,

called q-clusterID which is generated as follows. Let P = {p[1], p[2], . . . , p[q − 1]} be

a pattern. Note that p[i] = −1, 0 or 1 ∀i ∈ [1, q − 1]. Let

f(p[i]) =





p[i] if p[i] = 0,

p[i] if p[i] = 1,

2 if p[i] = −1.

Then, the q-clusterID of P is determined as follows:

q − clusterID(P ) =

q−1∑
i=1

f(p[i]) ∗ 3q−1−i

Clearly, 0 ≤ q-clusterID ≤ 3q−1. We note that a small value of q will result in

a small number of q-clusters but there are also likely to be more genes with the

same (sub)patterns. On the contrary, a large value for q implies a larger number of

q-clusters with fewer genes with the same patterns.

We are now ready to describe how q-clusters are generated. For each row (gene)

of matrix O′, we apply a sliding window of length (q − 1). As each (q − 1)-substring

is examined, its q-clusterID is determined, and the (geneID, st)-pairs are inserted to

the corresponding q-cluster. Here, geneID is the gene identifier of the gene and st is

the position of the start time point of the (q − 1)-substring. For example, suppose

we set q = 7. Consider gene YGL207W (G2163) again, which has the sequence

“01100(−1)00(−1)”. By applying a sliding window of length 6 (= 7−1), we have the
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Table 6.3: q-clusters.

Pattern q-clusterID Gene information
. . . . . . . . . . . . . . . . . .
0 0 1 1 0 0 36 (1223,1)
. . . . . . . . . . . . . . . . . .
0 0 -1 0 0 -1 56 (2163,4)
. . . . . . . . . . . . . . . . . .
0 1 1 0 0 -1 110 (2163,1) (1223,2)
. . . . . . . . . . . . . . . . . .
1 0 0 -1 0 0 261 (2163,3)
1 0 0 -1 0 -1 263 (1223,4)
. . . . . . . . . . . . . . . . . .
1 1 0 0 -1 0 326 (2163,2) (1223,3)

subsequence “01100(−1)” in the first window. Now, the q-clusterID(“01100(−1)”)=

110. Thus, we have (2163, 1) inserted into q-cluster 110. Similarly, examining the

second pattern “1100(−1)0” results in (2163, 2) being inserted into q-cluster 326.

Table 6.3 shows the q-clusters generated by the two genes YGL207W (G2163) and

YDR224C (G1223).

From the set of q-clusters, we can extract gene co-regulations in three aspects.

First, each q-cluster corresponds to an interesting pattern under which genes with

similar expression pattern gather together. In fact, we can determine two relationships

here. For those genes with the same start time point, they may be co-regulated

simultaneously. Such a set of genes and conditions actually form a bicluster ([11]).

Examples will be given when we look at the next phase. For those genes with different

pattern starting positions, those with smaller starting positions may be activators of

those with larger starting positions. For example, q-cluster 110 in Table 6.3 gathers

together Gene2163 and Gene1223 whose pattern starting positions are different by 1.
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This implies that Gene2163 may have activated Gene1223 after 1 time point. Second,

to handle noise, it may be necessary to look for patterns with approximate match

(rather than exact match as in the above case). For example, if “100(−1)00” (third

window of Gene2163) is considered similar to “100(−1)0(−1)” (fourth window of

Gene1223), we can determine relationships between genes in q-clusters 261 and 263.

Third, we can also determine inhibition relationships between genes by comparing

q-clusters with opposite patterns (where “1” is the opposite of “-1”). For example,

“100(−1)0(−1)” is the opposite of “(−1)00101”.

Besides capturing all relationships between genes/gene clusters, our approach also

allows several genes to be simultaneously compared rather than the existing “two

genes one relationship” approaches. Moreover, our q-clusters can deliver more detailed

but concise information. This explains why our scheme works more efficiently and

effectively compared to previous methods.

6.2.3 Phase 3: Generate Time-Lagged Co-regulated Rela-
tionships Between Genes/Genes Clusters

At the end of phase 2, we have a set of q-clusters. In phase 3, four main processing

tasks are carried out on the q-clusters to extract (time-lagged) co-regulated relation-

ships between genes/genes clusters. For efficiency, each q-cluster is first sorted on the

starting position, so that all (GeneID,st)-pairs with the same starting position st are

grouped together.

The first task is the mining of biclusters. According to the characteristics of a

q-cluster, all genes with the same starting position share the same pattern under

the same q conditions. Hence, the subset of genes and conditions essentially form a

bicluster[11]. Let’s take q-cluster 551 for example. As shown in Table 6.4, Gene906,
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Table 6.4: Q-Cluster 551 for Gene Pattern (-1) 0 (-1) 1 0 (-1).

Starting Gene Identifier
Position
15 580 836 1681 4516
16 679 1308 1527 1622 1875 2045 4448 5222 6049
17 906 1518 1811 2704 5535 5758

Table 6.5: Q-Cluster 289 for Gene Pattern 1 0 1 (-1) 0 1.

Starting Gene Identifier
Position
10 868 968 1254 1434 1609 1973 2256 2330 4064 5733
14 3962 4210 4378 5415 6118
15 320 321 344 393 419 1699 6147

Gene1518, Gene1811, Gene2704, Gene5535, and Gene5758 with the same pattern

starting position 17 form a bicluster, i.e., as shown in figure 6.1, these genes have

similar changing tendency from T17 to T23. Similarly, we can find a bicluster for the

set of genes that share the same starting position at time point 15 (see figure 6.2).

To draw additional relationships among biclusters, we can carry out task two to iden-

tify the promising activation co-regulations and task three to identify the inhibition

regulations.
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Figure 6.1: Bicluster 17.
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Figure 6.2: Bicluster 15.
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Figure 6.3: Bicluster 14.

Task two deals with gene relationships within a q-cluster by comparing the starting

positions of biclusters obtained from the q-cluster. Since biclusters (within a q-cluster)

with different starting positions share the same pattern, there is a promising time-

lagged activation co-regulation relationships between these biclusters. In particular,

given two biclusters, the one with the smaller starting position is a potential activator

of the bicluster with the larger starting position. The time lag between the two

activations is given by the difference in the starting positions. We note that there are

two possible relationships that need further biological study: (a) it may be the case

that only certain of the genes in one bicluster individually activates another gene in

the other bicluster; (b) it may be the case that all or most of the genes in a bicluster
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collectively activate some (or all) genes in the other bicluster. As an example, within

q-cluster 551 in Table 6.4, Gene580, Gene836, Gene1681, and Gene4516 with starting

position 15 form a bicluster (in figure 6.2) which is a promising activator (either

individual gene or combinations of the genes) to the bicluster (in figure 6.1) with

starting position 17 at a time lag of 2.

Task three attempts to find inhibition regulations. This task is quite straightfor-

ward. Essentially, we need to first find a pair of q-clusters with opposite patterns.

Such a pair of q-clusters is a promising inhibition pairs. Two patterns are opposite to

one another if the corresponding elements between the two patterns are either both

“0” or opposite to one another, and element “1” is opposite to “-1”. Genes/biclusters

of one of the q-cluster with a smaller start position may inhibit genes/biclusters of

the other q-cluster with a larger start position. For example, the pattern “-1 0 -1 1 0

-1” (q-cluster 551) is the opposite of “1 0 1 -1 0 1” (q-cluster 289). Thus, the pair of

q-clusters (551, 289) is a promising inhibition pairs. Genes/biclusters within q-cluster

289 have the promising time-lagged inhibition regulations with those within q-cluster

551. Gene3962, Gene4210, Gene4378, Gene5415, and Gene6118 with starting posi-

tion 14 in Table 6.5 forms a bicluster (in figure 6.3) which is the promising inhibitor

to the bicluster (Gene906, Gene1518, Gene1811, Gene2704, Gene5535, Gene5758 in

figure 6.1) with starting position 17 (see Table 6.4) at a time lag of 3.

Finally, task four handles approximate matching. Similar/opposite patterns with

only one or two elements’ exception may still be regarded as interesting by some users.

Our scheme is able to deal with this approximation as follows. For each q-cluster,

we allow changes to be made to certain positions of the pattern. The corresponding

q-cluster of the changed pattern is potentially a candidate for co-regulation. For
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inhibition regulation, we only need to find the q-cluster that has an opposite pattern

from the changed pattern.

Before leaving this section, we would like to make one final observation. Since “0”

indicates no obvious increasing or decreasing changing tendency, patterns with too

many “0” are not interesting enough to be figured out. As such, in our algorithm,

we have introduced another user-specified parameter, Maximum Zero, to control the

maximum number of “0” allowed in interesting patterns. This implies that the number

of “useful” q-clusters are fewer than 3q−1.

Compared with the previous methods, our algorithm is more efficient at identi-

fying both activation and inhibition relationships between co-regulated genes. And

it also simplifies the identification of approximating patterns. As for the results, our

algorithm provides a clear time-lagged relationship structure between genes and gene

biclusters. Moreover, the results contain all user needed information with concise

structure. Through our results, users can know exactly the starting point and ending

point of the co-regulation period. And they can even know how many times two

genes co-regulate with each other by counting how many q-clusters contain both of

them within the user permitted time lag (illustrated in next Section). Depending on

the information delivered by our results, deeper exploration can be made focusing on

interesting genes/biclusters according to users’ needs.

6.2.4 Time Complexity

The time complexity of q-cluster mainly depends on the hash table construction. For

the 2D dataset O = G × T , where |G| = N , |T | = M , the time complexity of hash

table construction is O(N ×M), without applying any constraint-based pruning.
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6.3 Experimental Results

We implemented our algorithm in C, and studied the time-lagged gene clusters ob-

tained. As reference, we compare our results with the results generated by the Event

Method [34]. All the experiments are run on a Pentium 4 PC with 256 MB RAM.

6.3.1 Experimental Setup

For our experiments, we employ Spellman’s data set (source is downloaded from

http://genome-www.stanford.edu/cellcycle/data/rawdata/). The data set contains

all the data for the alpha factor, cdc15, and elutriation time courses. Further, it in-

cludes the data for the Clb2 and Cln3 induction experiments. Finally it includes the

analysis of the data from [17]. We used only the alpha-factor and CDC28 data sets for

our experiments as the Event Method did. The data set we used contains 6178 genes

under 35 time points, forming a (6178×35) matrix (http://www.comp.nus.edu.sg/ jilip-

ing/p2/dataset.txt).

For the proposed algorithm q-cluster, the matrix is transformed into a (6178 ×
34) slope matrix and then binned with the NormalizationThreshold = 1.0. We

generated q-clusters for q = 7. We also set the maximum number of “0” allowed in

the pattern, MaximumZero, to 3.

For the Event Method [34] we first encode the “−1, 0, 1” into “F, C, R” (represent-

ing “Falling, Constant, Rising” status) respectively, and then apply the Needleman-

Wunsch algorithm (source is downloaded from http://neobio.sourceforge.net) to align

all gene pairs. The Needleman-Wunsch alignment algorithm uses the score system to

sort the gene pairs. Gene pairs with relatively high score are regarded as promising

pairs. We set up the scoring matrix according to the idea of Event Method. As shown
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Table 6.6: Scoring Matrix Used in Event Model.

Event R C F Deletion Penalty
R (Rising) 3 0 -2 -1
C (Constant) 0 0 0 -1
F (Falling) -2 0 3 -1
Insertion Penalty -1 -1 -1 1

in Table 6.6, the matrix is a form of similarity matrix used to evaluate how well two

gene expression profiles match. Insertion penalties are specified by the last row while

deletion penalties are located at the last column, which are equivalent to the time

delay penalty. The time delay penalty is considered for the fact that if two genes’

regulation is too far apart from each other, it is unlikely that they reflect a regulatory

relationship. According to the original paper, the top-10000 ranking pairs form the

interesting results. In our study, we take the top-12744 ranking pairs as the last 4529

pairs have the same score.

6.3.2 Comparative Study

We run the proposed algorithm and the Event Model on the data set. From the

results, we made several interesting observations. First, our method can identify the

relationships between gene pairs detected by the Event Method. Among the top-12744

ranking pairs generated by the Event Method, 98.9% are detected within the same

q-cluster of our results. In addition, our approach can provide more detailed infor-

mation. Consider, for example, the co-regulated gene pairs YGL207W (Gene 2163)

and YDR224C (Gene 1223). The Event Method only gives the score of the alignment,

as shown in Table 6.7. Our method not only identifies their relationship, but also

shows that there are two basic regulated periods between YGL207W and YDR224C.
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Table 6.7: Alignment for Event Method.

C-RRCCFCCF-RCCCRCFCFCRCFFCCRRCCFRRFC - YGL207W

CCRRCCF-CFCCR-CCCCF-FCRCCFCFCRCFFRCCC - YDR224C

Score: 30

As shown in Table 6.8, the first time lag is 1 with the pattern “01100(−1)” while the

second time lag is 7 with the pattern “0(−1)0(−1)01”. The whole sequences of the

two genes are presented in Figure 6.4, which clearly shows the time lag relationship

between the patterns of the two sequences.

Table 6.8: Q-Clusters for patterns 01100(-1) and 0(-10)0(-1)01.

01100(-1)
1 594 969 1506 (2163) 3035
2 390 842 (1223) 1296 2730 3289 3640 4184 4746 4997 5379

5543 5544 6115
0(-1)0(-1)01
15 23 234 629 1010 1035 1751 1874 1906 (2163) 2234 2235

2565 2747 2782 2814 3146 3346 3448 3640 4321 4393 5539
22 171 291 757 907 942 1075 (1223) 1224 1326 1344 1398

1416 1578 1704 2003 2218 2280 2377 2409 2412 2424 3470
3478 3704 3710 3786, 3820 3954 3986 4058 4104 4187 4392
4667 4746 4786 4826 5069 5327 5861 5925 5936

Second, Event Method may not always provide the correct ranking order between

gene pairs. In other words, it is possible for a truly time-lag co-regulated gene pairs

to be ranked lower than a gene pair that has no co-regulation relationship. Given the

large number of results (e.g., 10000), it is likely that some of the truly co-regulated

pairs be missed out. For example, Gene YHR200W and YJL115W are known co-

regulated gene pairs while Gene YHR200W does not have any co-regulation with
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Figure 6.4: Gene2163 and Gene1223.

Table 6.9: Scores of Event Method.

CCFRFRF---RR-FC-FCCRR-FCCCCRCFCRRCFFRRCC -YHR200W
-RCRCCFCCCRRCFFCFCRRRCF--CFCCFCRCCFF---C -YJL115W
Score: 27
--FRFRFRRCFRFCCRCFCFCCFR-F-RCFRCCFRFRF- -YGR282C
CCFRFRFRR-FCFCCRRF-CCCCRCFCR--RCFFR-RCC -YHR200W
Score: 44

Gene YGR282C. However, the Event Method ranks the latter pair higher than the

former one, as shown in Table 6.9. Moreover, there is actually one more similar

pattern (with one element approximation) in the former pair than the latter one, as

shown in Table 6.10. Our method can detect this information with ease.

Third, our results are complete, containing more information with more concise

Table 6.10: Similar Patterns.

CCFRFRFRR(FCFCCRR)FCCCCR(CFCRRCFF)RRCC -YHR200W
RCRCCFCCCRRCF(FCFCRRR)CFCFC(CFCRCCFF)C -YJL115W
(FRFRFRR)CFRFCCRCFCFCCFRFRCFRCCFRFRF -YGR282C
CC(FRFRFRR)FCFCCRRFCCCCRCFCRRCFFRRCC -YHR200W
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format. When the number of genes increases, the number of gene pairs will increase

tremendously, which greatly enlarges the complete result of Event Method. As a

result, the Event Method has to ignore a large number of lowly ranked gene pairs.

This inevitably lose some interesting pairs for the Event Method cannot always rank

them high as stated above. Our results can give complete information of the whole

dataset in a relatively concise format in 3q−1 q-clusters. Moreover, the users can

also decrease the number of q-clusters by ignoring patterns with relatively more ”0”.

Moreover, our results are ready for deep exploration of co-regulation relationships

between genes according to users’ special needs.

6.3.3 Time-Lagged Co-regulated Genes/Gene Clusters

We shall examine the results of the time-lag co-regulated genes and gene clusters

produced by our algorithm. In total, there are 640 non-empty q-clusters (patterns).

Table 6.11 shows one representative q-cluster with pattern “0(−1)0(−1)01” and q-

clustersID 181. The first number of each line indicates the starting position of the

pattern in the genes, while the following numbers are the genes’ identifier. For exam-

ple, the last second line means that Gene 951, Gene 2524, Gene 6059 and Gene 6086

have the changing pattern “0(−1)0(−1)01” starting from the 27th time point. Time-

lagged relationships between not only genes but also gene clusters are shown clearly

in our results. Although those relationships may not be all true existing time-lagged

co-regulations, they help researchers to reduce the search space and focus their ef-

forts on the promising relationships. Our results do deliver known co-regulated genes

already established by biologists. For example, YGL207W and YDR224C are genes

with activation co-regulation, and YHR200W and YGR282C are also such gene pairs

in [17]. Moreover, our method is not limited to the ”A → B” relationship. It can
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Table 6.11: Sample Result - q-cluster 181.

0(-1)0(-1)01
1 183 2247 3874
2 1049 2725
3 459 512 970 992 1048 1072 1120 1167 1189 1530 1555 1603 1700

2012 3832 5995
4 233 555 557 1053 1341 1709 2973 3240 4270 4271 5023 5147 5974
5 947 1626 2735
6 466 844 2442 2576 3107 3412 4206 4982 5278 5670 5691
7 114 236 1837 2226 2534 3074 3260 3480 3572 3941 3961 4211

4249 4531 4544 4661 5292 5622 5725 5807 5850 6099
8 548 715 1061 1087 1576 5375
9 216 316 2748
10 384 567 928 1213 1329 2541 4157 4386 4442
11 1664
12 466 877 4978 5006 5019 5141 5211 5426 5498 5821 5859 5980
13 1776 2824 4848
14 766 885 1538 1592 2372 2562 3449 3643 4407 4695 4708
15 23 234 629 1010 1035 1751 1874 1906 2163 2234 2235 2565 2747

2782 2814 3146 3346 3448 3640 4321 4393 5539
16 2658 3452 3470 3489 3809 5944
17 310 398 546 547 1148 1481 1543 1557 1694 2462 2934 2945 2957

3377 3693 3712 4288 4302 4303 4630 4768 4782 5317 5461 6163
18 2757 2786 3063 3420 3651
19 2120 2215 3599 5123
20 1665 1709 2534 3204 3927
21 664 1117 1512 1520 2613 2873 2962 3049 5097 5567 5655 5863 6024
22 171 291 757 907 942 1075 1223 1224 1326 1344 1398 1416 1578

1704 2003 2218 2280 2377 2409 2412 2424 3470 3478 3704 3710
3786 3820 3954 3986 4058 4104 4187 4392 4667 4746 4786 4826
5069 5327 5861 5925 5936

23 1751 3134 4329
24 176 2718 3015 3452 3706 4515 4721 5498
25 183 1042 1581 1675 1760 1810 1926 1933 2172 2274 2298 2780 6008
26 287 587 927 967 1079 1093 1140 1207 2378 2662 3141 3242 3867

4305 4366 4520 4739 5401 5615 5619 5884
27 951 2524 6059 6086
28 3789
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also infer the ”A → B → C → D” regulation pattern. As shown in Table 6.11,

the former Cluster8 (548 715 1061 1087 1576 5375) may activate the latter Cluster10

(384 567 928 1213 1329 2541 4157 4386 4442) after 2 time lags, and the Cluster10

may go on activating an even later Cluster16 (2658 3452 3470 3489 3809 5944) after

6 time lags. We do not find such already known gene regulations in existing biolog-

ical works. However, these co-regulated patterns may help future discovery of such

regulatory pathways.

6.4 Summary

In this chapter, we revisited the problem of analyzing gene expression data for time-

lag gene co-regulation relationships. We have presented a localized algorithm to

identify the time-lagged gene patterns based on the concept of q-clusters. Genes with

similar pattern over a subset of q consecutive time points (conditions) are grouped

into the same q-cluster. As such, we can easily determine the co-regulations of genes

within each q-cluster and between q-clusters. We have experimented on the real

time series gene expression dataset and compared our method and results with the

Event Method. Our study shows that our approach is efficient at detecting both

the activation and inhibition time-lagged co-regulations, and our results can draw

relationships between both genes and gene clusters with more detailed information.

We believe our approach delivers valuable information and provides an excellent tool

that facilitates deeper exploration for gene network research.



Chapter 7

Conclusion and Future Work

With the advances in DNA microarray technology, expression levels of thousands of

genes can be simultaneously measured efficiently during important biological process

and across collections of related samples. Analyzing the microarray data to identify

localized co-expressed gene patterns has become the new focuses of researchers as

such gene patterns are essential in revealing the gene functions, gene regulations,

subtypes of cells, and cellular processes of gene regulation networks. This thesis

has categorized the co-expressed patterns into three types (co-attribute patterns, co-

tendency patterns, and time-lagged patterns), and proposed several new frameworks

and algorithms to effectively and efficiently mine the three types of co-expressed

patterns. The application of our research work will give new insights for biological

researchers. In the following sections, we will summarize our contributions and give

directions for future research.

7.1 Thesis Contributions

The main contributions of the thesis can be summarized as follows.
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1. First, we have proposed to mine localized co-expressed gene patterns and catego-

rized the patterns into three types: co-attribute patterns, co-tendency patterns

and time-lagged patterns. We consider both the static and the dynamic aspects

of gene co-regulations.

2. Second, to identify the co-attribute patterns from 2D dense microarray datasets,

we have overcome the limitations of traditional 2D frequent closed pattern min-

ing algorithms, and introduced a framework that progressively returns FCPs to

users. We have proposed two schemes, C-Miner and B-Miner, that are based

on this framework. The two schemes adopt different partitioning strategies -

C-Miner partitions the mining space based on Compact Rows Enumeration

whereas B-Miner partitions the space based on Base Rows Projection - and

hence different pruning strategies. We have implemented C-Miner and B-Miner,

and our performance study on synthetic datasets and real dense datasets shows

their effectiveness over existing schemes. We have also implemented the parallel

schemes of C-Miner and B-Miner that further enhance the mining efficiency.

This is critical as, to our knowledge, there is no reported work in the literature

on parallel frequent closed pattern mining.

3. Third, we have introduced the notion of frequent closed cube (FCC) and for-

mally defined it, which generalizes the notion of 2D frequent closed pattern to

3D context. Based on this notion, we could mine 3D co-attribute patterns,

which settles the new challenges coming up with the spurning of 3D microarray

data. We have proposed two novel algorithms to mine FCCs from 3D datasets.

The first scheme is a Representative Slice Mining (RSM) framework that can be

used to extend existing 2D frequent closed pattern mining algorithms for FCC
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mining. The second technique, called CubeMiner, is a novel algorithm that op-

erates on the 3D space directly. We have also shown how RSM and CubeMiner

can be easily extended to exploit parallelism. We have implemented RSM and

CubeMiner and their parallel schemes, and conducted experiments on both real

and synthetic datasets. The experimental results showed that the RSM -based

scheme is efficient when one of the dimensions is small, while CubeMiner is

superior otherwise. To our knowledge, there has been no prior work that mine

FCCs.

4. Forth, to mine co-tendency patterns (biclusters) from 2D microarray data, we

have re-examined how biclusters are extracted from the gene expression data

and introduced a quick hierarchical biclustering algorithm (QHB) to ensure that

the final bicluster trends are not only consistent but exhibit similar degrees of

fluctuation between consecutive conditions. We have also provided a new merit

function that gauges the degree of similarity in the fluctuations of the bicluster,

enabling us to extract biclusters that fulfill this condition and filter off those

that have a wide range of degree fluctuations. As shown in our experiments,

our framework is able to efficiently mine biclusters of a better quality, com-

pared with the more recent DBF framework [63]. Furthermore, QHB provides

a hierarchical picture of inter-bicluster relationships, maintains information in-

tegrity and offers users a progressive way of knowledge exploration. This is very

helpful in biological application. Instead of waiting long hours for all detailed

results, biologists now would be provided with a general picture of the whole

results from the upper levels of the hierarchical tree in a very short response

time. Then biologists could freely choose their focus, rolling up to generalize



159

it or rolling down to detail it, progressively. This would help biologists quickly

focus on their most interested patterns for further exploration. All the above

features of QHB make it an attractive tool for microarray data analysis.

5. Finally, we have proposed an efficient algorithm q-cluster to identify time-lagged

patterns. The algorithm facilitates localized comparison and processes several

genes simultaneously to generate detailed and complete time-lagged informa-

tion between genes/gene clusters. q-cluster can deliver time-lagged patterns

with both similar and opposite changing tendency, which draw a clear picture

of time based co-regulation (activation/inhibition) among genes and gene biclus-

ters. We experimented with the time series Yeast gene dataset and compared

our scheme with the Event Method [34]. Our results show that our scheme is not

only efficient, but delivers more reliable and detailed information of time-lagged

co-regulation between genes/gene clusters. We believe our approach delivers

valuable information and provides an excellent tool that facilitates deeper ex-

ploration for gene network research.

7.2 Future Research Directions

While this thesis has presented efficient algorithms to localized co-expressed gene

patterns mining, a number of issues could be further investigated.

• First, although there have been some encouraging results on co-attribute pattern

mining from both 2D (FCP) and 3D (FCC) microarray datasets, the number

of resulting patterns is still not small. This will bring some difficulty for biolo-

gists to analyze them. New approaches may consider how to make use of some
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biological discoveries on gene networks as prior-knowledge of “interesting” fre-

quent closed pattern mining. The prior-knowledge of gene relationships could

not only act as a post-filter to figure out more interesting patterns, but also

could be put into the early pruning process to enhance mining efficiency.

• Second, further exploration on the resulting co-attribute patterns (FCPs and

FCCs) will be another interesting research approach. Gene association rule

mining from 2D FCPs has been well studied in the literature. And cancer

classifier built on 2D FCPs has also proven its effectiveness in application [13].

Hence, association rule mining and classifier building on 3D FCCs could be

further explored.

• Third, based on the partitioning scheme of the FCC mining algorithm CubeM-

iner and the principle of biclustering algorithm QHB, we could further extend

the co-tendency patterns from 2D to 3D microarray datasets. That is, new

efficient algorithms for hierarchical tri-clusters mining could be designed.

• Finally, although the time-lagged pattern mining algorithm q-cluster can de-

liver the detailed and complete time-lagged information between genes/gene

clusters, the genes/gene clusters that act as the activator/inhibitor have the

same affecting time periods as the genes/gene clusters that are activated/ in-

hibited. In genetic regulatory networks, there also exist genes/gene clusters

that regulate each other but have different affecting time periods. For example,

some genes/gene clusters may have a similar/opposite but “enlarged/shortened”

fluctuating shape with their activators/inhibitors. Future work can be done to

mine such “enlarged/shortened” time lagged patterns.
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