
Learning Gene Network Using Bayesian Network Framework

Liu Tiefei

(Bachelor of Medicine)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Department of Computer Science

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my supervisors, Dr. Sung Wing-Kin,

Dr. Mao Pei-Lin and Dr. Liu Bing, for providing me with the wonderful opportunity

to pursue my PhD degree. I am grateful to them for their continuous encouragement,

support and guidance throughout of years of my study.

I am thankful to the graduate supervisory committee overseeing my work,

Dr. Tung Kum Hoe and Dr. Lee Wee Sun for their constructive suggestions and

critical comments.

Special thanks go to Dr. Wu Ping and Dr. Ankush Mittal for their guidance

as well as helpful suggestions. Madam Leong Yoke Yee is also highly appreciated

for helping me refine the thesis.

I thank all past and present members of the computational biology lab for

their idea sharing. The wonderful time we have spent together in NUS will be in

my mind forever. My heartfelt appreciation goes to my beloved parents for their

constant support and encouragement, without whom this would have remained but

a dream. Finally, my deepest gratitude goes to my wife for her unconditional love,

understanding and warm support through the years.

Liu Tiefei

ii

National University of Singapore

October 2005

iii

CONTENTS

Acknowledgments ii

List of Tables viii

List of Figures x

Summary xiv

Chapter 1 introduction 1

1.1 Genes and Gene Networks . 1

1.1.1 Genes and Biological Sequences 1

1.1.2 Gene expression, gene regulation and regulatory pathways . . 2

1.1.3 Gene networks . 3

1.2 Motivation behind the thesis . 4

1.3 Contribution of the thesis . 6

1.4 Organization of the thesis . 8

Chapter 2 Review and Background 10

2.1 Data collection . 10

2.2 Literature Review . 12

iv

2.2.1 Pair-wise Methods . 12

2.2.2 Clustering . 13

2.2.3 Boolean model . 14

2.2.4 Linear model . 15

2.2.5 Differential equation . 16

2.2.6 Modeling gene networks with the Bayesian network 18

Chapter 3 Research Directions 28

3.1 Preliminaries . 28

3.1.1 Sparse network . 28

3.1.2 Regulatory feedback loops . 29

3.1.3 Stochastic nature . 29

3.1.4 Boolean/discrete or continuous 29

3.2 More directions . 30

3.2.1 Various time delays . 30

3.2.2 Collaborations among regulators 31

3.2.3 Complex . 31

3.2.4 Hidden variables . 32

Chapter 4 Learning Various Time Delay Gene Networks with the

Time Delayed Bayesian Network 33

4.1 Introduction . 33

4.2 Time delayed network and its transformation to the traditional Bayesian

network . 35

4.2.1 Time delayed network . 35

4.2.2 Relationship between traditional network and time delayed

network . 36

4.2.3 Dataset Transformation . 39

4.3 Time delayed network learning algorithm 41

v

4.3.1 Choosing candidate parent sets 42

4.3.2 Structure learning . 46

4.4 Experimental results and comparison 50

4.4.1 Structure learning for artificial datasets 50

4.4.2 Structure learning on yeast subnetwork 55

4.4.3 Markov relation and confidence analysis 60

4.5 Conclusion . 62

Chapter 5 Learning gene networks by conditional dependence 63

5.1 Introduction . 63

5.2 Conditional dependence learning algorithm 65

5.2.1 Candidate parent selection . 65

5.2.2 Learning structure from candidate parent sets 72

5.2.3 Variable time delay . 77

5.3 Experiment . 78

5.3.1 Structure learning on artificial datasets 78

5.3.2 Structure learning on yeast datasets 83

5.4 Conclusions . 85

Chapter 6 Semi-fixed Bayesian network and semi-fixed structure EM

algorithm 86

6.1 Introduction . 86

6.2 Modeling a gene network as a semi-fixed network with hidden Variables 88

6.3 Semi-Fixed Structure EM Learning Algorithm 91

6.4 Experimental results and comparison 98

6.4.1 Experiment on artificial datasets 98

6.4.2 Experiments on real-life data 102

6.5 Conclusion . 106

vi

Chapter 7 Conclusion and Future Work 108

7.1 Conclusion . 108

7.2 Discussion . 110

7.3 Future Work . 111

Bibliography 114

vii

LIST OF TABLES

4.1 Specification of the synthetic datasets. 51

4.2 Performance comparison of the K2, REVEAL, GeneNetwork, DBm-

cmc and TDNL learning methods. N/A means the result could not

be found out as the algorithm has not finished execution within a

reasonable time (2 days). C indicates the number of true positive

edges, T indicates the number of total learned edges. 52

4.3 Comparison of learning performance. T indicates the number of total

learnt edges and C indicates correct predicted edges. In row of Ys105

and Yc105, the total learnt edges are the total edges between regulators

and target genes. N/A means the result could not be found out as

the algorithm has not finished execution within a reasonable time (2

days). 57

5.1 Artificial datasets. 79

5.2 The performance of parents selection from artificial datasets. T indi-

cates the number of total learnt edges while C indicates the number

of correct edges. N/A indicates the experiment is not available due

to long running time (¿ 2 days). 80

viii

5.3 Comparison of learning performance. T indicates the number of total

learnt edges and C indicates correct predicted edges. In row of Ys105

and Yc105, the total learnt edges are the total edges between regulators

and target genes. N/A means the result could not be found out as

the algorithm has not finished execution within a reasonable time (2

days). 84

6.1 Example of filling in missing values. 94

6.2 Specification of the synthetic datasets. 99

6.3 The performance of parents selection from artificial datasets. T indi-

cates the number of total learnt edges while C indicates the number

of correct edges. 101

6.4 Comparison of learning performance. T indicates the number of total

learnt edges and C indicates correct predicted edges. 103

ix

LIST OF FIGURES

2.1 An example of a directed acyclic graph. 20

4.1 An example of network transformation is shown here. (a) The time

delayed network contains four variables & four edges. The integer on

each edge indicates the time delay, and the maximum time delay k

is assumed to be 2. This network has one cycle: V1 → V2 → V3 →
V4 → V1. (b) The transformed network contains 12 variables and four

edges. Each variable Vi is transformed into three variables: Vi,0, Vi,1

and Vi,2. The edge (Vi, Vj), with time delay ∆, is transformed into

edge (Vi,k−∆, Vj,k). For example, the edge (V1, V2) with time delay 1

is transformed into the edge (V1,1, V2,2). After the transformation, no

cycle exists. 38

4.2 An example of dataset transformation. (a) This is the original dataset

with n variables and m time slices. vi,t represents the state of the

variable Vi at time slices t. Suppose the max delay k is 2. (b) This is

the transformed dataset. The new dataset contains n × 3 variables.

Each variable Vi is transformed into 3 variables. 40

x

4.3 An example: Given a variable X and its candidate parent set CPS =

{A,B,C,D,E}, in which B, C are the parents of X. Suppose the

following subsets of CPS give the scores to X in descending order:

{B, C} > {A,B} > {A,C} > {A,B, C} > {A,C, D} > {A,C, D, E} >

{A} > {B}, and all other subsets give scores smaller than B. K2 se-

lects {A} and {A, B} in order but misses {B, C} since K2 fails to

capture the combined effect of the two parents. Learning by elimi-

nation selects {A, C, D, E}, {A, C, D} and {A, C} in order while

learning by modification selects {A}, {A, B}, {A, B, C} and {B, C}
in order. 47

4.4 Outline of the Learn by Modification algorithm. 49

4.5 Convergence curves of sensitivity and number of iteration. 54

4.6 Learning performance of TDNL on a real gene subnetwork. (a) The

yeast cell cycle transcriptional regulatory subnetwork. (b) The net-

work structure learnt by TDNL, which contains 29 edges of which 14

are correct. 59

4.7 Top Markov relations list. * indicates the relation is verified by Fig-

ure 4.6(a). 61

5.1 Gene expression profile comparison of NDD1, MCM1, FKH1 and

SWI5. 67

xi

5.2 (a) shows the dot plot of the expression levels of NDD1 and FKH1.

Each point represents the expression levels of NDD1 and FKH1 at

some particular time slot. It is clear that there is no correlation

between NDD1 and FKH1. (b) and (c) show the dot plot of NDD1

and FKH1 given the gene UNG or a randomly generated gene. A

point is labeled by ‘×’ or ‘·’, depending on whether the expression

level of UNG (or the random gene) is negative or not in the particular

time slot. ‘×’ and ‘·’ are randomly distributed. (d) shows the dot plot

of NDD1 and FKH1 given the gene SWI5. The plot shows that ‘×’

and ‘·’ are in different distributions and can be clustered into two

groups. This proves that FKH1 and NDD1 are co-parents of SWI5. . 69

5.3 Candidate parent selection procedure. 71

5.4 Parent selection procedure . 75

5.5 Semi-clique selection procedure. 76

5.6 Convergence curves of sensitivity and number of time slices. Sensi-

tivity = number of learnt true edges / number of total true edges.

Sensitivities increase rapidly between 50 and 200 slices and start to

converge between 150 to 300 slices. 82

6.1 Simplified gene regulation system. (a) Gene expression system can

be simplified as the interaction of genes and proteins. (b) The system

can be further simplified since the combined proteins are the direct

regulator of the target genes. 89

6.2 Outline of SSEM. 97

xii

6.3 Learning performance of SSEM on a real-life gene network. (a) Yeast

cell cycle transcriptional regulatory subnetwork. (b) The structure

learnt by SSEM . There are 29 edges with confidence no smaller

than 0.6. Among them, 20 edges are verified as true positives by

(a). (c) Markov features with confidence no smaller than 0.6 learnt

by SSEM . There are 49 Markov features. Among them, 39 features

can be verified. (d) Learnt cell cycle regulatory network which is

simplified from (c). 104

xiii

xiv

Summary

Learning gene networks is one of the central problems in molecular biology. In recent

years, with enormous microarray data becoming available, learning gene network has

received increasing attention, becoming one of the hottest topics in computational

biology. Many models and learning methods have been proposed to solve the prob-

lem. However, the data problem and the complexity of gene regulatory systems

make learning difficult. Moreover, some important biological factors which are crit-

ical to gene regulatory systems are not considered in most published works. There

factors include: various time delays among gene regulatory systems, the effects of

complexes and the effect of proteins as hidden variables when learning a gene net-

work from microarray data. In this thesis, three models and learning methods are

proposed to take into account the important biological factors: 1) The time de-

layed model is proposed to capture the various time delays among gene regulatory

systems. A corresponding learning algorithm, the Time Delayed Network Learning

(TDNL) algorithm, is proposed to learn the structure of a network. 2) Conditional

dependance is used to find the collaborations among regulators and the effect of a

complex is considered by the learning algorithm, the Conditional Dependance (CD)

learning algorithm. 3) Proteins are modeled as hidden variables in the network by

Semi-Fixed Network. The Semi-fixed Structure Expectation Maximization (SSEM)

algorithm, is proposed to learn the structure of a network. The effectness of the

proposed methods are verified by experiments on both artificial and real-life gene

expression data. The performance comparison of these methods against some pub-

lished methods prove the advantages of the proposed methods.

xv

CHAPTER 1

Introduction

1.1 Genes and Gene Networks

1.1.1 Genes and Biological Sequences

Although a cell is the fundamental unit of all living organisms, it is complicated in

terms of both structure and function. Such complexities are mainly embodied in

and regulated by three biological sequences: DNA, RNA and Protein.

DNA (DeoxyriboNucleic Acid) is a linear, double stranded unbranched poly-

mer in which the monomeric subunits are four chemically distinct nucleotides (Ade-

nine (A), Cytosine (C), Guanine (G), Thymine (T)). DNA is the carrier of genes and

other regulatory information. A gene is a piece of DNA fragment which contains

genetic information. The whole set of genes in a cell, called the genome, defines the

structure and function of the cell.

The functions of genes are implemented via proteins, which are linear poly-

mers composed of 20 different types of amino acids. Proteins play a central role in

virtually all aspects of cell structure and functions. The sequence and function of

1

a protein is defined by the sequence of a corresponding gene in nature, while the

expression strength, the expression place and the expression time of the protein is

regulated by a set of other genes.

The genetic information between genes and proteins are linked by mRNA(messenger

Ribonucleic Acid). RNA is a linear, single stranded polymer of 4 different types of

nucleotides (Adenine (A), Cytosine (C), Guanine (G), Uracil (U)). A RNA copies

the genetic information of a gene by transcription. After that, some RNA trans-

lates the information into proteins. This RNA is a mRNA. Therefore, genes contain

coding information for encoding proteins and RNA molecules information.

1.1.2 Gene expression, gene regulation and regulatory path-

ways

The flow of genetic information from a gene to an RNA and a protein is called

the gene expression process. In this process, DNA serves as the template to make

RNA. This process is known as transcription where information determined by the

nucleotide sequence is transferred from a double stranded DNA molecule to a single

stranded RNA molecule. RNA then serves as the source of information to make

proteins in a process called translation. Here, the nucleotide sequence information

in RNA is converted to an amino acid sequence of proteins. The language of RNA

is translated into the language of proteins.

The expression of a gene is controlled by some other genes. This process is

called gene regulation. Gene expression is regulated both temporally and spatially

[60]. The temporal expression of a gene refers to the process that a gene expresses

(or is regulated) at the appropriate time and keeps itself silent otherwise [60]. It

also indicates a gene has different expression patterns at different times [51]. For

example, the expression pattern of human globin genes are different at different

stage of the development [65, 98]. There is also spatial control of gene expression

[60]. Although cells from the same organism have identical genomes, cells in the

2

different parts of an organism may have different gene expression patterns due to

the various functions they fulfill. Therefore, the regulation of gene expression is an

essential part of life [38]. There are two types of regulations: positive and negative.

Given two genes A and B, if an expression level of B is affected by the expression

level of A, we say A regulates B. If an increase in the expression level of A leads

to the increase of expression level of B, it is a positive regulation; otherwise, it is a

negative expression.

Regulatory events in a set may depend on each other and form some regula-

tory chains, named regulatory pathways. Moreover, a chain may form a loop. There

are two types of loops: negative and positive. If the sum of the negative regulations

of the loop is odd, it is a negative loop; otherwise, it is positive. Regulatory loops

are important to an organism as they maintain the stability or development of cells

[96]. It is necessary to understand the gene regulation system.

1.1.3 Gene networks

It is estimated that each gene on average interacts with four to eight other genes,

and is involved in 10 biological functions [24]. The complexity of a living cell is

achieved by the concerted activity of many genes and their products. This activity

is often coordinated by the organization of the genome into regulatory modules,

or sets of co-regulated genes that share a common function[83]. The global gene

expression pattern is therefore the result of the collective behavior of individual

regulatory pathways. In such highly interconnected cellular signaling networks, gene

functions depend on the cellular context. Genes (proteins) work together as a team

to accomplish certain processes that no single protein can do alone, such metabolism,

detoxification, and various responses to the environment. This partially explains

why many novel “gene targeted” drugs have failed during clinical trials–because of

side effects and poor specificity1. Thus, understanding a gene network as a whole is

1What is a gene network: http://www.gene-networks.com/english/technology/page1.html

3

essential, and learning gene networks is an important central theme in post genomic

research [24, 30, 42]. This thesis aims to contribute to the study of gene networks.

There are several applications and advantages to studying gene networks:

• Gene networks provide a large-scale, coarse-grained view of the physiological

state of an organism at the mRNA level [13]. Gene networks describe a large

number of interactions in a concise way. They also present the dynamic prop-

erties of the gene regulatory system. They are capable of being the annotation

of genomics and functional genomics data.

• It is an important step to uncover the complete biochemical networks of cells

[13].

• Knowledge about gene networks might provide valuable clues for the thera-

peutics of complex diseases [13, 30].

• As most phenotypes are the result of the collective response of a group of genes,

gene networks help to explain how complex traits arise and which groups of

genes are responsible for them [13, 30].

• Gene networks are well suited for comparative genomics [13]. Comparing gene

networks from different genomes helps with the understanding of evolution.

1.2 Motivation behind the thesis

Early work on learning gene regulation takes the biological experimental approach.

This traditional approach is an inherently local one: examining and collecting data

on a single gene, a single protein or a single reaction at a time, then analyzing

the binding sites and reactions one by one. It normally takes one or more years

to discover the regulation of a gene. Over the years, this manual approach has

made remarkable achievements, allowing us to make highly accurate biochemical

4

models of some individual genes for some small sized genome, such as the bacteria

phage lambda [23]. However, taking into account the huge information stored in a

genome (there are thousands or even tens of thousands of genes in a genome [25]),

it is far from possible to construct a network by the conventional way. The number

of experiments that are necessary for constructing a network is simply too many.

In addition, s network learnt by the experimental approach can only describe the

regulation relationship. It would not have the ability to predict the properties not

observed. To obtain the full picture of even a medium size genome using the exper-

imental approach is not only time consuming but also expensive [23]. Therefore, it

is unrealistic to obtain an understanding of a global regulation profile by analyzing

regulation pathways one by one [23, 25].

With the development of high-throughput genomics and functional genomics,

massive data on thousands of cellular species are being gathered. This is a significant

shift from the traditional molecular biology approach of focusing on single molecules

and reactions. The need is now data-driven, and there is great urgency to find

methods that can handle the massive data in a global manner and that can analyze

large systems at some intermediate level [23].

At the time, computer science shows that inferring a logical regulatory net-

work is possible with genome-wide gene expression data solely [23]. A gene network

can be modeled by various mathematical methods. A model is a representation of

reality used to simulate a process, understand a situation, predict an outcome, or

analyze a problem. The success of the computational approach in learning gene net-

works has been proved biologically, with many exciting results reported in recently

published literature [30, 53, 87].

Early computational approaches operate based on learning the relationships

among genes either by studying mutual information or the correlation among their

expression values. The representatives of such approaches are pair-wise interaction

[6] and clustering [100], which seek to directly find correlations among genes. Since

5

then, Boolean networks [2, 67] have been used in several works, where gene expression

levels are represented by Boolean values and the gene regulatory relationship is

represented by a set of Boolean functions. Linear and nonlinear models followed, and

they represent regulatory relationships by linear functions and non-linear functions.

In a well-known paper by Friedman et al. [34], an algorithm for learning gene

networks using the Bayesian network is presented. Since then, several extensions of

the Bayesian network have been proposed, such as the Bayesian network integrated

with nonparametric regression [48], Dynamic Bayesian network (DBN) [75], etc. A

detailed literature review will be presented in Chapter 2.

However, when learning gene networks using time series gene expression

data, biologically significant results have so far been obtained from only some small

datasets. Scientists have failed to learn gene networks from medium or large datasets

because they seem to have overlooked some important biological factors including:

variable time delays in the gene regulatory system, the effect of proteins in the

regulatory system, the special collaboration style of genes/proteins, and so on. A

detailed description of these issues will be presented in Chapter 3. New methods

which take into consideration these biological factors are clearly necessary.

1.3 Contribution of the thesis

To resolve the problems outlined above, I propose three models and corresponding

learning algorithms:

• A learning framework based on the Bayesian network enhanced with

a various time delayed model. Most research in learning gene networks

either assumes that there is no time delay in gene expression or that there is

a constant time delay. I present how the Bayesian network can be applied to

represent variable time delay relationships by a various time delayed model.

A set of improvements are made to increase the efficiency and accuracy of the

6

learning process: (1) an improved mutual information calculation method for

measuring the dependence between two genes; (2) a new structure learning

algorithm which is suited to learning gene networks; (3) an approximation

method for joint probability inference to speed up the learning process. In ad-

dition, unlike the traditional Bayesian network, the proposed framework can

represent and detect directed loops that commonly occur in cell cycles.

• Bayesian network enhanced by conditional dependence. Traditional

Bayesian network learning methods often use pairwise correlations to help find

regulatory relationships [34]. However, it is reported that less than 20% regu-

lation relationships can be found by pairwise correlation in some widely used

microarray datasets [29]. Barrier exist, preventing the use of pairwise corre-

lations to infer large regulatory pathway[29]. I propose using the descendant-

based conditional dependence together with the mutual information to extract

more regulation relationships. Basically, if two genes g1 and g2 regulate the

same target gene g, due to the combined effect of g1 and g2, it is expected

that g1 and g2 are dependent given the gene g. This idea enables us to find

regulation pairs without strong correlations.

Proteins often form complexes before they regulate other genes. A complex is

a set of physically interconnected proteins2. Such physical interaction is nec-

essary for the functions of proteins. Therefore, the complex form is an impor-

tant factor in learning gene network. It demands the parent selection method

should be based on multiple gene combinations instead of single ones. How-

ever, few existing methods consider this important factor. I identify complexes

through the hidden information provided in datasets, then treat a complex as

a unit of a candidate parent. A learning algorithm called Conditional Depen-

2It is represented by a set of strongly interacting genes in a simplified gene network; a simplified
gene network indicates that proteins are omitted in the regulatory system.

7

dence Learning algorithm is proposed to extract the underlying structure of a

gene network based on the idea. Compared to the time delayed network, this

method is more appropriate for learning a big size gene network as it is not

iterative and there is no random sampling.

• A semi-fixed Bayesian network. This models a gene network as a directed

graph with hidden variables, representing the combined effects of collaborated

proteins. In this model, the number of hidden variables is predefined using

biological knowledge. In addition, the relationships between hidden variables

and observed variables are partially fixed. A Semi-Fixed Structure Expectation

Maximization (SSEM) algorithm is proposed to learn such networks. SSEM

employs the advantages of the semi-fixed structure of the model. It makes the

Bayesian network decomposable, thus the learning is efficient. Various time

delay is also integrated in the model. Compared to the other two methods,

the semi-fixed model is closer to the real gene regulatory process and gives

better learning performance. However, it is slow since it needs more computing

resource to infer the parameters.

1.4 Organization of the thesis

Chapter 2 gives a brief literature review covering the research area. Some existing

models and algorithms for learning gene networks are introduced. Some important

but rarely mentioned biological knowledge is discussed in Chapter 3; this knowledge

forms the basis of my current research. Chapter 4 models a gene network as a

time delayed network and describes a time delayed network learning algorithm to

learn the model. Chapter 5 describes the use of conditional dependence in learning

gene networks. Chapter 6 describes a semi-fixed model with hidden variables as

well as the Semi-Fixed Structure Expectation Maximization algorithm. Chapter 7

8

concludes the thesis and gives some further perspectives to the project.

9

CHAPTER 2

Review and Background

As early as the 1960s, some mathematical formalisms were proposed to describe

gene regulatory networks [54]. Traditionally, the emphasis has been on simulation

techniques [25] instead of structure reconstruction. With more experimental data

available, automatic structure reconstruction techniques are gaining popularity. In

recent years, the number of papers in learning gene networks has grown exponen-

tially.

In this chapter, I briefly review: 1) the data collection methods: microarray,

and 2) the mathematical techniques in reconstructing gene networks from microarray

gene expression data.

2.1 Data collection

We may observe a gene network is observed by monitoring expression levels of its el-

ements. Thus, to learn a gene network, one important prerequisite is the availability

of the expression data of elements in the gene network.

The main measurable variables in the gene regulation system is the level of

10

protein synthesized and mRNA transcribed. A widely used method to measure

protein level is 2D-PAGE which separates proteins on a two-dimensional sheet of

gel, first in one direction based on their isoelectric point, and then in the other

direction based on their molecular weight. The result is a two-dimensional image

with a large number of protein “spots”. The intensity of each spot is proportional

to the amount of the specific protein present. However, the sensitivity and accuracy

of this method are not high enough to identify all proteins. Besides, the high time

expense makes it difficult to obtain a genome-wide scale profile using this method.

Meanwhile, mRNA levels are measurable on a genome wide scale using the new DNA

microarray technology. Thus, the only available large scale data for learning gene

regulation is mRNA data, which represent gene expression levels. Therefore, most

learning methods are based on gene transcriptional data, with few using protein

levels. In the following, I briefly describe the microarray technology.

Traditional methods to measure gene expression levels in molecular biology

such as Northern Blot, RNAase Protect Assay, Reverse Transcription-Polymerase

Chain Reaction (RT-PCR) generally work on a “one gene in one experiment” basis,

which means that the throughput is very limited and the “whole picture” of all

genes in a cell is difficult to obtain. In the past several years, a new technology

called DNA microarray, has attracted tremendous interest among biologists. This

technology could monitor the whole genome on a single chip, giving researchers can

have a better picture of the interactions among thousands of genes simultaneously.

A microarray is a glass (sometimes nylon) chip, onto which single stranded

DNA molecules are attached at fixed locations (spots). There may be tens of thou-

sands of spots on an array, each representing a single gene. The sample mRNA is

labeled with fluorescent dye. They may hybridized with the DNA(known as probes)

attached on the chip. If the mRNA is complementary to these probes, then the

mRNA will stay at the spot. The amount of hybridized mRNA can be measured by

imaging equipment according to the fluorescence intensities [14, 71]. An experiment

11

with a single DNA chip can provide researchers information on thousands of genes

simultaneously – a dramatic increase in throughput.

There are two main variants of the DNA microarray technology, depending

on the types of single stranded DNA being plotted: oligonucleotide microarray and

cDNA microarray: Oligonucleotide microarray employs oligonucleotides (20∼80-mer

oligos) or peptide nucleic acid (PNA) probes. These probes are synthesized either

in situ (on-chip) or by conventional synthesis followed by on-chip immobilization.

cDNA microarray employs cDNA probes (500∼5,000 bases long) which are immobi-

lized to a solid surface such as glass using robot spotting. cDNA microarray is cheap

to manufacture and easy to read compared to oligonucleotide microarray. However,

cDNA microarray requires a large number of cDNAs to process the experiment.

There are two main types of gene expression microarray data: static and

time series microarray data. In static expression experiments, a snapshot of the

expression of genes in different samples is measured while in time series expression

experiments, a temporal process is measured. Since gene expression is a temporal

process [94], we choose time series data as the data source to learn a gene regulatory

network in this thesis.

The microarray (DNA chip) technology has significant impact on genomics

study. Many fields, including drug discovery and toxicological research, should bene-

fit from the use of DNA microarray technology. The main shortcoming of microarray

is that the measured values are not quite accurate, i.e., microarray data is noisy.

2.2 Literature Review

2.2.1 Pair-wise Methods

Pair-wise methods seek to discover the relationships among genes by pair-wise com-

parisons solely. They do not take into account interactions where the expression of

one gene is achieved by the combined effects of multiple other genes. Arkin et al. [6]

12

proposed correlation metric construction (CMC). CMC computes the magnitude of

gene pairs by cross-correlation. A distance matrix is constructed for each gene pair

by comparing their similarities to other genes. Then a diagram is constructed to

summarize the strength of interaction and predict mechanistic connections between

the genes. Chen et al. [16] proposed activation/inhibition networks to find regula-

tion based on whether peaks in one signal precede peaks in another signal. Chen et

al. proposed grouping the genes with similar expression profiles. Then a prototype is

generated for each group of genes by averaging the expression values of genes in the

group. Each prototype represents a group of genes with similar expression patterns

and is represented as a series of peaks. The correlations between prototype pairs are

calculated to determine the type of regulatory relationships (activation, inhibition

or unmatched) and measure the strength of the regulatory relationship between any

two prototypes. Finally, the regulation matrix is generated by the scores.

2.2.2 Clustering

One of the main problems that hinder research on gene network reconstruction is

the dimension problem, i.e. there are many genes with a few replicates. A useful

approach is to cluster genes with similar expression patterns into clusters, then in-

fer the regulatory relationship among the clusters. Researchers believe genes with

similar expression patterns have similar functions or are involved in the same bio-

logical events [100]. Currently, several clustering methods are used for this purpose.

Different clustering methods can generate very different results. Each combination

of distance measurement and clustering algorithm tends to emphasize a different

type of regularities in the data. There is no single criterion for choosing the best

clustering method. How to choose the method depends on the particular emphasis.

Given clusters, there are also several methods to find the interactions among

them. Wahde and Hertz [100] clustered 65 genes from rat CNA datasets into four

“waves” using the FITCH hierarchical clustering algorithm. Then, by a genetic

13

algorithm, they built a four-nodes continuous time recurrent neural network. Chen

et al. [16] reduced 3131 yeast genes into 308 clusters by average linkage clustering.

Then, they used simulated annealing to optimize a qualitative network based on the

timing of peaks in the data. Someren [88] reduced 2467 yeast genes into t−1 clusters

and represented each cluster by a “prototype” gene calculated from the cluster. A

linear model of the prototype genes is then generated by linear regression. Guthke

et al. [40] proposed grouping genes into clusters, then find the representative genes

for the clusters. The connections among the representative genes are modeled by

differential equation. Toh et al. [97] proposed averaging the gene expression values

of each cluster, then discover the regulatory relationships by Graphical Gaussian

Modeling (GGM).

2.2.3 Boolean model

In a simplified way, gene expression level can be roughly represented as a binary

state: either active (on,1) or inactive (off,0). The interactions among genes can

be represented by Boolean functions which calculate the state of a gene from the

activation of other genes regulating it. The result is a Boolean network. This idea

was popular in the 1960s [56, 92, 93, 101], and has been incorporated into numerous

recent papers [2, 3, 45, 61, 67, 89]. Somogyi and Sniegoski [89] showed that Boolean

networks have features similar to those in biological systems, such as global com-

plex behavior, self-organization, stability, redundancy and periodicity. The general

approach of a Boolean network is to discretize gene expression values into Boolean

values, then find a set of Boolean functions which describe the state changes of each

gene. Liang et al. [67] proposed REVEAL (REVerse Engineering ALgorithm) to

resolve the problem. REVEAL uses information theoretic principles to reduce the

search space and establish how the given genes are connected in the networks, and

then determines the functions that specify the interactions among genes. REVEAL

needs to enumerate all possible state transitions to build a Boolean network. To de-

14

crease complexity, a maximum fan-in, k (1 ≤ k ≤ n where n is the number of genes

in the dataset), is applied to each gene. For each gene, all possible subsets with

less than k genes are considered to be its candidate regulators. If a subset is found

fully determining the state changes of the given gene, it is said to be the regulator

of the gene. An implementation of the algorithm proved to be capable of reliably

reproducing networks with n = 50 and k = 3 given 100 state transition pairs (out of

1015 possible pairs). working on a similar idea, Akutsu et al. [2] proposed a simpler

algorithm which proves that only O(log n) state transition pairs (from 2n pairs) are

necessary and sufficient to identify the original Boolean network of n genes with

high probability. Furthermore, Akutsu et al. [4, 5] extended a Boolean network to a

qualitative network to model a gene network. Corresponding algorithms have also

been proposed to learn the qualitative model. Shmulevich et al. [84] introduced the

Probabilistic Boolean Network, which shares the appealing rule-based properties of

Boolean networks, but are robust in the face of uncertainty.

Boolean networks allow large regulatory networks to be analyzed in an ef-

ficient way by making strong simplified assumptions on the structure and the dy-

namics of a genetic regulatory system [54]. It is a good starting point for realistic

modeling of gene networks [107]. However, the system oversimplifies the gene regu-

lation system and assumes the transitions to take place simultaneously, which is not

the usual case in reality.

2.2.4 Linear model

Based on the assumption that the expression level of a gene at one time point is the

weighted sum of expression levels of all genes at the previous (or current) time point,

a gene network can be modeled as a set of linear equations. A linear genetic network

directly models the effects of the combination of different input genes by means of

a weighted sum of their expressed levels. The weight represent the relationships

among genes. Zero weights indicate the absence of interaction and a positive or

15

negative weights corresponds to stimulation or repression. The absolute value of a

weight corresponds to strength.

A general linear genetic network model is represented in the following equa-

tions [88]:

xi(t + 1) =
J∑

j=1

Wi,jxj(t) (2.1)

or [103]:

xi(t) =
J∑

j=1

Wi,jxj(t) (2.2)

where xi(t) is the gene expression level of gene i at time instance t and Wi,j is the

influence weight of control of gene j on gene i.

2.2.5 Differential equation

Using a differential equation to model a gene network is computationally more inten-

sive and requires the assumption of specific kinetic schemes. However, using smaller

timesteps and continuous variables, a differential equation may get a more accurate

physical representation of a gene network [15, 87].

A popular model is the linear differential equation [17]. Chen et al. [17] pro-

posed a linear differential equation to model gene expressions. Both transcription

and translation are modeled in the dynamic system by kinetic equations with feed-

back loops from translation product proteins to transcription, and incorporating the

degradation of proteins and mRNAs; the system is as follows:

dr

dt
= f(p)− V r (2.3)

16

dp

dt
= Lr − Up (2.4)

where the variables are functions of time t and defined as follows:

n: Number of genes in the genome

r: mRNA concentrations, n-dimensional vector-valued functions of t

p: Protein concentrations, n-dimensional vector-valued functions of t

f(p): Linear transcription functions, n-dimensional vector polynomials on p

L: Translational constants, n× n non-degenerate diagonal matrix

V: Degradation rates of mRNAs, n× n non-degenerate diagonal matrix

U: Degradation rates of Proteins, n× n non-degenerate diagonal matrix

Two methods are employed to construct the model from experimental data:

Minimum Weight Solutions to Linear Equations (MWSLE), which determine the

regulation by solving under-determined linear equations, and Fourier Transform for

Stable Systems (FTSS), which refines the model with cell cycle constraints. Several

extended models, the RNA model, the Protein Model and the Time delayed model

have also been proposed.

S. Watanabe [102] and Hideyuki Maki [72] proposed an S-System to infer

a gene network from sets of time-course data, each of which has resulted when a

specific is disrupted. They proposed that the expression level of a gene is computed

by the power-law function:

d

dt
Xi = αiΠ

n
j=1X

gij

i − βiΠ
n
j=1X

hij

j (2.5)

where n is the total number of state variables or reactants. gij and hij are the

interactive affectivity of Xj to Xi. The first term represents all influences that

increase Xi whereas the second term represents all influences that decrease Xi. α

17

and β are some positive coefficients. The parameters are inferenced by genetic

algorithm [72].

Wahde and Hertz [100] built a non-linear differential equation based on continuous-

time recurrent neural networks:

τix̂i + xi = g(bi +
∑

j

wijxj) (2.6)

where for i = 1,...,n, τ−1
i is a rate constant, xi is the expression level and x̂i is its

derivative with respect to time. For a set of n genes, there are n× n weights (wij),

n bias terms (bi) and n time constants τi. The equation can be extended to include

higher order terms in a network. The non-linear activation function g is defined as:

g(z) =
1

1 + e−kz
(2.7)

k is set to 1 in the paper. A genetic algorithm is used to determine the parameters

of the network.

2.2.6 Modeling gene networks with the Bayesian network

In recent years, several models based on the Bayesian network have been proposed for

learning gene networks [33, 34]. Because of its suitability for learning gene networks,

the Bayesian network is one of the most widely used models in the research area

nowadays. In this section, I will define what a Bayesian network is, how a Bayesian

network is learnt, and finally, how gene networks are learnt using a Bayesian network.

18

Bayesian Network

In probabilistic reasoning, random variables are used to represent events and/or

objects in the world. A random variable can be thought of as the numeric result

of operating a non-deterministic mechanism or performing a non-deterministic ex-

periment to generate a random result. Computing the joint probabilities of given

random variables requires the probabilities of every instantiation combination which

is combinatorially explosive. Chain rule simplifies it by the following form:

P (X1, ..., Xn) = Πn
i=1P (Xi|X1, ..., Xi−1) (2.8)

or

P (X1, ..., Xn) = Πn
i=1P (Xi|X1+1, ..., Xn) (2.9)

where X1, ..., Xn are random variables.

• Example: As shown in Figure 2.1, the probability of the variables A, B, C, D

and E can be represented as follows:

P (A,B,C, D,E) = P (A|B, C, D, E)P (B|C, D, E)P (C|D, E)P (D|E)P (E).

19

E
 D

C

B

A

Figure 2.1: An example of a directed acyclic graph.

20

Bayesian networks (belief networks) take this process further by making the

important observation that certain random variable pairs may become uncorre-

lated once information concerning some other random variable(s) is known. If

P (A|X1, ..., Xn, U) = P (A|X1, ..., Xn), it can be interpreted that A is determined by

X1, ..., Xn regardless of the random variable U . With these conditional independen-

cies, it is possible to simplify the computation of joint probabilities.

A Bayesian network is defined as follows:

• A Bayesian network is an annotated directed acyclic graph that encodes a

joint probability distribution over a set of random variables X = {X1, ..., Xn},
where each Xi has a set of discrete values or continuous values. Formally, a

Bayesian network for X is represented by B =< G, Θ > where G =< V , E >

is a directed acyclic graph, V = {V1, ..., Vn} is the vertex set and Vi ∈ V
corresponds to a random variable Xi, E = {e1, ..., em} ⊂ G × G is the edge set

and ei = (vx, vy) ∈ E is a dependence between vx and vy, and Θ = {θ1, ..., θn}
is the parameters sets storing the conditional joint probability distribution

over X and θi = θXi|Pa(Xi) is the conditional probability distribution of Xi

given all the parents Pa(Xi)(denoted by P (Xi|Pa(Xi)). Each variable Xi is

independent of its non-descendant(s) given all of its parents are instantiated

in G .

In the network G, any joint distribution can be decomposed in the product

form:

P (X1, ..., Xn) = Πn
i=1P (Xi|Pa(Xi)) (2.10)

where Pa(Xi) are the parents of Xi in G.

• Example: As shown in Figure 2.1, the probability of the variables A, B, C, D

21

and E can be represented as:

P (A,B,C, D,E) = P (A|B)P (B|C,D)P (C)P (D|E)P (E).

Given D and the corresponding structure G, the parameter set Θ can be

estimated [11] by encoding Θ in a prior distribution P (Θ). The distribution is then

updated using D, hereby obtaining the posterior distribution P (Θ|D) by applying

Bayes’ rule:

P (Θ|D) =
P (D|Θ)P (Θ)

P (D)
(2.11)

Based on Equation 2.10, θi can be estimated independently.

Learning Bayesian Network

Given D, the problem of learning a Bayesian network structure can be stated as

follows: Given a training set D = {D1, ..., Dn} of independent instances of X , find

a network B =< G, Θ > that best explains D. There are two main approaches for

finding structures. The first approach learns a Bayesian network as a constraint sat-

isfaction problem [36, 43, 77, 82, 86, 91]. In this approach, properties of conditional

independence among variables are estimated by a statistical hypothesis test, such

as χ2-test [77]. A network is then built to exhibit the observed dependencies and

independencies. The second approach, which is more popular, learns a Bayesian net-

work as an optimization problem [21, 34, 36, 44, 48]: A statistically motivated scoring

function, termed scoring metrics, such as Minimum Description Length (MDL) [62]

or Bayesian score [21, 44], is introduced to evaluate a network with respect to D, and

the optimal network according to this score is computed. Bayesian Score(ScoreB)

[34] is a popular score metrics, and it is defined as follows:

22

ScoreB(G : D) = logP (G|D) (2.12)

= log
P (D|G)P (G)

P (D)
(2.13)

= logP (D|G) + logP (G) + C (2.14)

where P (D|G) =
∫

P (D|G, Θ)P (Θ|G)dΘ is the marginal likelihood which averages

the probability of the data over all possible parameter assignments to G and C =

logP (D) is a constant independent of G. The particular choices of priors P (G) and

P (Θ|G) for each G are important to avoid over-fitting and to determine the exact

Bayesian score.

An important property of Bayesian score or Minimum Distance Length (MDL)

is decomposability in the presence of some priors:

ScoreB(G : D) =
∑

i

Scoreb(Xi|Pa(Xi) : D) (2.15)

It is infeasible to compute maximum likelihood as it involves computing

marginal likelihood P (D) =
∑

G P (D,G) which is the sum over an exponential num-

ber of models. Bayesian Information Criterion (BIC) is proposed to approximate

the posterior:

logP (G|D) ≈ logP (D|G, Θ̂G)− logN

2
4G (2.16)

logP (D|G) =
∑

i

logP (Xi|Pa(Xi) : D) (2.17)

23

where N is the number of samples, 4G is the dimension of the models (the number

of free parameters if D is fully observed, ie. without hidden variables) and Θ̂G is the

Maximum Likelihood (ML) estimate of the parameters.

The decomposability of the score is crucial to learning a Bayesian network.

With it, the learning problem, which is known to be NP-hard, can be solved by a

set of local searches.

When applying the Bayesian network to gene network learning, there are

some advantages compared to other methods:

• Bayesian networks are particularly useful for describing processes composed

of locally interacting components [34]. That is, the value of each component

directly depends on the values of a relatively small number of components.

• Statistical foundations for learning Bayesian networks from observations, and

computational algorithms to do so are well understood and have been used

successfully in many applications [34].

• Bayesian networks provide models of causal influence [34]. Although Bayesian

networks are mathematically defined strictly in terms of probabilities and con-

ditional independence statements, a connection can be made between this

characterization and the notion of direct causal influence.

• Because of its firm statistic basis, the Bayesian network can deal with the

stochastic aspects of gene expression and the noisy measurements of microar-

ray data in a natural way [106].

• Bayesian networks are able to handle a large number of variables with only a

few replicates [34, 48]. It is especially useful when learning gene networks, since

microarray data generally have thousands or even tens of thousands genes but

only tens of replicates. Besides, Bayesian networks are capable of estimating

the confidence of different features in networks [34]. The absence of data often

leads to the consequence that many networks explain the data equally well.

24

The confidence is useful for measuring to measure whether a statistic feature

of the network is likely to be true.

• Learning gene networks is NP-hard [16]. The decomposability [34] of Bayesian

networks ensures local searches achieve global optimization, thus making the

learning easier.

• Hidden variables in a network and missing values in gene expression data are

easy to handle with the Bayesian network. Many methods have been estab-

lished for in learning Bayesian network with latent variables and missing values.

• Bayesian networks can capture many types of relationships among genes: lin-

ear, non-linear, combinatorial, stochastic and other types [106]. It remains

unclear which types of relationships a gene regulatory system may pursue.

The ability of Bayesian networks to grasp various types of relationships makes

it appropriate for learning gene networks.

Learning Gene Network Using Bayesian Network

Friedman [34] proposed modeling a gene network as a Bayesian network: Each gene

is a vertex and each regulatory relationship is an edge in the Bayesian network. As

learning a sparse network is technically difficult, Friedman [34] proposed a two-step

algorithm, The Sparse Candidate algorithm, to learn the structure and parameters:

For each gene, (1) some candidate parents who are likely to be the parents of the

target gene are selected; (2) The score Bayesian score for every possible subset of

the candidate parent set is computed, and the best combination is searched for.

In the first step, a general method using pair-wise correlation, such as Mutual In-

formation (MI), is applied to find the genes with high dependence with the target

genes. However, some dependence cannot be measured by MI. Thus, some weak

parents are generated. Weak parents are parents to a target gene but does not have

high dependence with the target gene. Kullback-Leibler (KL) divergence is used in

the work, which can be improved iteratively using the learnt network as the prior

25

knowledge in the iterated learning process, to find better dependence between gene

pairs. The second step can be done by some heuristic method such as hill climbing

[34]. Friedman showed that the results obtained by the sparse candidate learning

algorithm are biologically meaningful results by examining the results with a set of

statistic measurements: robust test, order relation, Markov relation, and so on.

Since then, many works based on the Bayesian network frame work have

been proposed, and biologically relevant results have been obtained. Hartemink [41]

extended Friedman’s work by adding these annotations to edges: “+”, “-” or “+/-”

which represent positive, negative or unknown regulation. Beal et al. [8] proposed

including the unmeasured genes as the hidden factors to learn a gene network. They

proposed implementing the step by state-space models (SSMs). Lee et al. [64]

proposed a modularized learning approach based on the assumption that most genes

are likely to be related to other genes in the same biological modules rather than

the genes in different modules. They proposed finding overlapping modules in the

genes, and learning the subnetworks in modules with a Bayesian network. Zhou

et al. [108] proposed constructing the probabilistic gene regulatory networks that

emphasize network topology using a reversible jump Markov chain technique. Rogers

et al. [80] proposed inferencing the regulatory networks by the Bayesian regression

approach, which works with continuous variables directly. Murphy & Mian [75]

and Gransson & Koski [39] used the Dynamic Bayesian Network (DBN), which is

an extension of the Bayesian network, to model gene networks. In this model, a

gene at a time point is regulated by its parent in the previous time point. Thus, the

acyclic limitation of the Bayesian network is overcome in DBN. Murphy et al. gave a

thorough report in [75] on the application of DBN in learning gene networks. Imoto

et al. [48] and Kim [57] further extended Bayesian networks and DBN by integrating

nonparametric regression into the models, so that the methods can use continuous

gene expression values instead of the discrete values in the general Bayesian network

approaches. Their method is capable of capturing the non-linear relationships among

26

genes. Yu et al. [106] presented an influence score to measure the magnitudes of

regulatory strength of the edges. It is useful for eliminating the false positives as

well as distinguishing the positive or negative regulation of edges.

With more and more works using Bayesian networks as the framework to

tackle the gene network reconstruction problem [30, 42, 78, 83], the Bayesian network

is becoming a widely used approach in learning gene networks.

27

CHAPTER 3

Research Directions

Various types of gene regulatory network models have been proposed. In this chapter

I will describe some important biological factors which are critical in the choice of

network reconstruction methods.

3.1 Preliminaries

There are several issues mentioned by existing works.

3.1.1 Sparse network

It is estimated that each gene is regulated by four to eight genes, and is involved in

about 10 biological events [88]. Based on this estimation, in a gene network with

n genes, there are about 4n − 8n regulatory edges. Therefore, a gene network is a

sparse network. Learning sparse networks is technically difficult as the search space

is too big [34]. This thesis proposes several learning algorithms to effectively learn

a gene network.

28

3.1.2 Regulatory feedback loops

A regulatory system contains many types of regulatory loops. A negative feedback

loop tends to slow down a process while a positive feedback loop tends to acceler-

ate it. Negative feedback helps maintain stability in a system in spite of external

changes while positive feedback amplifies possibilities of divergences [96] to give the

system the ability to access new points of equilibrium. The presence of positive

and negative feedback loops is necessary for the maintenance of multiple steady

states for biological system [19]. Therefore, the regulatory loops are important to

the gene network. In our model, regulatory loops are taken into account with the

incorporation of time lags in the gene regulatory system.

3.1.3 Stochastic nature

Stochastic effects have been shown to play an important role in cellular processes

from gene regulation to signal transduction and metabolic pathways [74]. These

effects, termed as molecular noise, give rise to a probabilistic description of system

dynamics (chemical master equation), where reactions occur as discrete random

events (Markov process). From this aspect, the stochastic model is more appropri-

ate for learning gene networks. As existing analysis tools based on deterministic

approaches are inadequate or inapplicable, there is a need for the development of

formal analysis for stochastic systems. I choose Bayesian networks as the basic

framework in the thesis. As I have described in Chapter 2, Bayesian networks are

capable of handling the stochastic events.

3.1.4 Boolean/discrete or continuous

Continuous values reflect the real expression values of genes. Thus, continuous

expression values are more meaningful in learning gene expressions and regulations.

However, the high computational expense is a drawback of continuous values. The

29

noise in microarray data is another problem of using continuous values. On the

other hand, using discrete values can simplify implementation and presentation.

Furthermore, by observation, most genes are in binary state in most time

[9, 28, 46, 55, 58, 69, 70]; they are either expresses in maximum strength or silence.

In practice, Boolean values have been proposed by numerous works [2, 3, 61].

Based on the above points, in this thesis, I use discrete expression values,

and in my experiments, each gene takes on 2 expression values, i.e., Boolean values.

Even now, the models proposed in the thesis are not limited to Boolean models but

discrete models.

3.2 More directions

There are some important facts that have been ignored or overlooked in most pub-

lished works.

3.2.1 Various time delays

Within regulation procedures, various events occur at different steps. Usually, the

step of transcription (from DNA to mRNA) is quick while the time for translation

varies from protein to protein [66]. Besides, the protein-DNA regulation is an accu-

mulation process and the threshold differs for different regulation pairs [66]. There-

fore, regulatory time delay differs among different regulation pairs. When learning

a gene network from synchronized time serial data, such information is critical to

obtaining the whole picture of the network.

Researchers have tried to incorporate such information into their models and

assume that time delay is constant. Some works which make this assumption are:

Someren [88], which learns a gene network by modeling it as a linear model; Murphy

& Mian [75] and Gransson & Koski [39] where the dynamic Bayesian network (DBN)

is used to model time delay in the gene network.

30

Some researches [17] have shown that different gene pairs have different time

delays for gene regulation. Chen et al. [17] attempted to address the varying time

delay issue of a gene network. They proposed modeling the regulation process and

the various time delays using differential equations. However, their algorithm is of

high computational complexity and no real experiments have been done based on

their model.

I propose to model the various time delays by a time delayed model. A

corresponding algorithm, the Time-Delayed Network Learning (TDNL) algorithm,

is also proposed to learn the structure of the network.

3.2.2 Collaborations among regulators

The one-to-one parent-child dependence between a candidate regulator and the tar-

get gene has been used in many works to find the regulators of a gene [36]. However,

it is reported that less than 20% regulations pairs have strong dependence in some

datasets[29]. So, it is impossible to find all regulators of a specific gene by using

parent-child dependence solely. Based on the theory of descendant based conditional

independence, it is feasible to find the dependence among parents. Thus, we can

find more regulators.

3.2.3 Complex

During the regulation process, the protein products of a set of genes form a complex

before they interact with the target gene [73]. A complex is a physically intercon-

nected protein combination. Loss of any element in a regulatory complex may result

in lose of function in the whole complex. In addition, the proper function of the

complex relies on the physical interaction of the components of the complex[73].

In a simplified gene regulatory network, proteins are omitted and represented by

the corresponding genes. Thus, a complex is represented by a set of strongly in-

teracting genes in the simplified gene network. The strong interaction demands the

31

parent selection method be based on multiple gene combinations instead of single

ones. However, few existing methods consider this important fact. I propose finding

a complex by the strong interaction among the genes in the complex. Then the

complex can be used as a single candidate parent unit in the learning process.

3.2.4 Hidden variables

The regulation of genes includes controlling transcription, post-transcription, trans-

lation, post-translational protein degradation, and other processes [59]. Each regu-

lation step should be taken into consideration of the gene network to be accurately

described [59]. Currently, except for gene expression data (at the mRNA level),

other data types are still absent in the genome scale or proteome scale. Regard-

ing all components as hidden variables is impractical since learning the structure

with so many hidden variables is difficult. I propose modeling a gene network with

hidden variables as a Semi-Fixed Bayesian network. In the network, the regulator

proteins of a gene are modeled as one hidden variable. A learning algorithm named

semi-fixed EM is proposed to learn such a model.

32

CHAPTER 4

Learning Various Time Delay Gene

Networks with the Time Delayed Bayesian

Network

4.1 Introduction

Most research work in learning gene networks assumes that either there is no time

delay in gene expression or there is a constant time delay. However, the biological

literature [63] shows that different gene pairs have different time delays for gene

regulation. To the best of my understanding, Chen et al. [17] is the only research

group which has attempted to incorporate the various time delays factor into the

gene network learning process1. They proposed modeling the regulation process and

the various time delays using differential equations. However, their algorithm is of

1A recent paper [109] also mentioned the various time delays problem. The authors find the
various time delays among genes by measuring the time difference of the initial expression change
between a gene pair. However, the paper is published in 2005 while my work on learning gene
networks with various time delays was finished in 2004. Therefore, in the rest the thesis, I do not
mention it.

33

high computational complexity and no real experiments have been done based on

their model.

To address the issue of various time delays in the gene regulatory system, I

propose a learning framework based on Bayesian network enhanced with a various

time delays model. As I described in Chapter 2, Bayesian network has been applied

to discover gene networks and shown to have advantages over the other methods

[34, 48, 75]. However, no work has been done to apply Bayesian network to address

the various time delays issue of the gene networks. One possible explanation is

that learning time-delay model introduces too many variables and thus makes the

learning intractable.

In order to deal with various time delays problem, I propose a number of

improvements to make the learning process more efficient and accurate: (1) an

improved mutual information calculation method for measuring the dependency be-

tween two genes; (2) a random sampling approach to find more weak parents; (3) a

new structure learning algorithm which is suited for learning a sparse network such

as a gene network. Comparison with other methods shows that this algorithm de-

tects more correct edges and is able to discover the time delays of the edges. In the

real-life gene expression datasets to be discussed in Section 4.4, this method obtains

80% more correct edges than other methods do. In addition, unlike other methods,

this framework can represent and detect directed loops that commonly occur in cell

cycles as shown in experimental results on artificial and real-life gene expression

datasets. Such loops are important for the regulations of global gene expression and

stage-specific functions to produce a continuous cycle of cellular events [37, 90].

The rest of this chapter is organized as follows: The time delayed Bayesian

Network and its suitability in modeling a gene network is discussed in Section 4.2.

Section 4.3 describes the learning algorithm for a time delayed network. Experi-

mental results are presented in Section 4.4, followed by the conclusion in Section

4.5.

34

4.2 Time delayed network and its transformation

to the traditional Bayesian network

4.2.1 Time delayed network

It is well known that for a pair of genes gi and gj (suppose gi regulates gj), the change

of expression level of gi affects the expression level of gj after a certain time interval.

For example, in yeast, a gene MCM1 regulates another gene CLN3. Based on the

gene expression microarray dataset by Spellman [90], each time the expression level

of MCM1 changes, the expression level of CLN3 correspondingly changes about 30

minutes later.

Time delay intervals are different for different gene regulatory pairs. For

example, human TNF-α and iNOS genes are regulated by AP-1 and NF-κB1. Their

delays in expression after the activation of AP-1 and NF-κ1 are three and six hours,

respectively [63]. It is further known that there should be an upper limit for the

time delay in a gene network since the length of a cell cycle is limited.

The regulation of genes can form feedback loops (for example, g1 → g2 →
. . . → g1), which exist in many metabolism pathways and are critical in maintaining

the stability of a gene network [19]. However, the traditional Bayesian network

framework fails to represent and learn feedback loops.

To model a gene network, I propose the time delayed network which can

capture various time delay relationships as well as discover directed loops spanning

at least one time slice.2 The time delayed network is an extension of Bayesian

network. The time delayed network is defined as follows:

Let k be the maximum time delay allowed for each regulation. A time

delayed network can be described by N =< G, θ, δ >:

2The available gene expression datasets capture the gene expression levels of genes every seven
to thirty minutes. Since the time interval between consecutive time slices is short, only a few loops
can be formed within the same time slice.

35

• G =< V,E > is a directed graph, where V = {V1, V2, . . . , Vn} is the

set of variables of G, and E is the set of directed edges of G. Each

variable Vi represents a gene, and each edge (Vi, Vj) represents the

regulation process from Vi to Vj.

• For every edge (Vi, Vj) ∈ E, δ(Vi, Vj) represents the unique time

delay for the edge (Vi, Vj). Note that δ(Vi, Vj) is a integer and

k ≥ δ(Vi, Vj) ≥ 0.

• θ is the parameter set of G that stores the conditional probability

distribution Pr(Vi | Pa(Vi)) for every Vi ∈ V , where Pa(Vi) is the

parent set of Vi in G.

• A directed cycle is allowed if at least one of its edges has the time

delay ≥ 1. Figure 4.1(a) shows an example of a directed cycle with

four genes in a time delayed network.

4.2.2 Relationship between traditional network and time

delayed network

Given a maximum time delay k (k is smaller than the time of a cell cycle), a variable

at a time slice can only be affected by variables in the current time slice and the

previous k time slices. For each variable Vi, let Vi,0, Vi,1, . . . , Vi,k−1, Vi,k be its states

in the previous k time slices and the current time slice. Learning whether the edge

(Vj, Vi) has a time delay ∆ is equivalent to learning whether (Vj,k−∆, Vi,k) is an edge.

The formal transformation is described as follows: Given a time delayed network

N =< G, θ, δ > where G =< V,E >, with the maximum time delay k, N can be

represented using a traditional network M =< H, θ′ > such that:

• H =< V ′, E ′ >, where V ′ is the vertex set and E ′ is the edge set.

• V ′ = {Vi,t | Vi ∈ V, t = 0, 1, . . . , k}. Thus, each vertex Vi ∈ V is transformed

to k + 1 vertices {Vi,0, ..., Vi,k}.

36

• Consider a variable Vi ∈ V , with Pa(Vi) = {Vi1 , . . . , Vis} being the parent set of

Vi in G. In H, the variable Vi,k has s parents Vi1,(k−∆1), Vi2,(k−∆2), . . . , Vis,(k−∆s)

where ∆j is the time delay δ(Vi, Vij) associated with the edge between Vi

and Vij . In the parameter set θ′, the conditional probability distribution

Pr(Vi,k|Vi1,(k−∆1), . . . , Vis,(k−∆s)) of M is the same as the conditional proba-

bility distribution Pr(Vi|Vi1 , . . . , Vis) of N .

Figure 4.1 shows an example of the transformation. It can be easily verified

that the transformed network M is a directed acyclic graph and that the network

M contains all the parameters of N . Once the network M is learnt, the parameters

of the network N can be easily recovered. It is obvious that if the time delay

k = 0, the time delayed network is indeed a traditional Bayesian network, and

if k = 1 the time delayed network is a dynamic Bayesian network (DBN). Thus,

the learning algorithm to be discussed later is also applicable to the learning of

traditional Bayesian networks and DBNs.

A work related to my proposed model is k-DBN model. k-DBN was proposed

by Boyen et al.[12] for finding hidden variables in a network. Though k-DBN was

not used for learning causal relationships as is the case in a gene network, it can

be extended to learn the structure of a gene network, allowing more than one edge

with different time delays from gene gi to gene gj
3. It is not the same as my method

since I allow only one edge between a gene pair as time delay is unique for a gene

pair.

3P. Dagum & A. Galper [22] and Tucker [99] also proposed models similar to k-DBN which
admit multiple edges between a gene pair.

37

V

1

V

3

V

4

V

2

V

1,0

V

1,1
 V

1,2

V

2,0

V

2,1
 V

2,2

V

3,0

V

3,1
 V

3,2

V

4,0

V

4,1
 V

4,2

(a)
 (b)

1

2

1
2

Figure 4.1: An example of network transformation is shown here. (a) The time
delayed network contains four variables & four edges. The integer on each edge
indicates the time delay, and the maximum time delay k is assumed to be 2. This
network has one cycle: V1 → V2 → V3 → V4 → V1. (b) The transformed network
contains 12 variables and four edges. Each variable Vi is transformed into three
variables: Vi,0, Vi,1 and Vi,2. The edge (Vi, Vj), with time delay ∆, is transformed into
edge (Vi,k−∆, Vj,k). For example, the edge (V1, V2) with time delay 1 is transformed
into the edge (V1,1, V2,2). After the transformation, no cycle exists.

38

4.2.3 Dataset Transformation

Following the network transformation, the original training dataset DN for the time

delayed Bayesian network N needs to be transformed correspondingly. DN is a

time-series dataset with n variables V1, . . . , Vn. Each variable Vi is described by its

states in m time slices, i.e., vi,1, vi,2, . . . , vi,m.

Recall that M is a Bayesian network with (k+1)n variables, namely, V1,0, . . . , Vn,0,

V1,1, . . . , Vn,1, . . . , V1,k, . . . , Vn,k. Its training data can be expressed as a set of

(k + 1) n-dimensional vectors. Given DN with m time slices, I transform it

into (m − k)’s training samples for M . The (m − k)’s training samples for M

are denoted as DM . Precisely, for t = 1, 2, . . . , m − k, the t-th sample for DM is

(v1,t, . . . , vn,t, v1,t+1, . . . , vn,t+1, . . . , v1,t+k, . . . , vn,t+k). Figure 4.2 gives an example of

the transformation from DN to DM .

39

t1 t2 · · · tm
v1,1 v1,2 · · · v1,m

v2,1 v2,2 · · · v2,m

· · · · · · · · · · · ·
vn,1 vn,2 · · · vn,m

=⇒

s1 s2 · · · sm−2

v1,1 v1,2 · · · v1,m−2

· · · · · · · · · · · ·
vn,1 vn,2 · · · vn,m−2

v1,2 v1,3 · · · v1,m−1

· · · · · · · · · · · ·
vn,2 vn,3 · · · vn,m−1

v1,3 v1,4 · · · v1,m

· · · · · · · · · · · ·
vn,3 vn,4 · · · vn,m

(a) (b)

Figure 4.2: An example of dataset transformation. (a) This is the original dataset
with n variables and m time slices. vi,t represents the state of the variable Vi at time
slices t. Suppose the max delay k is 2. (b) This is the transformed dataset. The new
dataset contains n× 3 variables. Each variable Vi is transformed into 3 variables.

40

4.3 Time delayed network learning algorithm

Given the transformed dataset, the problem of learning the gene network N (which is

a time delayed network) is reduced to the problem of learning a traditional Bayesian

network M . As the gene network N is sparse [88] and the transformation makes it

more sparse, learning the transformed network M could be very time consuming.

This section presents an algorithm which speeds up the learning process.

A Bayesian network is normally represented by M =< G, θ >, where G =

(V,E) is a directed acyclic graph and θ is the parameter set of G. An essential point

of the Bayesian network is the decomposition of the joint probability of the random

variables into conditional probabilities as shown below:

P (V1, ..., Vn) =
∏

i

P (Vi|Pa(Vi)) (4.1)

where Vi is a variable and Pa(Vi) is the set of parents of Vi in the network [34].

Learning a Bayesian network structure is often an optimization problem. A

general approach is to define a score that describes the closeness of a possible struc-

ture to the observed data [36] and then find a structure that maximizes the score. I

use Bayesian score [21] because of its important property of decomposability in the

presence of full data [35], as shown below:

Score(G : D) =
∑

i

Score(Vi|Pa(Vi)) (4.2)

With the property of decomposability, the learning procedure can be decom-

posed into a number of local search procedures to search the parents for each variable

independently. A commonly used technique is to divide the learning procedure into

two steps. The first step is to find a small candidate parent set for each variable

41

based on the dependency between two variables. The second step is to select the

parent set Pa(Vi) for every variable Vi that maximizes Score(Vi|Pa(Vi)) from the

candidate parent set. Score(Vi|Pa(Vi) : D) is the measurement of the fitness that

Pa(Vi) is the parent set of Vi given the dataset D. In general, greedy or heuristic

algorithms are used to accomplish this step [21, 34].

I propose a learning algorithm, the time delayed Network Learning (TDNL)

algorithm, which transforms the time delayed network (as described in Section 4.2)

into a traditional network and recovers the time delayed network by learning the

transformed network. The learning procedure is based on the framework of the

sparse candidate algorithm (SCA) [36]. SCA improves the first step by selecting a

set of candidate parent for every variable Vi and enhancing the candidate parent

set iteratively based on the network learnt from the previous iteration. I perform

further improvements for the first step using the following: (1) Modified mutual

information to measure the dependence between two genes. This measurement con-

siders common structures that repeatedly appear over several iterations instead of

only considering the structure appearing in a single iteration. (2) Random sampling

to ensure that each variable has the chance to be a candidate parent of some gene.

(3) A novel learning method, learning by modification, to efficiently select parents

from a candidate parent set in the second step.

4.3.1 Choosing candidate parent sets

A general method for generating a small candidate parent set for a variable is to make

use of the dependencies between the variable and its possible parents. One commonly

used measurement for dependency between variables is mutual information (MI),

defined below:

MI(X; Y) =
∑
x,y

P̂ (x, y) log
P̂ (x, y)

P̂ (x)P̂ (y)
(4.3)

42

where X and Y are some variables, x and y are discrete values of X and Y re-

spectively, and P̂ represents the observed frequency of samples in the dataset. If a

parent-child relationship exists between X and Y , MI(X; Y) is expected to have a

high value. However, because of the noise in the data and the combined effect of

parents, some child-parent pairs sometimes have low MI values and may be excluded

from the corresponding candidate parent sets.

To solve the problem, Friedman [36] proposed employing Kullback-Leibler(KL)

divergency to measure the dependency between a pair of genes given a learned net-

work from data. KL divergency is to measure the different between two probability

distributions [36]. In [36], these distributions are observed distribution of the dataset

and the distribution of the network learned from the dataset. The KL divergency

can be considered as the dependency between a gene pair with respect to a network.

A gene with high KL divergency to a target gene is possibly a weak parent of the

target gene. It is defined as follows:

MDisc(X, Y |M) =
∑
x,y

P̂ (x, y) log
P̂ (x, y)

PM(x, y)
(4.4)

where X and Y are variables, MDisc(X,Y |M) is the dependence between X and

Y with respect to the network M , P̂ denotes the observed frequency, PM is the

estimated probability given M , and x and y are the values of X and Y .

However, some true parents of a variable X may have small MI value and

KL divergence values. Those parents of X are denoted as the weak parents of X.

Such weak parents of variables may be left out in the candidate parent set in the

SCA algorithm. In order to solve this problem, I propose the following: In each

iteration, the following steps are executed: (1) The parents of X in the previous

iteration become the candidate parents of X in the current iteration automatically.

(2) The genes with high mutual information with X are selected to be the candidate

43

parents of X. The number of candidate parents selected in this step is depend on

the number of candidate parents selected in step 1, so that the candidate parents

selected by this two step is a constant number through the learning procedure. (3)

Finally, some extra genes are randomly included into the candidate parent set of X.

Steps (1) and (2) select the genes with high dependencies to X to be the candidate

parents of X while (3) ensures that, after enough iterations, each weak parent has

the chance to be included into the candidate parent set.

In every iteration, the candidate parent set contains at most one transformed

variable for a gene since the time delayed network has no multi-edges existing be-

tween two genes. This property reduces learning complexity.

As described above, the selection of candidate parents is done partially on a

random basis, leading to an unstable structure. That in turn might result in bias in

the selection of parents in the next iteration, and thus, giving a biased network as

output. In addition, this problem might make the learning process fail to converge.

I propose a new criterion in place of KL divergence. This replacement reduces the

degree of the random sampling and stabilizes the score so that the score improves

smoothly.

The new criterion τ(X; Y)t for variables X and Y can be computed as follows:

τ(X; Y)1 = MI(X; Y) (4.5)

τ(X; Y)t = α× τ(X; Y)t−1 + (1− α)×MDisc(X; Y |Mt−1) (4.6)

where t indicates the t-th iteration for t > 1, Mt−1 represents the network learnt

from the (t− 1)-th iteration, and α is a parameter to adjust the accumulation rate

where 0 ≤ α ≤ 1. Note that τ(X; Y)t = MI(X; Y) if α = 1, and τ(X; Y)t =

MDisc(X; Y |Mt−1) if α = 0. Generally, I set α = 0.5, which indicates that the

sub-structures appearing repeatedly in previous iterations are of similar weights to

44

the sub-structures in the current iteration. An experiment in Section 4.4 illustrates

the effect of the value of α to the learning procedure. The formulation of τ(X; Y)t

includes τ(X; Y)t−1 and thus recursively includes (τ(X; Y)t−2,...,τ(X; Y)1), each of

which is of a different proportion. That is, τt is based on all learnt networks, from M1

to Mt−1, and each network contributes a part to the final τt. The bias and the non-

deterministic nature of random sampling in one network are complemented by other

good networks, which avoid bias in the final network. It can be observed that correct

structures appear repeatedly, and thus, they have greater chances of remaining in

the current network. This reduces the effect of rapid change in KL divergence,

resulting in improved convergence. Note that KL divergence is based only on the

single previous network. Any bias in the previous network might affect the current

network and even subsequent networks. It is easy to see τt is decomposable as both

MI and MDisc are decomposable.

Another significant problem in learning is that it is time consuming to make

inference on PMt−1(X,Y) in Mt−1 for calculating τ(X; Y)t. Ong et al. [76] estimated

that it would take nine months to do inference on a network with about 200 genes

by the junction tree algorithm directly. I solve the problem by approximating it as

following:

• If Y ∈ Pa(X) in Mt−1, PMt−1(X, Y) = PMt−1(X|Y)PMt−1(Y). Considering the

time delay, PMt−1(X, Y) = PMt−1(X|Y, δ)PMt−1(Y). Similarly, X ∈ Pa(Y) is

calculated.

• Otherwise, X and Y are conditionally independent. Thus, I approximate it as

PMt−1(X,Y) ≈ PMt−1(X)PMt−1(Y).

PMt−1(X), PMt−1(Y), PMt−1(X|Y, δ) and PMt−1(Y |X, δ) are already learnt in

the previous iteration where PMt−1 denotes the probability distribution in network

Mt−1. Since the approximation is quite fast, the whole algorithm can be applied to

large datasets.

45

4.3.2 Structure learning

A transformed network can be learnt with any classical learning algorithm. I propose

an algorithm, Learning by Modification (LBM), which is motivated by the K2 algo-

rithm [21]. Due to the decomposability of Bayesian score, the best parents for each

variable can be found independently. For every variable Vi, and its candidate parent

set, K2 includes new variables as its parents one by one as long as the inclusion of

the new variable can improve the score of the network maximally as compared to

other candidates.

One problem of K2 is that it does not consider the combined effect of the

parents to a particular variable in the early iterations. Sometimes, this problem

leads to a low score network. In addition, there is no way to remove a selected false

parent from the parent set. This effect may be seen in the example in Figure 4.3.

46

K2 learning by elimination learning by modification
{A} {A, C, D, E} {A}
↓ ↓ ↓

{A, B} {A, C, D} {A, B}
↓ ↓

{A, C} {A, B, C}
↓

{B, C}
Figure 4.3: An example: Given a variable X and its candidate parent set CPS =
{A,B,C,D,E}, in which B, C are the parents of X. Suppose the following subsets
of CPS give the scores to X in descending order: {B, C} > {A,B} > {A,C} >
{A,B,C} > {A,C, D} > {A,C, D, E} > {A} > {B}, and all other subsets give
scores smaller than B. K2 selects {A} and {A, B} in order but misses {B, C} since
K2 fails to capture the combined effect of the two parents. Learning by elimination
selects {A, C, D, E}, {A, C, D} and {A, C} in order while learning by modification
selects {A}, {A, B}, {A, B, C} and {B, C} in order.

47

An alternative way, learning by elimination, involves initially setting the par-

ent set as the candidate parent set and then iteratively deleting a variable from the

parent set which maximizes the score. The process stops when further removal of

any variable from the parent set would not increase the score. The algorithm takes

into account the combined effect starting the beginning and removes variables that

are not parents one by one. Still, false parents in the parent set may introduce noise

which reduces the combined effect. If there are some false parent variables, a prob-

lem similar to that in k2 arises: the true parent might be removed at the beginning

with no chance to return. See the second column of Figure 4.3 for an example.

In Figure 4.4, I propose a method called Learning by Modification (LBM)

to overcome these problems. LBM is a heuristic algorithm for finding a parent set

(PS) of Vi by maximizing Score(Vi|PS). It is iterative in nature. In every iteration,

it includes exactly one new variable into PS and then deletes zero or more variables.

The two merits of LBM are as follows:

First, LBM ensures PS contains as few false parents as possible. As fewer

parents would mean the combined effect of the true parents is less diluted, the true

parents Vj of Vi would have a better chance of getting a higher Score(Vi|PS∪{Vj}),
and hence, they would get a better chance to be included into PS. In other words,

it avoids the problem of backward selection where the parent set contains too many

false parents.

Second, unlike K2, Step (a) of every iteration of LBM always includes a

variable Vj into PS irrespective of whether Score(Vi|PS ∪ {Vj}) is greater than

Score(Vi|PS) or not. This idea avoids the problem of K2 where the noise of the

false parents may prevent the true parent of Vi being included into PS. Figure 4.3

illustrates the algorithm with a simple example.

As I assume no loop exists in the same time slice, I do not detect loops formed

solely by edges with time delay 0. The algorithm is fast and accurate.

48

• Let CPS be the candidate parent set of Vi and PS = {} be
the parent set.

• Compute Bayesian score S = Score(Vi|PS)

• Repeat the following procedure until PS does not change:

– Set S = Score(Vi|PS∪{Vj}) and PS = PS∪{Vj} where
X ∈ CPS maximizes Score(Vi|PS ∪ {Vj}).

– Repeat the following procedure until PS does not
change: Select a variable Vj ∈ PS which maximizes
Score(Vi|PS −{Vj}). If Score(Vi|PS −{Vj}) > S, then
set S = Score(Vi|PS − {Vj}) and PS = PS − {Vj}.

Figure 4.4: Outline of the Learn by Modification algorithm.

49

4.4 Experimental results and comparison

I implement the TDNL learning algorithm using Bayes network toolbox (BNT)4 in

MATLAB.

This section presents the experiments on both artificial and real-life datasets

to evaluate the effectiveness of TDNL learning algorithm. I also compare the learn-

ing performance of TDNL with both classical and recent learning algorithms: (1)

K2 [21] is a hill-climbing algorithm which iteratively incorporates variables into cur-

rent parent set one by one until the Bayesian score cannot be further improved;

(2) REVEAL [67] is a dynamic Bayesian network (DBN) learning algorithm which

enumerates all possible parent combinations with smaller size than a predefined

threshold. (3) DBmcmc [47] is a MCMC (Markov chain Monte Carlo) learning ap-

proach. (4) GeneNetwork [104] learns gene network by reverse engineering inference

approaches.

4.4.1 Structure learning for artificial datasets

This section illustrates the effectiveness of the TDNL algorithm on both synthetic

and real data. As described in Section 3.1.4, a discrete model is chosen and each

variable takes on Boolean values in the experiment. The experiments are conducted

on four sets of artificial datasets whose underlining structures and parameters are

randomly generated. Each set has 10 datasets with same number of genes. Each

dataset contains 10, 50, 100 or 200 genes, and consists of 400 time slices. The

specification of the each set of datasets is averaged into D1, D2, D3 or D4, as shown

in Table 4.15.

4http://www.ai.mit.edu/∼murphyk
5The number of edge for each set is the average number of edges of 10 datasets in this set. The

numbers of edges are rounded to integers.

50

Dataset No. of genes No. of edges Max. No. of parents
1 10 17 4
2 50 135 4
3 100 189 4
4 200 377 4

Table 4.1: Specification of the synthetic datasets.

51

Dataset K2 REVEAL GeneNetwork DBmcmc TDNL
C/T C/T C/T C/T C/T

1 5/9 4/11 9/39 5/17 10/18
2 12/28 N/A 19/104 16/93 47/98
3 41/127 N/A 21/182 23/191 82/169
4 97/286 N/A 18/296 28/216 146/342

Table 4.2: Performance comparison of the K2, REVEAL, GeneNetwork, DBmcmc
and TDNL learning methods. N/A means the result could not be found out as the
algorithm has not finished execution within a reasonable time (2 days). C indicates
the number of true positive edges, T indicates the number of total learned edges.

52

True positive edges and the total learned edges (true positive + false positive)

are used to measure the accuracy of the four approaches where C indicates the

number of true positive edges and T indicates the number of total learned edges.

Table 4.2 shows the results. As shown, TDNL got best performance in the sense of

high true positive rate and low false positive rate. Also, when the size the datasets

increases, the performance of TDNL can still be quite good.

I also conduct an experiment to show how α in τ calculation affects the

learning procedure. Figure 4.5 illustrates the different learning variations given

different α in a artificial dataset with 10 genes and 18 edges. It is obvious when α

is close to either 0 or 1, the sensitivities (true positive / total learned edges) vary

rapidly from one iteration to another while when α is between 0 and 1, the curves

converge at the latter parts. This is because when α is close to 0 or 1, τ is close to

MI or KL divergency. Random sampling brings variation to the learning procedure

when the learning is dependent on the measurements from one iteration while the

measurements from all iterations can stabilize the learning procedure.

53

Sensitivity VS number of iteration

0.25

0.3

0.35

0.4

0.45

0.5

1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Number of iteration

S
e
n
s
i
t
i
v
i
t
y

0

0.2

0.4

0.5

0.6

0.8

1

Figure 4.5: Convergence curves of sensitivity and number of iteration.

54

4.4.2 Structure learning on yeast subnetwork

To demonstrate the learning power of TDNL in real-life gene expression data, I

conduct experiments on two yeast subnetworks [37] in S. Cerevisiae.

The first one, denoted as N13, is a well-studied yeast cell cycle transcriptional

network backbone[37]. The backbone comprises of 13 important regulators which

control the main events of the cell cycle: SWI4, SWI6, MBP1, MCM1, NDD1, SWI5,

ACE2, CDC28, CLN3, CLB2, SIC1, FKH1 and CLN26. The network structure is

shown in Figure 4.6(a) where each dotted circle indicates a transcriptional factor and

each directed line indicates a regulatory event between two transcriptional factors:

CLN3 − CDC28 kinase activate transcription factors, SBF (comprised of SWI4

and SWI6) and MBF (comprised of SWI6 and MBP1), to begin the cell cycle.

SBF and MBF then activate about 200 genes in late G1 and S phases including

NDD1 and CLN2. CLN2 is one of the important factors that activate CLB2 −
CDC28 kinase. The complex CLB2 − CDC28 inactivates SBF and MBP to

shut off G1/S events and the cell goes to G2 phase. CLB2 − CDC28 continues

to activate a transcription factor containing MCM1, FKH1 and NDD1. This

factor activates a set of genes including SWI5 and SCE2 which activate SIC1.

SIC1 and some other genes inhibit CLB2− CDC28. Details of the genes and cell

cycle regulatory network may be found in [85]. Though the subnetwork is small,

it is a good example to demonstrate learning power since it is essential to yeast

development and differentiation [37]. The subnetwork controls cell cycle, regulates

global gene expression and diversifies stage-specific functions to produce a continuous

cycle of cellular events [37]. The absence of any regulatory event will stop the

cell cycle. The subnetwork contains some loops which stabilize and stimulate the

development of the cell cycle.

The second one, denoted as N105, is a yeast cell cycle regulatory network for 9

cell cycle regulators and 96 cell cycle regulated genes. The regulatory relationships

6FKH2 is not included since it has too many missing expression values.

55

between the 9 regulators and all 105 genes are partially discovered by biological

literatures [18, 109] 7.

7The original dataset contains 116 genes[109]. Some redundant genes are removed by the
authors.

56

K2 REVEAL DBmcmc GeneNetwork TDNL
C/T C/T C/T C/T C/T

Ys13 2/12 5/17 12/33 8/31 14/29
Ys105 14/59 N/A 22/69 33/146 39/84
Yc13 6/20 4/16 10/31 7/21 15/33
Yc105 29/84 N/A 16/72 10/66 33/81

Table 4.3: Comparison of learning performance. T indicates the number of total
learnt edges and C indicates correct predicted edges. In row of Ys105 and Yc105, the
total learnt edges are the total edges between regulators and target genes. N/A
means the result could not be found out as the algorithm has not finished execution
within a reasonable time (2 days).

57

For the experiment, I chose as data sources two microarray gene expression

datasets of the S. Cerevisiae genome: (1) is denoted as Ds, published in [90]. The

microarray expression dataset contains 76 replicates time series gene expression mea-

surements from the synchronized cells. I select the CDC 15 containing 25 time slices

with a time interval of 10 minutes between successive time slices. More details of

the dataset may be found in [90]. (2) is denoted as Dc, published in [18], contains

16 time slices and the time interval is 10 minutes. Therefore, we get four datasets,

Ys13, Ys105, Yc13 and Yc105, where 13 and 105 indicate the network structure is from

N13 or N105 while s and c indicate the source of the microarray dataset is from Ds

or Dc. The continuous expression levels are discretized into 2 discrete levels, with

0 and 1 indicating low expression and high expression respectively. An expression

level is discretized to 1 if it is greater than 0, and 0 otherwise. Since the time for a

single cell cycle of S. Cerevisiae is about 1.5 to 2 hours, it is reasonable to set the

maximum time delay to be four time slices, i.e., 40 minutes.

I follow the verification method used by Kim et al. [57]: a learnt edge from

gene X to gene Y is considered correct if there is an edge from the transcriptional

factor containing X to a transcriptional factor containing Y in Figure 4.6(a), or they

are in the same transcriptional factor in Figure 4.6(a)8. Table 5.3 summarizes the

result of comparison. The learning performance of TDNL is significantly better than

that of other methods. Moreover, TDNL can find loops in networks. I illustrate an

example, which is the learning result of Ys13 by TDNL in Figure 4.6(b): there is a

loop: CDC28 → MCM1 → SWI5 → SIC1 → CDC28. In addition, most time

delays of learnt edges by TDNL are also reasonable. The regulations happening in

the same or adjacent phases of a cell cycle have shorter time delays (for example,

MCM1 → CLB2 and SWI5→SIC1 have time delays of 1 and 2, respectively) while

the regulations spanning more than one phase have longer time delays (for example,

SIC1→CDC28 has a time delay of 4).

8This is easy to understand since the proteins in a transcriptional factor or a complex interact
and activate each other to function properly.

58

(a)
 (b)

True positive

False positive

A transcriptional factor

CLN3

SWI4
 SWI6
 MBP1

MCM1
 FKH1
 NDD1

CLB2

SWI5
 ACE2

CDC28

SIC1

CDC28

CLN3

SWI4
 SWI6
 MBP1

CLN2

MCM1
 FKH1
 NDD1

CLB2

SWI5
 ACE2

CDC28

SIC1

CDC28

CLB2
 CLB2

CLN2
 NDD1

Figure 4.6: Learning performance of TDNL on a real gene subnetwork. (a) The
yeast cell cycle transcriptional regulatory subnetwork. (b) The network structure
learnt by TDNL, which contains 29 edges of which 14 are correct.

59

4.4.3 Markov relation and confidence analysis

In order to study the strength of the relationship between two genes in the networks

learnt by the learning algorithm, a widely used statistical feature, Markov relation

[33, 34], is analyzed. Markov relation indicates whether a gene Y is in the Markov

blanket of another gene X (denoted by Y ∈ MB(X)). The Markov blanket of X is

the minimum set of genes that shield X from the rest of the genes in the network.

More precisely, Y ∈ MB(X) if and only if there is either an edge between them

or both are parents of another variable. A Markov relation indicates that the two

genes are related in some joint biological interaction [34]. The statistical confidence

which measures the likelihood of the feature is estimated by the bootstrap method

[34] described below:

• For i = 1. . . m :

– Generate a “perturbed” version of the input transformed dataset by re-

sampling ρ instances where ρ is smaller than the number of instances of

the transformed dataset.

– Apply the learning algorithm on the perturbed dataset and induce a net-

work Ni.

• For each Markov relation f , the confidence is calculated as follows:

conf(f) = 1/m
m∑

i=1

f(Ni) (4.7)

where f(Ni) is 1 if f is a feature in Ni and 0 otherwise.

I initialize ρ as 35 and m as 100 in the experiment. A high confidence value of

a feature for two genes indicates that the learning algorithm can consistently recover

the relationship between them.

The high-ranking Markov relations, learned from Ys13, with confidence ≥ 0.8

are listed in Figure 4.7 for the TDNL algorithm. Of the 26 relationships, 17 can

60

Markov relations Confidence Comments
SWI5, SIC1 1.0 *
CLN2, SIC1 1.0
CLN3, CLB2 1.0

CDC28, NDD1 0.97 *
MCM1, NDD1 0.97 *
NDD1, SWI6 0.96
ACE2, SWI5 0.95 *
CLB2, FKH1 0.94 *
ACE2, SWI4 0.92
CLN2, CLB2 0.92 *
FKH1, MBP1 0.89
MCM1, SWI6 0.89
CDC28, SIC1 0.88 *
SWI4, SWI6 0.87 *

CLN3, MCM1 0.81
CLN3, CDC28 0.85 *
MBP1, SWI5 0.85
ACE2, SIC1 0.85 *

CLB2, MCM1 0.84 *
FKH1, NDD1 0.83 *
ACE2, FKH1 0.83 *

CDC28, MCM1 0.82 *
CLB2, NDD1 0.82 *
MCM1, SWI5 0.81 *
FKH1, SWI5 0.8 *
CLN2, MCM1 0.8

Figure 4.7: Top Markov relations list. * indicates the relation is verified by Fig-
ure 4.6(a).

61

be verified. Note that the transcription factors involved in the cell cycle regulation

events [37], SBF (SWI4 and SWI6), MBF (SWI6 and MBP1) and SFF (containing

NDD1, FKH1, etc.) are discovered in Figure 4.7. This is due to the fact that the

genes in a transcription regulating complex co-regulate the target genes and they

have strong Markov relations. As shown in Figure 4.7, most Markov relations can

be verified by the biological literature.

4.5 Conclusion

In this chapter, the traditional Bayesian network is enhanced with a time-delay

model in order to represent various time delays gene networks. The increase in the

number of parameters to be learnt is accounted for by the proposed efficient learn-

ing algorithm. The algorithm produces better performance over both the artificial

and yeast gene expression datasets than other algorithms do. The algorithm could

also detect directed loops spanning a long time period in the yeast gene expression

dataset. However, as the learning process is iterative, it is time consuming when the

dataset is big. For example, when learning a dataset with 10 gene, it needs about 10

iterations and takes less than one minute. However, when learning a datasets with

50 genes, it needs more than 20 iterations and takes more than 10 minutes. Also,

the power of random sampling would decrease when a large scale network is being

learnt since the sampling space is enlarged.

62

CHAPTER 5

Learning gene networks by conditional

dependence

5.1 Introduction

Probabilistic methods such as Bayesian networks have been proposed for used in

learning gene networks, and they have yielded some reasonable results [33, 34]. How-

ever, biologically significant results could only be obtained when the gene networks

are learnt from some selected small subsets of genes [29, 68].

One main reason for the ineffectiveness is due to the well-known fact that

microarray actually measures mRNA expression levels instead of protein expression

levels. Hence, microarray can only provide partial information of a gene network.

Another reason is weak parents. In a real biological gene network, some parent genes

have little pair-wise correlation with their target genes [29]. These parents are called

weak parents. In this chapter, I examine whether more information can be extracted

from microarray data to facilitate gene network learning. I propose enhancing the

learning by integrating the following three types of hidden information:

63

1. Recent works [29, 34, 68] have studied the regulatory relationship among genes

based on the pairwise correlation of their expression profiles. We may be

able to extract other types of relationships from the expression data. In this

chapter, I propose using the conditional dependence to extract more regulation

relationships. Basically, if two genes g1 and g2 regulate the same target gene

g, due to the combined effect of g1 and g2, we should expect g1 and g2 to

be dependent given the gene g. This idea allows us to find regulation pairs

without strong pair-wise correlation.

2. During the regulation process, the protein products of a set of genes form

complexes before they interact with the target gene [73]. The loss of any

element in a complex may destroy the function of the whole complex. Hence,

we should consider the factor of the complex when we select parents. However,

few existing methods consider this important factor. This chapter propose

finding complexes by conditional dependence. Then, the information of the

predicted complexes can be used to predict the parents of each gene.

3. The time delays of gene regulations are different for different genes [29, 109].

Most existing models assume either there is no time delay or a constant time

delay for gene regulations in the gene network, which is not true in a real

biological regulatory system. I propose integrating variable time delay into

conditional and unconditional dependence measurements to improve the accu-

racy of the gene network prediction.

The rest of the chapter is organized as follows: a two-step algorithm is de-

scribed in Section 5.2. The experimental results on gene expression datasets are

presented in Section 5.3. The conclusion from the current work as well as its impli-

cations are given in Section 5.4.

64

5.2 Conditional dependence learning algorithm

This chapter proposes a two-step learning method known as the Conditional De-

pendence (CD) learning algorithm to learn gene networks. A brief overview of the

algorithm is as follows: In the first step, parent-child correlation is used together

with the conditional dependence among parents to select a small subset of genes as

candidate parents. In this step, collaborations among parents are used to find weak

parents. Finding variable time delay relationships is also integrated in this step.

In the second step, the subunits among candidate parents and explored parents are

searched based on both subunits and single genes. Based on the mechanism of a

regulatory complex [73] and the theory of conditional dependence, the elements in a

subunit should have strong conditional dependence with each other. This property

helps in the finding of subunits. The two steps are discussed in detail in the following

subsections.

5.2.1 Candidate parent selection

As stated in Section 4.3.1, the correlation between two genes is generally used to

select candidate parents of a target gene. If the increase (decrease) of the expression

level of a gene always comes with the increase or decrease of the expression level

of another gene, we say they are highly correlated. If two genes g and g′ have

a low correlation, it is assumed that g cannot be a parent of g′, and vice versa.

Several measurements have been suggested to model the correlation such as Pearson

correlation [29], Mutual Information (MI) [34], KL divergence [34], and random

sampling based mutual information [68]. These pair-wise correlation may generate

weak parents [36, 68]. The following is an example:

• Example: In yeast, genes NDD1, MCM1 and FKH1 form a complex and

regulate SWI5. As shown in Figure 5.1, only FKH1 has a similar expression

profile as SWI5 while NDD1 and MCM1’s expression profiles do not correlate

65

with SWI5. Thus, NDD1 and MCM1 are the weak parents of SWI5.

Since all the aforementioned measurements are based on pairwise correlation,

they are prone to miss out a lot of weak parents. To extract weak parents, I propose

to studying correlations between parents in addition to pairwise correlation.

Consider two genes X and Y . Suppose both of them are not parents or

ancestors of a target gene Z, then the correlation of X and Y is expected to be

similar with or without knowledge of Z. On the other hand, if both of them are

parents (or ancestors) of Z, X and Y are expected to be more correlated given Z

while less correlated without the knowledge of Z. An example is shown below. In

the example, the relationship between two genes X and Y is indicated by the dot

plot where each dot in the figure is a pair of expression values of X and Y at some

particular time.

66

0 5 10 15 20 25
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

NDD1
MCM1
SWI5
FKH1

Figure 5.1: Gene expression profile comparison of NDD1, MCM1, FKH1 and SWI5.

67

• Example: Consider the genes NDD1 and FKH1 between which there is no reg-

ulatory relationship. The dot plot of the two genes is shown in Figure 5.2(a).

The dots are arbitrarily distributed without any trend. I test the changes

of correlations between NDD1 and FKH1, given one of the following three

genes: (1) A randomly generated gene gr whose expression value is randomly

generated; thus there should be no regulatory relationship between gr and

NDD1/FKH1. (2) Gene UNG1 which is not regulated by NDD1 and FKH1.

(3) Gene SWI5 which is regulated by NDD1 and FKH1. As shown in Fig-

ures 5.2(b) and (c), the correlation between NDD1 and FKH1 does not change

much when given gr ≥ 0, gr < 0, UNG1 ≥ 0 or UNG1 < 0. However,

when given either SWI5 ≥ 0 or SWI5 < 0, the correlation between NDD1

and FKH1, as shown in Figure 5.2(d), is different from that shown in Fig-

ure 5.2(a). Moreover, the points are grouped into two clusters where points of

(NDD1, FKH1|SWI5 ≥ 0) are mainly in one cluster which lies in the area of

(NDD1 < 0, FKH1 > 0), and the points of (NDD1 : FKH1|SWI5 < 0) are

mainly in another cluster which lies in the area of (NDD1 > 0, FKH1 < 0).

Both clusters trend from bottom-left to top-right.

68

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

NDD1

F
K

H
1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

NDD1

F
K

H
1

UNG < 0
UNG >= 0

(a) (b)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

NDD1

F
K

H
1

randgene >= 0
randgene < 0

(c) (d)

Figure 5.2: (a) shows the dot plot of the expression levels of NDD1 and FKH1. Each
point represents the expression levels of NDD1 and FKH1 at some particular time
slot. It is clear that there is no correlation between NDD1 and FKH1. (b) and (c)
show the dot plot of NDD1 and FKH1 given the gene UNG or a randomly generated
gene. A point is labeled by ‘×’ or ‘·’, depending on whether the expression level of
UNG (or the random gene) is negative or not in the particular time slot. ‘×’ and
‘·’ are randomly distributed. (d) shows the dot plot of NDD1 and FKH1 given the
gene SWI5. The plot shows that ‘×’ and ‘·’ are in different distributions and can
be clustered into two groups. This proves that FKH1 and NDD1 are co-parents of
SWI5.

69

I try to capture correlation changes by Conditional Relative Entropy (CRE).

Consider three genes: X,Y andZ. I denote the conditional relative entropy between

X and Y given Z as CRE(X, Y |Z), and define it as follows:

∑
z P (z)D(P (X, Y |z)||P (X,Y)) (5.1)

=
∑

z P (z)
∑

x,y P (x, y|z) log P (x,y|z)
P (x,y)

(5.2)

=
∑

x,y,z P (x, y, z) log P (x,y,z)
P (x,y)P (z)

(5.3)

where D(p||q) is the relative entropy which measures the distance between the proba-

bility distributions p and q. P (X, Y |Z) and P (X,Y) are the probability distributions

of the gene pair (X,Y) with and without, respectively, the information of Z.

Note that if CRE(X, Y |Z) is non-zero, the probability distribution of P (X, Y)

is different from that of P (X, Y |Z). X and Y are possible co-parents of Z. Based

on this idea, even when both X and Y are weak parents of Z, conditional relative

entropy provides a mechanism for us to extract them.

There is another type of weak parents proposed by Friedman [36]. Suppose

Pa(A) = {B, C} and Pa(C) = {D}, it is possible that MI(A : C) > MI(A : D) >

MI(A : B). In this case, B is weak. Based on the conditional dependence, the

presence of A does not change the dependence between C and D in any significant

manner while the dependence between B and C changes significantly. Hence, CRE

is able to deduce that B is a candidate parent/ancestor of A.

In summary, for a target gene Z, a gene X is included in the candidate parent

set of Z, noted by CPS(Z), if X has a strong correlation with the target gene Z or

if X has a strong conditional dependence with some other gene Y given the presence

of the target gene Z (Y is preferred as a gene which has high correlation with Z).

The details of the candidate selection procedure are shown in Figure 5.3.

70

For every gene Z, compute the candidate parent set
CPS(Z) of Z as follows:

1. Calculate the MI between the target gene and other
genes. Then the genes with high MI scores are in-
cluded in CPS(Z).

2. For each variable X ∈ CPS(Z), find the variables Y s
such that the CRE(X,Y |Z) is high. These variables
Y s are possible weak parents, and thus, they are also
included in CPS(Z).

3. Find all variable pairs (X,Y) such that
CRE(X, Y |Z) is high. Include X,Y in CPS(Z).
This step selects weak parents which have strong
conditional dependencies with each other but small
MI scores with Z. (This step can be used solely to
find the candidate parent set.)

Figure 5.3: Candidate parent selection procedure.

71

5.2.2 Learning structure from candidate parent sets

For every gene Z, given the candidate parent set CPS(Z), the next step is to learn

the actual parents of Z. Basically, we need to find a subset of CPS(Z) which

optimizes the Bayesian score. This problem is NP-hard [34]. Currently, heuristic

methods such as hill climbing and learning by modification (LBM) are used for the

task [34, 68]. All the methods implicitly assume that every gene affects Z indepen-

dently.

In a biological system, the parent gene first encodes a regulatory protein

and the regulatory protein performs gene regulation. There are several ways for

regulatory proteins to regulate the target gene Z: (1) Some proteins have specific

binding sites at the upstream of the target genes. (2) Some proteins are combined to

form a regulatory factor or a complex, and then bind to a specific site and regulate

the target gene. (3) Combination of (1) and (2).

In other words, some proteins have to combine as a unit to regulate the

target gene Z. These proteins individually are not strongly correlated with Z.

However, if they are considered as a unit, the correlation between them and the

gene Z is significantly larger [73]. Such a unit is biologically termed a complex of

proteins. Loss of any member in a complex often leads to a dramatic decrease in

functionality. Therefore, each member in a complex is indispensable to anyone else.

A good example of intensive collaboration is basal transcription factors [52]. For

a basal transcription factor complex, the presence of all members is necessary to

reconstitute accurate transcription. The issue of the complex is not accounted for

in traditional methods.

Since proteins are hidden in microarray data, I propose representing the effect

of a complex of proteins by the set of corresponding genes, defined as a complex of

genes. Then, the parents of X can be learnt as follows: First, among all parents

in CPS(Z), the complexes of genes are searched. Then, the parents are found

based on both complexes (individual genes are considered singleton complexes).

72

The algorithm is shown in Figure 5.4.

As mentioned above, a gene in a complex is dependent on other genes in

the complex to function. Therefore, we can assume each member of a complex is

possibly strongly conditionally dependent on most members in the complex. Based

on this knowledge, I propose modeling a complex by a conditional dependence based

maximal semi-clique, which is defined below:

For a target gene Z, let G =< V, E > be a graph where V = CPS(Z) and

(X, Y) ∈ E if CRE(X,Y |Z) is bigger than a certain threshold. The weight of

(X, Y) is CRE(X,Y |Z). For any V ′ ⊆ V , let G′ be the subgraph of G induced by

V ′. G′ is called a semi-clique if every vertex in V ′ is linked to more than half the

nodes in V ′[26]. G′ is a maximum semi-clique if including any more vertex violates

the semi-clique. To find the maximal semi-cliques in CPS(Z), I propose a heuristic

algorithm based on the method proposed by Elidan et al. [26].

As observed by Elidan et al.[26], any semi-clique of size 4 or above contains

a semi-clique of size 3. I prove the observation as follows:

• Proof: G′ =< V ′, E ′ > is a semi-clique. Suppose G′ does not contain any

3-clique. Select a vertex X ∈ V ′ randomly and divide V into two parts:

Xi ∈ V1 if there is an edge between Xi and X, otherwise Xi ∈ V2. It is easy

to check that |V1| > 1
2
|V | and |V2| < 1

2
|V | since X connects to more than half

the variables in V . Now consider a variable X ′ ∈ V1. X ′ cannot connect to

any variable in V1; otherwise, there will be a 3-clique1. However, even if X ′

connects to all variables in V2, X ′ connects to less than half the variables in

V , and G is not a semi-clique. Thus, it is proven.

I find all 3-cliques and then expand each semi-clique into a maximal semi-

clique by a greedy algorithm. The detail of the semi-clique finding algorithm is shown

1Proof: Suppose X ′ connects to Y ′ where Y ′ ∈ V1. Since each vertex in V1 connects to X, there
is a 3-clique (X, X ′, Y ′).

73

in Figure 5.5. In addition, all singleton genes and strongly conditional dependent

gene pairs in CPS(Z) are also considered as complexes.

74

For each gene Z,

1. Find all possible complexes in CPS(Z) (including
all singleton genes and gene pairs with strong con-
ditional dependence).

2. Let PS = {} where PS will be the set of complexes:
PS = {s1, s2, ..., sk}.

3. Select a complex si where Score(
⋃

(PS∪si)) >
Score(

⋃
PS) and maximum Score(

⋃
(PS∪si)), PS =

{PS, si}. (
⋃

PS is the union of PS. Bayesian score
is used in the implementation.)

4. Delete sj from PS where Score(
⋃

(PS−sj)) >
Score(

⋃
PS) and maximum Score(

⋃
(PS−sj)). Repeat

this step until removing any sj from PS cannot in-
crease the score.

5. Repeat Steps 3 and 4 until Score(
⋃

PS) cannot further
improve.

6. Report
⋃

PS as the set of parents of Z

Figure 5.4: Parent selection procedure

75

For each gene Z, find the maximal semi-cliques among its
candidate parents CPS(Z).

1. Let G′ =< V ′, E ′ > where V ′ = CPS(Z) and for
every X, Y ∈ V ′, (X, Y) ∈ E ′ if there is a link
between X and Y .

2. Find all 3-cliques by brute force.

3. For each 3-clique,

I Include one gene which can add a maximum
number of links to the semi-clique.

II If there are more than one gene meeting the cri-
terion, choose the one which can add maximum
weight to the semi-clique.

III Repeat I and II until no gene can be added.

Figure 5.5: Semi-clique selection procedure.

76

5.2.3 Variable time delay

It is well known that gene regulation does not happen instantly and there is some

time delay during the regulation process. Also, the time delay in the regulation of

different gene pairs can be different [17, 68]. Therefore, without considering various

time delays, it is difficult to capture a gene network correctly. In Chapter 4, I

proposed learning a gene network with various time delays by transforming it into

a network with no time delay. Though the transformation can solve the various

time delay problem, the trade-off is that a network with more variables has to been

learnt, and thus, the learning time and space requirement both increase.

Instead of performing a transformation, I now propose integrating the com-

putation of time delays between genes with the computation of MI and CRE, as

shown below:

MI(X : Z, δx) =

∑

δx

∑

i

P (xi, zi+δx) log
P (xi, zi+δx)

P (xi)P (zi+δx)
(5.4)

CRE(X : Y, δx, δy|Z) =

∑

δx,δy

∑

i

P (xi−δx , yi−δy , zi) log
P (xi−δx , yi−δy , zi)

P (xi−δx , yi−δy)P (zi)
(5.5)

where xi, yi and zi are the expression levels of X, Y and Z respectively at every time

slice i, δx and δy are the time delays between variables (X, Z) and (Y, Z) respectively,

a pair of (xi, zi+δ) indicates a value pair of variable X at time slice i and variable

Z at time slice i + δ, and a triple xi−δx , yi−δy , zi) indicates a value triple of variables

X, Y and X at time slice i− δx, i− δy and i respectively.

77

5.3 Experiment

I implement the CD learning algorithm using BNT in MATLAB.

This section presents the experiments evaluating the CD learning algorithm

on both artificial and real-life datasets. I also compare its performance with the exist-

ing learning methods: K2 [21], REVEAL [35, 39, 67, 75], DBmcmc [47], GeneNetwork

[104] and TDNL.

5.3.1 Structure learning on artificial datasets

In this experiment, I use the same sets of synthetic datasets used in Section 4.4.

The details of each set of datasets are shown in Table 5.1.

78

Dataset No. of genes No. of edges Max. no. of parents
1 10 17 4
2 50 35 4
3 100 189 4
4 200 377 4

Table 5.1: Artificial datasets.

79

Dataset K2 REVEAL GeneNetwork DBmcmc TDNL CD
C/T C/T C/T C/T C/T C/T

1 5/9 4/11 9/39 5/17 10/18 11/18
2 12/28 N/A 19/104 16/93 47/98 59/104
3 41/127 N/A 21/182 23/191 82/169 104/181
4 97/286 N/A 18/296 28/216 146/342 179/364

Table 5.2: The performance of parents selection from artificial datasets. T indicates
the number of total learnt edges while C indicates the number of correct edges. N/A
indicates the experiment is not available due to long running time (¿ 2 days).

80

The performance of K2, REVEAL, GeneNetwork, DBmcmc, TDNL and the

CD learning algorithm on the four sets of synthetic datasets is shown in Table 5.2.

From the table, the CD learning algorithm gives the best performance. More impor-

tantly, the performance of the CD learning algorithm is still quite good even when

the network is big.

I also test the performance of the CD learning algorithm for datasets with

different number of time slices. Figure 5.6 shows the convergence curves. The

performance is indicated by sensitivity (= number of learnt true edges / number

of total true edges) which is the proportion of corrected learned edges among all

correct edges. It shows that independent of the number of variables in the dataset,

performance improves as the number of time slices increases. In addition, the curves

converge when the number of time slices is in the range of 200 to 400.

81

Sensitivity VS Number of time slices

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

3
5
0

4
0
0

number of time slices

S
e
n
s
i
t
i
v
i
t
y

10

50

100

200

Figure 5.6: Convergence curves of sensitivity and number of time slices. Sensitivity
= number of learnt true edges / number of total true edges. Sensitivities increase
rapidly between 50 and 200 slices and start to converge between 150 to 300 slices.

82

5.3.2 Structure learning on yeast datasets

I apply the CD learning algorithm on the four yeast microarray datasets which are

used in Chapter 4.4 to demonstrate the learning power of the algorithm.

The accuracy of the yeast cell cycle transcriptional network

The performance comparison between CD learning algorithm and K2, REVEAL,

GeneNetwork, DBmcmc and TDNL is shown in Table 5.3. The verification criterion

is same as that used in Section 4.4.As shown, the CD learning algorithm gives the

best performance in each dataset.

83

K2 REVEAL DBmcmc GeneNetwork TDNL CD
C/T C/T C/T C/T C/T C/T

Ys13 2/12 5/17 12/33 8/31 14/29 19/34
Ys105 14/59 N/A 21/69 33/146 37/84 41/75
Yc13 6/20 4/16 10/31 7/21 13/31 14/28
Yc105 29/84 N/A 16/72 10/66 33/81 39/83

Table 5.3: Comparison of learning performance. T indicates the number of total
learnt edges and C indicates correct predicted edges. In row of Ys105 and Yc105, the
total learnt edges are the total edges between regulators and target genes. N/A
means the result could not be found out as the algorithm has not finished execution
within a reasonable time (2 days).

84

5.4 Conclusions

In this chapter, I have discussed several important issues in learning gene networks:

collaboration among regulators, presence of regulatory complex and the various time

delays problem. An new learning method, the CD learning algorithm, has been

proposed to capture these issues. The varying time delay information is also inte-

grated in the learning procedure. Experiments on both artificial and real-life datasets

proved the effectiveness of the proposed algorithm. The conditional dependence ap-

proach can be used to solve other problems. For instance, conditional dependence

may be useful in finding the co-expressed genes whose expression profiles are not

correlated. This idea may also be used in finding co-expressed genes and important

regulators in cell cycle data.

85

CHAPTER 6

Semi-fixed Bayesian network and

semi-fixed structure EM algorithm

6.1 Introduction

When referring to gene regulation, most works simply model a gene being directly

regulated by other genes. The regulation of genes actually occurs at various levels

including transcription, translation, splicing, posttranslational protein degradation,

and other processes [59]. To give a correct description of a gene network, we cannot

simply consider gene expression level (that is, the level of mRNA transcription).

From biological knowledge, we know that protein plays a key role in a gene

network [105]. In fact, protein-DNA interaction and Protein-Protein interaction are

the main activities in a gene regulatory system [59]. Therefore, when predicting mi-

croarray gene expression data, proteins should be included as important factors. In

Chapter 5, I have included the effect of proteins implicitly in the learning procedure.

In this chapter, I propose considering the effect of proteins explicitly: Although their

expression levels are still difficult to measure on a large scale, it would be good if we

86

could model them as hidden variables. The following are the advantages of modeling

proteins as hidden variables:

• The model will be more meaningful, more interpretable, and closer

to a real-life system [7, 27, 31, 32].

• In the model, proteins are decision-relevant. A network that does

not consider hidden variables may omit some dependencies [7, 27].

Introducing hidden variables introduces advantages but also increases the

complexity of network learning. Moreover, microarray gene expression datasets of-

ten have missing values. Considering the above challenging issues, the Bayesian

network is a natural choice as it supports several principled methods for learning

the relationships with incomplete data, both hidden variables and missing values

[32]. The Bayesian network has been successfully applied to learn structures with

hidden variables in several applications [7, 27, 31, 32]. The most widely used method

for structure learning is the Expectation Maximization (EM) algorithm [32]. In the

E step, the algorithm calculates the score of each possible structure using the struc-

ture and parameters learnt from the previous iteration. Selection of the structure

and parameters to maximize the score is done in the M step. The procedure is

repeated until convergence criteria are met. In this problem, such kind of learning

is difficult since the algorithm needs to learn the relationship among the hidden

variables and the observed variables. In addition, it is difficult to predetermine the

correct number of hidden variables. To learn the optimum number of hidden vari-

ables is computationally complex. Besides, in the presence of hidden variables, the

network is no longer decomposable, and this makes the learning difficult [32], as we

will describe in Section 6.3).

I propose a system which models a gene network as a directed graph with

hidden variables. In the model, the number of hidden variables is predefined using

biological knowledge; in addition, the relationships between hidden variables and

87

observed variables are partially fixed. I also propose a modified EM algorithm that

takes advantage of the semi-fixed structure to decompose the network, and thus

allows us to learn the network efficiently. Also, an approximation method to perform

inference on the joint probability of two genes is presented in order to speed up the

learning procedure.

6.2 Modeling a gene network as a semi-fixed net-

work with hidden Variables

In a gene regulation system, the regulation process can be divided into two main

steps. The first step is gene expression, which is represented by gi → ri → pi where

gi is a gene, and ri and pi are the corresponding mRNA and Protein respectively.

gi → ri is the transcription and ri → pi is the translation process. Transcription

efficiency, which is represented by mRNA level, can be measured by a microarray.

The second step is gene regulation, which is represented by pi → gj. In this step,

the generated protein pi, possibly in collaboration with some other proteins, regu-

lates the target gene gi. These two steps are the most important steps in the gene

regulatory system. All other steps such as protein degradation simply adjust the ex-

pression and regulation strengths. Let Paj = {g1, ..., gk} denote a parent set of gene

gj such that each gi ∈ Paj regulates gene gj. we note that all proteins {p1, ..., pk}
in Paj act in a combinative manner to regulate gj. In other words, the proteins

may combine to form a complex and then bind to the binding site of the target gene

and regulate it, or bind to their own binding sites and then collaboratively regulate

the target gene, or a mixture of the above two ways. An example of a network is

shown in Figure 6.1(a). Considering a single node representing the proteins’ com-

bined influence as the direct regulator for the target gene, the model can be further

simplified as shown in Figure 6.1(b).

88

g
1
 g
2
 g
3

p
1
 p
2
 p
3

g
1
 g
2
 g
3

g
j
 g
j

h
j
 h
j

(a)
 (b)

Figure 6.1: Simplified gene regulation system. (a) Gene expression system can be
simplified as the interaction of genes and proteins. (b) The system can be further
simplified since the combined proteins are the direct regulator of the target genes.

89

Based on the above discussion, for each gene gj, I propose a hidden variable

hj, which represents the combination of a set of regulatory proteins expressed from

Paj. Thereupon, Paj regulates hj, and hj regulates gj. Based on the simplified

regulation system, each gene is regulated by at most one hidden variable and the

hidden variables are regulated by one or more genes. Such a model states that

interaction exists only between Gene ↔ Protein or among proteins, and there are

no edges from gene to gene or hidden variable to hidden variable. This model is

termed a semi-fixed network and is formally defined as follows:

• A semi-fixed network N =< V, E > where vertices V = O ∪ H,

O = {g1, ..., gn} is a set of observed variables representing the ex-

pression levels of genes, and H = {hi, ..., hn} is a set of hidden

variables representing the expression levels of combined proteins

and E is the edge set.

• For each ek ∈ E, ek = (gi, hj) or (hj, gi). Thus, N is a bipartite

graph on two partitions O and H.

• For each gi ∈ O, there is exactly one incoming edge (hi, gi) while

there can be many outgoing edges.

• For each hi ∈ H, there is exactly one outgoing edge (hi, gi) while

there can be many incoming edges {(gi1 , hi), (gi2 , hi), ..., (gik , hi)}
where Pa(hi) = Pai = {gi1 , gi2 , ..., gik}.

Compared to learning a general network with several hidden variables, learn-

ing a semi-fixed network is easier since the number of hidden variables is fixed and the

relationships between hidden variables and observed variables are partially known.

90

6.3 Semi-Fixed Structure EM Learning Algorithm

When there is no hidden variable in the network and no missing values in the gene

expression data, the probability of the variables given a network structure can be

expressed as the production of the probabilities of independent sub-networks:

P (X1...Xn : No, D) =
∏

i

P (Xi|Pa(Xi)) (6.1)

where X1 to Xn are observed variables and No denotes the network without hidden

variables. D is a complete dataset.

The decomposability property reduces the learning difficulty in the following

manner. With score functions such as minimum description length (MDL) and

Bayesian scoring metric, learning the structure of a network can be decomposed to

learning each independent sub-network separately [32, 36]. In contrast, in the case

of incomplete data, the decomposability property is not valid and that makes the

learning difficult [32]. However, if all parameters of all hidden variables are assigned,

hidden variables are observed and thus in a sense, the incomplete dataset becomes

“complete”.

A useful property of a semi-fixed network is that when all parameters of

hidden variables have been assigned (as the number of hidden variables and partial

relationships of hidden variables, and observed variables are known to ensure that all

hidden variables can be assigned parameters), the network can be decomposed into

independent subnetworks. Each subnetwork comprises a gene gj, a hidden variable

hj, and a parent set of hj (Pa(hj))(as shown in Figure 6.1(b)). The probability is

decomposed as:

P (g1...gn, h1...hn : No,h, D) =
∏

i

P (hi|Pa(hi))
∏

i

P (gi|hi) (6.2)

91

where g1, g2, ..., gn are observed variables (genes), h2, h2, ..., hn are hidden variables

and No,h denotes the network with hidden variables. D is an incomplete dataset.

Based on different decomposition methods, the decomposition of scores is also

different. In the work, Bayesian score is used. When the network No has no hidden

variable, the score is decomposed as follows:

Score(N) =
∑

i

Score(gi|Pa(gi)) (6.3)

For a semi-fixed network No,h, hidden variables are included. We can show

that its score can be decomposed because the hidden variables his are attached to

the corresponding genes as follows:

Score(No,h) =
∑

i

Score(hi|Pa(hi)) +
∑

i

Score(gi|hi) (6.4)

Proof: Given all hidden variables, No,h is decomposable. By Formula 6.3, Score(No,h) =

∑
i Score(vi|Pa(vi)) where vi is the variables, including both genes and pro-

teins, and in No,h: {v1, v2, ..., v2n} = {g1, g2, ..., gn, h1, h2, ..., hn}. Therefore, it

is easy to see
∑

i Score(vi|Pa(vi)) =
∑

i Score(hi|Pa(hi))+
∑

i Score(gi|Pa(gi))

where Pa(gi) = hi in No,h. Thus, Formula 6.4 is proved.

With the aim of computing a network No,h which maximizes Score(No,h) using

the property in Equation 6.4, I propose an EM algorithm known as the Semi-fixed

Structure EM (SSEM) algorithm to learn such a network. The principle of the EM

algorithm is as follows: In each iteration, given an initial network structure Ni−1

and a parameter set θi−1 (which includes both the parameters of observed variables

θo
i−1 and hidden variables θh

i−1), the first step is to calculate the missing values and

92

hidden variables to build a complete dataset. The second step is to find a better

structure Ni and a better parameter set θi based on the new complete dataset. A

detailed description of the algorithm is shown at the end of this chapter.

For step 1, the missing values and hidden variables can be filled in as follows:

Given N and θ, for a missing value of a variable vi, supposing Pa(vi)

is the parent set of vi in N and D = {d1, ..., dk} is the discrete values

of vi, we fill in the missing value of vi by a vector S = (s1, ..., sk)

where sj = P (vi = dj|Pa(vi)).

This is illustrated in the following example:

Example: The variable v1 has parents v2 and v3. As shown in Table 6.1

(a), there is a missing value in an instance: {v1, v2, v3} = {(), 1, 1}
where () indicate a missing value. Suppose Pr(vi = 0|v2 = 1, v3 =

1) = 0.4 and Pr(vi = 1|v2 = 1, v3 = 1) = 0.6, we fill up the instance

by {v1, v2, v3} = {(0.4, 0.6), 1, 1}. This means the filled value adds

0.4 count to the case v1 = 0 and 0.6 count to the case v1 = 1. As

shown in Table (b), there are 1.4 cases for which v1 = 0 and 2.6

cases for which v1 = 1. In other words, Pr(v1 = 0) = 1.4/4 = 0.35

and Pr(v1 = 1) = 2.6/4 = 0.65.

93

v1 v2 v3

1 1
1 0 1
1 1 1
0 1 1

v1 v2 v3

(0.4, 0.6) 1 1
1 0 1
1 1 1
0 1 1

(a) (b)

Table 6.1: Example of filling in missing values.

94

The values of hidden variables are treated as missing values too and are com-

puted in a similar fashion. Given the filled dataset, Ni−1 and θi−1 , step 2 can learn

Ni and θi using a general structure learning method. The general method to learn

the structure from a complete dataset is to decompose the network into independent

subnetworks. Then, the structure of each subnetwork is learnt independently. Since

we have fixed the partial structure, we can decompose it as independent subnet-

works, each of which has a target gene, a hidden variable and a parent set of hidden

variables (similar to Figure 6.1 (b)). The main objective is to find the optimal par-

ents for each hidden variable. Learning parents from a large number of candidates

is difficult. As a gene network is a sparse network [88], a popular technique is to

first measure the dependencies of candidates to the target variable and choose the

best k genes as candidate parents. Then, the search for the parents from the can-

didate parent set can be performed. Friedman et al. [36] proposed calculating the

dependency by KL-divergence (as Equation 6.5):

Mdisc(X,Y |M) =
∑
x,y

P̂ (x, y) log
P̂ (x, y)

PM(x, y)
(6.5)

where X and Y are variables, MDisc(X,Y |M) is the dependence between X and

Y with respect to the network M , P̂ denotes the observed frequency, PM is the

estimated probability given M , and x and y are the values of X and Y .

Though we can compute PM(gi, hi) given the filled dataset, we cannot com-

pute P (gj, hi) to measure the dependency of gj and hi, as hi is hidden. I propose an

alternate way to measure the dependency: in each subnetwork, the target gene is the

only descendant of the hidden variable. The probabilities of the hidden variable is

passed to the target gene. Therefore, MI(gj, hi|M) can be reflected by MI(gj, gi|M).

Thus, MI can be calculated as follows:

95

MI(gj, gi|M) =
∑
gj ,gi

P̂ (gj, gi) log
P̂ (gj, gi)

PM(gj, gi)
(6.6)

where P̂ (gj, gi) is the observed probability distribution of genes gj and gi while

PM(gj, gi) is the estimated probability distribution of gene gj and gi in the network

M . Performing inference on joint probabilities in a big dataset is quite time intensive.

Thus, I approximate the joint probability of gi and gj as follows:

• If gj ∈ Pa(gi), then gj → hi → gi. PM(gj, gi) = PM(gi|gj)PM(gj) ≈
PM(gi|hi)PM(hi|gj)PM(gj). Note that in this case, PM(gj, gi) 6=
PM(gi, gj).

• Otherwise, gi and gj are conditionally independent and PM(gj, gi)

can be approximated as PM(gj)PM(gi).

By the above approximation, only the joint probabilities of the gene pairs

with parent-child relationships need to be calculated.

The detail of the iterative algorithm is shown in Figure 6.2:

96

• In iteration i, given Ni−1, θi−1 and the original
incomplete dataset D0.

• In E step, the missing values and the values of hidden
variables of D0 are filled in based on the inference of
Ni−1 and θi−1. Then, we obtain a complete dataset
Di−1. The structure Ni is learnt based on Di−1

by maximizing Score(Ni : θi−1, Di−1). Because of
decomposability, we learn the parents for each gene
gi independently:

(1) CPSi = PSi. Initially, PSi = ∅
(2) Include (k − |CPSi|) genes with the best

MI scores with respect to gi into the candidate
parent set CPS.

(3) Revise PSi using LBM so that PS ∈ CPS
with the maximum Score(SSi : θi−1, Di−1),
where SSi is a substructure PS → hi → gi.

- Repeat the procedure until convergence.

• In the M step, θi is learnt based on Ni which
maximizes Score(Ni : θi, Di−1).

• Repeat the procedure until convergence or till the
predefined number of iterations is reached.

Figure 6.2: Outline of SSEM.

97

In the above procedure, the network structure and parameters are refined

iteratively. In each iteration, the parent set of a target gene is initially set as the

parents of last iteration and revised by improving the Bayesian score. Bayesian score

is calculated by likelihood. Thus, the likelihood of the network is not decreased by

each iteration.

To get the initial network structure N0 and parameters θ0:

• learn D0 as a complete dataset. Pai for each gi and the dependent

probabilities are obtained.

• for each gene gi, add a hidden variable hi. Set the Pa(hi) = Pai

and P (hi|Pa(hi)) = P (gi|Pai).

• Complete dataset D0 by filling D0 based on the network structure

and dependent probabilities obtained.

• N0 and θ0 can be learnt from D0.

6.4 Experimental results and comparison

The learning algorithm is implemented in MATLAB and BNT1. In the following,

I present the experimental results on both artificial and real-life gene expression

datasets.

6.4.1 Experiment on artificial datasets

1Bayes network toolbox, http://www.ai.mit.edu/∼murphyk

98

Dataset No. of genes No. of edges Max. No. of parents
1 10 14 4
2 20 35 4

Table 6.2: Specification of the synthetic datasets.

99

As the artificial datasets used in previous chapters are generated based on the

principle that one gene is regulated by another gene directly and there is no hidden

variable in the system, SSEM is not appropriate for this type of data. I generate

artificial datasets by simulating gene expressions with hidden variables: a network

containing k genes and k proteins is built, then the parameter of the network is

randomly assigned; a dataset is generated based on the structure and parameter; I

then delete the data rows of proteins and revise the network: an edge from a gene

to a protein is redirected as a set of edges from the gene to the children of the

protein while the edges from genes to proteins and proteins to genes are deleted. I

generate 20 datasets, 10 of which has 10 genes and 10of which has 20 genes. The

specifications of the two sets of datasets are averaged in Table 6.2. I then apply K2,

REVEAL, GeneNetwork, DBmcmc, TDNL, CD and SSEM to them. The learning

result is shown in Table 6.3. As shown, SSEM gives the best performance.

100

Dataset K2 REVEAL GeneNetwork DBmcmc TDNL CD SSEM
C/T C/T C/T C/T C/T C/T C/T

1 1/8 1/11 3/29 2/16 7/20 9/21 10/18
2 4/23 2/21 4/32 8/35 14/38 20/45 23/41

Table 6.3: The performance of parents selection from artificial datasets. T indicates
the number of total learnt edges while C indicates the number of correct edges.

101

6.4.2 Experiments on real-life data

To demonstrate the learning ability of SSEM, I apply it to two yeast gene expression

datasets, Ys13 and Yc13 which are used in previous two chapters (Ys105 and Yc105 are

not used because of the long running time which is more than two days). The

structure of the network is shown in Figure 6.3. Since various time delays exist

in the regulation system [63], a gene in time slice i may regulate another gene in

time slice i to i + k (k indicates the maximum time delay). Thus, I transform the

dataset with various time delay to the dataset without time delays, as described

in Section 4.2, then learn it by SSEM. Since a complex is more complicated than

a single gene or protein, I set more states to a complex. In this experiment, I set

two states to a gene while four states for a complex. The learning performance

is compared with that of K2, REVEAL, GeneNetwork, TDNL and CD learning

algorithm. The result is shown in Table 6.4.

102

K2 REVEAL DBmcmc GeneNetwork TDNL CD SSEM
C/T C/T C/T C/T C/T C/T C/T

Ys14 2/12 5/17 12/33 8/31 14/29 18/34 20/33
Yc14 6/20 4/16 10/31 7/21 13/31 14/28 18/30

Table 6.4: Comparison of learning performance. T indicates the number of total
learnt edges and C indicates correct predicted edges.

103

CLN3

SWI4
 SWI6
 MBP1

CLN2

MCM1
 FKH1
 NDD1

SWI5
 ACE2

CDC28

SIC1

CLB2

SIC1

(D)
(C)

CDC28

CLN3

SWI4
 SWI6
 MBP1

CLN2

MCM1
 FKH1
 NDD1

CLB2

SWI5
 ACE2

CDC28

SIC1

CDC28

CLB2

(b)

True positive

False positive

A transcriptional factor

CLN3

SWI4
 SWI6
 MBP1

CLN2

MCM1
 FKH1
 NDD1

CLB2

SWI5
 ACE2

CDC28

SIC1

CLB2

CDC28

CLN3

SWI4
 SWI6
 MBP1

CLN2

MCM1
 FKH1
 NDD1

CLB2

SWI5
 ACE2

CDC28

CDC28

NDD1

Figure 6.3: Learning performance of SSEM on a real-life gene network. (a) Yeast
cell cycle transcriptional regulatory subnetwork. (b) The structure learnt by SSEM .
There are 29 edges with confidence no smaller than 0.6. Among them, 20 edges are
verified as true positives by (a). (c) Markov features with confidence no smaller than
0.6 learnt by SSEM . There are 49 Markov features. Among them, 39 features can
be verified. (d) Learnt cell cycle regulatory network which is simplified from (c).

104

Given an insufficient dataset, a Bayesian network may give a set of models

which explain the data equally well [78]. For further analysis, I use statistical confi-

dence to measure the likelihood of a learnt edge or a statistic feature [30, 34], which

is described in Chapter 4.

Figure 4.6(b) shows the 29 edges learned from Ys13 by SSEM with confidence

greater than 0.6. Among them, 20 edges can be verified by Figure 4.6(a).

Besides the direct regulatory relationship between genes, I also employ a pop-

ular statistic feature, Markov relation, which has been described in Section 4.4. A

Markov feature indicates whether two genes are involved in the same biological event

and it has been regarded as a criterion by several works to evaluate the performance

of gene network reconstruction [30, 34]. A Bayesian network is a model of depen-

dencies among random variables, rather than causality. A → B and B → A are

the alternative ways of describing that A and B are not independent on each other.

Markov relation is helpful in discovering dependencies regardless of the directions

of the edges. Moreover, in a gene regulatory system, there are many transcription

factors and transcription complexes consisting of two or more proteins working col-

laboratively. Such collaborations cannot be uncovered by directed regulatory edges

but can be discovered by Markov features.

When a gene (or a complex) activates or inhibits a transcription complex, it

is possible that there is no direct edge from the regulator to any gene of the complex

and vice versa. For example, CDC28 activates SWI4−SWI6 and SWI6−MBP1

together with CLN3 and inhibits them together with CLB2. Meanwhile, there is

no direct edge from CDC28 to SWI4, SWI6 and MBP1 in YPD. The use of the

hidden variables in this model ensures that we can find such regulatory relationships,

for example, CDC28 → SWI4, CDC28 → SWI6, CDC28 → MBP1, SWI4 →
CLN2, SIC3 → CLB2, etc.

I list the Markov features with confidence, which are learned from Ys13 by

SSEM, greater than 0.6, as shown in Figure 6.3(c). There are altogether 49 Markov

105

features, in which 39 can be verified by Figure 6.3(a). It is clear that there are strong

interactions among the genes comprising a complex and between complexes which

are connected in Figure 6.3(b). I then simplify the network using the transcriptional

factors or complexes, which function as a unit in the regulatory system. I take them

as the node and the Markov relations between them as indirected edges, as shown in

Figure 6.3(d). I discover the complete cell cycle regulatory network, together with

four false edges between CLN3− CDC28 and SIC1 (which is weak since between

them there are only one Markov feature between CLN3 and SIC1), CLN2 and

SIC1, CLN2 and SWI5− ACE2, and SBF/MBF and SFF .

6.5 Conclusion

The semi-fixed hidden variable model introduces hidden variables to model the im-

portant components of a gene network, i.e., regulatory proteins. Modelling hidden

variables which exist in the system can reduce the learning data needed [10] while

omitting hidden variables will usually miss some dependencies in the model given

limited amount of data [27]. Also, without modelling hidden variables, dependencies

among co-children of a regulators are not blocked. Therefore, there might be some

co-children who are selected to be parents of a gene. These false parents will be

the noise to prevent true parents being selected. Moreover, this model makes the

network decomposable even when the proteins which are not measured are consid-

ered and parts of the gene network are fixed using biological knowledge. Thus, a

single hidden variable for each gene is meaningful as it can find more dependencies

with limited data, avoid false positive from co-children and make the model more

realistic. Compared to the current work on gene networks, I have integrated the

biological knowledge to build a semi-fixed hidden variable model which is effective

and reflects real-life gene regulatory systems. It could be a basis of more complicated

models to model gene networks. It increases learning performance and is capable

106

of finding several regulatory relationships which are difficult to be discovered with

traditional methods. As this model can model protein complexes which plays a key

role in many biological systems, this model may be employed in other applications

in computational biology. In addition to the model, this chapter has presented an

effective learning algorithm to learn this model. The main disadvantage of this

model is that it needs more computing resource to model the hidden variables and

it requires more iterations to converge. The running time for learning a dataset with

100 genes might take more than 2 days. An more efficient algorithm is needed for

big datasets.

107

CHAPTER 7

Conclusion and Future Work

7.1 Conclusion

Learning gene networks is an important and difficult task. With the use of microar-

ray data, it has gained even more attention and has become one of the central tasks

in the post-genome era.

Several facts hinder the research on learning gene networks from microar-

ray gene expression data: the NP-hard property, the data (dimension) problem,

the stochastic nature, and so on. Though many methods have been proposed to

tackle these problems, few of them could give reasonable results on large-scale data.

Moreover, some important biological facts have been overlooked in previous works:

various time delays, collaboration among parents in a biological regulation system

including complexes and hidden variables (proteins), etc.

In the thesis, I have tried to tackle these problems using the Bayesian network

framework together with the following enhancements:

• Time delayed Bayesian network: Most research work on learning gene

networks either assumes that there is no time delay in gene expression or

108

that there is a constant time delay. My proposed model goes a step further

and shows how Bayesian Networks can be applied to represent various time

delay relationships. In my approach, the traditional Bayesian network is en-

hanced with a time-delay model in order to represent various time delays in

a gene network. Transformation is applied to shift the time-delayed network

learning problem to the traditional Bayesian network learning problem. The

intractability of the network learning algorithm is handled with the use of im-

proved mutual information criteria. The increase in the number of parameters

to be learnt is accounted for by my proposed efficient structure learning al-

gorithm, “Learning By Modification”, which is suited to learning the sparse

structure of a gene network.

• Conditional dependency learning algorithm: When we learn a gene net-

work from a large dataset, one key problem is that the parent-child correlation

is insufficient to help us extract the correct regulatory relationships because

of the complexity of the regulatory system. In my proposed model, in addi-

tion to parent-child correlation, I take two additional factors into account: (1)

collaboration among regulators, and (2) formation of a regulatory complex.

I use conditional dependence to extract co-regulatory relationships between

regulatory pairs. A new learning method, called the Conditional Dependence

Learning algorithm, is proposed to extract the underlying structure of the gene

network based on the regulatory complex. The various time delays information

is also integrated in the learning procedure.

• Semi-fixed hidden variable model: Most existing works learn gene net-

works by assuming one gene provokes the expression of another gene directly.

This leads to an over-simplified model. In my proposed model, I show that

gene regulation is a complex problem with many hidden variables. My pro-

posed semi-fixed model represents the gene network as a Bayesian network

109

with hidden variables. The semi-fixed hidden variable model introduces hid-

den variables to model the important components of a gene network, i.e.,

proteins. The model provides for a decomposable network. Moreover, parts

of the network are fixed using biological knowledge. Compared to the cur-

rent works on gene networks, the semi-fixed hidden variable model is effective

since it takes into account important biological knowledge and thus reflects a

real-life gene expression regulatory system. In addition, I have presented an

effective algorithm that is suitable to learning the partially fixed networks that

the model reflects.

7.2 Discussion

This thesis has take into account some important biological information, and has

obtained biologically significant results. However, there are still some drawbacks to

the work:

• Some information was omitted in the proposed models which are still simpli-

fied models even though they may be more sophisticated than previous ones.

AGene regulation and expression systems are complicated. Given the gene

expression data available, we cannot monitor the intermediate steps of gene

regulation such as protein translation efficiency, protein degeneration rate and

so on. With partial information, it is difficult to produce a complete picture.

Even if we include proteins as hidden variables, we cannot model all hidden

information such as protein translation level and protein degeneration rate be-

cause of learning difficulty. Some additional information is needed before we

can obtain a more in-depth understanding.

• The number of genes in a genome may reach hundreds of thousands. Currently,

our method can complete the learning of several thousands genes in about one

week. This running time is not reasonable when we apply the algorithms in

110

a dataset with hundreds of thousand genes. In particular, the procedure of

inferencing parameters is quite slow, and a more efficient algorithm needs to

be devised.

• All models in the thesis have obtained some biologically significant results.

However, they are far from enough for building a genome-wide network to

predict biological relationships among genes and discover the regulation mech-

anism. Even in a subnetwork with tens or hundreds genes, only about half of

the regulatory relationships can be discovered. Given a big genome, the accu-

racy is assumed to decrease further. More effective algorithms are needed.

7.3 Future Work

Despite its limitations, the work in this thesis may be used as the basis for future

developments:

• Integrating with more biological information. Recent papers [49, 50, 95] have

reported that combining different types of biological data sources is useful in

determining the structure of a gene network. The frequently used data sources

are protein interaction, transcription factor, cell cycle information, and so on.

Given more related information, the models proposed in this thesis could be

more realistic and the results they produce would become more biologically

relevant.

• Combining multi datasets. One of the main problems in learning gene networks

is the insufficiency of microarray data. Accurate results cannot be deduced

from thousands of genes tested in tens of measurements. If we could combine

several datasets with or without the same time intervals, we would have a

higher chance of obtaining correct pictures of networks. Several issues need

to be considered to achieve efficient dataset combinations: 1) The datasets

111

may be obtained under different scenarios. The expression and regulation

patterns of the datasets may be different. There will be some overlap and

some inter-supplement, which needs to be handled carefully. 2) The datasets

may have different time intervals. For example, in Spellman’s dataset [90],

the time intervals of the subsets varies from 7 minutes to 30 minutes. To

combine them, one possible solution is to interpolate the datasets to let them

have the same time interval. The interpolated data would serve as given data,

thus the new data would not create any new information but only contain the

information from the given data.

• Continuous value. In the thesis, I have worked with discrete values. Though

there is no evidence to prove that continual value models give more significant

results, the loss of the information in the process of discretization may lead to

some bias in the resulting network. I plan to work on a new method that can

handle continual values. The probability distribution can be calculated by a

density function given the continuous values.

• Use of gene over-expression and disruption data. Such types of data provide

the chance to observe the effect of specific genes directly. The goodness of

these data has been reported in some recent papers [1, 78, 79, 81].

• More effective and efficient algorithms. Finding candidate parents is critical

for final learning performance. Mutual information cannot reflect real regula-

tory dependency between gene pairs. Conditional relative entropy (CRE) can

find more appropriate dependency between gene pairs. However, calculating

CRE requires extra time. When the number of genes grows, running time in-

creases. Sampling may be a good approach to speed up CRE calculation; this

approach is used in joint probability inference and has been proved useful. In

addition, association rules mining might be a good choice in candidate parent

selection as they consider all possible parent combinations of the target gene.

112

A recently published association rule mining algorithm, FARMER [20], is es-

pecially useful when applied to microarray datasets. It uses row enumeration

instead of column enumeration. In each microarray dataset, a row is a repli-

cate of the data while a column is a variable. A microarray dataset generally

has many variables but only tens of replicates. Therefore, FARMER is quite

efficient and effective when applied to microarray datasets.

113

BIBLIOGRAPHY

[1] T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano. Identification of Gene

Regulatory Networks by Strategic Gene Disruptions and Gene Overexpres-

sions. In the ninth annual ACM-SIAM symposium on Discrete algorithms,

pages 695 – 702, 1998.

[2] T. Akutsu, S. Miyano, and S. Kuhara. Identification of Genetic Getworks from

a Small Number of Gene Expression Patterns Under the Boolean Network

Model. In Pacific Symposium on Biocomputing (PSB), pages 17–28, 1999.

[3] T. Akutsu, S. Miyano, and S. Kuhara. Algorithms for Identifying Boolean

Networks and Related Biological Networks Based on Matrix Multiplication

and Fingerprint Function. Journal of Computational Biology, 7(3/4):331–343,

2000.

[4] T. Akutsu, S. Miyano, and S. Kuhara. Algorithms For Inferring Qualitative

Models of Biological Networks. In Pacific Symposium on Biocomputing (PSB),

pages 293–304, 2000.

[5] T. Akutsu, S. Miyano, and S. Kuhara. Inferring Qualitative Relations in

114

Genttic Networks and Metabolic Pathways. Bioinformatics, 16(8):727–734,

2000.

[6] A. Arkin, P. shen, and J. Ross. A Test Case of Correlation Metric Construction

of A Reaction Pathway from Measurements. Science, 277:1275–1279, 1997.

[7] G.H. Barbara, A. Jameson, and F. Witting. Learning Bayesian Networks

with Hidden Variables for User Modeling. In Proceedings of the International

Joint Conferences on Artificial Intelligence Workshop “Learning About Users”,

pages 29–34, 1999.

[8] M.J. Beal, F.Falciani, Z. Ghahramani, C. Rangel, and D.L. Wild. A Bayesian

Approach to Reconstructing Genetic Regulatory Networks with Hidden Fac-

tors. Bioinformatics, 21(3):349–356, 2005.

[9] S. R. Biggar and G.R. Crabtree1. Cell Signaling Can Direct Either Binary or

Graded Transcriptional Responses. EMBO journal, 20:3167–3176, 2001.

[10] J. Binder, D. Koller, S. Russell, , and K. Kanazawa. Adaptive Probabilistic

Networks with Hidden Variables. Machine Learning, 29:213–244, 1997.

[11] S.G. Bottcher and C. Dethlefsen. Learning Bayesian Networks with R. In In-

ternaltional Workshop on Distributed Statistical Computing(DSC2003), 2003.

[12] X. Boyen, N. Friedman, and D. Koller. Discovering the Hidden Structure of

Complex Dynamic Systems. In Uncertainty in Artificial Intelligence, 1999.

[13] P. Brazhnik, A.D.L. Fuente, and P. Mendes. Gene Networks: How To Put

The Function in Genomics. TRENDS in Biotechnology, 1(20):467–472, 2002.

[14] A. Brazma and J. Vilo. Gene Expression Data Analysis. FEBS letters, 480:17–

24, 2000.

115

[15] K.C. Chen, T.Y. Wang, H.H. Tseng, C.Y.F. Huang, and C.Y. Kao. A

Stochastic Differential Equation Model for Quantifying Transcriptional Reg-

ulatory Network In Saccharomyces Cerevisiae. Bioinformatics, 21(12):2883–

2890, 2005.

[16] T. Chen, V. Filkov, and S.S. Skiena. Identifying Gene Regulatory Networks

from Exprimental Data. In International Conference on Research in Compu-

tational Molecular Biology (RECOMB), pages 94–103, 1999.

[17] T. Chen, H.L. He, and G.M. Church. Modeling Gene Expression with Differ-

ential Equations. In Pacific Symposium on Biocomputing (PSB), volume 4,

pages 29–40, 1999.

[18] R.J. Chou, M.J. Campbell, E.A. Winzeler, L. Steinmetz, A. Conway, L. Wod-

icka, T.G. Wolfsberg, A.E. Gabrielian, D. Landsman, D.J. Lockhart, and R.W.

Davis. A Genome-Wide Transcriptional Analysis of The Mitotic Cell Cycle.

Molecular Cell, 2:65–73, 1998.

[19] O. Cinquin and J. Demongeot. Positive and Negative Feedback: Striking

a Balance Between Necessary Antagonists. Journal of Theoritical Biology,

216:229–241, 2002.

[20] G. Cong, AKH. Tung, X. Xu, F. Pan, and J. Yang. FARMER: Finding Inter-

esting Rule Groups in Microarray Datasets. In ACM SIGMOD international

conference on Management of data, pages 143–154, 2004.

[21] G.F. Cooper and E. Herskovits. A Bayesian Method for The Induction of

Probabilistic Networks from Data. Machine Learning, 9:309–347, 1992.

[22] P. Dagum and A. Galper. Time Series Prediction Using Belief Network Models.

International Journal of Human-Computer Studies, 42(6):617–632, 1995.

116

[23] P. D’haeseleer. Reconstructing Gene Networks from Large Scale Gene Expres-

sion Data. PhD thesis, University of New Mexico, 2000.

[24] P. D’haeseleer, S. Liang, and R. Somogyi. Genetic Network Inference: From

Co-Expression Clustering to Reverse Engineering. Bioinformatics, 16(2):707–

726, 2000.

[25] B.E. Dutilh. Analysis of Data from Microarray Experiments,the State of the

Art in Gene Network Reconstruction. PhD thesis, Department of Theoretical

biology and Bioinformatics, Utrecht University, 1999.

[26] G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering Hidden Vari-

ables: A Structure-Based Approach. In Neural Information Processing Sys-

tems (NIPS), pages 479–485, 2000.

[27] G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering Hidden Vari-

ables: A Structure-Based Approach. In Neural Information Processing Sys-

tems (NIPS), pages 479–485, 2000.

[28] S. Fiering, E. Whitelaw, and D.I.Martin. To Be or Not To Be Active: The

Atochastic Nature of ENhancer Action. Bioessays, 22:381–387, 2000.

[29] V. Filkov, S. Skiena, and J.Z. Zhi. Analysis Techniques for Microarray Time-

Series Data. In International Conference on Research in Computational Molec-

ular Biology (RECOMB), pages 124–131, 2001.

[30] Friedman. Inferring Cellular Networks Using Probabilistic Graphical Models.

Science, 303(6):799–805, 2004.

[31] N. Friedman. Learning Belief Networks in The Presence of Missing Values

and Hidden Variables. In Proc. 14th International Conference on Machine

Learning, pages 125–133, 1997.

117

[32] N. Friedman. The Bayesian Structure EM Algorithm. In Uncertainty in Ar-

tificial Intelligence, pages 129–138, 1998.

[33] N. Friedman. Inferring Cellular Networks Using Probabilistic Graphical Mod-

els. Science, 33:799–805, 2004.

[34] N. Friedman, M. Linial, I. Nachman, and D. Peer. Using Bayesian Networks to

Analyze Expression Data. In International Conference on Research in Com-

putational Molecular Biology (RECOMB), pages 127–135, 2000.

[35] N. Friedman, K. Murphy, and S. Russell. Learning the Structure of Dynamic

Probabilistic Networks. In Uncertainty in Artificial Intelligence, pages 139–

147, 1998.

[36] N. Friedman, I. Nachman, and K. Peer. Learning Bayesian Network Structure

from Massive Datasets: the “Sparse Candidate” Algorithm. In Uncertainty in

Artificial Intelligence, pages 206–215, 1999.

[37] B. Futcher. Transcriptional Regulatory Networks and Yeast Cell Cycle. Cur-

rent Opinion in Cell Biology, 14:676–683, 2002.

[38] P. Goldsbrough. Biotechnology in Agriculture. Lecture Notes, Department of

Horticulture & landscape architechture Purdue University, West Lafayette, IN

USA, 2 edition, 2001.

[39] L. Gransson and T. Koski. Using a Dynamic Bayesian Network to Learn Ge-

netic Interactions. Technical Report, Graduate School of Biomedical Research,

Linkoping University., 2002.

[40] R. Guthke, U. Moller, M. Hoffmann, F. Thies, and S. Topfer. Dynamic Net-

work Reconstruction from Gene Expression Data Applied to Immune Response

During Bacterial Infectioin. Bioinformatics, 21(8):1626–1634, 2005.

118

[41] A.J. Hartemink, D.K. Gifford, T.S. Jaakkola, and R.A. Young. Using Graph-

ical Models and Genomic Expression Data to Statistically Validate Models of

Genetic Regulatory Networks. Pacific Symposium on Biocomputing (PSB),

6:422–433, 2001.

[42] J. Hasty, D. McMillen, F. Isaacs, and J.J. Collins. Computational Studies of

Gene Regulatory Networks: In Numero Molecular Biology. Nature Reviews

Genetics, 2(4):268–279, 2001.

[43] D. Heckerman. A Tutorial on Learning with Bayesian Networks. Microsoft

Research Technical Report, (MSR-TR-95-06), 1995.

[44] D. Heckerman, D. Gerger, and K.M. Chickering. Learning Bayesian Net-

works: The Combination of Knowledge and Statistical Data. Machine Learn-

ing, 20(3):197–243, 1995.

[45] S. Huang. Gene Expression Profiling, Genetic Networks, and Cellular States:

An Intergrating Concept for Tumori-genesis and Drug discovery. Journal of

Molecular Medicine, 77:469–480, 1999.

[46] D.A. Hume. Probability in Transcriptional Regulation and Its Implications

for Leukocyte Differentiation and Inducible Gene Expression. Blood, 96:2323–

2328, 2000.

[47] D. Husmeier. Sensitivity and Specificity of Inferring Genetic Regulatory In-

teractions From Microarray Experiments with Dynamic Bayesian Networks.

Bioinformatics, 19(17):2271–2282, 2003.

[48] S. Imoto, T. Goto, and S. Miyano. Estimation of Genetic Networks and Func-

tional Structures Between Genes by Using Bayesian Networks and Nonpara-

metric Regression. In Pacific Symposium on Biocomputing (PSB), volume 7,

pages 175–186, 2002.

119

[49] S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano. Com-

bining Microarrays and Biological Knowledge for Estimating Gene Networks

via Bayesian Network. In Computational Systems Bioinformatics conference,

2003.

[50] G.V. Irit, A. Tanay, D. Raijman, and R. Shamir. The Factor Graph Network

Model for Biological Systems. In International Conference on Research in

Computational Molecular Biology (RECOMB), 2005.

[51] S.M. Jane and J.M Cunningham. Molecular Mechanism of Hemoglobin Switch-

ing. International Journal of Biochemical Cell Biology, 28(11):1197–1209,

1996.

[52] P.A.O. Sharp J.D. Parvin, H.T. Timmers. Promoter Specificity of Basal Tran-

scription Factors. Cell, 68(6):1135–1144, 1992.

[53] H.D. Jong. Modeling and Simulation of Genetic Regulatory System: A Liter-

ature Review. Journal of Computational Biology, 9(1):67–163, 2002.

[54] Hidde De Jong. Modeling and Simulation of Genetic Gegulatory Systems: A

Literature Review. Journal of computational biology, 9(1):67–103, 2002.

[55] R. Karmakar and I. Bose. Graded and Binary Responses in Stochastic Gene

Expression. Physical Biology, 1:197–204, 2004.

[56] S.A. Kauffman. Metabolic Stability and Epigenesis in Randomly Constructed

Genetic Nets. Journal of Theoretical Biology, 22:437–467, 1973.

[57] S. Kim, S. Imoto, and S. Miyano. Dynamic Bayesian Network and Nonpara-

metric Regression for Nonlinear Modeling of Gene Networks from Time Series

Gene Expression Data. Biosystems, 75:57–65, 2004.

120

[58] M.S. Ko, H. Nakauchi, and N. Takahashi. The Dose Dependence of Glucocorti-

Coid-Inducible Gene Expression Results from Changes in Tthe number of

Transcriptionally Cctive Templates. EMBO Journal, 9:2835–2842, 1990.

[59] F.A. Kolpakov, E.A. Ananko, G.B. Kolesov, and N.A. Kolchanov. Genenet:

a Gene Network Database and its Automated Visualization. Bioinformatics,

14:529–537, 1998.

[60] W.D. Laat and F. Grosveld. Spatial Organization of Gene Expression: The

Active Chromatin Hub. Chromosome Research, 11:447–459, 2003.

[61] H. Lahdesmaki, I. Shmulevich, and O. Yli-Harja. On Learning Gene Regula-

tory Networks Under the Boolean Network Model. Machine Learning, 52:147–

167, 2003.

[62] W. Lam and F. Bacchus. Learning Bayesian Belief Networks: An Approach

Based on the MDL Principle. Computational Intelligence, 10:269–293, 1994.

[63] A.K. Lee, S.H. Sung, Y.C. Kim, and S.G. Kim. Inhibition of

Lipopolysaccharide-Inducible Nitric Oxide Synthase TNF-α and COX-2 Ex-

pression by Sauchinone Effects on I-κBα Phosphorylation, C/EBP and AP-1

Activation. British Journal of Pharmacology, 139:11–20, 2003.

[64] P.H. Lee and D. Lee. Modularized Learning of Genetic Interaction Networks

from Biological Annotations and mRNA Expression Data. Bioinformatics,

21(11):2739–2747, 2005.

[65] P.P. Levings and J. Bungert. The Human β-Globin Locus Control Region.

European Journal of Biochemistry, 269:1589–1599, 2002.

[66] B. Lewin. Genes. Oxford University Press, 7 edition, December 1999.

121

[67] S. Liang, S. Fuhrman, and R. Somogyi. REVEAL,a General Reverse Engi-

neering Algorithm for Inference of Genetic Network Architectures. In Pacific

Symposium on Biocomputing (PSB), volume 3, pages 18–29, 1998.

[68] TF. Liu, WK. Sung, and A. Mittal. Learning Multi-Time Delay Gene Net-

work Using Bayesian Network Framework. In The 16th IEEE International

Conference on Tools with Artificial Intelligence, 2004.

[69] M. Louis and A. Becskei. Binary and Graded Responses in Gene Networks.

Science stke, 143:pe33–33, 2002.

[70] M. Louis and A. Becskei. Binary and Graded Responses in Gene Networks.

Science stke, 143:pe33–33, 2002.

[71] M. Schena M, D. Shalon, R.W. Davis, and P.O. Brown. Quantitative Moni-

toring of Gene Expression Patterns with a Complementary DNA Microarray.

Science, 270(5235):467–470, 1995.

[72] Y. Maki, D. Tominaga, M. Okamoto, S. Watanabe, and Y. Eguchi. Develop-

ment of a System for the Inference of Large Scale Genetic Networks. In Pacific

Symposium on Biocomputing (PSB), volume 6, pages 446–58, 2001.

[73] E. Martinez. Multi-Protein Complexes in Eukaryotic Gene Transcription.

Plant Molecular Biology, 50(6):925–47, 2002.

[74] H.H. McAdams and A. Arkin. Stochastic Mechanisms in Gene Expression.

Proceedings of the National Academy of Sciences, 94(3):814–819, 1997.

[75] K. Murphy and S. Mian. Modelling Gene Expression Data Using Dynamic

Bayesian Networks. Technical Report, Computer Science Division, University

of California, Berkeley, CA., 1999.

[76] I. M. Ong, J. D. Glasner, and D. Page. Modelling Regulatory Pathways in E.

coli from time Series Expression Profiles. Bioinformatics, 18:241–248, 2002.

122

[77] J. Pearl and T.S. Verma. A Theory of Inferred Causation. In International

Conference on Principles of Knowledge Representation and Reasoning, pages

441–452, 1991.

[78] D. Pe’er, A. Regev, G. Elidan, and N. Friedman. Inferring Subnetwork from

Perturbed Expression Profiles. Bioinformatics, 17(Suppl. 1):s215–s224, 2001.

[79] J.J. Rice, U.H Tu, and G. Stolovitzky. Reconstructing Biological Networks

using Conditional Correlation Analysis. Bioinfomatics, 21(6):765–773., 2005.

[80] S. Rogers and M. Girolami. A Bayesian Regression Approach to the Infer-

ence of Regulatory Netowkrs from Gene Expression Data. Bioinformatics,

21(14):3131–3137, 2005.

[81] J. Rung, T. Schlitt, A. Brazma, K. Freivalds, and J. Vilo. Building

and Analysing Genome-Wide Gene Disruption Networks. Bioinformatics,

18(Suppl.2):S202–S210, 2002.

[82] R. Sanguesa and U. Cortes. Learning Causal Networks from Data: A Sur-

vey and A New Algorithm for Recovering Possibilistic Causal Networks. AI

Communications, 10(1):31–61, 1997.

[83] E. Segal, M.Shapira, A. Regev, D. Pe’er, D. Botstein, and D. Koller. Mod-

ule Networks: Identifying Regulatory Modules and Their Condition-Specific

Regulators from Gene Expression Data. Nature Genetics, 34(2):166–176, 2003.

[84] L. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean

Networks: A Rule-Based Uncertainty Model for Gene Regulatory Networks.

Bioinformatics, 18(2):261–274, 2002.

[85] I. Simon, J. Barnett, N. Hannett, C.T. Harbison, N.J. Rinaldi, T.L. Volkert,

J.J. Wyrick, J. Zeitlinger, D.K. Gifford, T.S. Jaakkola, and R.A. Young. Se-

123

rial Regulation of Transcriptional Regulators in the Yeast Cell Cycle. Cell,

106(6):697–708, 2001.

[86] K. Sivakumar, R. Chen, and H. Kargupta. Learning Bayesian Network Struc-

ture from Distributed Data. In SIAM International Data Mining Conference,

pages 284–288, 2003.

[87] P. Smolen, D.A. Baxter, and J.H. Byrne. Modeling Transcriptional Control in

Gene Networks – Methods, Recent Results and Future Directions. Bulletin of

Mathematical Biology, 62:247–292, 2000.

[88] E.P.V. Someren, L.F.A. Wessels, and M.J.T. Reinders. Linear Modeling of

Genetic Networks from Experimental Data. In International Conference on

Intelligent Systems for Molecular Biology (ISMB), pages 355–366, 2000.

[89] R. Somogyi and C.A. Sniegoski. Modeling The Complexity of Genetic Network:

Understanding Multigene and Pleiotropic Regulation. Commplexity, 1(6):45–

63, 1996.

[90] P.T. Spellman, G. Sherlock, and B. Futcher. Comprehensive Identification

of Cell Cycle-Regulated Genes of the Yeast Saccharomyces Cerevisiae by Mi-

croarray Hybridization. Molecular Biology of the Cell, 9:3273–3297, 1998.

[91] P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search.

The MIT Press, 2nd edition, 2001.

[92] M. Sugita. Functional Analysis of Chemical Systems in vivo Using a Logical

Circuit Equivalent. Journal of Theoretical Biology, 1:415–430, 1961.

[93] M. Sugita. Functional Analysis of Chemical Systems in vivo Using a Logi-

cal Circuit Equivalent: II. The Idea of a Molecular Automaton. Journal of

Theoretical Biology, 4:179–172, 1963.

124

[94] S. Miyano SY. Kim, S. Imoto. Inferring Gene Networks from Time Series Mi-

croarray Data Using Dynamic Bayesian Networks. Brief Bioinform, 4(3):228–

35, 2003.

[95] Y. Tamada, S.Y. Kim, H.D Bannai, S. Imoto, K. Tashiro, S. Kuhara, and

S. Miyano. Estimating Gene Networks from Gene Expression Data by Com-

bining Bayesian Network Model with Promoter Element Detection. Bioinfor-

matics, 19(Supl. 2):ii227–ii236, 2003.

[96] D. Thieffry and R. Thomas. Qualitative Analysis of Gene Networks. In Pacific

Symposium on Biocomputing (PSB), volume 3, pages 77–88, 1998.

[97] H. Toh and K. Horimoto. Inference of A Genetic Network by A Combined Ap-

proach of Cluster Analysis and Graphical Gaussian Modeling. Bioinformatics,

18(2):287–297, 2002.

[98] T.M. Townes and R.R. Behringer. Human Globin Locus Activation Re-

gion(LAR): Role in Temporal Control. Trends Genet., 6(7):219–23, 1990.

[99] A. Tucker, X. Liu, and A. Ogden-Swift. Evolutionary Learning of Dynamic

Probabilistic Models With Large Time Lags. International journal of intelli-

gent system, 16(5):621–645, 2001.

[100] M. Wahde and J. Hertz. Course-Grained Reverse Engineering of Genetic Reg-

ulatory Networks. Biosystems, 55:129–136, 2000.

[101] C. Walter, R. Parker, and M. Yc̆as. A Model for Binary Logic in Biochemical

Systems. Journal of Theoretical Biology, 15:208–217, 1967.

[102] S. Watanabe, Y. Maki, Y. Eguchi, D. Tominaga, and M. Okamoto. Algorithms

for Inference of Genetic Networks AIGNET. In Intl. Workshop on Genome

Informatics, pages 274–275, 1998.

125

[103] D.C. Weaver, C.T. Workman, and G.D. Stromo. Modeling Regulatory Net-

works with Weight Matrices. Pacific Symposium on Biocomputing (PSB),

pages 112–123, 1999.

[104] C.C. Wu, J.C. Huang, H.F. Juan, and S.T. Chen. GeneNetwork: An Inter-

active Tool for Reconstruction of Genetic Networks Using Microarray Data.

Bioinformatics, 20(18):3691–3693, 2004.

[105] J.J. Wyrick and R.A. Young. Deciphering Gene Expression Regulatory Net-

work. Current Opinion in Genetics and Development, 12:130–136, 2002.

[106] J. Yu, V.A. Smith, P.P. Wang, A.J. Haremink, and E.D. Jarvis. Advances to

Bayesian Network Inference for Generating Causal Networks from Observa-

tional Biological Data. Bioinformatics, 20(18):3594–3603, 2004.

[107] C.H. Yuh, H. Bolouri, and E.H. Davidson. Genomic Cis-Regulatory Logic:

Experimental and Computational Analysis of A Sea Urchin Gene. Science,

279:1896–1902, 1998.

[108] X.B. Zhou, X.D. Wang, R. Pal, I. Ivanov, M. Bittner, and E.R. Dougherty.

A Bayesian Connectivity-Based Approach to Constructing Probabilistic Gene

Regulatory Networks. Bioinformatics, 20(17):2918–2927, 2004.

[109] M. Zou and S.D. Conzen. A New Dynamic Bayesian Network (DBN) Approach

for Identifying Gene Regulatory Networks from Time course Microarray Data.

Bioinformatics, 21(1):71–79, 2005.

126

