
Efficient Mining of Distance Based Subspace Clusters

Guimei Liu1, Kelvin Sim2, Jinyan Li3, Limsoon Wong1

1 School of Computing, National University of Singapore, Singapore
2 Institute for Infocomm Research, Singapore

3 School of Computer Engineering, Nanyang Technological University, Singapore

Abstract

Traditional similarity measurements often become
meaningless when dimensions of datasets increase.
Subspace clustering has been proposed to find clus-
ters embedded in subspaces of high dimensional
datasets. Many existing algorithms use a grid
based approach to partition the data space into non-
overlapping rectangle cells, and then identify con-
nected dense cells as clusters. The rigid boundaries
of the grid based approach may cause a real cluster
to be divided into several small clusters. In this pa-
per, we propose to use a sliding window approach to
partition the dimensions to preserve significant clus-
ters. We call this model nCluster model. The sliding
window approach generates more bins than the grid-
based approach, thus it incurs higher mining cost.
We develop a deterministic algorithm, called Maxn-
Cluster, to mine nClusters efficiently. MaxnCluster
uses several techniques to speed up the mining, and
it produces only maximal nClusters to reduce result
size. Non-maximal nClusters are pruned without the
need of storing the discovered nClusters in the mem-
ory, which is key to the efficiency of MaxnCluster.
Our experiment results show that MaxnCluster can
produce maximal nClusters efficiently and accurately.

1 Introduction

Clustering seeks to find groups of similar objects
based on the values of their attributes. Traditional
clustering algorithms use distance on the whole data
space to measure similarity between objects. As the

number of dimensions in a dataset increases, distance
measures become increasingly meaningless [10, 17, 3].
In very high dimensional datasets, the objects are al-
most equidistant from each other. This is known as
the curse of high dimensionality [9].

The concept of subspace clustering has been pro-
posed to cope with this problem by discovering
clusters embedded in the subspaces of high dimen-
sional datasets. Many subspace clustering algorithms
use a grid based approach to find dense regions
[6, 13, 25, 12, 20]. They partition the data space
into non-overlapping rectangular cells by discretizing
each dimension into a number of bins. A cell is dense
if the fraction of total objects contained in the cell
is greater than a threshold. Dense cells in all sub-
spaces are identified using a bottom-up strategy, and
connected dense cells are merged together to form
clusters.

In the grid based approach, objects around the
boundaries of the bins have similar values, but they
are put into different bins. As a result, a cluster may
be divided into several small clusters as illustrated in
the following example. Table 1 shows a dataset con-
taining six objects and three attributes. The value
range of the three attributes is [0, 10]. Objects 2, 3
and 4 have similar values on both attributes a and b,
so object set {2, 3, 4} and attribute set {a, b} should
form a subspace cluster. If we use the grid based
approach and partition each attribute to two bins of
equal length, then for each attribute, we have two
bins [0, 5] and (5, 10]. Object 4 is in different bins
with objects 2 and 3 on attribute a, and object 3 is
in different bins with objects 2 and 4 on attribute b.
Thus we get two smaller clusters ({2, 3}, a) and ({2,

1

a b c
1 0 10 1
2 4 5 4
3 5 6 0
4 6 5 7
5 9 0 10
6 10 1 6

Table 1: An example missing cluster

4}, {b}). Algorithms have been proposed to find the
cutting points adaptively based on data distribution
[25, 12, 20]. However, these algorithms do not allow
overlap between different bins either, so it is still pos-
sible that objects with similar values on an attribute
are placed into different bins of the attribute, which
may cause a cluster to be shattered in different cells.

In this paper, we propose a distance based sub-
space clustering model called nCluster to overcome
the problem discussed above. The nCluster model
uses a sliding window approach to partition the di-
mensions, which allows overlap between different bins
of an attribute. This may result in more bins than the
grid based algorithms, which increases the complex-
ity of the problem. To make the problem solvable, we
consider only those clusters containing a non-trivial
number of objects and attributes. Furthermore, we
mine only maximal nClusters to avoid generating too
many clusters. We develop an efficient algorithm to
find the complete set of maximal nClusters, which
uses dedicated data structures to produce object sets
and attribute sets simultaneously and uses the size
constraints on both object sets and attribute sets to
prune the search space. MaxnCluster can also effec-
tively and efficiently prune non-maximal nClusters,
and it performs the pruning without the need of stor-
ing maximal nClusters in the memory. Instead, it uti-
lizes the dataset itself to prune non-maximal nClus-
ters, and several techniques are employed to minimize
the overhead incurred.

The rest of the paper is organized as follows. Sec-
tion 2 gives the formal definition of the nCluster
model. We present the MaxnCluster algorithm in
Section 3. The experiment results are reported in
Section 4. Related work is discussed in Section 5.
Finally, Section 6 concludes the paper.

2 Problem Definition

In this section, we give the formal definition of the
nCluster model. The following notations are used in
the paper. Let O be a set of objects. Each object has
a set of attributes A. Without loss of generality, we
assume the value range of all continuous attributes
is [0,1]. We use x, y, · · · to denote an object in O,
a, b, · · · to denote an attribute in A, and vxa to denote
the value of an object x on an attribute a.

The distance of two objects x and y on an attribute
a is defined as |vxa − vya|. If the distance of x and y
on an attribute a is smaller than a predefined thresh-
old, then x and y are called neighbors on attribute
a. Similarly, we can define neighbors of an object
on a subset of attributes in A, and they are called
subspace neighbors.

Definition 1 (Subspace δ-neighbors) Let x, y be
two objects and D ⊆ A be a subset of attributes. If
for every nominal attribute a ∈ D, we have vxa=vya,
and for every continuous attribute a ∈ D, we have
|vxa−vya| ≤ δ, where δ is a predefined threshold, then
we say that x and y are δ-neighbors of each other in
subspace D.

If a set of objects T are δ-neighbors of one another
on a set of attributes D, then these objects form a
cluster on subspace D and we call it a δ-nCluster.

Definition 2 (Subspace δ-nCluster) Let T ⊆ O
be a set of objects and D ⊆ A be a set of attributes.
If for every two objects x, y ∈ T and every attribute
a ∈ D, objects x and y are δ-neighbors on attribute
a, then we say that (T , D) is a subspace δ-nCluster,
or simply δ-nCluster.

Example 1 Table 2 shows a dataset with 4 at-
tributes and 8 objects. If we set δ to 0.1, then
{1, 2, 4, 6, 8} and {a} form a δ-nCluster, {1, 6} and
{a, b, c} form a δ-nCluster.

Given two nClusters (T1, D1) and (T2, D2), if T1 ⊆
T2 and D1 ⊆ D2, then we say that (T1, D1) is a sub-
nCluster of (T2, D2), and (T2, D2) is a super-nCluster
of (T1, D1). If either T1 ⊂ T2 or D1 ⊂ D2 is true,

2

a b c d

1 0.50 0.15 0.84 0.00

2 0.55 0.80 0.00 0.85

3 0.40 0.32 0.70 0.30

4 0.50 0.11 0.35 0.72

5 0.00 1.00 1.00 0.60

6 0.55 0.20 0.86 1.00

7 1.00 0.00 0.50 0.45

8 0.60 0.67 0.20 0.15

Table 2: An example dataset

then we say (T1, D1) is a proper sub-nCluster of (T2,
D2). The δ-nClusters have the following properties
based on their definition.

Property 1 (anti-monotone property) Let T ⊆
O be a set of objects and D ⊆ A be a set of attributes.
If T and D form a δ-nCluster, then T forms a δ-
nCluster with every subset of D, and D forms a δ-
nCluster with every subset of T .

Property 2 If a set of objects are δ-neighbors of one
another on two sets of attributes D1 and D2, then
these objects are also δ-neighbors of one another on
D1

⋃
D2.

Given a set of attributes A, the number of sub-
spaces of A is exponential to the number of attributes
in A. If A contains many attributes, it is impracti-
cal to exhaustively enumerate all the subspaces and
find all the δ-nClusters in each individual subspace.
For a cluster to be meaningful and useful, the clus-
ter has to contain a non-trivial number of objects
and attributes. We use two thresholds mr and mc
to constrain the minimum number of objects and at-
tributes contained in a δ-nCluster, and we are inter-
ested in mining only δ-nClusters containing at least
mr objects and mc attributes.

Although restricting the minimum number of
objects and attributes filters out insignificant δ-
nClusters, there still can be a large number of δ-
nClusters, and many of them are redundant in the
sense that they can be subsumed by some larger δ-
nClusters. Based on Property 1, if a set of objects T
and a set of attributes D can form a δ-nCluster, then

every sub-nCluster of (T , D) can form a δ-nCluster.
These sub-nClusters of (T , D) provide no more infor-
mation than (T , D). To avoid generating too many
δ-nClusters, we mine only maximal δ-nClusters.

Definition 3 (Maximal δ-nCluster) Let T ⊆ O
be a set of objects and D ⊆ A be a set of attributes,
and T and D form a δ-nCluster. If there does not
exist a δ-nCluster (T ′, D′) such that (T , D) is a
proper sub-nCluster of (T ′, D′), then (T , D) is called
a maximal δ-nCluster.

Example 2 Let δ=0.1. In the example dataset
shown in Table 2, δ-nCluster ({1, 6}, {a, b}) is not
maximal because its attribute set can be extended by
attribute c and its object set can be extended by object
4. δ-nClusters ({1, 4, 6}, {a, b}) and ({1, 6}, {a,
b, c}) are maximal δ-nClusters because neither their
object sets can be extended without reducing their at-
tribute sets, nor their attribute sets can be extended
without reducing their object sets.

3 Mining Maximal nClusters

In this section, we present an algorithm called Maxn-
Cluster for mining maximal δ-nClusters containing
at least mr objects and at least mc attributes. The
main challenge of mining δ-nClusters is in subspace
enumeration. We use Property 1 to prune the sub-
spaces.We start from δ-nClusters containing only one
attribute, and extend them to find δ-nClusters con-
taining more attributes. A δ-nCluster is extended if
and only if it contains at least mr objects.

3.1 Finding nClusters with single at-

tribute

We are interested in maximal δ-nClusters, so for ev-
ery attribute a, we find the maximal object sets that
can form δ-nClusters with {a}. An attribute can form
δ-nClusters with multiple maximal object sets. We
identify them based on the following observation.

Lemma 1 Given an attribute a and a set of ob-
jects T , (T , {a}) is a δ-nCluster if and only if
max{vxa|x ∈ T} − min{vxa|x ∈ T} ≤ δ.

3

0.00 0.40 0.50 0.50 0.55 0.55 0.60 1.00

objects 5 3 1 4 2 6 8 7

Figure 1: Finding maximal object sets

Based on the above lemma, we identify the maximal
object sets of an attribute using a sliding window,
which is similar to the method used in [34] for finding
maximal dimension sets (MDS). We sort the objects
in O in ascending order of their values on attribute
a. We maintain two pointers, a left-end pointer and
a right-end pointer, on the sorted sequence. Initially,
the two pointers are placed at the first element of
the sorted sequence. We move the right-end point
rightward one position at a time until the difference
between the two pointers is greater than δ, and the
objects between the two pointers form a maximal ob-
ject set of a. To find the next maximal object set, we
move the left-end pointer rightward until the value
pointed by the left-end pointer is different, and we
then move the right-end pointer as described above.
The process is repeated until the right-end pointer
reaches the last element of the sorted sequence. Fig-
ure 1 shows how the two maximal object sets of at-
tribute a are discovered.

Using the above method, if the number of distinct
values of an attribute is very large, then the num-
ber of maximal object sets generated can be very
large. This may pose a difficulty on the mining al-
gorithm. To avoid generating too many highly over-
lapped maximal object sets on the same attribute, we
use a threshold ω to control the overlap. Two adja-
cent windows can have at most ω · δ overlap on their
value ranges. When ω= 0, we divide attributes into
non-overlapping bins as in the grid based approach.

Table 3 shows the maximal object sets of all the
attributes. Every attribute and its maximal object
set form a δ-nCluster containing only one attribute.
We use these δ-nClusters as starting points to find
δ-nClusters containing more attributes.

attr maximal object sets

a1 {1, 3, 4}
a2 {1, 2, 4, 6, 8}
b1 {1, 4, 5, 6}
c1 {1, 6, 7}
c2 {3, 4}
d1 {1, 7, 8}

Table 3: Maximal object sets of attributes

obj attribute lists sorted lists

1 a1, a2, b1, c1, d1 a2, b1, a1, c1, d1

2 a2 a2

3 a1, c2 a1, c2

4 a1, a2, b1, c2 a2, b1, a1, c2

5 b1 b1

6 a2, b1, c1 a2, b1, c1

7 c1, d1 c1, d1

8 a2, d1 a2, d1

Table 4: Attribute lists of objects

3.2 Finding maximal nClusters con-

taining more than one attribute

Given a δ-nCluster (T , D) and an attribute a /∈ D, if
there are at least mr objects in T that are δ-neighbors
of one another on attribute a, then attribute a can be
added to D to form a δ-nCluster with one more at-
tribute. To find all such attribute a, we create an at-
tribute list for every object, which contains all the at-
tributes on which x has at least (mr−1) δ-neighbors.
To distinguish the different maximal object sets of the
same attribute, we map each maximal object set to
an item.

In the above example, attribute a has two maximal
object sets, so we map them to two items a1 and a2.
We also call a1 and a2 items of attribute a. The
attribute lists of objects 1, 3 and 4 contain a1, and
the attribute lists of objects 1, 2, 4, 6, and 8 contain
a2. The attribute lists of all the objects in Table 2 are
shown in the second column of Table 4. The above
transformation is lossless, that is, we can reconstruct
Table 3 from Table 4.

Since the attribute lists contain the complete infor-

4

mation, so we use attribute lists to discover maximal
δ-nClusters in the remaining mining. Our mining al-
gorithm is based on the following observation.

Lemma 2 A set of attributes D forms a δ-nCluster
with a set of objects T if and only if the attribute lists
of the objects in T all contain the same item of every
attribute in D.

If we regard an attribute list as a transaction
and the set of attribute lists of all the objects in
O as a transaction database, then mining maximal
δ-nClusters can be transformed to mining frequent
itemsets from a transaction database [7]. The con-
cept of maximal δ-nClusters is used in the paper to
remove redundant δ-nClusters, and it is similar to the
frequent closed itemset concept [28], which is used
to remove redundant frequent itemsets. An itemset
is closed if it is maximal with respect to the set of
transactions containing it. If a δ-nCluster is max-
imal, then its corresponding attribute item set is a
closed itemset in the attribute lists.

In our previous work [21], we have used LCM [33],
one of the most efficient frequent closed itemset min-
ing algorithms, to mine maximal δ-nClusters. How-
ever, using frequent closed itemset mining algorithms
to mine maximal δ-nClusters has several drawbacks:
(1) Frequent itemset mining produces only itemsets
(attribute sets), the corresponding object sets have to
be generated in a post-processing step, which can be
time-consuming when the number of objects and the
number of generated attribute sets are very large. (2)
Frequent closed itemset mining algorithms use only
the size constraint on object sets to prune the search
space, and the size constraint on attribute sets is not
utilized. As a result, using frequent closed itemset
mining algorithms to mine maximal δ-nClusters may
produce many small uninteresting nClusters. (3) A
closed itemset may not always yield a maximal δ-
nCluster. For example, {a1, a2, b1} is a closed item-
set in Table 4, and its corresponding attribute set
is {a, b} and object set is {1, 4}. However, ({1,
4}, {a, b}) is not a maximal nCluster because one
of its super-nCluster ({1, 4, 6}, {a, b}) is also a δ-
nCluster. Hence using frequent closed itemset mining
algorithms to mine maximal nClusters may produce
many non-maximal nClusters.

In this section, we present an algorithm called
MaxnCluster that uses the size constraints on both
object sets and attribute sets to prune the search
space, and generates the attribute sets and object sets
of nClusters simultaneously and efficiently. Maxn-
Cluster can also effectively and efficiently prune non-
maximal nClusters, and it performs the pruning with-
out the need of storing maximal nClusters, which is
key to its efficiency. MaxnCluster does need to store
some additional information about the data to do the
pruning. We use some techniques to minimize the
overhead incured.

In the rest of this section, we first give the frame-
work of the MaxnCluster algorithm, and then de-
scribe how to produce the object lists of δ-nClusters
efficiently. At the end of this section, we describe how
to identify and prune non-maximal δ-nClusters. To
ease the presentation, we use terminologies from fre-
quent pattern mining. That is, we refer to attribute
item sets as itemsets, and attribute lists of objects as
transactions.

3.3 The mining framework

The MaxnCluster algorithm is modified from the pat-
tern growth algorithm FP-growth [16]. As in frequent
itemset mining, we define the support of an itemset l
as the number of transactions containing it, denoted
as support(l). We say an itemset is frequent if its
support is no less than mr. An itemset is extended
if and only if it is frequent.

The MaxnCluster algorithm first finds all the fre-
quent items. The power set of the set of frequent
items forms the search space of the maximal nCluster
mining problem, which can be represented as a set-
enumeration tree [31]. MaxnCluster uses the depth-
first order to explore the search space. The items are
sorted into descending frequency order. For each fre-
quent item ai, MaxnCluster uses the set of frequent
items that are before ai in the descending frequency
order except those items that are of the same at-
tribute as ai to extend ai, and these items are called
the candidate extensions of ai. MaxnCluster does not
use those items that are of the same attribute as ai

to extend ai because such extension does not intro-
duce any new attribute. For example, with mr=2,

5

the set of frequent items in Table 4 are {a2:5, b1:4,
a1:3, c1:3, d1:3, c2:2}. Item c2 is the last item in the
descending frequency order, so its candidate exten-
sions include all the other items except c1 because c1

is of the same attribute as c2. Item d1’s candidate ex-
tensions include c1, a1, b1 and a2, and the first item
a2 does not have any candidate extensions.

Algorithm 1 MaxnCluster
Input:

l is a frequent item set
CandExt(l) is the candidate extensions of l

mr is the minimum number of objects
mc is the minimum number of columns

Description:

1: FreqExt(l) = {ai|ai ∈ CandExt(l) ∧
(l ∪ {ai} is frequent) ∧
(ai does not have the same attribute as any item in l)};

2: if |l| + |FreqExt(l)| < mc then

3: return ;
4: Sort items in FreqExt(l) into descending frequency order;
5: for all item ai ∈ FreqExt(l) do

6: l′ = l
⋃
{ai};

7: CandExt(l′) = {bj |bj ∈ FreqExt(l)∧(bj is before ai)∧
(bj is not of the same attribute as ai)};

8: if |l′| + |CandExt(l′)| >= mc then

9: l′′ = l′ ∪ {bj |support(l′) = support(l′ ∪ {bj})};
10: if l′′ ⊆ (l′ ∪ CandExt(l′)) then

11: if |l′′| ≥ mc then

12: Output the object set and attribute set of l′′ as
a maximal nCluster;

13: if CandExt(l′) − l′′ 6= {} then

14: MaxnCluster(l′′, CandExt(l′) − l′′, mr, mc);

Algorithm 1 shows the pseudo-code of the Maxn-
Cluster algorithm. When Algorithm 1 is first called,
l is set to the empty set and CandExt(l) is set to the
set of items in the attribute lists. For every frequent
itemset l, Algorithm 1 first finds the set of frequent
extensions of l (line 1) and sorts them into descending
frequency order (line 4), and then extends l by one
more attribute using these frequent extensions (line
6). We use l′ to denote the frequent itemset obtained
by extending l using one item in FreqExt(l). Next,
Algorithm 1 computes the candidate extensions of l′

(line 7) and extends l′ recursively (line 13-14). The
codes at line 9-10 are for checking whether the at-
tribute sets are maximal, which is discussed in Sec-
tion 3.5.

MaxnCluster not only uses the mr threshold to

prune the search space as frequent closed itemset
mining algorithms, but also uses the mc threshold to
prune the search space. Every itemset is extended by
only its frequent extensions, so any itemset extended
from itemset l must be a subset of l∪CandExt(l) and
l ∪FreqExt(l) . If l ∪CandExt(l) or l ∪FreqExt(l)
contains less than mc attributes, then there is no need
to extend l further (line 2-3, line 8).

3.3.1 The FPO-tree structure for support
counting

The MaxnCluster algorithm uses a compact prefix-
tree structure, called FPO-tree, to store transactions
to facilitate support counting. The FPO-tree struc-
ture is modified from the FP-tree structure [16], and
it contains additional information for object list gen-
eration. The construction of an FPO-tree is similar
to that of an FP-tree.

We use the transactions in Table 4 to illustrate
the FPO-tree structure and its construction. The
set of frequent items in Table 4 are {a2:5, b1:4, a1:3,
c1:3, d1:3, c2:2}, and they are sorted into descend-
ing frequency order. The transactions in Table 4 are
also sorted according to this order. The sorted trans-
actions are shown in the third column of Table 4,
and the FPO-tree storing these sorted transactions is
shown in Figure 2.

An FPO-tree node contains an item, a support
counter, a parent pointer, a child pointer, a right-
sibling pointer and a node-link pointer like an FP-
tree node. The support counter of an FPO-tree node
records the frequency of the branch ended at that
node. The node-links link the FPO-tree nodes con-
taining the same item together, and they are denoted
by dotted lines in Figure 2. The numbers in rectangle
boxes are object ids. An additional pair of pointers
are maintained at an FPO-tree node, which point to
the set of objects whose attribute lists containing the
branch ended at the node. The two pointers are used
for generating the object sets of δ-nClusters. We de-
scribe them in subsection 3.4.

In an FPO-tree, the branches containing item ai

store the transactions containing ai. To obtain all
the items that co-occur at least mr times with ai,
MaxnCluster traverses all the branches containing ai

6

root

a2 : 5

b1 : 4

a1 : 3

c1 : 3

d1 : 3

c2: 2

header table
a2:5

d1:1

c1:1

b1:3

c1:1

d1:1

c1:1 d1:1

c2:1

a1:1

c2:1

1

7

6 3
4

5

a1:2

b1:1

8

2

Figure 2: An example FPO-tree

root

a2 : 2

c1 : 2

header table
a2:2 c1:1

c1:1

1

7

(a) d1

root

a2 : 2

b1 : 2

header table
a2:2

b1:2

1 6d1:1

(b) c1

Figure 3: New FPO-trees constructed for d1 and c1

via node-links. The first FPO-tree node containing
ai is maintained in a header table as shown in Fig-
ure 2. The items in FPO-trees are sorted according to
descending frequency order, and the candidate exten-
sions of an item include all the items that are before
it in the descending frequency order. Therefore, in an
FPO-tree, the candidate extensions of an item always
appear above the item itself. For example, item b1 is
a candidate extension of c2, so b1 always appear in
some ancestor nodes of the nodes containing c2. To
find the frequent extensions of ai, MaxnCluster tra-
verses the branches containing ai upwards via parent
pointers.

3.4 Generating object sets

To find δ-nClusters, we not only need to generate
their attribute sets, but also need to generate their
object sets. Therefore, MaxnCluster maintains an
object list for each FPO-tree node, and the object
list contains the ids of all the objects whose trans-
actions fall into that FPO-tree node. Here we say a
transaction falls into an FPO-tree node if the sorted
transaction matches the branch ended at the FPO-
tree node.

If the transaction of an object falls into an FPO-
tree node, then the transaction must also fall into
the parent node of the FPO-tree node. Therefore,
the object list of an FPO-tree node is a subset of its
parent’s object list. To save space, the object lists
of the FPO-tree nodes on the same path are shared
in an FPO-tree. Initially, every object is placed at
the lowest FPO-tree node its transaction falls into as
shown in Figure 2. A pair of pointers is maintained
at each FPO-tree node, which point to the first and
the last element of the object list.

During the mining process, the object lists are
propagated to the nodes at higher levels. In an FPO-
tree, the items are sorted into descending frequency
order while the δ-nClusters are discovered in the re-
verse order, which means that the FPO-tree nodes at
lower levels are processed first. In the above exam-
ple, the δ-nClusters containing c2 are first discovered,
and then the δ-nClusters containing d1, c1 and so on
are discovered. After the δ-nClusters containing an
item ai are discovered, the two pointers pointing to
the first and the last elements of the object lists of
the FPO-tree nodes containing ai are passed to their
parent nodes so that their parent nodes can include
the object lists of ai into their own object lists. For
example, after all the δ-nClusters containing c2 are
discovered, the object lists of the two FPO-tree nodes
containing c2 are passed to the two FPO-tree nodes
containing item a1. This process involves only two
pointer adjustments for every FPO-tree node. It en-
sures that when MaxnCluster starts to mine the δ-
nClusters containing an item ai, the object lists of
the FPO-tree nodes containing ai include all the ob-
jects that are δ-neighbors on ai. To get the maximal
object set of an item ai, we simply visit all the FPO-
tree nodes containing ai via node-links, and collect
their object lists.

If a new FPO-tree needs to be constructed for an
item, the object lists are also reused.

Lemma 3 A branch in an FPO-tree Tr is still a sin-
gle branch in the new FPO-trees constructed from Tr.

The above lemma implies that the object list of an
FPO-tree node is passed as a whole to the new FPO-
tree, so we can simply pass the two pointers point-
ing to the first and the last elements of the object

7

list. It is possible that multiple branches in the orig-
inal FPO-tree are merged into one single branch in
the new FPO-tree. In this case, the object lists are
merged by pointer adjustment. For example, a new
FPO-tree needs to be constructed for item c1. The
first two branches containing c1 in Figure 2 are rep-
resented by a single branch in the new FPO-tree as
shown in Figure 3(b), so the two object lists are con-
nected together in the new FPO-tree. Note that this
does not affect the object lists in the original FPO-
tree. The nodes in the original FPO-tree still know
where its object list begins and where its object list
ends because an FPO-tree node maintains two point-
ers pointing to both the first and the last elements of
its object list.

The above method for generating object lists has
two advantages: (1) The object lists are maintained
by pointer adjustment. Merging two object lists in-
volves only two pointer adjustment, and its cost is
independent of the size of the object list. (2) The ob-
ject lists of different attribute sets are shared. Every
object id is stored only once. When the dataset is
very large and dense, this method can save the time
and space for maintaining the object lists.

3.5 Pruning non-maximal δ-nClusters

A δ-nCluster is not maximal either because its at-
tribute set is not maximal or because its object set
is not maximal. In this subsection, we describe how
to prune these two types of non-maximal δ-nClusters
during the mining process.

3.5.1 Pruning δ-nClusters with non-maximal
attribute sets

The δ-nClusters with non-maximal attribute sets are
pruned based on the following lemmas.

Lemma 4 Let T be the set of objects whose trans-
actions contain itemset l. Itemset l is maximal with
respect to T if and only if l =

⋂
x∈T Lx, where Lx

is the transaction of object x. We call
⋂

x∈T Lx the
closure of l, denoted as closure(l).

Lemma 5 If an item ai is in the closure of an item-
set l, then ai must be in the closure of every superset
l′ of l.

Lemma 6 If the closure of an itemset l contains
some item ai such that ai is not a candidate exten-
sion of l, then none of the itemsets extended from l
can be maximal with respect to its object set.

The above lemmas have been used in frequent closed
itemset mining for pruning non-closed itemsets [33].
During the mining process, MaxnCluster compares
every itemset with its closure (line 9-10 in Algorithm
1). If the itemset is not the same as its closure, then
the itemset is discarded based on Lemma 4. If the
closure of an itemset l contains some item ai such
that ai is not a candidate extension of l, then there
is no need to extend l further based on Lemma 6.

We now describe how to generate the closure of an
itemset l from the FPO-tree structure. The following
notations are used in the description. Let ai be the
last item of l and l′=l−{ai} be the prefix of l, that is,
l is extended from l′ by adding ai. Let FPOl′ be the
FPO-tree constructed for l′, that is, FPOl′ contains
the frequent extensions of l′, including ai.

The branches in FPOl′ containing ai store the
transactions containing l. It seems that we can inter-
sect these branches to obtain the closure of l. How-
ever, this is not enough because some items may be
excluded from these branches because they are not
candidate extensions of l′. To find all the items that
are in the closure of l, we store some additional infor-
mation in FPO-trees. If an item aj is not a candidate
extension of l′, but l′∪{aj} is frequent, then it is pos-
sible that aj is in the closure of l′’s supersets. In this
case, aj is stored in the FPO-tree constructed for l′

for closure generation.
We use an example to illustrate how to generate

the closure of an itemset. In the FPO-tree shown in
Figure 2, there are three branches containing item
c1: d1c1a1b1a2:1, c1b1a2:1 and d1c1:1. To obtain the
closure of c1, we need to access all the nodes in these
three branches. The FPO-tree nodes containing item
c1 split each of the three branches into two parts.
The upper portions of the three branches contain
the candidate extensions of c1, and they are visited

8

via parent pointers. The lower portions of the three
branches are three subtrees, and the items in these
three subtrees are not candidate extensions of c1 but
they may be in the closure of c1. The three subtrees
are traversed using the depth-first traversal strategy
via child pointers. We find that the closure of c1 is
itself. We also find that item d1 co-occurs 2 times
with c1. It is possible that d1 is in the closure of
c1’s supersets, so d1 is included into the new FPO-
tree constructed for c1 as shown in Figure 3(b) even
though d1 is not a candidate extension of c1. In the
new FPO-tree, item d1 is not included in the header
table, and it is put after all the frequent extensions of
c1 so that d1 is considered only for closure generation,
but never considered for extension.

An FPO-tree node needs to be visited for the clo-
sure generation of all its ancestors, which incurs high
traversal cost. Furthermore, additional items are in-
cluded into FPO-trees for closure generation, which
makes the situation even worse. We use two tech-
niques to avoid unnecessary traversal.

Technique 1: pruning based on the support
of a node and the support of its child nodes.
Let nodeai

be a node in FPOl′ containing item ai,
B be the branch ended at nodeai

and FPOai
be the

subtree rooted at nodeai
as shown in Figure 4. For an

item aj in FPOai
to be in the closure of l = l′∪{ai},

the frequency of aj in FPOai
has to be the same

as the support of nodeai
because otherwise, there is

at least one transaction that contain l but does not
contain aj . Similarly, if the frequency of aj in FPOai

is less than the support of nodeai
, then aj cannot be

in the closure of any superset of l that contains some
items in B, so the ajs appearing in FPOai

can be
ignored for closure generation.

The support of an FPO-tree node is always no
larger than that of its ancestors. Therefore, if the
support sum of the child nodes of an FPO-node p is
less than the support of p, then the support of any
item in the subtree rooted at p must be lower than
that of p, and there is no need to access the subtree
rooted at p for closure generation. For example, in
Figure 2, the frequency sum of the child nodes of a2

is less than the frequency of a2, so there is no need
to traverse this subtree for closure generation.

root

b1:5

aj:1

ai:4

aj:1

aj:1

b2:2 b3:1

... ...

...

FPO ai

B

...

Figure 4: FPOD′ (header tables and node links are
omitted.)

Technque 2: pruning by maintaining the set
of potential closure items at FPO-tree nodes.
Let p be an FPO-tree node and FPOp be the sub-
tree rooted at p. We say an item is a potential closure
item of p if its frequency in FPOp is the same as the
support of p. After the set of potential closure items
of node p are discovered, they are stored at node p.
When p is visited for generating the closure of its
parent node, MaxnCluster collects the stored items
directly instead of visiting the subtree rooted at p
again. The closure of p’s other ancestors are gener-
ated using the potential closure items maintained at
p’s parent node. Therefore, after the potential closure
items of p’s parent node are discovered, the potential
closure items of p are disposed to save space. By us-
ing this technique, each node is visited at most once
for its ancestors’ closure generation.

The space overhead caused by technique 2 is very
low because for every path in an FPO-tree, we main-
tain potential closure items at at most one node on
the path at a time. The number of nodes at lower
levels are large, but they have small number of po-
tential closure items because their subtrees are small.
The number of potential closure items of nodes at
higher levels may be large, but the number of nodes
at higher levels is small. During our performance
study, we found that the space overhead incurred by
this technique is indeed very small, and the running
time saved is very significant.

9

3.5.2 Pruning δ-nClusters with non-maximal
object sets

The pruning techniques described in the previ-
ous subsection prune all the δ-nClusters with non-
maximal attribute sets, but they cannot avoid pro-
ducing δ-nClusters with non-maximal object sets.
The nClusters with non-maximal object sets are
caused by the fact that the object set of an itemset
is maximal with respect to only the itemset, but not
necessarily maximal with respect to the correspond-
ing attribute set. For example, in Table 3, object set
{1, 4} is maximal with respect to itemset {a1, b1},
but it is not maximal with respect to the correspond-
ing attribute set {a, b} because ({1, 4, 6}, {a, b}) is a
δ-nCluster, which is generated from itemset {a2, b1}.

We use the following lemma to prune δ-nClusters
with non-maximal object sets.

Lemma 7 Let l be an itemset, ai, aj be two can-
didate extensions of l and ai, aj have the same at-
tribute. Let T ′ be the object set of l ∪ {ai} and T ′′ be
the object set of l ∪ {aj}. If T ′ ⊆ T ′′, then for every
itemset l′ extended from l∪{ai}, there must exist an-
other itemset l′′ extended from l ∪ {aj} such that l′′

and l′ have the same attribute set and the object set
of l′′ is no smaller than the object set of l′. In this
case, ai can be discarded.

To prune nClusters with non-maximal object sets,
for every frequent itemset l, we count the co-
occurrence of the candidate extensions of l that are
of the same attribute. If for two candidate exten-
sions ai and aj of l, we have support(l ∪ {ai}) =
support(l∪{ai, aj}) ≤ support(l∪{aj}), which means
that the object set of l∪{ai} is a subset of the object
set of l∪{aj}, then we exclude ai from further exten-
sion based on the above lemma. The above pruning
method cannot prune nClusters with non-maximal
object sets completely. The remaining non-maximal
nClusters are removed in a post-processing step using
a hashing technique.

4 A Performance Study

In this section, we study the efficiency of the Maxn-
Cluster algorithm and the quality of the δ-nCluster

generated. We used both synthetic datasets and a
real dataset in our performance study, and our exper-
iments were conducted on a Windows machine with
a 2.33Ghz Pentium IV CPU and 4GB memory.

4.1 Datasets

We generate synthetic datasets in matrix forms,
where rows represent objects and columns represent
attributes. The value ranges of all the attributes are
set to [0, 1]. We embed a number of δ-nClusters in
the data. Our data generator takes several parame-
ters: the number of rows T , the number of columns
A, the number of δ-nClusters embedded in the data
N , the minimum and maximum number of attributes
mina and maxa, the minimum and maximum num-
ber of objects mino and maxo, and the minimum and
maximum δ threshold minδ and maxδ of the embed-
ded δ-nClusters. Regions in the matrix not covered
by any embedded δ-nClusters are filled with random
values drawn from a uniform distribution.

We use one real dataset, the yeast gene expres-
sion data used in [34]. It contains 2884 rows and
17 columns, and is available at http://arep.med.

harvard.edu/biclustering/.

4.2 Performance measures

We use precision and recall to assess the accuracy
of different subspace clustering algorithms. In sub-
space clustering, a cluster is defined by its object set
and subspace together. Therefore, we take both ob-
ject sets and attribute sets of clusters into consid-
eration when defining recall and precision. We call
the clusters generated by a subspace clustering al-
gorithm predicted clusters. Given a true subspace
cluster C = (TC ,DC) and a predicted subspace clus-
ter S = (TS ,DS), where TC and TS are the object
sets of C and S respectively, and DC and DS are
the attribute set of C and S respectively, the match
between C and S is defined as follows:

match(S,C) = |TC ∩ TS | × |DC ∩ DS |

Given a set of true clusters C = {C1, C2, · · · , Cn}
and a set of predicted clusters S = {S1, S2, · · · , Sm},
recall and precision are defined as follows:

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

F
1-

sc
or

e

subspace size

omega=1
omega=0.8
omega=0.6
omega=0.4
omega=0.2

omega=0

(a) T1kA200N5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

F
1-

sc
or

e

subspace size

omega=1
omega=0.8
omega=0.6
omega=0.4
omega=0.2

omega=0

(b) T5kA200N20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
1-

sc
or

e

subspace size

omega=1
omega=0.8
omega=0.6
omega=0.4
omega=0.2

omega=0

(c) T10kA400N30

 0.1

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

R
un

ni
ng

 ti
m

e

subspace size

omega=1
omega=0.8
omega=0.6
omega=0.4
omega=0.2

omega=0

(d) T1kA200N5

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

R
un

ni
ng

 ti
m

e

subspace size

omega=1
omega=0.8
omega=0.6
omega=0.4
omega=0.2

omega=0

(e) T5kA200N20

 1

 10

 100

 1000

 10000

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

subspace size

omega=1
omega=0.8
omega=0.6
omega=0.4
omega=0.2

omega=0

(f) T10kA400N30

Figure 5: Running time and F1-score of MaxnCluster under different ω values

Recall(C,S) =

∑n
i=1

max{match(Ci, Sj)|j = 1, · · · , m}
∑n

i=1
|TCi| × |DCi|

Precision(C,S) =

∑m
j=1

max{match(Ci, Sj)|i = 1, · · · , n}
∑m

j=1
|TSj | × |DSj |

The accuracy of a clustering algorithm is measured
using F1-score, which is defined as

F1-score(C,S) =
2 · Recall(C,S) · Precision(C,S)

Recall(C,S) + Precision(C,S)

4.3 The effect of the sliding window

approach

MaxnCluster uses a sliding window approach to par-
tition every dimensions into overlapping bins. As de-
scribed in Section 3.1, a parameter ω is used to con-
trol the overlap between adjacent bins. If ω=1, there
is no constraint on the overlap. Two adjacent bins
can overlap as much as they can. If ω=0, the sliding
window approach reduces to a grid based approach
that partitions every attribute into equal-length bins.

In this experiment, we study the effect of the values
of parameter ω.

We use three sets of synthetic datasets in
this experiment. The first set of datasets, de-
noted as T1kA200D5, are generated with T=1000,
A=200, N=5, mino=100, maxo=200, minδ=0.05
and maxδ=0.09, and the minimum and maxi-
mum size of subspaces mina and maxa are var-
ied from 5 to 30. The second set of datasets, de-
noted as T5kA200N20, are generated with T=5000,
A=200, N=20, mino=300, maxo=500, maxδ=0.03,
maxδ=0.05, mina=5, and the maximum size of sub-
spaces maxa are varied from 5 to 30. The third
set of datasets, denoted as T10kA400D30, are gen-
erated with T=10000, A=400, N=30, mino=600,
maxo=1000, minδ=0.03, maxδ=0.05, mina=5, and
the maximum size of subspaces maxa is varied from
5 to 30. We do not allow overlap among clusters
on T1kA200D5, but allow clusters to overlap on
T5kA200D20 and T10kA400D30. For every param-
eter setting, we generate 10 datasets, and take the
average of the running time and F1-score as the final
results.

11

Figure 5 shows the running time and F1-score
of MaxnCluster under different ω values. The
other parameters of MaxnClusters are set as follows:
ms=mina, mr=mino and δ=maxδ. When ω=0,
MaxnCluster partitions every attributes to equal-
length non-overlapping bins. The F1-score is close
to 0. When ω gets larger, the F1-score of MaxnClus-
ter improves. When ω=1, F1-score is close to 1. We
inspected the recall and precision of MaxnCluster un-
der different ω values. The precision of MaxnCluster
is always close to 1 under different ω values, while
recall shows similar trend as F1-score. This indicates
the grid-based approach may shatter a cluster into
small pieces, and the sliding window approach can
preserve clusters. When ω=1, almost all clusters can
be preserved. However, this advantage does not come
free. Figure 5(d) 5(e) and 5(f) show that the running
time of MaxnCluster increases with the increase of ω.

4.4 Comparison with other algo-

rithms

We compare MaxnCluster with MAFIA [25], CFPC
[40] and STATPC [23]. MAFIA uses an adap-
tive approach to partition each attributes into non-
overlapping bins. CFPC uses the same cluster defini-
tion as MaxnCluster, but it uses a randomized algo-
rithm to find clusters, and it does not allow overlap
among clusters. STATPC [23] is a recently proposed
algorithm, and it uses statistical significance thresh-
olds to define and find clusters. STATPC is very
slow, but it has been shown to have higher accu-
racy than other clustering algorithms. We obtained
STATPC and CFPC from their respective authors,
and MAFIA was kindly provided by Gabriela Moise.

We use the same datasets as in the previ-
ous experiment. The parameters of the algo-
rithms are set as follows. For STATPC, we
set α0=1.0E-10, αK=αH=0.001 as suggested in
[23]. For MIFIA, we set β=0.35, no tiny bins=50,
no intervals unif distrb=5. We tried three values
for α: 1.2, 1.5 and 2, and picked the setting with the
highest accuracy to report the results. For CFPC,
we set w=maxδ, α=mino/T , β=0.25, maxout=50,
where T is the number of objects in the dataset.
For MaxnCluster, we set ms=mina, mr=mino and

δ=maxδ and ω=1.
Figure 6 shows the running time and F1-score of

the subspace clustering algorithms. STATPC has the
lowest F1-score. The recall of STATPC is rather high,
but its precision is very low. We inspected the clus-
ters generated by STATPC, and we found that the
subspaces of the clusters generated by STATPC is
much larger than the actual subspaces of the true
clusters. That is why when the subspaces of the clus-
ter get larger, the F1-score of STATPC increases. If
we consider only the object sets, the average F1-score
of STATPC is around 0.4. We did not get the re-
sults of STATPC on the other two datasets because
it could not finish mining after more than 10 hours.

MAFIA uses an adaptive approach to partition at-
tributes into non-overlapping bins. Its F1-score is
around 0.5, which is much higher than the F1-score
of the equal-length partitioning method, but it is
still much lower than the F1-score of MaxnCluster.
This indicates that partitioning attributes into non-
overlapping bins has the risk of shattering clusters
into small pieces even when a smart adaptive strat-
egy is used.

The F1-score of CFPC on dataset T1kA200N5 is
close to 1, but CFPC has a much lower F1-score on
dataset T5kA200N30. The reason being that CFPC
does not allow overlap among clusters, and clusters in
T1kA200N5 do not overlap with one another, while
clusters on T5kA200N30 have overlaps. CFPC failed
to run on dataset T10kA400N30. The F1-score of
MaxnCluster is close to 1 on both datasets since it
allows overlap among clusters.

Among the several algorithms, STATPC takes the
longest time to find clusters. MAFIA is faster than
MaxnCluster when the subspaces of the clusters
are smaller than 20, but its running time increases
rapidly when the size of the cluster subspaces gets
larger than 20. CFPC and MaxnCluster show rela-
tive stable running time with resepct to the size of
cluster subspaces.

We also compared MaxnCluster with LCM-
nCluster which we developed previously [21]. LCM-
nCluster first uses frequent closed itemset mining al-
gorithm LCM to mine attribute sets, and then pro-
duces the corresponding maximal nClusters in a post-
processing step. The parameter settings of LCM-

12

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

F
1-

sc
or

e

subspace size

MaxnCluster
MAFIA
CFPC

STATPC

(a) T1kA200N5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35

F
1-

sc
or

e

subspace size

MaxnCluster
MAFIA
CFPC

(b) T5kA200N20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

F
1-

sc
or

e

subspace size

MaxnCluster
MAFIA

(c) T10kA400N30

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 5 10 15 20 25 30 35

R
un

ni
ng

 ti
m

e

subspace size

MaxnCluster
MAFIA
CFPC

STATPC
LCM-nCluster

(d) T1kA200N5

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0 5 10 15 20 25 30 35

R
un

ni
ng

 ti
m

e

subspace size

MaxnCluster
MAFIA
CFPC

LCM-nCluster

(e) T5kA200N20

 1

 10

 100

 1000

 10000

 100000

 1e+006

 0 5 10 15 20 25 30

R
un

ni
ng

 ti
m

e

subspace size

MaxnCluster
MAFIA

LCM-nCluster

(f) T10kA400N30

Figure 6: Running time and F1-score of different subspace clustering algorithms

nCluster were set to the same as MaxnCluster. The
two algorithms produce the same set of nClusters, so
their F1-scores are the same. Both LCM-nCluster
and MaxnCluster can prune the nClusters with non-
maximal attribute sets completely. LCM-nCluster
cannot prune the nClusters with non-maximal ob-
ject sets during the mining process, while MaxnClus-
ter can prune most of them using the techniques de-
scribed in Section 3.5. Furthermore, MaxnCluster
can generate attribute sets and object sets of clus-
ters simultaneously, while LCM-nCluster have to use
a post-processing step to generate object sets of clus-
ters. Therefore, MaxnCluster can be more than ten
times of faster than LCM-nCluster in some cases. On
some settings, LCM-nCluster could not finish mining
because too many clusters were generated.

4.5 Scalability

Figure 6 shows that the running time of MaxnClus-
ter, CFPC, STATPC is relatively stable with respect
to the size of the subspaces of the embedded clusters,
while MAFIA is more sensitive to the dimensions of

the clusters. In this experiment, we studied the scal-
ability of the algorithms with respect to the total
number of objects and the total number of attributes
in datasets. We did not include STATPC in this ex-
periment because it takes too long to finish one run.

The datasets were generated using the fol-
lowing parameters: N=15, mina=5, maxa=20,
mino=0.06T , maxo=0.1T , minδ=0.02 and
maxδ=0.04. When studying the scalability of
the algorithms with respect to the number of objects
T , we fixed the number of attributes A at 200, and
varied T from 10,000 to 80000. When studying the
scalability of the algorithms with respect to the
number of attributes A, we fixed T at 10,000, and
varied A from 100 to 1000.

Figure 7 shows the running time of MaxnCluster,
MAFIA and CFPC. CFPC failed to run when the
number of attribute is larger than 200, so we did not
study its scalability with respect to the number of at-
tributes. The running time of all the three algorithms
increases with the number of objects. MaxnCluster is
more sensitive to the number of objects than MAFIA
and CFPC, but is less sensitive to the number of at-

13

 10

 100

 1000

 10000

 0 20000 40000 60000 80000 100000

R
un

ni
ng

 ti
m

e

#objects

MaxnCluster
MAFIA
CFPC

(a) Varying #objects T

 1

 10

 100

 1000

 0 200 400 600 800 1000 1200

R
un

ni
ng

 ti
m

e

#attributes

MaxnCluster
MAFIA

(b) Varying #attributes A

Figure 7: Scalability

tributes.

4.6 Performance on the real dataset

yeast

In this experiment, we study the accuracy of the sev-
eral subspace clustering algorithms on real dataset
yeast, which contains 2884 yeast genes (objects) and
17 conditions (attributes). Each yeast gene is anno-
tated with one or more GO terms from gene ontology
(GO) (http://www.geneontology.org/), which in-
dicate the biological processes, cellular components
or functions of the genes. The GO terms are orga-
nized hierarchically. GO terms at high levels may
occur in many genes, and they are too general to be
useful. GO terms appearing in very few genes are
also not very useful. In our experiments, we select
only informative GO terms. A GO term is informa-
tive if itself occurs in at least 30 genes, but none of its
children appears in at least 30 genes [41]. Genes with
same functions tend to have similar gene expression
profiles, so here we select only functional GO terms
in our study, and 42 informative functional GO terms

are selected using the method described above.
We regard each group of genes that are annotated

with the same informative GO term as a cluster.
Since the subspaces of the clusters are unknown, we
consider only the object sets of clusters when calcu-
lating precision and recall. Given a true subspace
cluster C = (TC ,DC) and a predicted subspace clus-
ter S = (TS ,DS), the match between C and S is
defined as follows:

matcho(S,C) = |TC ∩ TS |

Given a set of true clusters C = {C1, C2, · · · , Cn}
and a set of predicted clusters S = {S1, S2, · · · , Sm},
recall and precision are defined as follows:

Recallo(C,S) =

∑n
i=1

max{matcho(Ci, Sj)|j = 1, · · · , m}
∑n

i=1
|TCi|

Precisiono(C,S) =

∑m
j=1

max{matcho(Ci, Sj)|i = 1, · · · , n}
∑m

j=1
|TSj |

The parameters of the algorithms are set as
follows. For STATPC, we set α0=1.0E-10,
αK=αH=0.001. For MIFIA, we set no tiny bins=50,
no intervals unif distrb=5, and we tried three val-
ues for α: 1.2, 1.5 and 2.0, and three values for β:
0.35, 0.6, 0.9. For CFPC, we set α=0.01, β=0.25,
maxout=50, and tried five values for w: 0.02, 0.04,
0.06, 0.08, 0.1. For MaxnCluster, we set mr=29
(0.01), ms=4, ω=0.5 and tried five values for δ=0.02,
0.04, 0.06, 0.08, 0.1. For each algorithm, we pick
its best results. MaxnCluster generates many over-
lapped clusters. Here we consider only object sets
of clusters. The object set of one cluster may be a
proper subset of the object set of another cluster, but
it is discovered in a higher subspace. In such case, we
remove the cluster.

We also include the Biclustering algorithm [14] in
this experiment, which models biclusters as subma-
trices in gene expression data that have low mean
squared residue scores, and uses a greedy algorithm
to find biclusters. We obtained the 100 biclusters
generated by the Biclustering algorithm from http:

//arep.med.harvard.edu/biclustering/. These
100 biclusters are generated using parameters esti-
mated from some prior known clusters [14].

14

Algorithm recall precision F1-score

Biclustering 0.388 0.114 0.176

STATPC 0.507 0.101 0.168

MAFIA 0.515 0.111 0.183

CFPC 0.288 0.130 0.179

MaxnCluster 0.392 0.126 0.191

Table 5: Accuracy of different algorithms on yeast
dataset

Table 5 shows the recall, precision and F1-score
of the several subspace clustering algorithms on the
yeast dataset. The several algorithms show compa-
rable F1-score. Most of the clusters generated by
STATPC contain more than 1000 genes. That is
why STATPC has higher recall and lower precision
than other algorithms. CFPC has the highest pre-
cision among all the algorithms, while MaxnCluster
has the highest F1-score. The best result of CFPC is
achieved when w=0.1, and the best result of Maxn-
Cluster is achieved when δ=0.1.

The F1-scores of all the algorithms are not high,
which indicates that it is still a challenging task
to find subspace clusters on real gene expression
datasets. The noisy nature of gene expression data
makes the problem harder. Another factor the affects
the performance of the algorithms is that a group of
genes annotated to the same GO term are not always
expressed in a correlated way. Such gene groups are
hard to detect using gene expression data. It is also
possible that some clusters generated by the algo-
rithms do not represent functional groups, but they
may have other biological implications.

5 Related Work

High dimensionality poses great challenges on several
problems such as clustering, nearest neighbor search,
and indexing [10, 17, 2, 3]. One solution to tackle high
dimensionality is dimensionality reduction. The ma-
jor drawback of dimensionality reduction is that the
transformed attributes often have no intuitive mean-
ing any more and thus the resulting clusters are often
hard to interpret [27]. Recent research work has focus

on finding clusters in subspaces of high dimensional
datasets, and a number of surveys [22, 27] reviewed
and compared these algorithms.

Different subspace clustering models have been
proposed, including distance based model [4, 5, 35],
density based model [6, 13, 25, 12, 20, 30, 18] and
coherent pattern based model [37, 34, 29, 36]. No
one clustering model is better than the others, but
some are more appropriate for certain problems [27].
Domain specific knowledge is often very helpful in de-
termining which type of cluster formation is the most
appropriate.

5.1 Density and grid based ap-

proaches

Density based model aims to find regions of high den-
sity in subspaces that are separated by regions of
lower density. CLIQUE [6], ENCLUS [13], MAFIA
[25], CBF [12] and CLTree [20] are density and grid
based subspace clustering algorithms. They dis-
cretize the data space into non-overlapping rectangu-
lar cells by partitioning each dimension to a number
of bins, and then use an apriori-style search to find
overlapping clusters. Both CLIQUE and ENCLUS
use a static sized grid to divide each dimension into
bins. The other algorithms use data driven strate-
gies to determine the cut-points for each dimension.
MAFIA and CBF use histograms to analyze the den-
sity of data in each dimension. CLTree uses a decision
tree based strategy. Another density based clustering
algorithm SUBCLU [18] does not use the grid-based
approach. It calls the DBSCAN algorithm [15] to find
clusters of arbitrary shapes in individual subspaces in
a level-wise manner, which may be very costly.

The density based algorithms typically use a global
density threshold to ensure anti-monotonic proper-
ties for efficient search. However, they ignore that
density decreases with dimensionality. Large density
threshold will result in only low-dimensional clusters,
whereas small density threshold will result in a larger
number of clusters, many of which are meaningless
[23]. To overcome this problem, SCHISM [32] uses a
non-linear monotonically decreasing density thresh-
old, which does not guarantee mining all interesting
subspaces. DUSC [8] uses an unbiased density mea-

15

sure by taking the expected density for subspaces
into account. However, this unbiased density mea-
sure do not have the anti-monotone property for ef-
ficient search. As a solution, DUSC uses a relaxed
threshold, which equals to a global density threshold.
FRIES [19] uses a filter-and-refinement approach to
detect clusters of different densities, but it may not
be able to detect all clusters. Moise et al. [23] pro-
pose an algorithm called STATPC which takes sta-
tistical significance thresholds instead of density as
input parameters. A greedy algorithm is used to ex-
tract a non-redundant set of statistically significant
clusters.

The main difference between the nCluster model
proposed in this paper and the density and grid based
approaches is on the definition of clusters. In den-
sity based model, two objects in the same cluster can
be far apart from each other even on the subspace
of the cluster, and they are in the same cluster be-
cause they are connected by surrounding objects. In
the nCluster model, every pair of objects are close to
each other on every dimension of the subspaces. In
some sense, the density based model can be viewed
as average-link clustering, and the nCluster model
can be viewed as complete-link clustering. Further-
more, grid based approaches divide the domain of
every dimension into non-overlapping bins, here we
use a sliding-window approach to preserve signficant
clusters.

5.2 Distance and partition based ap-

proaches

PROCLUS [4], ORCLUS [5], and FINDIT [35] are
distance and partition based subspace clustering al-
gorithms. They use Lp norm or variants of Lp norm
as distance measure, and use a top-down strategy to
find non-overlapping clusters. They start by finding
an initial approximation of the clusters in the full di-
mension space with equally weighted dimensions, and
then each dimension is assigned a weight for each
cluster. The updated weights are then used in the
next iteration to regenerate the clusters. The top-
down algorithms require two parameters: the number
of clusters and the average size of subspaces, which
are often difficult to decide and are also critical to

the performance of the algorithms [27].
Many improvements have been made on the ba-

sis of PROCLUS and ORCLUS. DiSH [1] can detect
clusters in subspaces of significantly different dimen-
sionality, and it also uncovers complex hierarchies of
nested subspace clusters. HARP [38] does not take
input parameters. It automatically selects relevant
dimensions using a agglomerative hierarchical ap-
proach. SSPC [39] is a semi-supervised algorithm and
it aims to find clusters in extremely low-dimensional
subspaces. PreDeCon [11] first generates the prefer-
ence dimensions for each data point, and then finds
density connected subspace clusters. EPCH [26] uses
histograms to identify dense regions in subspaces. To
construct k-D histograms, EPCH needs to consider
Ck

n combination of attributes, where n is the num-
ber of attributes. Therefore, EPCH is not scalable
with respect to the dimensionality of histograms and
number of attributes. P3C [24] first generates clus-
ter cores, which are defined as regions of the data
space containing an unexpectedly high number of
points, in an Apriori-like fashion, and then refine
them into projected clusters. DOC/FASTDOC [30]
and FPC/CFPC [40] use the same cluster definition
as the nCluster model, but both algorithms are ran-
domized algorithms based on sampling, so they can-
not guarantee to find all the clusters satisfying the
definition.

The main difference between the nCluster model
and the distance and partition based approaches such
as PROCLUS and ORCLUS is that the nCluster
model allows overlap among clusters, while the parti-
tion based approaches do not allow overlap. The dis-
tance measures used are also different. PROCLUS,
ORCLUS and HARP use L1, L2 norms or their vari-
ants as distance measure, while nCluster uses L∞

norm. DOC and CFPC use the same cluster defi-
nition as the nCluster model, but both algorithms
use randomized algorithms based on sampling to find
clusters, thus they cannot guarantee to find all the
clusters satisfying the definition. Furthermore, the
distance between objects in the clusters they gener-
ated can be as large as 2θ instead of θ. DOC ran-
domly picks some points as seeds and then uses a
randomized approach to find the best projected clus-
ter around a random seed. CFPC [40] replaces the

16

randomized module in DOC with systematic search
for the best cluster of a random seed using frequent
itemset mining techniques. The MaxnCluster algo-
rithm proposed in this paper takes one step further
by searching for the best cluster of all the objects si-
multaneously and systematically, and it can find all
the clusters satisfying the definition.

5.3 Pattern based clustering and bi-

clustering

Pattern-based clustering methods such as δ-Clusters
[37] and pClusters [34, 29] find clusters of objects that
exhibit coherent patterns in subspaces rather than
objects close to each other in the subspaces. Yang et
al. [37] use a randomized process to find δ-clusters.
Wang et al. [34] enumerate all pClusters using a level-
wise approach. Pei et al. [29] improved the work
of Wang et al. by mining only maximal pClusters.
Cheng et al. [14] model biclusters as submatrices
in gene expression data that have low mean squared
residue scores, and use a greedy algorithm to find
biclusters.

The main difference between the nCluster model
and the pattern-based clustering model is the defi-
nition of clusters. In pattern based clustering and
biclustering, rows and columns are treated equally,
and they aim to find groups of objects that exhibit
coherent patterns on subsets of attributes, instead of
groups of objects that are close to one another on
subsets of attributes. There is some connections be-
tween the nCluster model and the pCluster model.
Given a set of objects T and a set of attributes D,
T and D form a δ-pCluster if for every two objects
x, y ∈ T , and every two attributes a, b ∈ D, we have
|(vxa − vxb) − (vya − vyb)| ≤ δ. Assume all the at-
tributes have the same value range of 1. If (T , D) is
a δ-nCluster, then it must be a 2δ-pCluster because
|(vxa−vxb)−(vya−vyb)| ≤ |vxa−vxb|+|vya−vyb| ≤ 2δ.
We can use the algorithm for mining 2δ-pClusters to
mine δ-nClusters. However, this approach is very in-
efficient because we have to use a larger threshold to
mine pClusters and a 2δ-pCluster may contain many
objects that are not δ-neighbors. In our previous
work [21], we have shown that using MaPle [29] to
mine nClusters is very slow.

6 Conclusion

In this paper, we have proposed a new subspace clus-
tering model called nCluster to find groups of similar
objects embedded in subspaces of high dimensional
datasets. The nCluster model uses a sliding window
approach to partition the attributes into overlapping
bins, which can preserve clusters that are shattered
by the grid-based approach. An efficient algorithm
MaxnCluster has been developed to generate maxi-
mal nClusters. Our performance study shows that
MaxnCluster has high accuracy and is efficient in
mining maximal nClusters.

MaxnCluster allows overlap among different bins
of attributes. As a result, MaxnCluster may gen-
erate many highly-overlapping clusters with similar
subspaces. In the future, we plan to remove or merge
the highly-overlapped clusters and present a concise
set of clusters to users.

Acknowledgements

We would like to thank Gabriela Moise for provid-
ing us with her STATPC algorithm and algorithm
MAFIA, and Dr. Man Lung Yiu for providing us
with his CFPC algorithm for our performance study.

References

[1] E. Achtert, C. Böhm, H.-P. Kriegel, P. Kröger,
I. Müller-Gorman, and A. Zimek. Detection and
visualization of subspace cluster hierarchies. In
Proc. of the 12th DASFAA conference, pages
152–163, 2007.

[2] C. C. Aggarwal. Re-designing distance functions
and distance-based applications for high dimen-
sional data. SIGMOD Record, 30(1):13–18, 2001.

[3] C. C. Aggarwal, A. Hinneburg, and D. A. Keim.
On the surprising behavior of distance metrics
in high dimensional spaces. In Proc. of the 8th
ICDT Conference, pages 420–434, 2001.

[4] C. C. Aggarwal, C. M. Procopiuc, J. L. Wolf,
P. S. Yu, and J. S. Park. Fast algorithms for

17

projected clustering. In Proc. of the 1999 ACM
SIGMOD Conference, pages 61–72, 1999.

[5] C. C. Aggarwal and P. S. Yu. Finding gen-
eralized projected clusters in high dimensional
spaces. In Proc. of the 2000 ACM SIGMOD
Conference, pages 70–81, 2000.

[6] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of
high dimensional data for data mining applica-
tions. In Proc. of the 1998 ACM SIGMOD Con-
ference, pages 94–105, 1998.

[7] R. Agrawal, T. Imielinski, and A. N. Swami.
Mining association rules between sets of items
in large databases. In Proc. of the 1993 ACM
SIGMOD Conference, pages 207–216, 1993.

[8] I. Assent, R. Krieger, E. Müller, and T. Seidl.
Dusc: Dimensionality unbiased subspace clus-
tering. In Proc. of the 7th ICDM Conference,
pages 409–414, 2007.

[9] R. Bellman. Adaptive Control Processes: A
Guided Tour. Princeton University Press, 1961.

[10] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is ”nearest neighbor” meaning-
ful? In Proc. of the 7th ICDT Conference, pages
217–235, 1999.

[11] C. Böhm, K. Kailing, H.-P. Kriegel, and
P. Kröger. Density connected clustering with
local subspace preferences. In Proc. of the 4th
IEEE International Conference on Data Mining,
pages 27–34, 2004.

[12] J.-W. Chang and D.-S. Jin. A new cell-based
clustering method for large, high-dimensional
data in data mining applications. In Proc. of
the 2002 ACM symposium on Applied comput-
ing, pages 503–507, 2002.

[13] C. H. Cheng, A. W.-C. Fu, and Y. Zhang.
Entropy-based subspace clustering for mining
numerical data. In Proc. of the 5th ACM
SIGKDD Conference, pages 84–93, 1999.

[14] Y. Cheng and G. M. Church. Biclustering of
expression data. In Proc. of the 8th International
Conference on Intelligent Systems for Molecular
Biology, pages 93–103, 2000.

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters
in large spatial databases with noise. In Proc. of
the 2nd ACM SIGKDD Conference, pages 226–
231, 1996.

[16] J. Han, J. Pei, and Y. Yin. Mining frequent
patterns without candidate generation. In Proc.
of the 2000 ACM SIGMOD Conference, pages
1–12, 2000.

[17] A. Hinneburg, C. C. Aggarwal, and D. A. Keim.
What is the nearest neighbor in high dimensional
spaces? In Proc. of the 26th VLDB Conference,
pages 506–515, 2000.

[18] K. Kailing, H.-P. Kriegel, and P. Kröger.
Density-connected subspace clustering for high-
dimensional data. In Proc. of the 4th SIAM In-
ternational Conference on Data Mining, 2004.

[19] H.-P. Kriegel, P. Kröger, M. Renz, and S. Wurst.
A generic framework for efficient subspace clus-
tering of high-dimensional data. In Proc. of
the 5th IEEE International Conference on Data
Mining, pages 250–257, 2005.

[20] B. Liu, Y. Xia, and P. S. Yu. Clustering through
decision tree construction. In Proc. of the 9th
CIKM conference, pages 20–29, 2000.

[21] G. Liu, J. Li, K. Sim, and L. Wong. Distance
based subspace clustering with flexible dimen-
sion partitioning. In Proc. of the 23rd ICDE
Conference, pages 1250–1254, 2007.

[22] S. C. Madeira and A. L. Oliveira. Biclustering
algorithms for biological data analysis: A survey.
IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics, 01(1):24–45, 2004.

[23] G. Moise and J. Sander. Finding non-redundant,
statistically significant regions in high dimen-
sional data: a novel approach to projected and

18

subspace clustering. In Proc. of the 14th ACM
SIGKDD Conference, pages 533–541, 2008.

[24] G. Moise, J. Sander, and M. Ester. P3c: A ro-
bust projected clustering algorithm. In Proc. of
the 6th IEEE International Conference on Data
Mining, pages 414–425, 2006.

[25] H. Nagesh, S. Goil, and A. Choudhar.

[26] E. K. K. Ng, A. W.-C. Fu, and R. C.-W.
Wong. Projective clustering by histograms.
IEEE Transactions on Knowledge and Data En-
gineering, 17(3):369–383, 2005.

[27] L. Parsons, E. Haque, and H. Liu. Subspace
clustering for high dimensional data: a review.
SIGKDD Exploration Newsletter, 6(1):90–105,
2004.

[28] N. Pasquier, Y. Bastide, R. Taouil, and
L. Lakhal. Discovering frequent closed itemsets
for association rules. In Proc. of the 7th ICDT
Conference, pages 398–416, 1999.

[29] J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu.
Maple: A fast algorithm for maximal pattern-
based clustering. In Proc. of the 3rd ICDM Con-
ference, pages 259–266, 2003.

[30] C. M. Procopiuc, M. Jones, P. K. Agarwal, and
T. M. Murali. A monte carlo algorithm for fast
projective clustering. In Proc. of the 2002 ACM
SIGMOD Conference, pages 418–427, 2002.

[31] R. Rymon. Search through systematic set enu-
meration. In Proc. of the Internation Conference
on Principles of Knowledge Representation and
Reasoning, 1992.

[32] K. Sequeira and M. J. Zaki. Schism: A new
approach for interesting subspace mining. In
Proc. of the 4th IEEE International Conference
on Data Mining, pages 186–193, 2004.

[33] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver.
3: Collaboration of array, bitmap and prefix tree
for frequent itemset mining. In Proc. of the ACM
SIGKDD OSDM workshop, 2005.

[34] H. Wang, W. Wang, J. Yang, and P. S. Yu. Clus-
tering by pattern similarity in large data sets. In
Proc. of the 2002 ACM SIGMOD Conference,
pages 394–405, 2002.

[35] K.-G. Woo, J.-H. Lee, M.-H. Kim, and Y.-J. Lee.
Findit: a fast and intelligent subspace clustering
algorithm using dimension voting. Information
and Software Technology, 46(4):255–271, 2004.

[36] X. Xu, Y. Lu, A. K. H. Tung, and W. Wang.
Mining shifting-and-scaling co-regulation pat-
terns on gene expression profiles. In Proc. of
the 22nd ICDE Conference, 2006.

[37] J. Yang, W. Wang, H. Wang, and P. S. Yu.
δ-clusters: Capturing subspace correlation in a
large data set. In Proc. of the 18th IEEE ICDE
Conference, pages 517–528, 2002.

[38] K. Y. Yip, D. W. Cheung, and M. K. Ng.
Harp: A practical projected clustering algo-
rithm. IEEE Transactions on Knowledge and
Data Engineering, 16(11):1387–1397, 2004.

[39] K. Y. Yip, D. W. Cheung, and M. K. Ng. On
discovery of extremely low-dimensional clusters
using semi-supervised projected clustering. In
Proc. of the 21st ICDE conference, pages 329–
340, 2005.

[40] M. L. Yiu and N. Mamoulis. Iterative projected
clustering by subspace mining. IEEE Trans-
actions on Knowledge and Data Engineering,
17(2):176–189, 2005.

[41] X. Zhou, M. C. Kao, and W. H. Wong.
Transitive functional annotation by shortest-
path analysis of gene expression data. PNAS,
99(20):12783–8, 2002.

19

