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Summary 
 
This dissertation focuses on my work in the analysis of biological sequences, with special 

concentration on algorithms for peptide and PTM identification using tandem mass 

spectrometry. 

 

The main concern for algorithms in peptide identification is achieving fast and accurate 

peptide identification by mass spectrometry. The main results of this study is a set of 

database search and De Novo algorithms for peptide identification based on “extended 

spectrum graph” and machine learning techniques such as SOM. 

 

I have designed a set of heuristic algorithms for identification of peptide sequences from 

mass spectrometry, with focus on multi-charge spectrum. I have first introduced and 

analyzed the extended spectrum graph computational model. Based on this model, I have 

defined the “best strong tags” which are highly accurate. Then I have proposed the GBST 

algorithm based on best strong tags. After this, I have extended the best strong tags to 

“multi-charge strong tags”, and proposed the GMST and GST-SPC algorithms. The GST-

SPC algorithm is also based on computing the SPC of the candidate sequences and 

experimental spectrum. A fast database search algorithm, PSP, is also proposed based on 

multi-charge strong tags. 

 

Then I have described peptide identification algorithms that are based on transformation 

of spectra to high dimensional vectors. Using the SOM and MPRQ technique, these 

algorithms then transformed the peptide sequence similarity to 2D point similarity on 

SOM map, and performed multiple simultaneous queries for candidate peptides 



VII 

efficiently. The first algorithm, PepSOM, empirically proved the effectiveness of using 

SOM and MPRQ for efficient peptide identification. The second algorithm further 

improved PepSOM by scoring and ranking the candidate peptides by comparing them 

with tags generated by GST-SPC algorithm. The improved version of this algorithm, the 

TagSOM algorithm, went further by using the information contained in these candidate 

peptides and tags for the purpose of PTM identification. 

 

These algorithms are fast and accurate, especially when compared to other algorithms on 

multi-charge spectra. Some of these algorithms can also detect post translational 

modifications (PTMs) in spectra with high accuracy. 

 

I have also performed research on the analysis of multiple sequences. These researches 

include the analysis of Longest Common Subsequence (LCS) and Shortest Common 

Supersequence (SCS) of multiple sequences based on multiple alphabets. 
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Chapter 1 

Introduction 
 

People have been wondering about the complex nature of living beings on this planet 

from ancient times. The advance in biology science has little by little fed our curiosity, 

and this process is accelerated after the invention of computers. In the past few years, 

more and more computational methods have been used on large scale analysis of 

biological units (based on molecules) of every living being. This latest development of 

computational analysis of biological systems has given birth to the new era of 

bioinformatics. 

 

Bioinformatics is a science that refers to the creation and advancement of algorithms, 

computational, statistical techniques, and theory to solve formal and practical problems 

inspired from the management and analysis of biological data. In bioinformatics, we 

bioinformaticians are provided with a huge amount of raw data that are generated by 

various experiments on different biological samples. Bioinformaticians have to (a) 

identify and analyze these samples, and from them, (b) discover complex relationships 

between them. In this process, we aim to ultimately understand Life itself. 

 

Biological sequences are critical in bioinformatics. Since biological sequences are the 

basis for other biological units, the analysis of biological sequences is fundamental to 

virtually every aspect of bioinformatics. Gusfield [1] wrote:  

 

“The area of approximate matching and sequence comparison is central in 

computational molecular biology both because of the presence of errors in 
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molecular data and because of active mutational processes that sequence 

comparison methods seek to model and reveal.” 

 

This dissertation concentrates on analysis of biological sequences, with special focus on 

algorithms for peptide sequence identification by mass spectrometry. Traditionally, there 

are two classes of algorithms for for peptide identification by mass spectrometry problem 

aim to identify peptide sequences from high-throughput mass spectra data – database 

search algorithms and de novo sequencing algorithms. They are useful to biologists to 

verify known peptides or to discover new peptides [3, 4, 22-24, 30, 32, 33]. The 

algorithms that I have designed in this dissertation are both accurate and efficient, with 

superior performance on multi-charge spectra. In addition, I have also carried out 

research in heuristic algorithms for multiple sequence analysis and algorithms for some 

other problems related to sequences analysis [20, 28, 29, 31, 34].  

1.1 Peptide identification problem 

Peptide identification from mass spectrometry is important, since it provides data for 

further research such as protein sequence analysis. However, while high-throughput 

spectrometers have generated a huge number of spectra, peptide identification algorithms 

are slow and inaccurate. I have analyzed and designed efficient and accurate algorithms 

for peptide identification problems. 

1.1.1 Algorithms Based on Tags 

 

I have designed De Novo peptide identification algorithms that are based on multi-

charge strong tags. The simple algorithm GBST, which only utilized the “best strong 

tags” on extended spectrum graph, showed that considering multi-charges in multi-
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charge spectrum can help to improve identification accuracies [2, 3]. The improved GST-

SPC algorithm not only use multi-charge strong tags (GMST algorithm), but also 

optimize SPC, so that it has improved accuracies [4]. Further improvement includes a 

better preprocess computational model and a better computational model for anti-

symmetric problem [5]. These new models can also be applied on other De Novo 

algorithms to improve their accuracies. 

 

Based on “best strong tags”, I have also designed an efficient database search algorithm 

(PSP) for peptide identification [6]. The algorithm is based on linear time pattern 

matching strategy which allows mismatches, so it is both accurate and fast. 

 

These projects have utilized the information in multi-charge spectra that have not been 

investigated before. The algorithms that I have proposed for these problems have 

improved the peptide identification accuracies. 

1.1.2 Algorithms Based on Tags, SOM and MPRQ 

 

Apart from peptide identification algorithm only based on tags, I have also designed 

peptide identification algorithms based on transforming both experimental and 

theoretical spectra to high-dimensional vectors. These vectors are then transformed to 

2D points on plane, followed by SOM and MPRQ query to quickly get the candidate 

peptides. These candidate peptides are then validated by comparing with tags and 

experimental spectrum for accurate peptide identification. In this way, no spectrum 

comparison is needed, while the spectrum similarity is preserved through vector 

similarity and neighborhood relationships between points on the 2D plane. 
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The first attempt (PepSOM) by us involves binning the spectra according to mass/charge 

values to get vectors, and using SOM and MPRQ techniques to get candidate peptide 

sequences. This is followed by SPC for validation, and the results are already quite 

accurate [7]. Subsequently we proposed an improved algorithm that used SPC together 

with multi-charge strong tags for candidates’ validation, and also incorporated a module 

in this algorithm to identify Post Translational Modifications (PTMs). Results are 

satisfactory on real spectra with real PTMs [8]. Furthermore, we have recently designed a 

novel algorithm (TagSOM) that used biologically meaningful features to transform 

spectra to vectors, as well as an improved scoring function in the validation stage to 

identify PTMs. The peptide and PTM identification accuracies are expected to be further 

improved [9]. 

 

These projects have empirically proved the effectiveness of peptide identification by 

transforming spectra to vectors in high-dimensional space using spectrum features. The 

advantage of these set of algorithms is accurate identification of peptides and PTMs, and 

show the power of combination of tags, SOM and MPRQ techniques for peptide and 

PTM identifications. 

 

The overall outline of my PhD dissertation is illustrated in Figure 1. 
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Figure 1. The illustrated outline of my PhD dissertation. Solid arrows indicate 

“improvement” or “extension” relationships; dashed arrows indicate “using results of” 

relationships; and lines with no arrows indicate “highly related subjects” relationships. 

Solid ovals indicate “completed” projects, while dashed ones indicate projects “in 

progress”. 

1.2 Multiple sequences analysis 

In addition to peptide identification, I have also performed research on multiple 

sequences analysis. Given a great amount of biological sequences, I have analyzed the 

common properties of these sequences, and designed a set of heuristic algorithms to 

compare them and discover their common parts, namely, their Longest Common 

Subsequence (LCS), Shortest common Supersequence (SCS) and patterns [20, 28, 29, 31, 

34]. The heuristic algorithms that I have designed are superior to other algorithms in both 

the quality of the results and computational time, especially for many long sequences. 

Since these are not the focus of this dissertation, I will not go into details of these 

research, but a summary of these results can be found in Appendix A. 
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Chapter 2 

Survey of Peptide Identification Problems and Algorithms  
 

Proteomics is the large-scale study of proteins, particularly their sequences, structures 

and functions. In proteomics, the identification of peptide sequences is very important. 

This is because: (i) we do not know the full set of proteins that cells produce; (ii) it is 

important to identify which specific proteins interact in a biological system; and (iii) it is 

important to identify proteins that are present in biological tissues under different 

conditions. Currently, peptide identification is mainly done on spectra data generated by 

mass spectrometry (MS) or tandem mass spectrometry (MS/MS). 

 

The advance in tandem mass spectrometry (MS/MS) technology has made high-

throughput mass spectra generation possible. A protein can be digested into peptides by 

proteases such as trypsin. In a very short time, a tandem mass spectrometer breaks a 

peptide into smaller fragments, and measures the mass/charge ratio of each. The mass 

spectrum of a peptide is a collection of mass/charge ratios of these fragments. 

 

In an ideal fragmentation process, where every fragment of a peptide is generated in an 

ideal mass spectrometer, the peptide identification problem is simple. However, peptide 

identification is a non-trivial problem because these ideal conditions are never met in 

experiments. The spectrum obtained from MS/MS usually contains a lot of noise, 

introduced by impurities in the peptide sample, and biases inherent in mass spectrometers. 

The existence of PTMs further complicates the problem [10]. Post Translational 

Modifications (PTMs) are chemical modifications to a protein after its translation. This 
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makes the problem becomes more difficult since a known peptide sequencemay not 

exactly match the actual peptide fragments used to generate the spectrum. 

 

There are two types of computational problems in peptide identification. The first type of 

problem, which we refer to the problem as peptide identification, are algorithms that 

identify peptide sequences in database. The second type of problem, which we refer to as 

De Novo peptide sequencing, is the interpretation of peptide sequences in cases when 

peptide sequences are either not present in database, or different from canonical form 

present in a database (such as with post-translational modifications). 

2.1 Problem Statement 

2.1.1 Peptide Identification Problem 

 

To introduce the peptide identification problem, we first define some general terms. In 

tandem mass spectrometry (MS/MS), a peptide sequence ρ = (a1a2…al) is fragmented 

into a spectrum S. The parent mass of the peptide ρ is given by )()( 1∑ === l

j jammM ρ . A 

peptide prefix fragment is ρk = (a1a2…ak), for k ≤ l, and has mass ).()( 1∑ == k

j jk amm ρ  

Suffix masses are defined similarly. We always express a fragment mass in experimental 

spectrum using its PRM (prefix residue mass) representation, which is the mass of the 

prefix fragment. In mathematical notation, given a fragment ρk with mass m(ρk), we 

define PRM(ρk) = m(ρk) if ρk is a prefix fragment. Similarly, we define PRM(ρk) = M – 

m(ρk) if ρk is a suffix fragment ({y-ion}). By calculating the PRMs for all fragments, we 

can treat all fragment masses uniformly. 
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A spectrum S is composed of many peaks. Each of the peaks pi is represented by its 

intensity(pi) and mass-to-charge ratio mz(pi). If peak pi is not noise, then it represents a 

fragment ion of ρ. Each peak pi can be characterized by the ion-type, specified by (z, t, h) 

∈ (∆z×∆t×∆h) = ∆, where z is the charge of the ion, t is the basic ion-type, and h is the 

neutral loss incurred by the ion. The (z, t, h)-ion of the peptide fragment ρk (prefix or 

suffix fragment) will produce an observed peak pi in the experimental spectrum S that has 

a mass-to-charge ratio of mz(pi) and intensity int(pi). The mass of ρk, m(ρk) can be 

computed using a shifting function, Shift, defined as follows:  

 

)1())()(()()),,(,()( −−++⋅== zhtzpmzhtzpShiftm iik δδρ  (1) 

where δ(t) and δ(h) are the mass differences associated with the ion-type t and the neutral 

loss h, respectively. We say that peak pi is a support peak for the fragment ρk and we say 

that the fragment ρk is supported by the peak pi. A peak pj is a support peak for the peak 

pi if both of them are support peaks for the same fragment ρk. 

 

In the problem of peptide identification by tandem mass spectrometry, the input includes 

the mass spectrum S, the set of possible ion types ∆ and the parent mass M (and for 

database search algorithms, a database of peptides). The output is the putative peptide 

sequence P that matches with S better than any other peptides. 

2.1.2 Extended Spectrum Graph 

 

The match between a peptide and an experimental spectrum is always represented by the 

number of common peaks between the theoretical spectrum of P and the experimental 

spectrum S. This is often referred to as the shared peaks count (SPC). In reality, peptide 

identification algorithms use more complicated scoring function than SPC. 
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Theoretical Spectrum for a Known Peptide: We define the theoretical spectrum 

)(ρα
αTS  for ρ with maximum charge α to be the set of all possible observed peaks that 

may be present in an experimental spectrum for the peptide ρ with maximum charge α. 

More precisely, )(ρα
αTS = {p | p is an observed peak for the (z, t, h)-ion of peptide prefix 

fragment ρk, for all (z, t, h)∈∆ and k=1,…,n}. 

 

Extended Spectrum: Conversely, the real peaks (in contrast to noise) in an experimental 

spectrum S = {p1,p2,…pn} of maximum charge α, may have come from different ion-type 

of different fragments (may be prefix or suffix fragment, depending on the ion-type). We 

do not know, a priori, the ion-type (z, t, h)∈∆ of each peak pi, we can not even 

distinguish real peaks from noise. Therefore, We “extend” each peak pi by generating a 

set of |∆| pseudo-peaks (or guesses), one for each of the different ion-types (z, t, h)∈∆. 

More precisely, in the extended spectrum α
αS , for each peak pi∈S and an ion-type (z, t, 

h)∈∆, we generate a pseudo-peak, denoted by (pi, (z, t, h)), with an “assumed” 

(uncharged) fragment mass computed using the Shift function (1). Only one of these 

pseudo-peaks can be a real peak, while the others are “introduced” noise. 

 

An example of an extended spectrum is illustrated in Figure 2. For simplicity, we only 

consider ion-types ∆t = {b-ions, y-ions} and ∆h={Ø}. The figure depicts the extended 

spectrum for a peptide ρ = GAPWN with parent mass M = m(ρ) = 525.2, and an 

experimental spectrum S = {113.6, 412.2, 487.2} with maximum charge 2.  The first peak 

“113.6” is a (2, b-ion, Ø)-ion of the prefix fragment GAP; the peak 412.2 is a (1, b-ion, 

Ø))-ion of the prefix fragment GAPW; and “487.2” is a (1, y-ion, Ø)-ion for the fragment 
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G.  In Figure 2 (a), only charge 1 is considered and 2

1S  = {112, 430, 411, 132, 486, 57}. 

The entries in the table are the PRM values. For example, the possible fragment masses 

of 112 and 430 correspond to the extension of the first peak for ion-types (1, b-ion, Ø) 

and (1, y-ion, Ø), respectively. However, if charge 2 is also considered, then 2

2S  = {112, 

430, 225, 31, 411, 132, 486, 57} as shown in Figure 2 (b). 

 

Modeling Current De Novo Algorithms: To take into account the fact that some 

algorithms consider only ion-types of charge up to β (usually β = 2), we extend the 

definition to )(ρα
βTS  which is defined to be the subset of )(ρα

αTS  for which the charge 

z∈{1,2,…, β}. The case β=1 reflects the assumption that all peaks are of charge 1, and 

makes use of the extended spectrum α
1S . Algorithms such as PepNovo and Lutefisk work 

with a subset of the extended spectrum α
2S , even for spectra with charge α > 2. In general, 

)(ρα
βTS does not account for peaks that correspond to ion-types with higher charges 

z=β+1, … ,Bα (α > β). Since )()...()( 21 ρρρ α
α

αα TSTSTS ⊆⊆ , higher accuracy can be attained 

when higher charge values are taken into account. 

 

The Extended Spectrum Graph:  We also introduce the extended spectrum graph, 

denoted by )( α
βSGd , where d is the “connectivity”. Each vertex v in this graph represents a 

pseudo-peak (pi, (z, t, h)) in the extended spectrum
α
βS , namely, the (z, t, h)-ions for the 

peak pi. Thus v = (pi, (z, t, h)). Therefore, each vertex represents a possible peptide 

fragment mass given by PRM(Shift(pj, (z, t, h))). Two special vertices are added - the start 

vertex v0 corresponding to mass 0 and the end vertex vM corresponding to the parent mass 

M.  
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In the “standard” spectrum graph, we have a directed edge (u, v) from vertex u to vertex v 

if PRM(v) is larger than PRM(u) by the mass of a single amino acid. In the extended 

spectrum graph of connectivity d, )( α
βSGd , we extend the edge definition to mean “a 

directed path of no more than d amino acids”. Thus, we connect vertex u and vertex v by 

a directed edge (u, v) if PRM(v) is larger than PRM(u) by the total mass of d’ amino acids, 

where d’ ≤ d. In this case, we say that the edge (u, v) is connected by a path of length up 

to d amino acids. Note that the number of possible paths to be searched is 20
d
 and 

increased exponentially with d. In this dissertation, I use d=2, unless otherwise stated. 

 

Two extended spectrum graphs (with d=2) are shown in Figure 2. The spectrum graph 

G2(
2

1S ) is shown in Figure 2 (c). We can see that only the edges (v0, v6) for amino acid G 

and (v3, vM) for amino acid N can be obtained. The subsequence APW is more than 2 

amino acids long and so G2(
2

1S ) is unable to elucidate this information. By considering 

2

2S  (in (a) and (b)), we obtain the graph G2(
2

2S ) shown in (d). New edges can be obtained: 

edge (v6, v7) for path AP of length 2 amino acids and (v7, v3) for amino acid W. This gives 

a full path from v0 to vM and the full peptide can now be elucidated. However we also 

note that more noise may be introduced in G2(
2

2S ), which can result in the formation of 

fictitious edges . One example is shown in (d) using dashed line to denote the fictitious 

edge (v4, v8). Many such fictitious edges can result in fictitious paths from v0 to vM, thus 

yielding a higher rate of false positives. 
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Figure 2. Example of extended spectrum graph for mass spectrum generated from peptide 

“GAPWN”. 

2.2 Peptide identification algorithms 

Approaches for peptide identification can be categorized into database search algorithms 

[9, 35, 37, 40], De Novo algorithms [1, 2, 8, 10, 15, 16, 38, 39] and combined algorithms 

[11-14]. Database search algorithms usually return the peptide sequences that match the 

parent mass of the experimental spectrum via some scoring functions. Apparently, the 

accuracy of these approaches depends largely on the completeness of the database, and 

the process is slow (usually at least a few minutes). An analysis of an LC/LC/MS/MS 

experimental dataset using the popular BioWorks program by ThermoFinnigan on a 

computer with a single processor typically takes several hours (approximately 30,000 

scans against the Escherichia coli database).  

 

Moreover, the accuracy of these methods are generally mediocre for peptide sequences 

not available in database (i.e. peptides not already known), as well as for peptides with 

PTMs. For such peptide sequences, De Novo algorithms are the methods of choice. These 

algorithms interpret peptide sequences from spectrum data purely by analyzing the 

intensity and correlation of the peaks in the spectrum. They can identify tags (highly 

(b) Extending the peaks for charge 2 ions. 

z mz(p1 )= 113.6 mz(p2 )= 412.2 mz(p3)=487.2 

B Y B Y B Y  

2 V7 
225.2 

V8 
318 

- 
- 

- 
- 

- 
- 

- 
- 

(d) The extended spectrum graph G2(
2

2S ) 

 V0  V6  V1  V4 

(a) The spectrum 2

1S  (only B and Y ions considered) 

z mz(p1 )= 113.6 mz(p2 )= 412.2 mz(p3)=487.2 

B Y B Y B Y  

1 V1 
112.6 

V2 
430.6 

V3 
411.2 

V4 
132 

V5 
486.2 

V6 
57 

 

  G   N 

 V7  V8  V3  V2  V5 

  G    GM   N   AP   W 

 VM 

(c) The spectrum graph G2(
2

1S ) 

 V0  V6  V1  V4  V3  V2  V5  VM 
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reliable fragments) with high accuracy [15], and the process is fast (always within one 

minute), but their performance deteriorates quickly with the presence of noise and PTMs. 

2.2.1 Database Search Algorithms 

 

Database searching algorithms [9, 35, 40] for peptide identification by mass spectrometry 

rely primarily on good scoring. The peptide that scores the highest or has a lowest p-

value is the one that best explains the spectrum. The success of these algorithms relies on 

the completeness of peptide databases, and the selection of an appropriate scoring 

mechanism. 

 

Database search in mass-spectrometry has been investigated by many researchers [9, 35, 

40]. Database search algorithms exhibit good performance in the identification of 

peptides already in the peptide database. However, these algorithms rely heavily on the 

presence of the target peptide (or similar ones) in the protein database. Generally, these 

algorithms search a sequence database for peptide sequences which would produce ions 

of the mass observed for a particular spectrum, then score these candidate sequences 

against the observed spectrum. 

 

Traditional database search algorithms are established on a common principle: the 

experimental spectrum is compared with the theoretical spectrum for each of the peptide 

in the database, and the peptide from the database with best match is likely to match the 

sequence of the experimental spectrum. The most widely used database search algorithms 

for analyzing the mass spectra of peptides includes the software Sequest [16, 17]. Sequest 

extracts a list of sequences that match the experimentally determined peptide mass from 

the database. The best match between the spectrum and the database-derived peptide 
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sequences is made via a combination of an ion intensity-based score plus a cross-

correlation routine. The main advantage of this approach is that it is highly automated 

and requires little human intervention. Its disadvantage lies in its inability to make non-

identical matches between query peptides and database homologs due to the use of the 

peptide-mass pre-filter,. 

 

One problem with these algorithms is that they only compared the ions of the mass 

observed for a particular spectrum against the peptide, so they can work well for peptide 

sequences already in the database, but perform badly for spectrum with noise and 

peptides with post-translational modifications (PTMs). 

2.2.2 De Novo Algorithms 

 

De Novo algorithms [1, 2, 8, 10, 38, 39] are used to predict sequences or partial 

sequences for novel peptides or for peptides that are not found in the protein database. 

Many De Novo sequencing algorithms [8, 10, 38, 39] uses a spectrum graph approach to 

reduce the search space of possible solutions. Given a mass spectrum, the spectrum graph 

[18] is a graph where each vertex corresponds to some ion type interpretation of a peak in 

the spectrum. Edges represent amino acids which can interpret the mass difference 

between two vertices. Each vertex in this spectrum graph is then scored using some 

scoring function (i.e., Dancik scoring) based on its supporting peaks in the spectrum (see 

[18] for details). Given such a scoring function the predicted peptide represents the 

optimal weighted path from the source vertex v0 (of mass 0) to the end vertex vM (of mass 

M). 
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PepNovo [19] uses a spectrum graph approach similar to [18], but uses an improved 

scoring function based on a probability network of different factors which affect the 

peptide fragmentation and how they conditionally affect each other (represented by edges 

from one vertex to another). The PEAKS algorithm [20] does not explicitly construct a 

spectrum graph but builds up an optimal solution by finding the best pair of prefix and 

suffix masses for peptides of small masses until the mass of the actual peptide is reached.  

A fast dynamic programming algorithm is then used in PEAKS for peptide identification.  

2.2.3 Combined Algorithms 

 

For database search algorithms, it is well known that it is almost impossible to find a 

peptide whose theoretical spectrum matches exactly (100% match) with the experimental 

spectrum. However, De Novo algorithms can only output highly reliable peptide 

fragments (tags). Therefore, for the sake of accuracy and completeness of the results, 

many algorithms rely on matching peptides with much shorter and reliable tags [11, 14] 

generated from spectrum by De Novo algorithms. 

 

In [11], tags are used for the search of peptide sequences. A fragmentation spectrum 

usually contains a short, easily identifiable series of sequence ions, which yields a partial 

sequence (tag). This partial sequence divides the peptide into three parts - regions 1, 2, 

and 3 - characterized by the added mass m1 of region 1, the partial sequence of region 2, 

and the added mass m3 of region 3. The construct, m1 partial sequence m3, is called a 

"peptide sequence tag" and it is a highly specific identifier of the peptide. The algorithm 

then uses the sequence tag to find the peptide in a sequence database. The main problem 

of this approach is that the model used in this algorithm is too simple. A 3-segment 
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peptide sequence tag is used, but can not utilize more than one highly-confident fragment. 

The database search may return several candidate peptide sequences, but further 

discriminations are very limited. 

 

Recently there are some research interests on this issue that combine database search with 

De Novo techniques [12, 14]. The GutenTAG algorithm [12] automates the process of 

inferring “partial sequence tags” directly from the spectrum and efficiently examines a 

sequence database for peptides that match some of these tags. When multiple candidate 

sequences result from the database search, the algorithm evaluates the best match by a 

rapid examination of spectral fragment ions. More recently, the InsPecT [21] algorithm is 

proposed, which first generates a set of highly accurate tags from spectrum, and then use 

these tags to filter peptide sequences in database. Because De Novo is imperfect, multiple 

tags are produced for each spectrum to ensure that at least one tag is correct. The 

accuracy of this algorithm depends on the quality of the tags but even in the context of up 

to a dozen modifications, they perform reasonably well. Another interesting aspect of 

InsPecT is that it uses automata to search for peptide sequences in linear time. For a batch 

of spectrum data, the process can be very quick (about 10 ms per spectrum). Another 

database search algorithm based on a set of tags is SPIDER [22]. However, based on our 

analysis [2, 3], these algorithms still have a lot of  room for improvement. 

2.2.4 Our algorithms 

 

I have worked on peptide identification problem, and proposed algorithms for accurate 

and fast peptide sequence identification. Essentially, there are two categories of peptide 

identification algorithms examined, the first category centered on De Novo and database 



17 

search algorithms based on tags, while the second category of algorithms are based on 

tags, SOM and MPRQ techniques for peptide and PTM identification. 
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Chapter 3 

Peptide Identification Algorithms Based on Tags 
 

In this section, I will focus on a series of projects on peptide identification algorithms 

based on tags, with special concern on multi-charge spectra. I will first introduce the 

notation of strong tags in the context of extended spectrum graph. Based on the extended 

spectrum graph and strong tags, I will then describe our analysis of the characteristics of 

multi-charge spectrum datasets. Then I will introduce the De Novo algorithm, GBST, for 

peptide identification (sequencing) from multi-charge spectrum based on “best strong 

tags”. Next I will extend the “best strong tags” to “maximal multi-charge strong tags”, 

and proposed the GMST and GST-SPC algorithms. I have also designed a database 

search algorithm, PSP algorithm, based on patterns generated by a set of “best strong 

tags”, for peptide identification. Finally, I will touch on two issues in peptide 

identification; namely, preprocessing to remove noise, and the anti-symmetric problem. I 

have also proposed new computational models to address these issues, which can further 

improve accuracy in peptide identification. 

3.1 Brief Review and my work 

Multi-charge spectra are spectra with parent charge larger than 1. Because of the vast use 

of electrospray source in mass spectrometry, multi-charge spectra data are very abundant. 

However, the analysis of these multi-charge spectra is rare. Most peptide sequencing 

algorithms currently handle spectra of charge 1 or 2 and have not been designed to handle 

multi-charge spectra. PEAKS [20] perform a conversion of multi-charge peaks to their 

single-charge equivalent before sequencing. Lutefisk [23] works with single-charge ion 



19 

only, while Sherenga [18] and PepNovo [19] works with single- and double-charge ions. 

In [2, 3], we have analyzed the characteristics of multi-charge spectrum data. We 

proposed a characterization of multi-charge spectra by generalizing existing models. 

Using these new models, we analyzed spectra with charges 1-5 from the GPM datasets. 

Our analysis shows that higher charge peaks are present and they contribute significantly 

to the prediction of the complete peptide. They also help to explain why existing 

algorithms do not perform well on multi-charge spectra. 

 

Based on these analyses, we proposed a novel De Novo algorithm (GBST) for dealing 

with multi-charge spectra based on tags in the context of extended spectrum graph 

models. Experimental results show that it performs well on all spectra, especially so for 

multi-charge spectra. 

 

In [4], we analyzed current De Novo algorithms, and proposed a novel algorithm (GST-

SPC) for peptide sequencing. In this project, we have analyzed some of the shortcomings 

of GBST. We also present a new algorithm GST-SPC, by extending the GBST algorithm 

in two directions. First, we use a larger set of multi-charge strong tags and show that this 

improves the theoretical upper bound on performance. Second, we proposed an algorithm 

that finds a peptide sequence which is optimal with respect to shared peaks count (SPC) 

from among all sequences that are derived from strong tags. Experimental results 

demonstrate the improvement of GST-SPC over GBST and other De Novo algorithms for 

multi-charge mass spectra. 

 



20 

In [6], we proposed a database search algorithm for peptide identification. The Peptide 

Sequence Pattern (PSP) algorithm first generates the peptide sequence patterns (PSPs) by 

connecting the strong tags with mass differences. A linear time database search process is 

then used to search for candidate peptide sequences by PSPs, and the candidate peptide 

sequences are then scored by shared peaks count (SPC). The PSP algorithm is designed 

for peptide identification from multi-charge spectra, but it is also applicable for single-

charge spectra. Experiments have shown that the PSP algorithm can obtain better 

identification results than some current database search algorithms on many multi-charge 

spectra; and also obtain comparative results on single-charge spectra against these 

algorithms. 

 

I also noticed that although peptide sequencing problem is extensively investigated by 

researchers recently, and peptide sequencing results are becoming more accurate, many 

of these algorithms are using computational models based on some assumptions, and 

these unverified assumptions may be the obstacles for further improvement. 

 

In [24, 25], I first investigated the simple model for peptide sequencing without 

preprocessing the spectrum, and I have shown that by introducing preprocessing to 

remove noise in spectrum, the peptide sequencing can be faster, easier and more accurate. 

I then investigated one of the most important assumptions, the anti-symmetric assumption 

in the peptide sequencing problem. From my studies, I have proven empirically that 

approached that do not consider anti-symmetry or simply remove anti-symmetric 

instances may be oversimplifying the peptide sequencing problem. I then proposed a 

more realistic model that takes anti-symmetry into account. I also proposed a novel 
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algorithm which incorporate preprocessing and the new model, and showed though 

experiments that this algorithm can achieve further improvement in performance. 

3.2 Strong Tags 

Tandem mass spectrum data analysis shows that peaks in many mass spectra can be 

grouped into closely-related sets, especially when the peptide is multi-charge. Within 

each set, the peaks can be interpreted as the same ion type (b-ions or y-ions), and the 

mass differences between “successive” peaks are such that they can form ladders (partial 

sequences). An example is shown in Figure 3, where we have computed the theoretical 

spectrum (the table) and the peaks from an experimental spectrum S are shown in bold. 

Several peaks are grouped together into ladders of y-ions and b-ions of charge 1.  

 

bond 
+1
y 

+1
y
*
 

+1
b 

+1
b
*
 

S
1 1807.0 1790.0 130.0 113.0 
I
2 1693.9 1676.9 243.1 226.1 
R
3 1537.8 1520.8 399.2 382.2 
V
4 1438.8 1421.7 498.3 481.3 
T
5 1337.7 1320.7 599.3 582.3 
Q
6 1209.7 1192.6 727.4 710.4 
K
7 1081.6 1064.5 855.5 838.5 
S
8 994.5 977.5 942.5 925.5 
Y
9 831.5 814.4 1105.6 1088.6 

K
10 703.4 686.3 1233.7 1216.7 
V
11 604.3 587.3 1332.8 1315.7 
S
12 517.3 500.2 1419.8 1402.8 
T
13 416.2 399.2 1520.8 1503.8 
S
14 329.2 312.2 1607.9 1590.8 
G
15 272.2 255.1 1664.9 1647.9 
P
16 175.1 158.1 1761.9 1744.9 

 

Figure 3. Theoretical spectrum for the peptide sequence “SIRVTQKSYKVSTSGPR”, with 

parent mass of 1936.05 Da. “y” and “b” indicates y- and b-ions, “+1”, “+2” indicates 

charge 1 and 2, and “*” indicates ammonia loss. Bold numbers are mass-to-charge ratios of 

peaks present in experimental spectrum. 
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This motivates us to call these contiguous sequences of strong ion-types (b-ions and y-

ions of charge 1) “strong tags”. More formally, they are defined as follows:  Consider the 

extended spectrum graph, )( 11

α
SG , namely, only charge 1 ion-types. We define a strong 

tag T of ion-type (1, t, Ø) to be a maximal path (v1, v2, …, vr) in )( 11

α
SG  where each vertex 

vi∈T has the same ion-type (1, t, Ø) and (vi, vi+1) is an edge in the graph if the mass 

difference of vi and vi+1 is the mass of one amino acid. (We consider only b-ions and y-

ions, namely, t = b-ions or y-ions and strong tags must have at least 2 edges.)  

 

Figure 4 shows the two strong tags obtained for the spectrum given in Figure 3. 

 

 
 

Figure 4. Example of strong tags in the spectrum graph for spectrum in Figure 3. There 

are 2 strong tags. Vertices (small ovals) represent mass-to-charge ratios, and edges 

(arrows) represent amino acids whose mass are the same (within tolerance) as the mass 

difference of the vertices. 

3.3 Evaluating Mass Spectra 

In this project, we have used the extended spectrum graph model that better describes 

multi-charge spectra. We have also proposed quality measures for multi-charge spectra 

based on the new model. Our evaluation of multi-charged spectra from GPM with the 
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new model shows that the theoretically attainable accuracy increases as we consider 

higher charge ions, meaning that multi-charge ions are significant. In addition, we show 

that any algorithm that considers only charge 1 or 2 ions will suffer from low prediction 

accuracy. Our experiments show that the accuracy (accuracy measure defined later) of 

these algorithms on multi-charge spectra is very low (less that 35%), and this accuracy 

decrease as the charge of the spectra increases (for charge 4 spectra, the accuracy of 

Lutefisk is less than 7%). 

3.3.1 Quality measures for evaluating mass spectra 

 

We have extensively analyzed many multi-charge spectra using extended spectrum graph 

model. We define two quality measures of a multi-charge spectrum 

 

Specificity(α, β)       = |)(| STS ∩ρα
β  / || S  (2) 

Completeness(α, β) = |)()(| 0

α
αρ SPRMTS ∩  (3) 

 

Specificity measures the proportion of true peaks in the experimental spectrum S, and it 

can also be consider the signal-to-noise ratio of S. The completeness measure computes 

the proportion of the fragment masses that are explained by support peaks. By using 

completeness measurement, multiple support peaks for the same fragments are not 

double-counted. 

3.3.2 Experimental data and analysis 

 

The data being used for analysis is the Amethyst data set from GPM (Global Proteome 

Machine) [26] (obtainable from ftp://ftp.thegpm.org/quartz). The GPM system is an 

open-source system for analyzing, storing, and validating proteomics information derived 

from tandem mass spectrometry. One feature of the Amethyst dataset is that there are lots 
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of multi-charge spectra (up to charge 5). These data are MS/MS spectra obtained from 

QSTAR mass spectrometers. Both MALDI and ESI sources were included. 

 

Using the )( α
βSGd  extended spectrum graph model (with d=2), we measured the average 

Specificity(α,β) and Completeness(α,β) on the entire Amethyst datasets from GPM using 

our extended spectra α
βS  for 1 ≤ α ≤ 5,  and 1 ≤ β ≤ α. A mass tolerance of 0.5 Da is used 

for matching. Since GPM datasets are of reasonably good quality, all the data in the 

Amethyst dataset (12558 datasets in total, with 4000, 4561, 2483, 1175, 339 for charge 1, 

2, 3, 4, 5, respectively) has been used for this purpose.  

 

 
Figure 5. Specificity(α,β) of multi-charge spectra. Specificity increases as β increases. 

Most algorithms consider up to α
2S (dashed black line). But considering 

α
αS  for spectra 

with α ≥ 3 improves the specificity (black line vs grey line). 
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Figure 6. Completeness(α,β) of multi-charge spectra. We see that considering only α

2S  

gives < 70% of the full ladder, which drops drastically as α gets bigger. On the other hand, 

considering α
αS  gives > 80% of full ladder. 

 

The Specificity(α,β) results are shown in Figure 5. The results show that the GPM spectra 

contain an abundance of higher charged peaks in high-charge spectra. For a fixed α, as β 

increases, the specificity increases – meaning that more true peaks are discovered. 

Furthermore, the increase is significant. For α=5, the specificity increases from 0.49 with 

β=2, to 0.81 when β=5. Algorithms that uses β =2 considering only charge 1 and 2 (like 

LuteFisk and PepNovo) are limited to specificity values of between 0.48 to 0.56, as 

indicated by the dashed vertical line at β=2.  

 

The Completeness(α,β) results are shown in Figure 6. In this graph, we compare the 

Completeness(α,β) results for (a) using the full extended spectrum α
αS versus (b) using 

only α
2S . Again, the results clearly show that significant improvement can be obtained by 

considering high-charge peaks. The disparity increases with α, as seen from the widening 

gap indicated by the vertical arrows. 
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3.4 GBST Algorithm for Multi-Charge Spectra 

We also proposed a simple De Novo sequencing algorithm called GBST (Greedy Best 

Strong Tag) that considers high-charge ions based on extended spectrum graph model. 

Experimental results on GPM spectra show that GBST outperforms some of the other De 

Novo algorithms on spectra with charge ≥ 3. 

3.4.1 Evaluate “best” strong tags 

 

To help the search for good strong tags, we define a weight function that is used to score 

vertices and strong tags. The weight of vertex vi∈G1( α
βS ) is defined as  

)(

)()()(
)(

itolerance

iintensityilossisupport

i

vf

vfvfvf
vw

++
=

 

(4) 

 

• fsupport-ion(vi) is a function of the number of vj, with vj having a different ion-type as vi, 

but represent same PRM  

• floss(vi) is a function of the number of vj, with (PRM(vi) – PRM(vj))=17 or 18, 

• fintensity(vi) is a function of (log10(int(vi))), 

• ftolerance(vi) = (∑ | PRM(vj) – PRM(vi) – m(ak) | )/N, where N is the total number of 

incoming and outgoing edges for vi, and ak is the amino acid for the edge (vi,vj) or 

(vj,vi). 

 

For a strong tag T=(v1, v2, …, vr), the weight W(T) of the strong tag T is just the sum of 

weight of the vertices in T, namely, W(T) = ∑ ∈Tv ii
vw )( . The spectrum graph G1( α

βS ) is a 

DAG that may consist of several disjoint components. Obviously, we are interested in 

finding a set of “best” strong tags, namely, tags that optimizes the weight W(T) in a 
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component. We let BST denote the set of “best” strong tags from each of the components 

C in the spectrum graph. 

3.4.2 The GBST algorithm 
 
We developed a simple De Novo peptide sequencing algorithm that uses the best strong 

tags in the spectrum graph based on best strong tag, which we call the Greedy Best 

Strong Tag (GBST) algorithm.. The GBST algorithm first computes a set BST. To find 

best strong tags, the algorithm uses ion-types that appear most frequently, namely, charge 

1, b-ions and y-ions with no neutral loss. The restricted set is given by 

)( R
h

R
t

R
z

R ∆×∆×∆=∆ , where },1{=∆R
z   },,{ ybR

t =∆  and }{φ=∆R

h . They also define 

G1(
α
1S ,

R∆ ), the spectrum graph G1(
α
1S ) where the ion types considered are restricted to 

those in R∆ . Then, a best strong tag T of ion-type (z, t, h) R∆∈ is a maximal path 

〈v0,v1,v2,...,vr〉 in the graph G1( α
1S ,

R∆ ), where every vertex vi∈T is of a (z, t, h)-ion. In 

each component of this graph, GBST compute a “best” strong tag with respect to scoring 

function [2] described above. Then, the set BST is the set comprising the best strong tag 

for each component in the spectrum graph G1(
α
1S ,

R∆ ). 

 

After the set of best strong tags, BST, is computed, the GBST algorithm then proceeds to 

find the best sequence that result from paths obtained by “extending” the tags from BST 

using all possible ion-types. It searches for paths in the graph G2(BST) defined as follows: 

the vertices are the best strong tags in BST, and we have a directed edge from the tail 

vertex u of a best strong tag T1 to the head vertex v of another best strong tag T2 if there is 

a directed edge (u,v) (or mass difference) in the graph G2(
α
αS ). We note two major 
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difference between G2(BST) and the extended spectrum graph G2(
α
αS ) – firstly, the 

number of vertices in G2(BST) is smaller; and secondly, the number of edges is also much 

smaller since only best strong tags are linked in a head-to-tail manner. 

3.4.3 Upper bound on sensitivity 

 

Given any spectrum graph G defined on an experimental spectrum S from a known 

peptide ρ, the notion of theoretical upper bound on sensitivity is defined as follows: 

Given G, we can compute the path in G that maximizes the number, p*, of amino acids 

from the (known) peptide ρ. Then, U(G) = p*/|ρ| is an upper bound on the sensitivity for 

any sequencing algorithm based on the spectrum graph approach using the graph G.  

Then U( )( α
βSGd ) is the theoretical upper bound on sensitivity for the extended spectrum 

graph )( α
βSGd , namely using the extended spectrum α

βS with all ion types in ∆ and a 

connectivity of d. PepNovo and Lutefisk which considers charge of up to 2 (and 

connectivity of up to 2) are bounded by U( )( 22

αSG ) and there is a sizeable gap between 

U( )( 5

22 SG )  and U( )( 5

52 SG ). 

3.4.4 Experiments 

 

Datasets and Experiment Settings 

To evaluate the performance of GBST vis-à-vis the upper bounds, we used spectra that 

are annotated with their corresponding peptides – the GPM-Amethyst dataset [26] (Q-star 

data with good resolution) and the ISB dataset [27] (Ion-Trap data with low resolution). 

For each dataset, we selected subsets of spectra with annotated peptides validated by X-

correlation score (Xcorr ≥ 2.5). 
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Table 1 lists the number of spectra and the number of peaks per spectrum for GPM and 

ISB spectra with different charges. In addition, peptides for GPM spectra have average 

lengths of 14.5 amino acids, and peptides for ISB spectra have average length of 15.0. 

 

Table 1 : The number of spectra, and the number of peaks per spectrum. The results are 

based on the GPM and ISB datasets of different charges. 

Charge No. Spectrum No. peaks per spectrum 

 GPM ISB GPM ISB 

1 756 16 48.2 149.6 

2 874 489 46.9 144.5 

3 454 490 42.6 145.1 

4 207 - 46.8 - 

5 37 - 46.1 - 

Total 2328 995 46.5 144.9 

 

Each GPM spectrum has between 20-50 peaks (usually high quality peaks) and an 

average of about 40 peaks. We use all of the peaks in our experiments. In contrast, each 

ISB spectrum has between 50~300 peaks and an average of 150 peaks. 

 

We have applied the GBST algorithm on these spectrum data. For these spectra, we have 

also compared the results of GBST with those of the Lutefisk [23] and PepNovo [19]. For 

the comparison of prediction results, we defined two accuracy measures: 

Sensitivity  =  #correct / |ρ| (5) 

Specificity  =  #correct / |P| (6) 

where #correct is the “number of correctly sequenced amino acids”. The number of 

correctly sequenced amino acids is computed as the Longest Common Subsequence (LCS) 

of the correct peptide sequence ρ and the sequencing result P. Sensitivity indicates the 

quality of the result with respect to the correct peptide sequence and a high sensitivity 

means that the algorithm recovers a large portion of the correct peptide. For fair 
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comparison with algorithms like PepNovo that only outputs the highest scoring tags 

(subsequences), we also use the specificity measurement. 

 

Comparison with Other Algorithms: In the experiments, we have only used GPM 

datasets, and run PepNovo on spectra with charge 1 and +2 (since it only handles spectra 

with charge 1 and +2), and compared the results with GBST algorithm. 

 

Table 2: Results of GBST, compared with Lutefisk and PepNovo on GPM spectra. 

Results show that GBST is generally comparable and sometimes better, especially for 

multi-charge spectra. The accuracy values are represented in a (specificity/sensitivity) 

format. (*based on spectra with +1 and +2). 

Charge Number of spectrum Lutefisk PepNovo GBST 

1 756 0.261 / 0.258 0.322 / 0.186 0.296 / 0.315 

2 874 0.243 / 0.241 0.316 / 0.215 0.297 / 0.326 

3 454 0.111 / 0.113 - 0.262 / 0.285 

4 207 0.065 / 0.063 - 0.190 / 0.222 

5 37 0 / 0 - 0.165 / 0.223 

All 2328 0.203 / 0.202 0.319 / 0.202* 0.278 / 0.304 

 

Experiment results show that the GBST algorithm generally performs comparably to or 

better than Lutefisk [23] and PepNovo [19]. This is obvious for multi-charge spectra. The 

relatively high specificity of the results of GBST is comparable to the results of Lutefisk 

and PepNovo. The higher sensitivity shows that the GBST algorithm can identify more 

correct amino acids than Lutefisk and PepNovo. 

 

Upper Bounds on Sensitivity for GBST: Since the GBST algorithm uses a restricted set 

of ion-types R∆  in its search for best strong tags, we let U(R)= U(G1(
α
1S ,

R∆ )) be the 

upper bound on sensitivity with ion-type restriction. For the second phase, we define 

U(BST) = U(G2(BST)), the upper bound on sensitivity with best strong tags restriction. 
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Comparison with Upper Bounds: We have computed the upper bounds on sensitivity 

for both the GPM and the ISB datasets and the results are shown in Figure 7, together 

with the actual sensitivity obtained by the GBST algorithm. The results in Figure 7 show 

that for GPM datasets, U(BST) is near to U(R), but the GBST results have sensitivities 

about 10% less than U(BST). This indicates that GBST has not been able to fully utilize 

the power of BST.  For the ISB datasets, even U(BST) is far from U(R). Therefore, it is 

natural the GBST algorithm can not perform well on ISB datasets. 
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(a)                                                   (b)  

Figure 7: The comparison of sensitivity results of GBST with theoretical upper bounds. 

U(R) and U(BST) on (a) GPM dataset, and (b) ISB datasets. 

 

However, since there is still a large gap between the accuracies of GBST sequencing 

results and U(BST) and U(R), we think that the algorithms based on using tags still have 

room for further improvement. 

3.5 GST-SPC Algorithm 

In this project, I present an improved De Novo algorithm called GST-SPC that extends on 

GBST algorithm. In the first phase, the GST-SPC algorithm computes a larger set of 

strong tags – the set of all “maximal multi-charge strong tags”. We show that this 

improves the theoretical upper bound on the sensitivity. In the second phase, the GST-
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SPC algorithm computes a peptide that is optimal with respect to shared peaks count 

(SPC) from among all peptides that are derived from strong tags.  The SPC is computed 

as the number of shared peaks between experimental spectrum and theoretical spectrum 

of candidate peptides (within tolerance). Our evaluation shows that the GST-SPC 

algorithm improves on GBST, especially on multi-charge spectra. 

3.5.1 An improved algorithm – GST-SPC 
 
(a) Using a Larger Set of Strong Tags:  A straight-forward improvement of GBST [2, 

3] is to expand the set of strong tags under consideration. We do this as follows: (i) when 

searching for strong tags, we use multi-charge ions (using α
αS  instead of just 

α
1S ), and (ii) 

instead of choosing only one “best” strong tag from each component of the graph 

G1(
α
1S ,

R∆ ), we allow a set of all multi-charge strong tag in each component of the graph 

G1(
α
αS ,

R∆ ) to be chosen. Namely, a multi-charge strong tags of ion-type (z*, t, h) R∆∈ is 

a maximal path 〈v0,v1,v2,…,vr〉 in G1( α
αS ,

R∆ ), where every vertex vi is of a (z*, t, h)-ion, 

in which t and h should be the same for all vertices, but z* can be different numbers from 

{1,…α}. We let MST denote this set. The algorithm for computing the MST is almost 

identical to that for BST (a depth-first search), with slight modification to store the MST 

instead of BST. Running the GBST algorithm with the MST (GMST algorithm) improves 

the results slightly. 

 

Theoretically, the size of the MST can be exponential. However, in practice, our 

experiments show that the MST does not exhibit exponential growth compared to BST. 

For GPM datasets (average of about 46 peaks) the increase in the average number of 

strong tags is from 10 to about 50. For ISB datasets (average of 145 peaks) the increase is 
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from 15 to about 90. As for tag length, the average length of strong tags in MST is 4.65 

amino acids for GPM datasets, and 2.26 amino acids for ISB datasets.  

 

We define U(MST) = U(G2(MST)) the theoretical upper bound on sensitivity with respect 

to the set MST. The increase from U(BST) to U(MST) is shown in Figure 8. From Figure 

8, it is easy to see that the introduction of MST has pushed up the theoretical upper 

bounds for both datasets. For GPM dataset, the best sequencing results obtainable from 

MST is about 5% higher in accuracy than BST. We also note that U(MST) is very close to 

the U(R), the theoretical upper bounds with R∆ . For ISB datasets, the increase is more 

pronounced – partly because the ISB datasets have more peaks. The best sequencing 

results obtainable from MST is about 10%~60% higher in accuracy than BST, and within 

20% of the theoretical upper bounds. This shows a great potential for sequencing 

algorithms based on MST. 
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(a)                                                    (b) 

Figure 8. Comparing the theoretical upper bounds on sensitivity for MST and BST. 

Results are based on (a) GPM dataset, and (b) ISB datasets. 
 

(b) Optimal Shared Peaks Count:  While the GMST algorithm using MST is slightly 

better than GBST algorithm using BST, there is still a gap in performance compared to 

upper bounds. This motivates us to formulate the problem of maximizing the shared 

peaks counts (SPC) with respect to the set of multi-charge strong tags. The shared peak 
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count (SPC) is a commonly used and fairly objective criterion to compare experimental 

spectrum with theoretical spectrum of the peptides. We also show that we can solve this 

problem optimally in polynomial time. 

 

Suppose that we are given the set, say MST, of strong tags. Define a multi-charge strong 

tag path Q to be a path from v0 to vM given by Q = (q0 T1 q1 T2 q2 T3 q3 … qk-1 Tk qk) 

where each Tj is a strong tag in MST and each qj is an edge of at most two amino acids, 

or mass difference that “links” the preceding tag to the succeeding tag in the usual head-

to-tail fashion. A strong tag path Q gives rise to a peptide sequence P(Q) obtained by 

interpreting the “gaps” in the path Q. A example of P(Q) is “[50]CGV[100]PK”. Given 

the peptide sequence P(Q), we can compute the shared peaks count of P(Q). Then our 

problem can be stated as the following: Among all the possible strong tag paths, we want 

to find an optimal multi-charge strong tag path Q* that maximize the shared peak count 

between the theoretical spectrum of peptide sequence P(Q*) and experimental spectrum. 

 

Our solution to this problem is to form the graph G2(MST) defined in the same ways as 

the graph G2(BST). We first pre-compute the shared peaks count for each tag in MST. For 

each edge (u, v) connecting two tags Tu and Tv, we compute the path Q of length with at 

most two amino acids that locally maximizes that shared peak count of Q against 

experimental spectrum. Then we compute the path from v0 to vM with maximum shared 

peaks count in the graph G2(MST), which is a DAG. Additional processing has to be done 

if neither of the end vertices is connected to the first (or last) vertex in the path, or the 

sparse areas are not connectable - we connect this via mass difference. It is easy to see 

that this algorithm optimizes the shared peaks count among all peptide sequences 
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obtained by extending the multi-charge strong tags in MST via connectivity 2. Next, we 

present an algorithm that produces provably better result. 

 

Improving the Spared Peaks Counts using H(MST):  We can further improve the 

shared peaks count if we increase the maximum connectivity d. However, this will cause 

the running time to grow exponentially due to the number of paths to be searched. We 

propose a graph H(MST), a superset of G2(MST) which is simple to define, and yet not 

too computationally expensive. In H(MST), we have an edge from the tail vertex u of Tu 

to the head vertex v of Tv if the mass difference (PRM(v)–PRM(u)) is in the range [57.02, 

186.08] Da, where 57.02 Da and 186.08 Da are the minimum and maximum mass of any 

amino acid, respectively. In addition, we pre-compute the path from u to v that locally 

maximizes the shared peak count. We have fast procedure that solves this sub-problem 

efficiently. The length of the computed path from u to v varies depending on the mass 

difference. The rest of the algorithm is to interpret edges in H(MST). 

 

Algorithm GST-SPC:  Finally, our GST-SPC algorithm uses the multi-charge strong tag 

set MST and the graph H(MST) to compute a peptide with optimal shared peaks count. 

3.5.2 Performance Evaluation of Algorithm GST-SPC 
 
We have compared the performance of our algorithms with two other algorithms with 

freely available implementation, Lutefisk [23] and PepNovo [19]. For specific spectrum 

and algorithm, the sequencing results with best scores are compared. We have compared 

performance of GST-SPC with the GBST [2, 3], Lutefisk [23, 28], and PepNovo [19].  

Except for formula (5) and formula (6), we have also used the following accuracy 

measures: 
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Tag-Sensitivity = # tag-correct / | ρ | (7) 

Tag-Specificity = # tag-correct / | P | (8) 

where #tag-correct is “the sum of lengths of correctly sequenced tags (of length > 1)”.  

Note that here “tag” only refers to subsequences, and not the “strong tag” that we have 

defined previously. The tag-sensitivity accuracy takes into consideration of the continuity 

of the correctly sequenced amino acids. For a fairer comparison with algorithms like 

PepNovo that only outputs the highest scoring tags (subsequences) we have also used 

tag-specificity, which measures how much of the results are correct. 

 

The comparison of the different algorithms based on these four accuracy measures is 

summarized in Figure 9 (for the GPM datasets) and Figure 10 (for the ISB datasets). 

Overall, the results obtained by our GST-SPC algorithm using the shared peaks count 

scoring functions are promising. On the GPM datasets, the GST-SPC outperforms the 

other algorithms. For example, it has higher sensitivity and tag-sensitivity than Lutefisk 

(by 10% for charge ≥ 2) and PepNovo (by about 10%). It has comparable specificity and 

tag-specificity to PepNovo for charge 1 and 2. It is constantly better than GBST and 

Lutefisk (for charge > 1) on all accuracy measures.  
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Specificity Comparisons on GPM dataset
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Tag-Specificity Comparisons on GPM dataset
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Figure 9. Comparison of different algorithms on GPM dataset – based on (a) 

sensitivity, (b) tag-sensitivity, (c) specificity and (d) tag-specificity. PepNovo only 

has results for charge 1 and 2. 
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Tag-Specificity Comparisons on ISB dataset

0.0

0.2

0.4

0.6

0.8

1 2 3 (Charge α)

(A
c
c
u
ra

c
y
)

GST-SPC

GBST

Lutefisk

PepNovo

 
(c)      (d) 

Figure 10. Comparison of different algorithms on ISB dataset - based on (a) 

sensitivity, (b) tag-sensitivity, (c) specificity and (d) tag-specificity. PepNovo only 

has results for charge 1 and 2. 
 
For the ISB dataset, the results show the ranking as follows: (PepNovo, GST-SPC, 

GBST, Lutefisk) for all the accuracy measures. The ISB datasets contains much noise 

and PepNovo has a sophisticated scoring function that may account for its best 
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performance, especially on datasets with charge 1. For spectra with charge 2, the 

difference in performance is not as big. However, since PepNovo do not (as yet) handle 

spectra with charge greater than 2, there was no way to compare results for charge 3.  

That comparison would be interesting given the apparent trend exhibited in the results. 

 

We also compare the algorithm with respect to the number of completely correct 

identified peptide sequences. Our results (not shown here due to space limitations) show 

that the GST-SPC algorithm out-performs Lutefisk, but is slightly worse than PepNovo. 

We have also listed (in Table 3) a few sample “good” interpretations of the GST-SPC 

algorithm, on which Lutefisk does not provide good results. It is interesting to note that 

GST-SPC algorithm can identify more correct amino acids – illustrating the power of 

using multi-charge strong tags. 

 
Table 3: The sequencing results of Lutefisk, PepNovo and GST-SPC algorithm on some 

spectra. The accurate subsequences are labeled in bold and italics. “-” means there is no 

result. 
M/Z Z Real Lutefisk PepNovo GST-SPC 

1219.8 2 VAQLEQVYIR [170.1]ELEKVYLR GLQLEQVYLR AVEIEQVYIR 

1397.9 2 ELEEIVQPIISK [242.1]EELAVG[LP]LSK EELVKPLLSK EIEEIA[101.0]QHISK 

1644.9 2 PAAPAAPAPAEKTPVKK [AP]AAPA[HS]AP[198.1]PAAA[CS] AAPADFEAMTNLPK APAAPAPA[56.1]APAMTKVPK 

1838.8 3 SSYSLSGWYENIYIR [172.1]L[303.2][243.1][NP][MT]LYLR - SSIYI[27.3]IIEPCEIYIR 

2000.2 4 PAAPAAPAPAEKTPVKKKAR [323.1]RPA[AP]EKTN[LP]K[199.1]R - APAAPAMWNYNHKPYIR 

1936.1 4 SIRVTQKSYKVSTSGPR [199.1][PW][259.1]L[250.1]KVSTSGPR - VVISVTQK[63.8]WKVSTSGPR 

2101.1 4 KIETRDGKLVSESSDVLPK [243.1]LVR[TY]YTSESSAE[PV]R - IKQHTHECYSESSDVIPK 

2359.0 5 CDKDLDTLSGYAMCLPNLTR - - AFCDYA[417.2]RNQKIRCPTR 

3.6 PSP Database Search Algorithm 

Extending the idea of using tags [11] on GBST algorithm, we have developed a new 

database algorithm, the PSP algorithm that concentrated on the multi-charge spectrum 

data. We have tried to utilize all of the tags information, and tried to get the best results 

based on this information. In PSP algorithm, we first find out best strong tags (BST) from 

the spectrum, and connect them by their mass differences; these are called Peptide 

Sequence Patterns (PSPs), and the peptide sequences in the database that best match the 
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PSPs are selected for further processing. Then a linear time database search process is 

used to search candidate peptides sequences by PSPs. These candidate peptides are then 

scored and ranked by shared peaks count. 

3.6.1 Peptide sequence patterns algorithm 

 

The PSP algorithm first compute a set, BST, of “best” strong tags. The PSP algorithm 

then proceeds to find the PSPs that result from paths obtained by “connecting” the tags 

from BST.  This is done by searching for paths in the graph Gd(BST) in which the vertices 

are the strong tags in BST, and we have an edge from the tail vertex u of T1 to the head 

vertex v of T2 if PRM(v) is larger than PRM(u). Note that there is a different from this 

approach to that used in GBST algorithm. Since in PSP algorithm, the tags from BST are 

not extended before linking of the tags. 

 

The peptide sequence patterns (PSPs) that represent the paths compose of the tags and 

mass fragments. Formally, PSPi = m1t1m2t2...mntnmn+1, in which mi and ti refer to mass 

difference and tag, respectively. Each tag in the sequence composes of those consecutive 

amino acids. Each mass is the sequence represents the mass difference between tags. 

 

After PSPs are retrieved, the PSPs are scored and ranked according to shared peaks count 

of the theoretical spectrum of the PSP and the experimental spectrum. Some top PSPs are 

then selected for database search.  

 

The database search algorithm is essentially an approximation pattern matching in the 

database, with PSPs (composed of tags and mass differences) as patterns. The detailed 

database search algorithm will be described later. 
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After database search based on PSPs, several candidate peptides are obtained. For each of 

candidate peptide sequences, the shared peaks count is computed by comparing the 

theoretical spectra of the candidate peptides against the experimental spectrum. 

 

The scheme and the description of the PSP algorithm are illustrated in Figure 11 and 

Figure 12, respectively. 

 

 
 

Figure 11: The scheme of the database search algorithm. 

 

 
 

Figure 12: The description of the PSP algorithm. 

3.6.2 Approximate database search using PSP 

 

PSP Scoring (Rank) 

Candidate 
Peptides 

Peptide Scoring 
(Rank) 

Strong Tags 

Identified Peptides (Ranked) 

PSPs 

Database Search 

1. Search for strong tags 
• Transform spectrum to extended spectrum graph 

• Select all of the best strong tags (BST) in extended spectrum graph 

2. Generation of PSPs 
• Connect BSTs by mass differences 

• Generate a graph G, every vertex is a BST, every edge is one mass difference 

• List all paths from start to end vertexes 

• For each of the path Pi, generate the peptide sequence pattern PSPi 

• Score and rank PSPs by shared peaks count 

3. Database search by PSP 
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The candidate peptides are obtained by searching in the database with PSP. By searching 

the database, we can identify those peptides that match with a certain number of tags 

(with 1 or 2 amino acids errors) in PSP. 

 

The approximate pattern matching problem in the context of peptide sequencing is a 

pattern matching problem. It involves both approximate tags matching and approximate 

masses matching. 

 

String matching has been investigated by many researchers, and there are many theories 

and algorithms on it. It is known that inexact string matching with errors can be done in 

linear time, and exact string matching with wildcard can be done in linear time [1, 29]. 

Moreover, the semi-numerical inexact string matching algorithms [1, 29] can be very 

efficient if the patterns are relatively short. In the PSP algorithm, we have used the semi-

numerical inexact string matching algorithms, so the database search process is linear in 

computational time. 

 

The problem definition and the procedure of approximate database search are listed in 

Figure 13. An illustration of approximate match of PSP to the peptide sequences in the 

database is in Figure 14. 

 

Problem: Approximate database search using PSP 

1. Input: 
1) peptide sequence pattern (PSP) 

PSPi = m1t1m2t2...mntnmn+1 (mi and ti refer to mass and tag, respectively) 

2) database sequence, Seq 
2. Output: 

3) Subsequence Seqi (or subsequences) in Seq that fulfill the requirements 

3. Constraints: 
1) Approximate match with tags ti in Seqi in order, with strict tolerance 

(every tag with ≤2 amino acids error); if at most m<n tags are present for 
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every database sequences, then these m tags should be approximately 

matched 

2) Approximate match with masses mi in Seqi in order, with loose tolerance 

(every mass with ≤50 Da mass error) 

3) Efficient process 

 

Procedure: Approximate database search using PSP 

1. Select the top PSPs (depending on the total number of PSPs), search database for 
candidate peptides that approximately match with the tags and masses of these 

PSPs within certain tolerance. 

2. Score and rank the candidate peptides by the shared peaks count between their 
theoretical spectrum and experimental spectrum. 

3. Output these peptide sequences. 

 

Figure 13: Description of the approximate pattern matching problem; and the procedure 

for the database search algorithm. 

 

 
Figure 14: An example of the match of the peptide sequence pattern (first row) and the 

peptide sequence in the database (second row). 

 

As illustrated in Figure 14, the PSP is “[205.343]RVTQ[370.879]KVS[480.166]” 

(numbers in brackets represent mass differences); and the matched peptide sequence is 

“SIRVTQKSYKVSTSGPR”. In this example, the two tags “RVTQ” and “KVS” have 

matched the identical fragments in the peptide sequence (1 or 2 amino acids mismatches 

are tolerable). The three mass differences also match with the fragments having similar 

masses. 

 

As for the running time, for one PSP with length of m and database size (total length of 

sequences) of n, the algorithm can operate in O(m+n) time. This is much better than the 

naïve sequence matching method, which requires O(m*n) time. Since there are thousands 

of peptide sequences in database, the efficiency improvement is very significant. If we 
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load the peptide database into memory once, and search several PSPs against it, the 

average processing time for a PSP can be even shorter. 

3.6.3 Experiments 

 

In these experiments, dataset being used is GPM (Global Proteome Machine) dataset [26] 

with different charges. The methods to be compared are PeptideSearch [11], SPIDER 

[22], the 2 typical database search methods based on tags; Mascot [30], one of the most 

popular database search methods; and the recent InsPecT [14] software. 

 

Both of PeptideSearch and SPIDER need a tagged sequence (sequence composed of tags 

and masses) as input; we have used the PSP generated by our algorithm as such tagged 

sequence. For Mascot and InsPecT, the input is original spectrum data. The 

PeptideSearch algorithm uses the non-redundant database in FASTA format, which 

obtain the peptide sequences from various protein databases. SPIDER, Mascot, InsPecT 

and our algorithm used the Swiss-Prot protein database. The Swiss-Prot protein database 

that we have used is Swiss-Prot Release 45.5 of 04-Jan-2005, which contains 167089 

protein sequence entries. The default parameters have been used for all of these 

algorithms, and the sequencing result with top rank is used for analysis. 

 

We have compared PSP algorithm with Mascot [30] and InsPecT [14] in details, and 

explained the comparison results against PeptideSearch [11] and SPIDER [22] briefly. 

 

The comparison with Mascot is meaningful. The Mascot algorithm is currently regarded 

as one of the most accurate database search algorithms. More important is that Mascot is 

not based on tags, and the input is the spectrum data, same as our algorithm’s input. 
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Therefore such comparison is fair. The results of the comparisons are shown in Table 4. 

The “accurate subsequences” refer to the subsequences of the correct sequences, and at 

the appropriate position of the corresponding sequences. 

 

Table 4: Comparisons of Mascot and PSP on selected spectra. The accurate subsequences 

are labeled in italics. A “-” means that there is no result. 

 

It is obvious from the table above that in these cases; our algorithm is more accurate than 

Mascot. Mascot can find exact match in only 4 cases, and ours can find exact match in 8 

cases. In other cases, the results of our algorithm also have comparable number of 

subsequences matched to the true peptide sequences. 

 

It is known that recent Mascot has already incorporated the tags function similar to 

PeptideSearch [11], but our algorithm can still beat Mascot on some spectrum data. This 

shows that our PSP algorithm, which adopts the new strategies to find tags from spectra, 

as well as our database search techniques, is quite effective. 

 

The comparisons of PSP algorithm against PeptideSearch [11] and SPIDER [22] (details 

not shown) show that the PSP algorithm has comparable or higher accuracies than these 

tag-based algorithms. 

M/Z charge correct Mascot PSP 
1219.8 2 VAQLEQVYIR VAQLEQVYIR VAQLEQVYLR 

1397.9 2 ELEEIVQPIISK ELEEIVQPIISK ELEEIVQPIISK 
1644.9 2 PAAPAAPAPAEKTPVKK LHGGNAIGFMTLEGTK AAPAETSDLEFAVKK 

881.5 2 SPRLRPR LVIVALPR SPIVRGPR 
1448.7 2 LPGAYFFSFTLGK MLRAMVASGSELGK LVRGQNTVHILGK 

1888.1 3 VTHAVVTVPAYFNDAQR VTHAVVTVPAYFNDAQR IVVTQPRRISAVSVAER 
1934.1 3 DNHLLGTFDLTGIPPAPR DNHLLGTFDLTGIPPAPR KNVALIGLTVETGSALVPK 

1934.3 3 DNNLLGKFELTGIPPAPR DNHLLGTFDLTGIPPAPR DNNLLGKFELTGIPPAPR 
1838.8 3 SSYSLSGWYENIYIR SSLSISSMFCNYDETR SSYSLSGWYENIYIR 

1761.0 3 PAAPAPAEKTPVKKKAR LFFAFEKQESVPYR - 
1932.8 4 HKVYACEVTHQGLSSPVTK VFFDNNFQCILWFLK TLKVDGNDETFALSNISK 

2000.2 4 PAAPAAPAPAEKTPVKKKAR GQYEPVAEIGVGAYGTVYK PAAPKAAPATPAAPAPVYLR 
1936.1 4 SIRVTQKSYKVSTSGPR EGEYTGRTPSGADVTLQR SIRVTQKSYKVSTSGPR 

2101.1 4 KIETRDGKLVSESSDVLPK MVQPDSSSLAEVLDRVLDK KIETRDGKLVSESSDVLPK 

2140.2 4 KASGPPVSELITKAVAASKER GERPPDVETTVILPESVFR KASGPPVSELITKAVAASKER 

1933.3 4 VTIAQGGVLPNIQAVLLPK DPEDGRPAPGVEHSNGLGK VTIAQGGVLPNIQAVLLPK 

3292.8 5 LLILEAGHRMSAGQALDHPWVITMAAGSSMK EPLELEDIPIEIDNDDDEDDEDGSGVEYD [387.26]WCGG[12.55]GD[1438.93]PIDIYMK 

3291.8 5 LEILLHLTSLSQTFNHFFPEEKFETLR QPIYPYGSPMGAHVYYPPPVAQPPVRGPVR SPKVPRTLLTLDEQVLSFQRKVGILYCR 

3151.2 5 MGSMFRSEEVALVQLFLPTAAAYTCVSR GSGLPDLVLDVAGEFYKFGLEGIGAVLLGSR DEEVDELYREAPIDKKGNFNYIEFTR 

3752.0 5 LPPGEQCEGEEDTEYMTPSSRPLRPLDTSQSSR CTPFRPSAMSPDFVAQVPLAPDLLPLAELFQRAR RVEKNALKSQLRSMQEQLAEMQQKYVQLCSR 

2359.0 5 CDKDLDTLSGYAMCLPNLTR LGVMLVGWGGNNGSTLTAGVIANR [1655.89]AGVPCTR 
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To evaluate the performance of PSP and InsPecT algorithm, we use the accuracy 

measures (5)-(8). 

 

Results (Table 5) show that the PSP algorithm has comparable accuracy results to 

InsPecT based on our accuracy functions. Though the PSP algorithm has lower 

accuracies than InsPecT for spectrum data with charge 1 and 2, it has comparable or 

higher accuracies compared with InsPecT for spectrum with charge > 2. This shows the 

power of PSP for multi-charge spectrum data. 

 

Table 5: The accuracy results of PSP and InsPecT on GPM datasets. The accuracies in 

cells are represented in a (specificity/sensitivity/[tag-specificity /tag-sensitivity]) format. 

Charge Number of spectrum PSP InsPecT 

1 756 0.301/0.285[0.110/0.108] 0.448/0.446[0.287/0.289] 

2 874 0.412/0.400[0.213/0.212] 0.460/0.455[0.305/0.305] 

3 454 0.338/0.339[0.143/0.144] 0.360/0.362[0.193/0.194] 

4 207 0.302/0.322[0.099/0.109] 0.276/0.292[0.102/0.109] 

5 37 0.286/0.340[0.088/0.120] 0.241/0.279[0.077/0.093] 

Total 2328 0.350/0.343[0.153/0.152] 0.417/0.417[0.256/0.257] 

 

We have calculated the ratios that the completely correct peptides are sequenced by the 

algorithms. Results show that InsPecT has better performance than PSP algorithm based 

on this criterion. 

 

We have also compared some of our sequencing results with those obtained from 

InsPecT, and listed the sequencing results in details (Table 6). From these results, we can 

see that both PSP and InsPecT can correctly predict a large portion of the peptide 

sequences. 
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The experiments on ISB datasets [27] are also performed. The results show that our 

results are not as accurate as the results of InsPecT, but comparable to Mascot’s. 

 

Comparison with PeptideSearch and SPIDER show that the accuracies of PSP algorithm 

are superior to PeptideSearch algorithm, and comparable to SPIDER algorithm. 

 

Table 6: Comparisons of InsPecT and PSP on selected spectra. The accurate 

subsequences are labeled in italics. A “-” means that there is no result. 

 

The processing time of PSP algorithm is moderate. Running on a PC with 3GHz of CPU 

and 1GB of RAM, it uses about 10 seconds for the sequencing of one spectrum (the 

average of 50 PSPs checked). This running time is comparable with typical methods such 

as Sequest [16, 17], but slower than InsPacT [14]. The running time is also dependent on 

the quality of the spectrum data, especially the accuracy of the parent mass, so high 

quality data may result in fast process as well as high accuracy. For example, the running 

time is about 60 seconds for a spectrum data, for which we have generated more than 300 

PSPs in step 2 of the PSP algorithm (refer to Figure 13). 

3.7 New Computational Models for Preprocess and Anti-symmetric 

Problem 

 

M/Z charge correct InsPecT PSP 
1219.8 2 VAQLEQVYIR VAQLEQVYIR VAQLEQVYLR 

1397.9 2 ELEEIVQPIISK ELEEIVQPIISK ELEEIVQPIISK 
1644.9 2 PAAPAAPAPAEKTPVKK PAAPAAPAPAEKTPVKK AAPAETSDLEFAVKK 

881.5 2 SPRLRPR PSIVGRPR SPIVRGPR 
1448.7 2 LPGAYFFSFTLGK LPQSLKLHIIVGK LVRGQNTVHILGK 

1888.1 3 VTHAVVTVPAYFNDAQR VTHAVVTVPAYFNDAQR IVVTQPRRISAVSVAER 
1934.1 3 DNHLLGTFDLTGIPPAPR DNHLLGTFDLTGIPPAPR KNVALIGLTVETGSALVPK 

1934.3 3 DNNLLGKFELTGIPPAPR DNHLLGTFDLTGIPPAPR DNNLLGKFELTGIPPAPR 

1838.8 3 SSYSLSGWYENIYIR SDGGLVMKRDPTEYIR SSYSLSGWYENIYIR 

1761.0 3 PAAPAPAEKTPVKKKAR - - 

1932.8 4 HKVYACEVTHQGLSSPVTK - TLKVDGNDETFALSNISK 

2000.2 4 PAAPAAPAPAEKTPVKKKAR PAAPAAPAPAEKTPVKKKAR PAAPKAAPATPAAPAPVYLR 

1936.1 4 SIRVTQKSYKVSTSGPR YGKPFKLIFHVSTLQR SIRVTQKSYKVSTSGPR 

2101.1 4 KIETRDGKLVSESSDVLPK KIETRDGKLVSESSDVLPK KIETRDGKLVSESSDVLPK 

2140.2 4 KASGPPVSELITKAVAASKER KASGPPVSELITKAVAASKER KASGPPVSELITKAVAASKER 

1933.3 4 VTIAQGGVLPNIQAVLLPK VAQLEQVYIR VTIAQGGVLPNIQAVLLPK 

3292.8 5 LLILEAGHRMSAGQALDHPWVITMAAGSSMK ELEEIVQPIISK [387.26]WCGG[12.55]GD[1438.93]PIDIYMK 

3291.8 5 LEILLHLTSLSQTFNHFFPEEKFETLR PAAPAAPAPAEKTPVKK SPKVPRTLLTLDEQVLSFQRKVGILYCR 

3151.2 5 MGSMFRSEEVALVQLFLPTAAAYTCVSR PSIVGRPR DEEVDELYREAPIDKKGNFNYIEFTR 

3752.0 5 LPPGEQCEGEEDTEYMTPSSRPLRPLDTSQSSR LPQSLKLHIIVGK RVEKNALKSQLRSMQEQLAEMQQKYVQLCSR 

2359.0 5 CDKDLDTLSGYAMCLPNLTR VTHAVVTVPAYFNDAQR [1655.89]AGVPCTR 
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Though current extensive research in peptide identification helps to improve the 

accuracies, there are still many obstacles for both De Novo and database search 

approaches, which make further improvement of the accuracies of peptide identification 

difficult. Among these obstacles, preprocess to remove the noise from spectrum before 

peptide identification, as well as the anti-symmetric problem, are two very important 

issues; and they are our focus in this project. 

 

Preprocess to remove noise 

 

A peak in spectrum is noisy if it is not the result of peptide fragmentation, but due to 

contaminant in mass spectrometers, experiment environments, etc. Since most of the 

spectra contain a significant amount of noise, and noisy peaks may mislead interpretation; 

therefore, preprocessing to remove noisy peaks from the spectrum is necessary. 

 

The anti-symmetric problem 

 

A peak pi is anti-symmetric if there can be different ion type interpretations for pi, 

otherwise, pi is symmetric. There is an anti-symmetric problem in spectrum S if S has one 

peak pi which is anti-symmetric.  For the spectrum graph G [18] used to represent 

spectrum, a path in G is called anti-symmetric if there are no two vertices (ion 

interpretations) on this path which represent the same peak; otherwise, there is anti-

symmetric problem. The anti-symmetric problem is common in spectrum. Currently there 

are generally two approaches to the anti-symmetric problem. One approach is not to 

consider the anti-symmetric problem [28]; and another is to apply the “strict” anti-

symmetric rule that require each peak to represent at most one fragment ion [29, 43, 79]. 
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The “strict” anti-symmetric rule is used by many in peptide sequencing, but whether 

applying this rule is realistic is doubtful. 

 

In this project, we addressed preprocess computational model to remove noise peaks 

from spectrum. This model also includes the method for introduction of “pseudo peaks” 

into the spectrum to improve peptide sequencing accuracies. We have also proposed the 

restricted anti-symmetric model for the anti-symmetric problem. We have then proposed 

a novel peptide sequencing algorithm which incorporate these two computational models. 

3.7.1 Analysis of problems and current algorithms 

 

Datasets 

 

All of the experiments use the spectra selected with different charges from GPM dataset 

[31] and ISB datasets [27] as described previously in Table 1. 

 

Problem Analysis 

 

Since binning is generally the prerequisites for spectra data preprocessing, in this section, 

we first analyze the methods for binning of the peaks in the spectrum, and then discuss on 

using preprocessing to remove noisy peaks and introduce “pseudo peaks” into spectrum, 

followed by the analysis of anti-symmetric problem. 

 

� Binning of peaks in spectrum 
The binning idea is already embedded in [32, 33] for the purpose of mass spectrum 

alignment. In [32, 33], the peaks of the spectrum are packed into many bins of same size, 

and the spectrum is translated into sequences of 0s and 1s. More recently, a database 

search algorithm COMET [34] is proposed which uses the bins (usually of size 1 Da) for 
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their correlations and statistical analysis (Z-score) for accurate peptide identification by 

database search (spectrum comparison). 

 

The important parameters considered in binning include the size of the bins, the 

interpretation of supporting peaks (bins), as well as the peaks (bins) intensity. 

 

Lemma 1. Given the mass range mbin for bin, and mass tolerance of mt without binning. 

If we increase tolerance to mt*=mbin+mt after binning, then the binning will not miss any 

possible amino acid interpretations. 

Proof: For two peaks, pi and pj with mass of m(pi) and m(pj) respectively, and some 

amino acid with mass m(AAk), suppose ||m(pi)-m(pj)| - m(AAk)| ≤ mt, so there is an amino 

acid interpretations; also suppose after binning, their respective bin has the peak pi* and 

pj*. Then ||m(pi*)-m(pj*)| - |m(pi)-m(pj)|| ≤ mbin. It follows that ||m(pi*)-m(pj*)| - m(AAk)| 

≤ mbin+mt. Given tolerance mt*=mbin+mt after binning, it is obvious that ||m(pi*)-m(pj*)| - 

m(AAk)| ≤ mt*. Therefore the same amino acid interpretation is not missed. Proved. 

 

Therefore, it is clear that given the proper value of tolerance, the binning can preserve the 

accuracies. The binning method makes the removal of noise easier, and also makes 

sequencing faster and potentially more accurate, especially for noisy spectrum. 

 

� Preprocess to remove noisy peaks and introduce pseudo peaks 
Noisy peaks exist in every spectrum, but how to distinguish them from “true” peaks is not 

an easy problem. The first step is to analyze the spectrum data and find the patterns of 

noisy peaks. To this end, we have analyzed most abundant ion type: {b-ion, ∅, 1}, {b-ion, 

∅, 2}, {b-ion, -H2O, 1}, {b-ion, -NH3, 1}, {y-ion, ∅, 1}, {y-ion, ∅, 2}, {y-ion, -H2O, 1}, 

{y-ion, -NH3, 1}, and assume those peaks not of these ion types noise. The analysis is 
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done on GPM dataset and ISB dataset. The theoretical spectrum that we have considered 

for peptide P can be obtained by generating all possible ion types from every PRM of P. 

Each of the possible ion types of a PRM is represented as a peak in theoretical spectrum. 

The experimental spectrum and theoretical spectrum for the corresponding peptide is 

compared, and peaks in experimental spectrum that can be matched with certain ion types 

are counted. The “content” of peaks for specific ion type is defined as the number of 

peaks of that ion type, over total number of peaks in experimental spectrum. The number 

of peaks and the contents of peaks of different ion types are analyzed, with results 

(average) in Table 7.  

 

Table 7. The average contents of different types of peaks in GPM and ISB spectra.  The 

symmetric peaks are just counted once for total content measures. 

Ion type No. of peaks (Avg) Content  

 GPM ISB ISB GPM 

b-ion, ∅, 1 23.71 111.83 0.04 0.06 

b-ion, ∅, 2 3.88 35.49 0.01 0.01 

b-ion, -H2O, 1 4.52 18.29 0.01 0.01 

b-ion, -NH3, 1 3.41 18.11 0.01 0.01 

y-ion, ∅, 1 23.84 69.55 0.05 0.05 

y-ion, -H2O, 1 23.45 113.57 0.04 0.05 

y-ion, -H2O, 1 3.12 36.48 0.01 0.01 

y-ion, -NH3, 1 3.13 20.13 0.01 0.01 

Noise 433.85 3017.9 0.83 0.80 

Total 522.91 3441.35 1.00 1.00 

 

From Table 7, we can see that noisy peaks form a significant portion of the peaks in the 

experimental spectrum. For GPM datasets, 80% of the peaks are noisy peaks, and the 

most abundant ion types - the b- and y- ion types, only compose 6% and 5% of the peaks. 

For ISB datasets, 83% of the peaks are noisy peaks, and the most abundant ion types - the 

b- and y- ion types, only compose 4% and 5% of the peaks. ISB spectra have more noisy 

peaks, and peptide sequencing for these spectra are more difficult. 
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Further analysis of the noisy peaks indicates that there are more noisy peaks in the middle 

part of the spectrum, than those at the two ends of the spectrum. Also, most of the noisy 

peaks have some features in common, such as low intensity and less other ion (b-, y-, loss 

of water or ammonia, for example) support. 

 

For famous algorithms such as Lutefisk [28], there are no preprocessing done to remove 

noise. PEAKS [35] and PepNovo [19] are two famous algorithms that have implemented 

preprocessing. In PEAKS, the noise level of the spectrum is estimated, and the intensities 

of all the peaks in the spectrum are reduced by this noise level. Then all the peaks with 

zero or negative intensities are removed. PepNovo have preprocessed peaks to remove or 

downgrade peaks that have low intensity, and do not appear to be b- or y-ions. Recently, 

the AUDENS algorithm has been proposed [36]. The algorithm has a flexible 

preprocessing module which screens through the peaks in the spectrum, and distinguishes 

between signal and noise peaks. 

 

Traditional preprocess for peptide sequencing by mass spectrometry only consider how to 

remove noisy peaks. However, since some fragment ions are not represented by any of 

the peaks, appropriate introduction of “pseudo peaks” into spectrum may connect the 

missing links, and increase the sequencing accuracies. The idea of pseudo peaks is first 

described in PEAKS [35]. It assumes that peaks are at every place in the spectrum, and 

those which are not present in the actual spectrum are peaks with 0 intensities. It is 

proven that appropriate introduction of “pseudo peaks” can partially solve the problem of 

missing edges in the spectrum graph approach [35] 
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In our preprocessing computational model, apart from noisy peaks removal, we will also 

introduce “pseudo peaks” into the spectrum. Notice that though the process is similar to 

previous work, the computation model is different. 

 

� The anti-symmetric problem 
We have mentioned that there are two approaches to the anti-symmetric problem. In the 

following part, we show that both of the approaches are based on unverified assumptions 

that cannot be verified in real spectrum. 

 

To analyze the significance of the anti-symmetric problem in peptide sequencing, we 

generated the theoretical spectrum of known peptide sequences. We analyzed most 

abundant ion type: {b-ion, ∅, 1}, {b-ion, ∅, 2}, {b-ion, -H2O, 1}, {b-ion, -NH3, 1}, {y-

ion, ∅, 1}, {y-ion, ∅, 2}, {y-ion, -H2O, 1}, {y-ion, -NH3, 1}, and assume there is no 

noise. The analysis is done on theoretical spectra for GPM dataset and ISB dataset. Two 

peaks are said to be overlap if their mass difference is within threshold (default of 0.25 

Da). Note that each of such overlapping peaks is equivalent to a symmetric peak. 

Results are shown in Table 8. The “average numbers” are the average number of 

symmetric peaks for theoretical spectrum of one peptide sequence, and the “average 

ratios” are computed as “average numbers”, over average number of peaks in theoretical 

spectrum. 

 

It is obvious that instances of overlaps (within threshold, 0.25 Da) are quite common. For 

the overlaps of b- and y-ions in GPM datasets, there is one overlap instance in about 5 

peptide sequences, or in about 67 amino acids. The overall overlap instances are even 
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more common, one instance in about 0.36 sequences, or about 5 amino acids. The ISB 

datasets has a little less overlaps, but overall, there is still more than one instance in 0.35 

sequences, or about one isntance in 4 amino acids. 

 

Note that we have not considered peaks with high-charges (z≥3). But previous research 

[3] found significant amount of high-charge (z≥3) peaks in high-charge spectra. It is 

natural that the number of overlapping instances will increase when we consider high-

charge peaks, and more ion types. Therefore, “strict” anti-symmetric rule is not realistic. 

 

Table 8: The average numbers and ratios of overlapping instances for different kinds of 

overlaps. 

Overlapping Types GPM datasets ISB datasets 

 Average 

number 

Average 

Ratio 

Average 

number 

Average 

Ratio 

b-ion, ∅, 1�� y-ion, ∅, 1 0.213 0.015 0.154 0.011 

b-ion, ∅, 1�� y-ion, ∅, 0.203 0.015 0.173 0.012 

b-ion, ∅, 1�� y-ion, -H2O, 1 0.307 0.023 0.307 0.023 

b-ion, ∅, 1�� y-ion, -NH3, 1 0.199 0.014 0.129 0.008 

y-ion, ∅, 1�� b-ion, ∅, 2 0.094 0.006 0.110 0.008 

y-ion, ∅, 1��b-ion, -H2O, 1 0.095 0.006 0.220 0.014 

y-ion, ∅, 1�� b-ion, -NH3, 1 0.090 0.006 0.199 0.012 

b-ion, ∅, 2�� y-ion, ∅, 0.336 0.024 0.331 0.024 

b-ion, ∅, 2�� y-ion, -H2O, 1 0.152 0.000 0.128 0.000 

b-ion, ∅, 2�� y-ion, -NH3, 1 0.255 0.017 0.340 0.021 

y-ion, ∅, 2�� b-ion, -H2O, 1 0.143 0.010 0.124 0.008 

y-ion, ∅, 2�� b-ion, -NH3, 1 0.000 0.000 0.000 0.000 

b-ion, -H2O, 1�� y-ion, -H2O, 1 0.213 0.015 0.154 0.011 

b-ion, -H2O, 1�� y-ion, -NH3, 1 0.125 0.009 0.269 0.018 

y-ion, -H2O, 1�� b-ion, -NH3, 1 0.099 0.007 0.075 0.005 

b-ion, -NH3, 1�� y-ion, -NH3, 1 0.213 0.015 0.154 0.011 

All 2.735 0.192 2.864 0.196 

 

Experiments were also performed with random introduction of noise into theoretical 

spectrum. Results indicate that there is a significant increase in the number of overlap 
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instances, which are not realistic. Therefore, assuming no anti-symmetric problem is also 

not realistic, especially for noisy spectra. 

 

In Lutefisk [28], the anti-symmetric problem is assumed to be non-existent, and a peak 

can be annotated as different ion types. In the Sherenga algorithm [18], only one ion type 

is possible for each peak, but the exact algorithm that solve the anti-symmetric algorithm 

is not described. The dynamic programming algorithm for solving anti-symmetric 

problem is described in [37, 38], and suboptimal algorithm that gives the suboptimal 

results for the anti-symmetric problem is shown in [39]. 

 

Since our experiments have shown that neither of the two approaches to the anti-

symmetric problem is realistic, these simple models may be the obstacles for further 

improvement of these algorithms. Therefore, we propose a more realistic computational 

model to address the anti-symmetric problem. 

3.7.2 New computational models and algorithm  

 

We proposed a new algorithm that is based on two new computational models: 1) 

preprocess that can remove noisy peaks while introduce “pseudo peaks” into the 

spectrum; and 2) new anti-symmetric model that is more flexible and realistic to the anti-

symmetric problem 

 

Preprocess to remove noisy peaks and introduce pseudo peaks 

 

In the binning process, since the masses of amino acids are at least of 1.0 Da difference 

(except for (I, L) and (Q, K), which can not be distinguished by any De Novo peptide 
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sequencing algorithms without using isotop information); the value of mass tolerance mt* 

is set to be 0.5 Da, and the mass range of bin mbin is set to be 0.25 Da (according to 

Lemma 1). With the process of binning, many noisy peaks are also removed from 

spectrum. Therefore, later processes can be even more accurate (lemma 1 shows that 

there is no loss of accuracy) as well as more efficient because less peaks are considered. 

 

After binning, the “pseudo peaks” are introduced into every empty bins, and each of them 

are of 1/10 intensity of the lowest intensity in original spectrum. 

 

After binning the peaks and introduction of “pseudo peaks”, the support scores are 

computed for every bin. Here, we transform each of the bins (peaks) into vertices in the 

extended spectrum graph G1(S
α
β), and then score each of the vertices. Define Nsupport(vi) 

as the number of vj (vj≠vi), where PRM(vj) = PRM(vi). Define the intensity function as 

fintensity(vi) = max(0.01, log10(intensity(vi)), so that fintensity (vi) can not be less than 0. Let L 

be the total number of incoming and outgoing edges for vi, and aj be the amino acid for 

the edge (vi,vj ) (or (vj ,vi)). Then ∑||(PRM(vj)-PRM(vi)|-m(aj)|/L is the average mass 

error for vi. To avoid "divide-by-zero" error in calculating the weight function, we define 

error function as ferror(vi) = max(0.05, ∑||(PRM(vj)-PRM(vi)|-m(aj)|/L). The definition 

ensure that ferror(vi) is larger than 0.05, a reasonably small error value. Then the score of 

vertex vi in G1(S
α
β) is defined as 
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Note that this is different from (4) used in GBST algorithm. For each bin, the support 

score is computed and ranked. 
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Some of the actual peaks that are highly likely to be noise are deleted, and some of the 

pseudo peaks highly likely to represent ion types are kept. By this means, we can not only 

pruned out noise in the spectrum, but also introduce meaningful peaks into the spectrum. 

So we may create a better spectrum graph to process. Based on the analysis of the scores 

of peaks in the spectrum (details not shown here), the lowest 20% bins in scores ranking, 

or those bins with scores less than 1% of the highest ones are filtered out. 

 

The Anti-symmetric Problem 

 

Since a significant ratio of peaks in spectrum can be (correctly) annotated as different ion 

types, the anti-symmetric rule should not be strictly followed. Otherwise, there is loss of 

information. However, since there are still quite some noisy peaks after preprocessing, 

algorithms that do not consider anti-symmetric problem may also be misled by noisy 

peaks, and thus are not preferred. Thus, it would be better if a more flexible and less strict 

anti-symmetric rule is applied on the spectrum for anti-symmetric problem.  

 

We have proposed the restricted anti-symmetric model. In this model, restricted number 

(r) of peaks can have different ion types. It is easy to observe that the current two 

approaches for anti-symmetric problem can be described by this model. The approach 

that do not consider the anti-symmetric problem is the one with r=number of peaks, and 

the approach that applied the anti-symmetric rule is the one with r=0. 

 

Our restricted anti-symmetric model is based on the extended spectrum graph Gi(S
α
β) [3] 

model using multi-charge strong tags in the spectrum. The principle of the restricted anti-

symmetric model is that if a tag Ti in Gi(S
j
k) is of high score, and on this tag, the number 
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(r) of overlapping instances (an instance is represented as two vertices of different ion 

type for the same peak) is within certain tolerance (half of the length of tag), then Ti is a 

good tag in Gi(S
α
β), and it is selected for subsequent process. 

 

It is easy to see that preprocessing and the restricted anti-symmetric models can be 

applied on any De Novo peptide sequencing algorithms to improve the accuracies (details 

in experiments). Below we describe our novel algorithm based on these two models. 

 

Novel Peptide Sequencing Algorithm 

 

The novel algorithm is based on our previously introduced GST-SPC algorithm [4] that 

has good performance. We emphasis again that in the first phase, the GST-SPC algorithm 

computes a set of tags - the set of all multi-charge strong tags (corresponding to tags of 

maximal length in extended spectrum graph) - and this leads to an improvement in the 

sensitivity that can be achieved. In the second phase, the GST-SPC algorithm try to link 

these tags, and computes a peptide sequence that is optimal with respect to shared peaks 

count (SPC) from all sequences that are derived from tags. The GST-SPC performs 

comparable to or better than other De Novo sequencing algorithms (Lutefisk and 

PepNovo), especially for multi-charge mass spectra.  

 

In the novel algorithm, all of the peaks of the spectrum are binned, with each bin of the 

mass range mbin (0.25 Da). The “pseudo peaks” are introduced into every empty bins. 

Bins (vertices in extended spectrum graph) that have very low scores or low support rank 

are filtered out. 
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In GST-SPC algorithm, we note that all of the strong tags can have their SPC computed 

before forming the paths in the spectrum. So in the novel algorithm, after strong tags are 

generated in the extended spectrum graph G1(S
α
β), we have filtered out the tags that 

violate the “restricted anti-symmetric rule”. For the restricted anti-symmetric model on 

tags, we restricted r to be at maximum half the length of that tag. We have then computed 

the SPC for those “good” tags. Then a variant of width first search algorithm is applied 

on G1(S
α
β) to find paths from v0 to vM, so that these paths have high SPC, and they are 

consistent with restricted anti-symmetric model. Since the number of tags is small, such 

algorithm is efficient. A flowchart of the whole algorithm is illustrated in Figure 15. 

 

 

 
Figure 15. Flowchart of the whole algorithm. The preprocess model is illustrated at left, 

and the restricted anti-symmetric model is applied on the GST-SPC algorithm as shown 

at right. “bad” tags are tags that violate the restricted anti-symmetric model. 

3.7.3 Experiments 
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All of the experiments in this project are performed on a PC with 3.0 GHz CPU and 1.0 

GB memory, running Linux system. Our algorithm is implemented in Perl. We have also 

selected Lutefisk [28] and PepNovo [19], two algorithm with freely available 

implementations, for analysis and comparison. The best results given by different 

algorithms are used for analysis. 

 

We have used spectra datasets described in Table 1. For measurement of the sequencing 

performance, we have adopted the measurements (5)-(8).  

 

Results 

 

We have first analyzed the performance of preprocess method, and compared the results 

with results from Lutefisk and PepNovo. We have also compared these results with 

theoretical upper bounds. The GPM and ISB spectra data are categorized by charges 

(given by spectrum data). The results are shown in Table 9. Note that GST-SPC without 

preprocess are shown previously, but for easy reading, I also put these results here. 

 

Table 9. The performance of preprocess. The accuracies in cells are represented in a 

(specificity/sensitivity) format. “-” means that the value is not available by the algorithm, 

and “*” shows the average values based on charge 1 and charge 2 spectra. 

Dataset No. of 

spectrum 

Upper 

Bound 

Lutefisk PepNovo GST-SPC  

(without 

preprocess) 

GST-SPC  

(with 

preprocess) 

GPM       

Charge 1 756 1.00/0.44 0.261/0.258 0.322/0.186 0.369/0.378 0.395/0.381 

Charge 2 874 1.00/0.52 0.243/0.241 0.316/0.215 0.321/0.365 0.334/0.385 

Charge 3 454 1.00/0.38 0.111/0.113 - 0.291/0.291 0.312/0.327 

Charge 4 207 1.00/0.36 0.065/0.063 - 0.219/0.226 0.230/0.229 

Charge 5 37 1.00/0.29 0/0 - 0.192/0.191 0.195/0.190 

Total 2328 1.00/0.41 0.203/0.202 0.319/0.202* 0.312/0.336 0.345/0.360 

ISB       

Charge 1 16 1.00/0.55 0.127/0.130 0.630/0.769 0.370/0.464 0.390/0.473 

Charge 2 489 1.00/0.54 0.033/0.034 0.481/0.445 0.360/0.347 0.411/0.398 

Charge 3 490 1.00/0.46 0.002/0.002 - 0.360/0.453 0.408/0.496 

Total 995 1.00/0.50 0.019/0.020 0.486/0.455 0.360/0.401 0.409/0.447 
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From the results, we have observed that preprocess to remove the noise can effectively 

increase the sequencing accuracies. Compared with the results from original GST_SPC 

without preprocess, both of the specificity and sensitivity accuracies increase by about 

8% for GPM datasets, and about 5% for ISB datasets after preprocess. This difference is 

probably due to the fact that ISB spectrum has more noise in it than GPM spectrum, so 

after preprocessing to filter out noise, ISB spectra still have more noise. Such accuracies 

are much superior to results from Lutefisk algorithm, especially on spectrum with high 

charges (z≥3). The new algorithm outperforms the PepNovo algorithm on GPM datasets; 

and for ISB dataset, the accuracies are closer. Compared with theoretical upper bounds, 

we can see that there is still much room for improvements. 

 

We have also applied Lutefisk and PepNovo algorithms on preprocessed spectrum 

datasets. Since each of the preprocessed results is still a set of peaks, the application of 

these algorithms is easy. Results (Table 12) show that by removing noisy peaks, 

preprocess can also increase the sequencing accuracies for these algorithms. 

 

We have then performed analysis of new anti-symmetric model (restricted anti-

symmetric). All of the results based on GST-SPC algorithm are preprocessed. The results 

based on restricted anti-symmetric model are compared with the results based on strict 

anti-symmetric rule (strict anti-symmetric) and results from GST-SPC which do not 

consider anti-symmetric issue (no anti-symmetric). The results are shown in Table 10. 

 

Table 10 shows that the restricted anti-symmetric model has superior accuracies. 

Compared with the results from algorithms which do not consider anti-symmetric issue 
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(no anti-symmetric), the application of restricted anti-symmetric model can improve the 

accuracies by about 5%, and this is probably due to the fact that restricted anti-symmetric 

model can remove some “bad” tags. About 2% to 5% improvements is observed when 

compared with the results from strict anti-symmetric model, this is consistent with the 

results of significance of the anti-symmetric problem in Table 8. The results also show a 

great improvement in tag specificity and tag sensitivity by using the restricted anti-

symmetric rule, especially on ISB datasets. This may also be caused by the restricted 

anti-symmetric model that removes the “bad” tags. Further more, we have observed that 

sensitivity and specificity values approximate the normal distribution. 

 

Table 10. The results based on the restricted anti-symmetric model, compared with other 

models. The accuracies in cells are represented in a (specificity/sensitivity[tag-

specificity/tag-sensitivity]) format. 

Dataset No. of 

spectrum 

GST-SPC 

(no anti-

symmetric) 

GST-SPC 

(strict anti-

symmetric) 

GST-SPC 

(restricted anti-

symmetric) 

GPM     

Charge 1 756 0.395/0.381 

[0.131/0.130] 

0.394/0.399 

[0.144/0.142] 

0.398/0.342 

[0.144/0.145] 

Charge 2 874 0.334/0.385 

[0.142/0.160] 

0.348/0.386 

[0.130/0.158] 

0.345/0.408 

[0.151/0.159] 

Charge 3 454 0.312/0.327 

[0.077/0.091] 

0.320/0.342 

[0.078/0.090] 

0.332/0.351 

[0.079/0.096] 

Charge 4 207 0.230/0.229 

[0.043/0.042] 

0.238/0.238 

[0.043/0.041] 

0.241/0.239 

[0.046/0.045] 

Charge 5 37 0.195/0.190 

[0.020/0.027] 

0.197/0.195 

[0.026/0.025] 

0.208/0.201 

[0.028/0.029] 

Total 2328 0.345/0.360 

[0.116/0.146] 

0.344/0.364 

[0.123/0.155] 

0.347/0.375 

[0.129/0.158] 

ISB                                          

Charge 1 16 0.390/0.473 

[0.120/0.132] 

0.386/0.486 

[0.121/0.132] 

0.393/0.491 

[0.161/0.160] 

Charge 2 489 0.411/0.398 

[0.096/0.072] 

0.414/0.397 

[0.090/0.076] 

0.434/0.421 

[0.119/0.121] 

Charge 3 490 0.408/0.496 

[0.101/0.145] 

0.426/0.528 

[0.115/0.156] 

0.419/0.531 

[0.117/0.164] 

Total 995 0.409/0.447 

[0.109/0.120] 

0.419/0.464 

[0.118/0.112] 

0.427/0.475 

[0.119/0.141] 

 

 



62 

Compare the results in Table 10 with the results from Table 9, we have also observed that 

by the use of restricted anti-symmetric rule, the peptide sequencing results are more 

accurate. The GST-SPC with restricted anti-symmetric rule has results closer to 

accuracies of PepNovo, and significantly better than results of Lutefisk. We also note that 

these accuracy results are still about 20% (charge 1 and charge 2 spectrum) to 50% 

(charge 5 spectrum) less than the theoretical upper bounds of the accuracies given in [3]. 

 

We have also computed the number of results that are of 100% match with the correct 

peptide sequences (sensitiviety=1 and specificity=1). The results show that all of these 

algorithms that we have compared output more than 5% of 100% match results. For our 

novel algorithm which introduces “pseudo peaks”, the problem that many of the missing 

fragmentations do not have enough peaks support still exists. We think that better scoring 

function can help to improve the ratio of 100% match results. 

 

In Table 11, we have listed a few “good” interpretations of the novel algorithm, on which 

Lutefisk does not provide good results. It is interesting to note that more and longer 

peptide fragments are correctly sequenced by the novel algorithm - the power of 

preprocessing and the restricted anti-symmetric rule. 

 

In these interpretations, we observe that the novel algorithm which incorporates 

preprocess and restricted anti-symmetric model can predict more and longer fragments of 

the correct peptides than Lutefisk, PepNovo and original GST-SPC. Specifically, for the 

peptide sequence “PAAPAAPAPAEKTPVKK”, the two tags “APAAPAPA” and “KK” 

are both interpreted correctly only by this novel algorithm. 
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Table 11. Sequencing results of Lutefisk, PepNovo, GST-SPC and our novel algorithm. 

The accurate subsequences are labeled in italics. “M/Z”means mass to charge ratio, 

“Z”means charge, and “-” means there is no result. 
M/

Z 

Z Real Lutefisk PepNovo GST-SPC Novel Algorithm 

121

9.8 

2 VAQLEQVYIR [170.11]ELEKVYLR GLQLEQVY

LR 

AVEIEQVYIR VAAGKEIEQVYIR 

139

7.9 

2 ELEEIVQPIISK [242.14]EELAVG[LP]LSK EELVKPLL

SK 

EIEEIA[101.02]QHI

SK 

EIEEIGIIGPISK 

164

4.9 

2 PAAPAAPAPAEKTPVKK [AP]AAPA[HS]AP[198.14]PAAA[CS

] 

AAPADFEA

MTNLPK 

APAAPAPA[56.06]A

PAMTKVPK 

APAAPAPAF[51.14]APAD

HAAAP[8.00]KK 

183

8.8 

3 SSYSLSGWYENIYIR [172.09]L[303.17][243.13][NP][MT]L

YLR 

- SSIYI[27.30]IIEPCE

IYIR 

 

200

0.2 

4 PAAPAAPAPAEKTPVKKKA

R 

[323.09]RPA[AP]EKTN[LP]K[199.14

]R 

- APAAPAMWNYNH

KPYIR 

APAAPAAAN[18.00]TNRG

PCIIIWH[35.50]NR 

193

6.1 

4 SIRVTQKSYKVSTSGPR [199.14][PW][259.10]L[250.14]KVST

SGPR 

- VVISVTQK[63.847]

WKVSTSGPR 

VVCPVTQQ[95.80]PGKVS

TSGPR 

210

1.1 

4 KIETRDGKLVSESSDVLPK [243.09]LVR[TY]YTSESSAE[PV]R - IKQHTHECYSESS

DVIPK 

IKQHTHECYSESSDVIPK 

329

2.8 

5 LLILEAGHRMSAGQALDHP

WVITMAAGSSMK 

[226.09]EL[NP][241.18][333.15][303.
17][GP]ND[NM][228.08] 

- IIEIISH[1323.50]PP
TGMTITSMK 

IIEIISSSH[1511.83]DDCHG
CW[23.00]SMK 

375

2.0 

5 LPPGEQCEGEEDTEYMTPS

SRPLRPLDTSQSSR 

- - IPVPAQV[1944.68]

GRSPVQICSR 

IPVVGQVE[2025.98]GRSP

VIKCSR 

235

9.0 

5 CDKDLDTLSGYAMCLPNLT

R 

- - AFCDYA[417.18]R

NQKIRCPTR 

AFCDID[423.17]RNQKIRC

PTR 

 

 

We also applied preprocessing and restricted anti-symmetric model on other algorithms. 

We have selected PepNovo algorithm in this experiment. PepNovo takes input as the 

preprocessed spectra by our preprocess model, and output the tags. We have then 

rescored and rank these tags according to the restricted anti-symmetric model. We refer 

this method based on preprocess and restricted anti-symmetric check as PepNovo*. 

 

Table 12. The performance of preprocess and anti-symmetric model on PepNovo. The 

accuracies in cells are represented in a (specificity/sensitivity) format. 

Dataset No. of spectrum PepNovo PepNovo with preprocess PepNovo* 

GPM     

Charge 1 756 0.322 / 0.186 0.320 / 0.190 0.330 / 0.201 

Charge 2 874 0.316 / 0.215 0.319 / 0.221 0.333 / 0.221 

Total 2328 0.319 / 0.202 0.321 / 0.212 0.331 / 0.220 

ISB     

Charge 1 16 0.630 / 0.769 0.635 / 0.791 0.645 / 0.791 

Charge 2 489 0.481 / 0.445 0.480 / 0.445 0.488 / 0.445 

Total 995 0.486 / 0.455 0.485 / 0.417 0.489 / 0.425 

 

The results show that upon the incorporation of preprocessing, the accuracies of PepNovo 

can be improved, but not substantially. Using preprocess and restricted anti-symmetric 

model together, the accuracies can be further improved. Therefore, we think that the 
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preprocessing and restricted anti-symmetric model can be applied on other algorithms to 

improve the accuracies of these algorithms. 

 

Efficiency 

 

With regards to the computational time and space, the novel algorithm can sequence each 

GPM spectrum (few peaks) in about 8 seconds, and each ISB spectrum (many peaks) in 

20 seconds. This is slightly faster than the original GST-SPC algorithm, but slower than 

Lutefisk algorithm (within 10 seconds for these spectra) and PepNovo algorithm (about 

10 to 15 seconds for these spectra Despite a reduction in the number of peaks by the 

preprocessing, overall computational time has increased due to more candidates being 

tested with the adoption of the restricted anti-symmetric rule. Because of the 

preprocessing, the space needed is less than the original GST-SPC algorithm. In general, 

the novel algorithm requires 20 MB memory to process one GPM spectrum, and about 50 

MB memory to process one ISB spectrum, most of the which are used to store the 

extended spectrum graph. 

3.8 Discussions 

Multi-charge spectra have not been adequately addressed by many De Novo sequencing 

algorithms. In this series of projects, we first gave a characterization of multi-charge 

spectra and used it to analyze multi-charge spectra from GPM. Our results clearly show 

why existing algorithms do not perform well on multi-charged spectra.  

 

We then present a simple De Novo sequencing algorithm (GBST algorithm) which makes 

use of extended spectrum graph and strong tags to predict peptides for spectra. GBST 
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algorithm not only works well for multi-charge spectra, but also performs well on single-

charge spectra.  

 

We have also proposed a novel algorithm, GST-SPC for De Novo sequencing of multi-

charge MS/MS spectra.  Our algorithm is based on the idea of using multi-charge strong 

tags to reduce the size of the candidate space to be searched. For a fixed set of strong 

tags, the GST-SPC algorithm optimizes the shared peaks count among all possible 

augmentations of the tags to form peptide sequences. The experimental results on ISB 

and GPM datasets show that GST-SPC is better than the GBST algorithm and Lutefisk.  

Against PepNovo; it performs better on GPM datasets and is worse on the ISB datasets. 

We have also derived the theoretical upper bound results for our algorithms.  

 

However, it is interesting to note that none of these algorithms is close to the theoretical 

upper bound of the sensitivity (based on R∆ restriction). This indicates that there is a 

possibility that there can be an algorithm based on MST that outperforms all of these 

algorithms. 

 

We have also developed a database search algorithm for peptide sequencing using 

tandem mass spectrometry. The key steps of the algorithm are the selection of the tags 

from the spectrum of the peptide, and the approximate match of the PSP against the 

peptides in the database. Our algorithm does not need to compare the experimental 

spectrum to the theoretical spectrum of the peptides in the database; and in most of the 

cases, it does not even need to check all of the peptides in the database. Experiments 

show that our algorithm is comparable to or more accurate than other database search 

algorithms, including those based on tags. Since our algorithm can output results that 
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contain uninterrupted mass values, it has the potential to cope with the post-translational 

modifications. 

 

I have also addressed two important issues in peptide identification, which are 

encountered in both De Novo and database search approaches. The first one is the 

preprocessing computational model that removes noisy peaks from spectrum while 

simultaneously introducing “pseudo peaks” into the spectrum. We have shown by the 

analysis of peaks that there are many noisy peaks in the spectrum, and that our 

preprocessing can make peptide sequencing faster, easier and more accurate. The second 

issue is about the anti-symmetric problem. We have shown that both using strict anti-

symmetric rule and not considering anti-symmetric problem are not realistic, and we have 

proposed a restricted anti-symmetric model. Both models can help improve accuracies of 

De Novo algorithms, and the novel algorithm that incorporates these models is shown to 

have high performance on the datasets examined. 

 

However, there is still a gap between the accuracies of novel algorithm and the 

theoretical upper bounds [3], and the algorithm can still be improved. This can be done 

by using a better scoring function (rather than SPC), a better preprocessing method, and 

more adaptable anti-symmetric model. 
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Chapter 4 

Peptide Identification Algorithms Based on Tags, SOM and 

MPRQ 
We emphasized that in the peptide identification problem, database search algorithms 

usually return the peptide sequences that match the parent mass of the spectrum. 

However, the accuracy depends on the quality of the database, and the process is slow 

(usually a few minutes). The De Novo algorithm can find tags with high accuracy [2, 3], 

and the process is fast (always within 1 minute) but tags are usually not complete 

sequences for the spectra. Hence, how to achieve a balance between identification 

efficiency and accuracy for peptide identification by tandem mass spectrum is an 

important consideration, and is the focus of the following series of projects. 

 

The above mentioned peptide identification algorithms are still in the traditional 

framework, in which experimental spectrum (or tags from experimental spectrum) is 

compared against peptide sequences (in database or virtual database). I have proposed 

novel peptide identification algorithms that are not within this framework. In these 

algorithms, the experimental spectrum is converted to vector in high dimensional feature 

space, and then converted to points on 2D plane. The peptide sequences are also 

converted to vectors in high dimensional feature space and then to points on 2D space. 

By this way, the similarity of spectrum is converted to similarity of vectors and then to 

the neighborhood of points on 2D plane. Thus, the peptide identification problem has 

been transform to the vector comparison problem. For more accurate identification, we 

have also compared the candidate peptides with tags and experimental spectrum. 
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4.1 SOM and Multiple Point Range Query 

SOM is an unsupervised machine learning technique that can transform high-dimensional 

vectors to 2D points on a plane. In the training process, a SOM (map) is built and the 

neural network organizes itself using a competitive process. The SOM usually consists of 

a two-dimensional regular grid of nodes. The node whose weights are closest to an input 

vector V, termed the best-matching or winner node, is updated to be more similar to V 

while the winner’s neighbors are also updated (to a smaller extent) to be more similar to 

V. As a result, when a SOM is trained over a few thousand epochs, it gradually evolves 

into clusters whose data (in our case, peptides) are characterized by their similarity. 

Increasingly, SOM is used as an efficient and powerful tool for analyzing and extracting 

a wide range of biological information as well as for gene prediction [40-42]. The SOM 

is useful for peptide identification because it serves two purposes: dimensionality 

reduction and clustering. SOM can reduce high-dimensional data into a grid of nodes (i.e. 

usually a 2D map) yet preserve the “similarity” of the original data by projecting them 

onto clusters of points with close metric (Euclidean) distance. In short, spectrum 

similarity could be transformed to vector similarity (SOM data) and then to 2D points 

metric distance. Subsequently, MPRQ works on the 2D points to efficiently identify 

candidates that are similar to query spectra. Though there are other machine learning 

methods that serve similar purposes, SOM is chosen for peptide identification because 

SOM is proven to be effective for similarity search [43], and the number of candidate 

peptides can be easily controlled by adjusting search distance d (introduced in MPRQ). 

 

The MPRQ technique is used for multi-point query on a 2D plane. The general idea 

behind MPRQ is to perform only one pass of the R-tree while simultaneously process 
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multiple query points (transformed from experimental spectrum). The R-tree is widely 

used as a data structure for indexing 2D points. Each node of an R-tree is represented by 

a minimum bounding rectangle (MBR) that bounds the location of its children (of smaller 

MBRs) until the leaf level where the actual 2D points are stored. At each MBR node R in 

the R-tree, the MPRQ algorithm processes all the children of R against all the query 

points. MPRQ takes O(logB n + k/B) time using bulkloaded R-trees (such as STR [44]) 

which has a bounded height of O(log n), where m is the number of query points, n is the 

total number of points in the plane, B is the disk block size, and k is the number of results 

found. The key observation is that when search proceeds down the R-tree, the number of 

query points to be processed at each node also decreases rapidly (since the MBR is much 

smaller). 

 

For peptide identification, after the theoretical spectra for the peptide sequences in the 

database are mapped as 2D points on a SOM map, we can transform the query 

(experimental) spectra into query points in 2D plane and proceed to query. It is possible 

to use many experimental spectra as the query, which translates to multiple points in 2D 

plane as the input for MPRQ algorithm. Apart from a set of query points, the MPRQ 

algorithm also accepts as input a parameter d that controls the radius of the search 

distance. The larger the value of d, the more candidate peptides will be returned. MPRQ 

can efficiently process the multiple input points simultaneously with respect to d and the 

MBRs during query, effectively perform configurable multi-spectra similarity search on 

database of known peptides. 
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4.2 Brief Review and My Work 

This series of projects focus on how to achieve a balance between identification 

completeness, efficiency and reasonable accuracy for peptide identification by tandem 

mass spectrum. In this series of projects, we have used tags, SOM and MPRQ techniques 

for accurate peptide identification. 

 

We have already reviewed InsPecT and some other database search algorithms based on 

tags. Recently, a coarse filtering method commonly associated with database search 

techniques was also introduced for peptide identification [45]. The spectra are converted 

to vectors; and then by using a metric distance-based indexing algorithm, initial 

candidates are produced for fine filtering later. A modified shared peaks count (SPC) 

scoring function was used to compute similarity among spectra. The coarse filtering can 

reduce the number of candidates to about 0.5% of the database. For fine filtering, a 

Bayesian scoring scheme is then applied on candidate spectra to more accurately identify 

peptide sequences. These two algorithms are similar in that they first choose a set of 

candidates, and then use fine scoring function to score and rank these candidates.  

 

While algorithms based on tags can achieve reasonable accuracy and efficiency, they 

cannot guarantee the completeness of the results. This is because the completeness of the 

results (either De Novo or database search) is dependent on the quality of the tags which 

in turn is highly dependent on the quality of the spectra. On the other hand,  filtering 

algorithms can achieve completeness and efficiency, but with less than satisfactory 

accuracy. This is because such spectrum comparison algorithms cannot adjust well to 

low-quality spectra, especially those with PTMs. 
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Therefore, we proposed novel peptide identification approachs that are based on multi-

charge strong tags, SOM and MPRQ techniques. In these algorithms, the experimental 

spectrum is converted to vectors in high dimensional feature space, and then converted to 

points on 2D plane. The peptide sequences (transformed to theoretical spectra) in 

database are also converted to high dimensional feature space and then to points on 2D 

space. In this way, the similarity of spectrum is converted to similarity of vectors and 

then to the neighborhood of points on 2D plane. 

 

In the first project based on using SOM and MPRQ [7], we analyzed the feasibility of 

transforming mass spectrum to vector and then to point on 2D plane. We proposed a 

simple algorithm PepSOM, and analyzed its performance. In this project, we emphasize 

on the balance between identification completeness and efficiency with reasonable 

accuracy for peptide identification by tandem mass spectrum. Our algorithm works by 

converting spectra to vectors in high-dimensional space, and subsequently use self-

organizing map (SOM) and multi-point range query (MPRQ) algorithm as a coarse filter 

to reduce the number of candidates. This way, the efficient and completeness of the 

results of database search are achieved. The candidates are then compared with 

experimental spectrum by SPC to ensure accuracy. 

 

In the second project on using tags and SOM [8], we emphasized on striking a balance 

between identification completeness, accuracy and efficiency in peptide identification by 

tandem mass spectrum. We again converted spectrum to vectors in high-dimensional 

space, and used self-organizing map (SOM) and multi-point range query (MPRQ) 

algorithm to reduce the number of candidate peptides. Then the candidate peptides are 
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scored by comparing with tags generated by De Novo algorithm. Experiments show that 

our algorithm is both fast and accurate in peptide identification. And our algorithm is also 

accurate for peptide identification with Post Translational Modifications (PTMs). 

 

In the third project [9], we have emphasized on the identification of peptides with Post-

Translational Modifications (PTMs). For identification of peptides with PTMs, traditional 

database search algorithms are constrained by known peptides, while traditional De Novo 

algorithms are limited by known amino acids, and both of them are also limited by 

known modifications. 

 

In this project, we have proposed a novel algorithm (TagSOM) for peptide identification 

with PTMs. The algorithm first selected several important features of the spectrum that 

are less affected by PTMs (PTM-free features), such as highly reliable tags generated by 

De Novo algorithm. Based on these features, the algorithm transformed every putative 

peptide in database to high-dimensional vector, and then uses SOM to map these vectors 

to 2D plane. The algorithm then transformed every experimental spectrum to high-

dimensional vectors according to these features, map them to the same 2D plane as query 

points, and perform MPRQ to retrieve a set of candidate peptides for each experimental 

spectrum. By comparing and validating these candidate peptides with tags and 

experimental spectrum, we expect that PTMs can be reliably identified. We are currently 

working on this project. 

4.3 PepSOM Algorithm 

The binning of the peaks, as well as the SOM and MPRQ techniques, have been 

described previously in “New Computational Models for Preprocess and Anti-symmetric 
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Problem” section. 

4.3.1 The PepSOM algorithm 

 

We propose a novel peptide identification algorithm in which candidate peptide 

sequences are first selected from database by SOM [43] and the MPRQ [46, 47] 

techniques, and then fine-filtered by comparing their theoretical spectrum with 

experimental spectrum by shared peaks count (SPC). More specifically, the theoretical 

spectra are binned to reduce the number of peaks in consideration. Then they are 

converted to high-dimensional vectors and trained with SOM algorithm to obtain a SOM 

(map). Each theoretical spectrum is then matched with the SOM map to obtain its best-

matching node (expressed in (x,y)-coordinates) which forms the basis input map for the 

MPRQ algorithm. The experimental spectra are prepared similarly (binned, vectorized, 

matched; albeit without training) and the resulting coordinates form the input points for 

the MPRQ query. Figure 16 shows PepSOM as a coarse filtering step. 

 

 

Coarse Filtering (DB, ES, d) 
// input: peptide database DB, expt spectra ES, similarity d 
// output: candidates peptides C 
begin 

  TS � generate theoretical spectra for putative peptides in 
DB; 
  V1 � Binning(TS); 
  som_map � TrainSOM(V1); // SOM training 

  2d_map � MapSOM(som_map, V1);// map of (x,y)-coords 

  V2 � Binning(ES); 

  Q � MapSOM(som_map, V2); // obtain multi points query set 

  C � MPRQ(2d_map, Q, d); // get candidates set C from MPRQ 
query 
  return C; 
end; 

Figure 16. (left) In this example of a SOM, each spectrum is represented by a black dot. 

Neighboring dots have mutually similar shades of gray. Note that one node may represent 

overlapping spectra. (right) Our algorithm uses SOM and MPRQ for coarse filtering.  

 

When these candidate peptides are retrieved, they are compared to experimental spectrum 

by SPC. The flow of PepSOM is illustrated in Figure 17 (a). 
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Figure 17. Diagram for the peptide identification with PepSOM. (a) SPC is used to score 

and rank candidate peptides. (b) Candidate peptides are scored and ranked by comparing 

with tags and experimental spectrum. 

 

Although SOM has been used before for gene prediction [40], this is the first attempt of 

its kind to combine SOM with spatial database search for peptide identification. Many 

efficient algorithms exist for spatial database search in orthogonal 2D grids or 

hierarchical data structures. SOM is useful because we believe that by using SOM, the 

2D distance between points on the map reflects the similarity of peptides. Combining 

SOM with MPRQ technique, peptides can be identified accurately and fast. 

4.3.2 Experiments 

 

Experiment Settings and Datasets 

 

Experiments were performed on a PC with 3.0 GHz CPU and 1.0 GB memory, running 

Linux system. PepSOM was implemented in C++ and Perl. SOM_PAK [48] was the 
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SOM implementation that we have used. We have have selected two database search 

algorithms, Sequest [16, 17] and InsPecT [14]; as well as two De Novo algorithms with 

freely available implementations, Lutefisk [23] and PepNovo [19], for comparison and 

analysis. The best results (results with first rank) given by these algorithms were used for 

analysis. 

 

Spectrum datasets were obtained from Open Proteomics Database [49], PeptideAtlas 

database [50] and Institute for Systems Biology (ISB) [27]. We will refer to these 

datasets as OPD, PeptideAtlas and ISB datasets for the rest of this project. The three 

datasets chosen are of vastly different sizes. We treated Sequest results (identified 

peptides) with cross-correlation score (Xcorr) above 2.5 as ground truth. 

 

For OPD, the spectrum dataset used was opd00001_ECOLI, Escherichia coli spectra 

021112.EcoliSol 37.1(000). The spectra were obtained from E. coli HMS 174 (DE3) cell, 

which is grown in LB medium until ~0.6 abs (OD 600). The spectra were generated by 

the ThermoFinnigan ESI-Ion Trap “Dexa XP Plus” and the sequences for these spectra 

were validated by Sequest algorithm [16, 17]. There are 3,903 spectra in total – of which 

1573, 1165 and 1165 have parent charge α = 1, 2 and 3, respectively. We have chosen all 

of the 202 spectra that were identified with Xcorr ≥ 2.5. 

 

Spectra from PeptideAtlas database [50] were also selected. The spectrum dataset A8_IP 

were obtained from Human Erythroleukemia K562 cell line. Electrospray ionization 

source of an LCQ Classic ion trap mass spectrometer (ThermoElectron, San Jose, CA) 

was used, and DTA files were generated from the MS/MS spectra using TurboSequest. 

The dataset consists of a total of 1,564 spectra, in which there are 782 and 782 spectra for 
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parent charge α = 2 and 3, respectively. We have chosen all of the 44 spectra that were 

identified with Xcorr ≥ 2.5. 

 

The ISB dataset was generated using an ESI source from a mixture of 18 proteins, 

obtained from ion trap mass spectrometry, and consists of spectra of up to charge 3. The 

ISB dataset was of low quality, having between 200-700 peaks each and an average of 

400 peaks. The entire dataset consists of a total of 37,044 spectra. We have chosen all of 

the 995 spectra that were identified with Xcorr ≥ 2.5. 

 

The databases that we used were peptides generated from the respective protein sequence 

datasets. Specifically, E. coli K12 protein sequences from OPD datasets, IPI HUMAN 

protein sequences from PeptideAtlas dataset and human plus control protein mixture 

from ISB dataset. As the number of protein sequences were very large for PeptideAtlas 

(60,090) and ISB (88,374) datasets, we used only the protein sequences corresponding to 

spectra identified with Xcorr ≥ 2.5 (our ground truth set). However, the number of 

extracted sequences is still very large because of many fragmentations.  

 

Table 13. Parameters for the generation of databases and theoretical spectra. 

Parameters Values 

 OPD PeptideAtlas ISB 

No. of protein sequences 4,279 31 3,553 

Total database size 494,049 9,421 1,248,212 

Test dataset size 202 44 995 

Fragments mass tolerance 0.5 Da 

Parent mass tolerance 1.0 Da 

Modifications – 

Charge +2, +3 

Ion type a, b, y, –H2O, –NH3 

Missed cleavages 0 

Protease Trypsin 

Mass range 0-5000 Da 
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The parameters for the generation of databases, test datasets and theoretical spectra are 

shown in Table 13. We used a search distance radius d = 0.25 as the MPRQ parameter. 

 

The accuracy measures that we have used are (5)-(8), as we have described previously. 

 

Experimental Results 

 

We first analyzed the quality of peptide sequences identified by PepSOM (SOM and 

MPRQ) as candidates. We used a search distance radius d = 0.25 as the MPRQ parameter. 

Notice that similar spectra that correspond to the same 2D point can be losslessly 

retrieved by our algorithm since our algorithm has built an index for these overlapping 

spectra. In Table 14, the candidate peptides are scored and ranked by SPC only. The best-

ranked result (highest SPC) among all candidates is labeled as first-rank peptide. It 

represents the peptide with theoretical spectrum that has the highest SPC against the 

experimental spectra. Best-match peptide refers to the peptide among all candidates that 

matches with its “real” peptide with the highest specificity (sensitivity). 

 

Table 14. Statistical results on the quality of candidate identification by SOM and MPRQ. 

For “No. of Complete Correct” and “Complete Correct Accuracy”, first-rank peptide was 

used for analysis. For specificity and sensitivity, the results for “first-rank peptide / best-

match peptide” are shown.  

Datasets 
Database 

Size 

Query 

Size 

No. of 

Complete 

Correct 

Complete 

Correct 

Accuracy 

Sensitivity specificity 
Time 

(ms) 

OPD 494,049 202 44 0.218 0.426 / 0.589 0.554 / 0.777 10.6 

PeptideAtlas 9,421 44 10 0.227 0.440 / 0.632 0.330 / 0.368 10.5 

ISB 1,248,212 995 116 0.117 0.672 / 0.723 0.521 / 0.879 10.8 

 

From Table 14, it is clear that both the sensitivity and specificity of our algorithm using 

SOM and MPRQ is high. The sensitivity and specificity of best-match peptides are much 

higher that those for first-rank peptides, indicating that (i) SPC alone is not a good 

scoring function; and (ii) a properly designed scoring function can improve identification 
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accuracies significantly. Based on the results of best-match peptides,  both sensitivity and 

specificity are higher than 0.55 for the OPD dataset; and specificity is higher than 0.70 

for the ISB dataset. There are also a significant number (10% to 25%) of completely 

correct peptide identifications among first-rank peptides. These figures are comparable to 

PepNovo and InsPecT, and better than Lutefisk (details not shown). The average search 

time for each spectrum is less than 11 ms. This is comparable to InsPecT (with average 

10 ms search time per spectrum with default settings, but based on smaller database), 

which is one of the fastest database search algorithms. Also, a large input (many queries) 

does not increase the overall query time by a lot. Such efficiency is due to the intelligent 

pruning rules embedded within the MPRQ algorithm. 

 

Next, we compared PepSOM with other well-known peptide identification algorithms, 

namely Sequest [16, 17], Lutefisk [23], PepNovo [19] and InsPecT [14], among others. 

Recall that on these datasets, we treated Sequest results with cross-correlation score 

(Xcorr) above 2.5 as ground truth. 

 

Table 15. Comparison of different algorithms on the accuracy of peptide identification. In 

each column, the “specificity / sensitivity” values are listed. 

Datasets 
Database 

Size 

Test 

Size 
InsPecT Lutefisk PepNovo PepSOM 

OPD 494,049 202 0.592 / 0.556 0.129 / 0.008 0.252 / 0.200 0.560 / 0.428 

PeptideAtlas 9,421 44 0.811 / 0.402 0.162 / 0.063 0.291 / 0.135 0.334 / 0.445 

ISB 1,248,212 995 0.602 / 0.633 0.032 / 0.032 0.563 / 0.593 0.529 / 0.680 

 

We can observe from Table 15 that both specificity and sensitivity of PepSOM are better 

than Lutefisk and PepNovo (both De Novo algorithms), and comparable to InsPecT. 

Although InsPecT has higher specificity, our algorithm outperforms InsPecT in 

sensitivity. For the OPD dataset, both algorithms have specificity and sensitivity of about 

0.55. For the PeptideAtlas dataset, the specificity of our algorithm is much worse than 
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that of InsPecT, but sensitivity is about 10% better. For the ISB dataset, PepSOM has 

lower specificity than InsPecT, but sensitivity is higher. 

 

From these experiments, we note that the results for PepSOM are superior primarily 

because of the use of conventional SPC function. To conclude, we can say that 

PepSOM’s performance is comparable to InsPecT in both accuracy and efficiency. 

 

Efficiency 

 

One of the most important features of our algorithm is speed. For batch processing of 

multiple spectra queries, we can see from Table 14 and Table 16 that our algotithm can 

complete peptide identification for large spectrum datasets (> 500 spectra) in less than 30 

secs (e.g. for 500 spectra, 500 × 10.8 ms = 5.4 secs). In comparison, InsPecT takes about 

10 ms on average to process one peptide. Comparing the three different datasets, we also 

observe that the increase in database size only affects the search time of our algorithm 

slightly, as each query takes about 10 to 11 ms on all three datasets. 

 

Table 16. PepSOM-generated candidates’ size, average query size and coarse filtering 

rate for each dataset. 
Database Database 

Size 

Test 

Size 

Candidates 

Size 

Average 

Query Size 

Coarse 

Filtering 

Rate 

OPD 494,049 202 68,610 339.7 0.069% 

PeptideAtlas 9,421 44 654 14.9 0.158% 

ISB 1,248,212 995 101,443 102.0 0.008% 

 

Traditional database search algorithms such as Sequest are much slower than PepSOM. 

Although De Novo algorithms are usually faster than PepSOM, they currently cannot 

generate results with comparable accuracy. In Table 16, candidates’ size represents the 

combined total results from the coarse filtering of the database using the experimental 

spectra (test size) as the input query points for the MPRQ algorithm. Average query size 
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represents the average number of peptide sequence candidates for each spectrum (query 

point). Coarse filtering rate is computed by dividing average query size with database 

size. We only need to compare each spectrum against the candidates identified by MPRQ 

for it. Therefore, the coarse filtering rate is very low. Compared to the tandem cosine 

coarse filter used in [45] which filters to around ~0.5% of the database, it is obvious our 

method has a better filtering efficiency. This explains why PepSOM could achieve fast 

search time. From Figure 18 we find that the larger search distance radius d that we use, 

the larger the average query size (due to the increase of number of candidates); and the 

selection of d = 0.25 is a compromise between efficiency and accuracy. Accuracy 

generally improves slightly with larger values of d but the improvement is not significant. 

 

For the calculation of processing time, note that SOM needs to preprocess the peptide 

sequences in the database prior to searching, just as InsPecT needs to transform the 

database to a trie data structure. Currently, the preprocessing time for PepSOM is a few 

hours for all the databases, the bulk of which is time taken to generate the coordinates of 

the best-matching node for all the peptides in the theoretical spectrum (the MapSOM 

step). The actual SOM training (the TrainSOM step) for our largest database, ISB, takes 

only about 15 mins while PeptideAtlas took less than 1 min to train. 
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Figure 18: Average Query Size (search distance radius d vs % of database size) for the 

ISB dataset. 

 

As for main memory requirements, we observe that InsPecT, for the sake of efficiency, 

requires a large amount of memory to store the trie data structure. The huge size of the 

sequence database also poses a challenge to us. However, in our algorithm, we can 

fragment the database, and subsequently transform each fragment using SOM on 

different workstations in parallel. This is much more efficient, especially when performed 

on a grid of workstations. As the input for MPRQ is a 2D map derived from SOM-trained 

spectra, it can handle a large amount of points with ease typical of any general database 

system. 

4.4 Algorithm Based on Strong Tags and SOM 

Previously, we have proposed PepSOM algorithm that is based on SOM and MPRQ, but 

not using any information of tags. In this algorithm based on tags, SOM and MPRQ, we 

have focused on how to achieve a balance among identification completeness, efficiency 

and accuracy for peptide identification by tandem mass spectrum with PTMs. This is an 
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especially important criterion for developing a successful tool to aid experts in analyzing 

results in the “wet laboratory”.  

 

In this project, we propose a novel peptide identification algorithm that is a combination 

of database search and De Novo approaches. It has the following steps: (i) both peptides 

in database and experimental spectra are first converted to high-dimensional vectors; (ii) 

the vectors are mapped to 2D plane with self-organizing map (SOM) [43]; (iii) the 

candidate peptide sequences are then selected from database with multi-point range query 

(MPRQ) [46, 47]; and (iv) these candidates are scored and ranked (fine filtered) by 

comparing them with the experimental spectrum as well as multi-charge strong tags 

generated by GST-SPC De Novo algorithm [4]. Steps (i)-(iii) can be regarded as the 

coarse filtering step, in which spectra similarity is transformed to vector similarity and 

then to 2D points metric distance similarity. By doing so, the completeness and efficiency 

are achieved. With the addition of (iv), the accuracy is also achieved. Our algorithm can 

also achieve high accuracy in identification of peptides with PTMs, as proven in our 

experiments. 

4.4.1 Computational model and algorithm 

 

In this project, we used multi-charge strong tags generated by the first phase of GST-SPC 

[4] since previous results show that the tags generated by GST-SPC are accurate (“GST-

SPC Algorithm” section). In the following part of this project, we will refer to multi-

charge strong tags as simply tags. 
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Before using SOM, binning is performed to convert peptides (transformed to theoretical 

spectra) in database to high-dimensional vectors in vector space. We have used the same 

binning scheme as described previously in the “New Computational Models for 

Preprocess and Anti-symmetric Problem” section. 

 

For peptide identification, once the theoretical spectra for the peptide sequences in the 

database are mapped as 2D points on a SOM, we transform the query (experimental) 

spectra into query points in 2D plane and proceed to query. It is possible to use many 

experimental spectra as the query, which translates to multiple points in 2D plane as the 

input for MPRQ algorithm. Note again that, apart from a set of query points, the MPRQ 

algorithm also accepts a parameter d that controls the radius of the search distance as 

input. The larger the value of d, the more candidate peptides will be returned. MPRQ can 

efficiently process the multiple input points simultaneously with respect to d and the 

MBRs during query, effectively performing configurable multi-spectra similarity search 

on databases of known peptides. 

 

Scoring and ranking 

 

First we introduce SPC score and Stag score: (a) The SPC score are computed as the 

number of shared peaks between experimental spectrum and theoretical spectrum of the 

identification results (within tolerance), over the number of peaks in theoretical spectrum. 

Note that SPC score differs slightly from SPC described previouslysince it is normalized. 

(b) The Stag score, which measures the similarity of candidates to tags, is computed as the 

ratio of candidate peptide that can match one or more tags (at the correct position in the 

candidate, within the range of [0,100] Da), over the length of the candidate. For example, 
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given the candidate “VAQLEQVYIR” and two tags “VAK” and “IVYLR” appearing at 

the front and rear of the putative peptide, if we allow up to one mismatch, then the 

similarity is computed as (3+5)/10 = 0.8. To score and rank candidate peptides, we define 

and use a scoring function Sλ which is a weighted sum of the SPC score and the Stag score 

against a set of tags. The values of the weights are derived empirically. Specifically, we 

found that w1 = 1 and w2 = 10 give discriminative results. 

 

Sλ = w1
.
SPC + w2

.
Stag (10) 

 

For PTM identification, it is observed that because of peptide fragmentation such as loss 

of water and ammonia, PTMs such as phosphorylation, as well as the experimental errors 

introduced by the mass spectrometer ion detector, mass shifts in spectra are very common. 

Specifically, each PTM corresponds to a set of shifted peaks in experimental spectrum. 

And highly possible PTMs should have strong support represented by such a set of mass 

shifts. In this project, we use a modified SPC scoring function (SPC*) that can better 

handle sets of mass shifts in spectra for identification of peptides with PTMs. 

 

At each cleavage site, we assume any of i*mbin Da for all 0 ≤ i ≤ 100/mbin (100 Da was 

determined empirically; details not shown) as a putative mass shift. We define SPCi,j as 

the SPC between experimental spectrum and theoretical spectrum of identified peptide P, 

where we assume a mass shift of i*mbin Da at cleavage site j of P. It is easy to see that 

SPC0,j is the SPC score of experimental spectrum with theoretical spectrum without mass 

shift at cleavage site j. If the largest SPCi,j for cleavage site j is obtained with i > 0, then 

this cleavage site j is a putative PTM site with mass shift of i*mbin Da, and the PTM score 

SPTM (j) = (SPCi,j–SPC0,j) (11) 
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If SPTM (j) is greater than a threshold TPTM (determined empirically), then we say that this 

putative PTM site is significant, and we identify this as a PTM in peptide. We further 

define SPC{i1…iq},{j1…jq} as the SPC score between experimental spectrum and theoretical 

spectrum of identified peptide P, where mass shift of {i1*mbin … iq*mbin} Da match with 

cleavage site {j1 … jq} of P, in which each SPTM (j) is greater than TPTM. And 

corresponding SPC* is defined as 

SPC* = ∑
=

>−
K

j

PTMPTMiijjii TjSSPCSPC
qqq

1

)0...0(),...()...(),...( ))(()(
111

 (12) 

In which K is the length of the peptide. The modified Sλ score is then defined as 

Sλ* = w1
.
SPC* + w2

.
Stag (13) 

Which can be used for identification of peptides with PTMs. Apparently, PTMs are found 

at positions where tags do not match with candidate peptides, so for SPC* we do not 

consider those cleavage sites j that are covered by tags. Note that this is very different 

from [45], in which a fuzzy cosine distance is used on all of the peaks in the spectrum. 

What’s more, in our SPC* function, a series of mass shifts caused by a single PTM is 

analyzed as a whole event, which is more realistic. 

 

Our Algorithm 

 

We propose a novel peptide identification algorithm:  

1. Peptides from database arefirst transformed to vectors by binning 

2. Candidate peptides are selected by SOM [43] and MPRQ [46, 47] given the 

experimental spectra; 

3. Candidate peptides are scored and ranked by comparing them with the 

experimental spectrum and multi-charge strong tags generated by GST-SPC 

algorithm.  
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The theoretical spectra are binned to reduce noise and the number of peaks in 

consideration, and converting then to high-dimensional vectors at the same time. These 

vectors are input to the SOM algorithm to produce a SOM map. This way, each spectrum 

is mapped to 2D point (expressed in (x,y)-coordinates) on SOM map, which forms the 

input for the MPRQ algorithm. The experimental spectra are prepared similarly (binned 

and matched, but no training) and the resulting coordinates form the input points for the 

MPRQ query. Note that similar spectra may overlap on same 2D point, and our algorithm 

builds an index of all similar spectra on the same 2D point when retrieving candidates. 

Figure 16 shows coarse filtering step of our algorithm. After SOM and MPRQ, scoring 

functions are used to score and rank candidate peptides. The whole algorithm is similar to 

that in Figure 17 (b). The difference is that after SOM and MPRQ, for identifications of 

peptides, Sλ scoring function is used, for identification of peptides with PTMs, Sλ* 

scoring function is used. 

4.4.2 Experiments 

 

Experiment Settings and Datasets 

 

The experiment settings are the same as in PepSOM.  

 

The spectrum datasets and corresponding databases used are the same as those in 

PepSOM. For the ISB datasets, note that these ISB datasets were annotated by a few 

algorithms [14, 51] to be free of PTMs (refer to 

http://www.systemsbiology.org/extra/protein_mixture.html). 
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Also note that in these datasets, there may be different spectra corresponding to same 

peptides. But this will not artificially affect accuracies of different algorithms, since 

algorithms for peptide identification by mass spectrometry are essentially designed to 

identify spectrum-peptide correspondence. 

 

The identification of PTMs is presently a very important issue in peptide identification. 

To analyze PTMs, we first performed experiments on experimental spectra in silico with 

artificially added PTMs (we call these simulated PTMs). We have selected spectra from 

ISB datasets as described above, and note that these spectra do not have any PTM 

annotations. For every peptide, the PTM that We have artificially added is 

phosphorylation for every amino acid involved. In the corresponding experimental 

spectrum, we shifted every peak that corresponds to the respective peptide fragment 

according to the restricted ion types ∆
R
. Note that since our algorithm is not designed 

specifically for phosphorylation, it is can also be easily applied to detect other types of 

PTMs. Summary of modifications: 

Modification Amino acid involved Context Mass difference (Da) 

Phosphorylation T,S,Y  PTM +79.97 

We then performed experiments on the detection of PTMs on real spectra, using ISB 

spectra [27] that contain PTMs but are distinct from the modified ISB dataset we 

described above which does not. It was found that there are PTMs in these ISB datasets 

[51], and their identifications (called UCSD annotation) are available at 

(http://www.systemsbiology. org/extra/UCSD_supplemental_identifications.txt). There 

are 551 spectra with at least one PTM within these 2,799 ISB spectra. In our experiments, 

we evaluate if our algorithm can identify these annotated PTMs correctly. 
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To compare the different algorithms, the following accuracy measures were used: 

Recall = 
# correct

 | ρ |
  

(14) 

Precision = 
# correct

 |P|
  

(15) 

where # correct is the “number of correctly identified amino acids”. Two amino acids in 

the correct peptide ρ and the respective identification result P only contributes one count 

to #correct if they match (except (I, L), as well as (K, Q)) and their positions do not have 

a difference of more than 100 Da (determined empirically) and . Recall indicates the 

quality of the sequence results with respect to the correct peptide sequence - a high recall 

being that the algorithm recovers a large portion of the correct peptide. For a fair 

comparison with algorithms like PepNovo that only outputs the highest scoring tags 

(subsequences), we also use a Precision measure, which measures how many of the 

results are correct. Note that these recall and precision measures are different from (5), 

(6), since there is a position constraint on amino acids in (14), (15), rather than only using 

LCS in (5), (6). 

 

Experimental Results 

 

Firstly, we analyzed the quality of the tags that We have generated. These include the 

ratio of completely correct tags in the results, as well as recall and precision of tags. 

Results are shown in Table 17. Note that the results on OPD and PeptideAtlas datasets 

are not available in our previous section. 

 

In Table 17, “No. of tags per spectrum” refers to the average number of tags generated 

per spectrum. “No. of complete correct per spectrum” measures the average number of 

tags identified that are completely correct (i.e, identified with 100% precision). 
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“Complete correct accuracy” is the ratio of completely correct tags to number of tags on 

average. We observe that more than 1/3 of the amino acids in real peptide sequences can 

be correctly identified by tags. Also, when the tags are generated, more than 70% of the 

tags are completely correct, showing that the tags generated are reliable. Since each tag is 

at least one amino acid in length, it can also be observed that a significant amount of tags 

are overlapping. The recall and precision results are obtained from tags by GST-SPC 

algorithm. Unfortunately, low recall for all datasets means that the sequencing results 

purely based on tags cannot cover the full length of the sequences. Therefore, in the 

following experiments, only the tags with the best scores (defined previously) are used 

for peptide identification. 

 

Table 17. Statistical results on the quality of the generated tags. 

Datasets 
Query 

Size 

Average 

Peptide 

length 

No. of 

tags per 

Spectrum 

No. of 

Complete 

Correct 

per 

Spectrum 

Complete 

Correct 

Accuracy 

Recall Precision 

OPD 202 10.14 7.42 6.01 0.81 0.43 0.43 

PeptideAtlas 44 10.02 9.76 6.83 0.70 0.40 0.36 

ISB 995 19.37 6.19 4.61 0.74 0.36 0.32 

 

The quality of candidate peptides identified by SOM and MPRQ is already analyzed in 

PepSOM. Note that though in this work, the precision and recall are used with amino acid 

position constraint (instead of specificity and sensitivity used in PepSOM); for these 

candidates, the accuracies of results are only a little lower than those in analyses of 

PepSOM. 

 

Another important question is: among the candidate sequences, how many of them are 

identical to the real peptide sequences. We have given the “complete correct accuracy” in 

Table 14. When we consider all of the candidates, the fraction in which the real peptide is 
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in the candidate sequences is much higher; for OPD dataset is 69.5%, PeptideAtlas 63.1% 

and ISB 65.3%. And if we allow up to two amino acids difference from real peptide 

sequences, the ratios increase to 80.1%, 85.3% and 78.6% respectively for OPD, 

PeptideAtlas, ISB datasets. Therefore, given a good scoring function, the peptide 

identification accuracy can be significantly increased. As the size of the candidate 

sequences generated by our algorithm is rather small (see Table 16), we believe these 

high ratios indicate good performance of the SOM and MPRQ for coarse filtering. 

 

Subsequently, we compared our algorithm to other well-known peptide identification 

algorithms. For our algorithm, Sλ is used, and the results are based on peptides with the 

best score. The algorithms to be compared are Lutefisk [28], PepNovo [19] and InsPecT 

[21]. The best results (results with first rank) given by these algorithms were used for 

analysis. Note that since precision and recall is used, instead of specificity and sensitivity, 

the results is a little different from those in analysis of PepSOM. 

 

Table 18. Comparison of different algorithms on the accuracies of peptide identification. 

In each column, the “precision / recall” values are listed. 

Datasets 
Database 

Size 

Query 

Size 
InsPecT Lutefisk PepNovo 

Our 

algorithm 

OPD 494,049 202 0.580 / 0.542 0.101 / 0.006 0.232 / 0.186 0.582 / 0.603 

PeptideAtlas 9,421 44 0.801 / 0.389 0.149 / 0.057 0.275 / 0.128 0.521 / 0.457 

ISB 1,248,212 995 0.584 / 0.621 0.011 / 0.022 0.548 / 0.561 0.594 / 0.695 

 

We can observe from Table 18 that both precision and recall of our algorithm are better 

than Lutefisk and PepNovo (both De Novo algorithms). This is reasonable since De Novo 

algorithms do not utilize any information from databases. But even compare their results 

with the quality of tags generated by our algorithm (Table 17), we notice that the quality 

of tags generated by our algorithm is better than peptide identification results by Lutfisk, 

and comparable with those by PepNovo. Although InsPecT has higher precision, our 
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results outperform InsPecT in recall. Specifically, for the OPD dataset, both the 

algorithms have precision of about 0.58, but our algorithm has higher recall. For the 

PeptideAtlas dataset, the precision of our algorithm is much worse than that of InsPecT, 

but the recall is 17% better. For the ISB dataset, both InsPecT and our algorithm have 

similar precision, but recall of our algorithm is higher. These mean that our results can 

identify more portion of the real peptide. 

 

Comparing Table 15 with the last column of Table 18, we have also observed that by 

scoring peptide candidates using Sλ, both precision and recall consistently increase (last 

column of Table 18), compared with only using SPC score (Table 15). This proves the 

superiority of Sλ scoring function. 

 

PTM identification is of great importance to current mass spectrum analysis. Here, we 

used Sλ* to identify peptides with PTMs. Peptide identification accuracy is measured as 

the percentage of candidate peptides (search results) that contain the exact original 

(unmodified) peptide. PTM identification accuracy is measured as the percentage of 

search results in which the best-score PTM (definition in Section 2.4) identification is 

correct, where PTM identification is defined as correct if the original peptide is identified 

correctly and the putative PTM site difference from the real PTM site is not more than 

100 Da. We reiterate that only when the original peptide is correctly identified will we 

consider the PTM identification. For example, a peptide (with PTM) “AS+80RK” is 

identified correctly, if “ASRK” is identified correctly by database search, and we have 

also identified the PTM site after “S”. 
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We have analyzed the accuracies of PTM identification from spectra with simulated 

PTMs. The results of 995 ISB spectra with simulated PTMs are shown in Table 19. 

 

Table 19. Accuracies (%) of PTM identification from simulated spectra by tags of 

different lengths. The columns with Top i = 1, 2, 3, 4 represent the (peptide / PTM) 

identification accuracies in Top i. “No limit” means that the best-score tags are used 

without any length limit. “Filtration ratio” is computed as the number of candidates after 

tag filtration over the number of candidates after MPRQ. “Time” is the total time to 

identify the peptides and PTMs for 995 spectra. Results without using tags are also 

illustrated. 
Database 

Size 

Query 

Size 

Tag 

length 
Top 1 Top 2 Top 3 Top 4 All 

Filtration 

Ratio 

Time 

(s) 

3 46.7 / 30.2 50.1 / 36.3 62.6 / 40.5 69.2 / 46.5 71.3 / 60.1 0.0148 5.6 

4 34.6 / 56.9 40.5 / 25.6 44.4 / 32.6 51.0 / 39.0 63.3 / 50.0 0.0021 7.5 

No limit 46.8 / 32.9 52.0 / 36.1 58.3 / 43.3 64.4 / 50.1 72.8 / 59.1 0.0491 6.6 

1,248,212 995 

No tag 31.7 / 26.4 35.5 / 26.6 41.1 / 35.2 46.9 / 39.5 56.7 / 40.8 – 10.7 
 

From the results above, it can be observed that sequence tags of length 3 and 4 are able to 

further filter out candidates from the results of SOM and MPRQ. With reduced 

candidates, the accuracy for PTM identification increased. Compared with results without 

tags, the percentages of search results that contain the exact correct peptide are 

significantly higher. For example, for filtration with tags of length 3, about 46.7% to 

71.3% of original peptides are identified correctly. Increase filtration tags length to 4 

decreases peptide identification accuracies, but using filtration best-score tags without 

any length limit do not show such decrease. PTM identification accuracies show similar 

patterns. These indicate that although longer tags may have lower recall, the best-score 

tags are of high recall, regardless of their length. The filtration ratio is small, for instance 

the filtration ratio for tags with length 3 is 0.0148; for length 4 is 0.0021. This indicates 

that filtration by tags can further reduce the number of candidate peptides for further 

careful examination. 
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Experiments on the identification of PTMs on real ISB spectra with “UCSD annotation” 

were also performed. The results of the “UCSD annotation” were treated as ground truth. 

Since experiments on simulated PTMs (Table 19) show that best-score tags with no 

length limits have the best accuracies, we have used these tags here. Results show that the 

filtration ratio of our algorithm is 0.062. The peptide identification accuracies are 42.0, 

45.7, 48.2, 50.6 and 55.5 for Top 1, 2, 3, 4 and All, respectively; and the PTM 

identification accuracies are 31.6, 33.1, 34.8, 40.2 and 41.8 for Top 1, 2, 3, 4 and All, 

respectively. These values are slightly smaller than those on simulated spectra, and we 

think this is due to the diversity of the PTM types in real spectrum. 

 

Efficiency 

 

One of the most important features of our algorithm is that it is very fast. Since the 

efficiency of this algorithm is essentially dependent on SOM and MPRQ query, the time 

and space efficiency of this algorithm is similar to that of PepSOM. So I do not describe 

its efficiency in more details in this section. 

4.5 TagSOM Algorithm 

Here I have focused on identification of peptides with PTMs. For PTMs in spectrum, 

many of traditional algorithms identify them by using a limited set of modifications [47, 

85, 119, 156]. However, this approach is slow and erroneous on spectra with unknown 

modifications. Recently, there are quite some novel algorithms proposed [33, 52]. 

Specifically, [33]proposed a dynamic programming algorithm for blind search of PTMs. 

However, the large search space makes this algorithm inefficient. In [52], the tags are 

used to search for candidate peptides in database search by deterministic finite automaton, 
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and then a point process model is used for blind PTMs identification. This algorithm is 

efficient but its effectiveness for real PTMs identification is not clear. 

 

In this project, we have proposed the TagSOM algorithm for peptide identification with 

Post-Translational Modifications (PTM). TagSOM is an algorithm that is the 

combination of database search strategy and De Novo strategy. TagSOM combines the 

highly reliable tags generated by De Novo algorithm, and reliable candidate peptides 

from database. The combination of tags and candidate peptides provides a basis for 

careful and extensive identification of PTMs. By comparing candidate peptides with tags 

and experimental spectrum, the putative PTMs can be identified. 

 

TagSOM first selected several important features of the spectrum that are affected by 

PTMs very little (PTM-free features), such as highly reliable tags generated by De Novo 

algorithm. Based on these features, TagSOM transformed every putative peptide in 

database to high-dimensional vector, and then uses SOM to map these vectors to 2D 

plane. TagSOM then transformed every experimental spectrum to high-dimensional 

vectors using the same set of features, map them to the same 2D plane as query points, 

and perform MPRQ to retrieve candidate peptides for the experimental spectrum. By 

comparing and validating these candidate peptides with tags and original experimental 

spectrum, peptides with PTMs can be reliably identified. 

 

Tags identification 

 

The identification of tags in spectrum are examined in InsPecT [14] and GST-SPC [53] in 

“GST-SPC Algorithm” section. Generally, tags are putative subsequences of the original 

peptide sequence, which is strongly supported by a set of peaks in experimental spectrum. 
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Feature Selection 

 

Feature selection from spectrum data are typically used for algorithms based on machine 

learning [54, 55]. In [55], a decision tree approach is proposed that identify peptide 

sequences based on peaks intensity. Recently, Arnold et. al. [54] has proposed a machine 

learning algorithm that uses more than 200 features to predict the peptide fragmentation 

patterns. Within these important features for spectrum, some of them are PTM-free 

features. PTM-free features refer to those features that are not affected (or affected much) 

by PTMs. For example, most of the highly reliable tags are PTM-free feature. PTM-free 

features are useful especially when we have to compare spectrum with peptides in 

database. This is because when transforming peptides in database to theoretical spectra, 

PTMs are not considered. 

 

The theoretical spectrum of peptide sequence can be generated providing the restricted 

ion types ∆
R
, or by peptide fragmentation prediction algorithm [54]. The theoretical 

spectrum can then be transformed to vectors according to the selected features. Since 

experimental spectra are transformed to vectors using the same set of PTM-free features, 

the peptide sequences can be transformed to vectors of the same format as experimental 

spectrum. Note that the features for fragmentation patterns (one source of PTM-free 

features) can be used to reliable predict the theoretical spectrum from peptide, and these 

features can also be used for analysis of experimental spectrum. 

 

Once the theoretical spectra for the putative peptide sequences in the database are 

mapped to 2D plane by SOM, we also transform the query (experimental) spectra into 

query point(s) in 2D space and proceed to query. At this point, it is possible to use many 
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experimental spectra as the query, which translates to multiple points in 2D space as the 

input for MPRQ algorithm. Experiments showed that a large input (many points) does not 

increase the overall query time by a lot. This is due to the intelligent pruning rules 

embedded within the MPRQ algorithm. Apart from a set of query points, the MPRQ 

algorithm also accepts as input a parameter d that controls the radius of the search 

distance. The larger the value of d, the more results will be returned. MPRQ can 

efficiently process the input points with respect to d and the MBRs during the query. The 

correlation of nodes on SOM and peptide sequences can be retrieved simply by an 

indexing process. 

 

Peptide and PTM identification 
 

Peptides are identified by comparing candidate peptides with tags and experimental 

spectrum. Candidate peptides are retrieved from database, and they are compared with 

tags retrieved from experimental spectrum. The SPC and statistical analysis are also 

performed for comparison. By comparison, the candidate peptides are scored and ranked, 

with peptide of highest score be most putative peptide for experimental spectrum. 

 
Those PTMs are at positions where tags do not match with candidate peptides, and has a 

set of shifted masses (note that b and y ions have different shift direction) compared with 

experimental spectrum. Highly possible PTMs should have strong support for such a set 

of mass shift. 

4.5.1 Computational model and algorithm 

 

Tags Identification 
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This step generates highly reliable tags by GST-SPC algorithm. Evaluation of the tags is 

based on scoring functions (defined previously) proposed in [53]. 

 

Selection of features and transform spectrum to vectors 

 

PTM-free features are selected so that these features are affected by PTMs only a little; 

and they have high discriminative power when comparing theoretical spectrum with 

experimental spectrum. 

 

We have first examined features mentioned in [54, 55], and select those features that are 

PTM-free. To facilitate the selection, Individual amino acids are encoded using binary 

data representation [56]. All of the candidate features are categorized as below. 

 

(i) Spectrum based features: parent mass, parent charge, average intensity, intensity 

variations, different ions support, neutral loss support, isotope peaks, gas phase 

basicity, helicity, hydrophobicity 

(ii) Environment related features: enzyme used for cleavage (trypsin) 

(iii) Tag based features: tag, tag position, tag length, left flanking mass, right flanking 

mass, tag score. 

 

To select PTM-free features, we have selected experimental spectrum from selected ISB 

datasets [27] with Xcorr ≥ 2.5 for analysis, and have chosen those ISB datasets that were 

annotated by a few algorithms [14, 51] to be free of PTMs (refer to 

http://www.systemsbiology.org/extra/protein_mixture.html). For each of the spectrum in 

the datasets, we have also generated a set of modified spectrum by artificially adding the 

PTMs. This way, we have generated a set of spectrum pairs; in which each pair contain a 
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spectrum without PTMs and the corresponding spectrum with additional PTMs (modified 

spectrum). The PTM-free features are essentially identified by comparing this pair of 

spectra. The specification of selected ISB datasets and the PTMs are listed in Table 20. 

Note that though we have selected only a few PTM types for artificial addition, they are 

enough to distinguish PTM-free features from other features, since PTM-free features 

should be discriminative enough. 

 

Table 20. Specification of selected ISB datasets and the PTMs for analysis of PTM-free 

features. 

 
Parameters Values 

Dataset name ISB 

Experimental Spectrum size 995 

Xcorr  3.0 

PTM type phosphorylation hydroxylation oxidation 

Amino acid involved T,S,Y P M 

Amino acid involved +79.97 +15.99 +15.99 

 

For every putative PTM-free feature Fl, we have checked if it is a significant feature for 

peptide and PTM identification. Suppose there are N spectra, and for each of them, we 

are given the corresponding peptide sequence of length K. For each pair of original 

spectrum and modified spectrum, we observe the likelihood of observing an original (or 

modified) fragment by the matched feature Fl, as well as the likelihood of observing a 

modified (or original) fragment by the mismatched feature Fl. We adopted a log odd ratio 

approach to combine these likelihoods. This way, we will be able to discriminate original 

and modified fragments (represented as PRMs), while not biased to short peptides. We 

define the significance score for the i-th fragment PRMi for feature Fl, ssi,l, as  





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
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The significance score for the whole pair of spectrum for feature Fl, SSj,l, is defined as 
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Positive SSl indicates that the feature is more likely to be a discriminative PTM-free 

feature than otherwise. 

 

Based on this scoring function, we are currently examining all of the putative PTM-free 

features, and select those with positive SS. 

 

The peptides in database are transformed to theoretical spectrum by these PTM-free 

features, and both theoretical spectrum and experimental spectrum are transformed to 

high-dimensional vectors based on these PTM-free features. 

 

SOM and MPRQ to get candidate peptides for experimental spectrum 

 

We have used the SOM and MPRQ techniques detailed in “PepSOM Algorithm” section. 

 

Evaluate candidate peptides 

 

We used scoring functions Sλ (10) and Sλ* (13), which are weighted sum of the SPC 

score and the Stag score against a set of tags. These functions are detailed in “Algorithm 

Based on Strong Tags and SOM” section. 

4.5.2 Experiments and current results 

 

Experiment Settings and Datasets 

 

We have used the same datasets as previously described. In addition, we have used 

spectrum datasets with real PTMs: 
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• ISB dataset: a public collection of MS/MS spectra [27] 

(http://www.systemsbiology.org/extra/protein_mixture.html). This data set was chosen as 

it has been queried extensively, but many spectra remain unannotated. Different from 

previous simulation experiments, we have analyzed all of the ISB spectra, and try to find 

out those modifications exist in experimental spectrum. 

 

It is already discovered that there are some PTMs in ISB datasets [51], and these 

annotations (UCSD annotation) are available at 

http://www.systemsbiology.org/extra/UCSD_supplemental_identifications.txt. There are 

551 spectra with at least one PTM in these 2,799 ISB spectra. We refer to this dataset as 

PTMReal-ISB. 

 

• Lens dataset: spectra acquired from human lens proteins [57]. A major component of 

the lens proteome is crystallins, which have very little turnover, and acquire 

modifications with age. When a person ages, the crystallins become insoluble, and the 

tissue increasingly opaque, often leading to cataracts. PTMs are known to play a major 

role in the process [57]. 

 

It is also known that there are many PTMs in Lens datasets [51], and some of these 

identifications by OpenSea Algorithm [58] are available at 

(http://medir.ohsu.edu/~geneview/publication/supplement_opensea/Opensea_Web_Suppl

ement.html). Another high-confidence PTM annotation dataset on these Lens datasets are 

available at (http://bioinfo2.ucsd.edu). We refer to this dataset as PTMReal-Lens. 
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In this project, we analyze and compare our PTM identification results with these 

published PTM annotations. 

 

The details of datasets and references are listed in Table 21. 

 

Table 21. Specification of the real datasets used for PTM identification. 

Dataset No. of spectrum Database size References 

ISB 2,799 37 proteins (25kb) [27] 

Lens 8887 20 proteins (5kb) [57] 

 

We have used the same measurement of recall and precision as described previously in 

(16), (17). 

 

Further more, to analyze the accuracies of identification of PTMs, we have introduced the 

precision and recall of PTM identifications. 

RecallPTM = # correct PTMs / Total number of known PTMs (19) 

PrecisionPTM = # correct PTMs / Total number of predicted PTMs (20) 

In which # correct PTMs is “the number of known PTMs identified (according to [51])”. 

The RecallPTM and PrecisionPTM reflect the accuracies of different algorithms on the 

dataset examined. However, these measurements can only be applied on peptides 

sequences with known PTMs. 

 

Current Results 

 

We are currently retrieving features and performing experiments on analyzing TagSOM 

algorithm. We will analyze the peptide and PTM identification accuracies by TagSOM, 

and compare these results with the results of other algorithms, such as InsPecT. We will 

also analyze the process time of TagSOM algorithm. Initial results indicate that the 

TagSOM algorithm is efficient; and based on our currently available features, the 

algorithm is accurate for identification of peptides and some known PTMs. 
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4.6 Discussions 

Peptide identification by tandem mass spectrometry is a very important problem in 

proteomics. In these works, I have focused on the balance of identification completeness, 

efficiency and accuracy for peptide identification by tandem mass spectrum. 

 

I have proposed a new computational model that transforms spectrum similarity to vector 

similarity, and subsequently to the neighborhood similarity of points on a 2D plane. 

Based on this, we proposed the PepSOM algorithm which first selects from database of 

all putative peptide sequences, and then transform them into vectors by binning. These 

vectors are then used for training by SOM and for querying by MPRQ, which together 

form a coarse filter for our approach. The resulting candidates are fine-filtered by 

comparing their theoretical spectrum against experimental spectrum using SPC. 

 

Our experiments show that the accuracy of PepSOM is high. Many of PepSOM peptide 

identification results are identical with those identified by Sequest with high Xcorr score. 

These are better than or comparable to the results of the most accurate database search 

algorithms currently available (e.g. InsPecT). The algorithm is also efficient, especially 

for batch processing. However, like other database search approaches, the accuracy of 

our algorithm is dependent on the completeness of spectra database to some extent. 

 

We have also proposed an algorithm that first selects all the putative peptide sequences 

from a database and transforms them into vectors via binning. These vectors are 

converted to SOM after which MPRQ is used to produce candidate peptides efficiently 

(same as PepSOM). Finally we fine-filter these candidate peptides by using a scoring 

function (Sλ for peptide identification, and Sλ* for PTM identification), to compare each 
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of them with experimental spectrum and highly reliable multi-charge strong tags 

generated by GST-SPC De Novo algorithm. 

 

Our computational model combined database search to obtain candidate peptides with 

highly reliable multi-charge strong tags, effectively achieving a balance of identification 

completeness, accuracy and efficiency for the peptide identification problem by tandem 

mass spectrometry. Experiments indicated that our algorithm can achieve high accuracies, 

yet still maintaining fast, efficient processing, especially for batch processes. Another 

important feature of our algorithm is that our algorithm can handle the identification of 

peptides with PTMs with high accuracy. 

 

In TagSOM project, we have proposed a novel algorithm, TagSOM, specifically for 

peptide identification with PTMs. The algorithm transformed peptides in the database, as 

well as experimental spectrum to high-dimensional vectors according to PTM-free 

features, and then use SOM and MPRQ to retrieve candidate peptides for experimental 

spectrum. These candidates are then compared with tags generated by GST-SPC De Novo 

algorithm, as well as with experimental spectrum by scoring function (Sλ for peptide 

identification, and Sλ* for PTM identification). Peptides and PTMs can thus be highly 

realizably identified. Experiments are now under way. 

 

The TagSOM algorithm can be extended to become a more general algorithm by 

including spectrometry machine or environment dependent features such as the type of 

enzymes used, spectrometer measurement error tolerance and the analyzer type (ion trap, 

time-of-flight, etc.). 
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Chapter 5 

Conclusions 
 

This chapter presents a summary of my investigation in the algorithms for peptide and 

PTM identification problems. I have given the discussions for these works previously in 

their respective sections. Here, I will give an overall conclusion, and also discuss possible 

future research directions. 

5.1 Summary 

In this dissertation, I have concentrated on the problems of peptide and PTM 

identificantion. This includes some heuristic algorithms for identification of peptide 

sequences from mass spectrometry, with focus on multi-charge spectrum.  

 

I have first introduced and analyzed the extended spectrum graph computational model. 

Based on this model, I have defined the “best strong tags” which are highly accurate, and 

later proposed the GBST algorithm based on best strong tags. Subsequently, I have 

extended the best strong tags to “multi-charge strong tags”, and proposed the GMST and 

GST-SPC algorithms. The GST-SPC algorithm is also based on computing the SPC of 

the candidate sequences and experimental spectrum. A fast database search algorithm, 

PSP, is also proposed based on tags. 

 

Then I have described algorithms that transformed spectrum to high dimensional vectors. 

Using the SOM and MPRQ technique, these algorithms then transformed the peptide 

sequence similarity to 2D point similarity on SOM map, and performed multiple 

simultaneous queries for candidate peptides efficiently. The first algorithm, PepSOM, 
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empirically proved the effectiveness of using SOM and MPRQ for efficient peptide 

identification. The second algorithm further improved PepSOM by scoring and ranking 

the candidate peptides by comparing them with tags generated by GST-SPC algorithm. 

This algorithm is also capable of PTM identification. The third algorithm, TagSOM, went 

a step further by using the information contained in these candidate peptides and tags 

specifically for the purpose of PTM identification. 

5.2 Main Conclusion 

Peptide and PTM identification are very important in bioinformatics research. My 

research in the area of peptide and PTM identification has contributed to the 

bioinformatics research. 

 

My research in peptide identification has produced a number of fast and accurate 

database search and De Novo algorithms. I believe that these research works on peptide 

identification problems can help researchers in the qualitative and quantitative analysis of 

mass spectrometry data, and also help them to identify novel peptide sequences as well as 

novel post translational modifications (PTMs). 

5.3 Future Research 

For the work on peptides identification using mass spectrometry, I have completed 

projects on peptide identification by De Novo and database search algorithms. I have also 

analyzed the idea of combining the De Novo and database search strategies (SOM and 

MPRQ) to achieve a balance between identification efficiency and accuracy for peptide 

identification by tandem mass spectrum. The detection of PTMs is also investigated. 
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However, based on the analysis on characteristics of multi-charge spectra, we realize that 

there is still a big gap between the accuracies of the results of our current database search 

and De Novo algorithms and the upper bounds of accuracies for peptide identification. So 

we think that further investigation of peptide identification algorithms to improve the 

accuracies is possible and necessary. I have already investigated two issues that 

traditional peptide identification algorithms overlook, namely preprocess to remove noise 

and computational model for anti-symmetric problems. And we have shown that by using 

new computational models for these two issues, the accuracies of peptide identification 

algorithms can be improved. I think further scrutinization of these and other issues can 

further improve the accuracies of peptide identification. 

 

For our algorithms based on tags, SOM and MPRQ, preliminary results have already 

shown that converting spectra to vectors according to their features can improve the 

accuracies of peptide identification. I think that the feature selection process for these 

algorithms can be further improved by using higher quality, more biologically 

meaningful and discriminative features for peptide identification. By performing peptide 

identification based on these features, I think that peptide and PTM identification can be 

more accurate. Moreover, there is reason to believe that peptide identifications can be 

independent of machines setting, since these settings can also be encoded as the features. 
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Appendix A: Multiple Sequences Analysis 
 

Multiple sequences analysis is important in many applications, especially in 

bioinformatics. In multiple sequences comparison, the computation of the Longest 

Common Supersequence (LCS) and the Shortest Common Subsequence (SCS) are well-

known NP-hard problems [59], and these are my focus in multiple sequence analysis. I 

have also investigated the SCS problem on multiple sets of sequences. And I have also 

applied the algorithms for SCS problem on the problem of synthesis strategy design for 

oligos arrays, and on the problem of pattern discovery in biological sequences. 

 

An overview of my work in multiple sequences analysis is illustrated in Figure 19. 

 

 
Figure 19. The outline of my research in multiple sequences analysis. 

A.1 Longest Common Subsequence 

The LCS of a set of sequences can be formulated as this. For two sequences S=s1…sm 

and T=t1…tn, S is the subsequence of T (T is the supersequence of S) if for some 

1≤i1<…<im≤n, 
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subsequence (CS) of S is the sequence T such that each sequence in S is a supersequence 

of T, and a LCS of S is the longest possible T among all of CS for this set of sequences S. 

In the following parts, we will define n as the length of each sequence, and k as the 

number of sequences in the sequences set. 

 

In these series of projects, I have concentrated on two aspect of LCS. I have first 

analyzed the expected length of LCS for two random binary sequences with arbitrary 

length, and then extend the analysis to multiple sequences with multiple alphabets. I have 

also proposed a novel heuristic algorithm for LCS problem on multiple sequences. 

 

In the theoretical aspect, Let Ln be the length of the LCS of two random binary sequences 

(S and T) of length n. It is proven by subadditivity property of the LCS that there exists a 

γ, so that expected value of Ln, E[Ln]~γn [60]. However, the exact value of γ, as well as 

its variances, is unknown. 

 

In [61], we tries to empirically analyze the expected length of LCS (E(|LCS|)) for a pair 

or a set of sequences, with special concern on two random binary sequences. We have 

performed extensive simulation on E(|LCS|) of two random binary sequences, and then 

extended the work on sequences with more alphabets, and multiple sequences. 

 

In the practical aspect, the problem of finding the LCS (we will refer to this simply as 

LCS problem in the following part) is important and has many applications in different 

areas of computer science. The LCS problem has applications in many areas, including 

data compression, pattern recognition, file comparison and biological sequence 
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comparisons and analysis [1, 62]; and there are some applications been commonly used 

based on the computation of LCS of two sequences, like UNIX diff command [63]. 

 

The LCS problem has been examined extensively by many researchers (refer to [64]). 

The LCS of two sequences can be computed by dynamic programming in O(n
2
) time and 

O(n
2
) space, and there are many researches on this problem using dynamic programming 

with reduced time and space [62, 65]. 

 

Unfortunately, the LCS problem on arbitrary k sequences is a well-know NP-hard 

problem that is even hard to approximate in the worst case [59]. Though there are 

efficient dynamic programming algorithms on computation of LCS for small k [66, 67], 

these algorithms are not suitable for dataset in which there are many long sequences [1]. 

 

Though LCS problem is NP-hard, it is so important in application that many heuristic 

algorithms have been proposed to solve the LCS problem [59, 64, 68]. These algorithms 

compute the common subsequences (not necessarily the longest) of the input sequences. 

However, current heuristic algorithms for the LCS problem are not suitable for both small 

and large LCS instances. By large LCS instances, we mean instances where (a) the 

sequences in S are long (n is 100 and more), (b) there are many sequences (k is 100 or 

more), and (c) large sizes of alphabets sets (q can be up to 50). And other instances are 

small LCS instances. 

 

In [69], I have proposed heuristic algorithm for the problem of finding LCS of a set of 

sequences, with emphasis on large LCS instances. I have proposed a new heuristic 

algorithm for the LCS problem, the Deposition and Extension algorithm (DEA). This 
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algorithm is based on the generation of common subsequence by deposition process, and 

then extends this common subsequence. The algorithm is proven to generate result with 

length equal to or longer than those generated by Long Run algorithm. The experiments 

show that our algorithm performs comparable to or better than Long Run and Expansion 

Algorithm, especially on many long sequences. The algorithm also has superior 

efficiency. 

A.2 Shortest Common Supersequence 

The problem of finding the Shortest Common Supersequence (SCS) of a given set of 

sequences is a very important problem in computer science, especially in computational 

biology. The SCS of a set of sequences can be stated as follows: Given two sequences S 

= s1s2…sm and T=t1 t2…tn, over an alphabet set ∑={σ1, σ2, …,σq}, we say that S is the 

subsequence of T (and equivalently, T is the supersequence of S) if for some 

1≤i1<…<im≤n, 
jij ts = . Given a finite set of sequences S={S1,S2,…,Sk}, a common 

supersequence of S is a sequence T such that T is a supersequence of every sequence Sj 

(1≤j≤k) in S. Then, the shortest common supersequence (SCS) of S is a common 

supersequence of S that has minimum length. In the following part, we assume that k is 

the number of sequences in S, n is the length of each sequence, and q =|∑| is the size of 

the alphabet. 

 

The SCS problem has found diverse applications in many areas, including data 

compression [70], scheduling [71], query optimization [72], file comparison and 

biological sequence comparison and analysis [62, 73]. 
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The SCS problem has been investigated extensively by many researchers [1]. The SCS of 

two sequences can be computed using dynamic programming in O(n2) time and O(n2) 

space, and there are many researches on improving the running time and space required 

for the algorithms [1]. For a fixed small k, the dynamic programming algorithm can be 

extended to solve the SCS problem in O(n
k
) time and space. Unfortunately, the SCS 

problem on arbitrary k sequences is well-known to be NP-hard [59]. 

 

Our interest in SCS problem is intrigued by our analysis of the SCS on DNA sequences 

in the context of synthesis strategy design for oligos array. Several heuristic algorithms 

were proposed specifically for computing the SCS of DNA sequences (with alphabet size 

of 4) in the context of oligos array. These include Min-Height [74], Sum-Height [74] 

heuristics. Recently, we proposed look-ahead extensions of these heuristic algorithms on 

DNA sequences [75], as well as a post-processing reduction procedure and studied the 

performances of these algorithms on DNA sequences to be used for the synthesis of 

oligos array. For the more general SCS problem, a trivial algorithm, called Alphabet [76] 

gives an approximation ratio of q = |∑|. In practice, there are many heuristic algorithms 

that produce results better than the Alphabet algorithm, including Majority Merge [59] 

(interestingly, the Majority Merge [59] and Sum-Height [74] heuristic are the same 

algorithm), Tournament [77], Greedy [77] and Reduce-Expand [76]. 

 

This series of projects focus on heuristic algorithms for solving SCS problem on large 

SCS instances. By large SCS instances, we mean SCS instances S in which  

 

• the sequences in S are long (n is 100 to 1000),  

• there are many sequences (k is 100 or more), and  
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• the alphabet set may be big (q is 20 for protein sequences, and even larger for text 

sequences).  

 

Large SCS instances arise more frequently in the post-genome era in biological 

applications dealing with DNA and protein sequences, as well as current applications on 

large text sequences dataset. 

 

In this series of projects on SCS problems, the heuristic algorithms for SCS problem are 

primarily motivated by our analysis on the synthesis strategy for oligos array. The broad 

applicability of gene expression profiling to genomic analyses has generated huge 

demand for mass production of microarrays and hence for improving the cost 

effectiveness of microarray fabrication. The first project is to analyze the algorithms for 

generating synthesis strategies for DNA oligos array [75], in which there are many short 

sequences. We have proposed a post-processing heuristic algorithm for deriving a good 

synthesis strategy. We assessed all the known efficient algorithms and our post-

processing algorithm for reducing the number of synthesis cycles for manufacturing an 

oligos array of a given set of oligos. Our experimental results on both simulated and real 

datasets show that no single algorithm consistently gives the best synthesis strategy; and 

post-processing extension to existing strategy is necessary as it often reduces the number 

of synthesis cycles further. 

 

Based on the heuristic algorithms for the synthesis strategy design for oligos array, we 

have investigated SCS problem on large SCS instances. In [24, 25],  We have extended 

the LAP algorithm for oligos synthesis to the problem of finding the SCS of a set of 

sequences. We have proposed a post process heuristic algorithm for the SCS problem, the 
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Deposition and Reduction algorithm. The algorithm is proven to generate SCS with 

length equal to or shorter than |∑| times of the optimal length. The experiments show that 

our algorithm can perform comparable to or better than many of the best known 

algorithms, and outperform them a lot on large SCS instances. 

A.3 Multiple Sequences Set 

I have extended the problem of synthesis of oligos array to the problem of synthesis of 

multiple oligos arrays. and proposed greedy algorithms as well as the DDA heuristic 

algorithm for it [78]. 

 

Based on the analysis of the synthesis of multiple micorarray problem, I have also 

extended the SCS problem to Process of Multiple Sequences Set (PMSS) problem. I 

have formulated the problem mathematically, proved that it is NP-hard, and extended the 

DDA algorithm for this problem [79]. 

 

The Process of Multiple Sequences Set (PMSS) problem is a computational model that 

has many applications. Our modeling of the problem and research in this area is a pioneer 

work for emerging large scale combinatorial problems. The algorithms that I have 

proposed are potentially important for the problem. 

A.4 Pattern Identification Based on LCS and SCS 

Based on the analysis of the relationships between LCS, SCS and patterns, we have 

designed a heuristic algorithm (PALS) that can find patterns in multiple sequences 

from their LCS and SCS [80]. 
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Patterns in biological sequences are important for revealing the relationships among 

biological sequences. Much research has been done on this problem. It is interesting that 

patterns, Longest Common Subsequences (LCS) and Shortest Common Supersequences 

(SCS) represent different aspects of a profile for a set of sequences. However, in general, 

for problems on a set of sequences, the relationship between their patterns and their LCS 

and SCS are not examined carefully. Therefore, revealing the relationship between the 

patterns and LCS/SCS might provide us with better algorithms for patterns discovery of 

biological sequences, in turn leading to better understanding of their relationship. We 

propose the PALS (PAtterns by Lcs and Scs) algorithms to discover patterns in a set of 

biological sequences by first generating the results for LCS and SCS by heuristic, and 

consequently deriving the patterns from these results. Experiments show that the PALS 

algorithms perform well (both in efficiency and accuracy) on a variety of sequences 

datasets. 

A.5 Conclusions 

This chapter of my research encompasses the analysis of algorithms on LCS and SCS 

problems for multiple sequences; proposing algorithms that extends the SCS problem to 

multiple sequences sets, as well as the application of SCS problems on synthesis strategy 

design for oligos arrays.  

 

The analysis of the LCS and SCS problems has led to a deeper view of the problems, and 

better solutions to these problems, especially on increasing amount of large sequences 

dataset that contains many long sequences. Specifically, the analysis of SCS problem on 
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synthesis strategy design for oligos arrays can lead to more efficient synthesis 

applications. 

 

Also, the mathematical formulations and extensions of these bioinformatics problems, 

such as the multiple sequences sets problems, are interesting combinatorial problems in 

computer science that have vast applications, which are worth further investigation. 

 

For the analysis of the expected length of LCS, although we have used Monte-Carlo 

simulation method for empirical analysis, there is still a lack of theoretical results for this 

problem. I think further investigation of current upper and lower bound and optimization 

of their calculation may be beneficial for achieving further improvement for this problem.  

 

As for heuristic algorithms for LCS and SCS problems, we already proved that the 

deposition strategy is superior to other approaches, especially on many long sequences. It 

is interesting to know whether there are optimization methods for deposition strategy to 

further improve the quality of the results without sacrificing efficiency significantly. 

 

The Process of Multiple Sequences Sets (PMSS) problem is a novel mathematical 

formulation for a broad set of application, with a special case in the Multiple Array 

Synthesis Problem (MASP). I think deeper investigation of this problem will be 

beneficial for research in many applications. 

 

For the PALS algorithm designed for pattern discovery in biological sequences, though it 

performs well on a large number of biological sequences, it does not output all of the 

possible patterns. And I think further investigation of the relationship among pattern, 
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LCS and SCS may lead to more accurate and complete pattern discovery results in 

biological sequences.  

 


