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Abstract 

Technological advances have given clinical researchers and pharmacists various methods to 
develop drugs targeted at various diseases. To maximize drug viability and profit, one of the 
greatest challenges for pharmaceuticals would be predicting the body’s response to 
prescribed drugs, and the underlying causes for variation between people with similar 
illnesses. The causes may range from a patient’s genetic makeup to dietary habits. Besides 
this, it is also an ongoing project to determine drug targets for each drug and maintaining this 
database. In our work, we focus on SNPs and how they affect drug response. In particular, we 
target ethnic diversity as an important aspect. We have developed a web-based bioinformatics 
tool that allows users to search for possible variations that may be significant in determining 
drug response without any genotype data. In addition, the tool is able to search for drug-
enzyme relationships and supplementing current incomplete databases. We see our 
development as a prototype for future development for use in the pharmaceutical industry in 
helping to determine viability of drugs for the Singapore community. 
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 J.3 Life and Medical Science 
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1. Introduction 

 

In the recent years, there has been an exponentially increasing amount of biological data. 

This has brought to attention the need for solutions to interpret and utilize them for novel 

discoveries and inventions. Our project focuses on the field of pharmacogenomics, a 

promising area in the research and development of drugs. Let us first look at several 

important keywords. 

 

1.1. Single Nucleotide Polymorphisms (SNPs) 

 

Since the completion of the Human Genome Project in 2001, single nucleotide 

polymorphisms (SNPs) have been the focus of many researchers. It has been 

discovered that human beings have 99.9% similarity in genetic data, and of the 0.1% 

difference, more than 80% have been identified as SNPs. 

 

An SNP is a single base mutation in the genetic sequence, for instance, a mutation 

from the base adenine (A) to thymine (T), at a particular position on the genome. 

However, not all point mutations are termed an SNP. They must occur in at least 1% 

of the general population[17]. There are 2 types of SNP; the biallelic SNPs, with 2 

possible alleles for the mutation and the triallelic SNPs, with 3 possible alleles for the 

mutation. As the occurrence of triallelic SNPs are relatively small, we shall assume 

that the term SNP refers to biallelic SNPs for the rest of the report unless specified.  

 

SNPs can be found in many regions of the genome, including the coding and non-

coding regions of a gene, promoter regions of a gene etc. They are hence potential 

culprits in altering gene expression and enzyme properties. There are many ongoing 

efforts in discovering SNPs and their associated biological implications, the most 

widely known being The International HapMap Project[18]. It is collaboration 

between many countries to develop a public resource focused on genetic variations 

and its effects on various biological aspects such as diseases and drug response. Their 

database consists of SNP linkage disequilibrium data, allele frequency data and 

genotype data among many others. In Singapore, there is an ongoing project called 

the Singapore Genome Variation Project[23] aimed at achieving these datasets within 
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the Singaporean population and supplementing the International HapMap Project 

database.  

 

1.2. Pharmacogenomics 

 

Our focus, pharmacogenomics, is a discipline to discover genetic factors contributing 

to variations in drug response, efficiency and toxicity. As mentioned previously, 

SNPs have various sites of occurrence. To illustrate the importance of SNPs in 

pharmacogenomics, let us describe a possible situation. Take for instance a drug and 

its metabolizing enzymes. In the gene coding for one of these enzymes, there exists 

an SNP which, if takes on the mutant allele, results in a nonsense mutation. The 

nonsense mutation causes a premature truncation during translation of the gene and 

produces a non-functional enzyme. The enzyme is now unable to take part in the 

metabolism of the drug and the drug metabolism pathway is disrupted. The enzyme 

may be critical in the cycle of the drug, and the result is the lack of response. On the 

other hand, there is also a possibility that the enzyme does not play a major role in its 

metabolism, and the result is a minor drop in drug efficiency. There have already 

been numerous reports on the association between drug response or diseases with 

certain SNPs[13] and SNPs affecting drug efficacy[2]. 

 

Speculations have since been ongoing on “personalized drugs” in pharmacogenomics, 

drugs designed uniquely for each patient through the study of a patient’s 

genotype[3][12] . The identification of SNP alleles and other mutations would allow 

drug developers to determine patient response to prescribed drugs. They may then be 

able to alter the drug’s structure to work around any mutant enzymes and create a 

working drug “personalized” for this particular patient and his genotype.  

 

1.3. Problem statement 

 

The main issue to be tackled is the discovery of SNP biomarkers for drug response. 

Numerous approaches so far been successful, including candidate gene and linkage 

disequilibrium mapping studies[10]. Unfortunately, the former requires prior 

knowledge of drug metabolizing enzymes, and the latter requires high throughput 

genotyping techniques to be feasible.  
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The other issue requiring attention is the incompleteness of drug and enzyme 

association databases. Existing databases such as PharmGKB and DrugBank do not 

contain in their database such data for all drugs. Candidate gene studies base their 

genotyping on this information and the study cannot proceed without it. 

 

The rest of the report will be organized as follows. We will first look at the 

motivation for the development of our system. Next, we will give an overview of our 

system including its components and functionalities. We will then discuss in details 

each component and the underlying concepts, design trade-offs and results if any. 

Finally, we will conclude with comparisons with existing systems and future 

improvements. 
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2. Motivation 

 

Ever since the discovery of drugs, they have played an important role in life; treating 

minor illness such as colds and fevers to major ones such as cancer. Its development is a 

time and resource consuming process, requiring rigorous animal testing and clinical 

studies before approval by the FDA[19]. Drug developers hence put their efforts in 

ensuring maximal efficiency and profitability of a developing drug.  

  

2.1. Discovery of SNPs as biomarkers 

 

For maximum profit, the best situation for a drug would be that it works similarly for 

everyone regardless of ethnicity. Unfortunately, this ideal situation is not always 

achieved. Previously, we have demonstrated how SNPs can affect drug response and 

identified SNPs as potential biomarkers for drug response. Drug response can vary 

not only with ethnicity, but also with individuals. Let us first illustrate how ethnicity 

and SNPs play a part in drug response.  

 

Because of the difference in ancestry, an SNP would have evolved differently in 

populations of different ethnicity. There is often a relationship between allele 

frequency and population ethnicity. Let us take for instance an SNP within an enzyme 

that is known to be a drug target. The presence of the mutant allele on this SNP would 

disrupt the structure of the enzyme and interrupt the metabolic process of the drug in 

question, rendering it ineffective. Let us now assume population A has a 90% 

frequency for the mutant allele while population B has a 10% frequency. Since the 

occurrence of the mutant allele is higher in population A compared to that of B, there 

is a high chance more people from population A would carry the mutant allele and be 

non responsive to the administered drug as compared to population B. In summary, 

the more different the populations are in the alleles of SNPs of enzymes involved in a 

drug’s metabolism, the more likely the populations will respond differently to the 

drug.  

 

In the case of Singapore, the above issue raises a concern due to her diverse ethnicity. 

A drug that works for the Chinese but not for Malays would greatly reduce profit. 

This is the motivation that drives us to develop a system that can identify these SNPs. 
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Ethnicity is not the only factor in variability of drug response. Within the same ethnic 

population, the difference in drug response may also be observed, attributing to 

polymorphisms between different people of the same population. Using the example 

as before, population A has 10% frequency for the non-mutant allele, and a 90% 

frequency for the mutant allele. We may also interpret this as approximately 10% of 

population A will respond to the drug, while 90% of population A will not. This is 

not limited to only people from Singapore, but encompasses individuals of all 

populations globally. The identification of these SNPs affecting drug response would 

greatly help the goal of “personalized drugs”. 

 

So far we have only seen the potential of single SNPs as biomarkers for drug 

response. However, single SNPs may sometimes only contribute minimally to drug 

response. Instead, it is often the combined presence of several mutant alleles on 

different SNP sites that have a greater effect on drug response. In other words, the 

combination of the presence of the mutant allele on SNP1, SNP2, and SNP3 and so 

on disrupts the drug metabolism and causes non-responsiveness. Similar to single 

SNPs, the identification of a combination of SNPs would also contribute to the aim 

of “personalized drugs”. 

 

2.2. Discovering drug-enzyme relationships 

 

As stated in our problem statement, there is incompleteness in the databases 

responsible for a drug and its gene targets. The several existing drug target databases 

that capture the association between drug and enzyme, DrugBank[21][22] and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) Pathway Database[7] have been 

identified as our main sources for the development of the system. Unfortunately, they 

have only captured this information for a subset of drugs, hence resulting in our 

database lacking this relationship for many drugs. 

 

This information is critical in the discovery of potential genetic mutations that affect 

a drug’s efficacy. It is also used in candidate gene studies to determine which genes 

to genotype. As we have seen in our motivation for discovering SNPs as biomarkers, 

we must first know the drug targets as a precursor to proceed. 
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2.3. Integrated database 

 

We have also considered the need for an integrated database as information is widely 

spread out over the net. Currently, the search for SNPs related to a drug requires 

access to various websites. The implementation of a combined database allows 

linking of information, and overcomes this need for website hopping. 

 

The development of this system aims to help researchers in determining potential SNP 

biomarkers, and also allow ease of analysis on available data from various sources. 
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3. Overview of System 

 

We have seen the driving forces motivation behind in the development of a system that 

performs SNP analysis. In this section, we will give a quick outline of the system and its 

components. The details of each component will be elaborated in later sections. 

 

3.1. Software 

 

The system developed is a browser based tool developed with the web-programming 

language PHP. Implementation was done using PHP 5.2.8 and MySQL version of 

5.1.30. The system runs on a local server, hence an Apache server is required.  

 

3.2. Hardware 

 

The system was developed and run on a 2.53 GHz processor with Intel® Core™2 

DUO central processing unit, 4GB Random Access Memory (RAM) on Windows 

Vista™ Business. 

 

3.3. Main components 

 

There are 2 main components to the system, each designed to tackle a specific 

problem statement. Let us look the general function of each component. 

 

3.3.1. SNP drug response biomarker discovery 

 

There are 3 subcomponents to SNP biomarker discovery. The first searches for 

allelic dissimilarities that may lead to a difference in drug response between 

different populations. The second searches for single SNPs that may be 

potential biomarkers given the drug response data. The third searches for a set 

of SNPs as potential biomarkers given genotype and drug response data. 
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3.3.2. Drug to enzyme association discovery 

 

This component allows users to discover drug and enzyme associations and 

supplement the system’s own database.  

 

3.4.  Database design and sources 

 

We developed a database that integrated data from various sources. Let us now look 

at the design of the database and how each table was derived. The database was built 

on MySQL, a relational database management system (RDBMS).  

 

3.4.1. Abstract articles from PubMed 2008 

 

A total of 8059 abstracts were taken from PubMed’s 2008 articles. The abstracts 

were obtained in a CD in .nxml format, and then parsed with a PHP script. The 

details of each abstract include the PubMed ID (PMID), a unique identifier for 

articles published in PubMed, the title of abstract, the journal the abstract is from 

and the abstract body.  These abstracts were first obtained to test the concepts 

behind the discovery of enzyme and drug association and have been retained for 

the user’s reference in confirmation of these associations. 

 

3.4.2. Drugs 

 

A total of 3812 drugs’ data were abstracted from the PharmGKB[6] database. The 

information is downloadable as a text file and was parsed with a PHP script. The 

details of each drug include the PharmGKB ID, a unique identifier for drugs, the 

name of the drug, and alternative names for the drug.  

 

3.4.3. Genes 

 

A total of 23738 genes in the human genome was abstracted and integrated from 

both the PharmGKB[6] database and International HapMap[18] database. The 

details of each gene include the entrez ID, a unique identifier for genes 

determined by Entrez Gene, the gene symbol, gene name, alternate names of the 
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gene, alternate symbols of the gene, the start position of the gene on the 

chromosome, the end position of the gene on the chromosome and the 

chromosome the gene resides in.  

 

3.4.4. Single Nucleotide Polymorphisms 

 

A total of approximately 3.5 million SNPs identified by dbSNP and International 

HapMap[18] reside in this table. The details of each SNP include the reference 

cluster ID (RSID), a unique identifier for SNPs, the position of the SNP on the 

chromosome, the alleles for the SNP, the entrez ID of the gene the SNP resides 

in and also the chromosome of the SNP. It is important to note that although the 

chromosome can be determined with the entrez ID of the gene the SNP resides 

in, not all SNPs can be mapped into a gene.  

 

3.4.5. Single Nucleotide Polymorphism frequency data 

 

Allele frequencies determined by the International HapMap project are readily 

available for download. Currently, they have released this data for 11 

populations, each with approximately 1.5 million genotyped SNPs. The data was 

parsed with JAVA and inserted into the database. This brings up to about 16 

million rows of frequency data in this table. The details of each SNP frequency 

data include the RSID of the SNP, the population race genotyped, the allele 

frequencies of A, T, G and C. The RSID references to the RSID in the table for 

SNPs. 

 

3.4.6. Single Nucleotide Polymorphism race data 

 

Because of the vast amount of data for SNP frequencies, post processing was 

done to produce a list of distinct populations that have been genotyped to reduce 

time required to extract population from the frequency table.  
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3.4.7. Association between drug and enzyme 

 

Data was downloaded from PharmGKB[6] and DrugBank[21][22] and parsed with a 

PHP script. They contain the details of metabolic pathway enzymes and drug 

targets for each drug, if available. The details of each association contain the 

PharmGKB ID of the drug, and the entrez ID of the enzyme associated with the 

drug. This acts as a bridge to link drug and enzyme information. As mentioned 

in section 2, this database is incomplete. User confirmed drug and enzyme 

associations will hence supplement this database.  

 

3.4.8. Association between drug and PubMed literature 

 

Associations between a drug and PubMed literature PMID is stored in this table. 

The derivation of this table was done both through online searching and also 

MySQL querying of the abstracts table from section 3.4.1. using simple MySQL 

LIKE operation. 

 

As for online searching, this was done with Google using a drug name as the 

search criteria limited to hits from the PubMed website automatically with all 

drugs within the database and each search result page for a drug is parsed for all 

PubMed literature PMID returned. The association between a drug and all its 

found PubMed literature PMIDs are added into this table. The literature is 

currently limited to only those published in February 2009. 

 

3.4.9. Association between enzyme and abstract 

 

Associations between an enzyme and PubMed literature PMID is stored in this 

table. The derivation of this table was done both through online searching and 

MySQL querying of the abstracts table from section 3.4.1. using simple MySQL 

LIKE operation. 

 

As for online searching, this was done with Google using an enzyme name as the 

search criteria limited to hits from the PubMed website automatically with all 

genes within the database and each search result page for a gene is parsed for all 
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PubMed literature PMID returned. The association between a gene and all its 

found PubMed literature PMIDs are added into this table. The literature is 

currently limited to only those published in February 2009. 

 

3.4.10. Association between drug and enzyme 

 

Associations between a drug, an enzyme and literature abstract ID is stored in 

this table. This table was derived by intersecting the tables described in section 

3.4.8. and 3.4.9. The basis for this intersection is that an association exists 

between a drug and an enzyme if both are found in the same biomedical 

literature. This table also keeps the status of the association of its acceptance 

status by the user. 

 

 

  11



4. Discovery of SNPs as biomarkers for drug response 

In this section, we shall focus on how the system was implemented and its underlying 

concepts to discover SNPs as biomarkers for drug response.  

4.1. Identifying SNPs with allele similarities or dissimilarities 

 

We have already discussed the desirability that a drug works equally effectively on 

all populations. One way to check this is based on the concept earlier discussed. That 

is, we look at the enzymes targeted by the drug and the more different the 

populations are in the alleles of SNPs of these enzymes, the more likely the 

populations will respond differently to the drug.  A commonly used statistic to test 

this situation is the FST, or fixation index[16]. We shall now describe the details for 

calculation of the statistic.  

 

In the first step, we calculate the local expected heterozygosity (Hexp) or gene 

diversity for each population. Let us assume a biallelic SNP with alleles A and B and 

frequencies FA, i and FB, i respectively for a population i for all populations. 

Hexp, i = 1 – (FA,i
2 + FB,i

2 ) 

Next, we calculate p
-

 and q
-

, the frequency of allele A and B respectively over the 

total population. ni represents the tested population size for population i. 

p
-

 = (Σi FA,i x ni)/ Σi ni 

q
-

 = (Σi FB,i x ni)/ Σi ni 

In the third step, we calculate the global heterozygosity indices over subpopulations, 

HS. 

HS = (Σi Hexp,i x ni )/ Σi ni 

In the fourth step, we calculate the global heterozygosity indices over the total 

population, HT.  

HT = 1 - (p
-

2 + q
-

2) 
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Finally, we calculate the fixation index, FST, using the following formula: 

FST = (HT – HS) / HT 

This gives us the FST value for this SNP. There are 4 categories of interpretation for 

the FST value, and they are as follows: 

FST = 0 to 0.05: little genetic differentiation 

FST = 0.05 to 0.15: moderate genetic differentiation 

FST = 0.15 to 0.25: great genetic differentiation 

FST Above 0.25: very great genetic differentiation 

In other words, an SNP with a FST value of 0.03 indicates high similarity of alleles 

for this SNP over the tested populations, and is less likely to result in different drug 

response between populations. On the other hand, an SNP with a FST value of 0.5 

indicates high dissimilarity of alleles for this SNP over the tested populations, and is 

likely to cause variation in drug response between populations.  

Let us look at an example to illustrate the usage of FST. We consider the drug 

exemestane and the enzyme CYP1A1 which is involved in its metabolism. Within 

the CYP1A1 gene, we take the SNP rs4986879 and the frequencies of populations 

African, Luhya, Maasai and Yoruban (Table 1). 

Race A T G C 

African 0 0.962 0 0.038 

Luhya 0 0.956 0 0.044 

Maasai 0 0.983 0 0.017 

Yoruban 0 0.96 0 0.04 

Table 1: SNP allele frequencies for rs4986879 

We assume equal population size for all populations. We first calculate Hexp for all 

populations: 

Hexp,African = 1 – ( 0.9622 + 0.0382 ) = 0.0731 

Hexp,Luhya = 0.0841 
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Hexp,Maasai = 0.0334 

Hexp,Yoruban = 0.0768 

Next, we calculate p
-

 and q
-

 over the total population: 

p
-

 = (0.962 + 0.956 + 0.983 + 0.96) / 4 = 0.9653 

q
-

 = (0.038 + 0.044 + 0.017 + 0.04) / 4 = 0.0347 

We then calculate HS and HT: 

HS = (0.0731 + 0.0841 + 0.0334 + 0.0768) / 4 = 0.0669 

HT = 1 - (0.96532 + 0.03472) = 0.0670 

And finally, we find FST: 

FST = (0.0670 – 0.0669) / 0.0670 = 0.00149 

The value of FST < 0.05, hence we can conclude that there is little genetic 

differentiation over all 4 tested populations. In other words, there is a high similarity 

of alleles for this SNP and is not likely to result in different drug response. 

This analysis is done on all SNPs for all drug targets for a particular drug of interest. 

The final result is a list of SNPs and their respective FST values. The user is given a 

choice to reduce the scope to only those falling in 1 of the 4 categories of his interest. 

To conclude, the more SNPs discovered to have significant allelic dissimilarities 

over populations, the more likely this drug will have a variable response between 

them. 

4.2. Identifying potential single SNP biomarkers for drug response 

 

We have seen how the system identifies SNPs with allele dissimilarities over 

different populations that could be significant in variability in drug response using 

the FST. Let us now look as another aspect of SNP biomarker discovery, discovering 

single SNPs associated with provided data on drug response. 
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As discussed in our motivation, there is observed drug response variation within the 

same ethnic population and even between different populations. We hence wish to 

search for these SNPs that are responsible. One way to check this is based on the 

following concept. We look at the enzymes targeted by the drug. The more similar 

the allele frequencies of an SNP in these enzymes are with the observed drug 

response frequency, the more likely the allele is associated with drug response. One 

way to test this for this is the chi-square goodness-of-fit test[11]. Let us first look at 

how we can determine this specific to a single population.  

 

We first state the null (H0) and alternative (H1) hypothesis:  

H0: Any deviation of the observed and expected drug response is due to chance. 

H1: Any deviation of the observed and expected drug response is not due to chance. 

 

Let us assume an SNP, with non-mutant allele A and mutant allele B with allele 

frequencies FA and FB respectively in a population. There are 2 possible cases for 

association; that the non-mutant allele A does not alter drug response while mutant 

allele B results in non-responsiveness. Similarly, the other way round is also 

possible; that mutant allele B does not alter drug response while non-mutant allele A 

results in non-responsiveness.  

 

Let us first assume: the non-mutant allele A does not alter drug response while 

mutant allele B results in non-responsiveness. Let the observed values for drug 

response be OR and lack of response be ONR. The expected values for drug response 

(ER) and no drug response (ENR) may then be calculated using FA and FB following 

the above assumption.  

 

ER = FA * (OR + ONR) 

ENR = FB * (OR + ONR) 

 

The chi-square statistic is used to determine closeness in observed and expected 

values. This is calculated using OR and ONR with the following formula: 

 

χ2 = (OR - ER)2/ ER + (ONR – ENR)2/ ENR 
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The chi-square value is then used to calculate the p-value under the chi-square 

distribution. The p-value is defined as the probability that the observed deviation 

from the expected value can be explained by chance alone. Hence, the larger the p-

value, the more likely the deviation from the expected value is insignificant and 

explainable by chance and thus the more likely the null hypothesis is true. The p-

value is calculated with the following equation: 

 
 

, where k is the degrees of freedom, γ(k,z) is the lower incomplete Gamma function 

and P(k,z) is the regularized Gamma function.  

 

The user is free to choose a significance value in the tool, but it is commonly set at 

5%. If the p-value is found to be greater than 5%, H0 is then accepted. In other words, 

if there is greater than 5% probability that the deviation can be explained by chance 

alone, we conclude that the deviation between observed and expected frequency is 

insignificant and the SNP is selected as a potential biomarker for the individual tested 

population.  

 

The calculation is done similarly for the alternative situation, where mutant allele B 

does not alter drug response while non-mutant allele A results in non-responsiveness.  

 

Let us now look at a demonstration of the mathematical analysis with an example. We 

consider again the drug exemestane and the enzyme CYP1A1 which is involved in its 

metabolism. Within the CYP1A1 gene, we take again the SNP rs4986879 with alleles 

C and T, and the frequencies of populations African, Luhya, Maasai and Yoruban 

(Table 1). 

 

For illustration, let us assume drug response data (Table 2): 
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Race Response No Response 

African 900 100 

Luhya 950 50 

Maasai 700 300 

Yoruban 40 960 

Table 2: Assumed dataset supplied by user 

 

We restate the null and alternate hypothesis: 

H0: Any deviation of the observed and expected drug response is due to chance. 

H1: Any deviation of the observed and expected drug response is not due to chance. 

 

We first assume the allele T does not alter drug response while allele C results in non-

responsiveness. Using the formula for calculation of expected response statistics, we 

derive the expected drug statistics for each population for each allele. For example, 

Africans with allele T would have an expected drug response statistic of 96.2% x 

(900+100) = 962 (Table 3). 

 Expected Observed 

African (Allele:T), 

 Respond to drug 

962 900 

African (Allele: C), 

No response to drug 

38 100 

Luhya, (Allele:T), 

Respond to drug 

956 950 

Luhya, (Allele: C), 

No response to drug 

44 50 

Maasai, (Allele:T), 

Respond to drug 

983 700 

Maasai, (Allele: C), 

No response to drug 

17 300 

Yoruban, (Allele:T), 

Respond to drug 

960 40 
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Yoruban, (Allele: C), 

No response to drug 

40 960 

Table 3: Calculated expected and observed values for assumption that allele T does 

not alter drug response 

 

For each population separately, we calculate χ2 and p-value using 1 degree of 

freedom: 

 

For Africans, χ2 = (900-962)2/962 + (100-38)2/38 = 105.15 

P-value = P (χ2 > 105.15) ≈ 0  

For Luhya, χ2 = 0.8558 

P-value = P (χ2 > 0.8558) ≈ 0.355 

For Maasai, χ2 = 4792.59 

P-value = P (χ2 > 4792.59) ≈ 0 

For Yoruban, χ2 = 22041.67 

P-value = P (χ2 > 22041.67) ≈ 0 

 

Using a significance level of 90%, we observe that none of the p-values calculated 

exceed this threshold. We hence reject the null hypothesis, and conclude that the 

deviation is not due to chance; hence this SNP is not a potential biomarker for any of 

the tested populations for drug response under the assumption that allele T does not 

alter drug response. 

 

Let us now assume the alternative: that the presence of allele C does not alter drug 

response and similarly calculate the respective expected values. The results have been 

summarized: 

 Expected Observed 

African, (Allele:T), 

No response to drug 

962 100 

African, (Allele: C), 

Respond to drug 

38 900 

Luhya, (Allele:T), 

No response to drug 

956 50 
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Luhya, (Allele: C), 

Respond to drug 

44 950 

Maasai, (Allele:T), 

No response to drug 

983 300 

Maasai, (Allele: C), 

Respond to drug 

17 700 

Yoruban, (Allele:T), 

No response to drug 

960 960 

Yoruban, (Allele: C), 

Respond to drug 

40 40 

Table 4: Calculated expected and observed values for assumption that allele C does 

not alter drug response 

 

For each population separately, we calculate χ2 and p-value using 1 degree of 

freedom: 

 

For Africans, χ2 = (900-38)2/38 + (100-962)2/962 = 20326.18 

P-value = P (χ2 > 20326.18) ≈ 0 

For Luhya,  χ2 = 19513.98 

P-value = P (χ2 > 19513.98) ≈ 0 

For Maasai, χ2 = 27915.09 

P-value = P (χ2 > 27915.09) ≈ 0 

For Yoruban, χ2 = 0 

P-value = P (χ2 > 0) = 1.0 

 

Using a significance level of 90%, we discover the p-value for Yoruban exceeds the 

threshold. We hence accept the null hypothesis for the Yoruban population, and 

conclude that the deviation is due to chance; hence this SNP is a potential biomarker 

for drug response for the Yoruban population under the assumption that allele C does 

not alter drug response. In other words, we may predict that Yorubans with allele C in 

this SNP will respond to the drug, while Yorubans with allele T will have no response. 
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We have just seen how SNPs specific to a single population can be determined using 

the chi-square goodness-of-fit test. Let us now look at how we can search for an SNP 

as a biomarker that is consistent over all the populations. That is, this is a general SNP 

that can determine drug response regardless of ethnicity. We still use the same 

concept; the more similar the allele frequencies are in these enzymes with the 

observed drug response frequency, the more likely the allele is associated with drug 

response. The difference between this method with that mentioned above is that the 

above tests for the hypothesis separately for different populations. The method we 

will now look at tests for the hypothesis for all populations as a single test.  

 

We restate the null and alternate hypothesis: 

H0: Any deviation of the observed and expected drug response is due to chance. 

H1: Any deviation of the observed and expected drug response is not due to chance. 

 

For each population with given observed data, we determine each population’s 

expected values ER and ENR using each population’s respective OR and ONR. The chi-

square values for each population are then added up and the p-value is calculated. We 

restate that the p-value is defined as the probability that the observed deviation from 

the expected value can be explained by chance alone. Depending on the number of 

populations with available frequency or observed data (N), we determine the degrees 

of freedom (k) for calculation of the p-value as:  

 

k = 2 * N – 1 

 

Again, if the p-value is found to be greater than 5%, H0 is then accepted. In other 

words, if there is greater than 5% probability that the deviation can be explained by 

chance alone, we conclude that the deviation between observed and expected 

frequency is insignificant and the SNP is selected as a consistent potential biomarker 

for all populations tested.  

 

We illustrate the calculation using the same example from above. We have already 

calculated the expected values for all situations (Table 3 and 4). This data is used 

again for the calculation of chi-square values for this test. 
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Under the assumption that allele T does not alter drug response and with ( 2*4 – 1 = ) 

7 degrees of freedom (Table 3): 

 

χ2 = 105.15 + 22041.67 + 4792.59 + 0.8558 = 26940.265 

P-value = P (χ2 > 26940.265) ≈ 0 

 

Under the assumption that allele C does not alter drug response and with 7 degrees of 

freedom (Table 4): 

 

χ2 = 67755.25 

P-value = P (χ2 > 67755.25) ≈ 0 

 

Using a significance level of 90%, we may conclude that the SNP is not a potential 

general biomarker in either situations in determining drug response and we reject the 

null hypothesis for both.  

 

It is important to note that although the p-value threshold is commonly set at 5%, we 

have set our threshold to be 90%. In other words, we are searching for SNPs such that 

the deviation of the expected from the observed drug response statistics has greater 

than 90% probability of being explained by chance. Hence this makes it a lot harder to 

accept the null hypothesis, and is stricter in determining SNP biomarkers. 

 

We have seen how to determine population-specific SNPs and population-consistent 

SNPs as biomarkers for drug response. This approach overcomes the need for 

genotype data, which may not always be available, for candidate gene studies. We are 

currently unable to perform validation tests on the methodology due to lack of data.  

 

There is an important issue to consider when doing this test. In the special cases 

where calculated expected values for drug response or non-responsiveness fall below 

5, the chi-square statistic will be inaccurate as the small expected value amplifies the 

chi-square value. We have implemented 2 ways to work around the issue, one using 

the Yate’s continuity correction for population-specific SNP biomarker discovery and 

the other, combining values such that the expected value does not fall below 5 for 

general SNP biomarker discovery. 
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4.2.1. Yate’s Continuity Correction  

 

The Yate’s continuity correction aims to reduce the chi-square value and hence 

increases the p-value to prevent overestimation of statistical significance[15] for 

small expected values. The calculation of chi-square values will then use the 

formula: 

 
where, 

Oi = frequency of observed value 

Ei = frequency of expected value 

N = number of events 

 

To illustrate this mathematical concept, let us use the previous example and 

focus only on the African population. However, let us reduce the number of 

observed data to illustrate Yate’s continuity correction: 

Race Response No Response 

African 90 10 

Table 5: Reduced observed data for African population 

 

Once again, we restate the null and alternate hypothesis: 

H0: Any deviation of the observed and expected drug response is due to chance. 

H1: Any deviation of the observed and expected drug response is not due to 

chance. 

 

We assume the allele T does not alter drug response while allele C results in 

non-responsiveness. Using the formula for calculation of expected response 

statistics, we derive the expected drug statistics for Africans for each allele 

(Table 6). For example, using the frequency values in Table 3 for Africans, 

allele T would have an expected drug response statistic of 96.2% x (90+10) = 

96.2 (Table 3). 
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 Expected Observed 

African, (Allele:T), 

Respond to Drug 

96.2 90 

African, (Allele: C), 

No Response to Drug 

3.8 10 

Table 6: Calculated expected data assuming allele T does not alter drug 

response 

 

The original formula for χ2 used in section 4.2 would return the result as 

follows: 

 

χ2 = (90-96.2)2/96.2 + (10 – 3.8)2/3.8  

= 10.515 

P-value = P (χ2 > 10.515) ≈ 0.0011 

 

However, if we use the Yate’s continuity correction, the χ2
 value will then be 

calculated as follows: 

 

χ2 = (|10/100 – 0.038|-0.5)2/0.038 + (|90/100 – 0.962|-0.5)2/0.962  

= 5.376 

P-value = P (χ2 > 5.376) ≈ 0.0204 

 

We observe that there is a significant difference between both the calculated χ2 

value and the resulting p-value. Even though both fail to pass the p-value 

threshold of 90%, leading to the conclusion that this SNP is not a potential 

biomarker, there is an increase in p-value for the chi-square value calculated 

under the Yate’s continuity correction and potential to accept the null 

hypothesis.  

 

Unfortunately, the Yate’s continuity correction tends to overcorrect and result in 

a conclusion that does not reject the null hypothesis when it should. This issue 

can be solved using the randomization test for goodness-of-fit. 
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4.2.2.  Combining response data 

 

We have seen our approach to dealing with small expected values for 

determining SNP biomarkers for specific populations. We now give our 

approach to dealing with small expected values for determining SNP biomarkers 

for the general population.  

 

Let us assume a new set of response data as follows: 

Race Response No Response 

African 90 10 

Luhya 95 5 

Maasai 70 30 

Yoruban 4 96 

Table 7: Set of drug response data 

Once again, we restate the null and alternate hypothesis: 

H0: Any deviation of the observed and expected drug response is due to chance. 

H1: Any deviation of the observed and expected drug response is not due to 

chance. 

We then calculate the expected values for all populations and summarize the 

results (Table 8). Let us again assume that allele T does not alter drug response. 

 Expected Observed 

African, (Allele:T), 

Respond to Drug 

96.2 90 

African, (Allele: C), 

No Response to Drug 

3.8 10 

Luhya, (Allele:T), 

Respond to Drug 

95.6 95 

Luhya, (Allele: C), 

No Response to Drug 

4.4 5 

Maasai, (Allele:T), 

Respond to drug 

98.3 70 
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Maasai, (Allele: C), 

No Response to Drug 

1.7 30 

Yoruban, (Allele:T), 

Respond to Drug 

96.0 4 

Yoruban, (Allele: C), 

No Response to Drug 

4.0 96 

Table 8: Calculated expected and observed values for assumption that allele T 

does not alter drug response 

 

Note that there are several cells in the expected values that fall below 5 and 

performing chi-square test analysis is likely to produce inaccurate results, as 

illustrated for single population studies illustrated in section 4.2.1. Our approach 

is to combine all the values for response from all populations into a single value 

for observed and expected values separately, and then do the same for non 

response values. This will remove all cells with values less than 5, and we can 

perform the chi-square test analysis. This means that the expected drug response 

statistic will be 96 + 98.3 + 95.6 + 96.2 = 386.1. 

 Expected Observed 

(Allele:T), 

Respond to Drug 

386.1 259 

(Allele: C), 

No Response to Drug 

13.9 141 

Table 9: Calculated expected data assuming allele T does not alter drug 

response 

 

We can then calculate the chi-square value. Note that after combining the bins, 

the degree of freedom is now 1: 

χ2 = (259-386.1)2/386.1 + (141-13.9)2/13.9 = 1204.028 

P-value = P (χ2 > 1204.028) ≈ 0 

 

Using a significance level of 90%, we reject the null hypothesis. 
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Although this is a known solution to the issue of small frequency values, there is 

also the issue of Simpson’s paradox[5]. The issue of lurking variables, in our 

case it could be drug dosage or patient dietary habits, were not taken into 

consideration during the calculation. Hence this could have lead to a false 

conclusion. An alternative to prevent this is to similarly use the randomization 

test of goodness-of-fit, which we will elaborate in section 7.2. 

 

4.3. Search for combination of SNPs as biomarkers  

 

We have seen how single SNPs may affect an individual’s response to a drug. We 

have also seen our technique developed for searching single SNPs as biomarkers for 

drug response. A single SNP, as we have illustrated in previous sections, has 

potential effects on drug response. However in some cases, a single SNP mutant in 

one enzyme or drug target only has little effect considering the many others involved 

in drug metabolism. When a combination of mutations is present over various sites in 

various drug targets, there is a greater probability of effect on drug metabolism and 

efficacy. In other words, the presence of a mutation in SNP1, SNP2, SNP3 and SNP4 

in drug targets E1, E2, E3 and E4 respectively is more likely to result in a significant 

difference in drug response than only the presence of mutation on SNP1 in drug 

target E1. Let us look at how we can determine these combinations of SNPs that may 

be biomarkers for drug response.  

 

We utilize the algorithm from Liu G.M, Wong L.M. and Li J.Y.’s paper on “Mining 

Statistically Important Equivalence Classes and Delta-Discriminative Emerging 

Patterns”[9]. The concept of equivalence classes, or a set of frequent itemsets that 

always occur together in some set of transactions, is utilized in the algorithm. An 

equivalence class, in SNP biomarker discovery, can be interpreted as a set of 

frequently present SNPs that always occur together in the same set of drug response 

category. The algorithm mines closed patterns, the maximal itemset of all 

equivalence classes, and generators, the minimal itemsets of all equivalence classes. 

Another important concept is that of delta-discriminative equivalence classes. An 

equivalence class is delta discriminative if every itemset it encompasses occurs in 

only one of the classes with almost 0 occurrences in other classes. 
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For this functionality to be available, the user must have 2 sets of information 

available. One set contains patient information including the patient’s ID and the 

patient’s response to a drug. The other set contains information including the 

patient’s ID, genotyped SNP’s RSID, and the presence of mutation at the SNP. 

Unfortunately, this information may not always be available.  

 

Given this set of data, we can derive a file that has the following format. Each row in 

the file represents a patient’s data, with the first column representing the response of 

the patient to the drug. The remaining data contains the set of RSIDs of SNPs that 

have been found to contain the mutant allele in the patient’s genotype. This file is 

then fed into the algorithm for mining of SNPs as biomarkers. The user has to 

however provide 2 parameters, which are the minimum support threshold and a delta 

value. The minimum support threshold defines the lowest number of supporting 

evidence dataset over all classes, while the delta value defines minimum number of 

supporting evidence in all minority classes.  

 

The algorithm, in brief, first mines frequent closed patterns and generators to 

represent all frequent equivalence classes given the dataset. Next it determines the 

class label distribution information, and then uses a test statistic (chi-square, risk 

ratio etc) to define a score for every closed pattern. Finally, it ranks all the closed 

patterns and outputs equivalence classes having closed pattern scores above specified 

significance thresholds. 

 

The final result is a set of generators and closed patterns that satisfy the minimum 

support threshold and delta value. A smaller set of SNPs would be beneficial 

compared to a large set as this reduces genotyping site required to determine drug 

response. Hence, we take the file containing the set of generators and parse the result 

for display to the user. Each data row in the file describes the number of items in the 

generator, the set of SNPs in the generator and the support in each of the different 

classes of drug response. The user may then interpret the set of SNPs in the generator 

as a potential biomarker for drug response. Unfortunately, we are unable to perform 

validation tests due to lack of data. 
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5. Drug to Enzyme Association Discovery 

 

We have seen in section 4.1 that it is desirable to determine if all the different populations 

will respond to a drug in the same way. We have also seen in sections 4.2 and 4.3 the 

techniques in discovering SNP biomarkers. To do all these 3 studies, we need to know the 

drug targets or metabolizing enzymes for each drug in question to determine the regions 

of SNPs with potential effect. Currently, we are using PharmGKB as our main source and 

DrugBank as our secondary source of this information. However, these databases are 

incomplete on this relationship and there is also no upper bound guarantee on the delay of 

such a drug-enzyme relationship being added into the database. It is hence desirable to 

develop techniques to process the latest biomedical literature to automatically identify 

drug-enzyme relationships as a way to supplement the information in PharmGKB and 

DrugBank with the latest discoveries. 

 

We are currently utilizing the online PubMed library as a source for biomedical literature 

abstracts. PubMed has a large database of literature dating as far back as 1948, and is a 

highly reliable source.  

 

We can assume an association between a drug and an enzyme by using the following 

concept. We locate all literature abstracts in PubMed found to contain the drug’s name for 

a drug. Then, we locate all literature abstracts in PubMed found to contain the enzyme’s 

name for an enzyme. Finally, we associate an enzyme and a drug by considering the 

intersection between these 2 lists on the ID of the literature abstract. In other words, an 

association exists between a drug and an enzyme if they are both located in the same 

biomedical literature abstract. We have already described the tables and their derivation 

in sections 3.4.8., 3.4.9. and 3.4.10. Currently, the search has only been limited to 

biomedical literatures published in the month of February of 2009. 

 

To illustrate this concept, let us assume the following situation. We searched for the drug 

“exemestane” on Google for hits within the PubMed website, and it returned 3 literature 

abstracts with PMIDs 146389, 125937 and 158379. We searched for the enzyme 

CYP1A1 (cytochrome P450, family 1, subfamily A, polypeptide 1) similarly on Google 

for hits within the PubMed website, and it returned 5 literature abstracts with PMID 

21748, 158379, 166994, 178503 and 103829. The intersection of these 2 results returns 
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the PMID 158379, and hence we can associate the drug exemestane with the enzyme 

CYP1A1 with support from the PubMed literature abstract with PMID 158379. 

 

With the selection of this function by the user, the system returns 20 items at a time from 

the list of unconfirmed associations. Each item specifies the drug name, the enzyme name, 

the PMID of the supporting biomedical literature abstract from PubMed, the actual 

abstract (if available in the local database), and a choice of whether to accept or reject this 

association. The user is given the responsibility to determine the correctness of the 

association through study of the given supporting literature abstracts. Choosing to accept 

the association would supplement the drug and gene pair into the drug target database. 

Choosing to reject the association would remove it from the list of unconfirmed 

associations. 

 

As there are numerous possible combinations of drug and gene relationships, we have 

come up with several tactics to reduce the list to conform to the user’s interest. In the 

event the user wants to only view associations of a drug or gene of interest, they are given 

a search function to refine the list. In addition, the user may choose to search for drug and 

gene associations that have a specified minimum number of literature supports that could 

indicate extensive study and higher chance of association the threshold is high.  

 

For greater association strength and reduction of scope, we have also taken into 

consideration the Jaccard index of an association. The Jaccard index is a statistic used to 

compare similarity and diversity of sample sets. It is defined as follows: 

 

 
 

For calculation of the Jaccard index for drug and gene associations, we take A to be the 

set of drug and literature links for a particular drug, while B to be the set of gene and 

literature links for a particular gene. The intersection of A and B returns the list of PMIDs 

that relates the drug and gene, while the union returns the total list of distinct PMIDs that 

captures any association for the drug and for the enzyme. The ratio of their cardinality 

then returns the Jaccard index of the particular drug and gene association. We may 

interpret the Jaccard index as the strength of association between a drug and gene, and the 
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higher the Jaccard index, the higher the probability of correctness for the association. For 

example, in the previous example we saw how intersecting 2 sets gave an association 

linking exemestane and CYP1A1. The Jaccard index for this association is J(A,B) = 1 / 7, 

as there is only 1 intersection object, and 7 distinct total PMIDs from both sets. 

 

Let us now look at some results in our identification of drug-enzyme relationships. To 

verify the validity of our association mining, we have taken the list of associations 

existing in current databases and compared them to those we have found. There are 

currently 14 drug and gene associations overlapping. We take all the overlapped 

associations and reviewed the literatures supporting their discovery. Here are the results: 

 

Drug Gene Total Supporting 

Literature 

Accurate Supporting 

Literature 

Warfarin CYP2C9 1 1 

Warfarin VKORC1 2 2 

Azathiprine TPMT 1 1 

6-

mercaptopurine 

TPMT 3 3 

Acetylcholine CHAT 2 0 

Azathioprine TPMT 1 1 

6-thioguanine TPMT 1 0 

Glucocorticoids IL-8 1 0 

Simvastatin LPL 1 1 

Rivastigmine BCHE 1 1 

Norepinephrine TH 1 0 

Levodopa MAOB 1 0 

Dopamine COMT 1 1 

Dopamine MAOA 2 0 

Dopamine MAOB 2 0 

Table 10. Results of known gene and drug associations 

 

In summary, there are a total of 8 accurately discovered associations.  This is a small 

sample size as we have only considered literature from February 2009. However, review 
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of the supporting literature has proven that this is a potential approach to abstracting all 

associations between a drug and a gene.  

 

Let us now look at drug and gene associations that are not in the major databases. Here 

are a few examples: 

Drug Gene Total Supporting 

Literature 

Accurate Supporting 

Literature 

Valproic Acid HDAC6 2 1 

Valproic Acid HDAC1 4 3 

5-fluorouracil CDK4 1 1 

Acetylcholine IL1R1 1 0 

Table 11. Accuracies of unknown gene and drug associations 

 

Unfortunately, the correctness of the association discovered is subjective for gene-

enzyme relationships not in the existing databases. User interpretation of biomedical 

literature abstracts may vary between individuals. In our testing, we assume the 

supporting evidence to be accurate as long as a relationship can be inferred between the 

enzyme and a drug.   

 

This implementation has allowed user intervention for augmenting data collected from 

the DrugBank and PharmGKB website. Users will not have to manually go through all 

recently published literature to discover drug-enzyme relationships not yet updated in the 

database without knowing the location of relevant drug or enzyme information in the 

literatures. It is important to note that, however, the update is done on the local database, 

and not on the actual PharmGKB database.  

 

However, there are several drawbacks for this implementation. The first is the mining of 

false associations when the gene and drug have the same name or overlapping names. As 

we rely on the name as criteria for our search, the search on both the drug and gene would 

hit the same literature abstracts and an association would definitely be formed for such 

pairs of genes and drugs. For example, the drug with the name ‘Statin’ would be 

associated with the gene ‘Statin’. Drugs with common names such as “amino acids” have 

also proved to be a problem since it is not a unique drug name like exemestane. These 
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common terms return a list of search hits highly unlikely to be related to its function as a 

drug. The way around this was to post process the list of associations and remove these 

instances. 

 

Another drawback of this implementation is false search hits from Google as a result of 

links on the PubMed website. When searching for a term, Google returns a hit on a page 

if the term can be found somewhere in the page. The pages for PubMed for literature 

abstracts not only display the abstract body, but also have a feature that displays a list of 

related articles to the current article. Google returns the page when the search criteria can 

be found in the names for these links even when it’s not in the abstract body, resulting in 

false associations when we intersect these lists. 
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6. Related work 

 

The Drug-SNP DB[8] project was developed with the aim of integration of data to allow 

users to search for SNPs related to a drug. The database utilizes information from 

dbSNP[14]  and gene information from GenBank[1]. The basis of the development is 

similar to our system, as both allow users to search for SNPs related to a drug. Their 

system returns the full list of SNPs within the enzymes that interact with the drug of 

interest as for drug response study. In the process of searching for significant SNPs, the 

user may choose to view all SNPs within each enzyme for our system, providing a similar 

function to that of Drug-SNP DB. Our system, however, further takes into consideration 

actual drug response data and reducing the list of all SNPs to those found to be potential 

biomarkers and has greater functionality. 
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7. Improvements and expansions 

 

We have seen the motivations behind our development for the system and its potential 

contributions in the field of pharmacogenomics. After which we’ve described and 

illustrated our approach to answer the issues prevalent in the field and discussed their 

results and drawbacks. The system will possibly be an ongoing project to finally develop 

a locally suited prototype, hence there are many aspects for potential development. 

 

7.1. Supplementing drug enzyme relationship database 

 

We have seen in section 5 how we have discovered drug-enzyme relationships for 

augmenting the current database using online biomedical literature. The concept is 

based on simple association, which, as discussed, has lead to several false associations. 

The feature can be improved by performing a sentence based search; that is, only 

associate a gene and a drug when they appear in the same sentence. This would 

remove the drug or gene search hits resulting from links to other abstracts in the 

PubMed website and hence higher confidence in association.  

 

Also mentioned was that these associations have been discovered from literature in 

the second half of 2008 and that published within February 2009. The search may 

now be extended to all literatures to include earlier literatures. However, due to our 

dependence on Google, this should be done in phases instead of in a single shot to 

avoid Google’s protective feature while continuously searching for all drugs and all 

genes. An additional feature that searches for these associations automatically every 

month can be implemented so that more recent biomedical discoveries can be added. 

 

7.2. Randomization test of goodness-of-fit[11] 

 

As mentioned in sections 4.2.1 and 4.2.2., Yate’s continuity correction and the 

combination of values could lead to false conclusions. A more appropriate method to 

implement would be to use the randomization test of goodness-of-fit. The test works 

by randomly generating possible combinations of observed data and determining the 

chi-square statistic for each result. Using the original chi-square statistic calculated 

from the original observed statistics, we do the following test: if the randomization 
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test produces a chi-square value greater than or equal to the original chi-square less 

than α% of the time, we can reject the null hypothesis at level of significance α. It is 

important to note that the p-values for each result vary because of randomization, and 

the accuracy increases as the number of randomized samples taken increases. 

 

7.3. Discovering combinations of SNPs as biomarkers 

 

As mentioned in section 4.3, it is usually a combination of SNPs that contribute 

greatly to drug response. However, our project has so far mainly dealt with single 

SNPs as a potential biomarker when given only drug response data. In addition, the 

assumption of absolute correlation between the drug response and a single allele is 

insufficient. Using the allele frequencies available, we could derive the expected 

frequencies of various combinations of SNP alleles. Once again, using the chi-square 

statistic, we could then determine if such a combination could be significant in 

determining drug response. Unfortunately, SNPs are not independent of one another. 

However, with consideration of linkage disequilibrium data, we could newly define 

how to calculate predicted genotype frequencies.  

 

7.4. Integration of SGVP 

 

We have been informed that the data from SGVP will be released soon and can be 

integrated into the system. With this data, we can tune the tool to be locally feasible.  

In addition, it would allow validation of our methodologies. 

 

7.5. Linkage Disequilibrium studies 

 

Expansion could be made to include linkage disequilibrium studies. Suppose the user 

has been informed of an SNP that has effects on drug response for a discovered 

population. The user would like to know if this SNP would have a similar effect for 

drug response in the local population by observing linkage disequilibrium similarities 

between SGVP populations and the discovered population. If the SNP is located in 

SGVP data, the similarity can be computed directly. Else if the SNP is not within the 

SGVP data, we hope to utilize data from International HapMap to determine the best 

surrogate SNP that can be found in SGVP using r2 data.  
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8. Conclusion 

 

We have seen the importance of SNPs and the part it plays in determining drug response. 

We have also determined the necessity for supplementing current drug target databases 

and the need to have an integrated database. We then gave an overview and subsequently 

details of our approach to these issues and how some of them have fared. In conclusion, 

we have not only combined data from various public access websites and building a 

bridge between them for ease of information gathering, but also developed techniques for 

discovering potential SNPs biomarkers for drug response, and devised an approach to 

augment the existing drug target databases. We hope to further improve on the system to 

become a useful tool in local pharmacogenomic studies as an ongoing project with the 

NUS-GIS Centre for Molecular Epidemiology. 
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