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The use of computing to organize, manage, and analyse biological and clinical
data has become an important element of biology and medical research. In the
1990s, large quantities of DNA sequence data were generated by the Human
Genome Project and other genome sequencing efforts. Computing projects in al-
gorithms, software, and databases were crucial in the automated assembly and
analysis of the genomic data. In the 2000s, we enter the so-called post-genome
era. Many genomes have already been completely sequenced. Genome research
migrates from raw data generation into scientific knowledge discovery. Comput-
ing shifts correspondingly from managing and integrating sequence databases to
discovering knowledge from such biological data.

Data mining tools and techniques are amongst the key computing technolo-
gies that are playing an important role in the ongoing post-genome extension of
human’s understanding of biological life. This chapter is an in-depth review of
data mining techniques, including feature selection methods, classification meth-
ods, clustering methods, and association rules discovery methods. We also briefly
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mention examples of their use in biomedicine.

ORGANIZATION.

Section 1. Feature selection is concerned with the issue of distinguishing signal from noise
in data analysis. We begin with an exposition on the curse of dimensionality to moti-
vate the importance of feature selection. Then we present a number of feature selection
methods, including signal-to-noise, t-test, Fisher criterion, entropy, ��, information
gain, information gain ratio, Wilcoxon rank sum test, CFS, and PCA.

Section 2. Classification is the process of finding models, based on selected features from
training data, that separate two or more data classes. We review in this section a number
of classification methods, including decision tree induction, Bayesian inference, hid-
den Markov models, artificial neural networks, support vector machines, and emerging
patterns.

Section 3. The problem of association rule mining from a dataset is that of how to generate
association rules that are interesting. We describe the two best-known methods for
mining association rules, viz. the Apriori algorithm and the Max-Miner algorithm.

Section 4. Clustering is the process of grouping a set of objects into clusters so that ob-
jects within a cluster have high similarity to each other and high dissimilarity with
objects in other clusters. We first discuss factors that can affect clustering. Then we
describe clustering methods based on the partitioning concept, viz. k-means, EM, and
k-mediods. Following that, we describe clustering methods based on the hierarchical
decomposition concept, viz. AGNES and DIANA.

1. Feature Selection Methods

Feature selection is concerned with the issue of distinguishing signal from noise
in data analysis. This section begins with subsection on the curse of dimensional-
ity to motivate the importance of feature selection. It is then followed by several
subsections, each presenting a different feature selection method.

1.1. Curse of Dimensionality

Let us assume that we would like to analyse data points in a �-dimensional unit
hypercube. How much of each dimension of the unit hypercube is needed if we
would like to sample a proportion � of the total volume of possible data points in
this space? To calculate this, let the amount that we would need of each dimen-
sion be �. Then � � ��. Thus � � �

�
�. Therefore, there is exponential growth in

the proportion of each dimension that is needed to sample a fixed proportion of a
space, with respect to the number of dimension that the space has. This observa-
tion is called the curse of dimensionality.

To appreciate the significance of this curse, let us look at Figure 1. In Part I
of this figure, we see that if we utilize 50% of each of the two dimensions, we
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Fig. 1. Illustrations of the curse of dimensionality.

can cover 25% of the 2-dimensional space. In Part II of this figure, we see that if
we utilize 50% of each of the three dimensions, we can cover only 12.5% of the
3-dimensional space. Conversely, we can also see from the graph in Part III of this
figure that we would need 46% of each dimension to cover 10% of the volume
of a 3-dimensional space, and nearly 86% of each dimension to cover 10% of the
volume of a 15-dimensional space.

This curse of dimensionality is an important source of difficulty in effective
data mining analysis. In order for a data mining tool to properly analyse a space
and to reliably make predictions in that space, the tool needs to sample a certain
proportion of the data points in that space. As a consequence of the curse, the tool
needs an exponential increase in the number of training samples with respect to
an increase in the dimensionality of the samples in order to uncover and learn the
relationship of the various dimensions to the nature of the samples. ���

It is therefore an important issue to determine if a dimension is relevant to the
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kind of data mining analysis that we would like to perform on a space. If we could
determine beforehand that certain dimensions are irrelevant, then we can omit
them in our data mining analysis and thus mitigate the curse of dimensionality.

In the data mining tradition, the term “feature” and the term “attribute” are
often preferred over the term “dimension.” So we use the three terms interchange-
ably here. Also, a feature � and its value � in a sample are some times referred to
as an “item” by the data mining community. A set of items is then called an “item-
set,” typically written using a notation like ��� � ��� ���� �� � ��� for an itemset
containing features ��, ..., �� and associated values ��, ..., ��. An itemset can also
be represented as a vector ���, ..., ���, with the understanding that the value of
feature �� is kept in the �-th position of the vector. Such a vector is usually called
a feature vector.

The dimensions or features that are relevant are called signals. The di-
mensions or features that are irrelevant are called noise. In rest of this sec-
tion, we present several techniques for distinguishing signals from noise, viz.
signal-to-noise measure,��� t-test statistical measure,��� entropy measure,��� 	�

measure,��� information gain measure,	�� information gain ratio,	�� Fisher crite-
rion score,��� Wilcoxon rank sum test,��� as well as a correlation-based feature
selection method known as CFS��	 and the “unsupervised” approach of principal
component analysis.���

1.2. Signal-to-Noise Measure

Suppose we have two classes � and � of sample data points in the space that
we would like to analyse. Then a feature is relevant if it contributes to separating
samples in � from those in �. Conversely, a feature is irrelevant if it does not
contribute much to separating samples in � from those in �.

Let us look at Figure 2 which shows the distributions of the values of 3 features
in samples of� and � as bars in the three charts. Let us compare Chart I and Chart
III. The feature represented by Chart I is not as useful as the feature represented
by Chart III for distinguishing � and �. To see this, we appeal to the following
intuitive concept for distinguishing a relevant feature from an irrelevant one: If
the values of a feature in samples in � are significantly different from the values
of the same feature in samples in �, then the feature is likely to be more relevant
than a feature that has similar values in � and �. More specifically, in order for a
feature � to be relevant, its mean value 
�� in � should be significantly different
from its mean value 
�� in �.

Similarly, the feature represented by Chart II of Figure 2 is not as useful as
the feature represented by Chart III for distinguishing � and �. To see this, we
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Fig. 2. Characteristics of a feature that is a poor signal (I and II), and of a feature that is a good signal
(III).

appeal to a second intuitive concept that if the values of a feature � varies greatly
within the same class of samples, then the feature � cannot be a reliable one. More
specifically, in order for a feature � to be relevant, the standard deviation � �� and
variance ���� �

� of � in � and the standard deviation ��� and variance ���� �
� of �

in � should be small.
One obvious way to combine these two concepts is the signal-to-noise measure

proposed in the first paper��� that applied gene expression profiling for disease
diagnosis:

�������� � �
�� 	 
�� �
��� � ���

Then a feature � can be considered better than a feature � � if �������� 

��� ������. Thus given a collection of candidate features in samples of � and
�, we simply sort them by their signal-to-noise measure and pick those with the
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largest signal-to-noise measure.

1.3. T-Test Statistical Measure

However, the statistical property of �������� is not fully understood. A second
and older way to combine the two concepts of good signals mentioned earlier is
the classical t-test statistical measure given below:

�������� � �
�� 	 
�� ��
���� �

�

��
�

���� �
�

��

where �� and �� are the number of samples in � and � seen. Then a feature �
can be considered better than a feature � � if �������� 
 ��� ������. Thus given
a collection of candidate features in samples of � and �, we simply sort them
by their t-test statistical measure, and pick those with the largest t-test statistical
measure, or those that satisfy a suitably chosen statistical confidence level.

The t-test statistical measure is known������ to require a Student distribution
with �

���� �
�

��
�

���� �
�

��

��

�
���� �

�

��

��

�� 	 �
�

�
���� �

�

��

��

�� 	 �

degrees of freedom. Hence if the values of the feature � is known not to obey this
distribution, the t-test statistical measure should not be used for this feature.

1.4. Fisher Criterion Score

Closely related to the t-test statistical measure is the Fisher criterion score��� de-
fined as

������������� � �
�� 	 
�� ��
���� �

� � ���� �
�

A feature � can be considered better than a feature � � if ������������� 

�������� ������. The Fisher criterion score is known to require a nearly normal
distribution,��� and hence it should not be used if the distribution of the values of
a feature is not nearly normal.
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Each of ��������, ��������, and ������������� iis easy to compute and
thus straightforward to use. However, there are three considerations that may make
them ineffective. The first consideration is that they require the values of � to
follow specific statistical distributions.������� It is often the case that we do not
know what sort of statistical distributions the candidate features have. The second
consideration is that the population sizes �� and �� should be sufficiently large.
Small population sizes can lead to significant underestimates of the standard de-
viations and variances.

The third consideration is more subtle and we explain using the following
example. Let �� and �� be two features. Suppose �� has values ranging from 0 to
99 in class � with 
��� � �� and has values ranging from 100 to 199 in class �
with 
��� � ���. Suppose �� has values ranging from 25 to 125 in class � with

��� � �	 and has values ranging from 100 to 175 in class � with 
��� � ��	.
We see that 
��� 	 
��� � �		 
 �	 � 
��� 	 
��� . Suppose the variances of ��
and �� in � and � are comparable. Then according to the signal-to-noise and t-
statistics measures, �� is better than ��. However, we note that the values of �� are
distributed so that all those in� are below 100 and all those in� are at least 100. In
contract, the values of �� in� and � overlap in the range 100 to 125. Then clearly
�� should be preferred. The effect is caused by the fact that ��������, ��������,
������������� are sensitive to all changes in the values of � , including those
changes that may not be important.

So, one can consider alternative statistical measures that are less sensitive to
certain types of unimportant changes in the value of � . What types of changes
in values of � are not important? One obvious type is those that do not shift the
values of � from the range of � into the range of �. An alternative that takes this
into consideration is the entropy measure.���

1.5. Entropy Measure

Let � ��� 
� �� be the proportion of samples whose feature � has value in the range
� and are in class 
. The class entropy of a range � with respect to feature � and
a collection of classes � is defined as

������� � �� � 	
�
���

� ��� 
� ��� 
����� ��� 
� ���

It follows from this definition that the purer the range � is, so that samples in that
range are more dominated by one particular class, the closer ������� � �� is to
the ideal entropy value of 0.

Let � partitions the values of � into two ranges �� (of values less than � )
and �� (of values at least � ). We sometimes refer to � as the cutting point of the
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Fig. 3. Each of the three charts represents a feature. We placed the values that a feature takes on
in samples of � and � on the horizontal, sorted according to magnitude. Chart I is characteristic
of a feature that is a poor signal. Chart II is characteristic of a potentially good signal. Chart III is
characteristic of the strongest signal.

values of � . The entropy measure��� ������ of a feature � is then defined as

������ � 
�������� � ���� ���� � ���� ��� is a partitioning of the
values of � in

�� by some point ��
Here, ����� � ���� ���� is the class information entropy of the partition

���� ���. The definition is given below, where ����� � �� means the number of
samples in the classes in � whose feature � has value in the range �,

����� � �� �
�
���

����� � ��
����� ���� � ������� � ��

The entropy measure ������ is illustrated in Figure 3. Chart I of this figure
is characteristic of a feature that is a poor signal, because it is not possible to
partition the range of the values into an interval containing mostly samples of �
and an interval containing mostly samples of �. In general, the entropy measure
for such a feature is a large value. Chart II is characteristic of a potentially good
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signal, because by partitioning the range of the values at the point indicated by
the arrow, one of the interval contains purely samples in � while the other interval
is dominated by samples in �. In general, the entropy measure for such a fea-
ture is a small value. Chart III is characteristic of the strongest signal, because by
partitioning the range of the values at the point indicated by the arrow, both inter-
vals become pure. The entropy measure for this feature is 0. So under the entropy
measure a feature � is more useful than a feature � � if ������ � ��� ����.

A refinement of the entropy measure is to recursively partition the ranges � �

and �� until some stopping criteria is reached.��� A stopping criteria is needed be-
cause otherwise we can always achieve perfect entropy by partitioning the range
into many small intervals, each containing exactly one sample. A commonly used
stopping criteria is the so-called minimal description length principle. ������� Ac-
cording to this principle, recursive partitioning within a range � stops iff � is
partitioned into ranges �� and �� such that ����� � �� � �������� � ��� ��� �

��������� � ��	���
�����

�	��	��������� � ������������� � �������
������� � ���, where �������� � ��� ��� � ������� � �� 	 ����� � ���� ����;
and �, ��, and �� are respectively the number of classes that have samples with
feature � having values in the range �, ��, and ��.

Another refinement is the 	� measure.��� Here, instead of the entropy measure
���� ������ itself, we use the 	� correlation of the partitions �� and �� induced
by the entropy measure to the classes� and�. Some other refinements include the
information gain measure and the information gain ratio that are used respectively
in ID3	�� and C4.5	�� to induce decision trees. These refinements are described
next.

1.6. �� Measure

The 	� measure is a feature selection technique that evaluates features individu-
ally by measuring the chi-squared statistics with respect to the class. For a numeric
feature, we should first “discretize” the range of its values into a number of inter-
vals. For this purpose, it is common to simply use those intervals induced by the
computation of the entropy measure presented in Subsection 1.5.

Then the 	� measure is given by the follow equation:

	������ �
	�
�
�

��


�

���
 �����	��
�������
��
�����

Here, � is the number of intervals induced in computing ������ or its recursive
refinement; � is the number of classes in � ; ��
����� is the number of samples in
the �-th interval that are of the �-th class; and ��
����� is the expected frequency
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of ��
�����, and hence

��
����� � �������� �
�����
 ���

where������� is the number of samples in the �-th interval,�
����� is the num-
ber of samples in the �-th class; and using the notation �� to denote the number of
samples seen from class 
, we also define ��� ��

���
�� , as the total number

of samples.
We consider a feature � to be more relevant than a feature � � in separating the

classes in � if 	������ 
 	��� ����. Obviously, the 	������ value takes on the
worst value of 0 if the feature � has only one interval. The degrees of freedom of
the 	� statistical measure is ��	 ��� �� 	 ��.���

1.7. Information Gain

Recall from Subsection 1.5 that ������ � 
�������� � ���� ���� � ���� ��� is
a partitioning of the values of � in

�� by some point ��. We can interpret this
number as the amount of information needed to identify the class of an element of
� .

Let � � �����, where � and � are the two classes of samples. Let � be
a feature and � be the range of values that � can take in the samples. Let �
be partitioned into two subranges �� and ��. Then the difference between the
information needed to identify the class of a sample in � before and after the
value of the feature � is revealed is �������� � ��� ��� � ������� � �� 
 ���	
����� � ���� ����.

Then the information gain is the amount of information that is gained by look-
ing at the value of the feature � , and is defined as

!����� � 
����������� � ��� ��� � ���� ��� is a partitioning of the
values of � in

�� by some point ��
This information gain measure !����� can also be used for selecting features that
are relevant because we can consider a feature � to be more relevant than a feature
� � if !����� 
 !�� ����. In fact, the ID3 decision tree induction algorithm uses it
as the measure for picking discriminatory features for tree nodes. 	��

1.8. Information Gain Ratio

However, !����� tends to favour features that have a large number of values. The
information gain ratio is a refinement to compensate for this disadvantage. Let

��������"���� � ��� ��� � �������� � ��� ���
��#��$��"���� � ��� ���



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Data Mining Techniques for the Practical Bioinformatician 45

where ��#��$��"���� � ��� ��� � ������ ����
� ����

� �� �� 
 ���, and ��
� ��

���
�� � 
 � the feature � in sample � has value in range ��. Then the in-

formation gain ratio is defined as

!������ � 
�����������"���� � ��� ��� � ���� ��� is a partitioning
of the values of � in

�� by some point ��

The information gain ratio !������ can of course be used for selecting fea-
tures that are relevant because we can consider a feature � to be more relevant
than a feature � � if !������ 
 !��� ����. In fact, the C4.5 decision tree induc-
tion algorithm uses it as the measure for picking discriminatory features for tree
nodes.	��

1.9. Wilcoxon Rank Sum Test

Another approach to deal with the problems of test statistics that require the fea-
ture values to conform to specific distributions is to use non-parametric tests. One
of the best known non-parametric tests is the Wilcoxon rank sum test, or the equiv-
alent Mann-Whitney test.

The Wilcoxon rank sum test is a non-parametric test for the equality of two
populations’ mean or median. It does not require the two populations to conform
to a specific distribution, other than that the two distributions have the same gen-
eral shape.��� It is thus an alternative to the �-test statistical measure and the Fisher
criterion score, both of which require the population distributions to be nearly nor-
mal. However, if the assumption on near normality is correct, then the Wilcoxon
rank sum test may not be as discriminating as the �-test statistical measure or the
Fisher criterion score.

The Wilcoxon rank sum test statistical measure %����� of a feature � in a
collection � � ����� of classes � and � is obtained using the following proce-
dure:

(1) Sort the values ��, ��, ..., ������ of � across all the samples in� in ascending
order, so that �� � �� � ... � �������� � ������ .

(2) Assign rank ����� to each value �� above so that ties are resolved by averaging.
That is,

�������� �

��
	
� if ���� �� �� �� ������

�
� � � �

�� �
if �
�� � �
 � ... � �� � ... � �
�� � �
����
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(3) Then

%����� �
�

�� argmin
�� �

��

����

That is, the Wilcoxon rank sum test statistical measure is the sum of the ranks for
the class that has a smaller number of samples. If the number of samples is same
in each class, the choice of which class to use is arbitrary.

To use the Wilcoxon rank sum test to decide if a feature � is relevant, we set up
the null hypothesis that: the values of � are not much different in � and �. Then
%��� ������ is used to to accept or reject the hypothesis. To decide whether to
accept or reject the null hypothesis, we have to compare%��� ���� with the upper
and lower critical values derived for a significant level &. For the cardinalities of
�� and �� that are small, e.g. � �	, the critical values have been tabulated, and
can be found in e.g. Sandy.���

If either �� or �� is larger than what is supplied in the table, the following
normal approximation can be used. The expected value of %��� ������ is:


 �
�� � ��� � �� � ��

�

assuming class � has fewer samples than class �. The standard deviation of
%��� ������ is known to be:

� �



�� � �� � ��� � �� � ��

��

The formula for calculating the upper and lower critical values is 
 � '� � �,
where '� is the ' score for significant level &. If %��� ������ falls in the range
given by the upper and lower critical values, then we accept the null hypothesis.
Otherwise, we reject the hypothesis, as this indicates that the values of feature
� are significantly different between samples in � and �. Thus, those features
whose Fisher criterion rejects the hypothesis are selected as important features.

1.10. Correlation-Based Feature Selection

All of the preceeding measures provide a rank ordering of the features in terms
of their individual relevance to separating � and �. One would rank the features
using one of these measures and select the top � features. However, one must ap-
preciate that there may be a variety of independent “reasons” why a sample is in
� or is in �. For example, there can be a number of different contexts and mecha-
nisms that enable protein translation. If a primary context or mechanism involves
� signals, the procedure above may select only these � features and may ignore
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signals in other secondary contexts and mechanisms. Consequently, concentrating
on such top � features may cause us to lose sight of the secondary contexts and
mechanisms underlying protein translation.

This issue calls for another concept in feature selection: Select a group of
features that are correlated with separating � and � but are not correlated with
each other. The cardinality in a such a group may suggest the number of inde-
pendent factors that cause the separation of � and �. A well-known technique
that implements this feature selection strategy is the Correlation-based Feature
Selection (CFS) method.��	

Rather than scoring and ranking individual features, the CFS method scores
and ranks the worth of subsets of features. As the feature subset space is usually
huge, CFS uses a best-first-search heuristic. This heuristic algorithm embodies
our concept above that takes into account the usefulness of individual features for
predicting the class along with the level of intercorrelation among them.

CFS first calculates a matrix of feature-class and feature-feature correlations
from the training data. Then a score of a subset of features is assigned using the
following heuristics:

(����� �
��
��

� � � � �� 	 ��� ���
where (����� is the heuristic merit of a feature subset � containing � features,
�
� is the average feature-class correlation, and ��� is the average feature-feature
intercorrelation.

Symmetrical uncertainties are used in CFS to estimate the degree of associ-
ation between discrete features or between features and classes.��	 The formula
below measures the intercorrelation between two features or the correlation be-
tween a feature) and a class * which is in the range �	� ��:

��� � �� +�)� �+�* �	+�)�* �

+�)� �+�* �

where +�)� � +�* � 	 +�)�* � is the information gain between features and
classes, +�)� is the entropy of the feature. CFS starts from the empty set of
features and uses the best-first-search heuristic with a stopping criterion of 5 con-
secutive fully expanded non-improving subsets. The subset with the highest merit
found during the search is selected.

1.11. Principal Component Analysis

The feature selection techniques that we have described so far are “supervised” in
the sense that the class labels of the samples are used. It is also possible to perform



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

48 J. Li, H. Liu, A. Tung, & L. Wong

feature selection in an “unsupervised” way. For example, the principal component
analysis (PCA) approach��� widely used in signal processing can be used in such
a manner.

PCA is a linear transformation method that diagonalizes the covariance matrix
of the input data via a variance maximization process. PCA selects features by
transforming a high-dimensional original feature space into a smaller number of
uncorrelated features called principal components. The first principal component
accounts for as much of the variability in the data as possible, and each succeeding
component accounts for as much of the remaining variability as possible. Feature
selection through PCA can be performed by the following steps:

(1) Calculate the covariance matrix � of data ) , where ) is a matrix with �
rows and� columns. Here, � is the number of samples and� is the number
of features. Each column data of ) may have to be normalized. Each ele-
ment ���� �� of the matrix � is the linear correlation coefficient between the
elements of columns � and � of) and is calculated as:

���� �� �

��

�
��) ��� ��	 
�
 ����� �) ��� ��	 
�
 �
�����

�
��) ��� ��	 
�
 ����� �
��

�
��) ��� ��	 
�
 �
���

where ) ��� �� is the �th element in the �th column of ) , and 
�
 ��� is the
mean of �th column of) .

(2) Extract eigenvalues ,�, for � � � , �, ..., �, using the equation below, where
$ is an identity matrix:

�� 	 ,� � $ � � 	

(3) Compute eigenvectors ��, for � � �, �, ...,�, using the equation

�� 	 ,� � $� � �� � 	

(4) These are the so-called “principal components” of ) . Rank the eigenvectors
according to the amount of variation in the original data that they account for,
which is given by

������-�� �
,��	

�
� ,�

(5) Select as “feature generators” those eigenvectors that account for most of the
variation in the data. In this step, enough eigenvectors that account for some
percentage—e.g., 95%—of the variance in the original data are chosen, while
the rest are discarded.



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Data Mining Techniques for the Practical Bioinformatician 49

Let !�, ..., !�� be the selected feature generators, with � � � �. Given a data point
)� in the original �-dimensional space, it is mapped into a data point * � � �)� �!�,
...,)� �!��� in the transformed ��-dimensional space. Analysis can then be carried
out on the lower dimensional *� instead of the high-dimensional)�.

Indeed, it can be proved that the representation given by PCA is an optimal
linear dimension reduction technique in the mean-square sense. ��� It is worth not-
ing that PCA is a unsupervised method since it makes no use of the class attribute.
When dealing with �-valued discrete features, one can convert them to � binary
features. Each of these new features has a “1” for every occurence of the corre-
sponding �th value of the original discrete feature, and a “0” for all other values.
Then the new binary features are treated as numeric features, to which above PCA
steps can be applied.

1.12. Use of Feature Selection in Bioinformatics

The preceding subsections have provided a fairly comprehensive review of fea-
ture selection techniques. These techniques have been used as a key step in the
handling of biomedical data of high dimension. For example, their use is preva-
lent in the analysis of microarray gene expression data.��� ���� ���� 	�� They have
also been used in the prediction of molecular bioactivity in drug design. ��� More
recently, they have even been used in the analysis of the context of protein trans-
lation initiation sites.���� ���� ���

Note that in choosing a statistical confidence level for t-test, Wilcoxon rank
sum test, and other statistical measures presented in this section, one should be
aware of the so-called “multiple comparisons problem,” which is especially seri-
ous in a microarray setting.	�� In this setting, one typically has several thousand
genes or features to choose from and hence performs the t-test, Wilcoxon rank
sum test, etc. several thousand times. Suppose we perform the tests at the standard
� � �� confidence level. If there is truly no difference in the values of a feature
between the two classes for any feature, one can still expect to observe � � 	�	�

significant features, where � is the total number of features under consideration.
A standard conservative solution to this problem is the Bonferroni

correction.��� This correction adjusts the cut-off for significance by dividing the
desired confidence level by �; for example, for the �� confidence level, the ad-
justed cut-off is 	�	�.�. Of course, this technique is applicable only to feature se-
lection measures with known statistical distributions. For measures with unknown
statistical distribution, permutation-based methods are typically used to estimate
p values where needed.����	��
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2. Classification Methods

As mentioned earlier, classification is the process of finding models that separate
two or more data classes. Putting it more prosaicly, we are given some samples of
class� and some samples of class �, can we use them as a basis to decide if a new
unknown sample is in� or is in �? If among all the features of the samples, there
is one whose entropy measure is zero, then we can derive the obvious decision
rule based on the cutting point � induced on the range of this feature.

Unfortunately, such zero-entropy features are rarely found in the more difficult
classification problems. Hence, we often need to use multiple features in an inte-
grated fashion to make prediction in these more difficult classification problems.

In this section, we describe a number of methods that have been used in the
biomedical domain for this purpose, including decision tree induction methods, �
nearest neighbours (k-NN), Bayesian methods, hidden Markov models (HMM),
artificial neural networks (ANN), support vector machines (SVM), and PCL.

2.1. Decision Trees

The most popular group of classification techniques is the idea of decision tree
induction. These techniques have an important advantage over machine learning
methods such as k-NN, ANN, and SVM, in a qualitative dimension: rules pro-
duced by decision tree induction are easy to understand and hence can help greatly
in appreciating the underlying reasons that separate the classes � and �.

C4.5 is one of the most widely used decision tree based classifier.	�� C4.5
constructs a decision tree in a recursive process. The process starts by determin-
ing the feature that is most discriminatory with regard to the entire training data.
Then it uses this feature to split the data into non-overlapping groups. Each group
contains multi-class or single class samples, as categorized by this feature. Next, a
significant feature of each of the groups is used to recursively partition them until
a stopping criteria is satisfied. C4.5 uses the information gain ratio presented in
Subsection 1.8 to determine which feature is most discriminatory at each step of
its decision tree induction process.

Other algorithms for decision tree induction include CART,��� ID3,	��

SLIQ,��� FACT,��� QUEST,��� PUBLIC,	�� CHAID,��� ID5,��� SPRINT,�	�

and BOAT.��� This group of algorithms are most successful for analysis of clin-
ical data and for diagnosis from clinical data. Some examples are diagnosis of
central nervous system involvement in hematooncologic patients, ��� prediction of
post-traumatic acute lung injury,	�	 identification of acute cardiac ischemia,�	�

prediction of neurobehavioral outcome in head-injury survivors, ��� and diagno-
sis of myoinvasion.��� More recently, they have even been used to reconstruct
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molecular networks from gene expression data.���

2.2. Bayesian Methods

Another important group of techniques�	����� ���� ���� ���� ���� ���� ��� are based on
the Bayes theorem. The theorem states that

� ����� � � ������ � ���
� ���

where � ��� is the prior probability that a hypothesis � holds, � ����� is the prob-
ability of observing data � given some world that � holds, and � ����� is the pos-
terior probability that � holds given the observed data �.

Let+ be all the possible classes. Then given a test instance with feature vector
��� � ��, ..., �� � ���, the most probable classification is given by

argmax����� ��
 ��� � ��� � � � � �� � ���

Using the Bayes theorem, this is rewritten to

argmax����
� ��� � ��� � � � � �� � ����
�� � ��
�

� ��� � ��� � � � � �� � ���

Since the denominator is independent of �
 , this can be simplified to

argmax����� ��� � ��� � � � � �� � ����
�� � ��
�
However, estimating � ��� � ��� � � � � �� � ����
� accurately may not be feasible
unless the training set is sufficiently large.

One of the popular ways to deal with the situation above is that adopted by
the Naive Bayes classification method (NB).���� ��� NB assumes that the effect
of a feature value on a given class is independent of the values of other features.
This assumption is called class conditional independence. It is made to simplify
computation and it is in this sense that NB is considered to be “naive.” Under this
class conditional independence assumption,

argmax����� ��� � ��� � � � � �� � ����
�� � ��
�

� argmax����


�

� ��� � ����
�� � ��
�

where � ��
� and � ��� � ����
� can often be estimated reliably from typical
training sets.

Some example applications of Bayesian classifiers in the biomedical con-
text are mapping of locus controlling a genetic trait,��� screening for macro-
molecular crystallization,��� classification of cNMP-binding proteins,��� pre-
diction of carboplatin exposure,��� prediction of prostate cancer recurrence,���
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prognosis of femoral neck fracture recovery, �	� prediction of protein secondary
structure,������� ��� and reconstruction of molecular networks.�	�

2.3. Hidden Markov Models

Related to Bayesian classifiers are hidden Markov models (HMM).�	� ���� ���� ���

A HMM is a stochastic generative model for sequences defined by a finite set �
of states, a finite alphabet � of symbols, a transition probability matrix � , and an
emission probability matrix �. The system moves from state to state according to
� while emitting symbols according to �. In an �-th order HMM, the matrices �
and � depend on all � previous states.

HMMs have been applied to a variety of problems in sequence analysis, in-
cluding protein family classification and prediction,���		� ��	 tRNA detection in
genomic sequences,��� methylation guide snoRNA screening,��	 gene finding and
gene structure prediction in DNA sequences,������ ��� ���� ��� protein secondary
structure modeling,��	 and promoter recognition.	������

2.4. Artificial Neural Networks

Artificial neural networks (ANN)�	� ���� ��� are another important approach to
classification that have high tolerance to noisy data. ANN are networks of highly
interconnected “neural computing elements” that have the ability to respond to
input stimuli and to learn to adapt to the environment.

Although the architecture of different ANN can differ in several characteristic
ways, a typical ANN computing element is a comparator that produces an output
when the cumulative effect of the input stimuli exceeds a threshold value. Part
I of Figure 4 depicts a single computing element. Each input � � has an associ-
ated weight %�, which acts to either increase or decrease the input signal to the
computing element. The computing element behaves as a monotonic function �
producing an output / � ������, where ��� is the cummulative input stimuli to
the neuron. The number ��� is usually defined as the weighted sum of the inputs:

��� �
�
�

�� � %�

and the function � is usually defined as a sigmoid:

������ �
�

� � �����

Such computing elements can be connected in multiple layers into the so-
called artificial neural network. Part II of Figure 4 depicts a fully-connected feed-
forward artificial neural network with two layers of computing elements. The out-
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Fig. 4. (I) An artificial neural network computing element. (II) A fully-connected feed-forward arti-
ficial neural network with two layers of such computing elements.

put from the two hidden computing elements in the first layer—the so-called hid-
den layer—are fed as inputs into the computing element at the second layer—the
so-called output layer.

The network is used for classification decision as follows. The inputs � � are
fed into the network. Each computing element at the first layer produces its corre-
sponding output, which is fed as input to the computing elements at the next layer.
This process continues until an output is produced at the computing element at the
final layer.

What makes the ANN work is in how the weights on the links between the
inputs and computing elements are chosen. These weights are typically learned
from training data using the error back-propagation method. ���

Let us to introduce some notations before we describe the error back-
propagation method. Let ��
 denote the weight on the link between � � and the
�-th computing element of the first layer—i.e., the hidden layer—in the artificial
neural network. Let %
 denote the weight on the link between the �-th computing
element of the first layer and the computing element of the last layer—i.e., the
output layer. Let '
 denote the output produced by the �-th computing element of
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the first layer. Then the output / produced by the artificial neural network for a
given training sample is given by

/ � �

�
��




%
 � �
��

�

�� � ��

���

For a given training sample, this / may differ from the targeted output � for
that particular training sample by an error amount �. The crux of ANN training
is in how to propagate this error backwards and to use it to adapt the ANN. This
is accomplished by adjusting the weights in proportion to the negative of the error
gradient. For mathematical convenient, the squared error � can be defined as

� �
��	 /��

�

In finding an expression for the weight adjustment, we must differentiate � with
respect to weights ��
 and %
 to obtain the error gradients for these weights. Ap-
plying the chain rule a couple of times and recalling the definitions of /, ' 
 , �,
and � ; we derive

Æ�

Æ%

�

Æ�

Æ
�


 %
 � � �
�

� �� � ��
�
� Æ
�


 %
 � � �
�

� �� � ��
�
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�
Æ�

Æ
�


 %
 � � �
�

� �� � ��
�
� �
��

�

�� � ��

�

�
Æ�
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� Æ/

Æ
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 � � �
�

� �� � ��
�
� �
��

�

�� � ��

�

� ��	 /�� � �
�
��




%
 � �
��

�

�� � ��

���� �

��
�

�� � ��

�

� ��	 /�� � �
�
��




%
 � '


�
�� '


� �� / � ��	 /�� '

The last step follows because � is a sigmoid and thus

� ���� � ����� ��	 �����
Then the adjustment ��� to %
 is defined as below, where 0 is a fixed learning
rate.

��� � 	0 � Æ�

Æ%

� 	0 ��� / � ��	 /�� '
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However, for the weights ��
 , we do not have a targeted output to compute errors.
So we have to use the errors ��� as surrogates and apply a similar derivation to
obtain

���� � 	0 ���� � '
 � ��	 '
�� ��

The above derivation provides the adjustments on the weights for one train-
ing sample. An “epoch” in the training process is a complete iteration through
all training samples. At the end of an epoch, we compute the total error of the
epoch as the sum of the squares of the � of each sample. If this total error is
sufficiently small, the training process terminates. If the number of epoch exceeds
some predefined limit, the training process also terminates.

A number of variations are possible. The most obvious are in the configuration
of the ANN in terms of the number of layers and in terms of how the computing
elements are connected. Another variation is the definition of the function � . For
example, the “tansig” function ��������� � ����� 	 ������.����� � ������ is
another popular choice for � . There are also variations in the method used for
propagating errors backwards to adapt the ANN, such as some forms of regular-
ization to prevent overfitting of the ANN to the training data. ��

Successful applications of artificial neural networks in the biomedical
context include protein secondary structure prediction, 	������� ��� signal pep-
tide prediction,�	������ 	�� gene finding and gene structure prediction,�������

T-cell epitope prediction,�	� RNA secondary structure prediction,��� toxicity
prediction,��� disease diagnosis and outcome prediction,�	������ �	� gene expres-
sion analysis,��� as well as protein translation initiation site recognition.����	��

2.5. Support Vector Machines

Let 1 � 2 � 2� be a function that embeds a training sample in the input space2
to a higher dimensional embedding space 2 �. A kernel ���� /� � �1��� � 1�/��
is an inner product in 2 �. It can often be computed efficiently. By formulating a
learning algorithm in a way that only requires knowledge of the inner products
between points in the embedding space, one can use kernels without explicitly
performing the embedding 1.

A support vector machine (SVM) is one such learning algorithm. It first em-
beds its data into a suitable space and then learns a discriminant function to sep-
arate the data with a hyperplane that has maximum margin from a small number
of critical boundary samples from each class.���� ��� A SVM’s discriminant func-
tion ��� � for a test sample � is a linear combination of kernels computed at the
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training data points and is constructed as

��� � � ��!�

��
�

&���� * ���� ����) ���� � 3

�

where ) � � are the training data points, * � � are the class labels (which are as-
sumed to have been mapped to 1 or –1) of these data points, ���� �� is the kernel
function, and 3 and &� � are parameters to be learned from the training data.

As it turns out, the training of a SVM is a quadratic programming problem on
maximizing the Lagrangian dual objective function


��
�
4 �&� �

��
�
�

&���	 �

�
�

��
�
�

��


�

&���� &���� * ���� * ���� ��) ���� ) ����

subject to the constraint that ���	 � &��� � � and
��

�
� &��� � * ��� � 	. Here,
� is a bound on errors, ) ��� and ) ��� are the �th and �th training samples, * ���
and * ��� are the corresponding class labels (which are mapped to 1 and –1), and
���� �� is the kernel function. The kernel function normally used is a polynomial
kernel

��)�) �� � �) �) ��� �
�
��

� � �
�
��

) ����� � � ��) �����) ������ � � ��) �����

In the popular WEKA data mining software package,��� the quadratic pro-
gramming problem above is solved by sequential minimal optimization. 		� Once
the optimal solution &� � is obtained from solving the quadratic programming
problem above, we can substitute it into the SVM decision function ��� � �

��!��
�

� &���� * ���� ����) ���� � 3� given earlier.
It remains now to find the threshold 3. We can estimate 3 using the fact

that the optimal solution &� � must satisfy the so-called Karush-Kuhn-Tucker
conditions.����		�� ��� In particular, for each &��� 
 	, * ��� � ��) ���� � �.
Hence * ��� � ��!��

�
� &��� � * ��� � ��) ���� ) ���� � 3�. So we estimate 3 by

averaging * ���	�� &���� * ���� ��) ���� ) ���� for all &��� 
 	.
A SVM is largely characterized by the choice of its kernel function. Thus

SVMs connect the problem they are designed for to a large body of existing re-
search on kernel-based methods.�������� ��� Besides the polynomial kernel func-
tion ���� /� � �� � /��, other examples of kernel function include the Gaussian
radial basis kernel function,	����� sigmoid kernel function,��� 5�-spline kernel
function,��� locality-improved kernel function,��� and so on.

Some recent applications of SVM in the biomedical context include protein
homology detection,��� microarray gene expression data classification,��� breast
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cancer diagnosis,�	�� ��� protein translation initiation site recognition,������� as
well as prediction of molecular bioactivity in drug design. ���

2.6. Prediction by Collective Likelihood of Emerging Patterns

Prediction by collective likelihood of emerging patterns (PCL) ���� ��� is a classifi-
cation method that we have been developing during the last couple of years. This
method focuses on (a) fast techniques for identifying patterns whose frequencies
in two classes differ by a large ratio,��� which are the so-called emerging patterns;
and on (b) combining these patterns to make decision. Note that a pattern is still
emerging if its frequencies are as low as 1% in one class and 0.1% in another
class, because the ratio indicates a 10 times difference. However, for the purpose
of PCL, we use only emerging patterns that are most general and have infinite
ratio. That is, we use only emerging patterns that occur in one class of data but not
the other class and that are as short as possible.

Basically, the PCL classifier has two phases. Given two training datasets 2�

(instances of class �) and 2� (instances of class �) and a test sample � , PCL
first discovers two groups of most general emerging patterns from 2� and 2�.
Denote the most general emerging patterns of2� as, ���� , ���� , � � � , ���� � in
descending order of frequency. Denote the most general emerging patterns of2 �

as ���� , ���� , � � � , ���
 , in descending order of frequency.
Suppose the test sample � contains these most general emerging patterns of

2�: ����� , ����� , � � � , ����� , �� � �� � � � � � �� � �, and these most general
emerging patterns of 2�: ���
� , ���
� , � � � , ���
� , �� � �� � � � � � �� � �. The
next step is to calculate two scores for predicting the class label of � . Suppose we
use � (� � � and � � �) top-ranked most general emerging patterns of 2� and
2�. Then we define the score of � in the2� class as

�-"�����2�� �
��

	
�

���67��-/�������

���67��-/����	 �
�

and the score in the 2� class is similarly defined in terms of �� �
� and ���	. If
�-"�����2�� 
 �-"�����2��, then � is predicted as the class of2�. Otherwise
it is predicted as the class of2�. We use the size of2� and2� to break tie.

Recall that PCL uses emerging patterns that have infinite ratio and are most
general. That is, given two datasets2� and2�, an emerging pattern—to be used
by PCL—is a pattern such that its frequency in2� (or2�) is non-zero but in the
other dataset is zero (i.e., infinite ratio between its support in 2� and 2�), and
none of its proper subpattern is an emerging pattern (i.e., most general). We can
immediately see that if 2� and 2� has � Boolean attributes, then there are ��
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possible patterns. Hence a naive method to extract emerging patterns requires � �

scans of the dataset. A more efficient method for extracting emerging patterns is
therefore crucial to the operation of PCL.

We briefly discuss here an approach for developing more practical algorithms
for finding such emerging patterns. Let us first recall the theoretical observation of
Dong and Li��� that the emerging patterns from2� to2�—all of them together,
not just most general the ones—form a convex space. Now, it is known that a
convex space � can be represented by a pair of borders �8���, so that (a) 8 is
anti-chain, (b) � is anti-chain, (c) each) � 8 is more general than some 9 � �,
(d) each 9 � � is more specific than some ) � 8, and (e) � � �* � �) �
8� �9 � ��) � * � 9�. Actually, 8 are the most general patterns in �, and �
the most specific patterns in �. We write �8��� for �.

Dong and Li��� show that: if2� and2� have no duplicate and no intersection
and are of the same dimension, then the set of emerging patterns to 2� from2�

is given by ������ 2�� 	 ������ 2��. Having thus reduced emerging patterns to
this “border formulation,” we derive a more efficient approach to discover them.

The main trick is as follows. Let 2� � ���� � � � � ��� and 2� �

�5�� � � � � 5	�. Then

������ 2��	 ������ 2��

� ������ ���� � � � � ����	 ������ �5�� � � � � 5	��
� �8� ���� � � � � ����

where

8 � 
���

��
�

����� � � � � �	���
 � �� 	5
 � � � � � ���

�
��
�


������� � � � � �	���
 � �� 	5
 � � � � � ��

which we know how to optimize very well���� ���� ��� using novel border-based
algorithms and constraint-based algorithms based on set enumeration tree. ���

A number of other classification methods based on the idea of emerging pat-
terns exist. They include CAEP,��� which uses all of the most-general emerging
patterns with ratio exceeding a user-specified threshold; DeEPs,��� which uses
emerging patterns in an instance-based manner; as well as techniques that score
emerging patterns in ad hoc ways.���

Any way, although the PCL classifier is a very recent development, it
has already proved to be a good tool for analysing biomedical data. Exam-
ples include gene expression data, proteomic data, and translation initiation
sites.�������� ���� ���� ���



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

Data Mining Techniques for the Practical Bioinformatician 59

3. Association Rules Mining Algorithms

A major data mining task is to discover dependencies among data. Association
rules�� are proposed to achieve this goal. In the context of supermarket business
data, association rules are often used to describe dependencies such as the pres-
ence of some items in a transaction implies, with a certain probability, the presence
of other items in the same transaction. An example�� of such an association rule
is the statement that �	� of transactions involving the purchase of bread and
butter also involve the purchase of milk. In this section, we first provide some
preliminary definitions. Then we outline two algorithms for mining association
rules, viz. Apriori�� and Max-Miner.��

3.1. Association Rules

Recall from Subsection 1.1 that a data point in a feature space can be thought
of as an itemset ��� � ��, ..., �� � ���. It is a convention of the data mining
community to write an itemset as �� ��, ..., � �	� if each �� is either 1 or 0 and
�� ��, ..., � �	� � ���� �� � �, � � � � ��. Under this convention, the itemset
is also called a “transaction.” Observe that transactions contain only those items
whose feature values are 1 rather than those items whose feature values are 0. In
this section, we use the term “transaction” instead of “data point.” Incidentally,
an itemset consisting of � items is called a �-itemset; the number � is called the
“length” or “cardinality” of the itemset.

We say that a transaction � contains an itemset ) if) � � . We also say that
an itemset) occurs in a transaction � if) � � . Let a database� of transactions
and an itemset ) be given. Then the support of ) in �, denoted �7����)�, is
the percentage of transactions in � that contain) . The count of) in �, denoted
-"7����)�, is the number of transactions in � that contain) . Observe that

�7����)� �
-"7����)�

��

where �� is the number of transactions in �. Then given a threshold Æ be-
tween 0 and 1, an itemset ) is said to be a large itemset or a frequent itemset
if �7����)� � Æ.

An association rule is an implication of the form ) �� * , where ) and *
are two itemsets in a dataset � and ) � * � ��. We often omit the superscript
� if the dataset is understood. The itemset ) is called the antecedent of the rule.
The itemset * is called the consequent of the rule. We define the support of the
rule as the percentage of the transactions in � that contain) 
 * . We also define
the confidence of the rule as the percentage of the transactions in � containing)
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that also contain * . Note that the support of the rule) �� * is �7����) 
 * �
and the confidence is -"7����) 
 * �.-"7����)�.

The problem of mining association rules is that of how to generate all associa-
tion rules that have support and confidence greater than or equal to a user-specified
minimum support (minsup) and a minimum confidence (minconf). �� This problem
is solved by decomposing into two sub-problems:

(1) Generate all large itemsets that satisfy the support threshold minsup.
(2) For a given large itemset ) � ���, ��, ..., ���, generate all association rules

and output only those rules that satisfy the confidence threshold minconf.

The second sub-problem is simple and straightforward to solve. The first sub-
problem is the key efficiency issue of mining association rules, viz. to discover all
large itemsets whose supports exceeds a given threshold.

A naive approach to solving this problem is to generate all possible item-
sets in the dataset � and then check whether their supports meet the thresh-
old. Obviously, this task rapidly becomes impossible as the number of fea-
tures increases. This happens because the number of the candidate itemsets
increases exponentially when the number of features increases. Fortunately,
this problem has been extensively studied in both the database and data
mining communities.������ ��� ���� ��	� ���� ���� ���� ��	� ���� ���� 	�	� ���� ���� ���� ���

There are two now well-known efficient algorithms, the Apriori algorithm �� and
the Max-Miner algorithm,�� that partially overcome the difficulty in the naive al-
gorithm. We describe these two algorithms in the next two subsections.

3.2. The Apriori Algorithm

Given a database � and a support threshold Æ, the collection of the large itemsets
in � is the union of all large 1-itemsets, all large 2-itemsets, ..., and all large �-
itemsets, where � is the longest length of the large itemsets in �. The Apriori
algorithm sequentially outputs the large �-itemsets with � from 1 to �. So, the
Apriori algorithm is also called a level-wise algorithm.

The basic idea used in the Apriori algorithm is that any subset of a large item-
set is large. This property is called the a priori property. It is used in the algorithm
to narrow search spaces, generating a strict number of large itemset candidates
which is much smaller than the number of the candidates generated by the naive
method. In other words, if all the large �-itemsets are known, the Apriori algorithm
generates only those �����-itemsets as candidates whose immediate proper sub-
sets (having � items) must all be large. So, the Apriori algorithm does not generate
any of those �����-itemsets as a candidate for which there exists its an immediate
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proper subset which is not large.
Briefly, the algorithm comprises the three main steps below, with the iteration

parameter � initialized to 1. These three steps are repeated until no new large
itemsets are found:

(1) Generate a collection of large itemset candidates, each having � items,
(2) Scan the database� and compute the supports of the candidates.
(3) � �� � � �.

The efficiency Step 1 is key to the efficiency of the whole algorithm, as gen-
erating more unnecessary candidates can increase its complexity. Agrawal and
Srikant�� propose the APRIORI-GEN function that makes use of the a priori prop-
erty for candidate generation. We use an example�� to illustrate the main ideas
in the APRIORI-GEN function. Let the collection �� of all the large 3-itemsets
in some database � be ���� �� ��, ��� �� ��, ��� �� ��, ��� �� ��, ��� �� ���. Af-
ter a joint sub-step in the APRIORI-GEN function, the candidate collection � � is
���� �� �� ��, ��� �� �� ���. After a pruning sub-step, the itemset ��� �� �� �� is re-
moved from �� because the itemset ��� �� �� is not in ��. As a result, only the
itemset ��� �� �� �� is a candidate and needs support calculation in Step 2.

The Apriori algorithm achieves good performance by reducing the size of can-
didate itemsets. However, in some situations where there exist long frequent item-
sets (e.g., an itemset with the cardinality of 30), or where a low support threshold
is required, the Apriori algorithm still suffers from heavy computational costs.
Additional details of the Apriori algorithm and discussions on its effficiency and
scalability can be found in Agrawal and Srikant,�� Bayardo,�� and Han et al.���

3.3. The Max-Miner Algorithm

The Apriori algorithm explicitly outputs all large itemsets in a level-wise manner.
It sequentially finds the large �-itemsets, � � � � �, where � is the longest
length of the large itemsets. In contrast to the Apriori algorithm, the Max-Miner
algorithm�� only outputs a subset of the collection of all large itemsets with re-
spect to a given support threshold in a database. Specifically, Max-Miner outputs
only those large itemsets whose proper supersets are not large. These large item-
sets are called maximal large itemsets. They can be imagined as a frontier bound-
ary that separates the large itemsets from the non-large itemsets. Since any large
itemset is a subset of a maximal large itemset, Max-Miner’s output implicitly and
concisely represents all large itemsets.

Max-Miner has been shown to perform two or more orders of magnitude bet-
ter than Apriori on some data sets.�� This is particularly true when the support
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threshold is set low, and the data sets are large and high-dimensional. There are
two basic ideas behind Max-Miner:

(1) Superset-frequency pruning, which works as follows. Suppose an itemset is
known to be large or frequent. Then its subsets must be large or frequent also.
Hence, there is no need to generate its subsets for support calculation.

(2) Subset-infrequency pruning, which works as follows. Suppose an itemset
is known as non-large or infrequent. Then its supersets must be non-large.
Hence, there is no need to generate its supersets for support calculation.

Only the latter pruning technique is used in the Apriori algorithm or its variants.
Max-Miner contains some provision for looking ahead in order to quickly

identify long frequent itemsets and short infrequent itemsets to conduct superset-
frequency pruning and subset-infrequency pruning. As a result, Max-Miner is
highly efficient in comparison to the Apriori algorithm.

�

�� � �� � �� � �� �

�� �� � �� �� �

�� �

� � �

��

�� �� �� �

�� �� �

�� �

�� �� �

Fig. 5. A complete set-enumeration tree over four items.

The two pruning strategies of Max-Miner are implemented using the frame-
work of set-enumeration trees��� by incorporating some heuristic. A simple set-
enumeration is shown in Figure 5. See Bayardo�� for more details of Max-Miner,
and Bayardo et al.	� for its further refinement. Some methods that are closely re-
lated to Max-Miner are Pincer-Search by Lin and Kedem, ��� and MaxEclat and
MaxClique by Zaki et al.���

3.4. Use of Association Rules in Bioinformatics

A number of studies��	� 	��� ��� have been conducted to make use of the concept
of association rules for mining bio-medical data to find interesting rules. We dis-
cuss two of them. One discovers association rules from protein-protein interaction
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data.	�� The other finds expression associations from gene expression profiling
data.��	 Both of the studies have revealed interesting patterns or rules. Some of
these rules have been confirmed by work reported in biomedical literature, and
some are considered to be new hypothesis worthy of wet-experimental validation.

Protein-protein interactions are fundamental biochemical reactions in organ-
isms. It is important to understand general rules about proteins interacting with
each other, such as “the protein having a feature A interacts with the protein hav-
ing the feature B”, “this domain interacts with that domain,” and so on. Associa-
tion rules can capture such knowledge patterns. Oyama et al. 	�� propose a method
that is aimed to reveal what types of proteins tend to interact with each other. For
example, a popular interaction rule that “a SH3 domain binds to a proline-rich
region” is detected by this method.

Oyama et al.	�� use 4307 pairs of yeast interaction proteins from four source
databases. Functional, primary structural, and other characteristics are used as fea-
tures to describe the proteins. The total of 5241 features are categorized into seven
types, viz. YPD categories, EC numbers, SWISS-PROT/PIR keywords, PROSITE
motifs, Bias of the amino acids, Segment clusters, and Amino acid patterns. Under
������ � �� and ������	 � ���, Oyama et al.	�� have discovered a total of
6367 rules. Instead of using only support and confidence, they have also proposed
a new scoring measure to indicate the validity of the rules. The number of positive
interactions and the number of proteins concerned with the positive interactions
are placed at high priority considerations in this scoring measure.

Gene expression profiling data have been widely used to understand functions
of genes, biological networks, and cellular states. Creighton and Hanash ��	 pro-
posed a method to analyse gene expression data using association rules, aimed
at revealing biologically relevant associations between different genes or between
environmental effects and gene expression. In this analysis, there are 6316 tran-
scripts which are used as features. These transcripts correspond to 300 diverse
mutations and chemical treatments in yeast. The values of these features are their
expression levels under different experiments. The expression range of each fea-
ture (transcript) is discretized into three categorical values: up, down, and neither-
up-nor-down. An expression value greater than 0.2 for the log base 10 of the fold
change is categorized as up; a value less than -0.2 as down; all other values as
neither-up-nor-down.

Creighton and Hanash��	 use the Apriori algorithm in the mining of the asso-
ciation rules. The minimum support for mining those frequent itemsets is set as
10%. The minimum confidence for those association rules is set as 80%. To avoid
the vast majority of redundant rules and also to alleviate the complexity of the
mining problem, they suggest an additional criteria besides a minimum support
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to narrow the seach space of candidate frequent itemsets. The additional criteria
is that the method generates only those association rules with the left-hand-side
itemset containing a single item, ignoring frequent itemsets that cannot form such
a rule. Mining expression data using association rules is claimed to be more useful
than clustering methods to uncover gene networks. Association rules discovered
from gene expression data can also be used to help relate the expression of genes
to their cellular environment.

4. Clustering Methods

Clustering is the process of grouping a set of objects into classes or clusters so
that objects within a cluster have high similarity in comparison to one another,
but are dissimilar to objects in another clusters. Unlike classifier induction dis-
cussed in Section 2, clustering does not rely on predefined classes and labeled
training examples to guide the machine learning process. Hence, it is also called
unsupervised learning. Clustering algorithms can be separated into four general
categories, viz. partitioning methods, hierarchical methods, density-based meth-
ods and grid-based methods. Of the four, partitioning and hierarchical methods
are applicable to both spatial and categorical data while density- and grid-based
methods are applicable only to spatial data. As such, this section focuses on the
first categories of two methods.

4.1. Factors Affecting Clustering

To apply clustering in any domain successfully, the following factors must typi-
cally be considered:

(1) type of data,
(2) similarity function, and
(3) goodness function.

It is easy to see that the type of data to be clustered affects the clustering algo-
rithms being applied. For example, clustering a set of DNA sequences is different
from clustering a set of gene expression profiles. A useful way for categorizing
the data types is to separate them into spatial vs. categorical data. Spatial data are
data objects which are mapped into a coordinated space, e.g., the 3-dimensional
location of protein molecules. Categorical data are data objects which cannot be
represented as objects in a spatial coordinate system, e.g., a set of medical docu-
ments. Generally, it is easier to develop efficient clustering algorithms for spatial
data through the use of spatial inferences. The clustering of categorical data is
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more difficult as explicit computation must usually be made for any pair of data
objects in order to judge their similarity based on some similarity function.

Since the aim of clustering is to group similar objects together, it is a natural
question to ask when are two objects deemed to be similar. The answer comes in
the form of a similarity function that is defined by the user based on the applica-
tion on hand. For spatial data, the similarity function is usually computed from
the coordinates of the data objects, such as the Euclidean distance. It is therefore
generally easy to estimate the similarity between two groups of objects by pick-
ing a representative for each group—such as their mean or their bounding boxes
which can be easily computed—and making spatial inference based on the dis-
tance between the two representatives. The similarity of two data objects can thus
be approximated without knowing their exact coordinate.

Unlike spatial data, the similarity between categorical data is usually more
difficult to approximate. The inherent difficulty come from the fact that a good
representative for a group of categorical data is usually harder to determine. For
example, if we use edit distance as a similarity measurement, finding a good rep-
resentive for a group of sequences involves the use of multiple alignment, an op-
eration which requires expensive dynamic programming. The other alternative is
to pick one of the sequences from the group that is the most similar to all the other
sequences, resulting in the need for an all-pairs comparison.

Without any good way to represent a set of data objects, efficient clustering of
categorical data is difficult and approximating the similarity between two groups
of object becomes computationally intensive too. One usual technique to solve this
problem is to derive some transformation that maps categorical data into spatial
coordinates such that objects that are similar are mapped into a spatially close
region. The objects can then be clustered using the spatial distance as a similarity
function instead.

Finally, a goodness function is usually derived to measure the quality of the
clustering. This is again application dependent. In general, a goodness function
is an aggregate function that is used to gauge the overall similarity between data
objects in the clusters. For example, in k-means clustering,��� the squared distance
to the cluster center for each point is summed up as a measure of goodness. In
other cases, a test of good fit is done according to some statistical model—e.g.,
Gaussian—in order to judge the quality of the clusters.

As mentioned earlier, partitioning and hierarchical methods of clustering are
applicable to both spatial and categorical data. We discuss them in the next two
subsections.
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4.2. Partitioning Methods

Partitioning algorithms had long been popular clustering algorithms before the
emergence of data mining. Given a set2 of � objects in a �-dimensional space and
an input parameter �, a partitioning algorithm organizes the objects into � clusters
such that the total deviation of each object from its cluster center or from a cluster
distribution is minimized. The deviation of a point can be computed differently in
different algorithms and is what we earlier called the goodness function.

Three well-known partitioning algorithms are: �-means, ��� Expectation Max-
imization (EM),������� ��� and �-medoids.��� The three algorithms have different
ways of representing their clusters. The �-means algorithm uses the centroid (or
the mean) of the objects in the cluster as the cluster center. The �-medoids algo-
rithm uses the most centrally located object in the cluster. Unlike �-means and
�-medoids, EM clustering uses a distribution consisting of a mean and a � � �
covariance matrix to represent each cluster. Instead of assigning each object to a
dedicated cluster, EM clustering assigns each object to a cluster according to a
probability of membership that is computed from the distribution of each clus-
ter. In this way, each object has a certain probability of belonging to each cluster,
making EM clustering a fuzzy partitioning technique.

Despite their differences in the representation of the clusters, the three parti-
tioning algorithms share the same general approach when computing their solu-
tions. To see this similarity, we first observe that the three algorithms are effec-
tively trying to find the � centers or distributions that will optimize the goodness
function. Once the optimal � centers or distributions are found, the membership
of the � objects within the � clusters are automatically determined. However, the
problem of finding the globally optimal � centers or � distributions is known to
be NP-hard.��� Hence, the three algorithms adopt an iterative relocation technique
that finds � locally optimal centers. This technique is shown in Figure 6. The three
algorithms differ essentially in their goodness function and in the way they handle
Steps 2 and 3 of the iterative relocation technique given in the figure. The general
weaknesses of partitioning-based algorithms include a requirement to specify the
parameter � and their inability to find arbitrarily shaped clusters.

4.3. Hierarchical Methods

A hierarchical method creates a hierarchical decomposition of the given set of
data objects forming a dendrogram—a tree that splits the database recursively
into smaller subsets. The dendrogram can be formed in two ways: “bottom-up”
or “top-down.” The “bottom-up” approach, also called the “agglomerative” ap-
proach, starts with each object forming a separate group. It successively merges
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Input: The number of clusters, �, and a database containing
� objects.

Output: A set of � clusters that minimizes a criterion function
�.

Method:
(1) Arbitrarily choose � centers/distributions as the

initial solution;
(2) (re)compute membership the objects according to

present solution.
(3) Update some/all cluster centers/distributions ac-

cording to new memberships of the objects;
(4) Goto Step 2 if the value of � changes; otherwise,

end.

Fig. 6. An outline of the iterative relocation technique used generally by partitioning methods of
clustering.

the objects or groups according to some measures like the distance between the
two centers of two groups and this is done until all of the groups are merged into
one (the topmost level of the hierarchy), or until a termination condition holds.
The top-down, also called the “divisive” approach, starts with all the objects in
the same cluster. In each successive iteration, a cluster is split into smaller clusters
according to some measures until eventually each object is in one cluster, or until
a termination condition holds.

AGNES and DIANA are two hierarchical clustering algorithms.��� AGNES
(AGglomerative NESting) is a bottom-up algorithm which starts by placing each
object in its own cluster and then merging these atomic clusters into larger and
larger clusters, until all of the objects are in a single cluster or until a certain ter-
mination condition is satisfied. DIANA (DIvisia ANAlysis), on the other hand,
adopts a top-down strategy that does the reverse of AGNES by starting with all
objects in one cluster. It subdivides the cluster into smaller and smaller pieces,
until each object forms a cluster on its own or until it satisfies certain termina-
tion conditions, such as a desired number of clusters is obtained or the distance
between the two closest clusters is above a certain threshold distance.

In either AGNES or DIANA, one can specify the desired number of clusters as
a termination condition. The widely used measures for distance between clusters
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are as follows, where�� is the mean for cluster ��, �� is the number of objects in
��, and ��	 ��� is the distance between two objects or points � and � �.

�	������ �
� � ������������� ��	 ���
�	������� �
� � ��� 	�
 �

�������� �
� �
����������� ��	 ���

�� � �

�	������ �
� � ������������� ��	 ���

The two algorithms, AGNES and DIANA, often encounter difficulties regard-
ing the selection of merge or split points. Such a decision is critical because once
a group of objects are merged or split, the process at the next step will operate on
the newly generated clusters. They can neither undo what was done previously,
nor perform object swapping between clusters. Thus merge or split decisions, if
not well chosen at some step, may lead to low quality clusters. Moreover, the
method does not scale well since the decision of merge or split needs to examine
and evaluate a good many number of objects or clusters.

To enhance the effectiveness of hierarchical clustering, recent methods have
adopted one of the following two approaches. The first approach represented by
algorithms like CURE��� and CHAMELEON��� utilizes a more complex prin-
ciple when splitting or merging the clusters. Although the splitting and merging
of clusters are still irreversible in this approach, less errors are made because a
better method is used for merging or splitting. The second approach represented
by algorithms like BIRCH��� is to obtain an initial result by using a hierarchical
agglomerative algorithm and then refining the result using iterative relocation.

4.4. Use of Clustering in Bioinformatics

Recent uses of clustering techniques in bioinformatics are mostly in aspects
of gene expression analysis. They are amongst the earliest techniques used
for disease subtype diagnosis with microarrays, though classification-based ap-
proaches have now largely replaced clustering-based approaches to this prob-
lem. Neverthess, they are still very useful for disease subtype discovery with
microarrays.������ ��� ��� ��	 They are also amongst the earliest techniques used
for time series cell cycle studies with microarrays.�������

In a recent study,��� six clustering methods—hierarchical clustering us-
ing the umweighted pair group method with arithmetic mean, ��� k-means,���

DIANA,��� a fuzzy logic-based methods called Fanny,��� A model-based clus-
tering methods,�� hierarchical clustering with partial least squares��	—are com-
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pared in the context of transcriptional analysis of budding yeast sporulation as
well as two sets of simulated data. The study concludes that DIANA is the most
consistent performer with respect to the known profiles of the three test models.

5. Remarks

In this chapter, we have surveyed a large number of techniques for the data mining
tasks of feature selection, classification, association rules extraction, and cluster-
ing. We have also briefly mentioned some examples of their applications in the
analysis of biological and clinical data. There are other varieties of data mining
tasks that we have not discussed. We close this chapter by briefly mentioning some
of them below.

Outlier analysis deals with objects that do not comply with the general behav-
ior of a model of the data. Most datamining applications discard outliers. How-
ever, in some applications the rare events can be more interesting than the more
regularly occurring ones. For example, the detection of new particles in nuclear
accelerator experiments.

Trend analysis describes and models regularities or trends for objects whose
behavior changes over time. The distinctive features of such an analysis include
time-series data analysis, periodicity pattern matching, and clustering of time-
related data. The inference of gene relationships from large-scale temporal gene
expression patterns��� is an example of this topic.

Feature generation is another important data mining task, especially for the
analysis of biological data such as DNA and protein sequences, and clinical data
such as images. The techniques described on the main text of this chapter all
assume that our data possess explicit features. However, for data such as DNA
sequences, protein sequences, and images, the explicit features present in the data
are usually inadequate for analysis. For an image file, the features that are explic-
itly present are the colour and intensity values at each pixel. For a DNA or protein
sequence, the features that are explicitly present are the nucleotide or amino acid
symbols at each position of the sequence. Such features are at too low a level
for good understanding. Feature generation is the task of generating higher-level
features that are more suitable for analysis and for understanding the data. How-
ever, some knowledge of the problem domain is typically needed to identify and
generate high-level features in a robust manner. A recent bioinformatics example
where feature generation plays a key role is the recognition of translation initiation
sites.���� ���

Finally, inference of missing data is a data mining task that is occasionally
needed in the analysis of biological and clinical data. There are many reasons
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for such a need. For example, gene expression microarray experiments often gen-
erate datasets with many missing expression values due to limitations in current
microarray technologies.��� As another example, patient medical records usually
have many missing values due to missed visits and other reasons. How the missing
values can be estimated depends on the situation. Sometimes, a missing value in
a sample can be estimated based on a corresponding value in other samples that
are most similar to this sample. Sometimes, a missing value in a sample can be
inferred from secondary data associated with the sample.


