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Understanding secondary structures of RNAs helps to determine their chemical
and biological properties. Only a small number of RNA structures have been
determined currently since such structure determination experiments are time-
consuming and expensive. As a result, scientists start to rely on RNA secondary
structure prediction. Unlike protein structure prediction, predicting RNA sec-
ondary structure already has some success. This chapter reviews a number of
RNA secondary structure prediction methods.

ORGANIZATION.

Section 1. We begin by briefly introducing the relevance of RNA secondary structures for
applications such as function classification, evolution study, and pseudogene detection.
Then we present the different basic types of RNA secondary structures.

Section 2. Next we provide a brief description of how to obtain RNA secondary struc-
ture experimentally. We discuss physical methods, chemical methods, and mutational
analysis.

Section 3. Two types of RNA secondary structure predictions are then described. The first
type is based on multiple alignments of several RNA sequences. The second type is
based on a single RNA sequence. We focus on the predicting secondary structure based
on a single RNA sequence.

Section 4. We start with RNA structure prediction algorithms with the assumption that
there is no pseudoknot. A summary of previous key results on this topic is given. This
is then followed by a detailed presentation of the algorithm of Lyngso, Zuker, and
Pedersen.���

Sections 5– 7. Then we proceed to some of the latest works on RNA structure predic-
tion that allow for pseudoknots. In particular, we present the �����-time algoritm of
Akutsu�� for a restricted kind of pseudoknots and the ���-approximation polynomial
time algorithm of Ieong et al.��� for general pseudoknots.
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1. Introduction to RNA Secondary Structures

Due to the advance in sequencing technologies, many RNA sequences have been
discovered. However, only a few of their structures have been deduced. The chem-
ical and biological properties of many RNAs—like tRNAs—are determined pri-
marily by their secondary structures. Therefore, determining the secondary struc-
tures of RNAs is becoming one of the most important topics in bioinformatics. We
list a number of applications of RNA secondary structures below:

� Function classification. Many RNAs that do not have similar sequences do
have similar functions.��� An explanation is that they have similar secondary
structure. For example, RNA viruses have a high mutation rate. Distant groups
of RNA viruses show little or no detectable sequence homology. In contrast,
their secondary structures are highly conserved. Hence, researchers classify
RNA viruses based on their secondary structure instead of their sequences.

� Evolutionary studies. Ribosomal RNA is a very ancient molecule. It evolves
slowly and exists in all living species. Therefore, it is used to determine the
evolutionary spectrum of species.��� One problem in the evolution study is
to align the ribosomal RNA sequences from different species. Since the sec-
ondary structures of ribosomal RNAs are highly conserved, researchers use
the structure as the basis to get a highly accurate alignment.

� Pseudogene detection. Given a DNA sequence that is highly homologous to
some known tRNA gene, such a sequence may be a gene or a pseudogene. A
way to detect if it is a pseudogene is by computing its secondary structure and
checking if that looks similar to some tRNA secondary structure.���

Before studying the structures of RNAs, we need to understand the interac-
tions between a pair of RNA nucleotides. RNA consists of a set of nucleotides that
can be either adenine (A), cytosine (C), guanine (G), or uracil (U). Each of these
nucleotides is known as the base and can be bonded with another one via hydrogen
bonds. When this bonding happens, we say that the two bases form a base-pair.
There are two types of base-pairs: canonical base-pair and wobble base-pair. The
canonical base-pair are formed by a double hydrogen bond between A and U, or
a triple hydrogen bond between G and C. The wobble base-pair is formed by a
single hydrogen bond between G and U. Apart from these two types of base-pairs,
other base pairs like U-C and G-A are also feasible, though they are relatively rare.
To simplify the study, we assume only canonical and wobble base-pairs exist.

Unlike DNA, which is double stranded, RNA is single stranded. Due to the
extra hydrogen bond in each RNA base, RNA bases in a RNA molecule hybridize
with itself and form complex a 3D structure. Biologists describe RNA structures
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in three levels: primary structure, secondary structure, and tertiary structure. The
primary structure of an RNA is just its sequence of nucleotides. The secondary
structure of an RNA specifies a list of canonical and wobble base-pairs that occur
in the RNA structure. The tertiary structure is the actual 3D structure of the RNA.

Although the tertiary structure is more useful, such a tertiary structure is diffi-
cult to predict. Hence, many researchers try to get the secondary structure instead,
as such a secondary structure can already explain most of the functionalities of
the RNA. This chapter focuses on the secondary structure of RNAs. Consider a
RNA polymer ���� � � � �� of length �. Generally, the secondary structure of the
RNA can be considered as a set � of base pairs ���� ��� where � � � � � � � that
satisfies the following two criteria:

(1) Each base is paired at most once.
(2) Nested criteria: if ���� ���� ���� ��� � �, we have � � 	 � � �� � � 
 � �.

Actually, a RNA secondary structure may contain base pairs that do not sat-
isfy the two criteria above. However, such cases are rare. If criteria (1) is not
satisfied, a base triple may happen. If criteria (2) is not satisfied, a pseudoknot be-
comes feasible. Figure 1 shows two examples of pseudoknots. Formally speaking,
a pseudoknot is composed of two interleaving base pairs �� �� ��� and ���� ��� such
that � � 	 � � � 
.

g

a a
a

c c

c

g
au

u
c

a
g

g
a

a

a c g

cg

uu

a

g

c
a

u

g
g

c
c

c

c

c

a

a g
g

a

a

g
c

Fig. 1. Pseudoknots.

When no pseudoknot appears, the RNA structure can be described as a planar
graph. See Figure 6 for an example. Then, the regions enclosed by the RNA back-
bone and the base pairs are defined as loops. Based on the positions of the base
pairs, loops can be classified into the following five types:

� Hairpin loop—a hairpin loop is a loop that contains exactly one base-pair. This
can happen when the RNA strand folds into itself with a base-pair holding
them together as shown in Figure 2.
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Fig. 2. Hairpin loop.

� Stacked pair—a stacked pair is a loop formed by two base-pairs that are adja-
cent to each other. In other words, if a base-pair is ��� ��, the other base-pair
that forms the stacked pair could be ����� ����. Figure 3 shows an example.

Fig. 3. Stacked pair.

� Internal loop—an internal loop consists of two base-pairs like the stacked
pair. The difference between them is that internal loop consists of at least one
unpaired base on each side of the loop between the two base-pairs. In short,
the length of the two sides of the RNA between the two base-pairs must be
greater than 1. This is shown in Figure 4.

Fig. 4. Internal loop.

� Bulge—a bulge has two base-pairs like the internal loop. However, only one
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side of the bulge has unpaired bases. The other side must have two base-pairs
adjacent to each other as shown in Figure 5.

Fig. 5. Bulge.

� Multi-loop—any loop with 3 or more base-pairs is a multi-loop. Usually, one
can view a multi-loop as a combination of multiple double-stranded regions
of the RNA. Figure 6 shows examples of various loop types.

2. RNA Secondary Structure Determination Experiments

In the literature, there are several experimental methods for obtaining the sec-
ondary structure of an RNA, including physical methods, chemical/enzymatic
methods, and mutational analysis.

� Physical methods—the basic idea behind physical methods is to infer the
structure based on the distance measurements among atoms. Crystal X-ray
diffraction is a physical method that gives the highest resolution. It reveals
distance information based on X-ray diffraction. For example, the structure
of tRNA is obtained using this approach.��� However, the use of this method
is limited since it is difficult to obtain crystals of RNA molecules that are
suitable for X-ray diffraction. Another physical method is Nuclear Magnetic
Resonance (NMR), which can provide detail local conformation based on the
magnetic properties of hydrogen nuclei. Currently, NMR can only resolve
structures of size no longer than 30–40 residues.

� Chemical/enzymatic methods—enzymatic and chemical probes ��� which
modify RNA under some specific constraints can be used to analyse RNA
structure. By comparing the properties of the RNA before and after apply-
ing the probes, we can obtain some RNA structure information. Note that the
RNA structure information extracted are usually limited as some segments
of an RNA polymer is inaccessible to the probes. Another issue is the ex-
periment temperatures for various chemical or enzymatic digestions. A RNA
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Fig. 6. Different loop types.

polymer may unfold due to high experiment temperature. Caution is required
in interpreting such experimental results.

� Mutational analysis—this method makes specific mutation to the RNA se-
quence. Then, the binding ability between the mutated sequence and some
proteins is tested.��� If the binding ability of the mutated sequence is differ-
ent from the original sequence, we claim that the mutated RNA sequence has
structural changes. Such information helps us deduce the secondary structure.

3. RNA Structure Prediction Based on Sequence

Based on laboratory experiment, a denatured RNA renatures to the same structure
spontaneously in vitro. Hence, it is in general believed that the structure of RNAs
are determined by their sequences. This belief motivates us to predict the sec-
ondary structure of a given RNA based on its sequence only. There is a growing
body of research in this area, which can be divided into two types:
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(1) structure prediction based on multiple RNA sequences which are structurally
similar; and

(2) structure prediction based on a single RNA sequence.

For the first type, the basic idea is to align the RNA sequences and predict the
structure. Sankoff��� considers the case of aligning two RNA sequences and infer-
ring the structure. The time complexity of his algorithm is ��� 	�. (In Computer
Science, the big-O notation is used to expressed the worst-case running time of a
program. It tries to express the worst-case running time by ignoring the constant
factor. For example, if your program runs in at most ��� � � steps for an input of
size �, then we say the time complexity of your program is ��� ��. Throughout
this chapter, we use this notation to express running time.) Corpet and Michot ���

present a method that incrementally adds new sequences to refine an alignment by
taking into account base sequence and secondary structure. Eddy and Durbin ��


build a multiple alginment of the sequences and derive the common secondary
structure. They propose covariance models that can successfully compute the con-
sensus secondary structure of tRNA. Unfortunately, their method is suitable for
short sequences only. The methods above have the common problem that they as-
sume the secondary structure does not have any pseudoknot. Gary and Stormo ���

proposes to solve this problem using graph theoretical approach.
This chapter focuses on the second type. That is, structure prediction based

on a single RNA sequence. Section 4 studies RNA structure prediction algorithms
with the assumption that there is no pseudoknot. Then, some latest works on RNA
structure prediction with pseudoknots are introduced in Sections 5 to 7.

4. Structure Prediction in the Absence of Pseudoknot

This section considers the problem of predicting RNA secondary structure with
the assumption that there is no pseudoknot. The reason for ignoring pseudoknots is
to reduce computational time complexity. Although ignoring psuedoknots reduces
accuracy, such an approximation still looks reasonably good as psuedoknots do
not appear so frequently.

Predicting RNA secondary structure is quite difficult. The most naive approach
relies on an exhaustive search to find the lowest free-energy conformation. Such an
approach fails because the number of conformations with the lowest free-energy
is numerous. Identifying the correct conformation likes looking for a needle in the
haystack.

Over the past 30 years, researchers try to find the correct RNA conformation
based on simulating the thermal motion of the RNA—e.g., CHARMM�
� and
AMBER.	�� The simulation considers both the energy of the molecule and the
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net force experienced by every pair of atoms. In principle, the correct RNA con-
formation can be computed in this way. However, such an approach fails because
of the following two reasons:

(1) Since we still do not fully understand the chemical and physical properties of
atoms, the energies and forces computed are merely approximated values. It
is not clear whether the correct conformation can be predicted at such a level
of approximation.

(2) The computation time of every simulation iteration takes seconds to min-
utes even for short RNA sequences. Unless CPU technology improves sig-
nificantly, it is impossible to compute the structure within reasonable time.

In 1970s, scientists discover that the stability of RNA helices can be predicted
using thermodynamic data obtained from melting studies. Those data implies that
loops’ energies are approximately independent. Tinoco et al. ���� ��
 rely on this
finding and propose the nearest neighbour model to approximate the free energy
of any RNA structure. Their model makes the following assumptions:

(1) The energy of every loop—including hairpin, stacking pair, bulge, internal
loop, and multi-loop–is independent of the other loops.

(2) The energy of a secondary structure is the sum of all its loops.

Based on this model, Nussinov and Jacobson	�� propose the first algorithm for
computing the optimal RNA structure. Their idea is to maximize the number of
stacking pairs. However, they do not consider the destabilising energy of various
loops. Zuker and Stiegler��� then give an algorithm that accounts for the various
destabilising energies. Their algorithm takes ����� time, where � is the length of
the RNA sequence. Lyngso, Zuker, and Pedersen��� improves the time complexity
to �����. Using the best known parameters proposed by Mathews et al., ��� the
predicted structure on average contains more than 70% of the base pairs of the true
secondary structure. Apart from finding just the optimal RNA structure, Zuker ���

also prposes an approach that can compute all the suboptimal structures whose
free energies are within some fixed range from the optimal.

In this section, we present the best known RNA secondary structure prediction
algorithm—which is the one proposed by Lyngso, Zuker, and Pedersen. ���

4.1. Loop Energy

RNA secondary structure is built upon 5 basic types of loops. Mathews, Sabina,
Zuker, and Turner��� have derived the 4 energy functions that govern the forma-
tion of these loops. These energy functions are:



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

RNA Secondary Structure Prediction 175

� ����� ��—this function gives the free energy of a stacking pair consisting of
base pairs ��� �� and �� � �� � � ��. Since no free base is included, this is the
only loop which can stabilize the RNA secondary structure. Thus, its energy
is negative.

� �
��� ��—this function gives the free energy of the hairpin closed by the base
pair ��� ��. Biologically, the bigger the hairpin loop, the more unstable is the
structure. Therefore, �
��� �� is more positive if �� � �� �� is large.

� ����� �� ��� ���—this function gives the free energy of an internal loop or a
budge enclosed by base pairs ��� �� and �� �� ���. Its free energy depends on
the loop size ��� � � � �� � ��� � � � �� and the asymmetry of the two sides
of the loop. Normally, if the loop size is big and the two sides of the loop are
asymmetric, the internal loop is more unstable and thus, ����� �� � �� ��� is more
positive.

� ����� �� ��� ��� � � � � ��� ���—this function gives the free energy of a multi-loop
enclosed by base pair ��� �� and 	 base pairs ���� ���� � � � � ���� ���. The mutli-
loop is getting more unstable when its loop size and the value 	 are big.

4.2. First RNA Secondary Structure Prediction Algorithm

Based on the nearest neighbor model, the energy of a secondary structure is the
sum of all its loops. By energy minimization, the secondary structure of the RNA
can then be predicted. To speedup the process, we take advantage of dynamic
programming. The dynamic programming can be described using the following 4
recursive equations.

� � ���—the energy of the optimal secondary structure for �������.
� � ��� ��—the energy of the optimal secondary structure for ������� given that

��� �� is a base pair.
� � ����� ��—the energy of the optimal secondary structure for ������� given

that ��� �� closes a bulge or an internal loop.
� ����� ��—the energy of the optimal secondary structure for ������� given

that ��� �� closes a multi-loop.

We describe the detail of the 4 recursive equations below.

4.2.1. � ���

The recursive equations for � ��� are given below. When � � �, � ��� � � as
the sequence is null. For � � �, we have two cases: either ���� is a free base; or
there exists � such that ������ ����� forms a base pair. For the first case, � ��� �
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� �� � ��. For the second case, � ��� � 	
������	� ��� �� �� ��� ��
. Thus,
we have the following recursive equations.

� ��� �

�
� if � � �

	
�	� �� � ���	
������	� ��� �� �� ��� ��

 if � � �

4.2.2. � ��� ��

� ��� �� is the free energy of the optimal secondary structure for ������� where ��� ��
forms a base pair. When � � �, ������� is a null sequence and we cannot form
any base pair. Thus, we set � ��� �� � ��. When � � �, The base pair ��� ��

should belong to one of the four loop types: hairpin, stacked pair, internal loop,
and multi-loop. Thus the free energy � ��� �� should be the minimum of �
��� ��,
����� ���� ����� ����, � ����� ��, and ����� ��. Hence we have the following
equations.

� ��� �� �

������
�����

��� if � � �

	
�

����
���

�
��� �� Hairpin;
����� �� � � ��� �� � � �� Stacked pair;
� ����� �� Internal loop;
����� �� Multi-loop.

����
��� � if � � �

4.2.3. � ����� ��

� ����� �� is the free energy of the optimal secondary structure for ������� where
the base pair ��� �� closes a bulge or an internal loop. The bulge or the internal
loop is formed by ��� �� together with some other base pair �� �� ��� where � �

�� � �� � �. The energy of this loop is ����� �� ��� ���. The energy of the best
secondary structure for ������� with ��� �� and �� �� ��� forms an internal loop is
����� �� ��� ��� � � ���� ���. By trying all possible ���� ��� pairs, the optimal energy
can be found as:

� ����� �� � 	
�
���������

	����� �� ��� ��� � � ���� ���


4.2.4. ����� ��

����� �� is the free energy of the optimal secondary structure for ������� where
the base pair ��� �� closes a multi-loop. The multi-loop is formed by ��� �� together
with 	 base pairs ���� ���� � � � � ���� ��� where 	 � � and � � �� � �� � �� � �� �

� � � � �� � �� � �—see Figure 7 for an example. Similar to the calculation of
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� ����� ��, we get the following:

����� �� � 	
�
�������������������

	
����� �� ��� ��� � � � � ��� ��� �

�

	��

� ��	� �	�

�

4.2.5. Time Analysis

Based on the discussion above, computing the free energy of the optimal sec-
ondary structure for ������� is equivalent to finding � ���. Such a computation
requires us to fill in 4 dynamic programming tables for the 4 recursive equations
� �
�, � �
� 
�, � ���
� 
�, and ���
� 
�. The optimal secondary structure can then
be obtained by backtracking. We give below the time analysis for filling in the 4
tables.

� � ���—it is an array with � entries. Each entry requires finding the minimum
of � terms, � ��� �� �� ��� �� for � varying from � to � � �. So, each entry
needs ���� time. As a result, it costs ����� time in total.

� � ��� ��—it is an array with �� entries. Each entry requires finding the mini-
mum of 4 terms, �
��� ��, ����� ���� ����� ����,� ����� ��, and ����� ��.
Since each entry can be filled in ���� time, this matrix can be computed in
����� time.

� � ����� ��—it is an array with �� entries. Each entry requires finding the
minimum of �� terms: ����� �� ��� ��� � � ���� ��� for � � �� � �� � �, where
both �� and � � vary from � to � at most. So, each term needs ����� time. As a
result, it costs ����� time in total.

� ����� ��—it is an array with �� entries. Each entry requires finding the min-
imum of exponential terms: ����� �� ��� ��� � � � � ��� ��� �

��
	�� � ���� ��� for

� � �� � �� � � � � � �� � �� � �. So in total, it costs exponential time.

In summary, the execution time of the algorithm is exponential. The major
problem is on those computations pertaining to multi-loops and internal loops,
which require time that is exponential and quartic in � respectively. For multi-
loops, we assume that the energy of multi-loops can be approximated using an
affine linear function, through which we can reduce the time cost of ���
� 
�

from exponential time to O(��) time. For internal loops, we reduce the overhead
of � ���
� 
� to O(��) time by using the approximation equation suggested by
Ninio.	�� Therefore, we can reduce the overall complexity to O(� �) time from the
original exponential time. The two speed-up methods are discussed in detail in
Subsections 4.3 and 4.4.
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Fig. 7. Structure of a multi-loop.

4.3. Speeding up Multi-Loops

4.3.1. Assumption on Free Energy of Multi-Loop

To make the problem tractable, the following simplified assumption is made.
Consider a multi-loop formed by base pairs ��� ��, ���� ���, . . . , ���� ��� as shown
in Figure 7. The energy of the multi-loop can be decomposed into linear contribu-
tions from the number of unpaired bases in the loop, the number of base pairs in
the loop, and a constant, that is

����� �� ��� ��� � � � � ��� ��� � �� �� 	 � ��



� ��� � �� ���

�� � �� � �������

	����	 � �� �	 � ��

�
�

where �, �, � are constants; 	 is the number of base pairs in the loop; and ��� � �

�� ��� �� � �� � ���
����

	����	��� �	 � ��� is the number of unpaired bases
in the loop.

4.3.2. Modified Algorithm for Speeding Up Multi-Loop Computation

Given the assumption above, the RNA structure prediction algorithm can be
speeded up by introducing a new recursive equation ����� ��. ����� �� equals
the energy of the optimal secondary structure of ������� that constitutes the sub-
structure of a multi-loop structure. Here, inside the multi-loop substructure, a free
base is penalized with a score � while each base pair belonging to the multi-loop
substructure is penalized with a score �. Thus, we have the following equation.

����� �� � 	
�

������
�����

����� � � �� � �� � is free base;
����� �� �� � �� � is free base;
� ��� �� � �� ��� �� is pair;

	
���
��

�
����� � � ���

����� ��

�
�

� and � not free, and
��� �� is not pair

Given ����� ��, ����� �� can be modified as

����� �� � 	
�
����
����

	����� �� � � �� ������ � � �� � �
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We can find an � between � � � and � � � that divides ������� into 2 parts. The
sum of the two parts’ energy should be minimal. Then the energy penalty � of the
multi-loop is added to the sum to give ����� ��.

4.3.3. Time Complexity

After making these changes, we need to fill in 5 dynamic programming tables, viz.
� ���, � ��� ��, � ����� ��, ����� ��, and ����� ��.

The time complexity for filling tables � ���, � ��� ��, and � ����� �� are the
same as the analysis in Section 4.2.5. They cost �����, �����, and ����� time
respectively.

For the table ����� ��, it has �� entries. Each entry can be computed by
finding the minimum of 4 terms: ����� ������, ������� ����, � ��� ����,
and the minimum of ����� 	� ������	� �� for � � 	 � �. The first 3 terms
can be found in ���� time while the last term takes ���� time. In total, filling in
the table ����� �� takes ����� time.

For the table ����� ��, it also has �� entries. But now each entry can be
evaluated by finding the minimum of the � terms: ������� 	�������	� ��

��� � for ��� � 	 � � � �. Thus, filling table ����� �� also takes ����� time.
In conclusion, the modified algorithm runs in ����� time.

4.4. Speeding Up Internal Loops

4.4.1. Assumption on Free Energy for Internal Loop

Consider an internal loop or a bulge formed by two base pairs ��� �� and �� �� ���

with � � �� � �� � �. We assume its free energy ����� �� ��� ��� can be computed
as the sum:

����� �� ��� ��� � ������� � ��� � ����	������ ���

����	������� ��� � ������������� ���

where

� �� � ��� �� � and �� � �� ��� � are the number of unpaired bases on both
sides of the internal loop, respectively;

� ������� � ��� is an energy function depending on the loop size;
� ����	������ �� and ����	������� ��� are the energy for the mismatched base

pairs adjacent to the two base pairs ��� �� and ���� ���, respectively;
� ������������� ��� is energy penatly for the asymmetry of the two sides of

the internal loop.
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To simplify the computation, we further assume that when � � � � and �� � �,
it is the case that ������������� ��� � ��������������� �����. In practice,
������������� ��� is approximated using Ninio’s equation,	�� viz.

������������� ��� � 	
�	�� ��� � ��� � ����


where � � 	
�	��� ��� �
, � and � are constants, and ���� is an arbitrary
penalty function that depends on �. Note that ������������� ��� satisfies the
above assumption and � is proposed to be 1 and 5 in two literatures. 	��� 		�

The above two assumptions imply the following lemma which is useful for
devising an efficient algorithm for computing internal loop energy.

Lemma 1: Consider � � �� � �� � �. Let �� � �� � �� �, �� � � � �� � �, and

 � �� � ��. For �� � � and �� � �, we have

����� �� ��� ���� ����� �� � � �� ��� ��� � �����
�� �����
� ���

����	������ ��� ����	������ �� � � ��

Proof: This follows because ����� �� ��� ���� ������� �� �� ��� ��� � ������
��

����	������ �� � ����	������� ��� � ������������� ���� � ������
 � �� �

����	�������� ����� ����	������� ������������������� ������. By the
assumption that ������������� ��� � ������������ � �� �� � ��, we have
����� �� ��� ���� ������� ���� ��� ��� � �����
�� �����
���� ����	������ ���

����	������ �� � � �� as desired.

4.4.2. Detailed Description

Based on the assumptions, � ����� �� for all � � � can be found in ����� time as
follows.

We define new recursive equations � �� � and � �� ��. � �� ���� �� 
� equals the
minimal energy of an internal loop of size 
 closed by a pair ��� ��. � �� ����� �� 
�

also equals the minimal energy of an internal loop of size 
 closed by a pair ��� ��.
Moreover, � �� �� requires the number of the bases between � and � � and the num-
ber of the bases between j and j’, excluding �, � �, �, and � �, to be more than a
constant �. Formally, � �� � and � �� �� are defined as follows.

� �� ���� �� 
� � 	
�
����������

���������������

	����� �� ��� ��� � � ���� ���


� �� ����� �� 
� � 	
�
����������

����������������

���������������

	����� �� ��� ��� � � ���� ���
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Together with Lemma 1, we have

� �� ����� �� 
�� � �� ����� �� � � �� 
� � �����
�� �����
� ���

����	������ �� � ����	������ �� � � ��

� �� ���� �� 
� � 	
�

�����������
����������

� �� ����� �� � � �� 
��

�����
�� ������ � ���

����	������ ��� ����	������ �� � � ���

	
������

�
� ���  � � � 
 �  ��

����� �� ��  � � � 
 �  � ��

�
�

	
������

�
� ��� 
 �  � � �  ��

����� �� �� 
 �  � �� � �  �

�

�����������
����������

The last two entries of the above equation handle the cases where this minimum
is obtained by an internal loop, in which  is less than a constant �, especially a
bulge loop when � is equal to �, that is at � � � �� � or � � � � � �. By definition,
we have � ����� �� � 	
��	� �� ���� �� 
�
.

4.4.3. Time Analysis

The dynamic programming tables for � �� ��
� 
� 
� and � �� ���
� 
� 
� have �����

entries. Each entry in � �� ��
� 
� 
� and � �� ���
� 
� 
� can be computed in ���� and
���� time respectively. Thus, both tables can be filled in using ��� � ��� time.
Given � �� ��
� 
� 
�, the table � ���
� 
� can be filled in using ����� time.

Together with filling the tables � �
�, � �
� 
�, ���
� 
�, ���
� 
�, the time
required to predict secondary structure without pseudoknot is ��� ��.

5. Structure Prediction in the Presence of Pseudoknots

Although pseudoknots are not frequent, they are very important in many RNA
molecules.��� For examples, pseudoknots form a core reaction center of many
enzymatic RNAs, such as RNAseP RNA��� and ribosomal RNA.��� They also
appear at the 5’-end of mRNAs, and act as a control of translation. Therefore,
discovering pseudoknots in RNA molecules is very important.

Up to now, there is no good way to predict RNA secondary structure with pseu-
doknots. In fact, this problem is NP-hard.��� ���� ��
 Different approaches have
been attempted to tackle this problem. Heuristic search procedures are adopted
in most RNA folding methods that are capable of folding pseudoknots. Some ex-
amples include quasi-Monte Carlo searches by Abrahams et al.,� genetic algo-
rithms by Gultyaev et al.,�
� Hopfield networks by Akiyama and Kanehisa,�� and
stochastic context-free grammar by Brown and Wilson.��
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These approaches cannot guarantee that the best structure is found and are
unable to say how far a given prediction is from the optimal. Other approaches
are based on maximum weighted matching,�������. They report some successes
in predicting pseudoknots and base triples.

Based on dynamic programming, Rivas and Eddy, ��� Lyngso and Pedersen,��


and Akutsu�� propose three polynomial time algorithms that can find optimal sec-
ondary structure for certain kinds of pseudoknots. Their time complexities are
���	�, �����, and �����, respectively. On the other hand, Ieong et al.��� pro-
pose two polynomial time approximation algorithms that can handle a wider range
of pseudoknots. One algorithm handle bi-secondary structures—i.e., secondary
structures that can be embedded as a planar graph—while the other algorithm can
handle general secondary structure. The worst-case approximation ratios are �!�

and �!
, respectively.
To illustrate the current solutions for predicting RNA secondary structure with

pseudoknots, the next two sections present Akutsu’s �����-time algorithm and
Ieong et al.’s �!
-approximation polynomial time algorithm.

6. Akutsu’s Algorithm

6.1. Definition of Simple Pseudoknot

This section gives the definition of a simple pseudoknot.�� Consider a substring
���
��	
� of a RNA sequence � where �
 and 	
 are arbitrarily chosen positions.
A set of base pairs ������ is a simple pseudoknot if there exist �
, ��
 such that

(1) each endpoint � appears in ������ once;
(2) each base pair ��� �� in ������ satisfies either �
 � � � ��
 � � � �
 or

��
 � � � �
 � � � 	
; and
(3) if pairs ��� �� and ���� ��� in ������ satisfy � � �� � ��
 or � �
 � � � ��, then

� � ��.

The first two parts of the definition divides the sequence ���
��	
� into three
segments: ���
���
�, ���
����
�, and ��� �
��	
�. For each base pair in ������ , one of
its end must be in ���
���

�

� while the other end is either in ���
���
� or ��� �
��	
�.

The third part of the definition confines the base pairs so that they cannot intersect
each other. Part I of Figure 8 is an example of a simple pseudoknot. Parts II, III,
and IV of Figure 8 are some examples that are not simple pseudoknot.

With this definition of simple pseudoknots, a RNA secondary structure with
simple pseudoknots is defined as below. A set of base pairs � is called a RNA
secondary structure with simple pseudoknots if � � � � ��� � � � � ��
 for
some non-negative integer � such that
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Fig. 8. An illustration of simple pseudoknots.

(1) For " � �� �� � � � � �, �	 is a simple pseudoknot for ���	��		� where � � �� �

	� � �� � 	� � � � � � �
 � 	
 � �.
(2) � � is a secondary structure without pseudoknot for string � � where � � is

obtained by removing segments ���	��		� for all " � �� �� � � � � �.

6.2. RNA Secondary Structure Prediction with Simple Pseudoknots

This section presents an algorithm which solves the following problem.

Input: A RNA sequence �������
Output: A RNA secondary structure with simple pseudoknots that max-
imizes the score.
Score: In this section for simplicity, the score function used is different
from that of the RNA secondary structure prediction without pseudo-
knot. The score function here is the number of the base pairs in �������.
In short, we maximize the number of base pairs. Note that the score func-
tion can be generalized to some simple energy function.

A dynamic programming algorithm is designed to solve the problem above.
Let � ��� �� be the optimal score of an RNA secondary structure with simple pseu-
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Fig. 9. ��� �� �� is a triplet in the simple pseudoknot. Note that all the base pairs in solid lines are
below the triplet.

doknots for the sequence �������. Let ���������� �� be the optimal score for �������
with the assumption that ������� forms a simple pseudoknot.

For � ��� ��, the secondary structure for ������� can be either (1) a simple pseu-
doknot, (2) ��� �� forms a base pair, or (3) ������� can be decomposed into two
compounds. Therefore, we get the following recursive equation.

� ��� �� � 	��

��
�

���������� ���

� ��� �� � � �� � Æ������ ������

	�������	� ��� 	 � �� � � �	� ��


��
�

where � ��� �� � � for all �. Also, Æ������ ����� � � if 	����� ����
 � 	�� #
 or
	�� �
; otherwise, Æ������ ����� � ��.

For ���������
� 	
�, its value can also be computed using a dynamic program-
ming algorithm. To explain the algorithm, we first give some notations. Recall
that, in a simple pseudoknot ���
��	
�, the sequence is partitioned into three seg-
ments ���
���

�

�, ���

�

���
�, and ���
��	
� for some unknown positions �
 and � �
.

We denote the three segments as left, middle, and right segments, respectively.
See Part I of Figure 8 for an example. For a triplet ��� �� 	� where �
 � � � ��
,
��
 � � � �
, and �
 � 	 � 	
, we say a base pair �$� �� is below the
triplet ��� �� 	� if either $ � � and � � �, or $ � � and � � 	. Figure 9 is an
example illustrating this concept of “below”. All the base pairs in red color are
“below” the triplet ��� �� 	�.

For a triplet ��� �� 	�, ����, ����, and ��	� should satisfy one of the following
relations: (1) ��� �� is a base pair, (2) ��� 	� is a base pair, or (3) both ��� �� and
��� 	� are not base pair. Below, we define three variables, based on the above three
relationships, which are useful for computing ���������
� 	
�.

� ����� �� 	� is the maximum number of base pairs below the triplet ��� �� 	� in
a pseudoknot for ���
��	
� given that ��� �� is a base pair.

� ����� �� 	� is the maximum number of base pairs below the triplet ��� �� 	� in



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

RNA Secondary Structure Prediction 185

a pseudoknot for ���
��	
� given that ��� 	� is a base pair.
� �� ��� �� 	� is the maximum number of base pairs below the triplet ��� �� 	� in

a pseudoknot for ���
��	
� given that both ��� �� and ��� 	� are not a base pair.

Note that 	��	����� �� 	�� ����� �� 	�� �� ��� �� 	�
 is the maximum num-
ber of base pairs below the triplet ��� �� 	� in a pseudoknot for ��� 
��	
�. Then
���������
� �
� can be calculated as:

���������
� 	
� � 	��
�����������

	����� �� 	�� �� ��� �� 	�� ����� �� 	�


6.2.1. ����� �� 	�, ����� �� 	�, �� ��� �� 	�

We define below the recursive formulae for the 
 variables ����� �� 	�, ����� �� 	�,
and �� ��� �� 	�.

����� �� 	� � Æ������ ����� � 	��

��
�

����� �� � � �� 	��

�� ��� �� � � �� 	��

����� �� � � �� 	�

��
�

����� �� 	� � Æ������ ����� � 	��

��
�

����� � � �� 	 � ���

�� ��� � � �� 	 � ���

����� � � �� 	 � ��

��
�

�� ��� �� 	� � 	��

��
�
����� �� �� 	�� �� ��� �� �� 	��

����� � � �� 	�� �� ��� � � �� 	�� ����� � � �� 	��

�� ��� �� 	 � ��� ����� �� 	 � ��

��
�

Here we provide an intuitive explanation for the formulae above. For both
����� �� 	� and ����� �� 	�, the first term represents the number of base pairs on
the triplet ��� �� 	� while the second term represents the number of base pairs be-
low ��� �� 	�. For �� ��� �� 	�, since there is no base pair on the triplet ��� �� 	�, the
formula only consists of the number of base pairs below the triplet. Note that the
two variables, ����� �� �� 	� and ����� �� 	� ��, do not appear in the formula for
�� ��� �� 	�. This is because �� ��� �� 	� indicates that both ��� �� and ��� 	� are not
base pair.
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6.2.2. To Compute Basis

To compute ����� �� 	�, ����� �� 	�, �� ��� �� 	�, some base values are required.

����
 � �� �� � � �� � Æ������ ��� � ���� for all � (1)

����
 � �� �� �� � �� for all � (2)

����� �� �� � Æ������ ������ for all �
 � � � � (3)

����
 � �� �� 	� � �� for all 	 � � � � or 	 � � (4)

�� ��
 � �� �� 	� � �� for all 	 � � � � or 	 � � (5)

The base case (3) can be explained by Part I of Figure 10. The base cases (1) and
(2) can be explained by Parts II and III of Figure 10 respectively. The base cases
(4) and (5) are trivial since they are out of range.

Fig. 10. Basis for the recursive equations ��, �� , and �� .

6.2.3. Time Analysis

This section gives the time analysis. First, we analyse the time required for com-
puting �������.

Lemma 2: ���������
� 	
� for all � � �
 � 	
 � � can be computed in �����

time.

Proof: Observe that the base cases for ���
� 
� 
�, �� �
� 
� 
�, ���
� 
� 
� only de-
pend on �
. Thus for a fixed �
, the values for the base cases of ���
� 
� 
�,
�� �
� 
� 
�, and ���
� 
� 
� can be computed in ����� time. Then the values of
tables ���
� 
� 
�, ���
� 
� 
�, and �� �
� 
� 
� are independent of 	
, and can be com-
puted in ����� time since each table has �� entries and each entry can be com-
puted in ���� time.
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Based on the definition of �������, we have the following recursive equation:

���������
� 	 � �� � 	��

����
���

���������
� 	��

	������������

��
�

����� �� 	 � ���

����� �� 	 � ���

�� ��� �� 	 � ��

��
�

����
���

Thus for a fixed �
, ���������
� 	
� for all 	
 can be computed in ����� time.
Since there are � choices for �
, ���������
� 	
� for all � � �
 � 	
 � � can be
computed in ����� time.

By the lemma above, the RNA secondary structure with simple pseudoknots
for a sequence � can be predicted in ����� time.

Proposition 3: Consider a sequence �������. We can predict the RNA secondary
structure of � with simple pseudoknots in ����� time.

Proof: Based on the lemma above, ���������� �� for all �� � can be computed in
����� time. Then, we need to fill in �� entries for the table � �
� 
� where each
entry can be computed in ���� time. Hence, the table � �
� 
� can be filled in using
����� time. In total, the problem can be solved in ����� time.

7. Approximation Algorithm for Predicting Secondary Structure with
General Pseudoknots

The previous algorithm can only handle some special types of pseduoknots. This
section addresses general pseudoknots. As the problem of predicting secondary
structure with general pseudoknots is NP-hard, we approach the problem by giv-
ing an approximation algorithm.���

Given a RNA sequence � � ���� � � � ��, this section constructs a sec-
ondary structure of � that approximates the maximum number of stacking pairs
with a ratio of �!
. First, we need some definition. We denote a stacking pair
	���� ���� ������ �����
 as ���� ����� ����� ���. For a consecutive of % (% � �)
stacking pairs
���� ����� ����� ���� ������ ����� ����� ������ � � � � �������� ���� � ���� � �������, it
is denoted as ���� ����� � � � � ���� � ���� � � � � � ����� ���. The approximation algo-
rithm uses a greedy approach. Figure 11 shows the algorithm &��� ��' �
� 
�.

In the following, we analyze the approximation ratio of the algorithm. The
algorithm &��� ��' ��� �� will generate a sequence of consecutive stacking pairs
�' ’s. Let �'�� �'�� � � � � �'	 be the generated sequence. We have the following
fact.
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// Let � � ���� � � � �� be the input RNA sequence.
// Initially, all �� are unmarked.
// Let ( be the set of base pairs output by the algorithm.
// Initially, ( � �.

&��� ��' ��� �� // � � 


(1) Repeatedly find the leftmost � consecutive stacking pairs
�'—i.e., find ���� � � � � ����� ����� � � � � ��� such that ) is as
small as possible—formed by unmarked bases. Add �' to (

and mark all these bases.
(2) For 	 � �� � downto �,

Repeatedly find any 	 consecutive stacking pairs �' formed
by unmarked bases. Add �' to ( and mark all these bases.

(3) Repeatedly find the leftmost stacking pair �' formed by un-
marked bases. Add �' to ( and mark all these bases.

Fig. 11. The 1/3-approximation algorithm.

Fact 4: For any �'� and �'�, � �� 	, the corresponding stacking pairs in �'�

and �'� do not overlap.

For each �'� � ���� � � � � ���
� ���
� � � � � ���, we define two intervals of in-
dices, �� and �� , as �)��) � �� and �% � ���%� respectively. We want to compare
the number of stacking pairs formed with that in the optimal case, so we have the
following definition.

Definition 5: Let � be an optimal secondary structure of � with a maximum
number of stacking pairs. Let � be the set of all stacking pairs of � . For each
�'� computed by &��� ��' ��� ��, we define the set �� , where * � �� or �� ,
as follows.

�� �

��
��� �����

����� ��

�
� �

���� at least one of indices 	� 	 � �� + � �� + � *

�

Next, we observe that

Lemma 6: Let �'�� �'�� � � � � �'	 be the sequence of �' ’s computed by
&��� ��' ��� ��. Then

�
����		��� � ���
 � � .
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Proof: We prove it by contradiction. Suppose that there exists a stacking pair
���� ����� ����� ��� � � but not in any of ��� and ��� . By Definition 5, none of
the indices 	� 	 � �� + � �� +, is in any of �� and �� . This contradicts with Step
3 of the algorithm &��� ��' ��� ��.

Note that ��’s may not be disjoint.

Definition 7: For each ��� , we define � �
��

to be ��� �
�
���	��� � ���
; and

define � �
��

as ��� �
�
���	��� � ���
 � ��� .

Let ��'� � be the number of stacking pairs represented by �' � . Let ��� � and
��� � be the number of indices in the intervals �� and �� respectively.

Lemma 8: Let , be the number of stacking pairs computed by the algorithm
&��� ��' ��� �� and , � be the maximum number of stacking pairs that can be
formed by �. If for all �, we have ��'� � �

�



� ��� �

��
�� �

��
��, then , � �



�,�.

Proof: By Definition 7,
�
�	��� � ���
 �

�
�	�

�
��
� � �

��

. By Fact 4, , ��

� ��'� �, so , � �



� �
�
�	��� � ���
�. Now by Lemma 6, we conclude

, � �



�,� as desired.

This brings us to the main approximation result:

Proposition 9: For each �'� computed by &��� ��' ��� ��, we have

��'� � �
�



� �� �

��
� � �

��
�

Proof: There are 3 steps of the &��� ��' ��� �� algorithm to be considered.
For each �'� computed by &��� ��' ��� �� in Step 1, we know that �'� �

���� � � � � ����� ����� � � � � ��� is the leftmost � consecutive stacking pairs—i.e., ) is
as small as possible. By definition, �� �

��
�, �� �

��
� � � � �. We further claim that

�� �
��
� � ���. Then, as � � 
, ��'� �!�� �

��
�� �

��
� � �!������� ������ � �!
.

We prove the claim by contradiction. Assume that �� �
��
� � � �

�. That is, for some integer �, � has � � � consecutive stacking
pairs ������ � � � � ������� �
����� � � � � �
���. Furthermore, none of the bases
����� � � � � ������� �
����� � � � � �
�� are marked before �'� is being chosen. Oth-
erwise, suppose one of such bases, says ��, is marked when the algorithm chooses
�'� for 
 � �, then the stacking pairs adjacent to �� do not belong to � �

��
and they

belong to � �
��

or � �
��

instead. Therefore, ������ � � � � ������� �
����� � � � � �
��� is
the leftmost � consecutive stacking pairs formed by unmarked bases before �' �

is chosen. As �'� is not the leftmost � consecutive stacking pairs, this contradicts
with the algorithm. The claim is thus proved.



January 29, 2004 2:46 WSPC/Trim Size: 9in x 6in for Review Volume practical-bioinformatician

190 W. K. Sung

For each �'� computed by &��� ��' ��� �� in Step 2, let ��'� � � 	 � � and
let �'� � ���� � � � � ����� ����� � � � � ���. By definition, �� �

��
�, �� �

��
� � 	 � �. We

claim that �� �
��
�, �� �

��
� � 	��. Then ��'� �!�� �

��
�� �

��
� � 	!��	�����	����,

which is at least �!
 as 	 � �.
We can prove the claim �� �

��
� � 	 � � by contradiction. Assume �� �

��
� �

	 � �. Thus, for some integer �, there exist 	 � � consecutive stacking pairs
������ � � � � ������� �
����� � � � � �
���. Similar to Step 1, we can show that none
of the bases ����� � � � � ������� �
����� � � � � �
�� are marked before �'� is cho-
sen. Thus, &��� ��' ��� �� should select some 	�� or 	�� consecutive stacking
pairs instead of the chosen 	 consecutive stacking pairs. Thus, we arrive at a con-
tradiction. We can prove the claim �� �

��
� � 	 � � in a similar way.

For each �'� computed by &��� ��' ��� �� in Step 3, �'� is a leftmost
stacking pair—that is, �'� � ���� ����� ����� ���. Using the same approach as
in Step 2, we can show that �� �

��
�, �� �

��
� � �. We further claim that �� �

��
� � �.

Then ��'� �!�� �
��
� � �

��
� � �!�� � �� � �!
.

To verify the claim �� �
��
� � �, we consider all possible cases with �� �

��
� � �

while there are no 2 consecutive stacking pairs. The only possible case is that
for some integers �� �, both ������ ��� �
��� �
� and ���� ����� �
��� �
� belong to
� �
��

. However, this means that �'� is not the leftmost stacking pair formed by
unmarked bases. This contradicts the algorithm and completes the proof.

By Lemma 8 and Proposition 9, we derive the following corollary.

Corollary 10: Given a RNA sequence �. Let , � be the maximum number of
stacking pairs that can be formed by any secondary structure of �. Let , be the
number of stacking pairs output by &��� ��' ��� ��. Then , � �

�
�,�.

We remark that by setting � � 
 in &��� ��' ��� ��, we can already achieve
the approximation ratio of 1/3. The following lemma gives the time and space
complexity of the algorithm.

Lemma 11: Given a RNA sequence � of length �. The algorithm
&��� ��' ��� ��, where � is a constant, can be implemented in ���� time and
���� space.

Proof: Recall that the bases of a RNA sequence are chosen from the alphabet
	�� #� �� �
. If � is a constant, there are only constant number of different patterns
of consecutive stacking pairs that we have to consider. For any � � 	 � �, there
are only �� different strings that can be formed by the four characters 	�� #� �� �
.
So for all possible values of 	, the locations of the occurrences of these possible
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strings in the RNA sequence can be recorded in an array of linked lists indexed
by the pattern of the string using ���� time preprocessing. There are at most � �

linked lists and there are only � entries in all linked lists.
Now, fix a constant 	. In order to locate all 	 consecutive stacking pairs, we

scan the RNA sequence from left to right. For each substring of 	 consecutive
characters, we look up the array to see if we can form 	 consecutive stacking
pairs. By a simple bookkeeping procedure, we can keep track which bases have
been used already. Each entry in the linked lists is thus scanned at most once. So
the whole procedure takes only ���� time. Since � is a constant, we can repeat the
whole procedure for � different values of 	 and the total time complexity is still
���� time.
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