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This chapter discusses various aspects of protein subcellular localization in the
context of bioinformatics and reviews the twenty years of progress in predicting
protein subcellular localization.

ORGANIZATION.

Section 1. We first provide the motivation for prediction of protein subcellular localization
sites, as well as discuss changes being brought about by progress in proteomics.

Section 2. After that, we describe the biology of protein subcellular location. In particular,
we explain the principle of protein sorting signals.

Section 3. Then we present several experimental techniques for determining protein sub-
cellular localization sites. The techniques surveyed include traditional methods such
as immunofluorescence microscopy, as well as large-scale methods such as green flu-
orescent protein.

Section 4. Next we mention some of the general issues involved in predicting protein sub-
cellular localization, such as what are the sites? how many sites per protein? how good
are the predictions? and so on. We also discuss the distinction between features that
reflect causal influences on localization versus features that merely reflect correlation
with localization.
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Section 5. Lastly, we offer a survey of computational methods and approaches for predict-
ing protein subcellular localization. These include discriminant analysis of amino acid
composition, localization process modeling, machine learning, feature discovery, and
literature analysis.

1. Motivation

The prediction of the subcellular localization sites of proteins from their amino
acid sequences is a fairly long-standing problem in bioinformatics. Nishikawa
and Ooi observed that amino acid composition correlates with localization sites
in 1982.��� Around that time early work on the characterization and prediction
of secretory signal peptides began.�������� ��� Over a decade later, the publication
of a signal peptide prediction program SignalP���� ��� was awarded a “Hot Paper
in Bioinformatics” Award,��� indicative of the high level of interest in such pre-
dictions. The main driving force behind this redoubled interest in predicting pro-
tein localization from sequence has been the need to annotate massive amounts
of sequence data coming from various genome projects. ��� The importance of
the biological phenomenon underlying protein localization was underscored by
the 1999 Nobel Prize in physiology or medicine, awarded to Günter Blobel for the
discovery that “proteins have intrinsic signals that govern their transport and local-
ization in the cell”. More recently, the emergence of proteomic technologies—see
Chapter 13—has given birth to terms such as “secretome”.��� Indeed recent ex-
perimental studies have determined the localization sites of a large fraction of all
the proteins in yeast.���� ���� ��� Several excellent reviews on protein localization
and prediction are available.���� ���� �		

Each compartment in a cell has a unique set of functions, thus it is reason-
able to assume that the compartment or membrane in which a protein resides is
one determinant of its function. This assertion is supported by the fact that lo-
calization correlates with both protein-protein interaction data ���� ���� ���� ��
 and
with gene expression levels.���� ��� Thus protein localization is a valuable clue to
protein function, especially when homologs of known function cannot be found
by sequence similarity—a situation that is still common today. A recent study
of 134 bacterial genomes and several eukaryotic genomes shows that standard
sequence similarity reveals useful functional information in only about half of
all proteins, although there is significant variance in that proportional between
species.�
	 Some applications are interested in a particular localization site. Many
industrial applications are concerned with the efficiency of the secretion of non-
native proteins in micro-organisms.��� Proteins on the cell membrane are attrac-
tive as potential drug targets because they are accessible from outside the cell.

Recent progress������� in large-scale experiments to determine protein local-
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ization indicates that in the foreseeable future the localization sites of a large per-
centage of proteins for some model organisms may be experimentally determined.
For other organisms, the ability to infer localization by sequence similarity, an ap-
proach quantatively analyzed by Nair and Rost�	�, will increase significantly. This
clearly reduces the practical value of prediction schemes. So you may want to skip
to the next chapter...

Still here? Good, because we think there are many excellent reasons for study-
ing localization prediction. For one reason, the rose-colored scenario stated above
is not quite upon us yet. There is still less than full coverage and significant
error in the proteomic localization data, some of which may be systematic—
see Section 3. For example, a recent study��� covers 75% of the proteome and
shows roughly 20% disagreement with data from the Saccharomyces Genome
Database,�
� which contains data from two other large-scale experiments. �������

Also, so far these experiments have been done on yeast, which has many fewer
protein encoding genes than, for example, humans—approximately 6,000 for
yeast�
�� �	� versus perhaps 30,000 for human.��� Many human proteins do not
have close homologs in yeast. As mentioned in Chapter 13, the accumulated
knowledge from decades of small scale experiments may contain fewer errors
than recent large-scale experiments but the coverage is low. We found that, as of
October 2003, only around 0.25% of SWISS-PROT entries include an explicit
firm localization site assignment. (We searched only the “CC” fields and excluded
assignments marked as “potential”, “probable”, or “by similarity”.) However, do
see Section 5.6 for automated methods to gain more localization information from
SWISS-PROT annotations. Moreover the error rate is still significant. For exam-
ple, a study of chloroplast signal peptides found roughly 10% of cleavage sites
to be incorrect or based on insufficient evidence.������� Thus there is still some
utility in predicting localization from amino acid sequence.

This notwithstanding, the coverage of experimental methods is certainly in-
creasing rapidly and the accuracy of information derived from large scale exper-
iments can be increased by comparing the results of multiple experiments—see
Chapter 13. Prediction methods can play a role here in identifying outliers that
may indicate experimental error. As the number of proteins whose localization
has been determined experimentally increases, the role of prediction schemes is
certain to change. A black box prediction program for native proteins is going to
be of little use in the near future—even if it attains a high accuracy. We believe
two qualities are to be demanded of prediction schemes in the future, viz.

(1) a high explanatory power, and
(2) the ability to accurately predict the localization of non-native, mutant, and
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artificial proteins.

The first is because as scientists we are not satisfied with simply knowing that
protein � is localized to site �. We also want to know how it gets there. Predic-
tion schemes encoding our hypothesis about the process can help us gauge how
much we really know, and machine learning techniques can help us generate new
hypotheses. The second is because when designing new proteins we would like to
be able to do experiments in silico on proteins that do not yet exist—and therefore
clearly do not have experimentally determined localization sites.

Regrettably, most readers of this book will not become specialists in protein
localization. Therefore perhaps a more compelling reason to read this chapter is
the fact that localization prediction has been intensively studied with a variety of
computational techniques and is an excellent vehicle for discussing several issues
that apply to many areas of bioinformatics. More specifically there has been sig-
nificant cross-fertilization of ideas between localization prediction and the related
topics of predicting of membrane protein structure and post-translational modifi-
cations, e.g. lipidification, of proteins. Many groups working on protein localiza-
tion prediction have also consistently published in these areas.���� �	�� ��	� �

� ���

2. Biology of Localization

Living organisms are classified into two categories: prokaryotes and eukaryotes.
Unlike prokaryotes, eukaryotic cells are equipped with many kinds of membrane-
bound compartments called organelles—e.g., the nucleus, mitochondrion, endo-
plasmic reticulum (ER), and vacuole. We also consider some other subcellular
sites such as the cytoplasm, plasma membrane, and cell wall; see Figure 1. Each
organelle plays some specific cellular roles thanks to the presence of specifically
localized proteins.

It is well known that proteins are synthesized based on the genetic informa-
tion encoded in DNA. Although some information is encoded in the DNA within
mitochondria—and chloroplasts in plants—most information is encoded in the
nuclear DNA. Even most mitochondrial and chloroplast proteins are encoded in
the nuclear DNA. The proteins encoded in the nuclear DNA are first synthesized
within the cytoplasm and then specifically transported to each final localization
site. Note that the transportation across the membrane of the ER generally starts
in a pipelined fashion before synthesis of the amino acid chain is finished. The
study of molecular mechanisms on how the final localization site of a protein is
recognized and transported—often called “protein sorting”—is one of the central
themes in modern cell biology. General textbooks on molecular cell biology typ-
ically devote many pages to this topic. As a recent example, we recommend the
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textbook of Alberts et al.��

The most important principle of protein sorting is that each protein has the
information of its final localization site as a part of its amino acid sequence. In
many cases, proteins are first synthesized as precursors having an extra stretch of
polypeptide that function as a “sorting signal”. They are specifically recognized
and transported with some molecular machinery. After they are localized at their
final destination, these sorting signals are often cleaved off. Therefore, it should
be possible to predict the subcellular localization site of a protein if we can specif-
ically recognize its sorting signal, as the cellular machinery does. This attempt is
still challenging because our knowledge is incomplete.

Like all principles in biology, the sorting signal hypothesis allows some ex-
ceptions. That is, some proteins do not have sorting signals within their amino
acid sequences, but instead are localized by binding with another protein that has
the information. Fortunately for the developers of prediction methods, this “hitch-
hiking” strategy does not seem to be common—probably because it is difficult for
protein complexes to go through the organellar membranes. The nucleus is some-
what special in this respect because its membrane has large nuclear pores that
allow small—up to about 60 kDa—proteins to diffuse into and out of the nucleus
and also makes hitch-hiking relatively easier.

In many cases, the information of sorting signals is encoded within a limited
length of the polypeptide. However, there are some examples where sorting infor-
mation is encoded by sequence patches that are only recognizable in the 3D struc-
ture. The sequence features of sorting signals are variable. Some are represented
as relatively well-conserved sequence motifs. Others appear more ambiguous—
such as hydrophobic stretches—to our eyes, at least. Usually, at least to some
extent, sorting signals can be discriminated with appropriately employed pattern
recognition algorithms without the knowledge of their 3D structures.

We should keep in mind that the sorting signal for each localization site is
not necessarily unique. For example, many mitochondrial proteins have the mi-
tochondrial transit peptide on their N-terminus, but many others do not have this
kind of signal and are instead localized by some different pathways. Indeed, re-
cent developments of cell biology have enriched our knowledge of protein sorting
greatly for certain proteins. Nevertheless, such knowledge is often applicable to a
very limited set of proteins and is not general enough to raise overall prediction
accuracy significantly.

Generally speaking localization signals appear to be well conserved across
species. For example, Schneider et al. have studied mitochondrial targeting pep-
tides in mammals, yeast, Neurospora crassa, and plant proteins. Although they
observe some differences between plant and non-plant species, the clustering of
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Fig. 1. A cartoon of some of the comparments of a yeast cell is shown.

targeting peptides produced by an unsupervised learning algorithm—Kohonen
self-organizing map—do not produce clusters based on species. We expect that
prediction methods trained on one species and applied to another species can
give reasonable results, even for distant pairs such as yeast and human. Indeed
most predictive studies have used training data that include proteins from multiple
species. Some differences do exist and have been analyzed at some length. ���� �	�

3. Experimental Techniques for Determining Localization Sites

3.1. Traditional Methods

Two traditional methods for determining the cellular localization sites of proteins
are immunofluorescent staining and gradient centrifugation. We briefly outline
each technique here.

3.1.1. Immunofluorescence Microscopy

Immunofluorescence microscopy can be used to determine the localization of
a target protein. Cells—treated with detergent to help solubolize their plasma
membrane—on a cover glass slide are treated with two antibodies. The first an-
tibody is chosen to selectively bind to the target protein. The second antibody,
which is tagged with a fluorescent marker, binds to the immunoglobulin epitope
of the first antibody. The advantage of this scheme is that the second antibody
does not depend on the target protein.

To more accurately determine the localization site of the target protein, co-
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localization with a reference marker—which is known to localize and fluoresce at
a specific localization site—can be measured. The reference marker is chosen so
that it emits a different wavelength of light when fluorescing than the second anti-
body used to detect the target protein. If the spatial pattern of the two wavelengths
of light coincide then one may conclude that the target protein has the same lo-
calization site as the reference marker. The reference marker does not need to
be a protein. Some well known reference markers are DAPI, MitoTracker R�, and
LysoTracker R�; which are specific for the nucleus, mitochondrion, and lysosome
respectively. Unfortunately, it is difficult to accurately measure the quantitative
distribution of the target protein with immunofluorescence alone.

3.1.2. Gradient Centrifugation

Cell homogenation is the process of disrupting the plasma membrane of cells by
mechanical means; for example with a rotating rod placed in a test tube. If care-
fully done, cells can be homogenated with the nucleus and most organelles intact.
Fortunately these different compartments have different densities, allowing them
to be separated by density gradient centrifugation.

The contents of each fraction, corresponding to a particular localization site,
obtained by centrifugation can be analyzed with a “Western blot”—in which SDS-
PAGE is used to separate the fraction on a electrophoretic gel and immunofluo-
rescence is used to detect which band corresponds to the target protein. Once the
band is identified it is possible to accurately measure the amount of protein it con-
tains based on its size and darkness. Thus although this approach still requires
the preparation of an antibody specific to the target protein, it has the advantage
of allowing measurement of the quantity of the target protein at each localization
site.

3.2. Large-Scale Experiments

3.2.1. Immunofluorescent Microscopy

Traditional immunofluorescent microscopy methods for determining localization
required an antibody specific to each target protein. Unfortunately the develop-
ment of such antibodies is a difficult and costly process. Kumar��� and colleagues
employed a scheme which uses immunofluorescent microscopy but does not re-
quire target specific antibodies. For each target protein they constructed vectors
that expressed a fusion protein consisting of the target protein fused at its C-
terminal to the V5 epitope. The localization of the fused protein could thus be
determined with fluorescently labeled V5 antibodies. They also performed similar
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experiments using a haemagglutinin (HA) tag and HA antibodies instead of V5.
They have determined the localization of 2022 and 1083 proteins using V5 and
HA respectively. The union of the two sets contains 2744 proteins.

3.2.2. Green Fluorescent Protein

Green Fluorescent Protein (GFP) is a valuable tool��� for studying localization.
GFP is a 238 amino acid protein, with known 3D structure,	�� that naturally oc-
curs in the bioluminescent jellyfish Aequorea victoria. GFP emits green light upon
excitation with blue light. Genetically-engineered variants of GFP with different
emission wavelengths such as Yellow Fluorescent Protein, Red Fluorescent Pro-
tein (RFP), and Cyan Fluorescent Protein are also available. An important prop-
erty of GFP and its variants is that, unlike typical bioluminescent molecules, it
does not require any co-factors. GFP is used in studying protein localization by
creating fusion proteins consisting of the target protein and GFP fused together,
usually with GFP connected to the target protein C-terminus. The location of the
fused protein can be traced with fluorescence microscopy. The fluorescence of
GFP is relatively stable over time and thus lends itself to quantitative measure-
ments. One way to introduce these fusion protein into cells is by transfection with
an expression vector containing DNA coding for the fusion protein co-expressed
with a gene that can be selected for, such as resistance to a particular drug.

Recently GFP fusion proteins have been combined with homologous recom-
bination in the largest experiment on localization performed so far. Huh et al. ���

transfected cells with vectors specific to each yeast protein coding gene (more
precisely ORF). The vector for each target gene contains specific sequences that
allows the vector to be inserted into the chromosome in the native position with
the native promoter of the target gene. This technique solves the problem of over
or under expression mentioned in Section 3.2.3. Of a total of 6,234 ORFs, fluo-
rescence from 4,156 fusion proteins was detected and divided by localization site
into: cell periphery, bud, bud neck, cytoskeleton & microtubule, cytoplasm, nu-
cleus, mitochondrion, endoplasmic reticulum, vacuole, vacuolar membrane, punc-
tate, and ambiguous. Many proteins showed multiple localization. The localiza-
tion of some proteins was further investigated using proteins with known local-
ization tagged with RFP. The comparison of the resulting pattern of green and red
fluorescence gives detailed information about the localization of the target protein.

3.2.3. Comments on Large-Scale Experiments

The large-scale experiments described here are extremely impressive and have
radically increased what we know about localization. However GFP is a large tag
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and may interfere with localization in some cases. Most sorting signals are located
near the N-terminal of proteins, but in some cases the C-terminal region can also
affect localization. For example, the peroxisomal translocation signal PTS1 ��
� ���

and ER retention signal “KDEL”��	 are found in C-terminal region. Other sig-
nals which are not specific to the C-terminal region may also sometimes occur
there.�
	� ��� It is also at least conceivable that a GFP tag can interfere with the
diffusion of small proteins into and out of the nucleus. The smaller tags used in
immunofluoresence microscopy studies have not been expressed with native pro-
moters and may exhibit abnormal expression levels. Over-expression potentially
causes false positives in the cytoplasm by overloading localization mechanisms.
Conversely, under-expression may lead to false negatives in various compartments
due to missing small amounts of the protein. Thus there are still some potential
sources of systematic error that may explain part of the 20% disagreement be-
tween localization data gained with the large-scale GFP experiment��� and com-
pilations of previous experimental data.

4. Issues and Complications

Before we delve into specific prediction schemes we mention some of the general
issues involved in localization prediction.

4.1. How Many Sites are There and What are They?

Predictive studies have divided the cell into anywhere from two to around 12 sites.
In a sense the classification of proteins as integral membrane proteins versus sol-
uble or peripheral membrane proteins is a kind of localization prediction. Many
tools have been developed for the prediction of membrane spanning regions in
proteins.���� ���� ���� ��� A binary classification problem that is at the heart of un-
derstanding protein localization is the prediction of signal peptides. The develop-
ment of the SignalP program��� is an example of an influential paper which fo-
cused on the binary classification problems of predicting the presence or absence
of signal peptides, and distinguishing between cleaved signal peptides versus their
uncleaved counterparts (N-terminal signal anchor sequences). PSORT �
� classifies
eukaryotic proteins into 14 (17 for plants) localization classes. PSORTII ��� classi-
fies eukaryotic proteins into 10 classes.

There is in fact no single accepted “correct” scheme for defining localiza-
tion classes. Recent experimental techniques have allowed the localization site
of proteins in yeast cells to be determined at the resolution of roughly 22 distinct
sites.��� This allows some sites, such as the nuclear periphery and the endoplasmic
reticulum, that have been lumped together by most predictive studies to be distin-
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guished. On the other hand, the fluorescence microscopy used in their study does
not allow them to distinguish between lumen versus membrane for the mitochon-
dria and endoplasmic reticulum sites. So in this area, the annotation accumulated
from small-scale experiments in SWISS-PROT often offers higher resolution.

Indeed the annotations regarding subcellular location in SWISS-PROT ��

strongly reflect the historic lack of a canonical scheme for defining localization
sites. Considering only entries containing a subcellular location annotation in the
“CC” field and canonicalizing for capitalization and the use of white space, one
finds 3214 distinct descriptions for subcellular location. The top 45 such descrip-
tions are shown in Figure 4. Note that the descriptions vary both in terms of local-
ization site and the firmness of the evidence upon which the annotation is based. In
fact many annotations—e.g., those containing “by similarity”—do not represent
experimental verifications.

The large diversity in annotations has been a practical difficulty to overcome
when devising classification schemes for prediction programs. However, less com-
mon descriptions often add useful specific information such as conditions—e.g.,
temperature—under which a localization is observed, or the topology of inte-
gral membrane proteins, etc. See also Section 5.4. The recent increased use of
controlled vocabularies, such as the cellular component vocabulary of the Gene
Ontology�� should make localization site definitions and dataset preparation eas-
ier in the future.

4.2. Is One Site Per Protein an Adequate Model?

All of the studies that we are aware of use something close to a one-site-per-
protein model. Some work has gone a little beyond this; for example, the PSORT-
B��� database includes eight localization classes for gram-negative bacteria, three
of which correspond to proteins that localize to two different sites—such as outer
membrane and extracellular.

It is known that the function of some transcription binding factors is partially
regulated by selective localization to either the nucleus or the cytoplasm—where
their action is obviously blocked.������� ��� Kumar et al.��� find that approxi-
mately 25% of proteins that localize to an organelle also show significant cytoplas-
mic staining upon immunofluoresence analysis. The distribution of localization
sites from another large-scale study��� gives the dual localization of nucleus and
cytoplasm as the number one localization site, as shown in Figure 5. One of the
difficulties in accurately predicting the localization of mitochondrial and chloro-
plast proteins in plants is that their localization signals are very similar, and in
fact—in rare cases—the same protein can be localized to both organelles. �������
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Although most work to date on eukaryotes has used the one-site-per-protein
model, this is a drastic simplification of reality. Some proteins localize to multiple
sites simultaneously, some proteins change their localization in a regulated way,
and some proteins constantly move—such as proteins found in vesicle membranes
which shuttle between the Golgi body and the endoplasmic reticulum membrane.
Some simplification of this complicated reality seems necessary to make the prob-
lem tractable.

However, given the data in Figure 5, we believe that adding multiple local-
ization to the nucleus and cytoplasm explicitly to prediction schemes is worth
considering. On the other hand, for the vast majority of proteins, multiple local-
ization generally appears to be limited to a few pairs of sites. So it is probably
unnecessary to require a model to allow proteins to multiply localize to arbitrary
combinations of sites.

4.3. How Good are the Predictions?

The prediction of integral membrane proteins appears to be the easiest one, with
percent accuracies in the high 90s being reported by several studies. ���� ���� ���� ���

A much higher resolution prediction for gram negative bacteria also seems to be
relatively easy. Horton and Nakai��� claim an accuracy of 94% with PSORTII
in classifying 336 E. coli proteins into 7 localization classes (unfortunately this
accuracy estimate is buried in the discussion of their paper). Recently, slightly
lower accuracy has been reported by PSORT-B��� with a much larger data set of
1443 sequences.�

Localization in eukaryotic cells has proven harder to predict. For example,
PSORTII��� only achieved a somewhat disappointing accuracy of 60% for ten
yeast localization sites in 1997. Interestingly, most of the mistakes are between
the cytoplasm and the nucleus. Some of those “mistakes” are likely to have been
proteins that, depending on certain conditions, can localize to either site. Some
advances have been made since then, and several methods have been published
with much higher estimated accuracy for eukaryotic cells.

Some of these methods have been compared on a common dataset by
Emanuelsson,��� who found TargetP to classify plant and non-plant eukaryotic
cells proteins into four sites with an accuracy of 85% and 90% respectively.
Nair and Rost�	� compared TargetP,��� SubLoc,��	 and NNPSL��
 on a com-
mon dataset. They obtained high coverage (99% and 93%) for extracellular and
mitochondrial proteins with TargetP but with low precision (51% and 46%). For

�PSORT, PSORTII, and PSORT-B are three distinct prediction programs, although the feature vec-
tor and class definitions used by PSORTII are mainly taken from PSORT.
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cytoplasmic and nuclear proteins, the study found SubLoc to yield coverages of
67% and 82% with precisions of 60% and 76% respectively.

Many methods not covered in these studies have also claimed high predictions
accuracies with various datasets and localization site definitions. We have no in-
tention of doubting any particular estimates, but refer the reader to Section 4.4 for
caveats. An independent comparison��� of signal peptide predictions has com-
pared the accuracy of weight matrix, neural network, and hidden Markov models.
Due to different balances of recall versus precision, the results of Table 1 in their
study appear insufficient to declare which method is best. However, it seems that
an overall accuracy of around 90% is possible.

4.3.1. Which Method Should I Use?

Of course we encourage researchers to look at several methods and admit that our
coverage in this chapter is only partial. Figures 2 and 3 show some public pre-
diction servers and datasets. For most users we recommend trying the TargetP ���

server because it has a good reported prediction accuracy and the programs it is
based on, such as SignalP,���� ��� appear to have been designed by researchers
with a thorough understanding of the current state of knowledge regarding sorting
signals and processes. One drawback of SignalP is that it is a commercial piece
of software and the program is not freely available to certain non-profit research
organizations. However, use of the public server is free. Another minor drawback
is that it may not be well suited for proteins that are localized through mechanisms
other than signal peptides.��
 These are relatively rare, and we expect such pro-
teins to be hard for any prediction program. Although some of the various PSORT

programs are in serious need of updating, such updates are planned and we believe
the PSORT web site will continue to be a valuable resource.

In large genome projects, gene finding programs often mispredict the N-
terminal region of proteins;��� see also Chapter 5. Thus methods—many of which
are shown in Figure 8—which do not rely on N-terminal signals are especially use-
ful because they can be expected to be relatively robust against start site errors. ��	

In any case, since gene finding programs typically can make use of similar se-
quences to increase accuracy, the accuracy of gene finding is likely to increase
along with the rapidly increasing availability of sequences from various organ-
isms.

4.4. A Caveat Regarding Estimated Prediction Accuracies

We note here that the prediction accuracy reported in various studies, including
our own, may be a bit optimistic. One obvious important difficulty in comparing
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Program URL Ref.

PSORT psort.ims.u-tokyo.ac.jp ��� �	�

PSORTII psort.ims.u-tokyo.ac.jp ���� �	�

NNPSL www.doe-mbi.ucla.edu/˜astrid/
astrid.html

��


TargetP www.cbs.dtu.dk/services/
TargetP

���

LOC3d cubic.bioc.columbia.edu/db/
LOC3d

�	�

PLOC www.genome.ad.jp/SIT/ploc.html ���

SubLoc www.bioinfo.tsinghua.edu.cn/
SubLoc

��	

ProtComp www.softberry.com/berry.phtml?
topic=proteinloc

Predotar www.inra.fr/predotar

Fig. 2. Some public localization prediction servers are shown with references to the literature where
available.

prediction accuracies is the variety of localization site definitions and datasets
that have been used in different studies. The majority of the works have used
annotations in SWISS-PROT�� to train and test their methods however, which
leads to another more subtle problem in estimating prediction. Strictly speaking,
estimating the accuracy based on performance on a test set is only valid if the test
set data is used just once.

Consider two arbitrary classifiers—on a particular data set one may classify
more accurately than the other simply by chance. Many works have been pub-
lished using various subsets of the same data. Moreover, since each work gener-
ally reflects the results of testing multiple classifiers or one classifier with many
parameter settings, the effect is amplified and the same data has been used many
times for testing. Thus the results of even rigorous cross-validation studies should
be taken with this in mind.

In the machine learning community, the UCI Repository �� contains datasets—
including two for protein localization—that can be used to test classification algo-
rithms. Despite the fact that the repository contains more than 100 datasets, there
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Dataset URL Ref.

SWISS-PROT www.ebi.ac.uk/swissprot ��

NLSDB cubic.bioc.columbia.edu/db/
NLSdb

�	�

MITOP mips.gsf.de/proj/medgen/mitop ��	

YEAST GFP yeastgfp.ucsf.edu ���

LOCALIZATION
DB
YPL.db genome.tugraz.at/ypl.html ���

TRIPLES ygac.med.yale.edu/triples/
triples.htm

���

MIPS CYGD mips.gsf.de/genre/proj/yeast/
index.jsp

���

Fig. 3. Some public localization datasets are shown with references to the literature.

is a serious concern that its repeated use has lead to inaccurate conclusions on the
general accuracy of classifiers tested on it.��


4.5. Correlation and Causality

An important issue in evaluating prediction schemes for localization is the dis-
tinction between sequence features that reflect causal influences on localization
versus those which merely reflect correlation with localization. Figure 6 uses the
localization of a transcription factor to the nucleus to illustrate this point. Nuclear
localization signals (NLS)�		 in proteins cause them to be selectively imported
into the nucleus by importins. Indeed a classic study by Goldfarb et al. �	� shows
that not only is nuclear localization impaired by mutations in the NLS, but also
that non-nuclear proteins are imported into the nucleus when modified to include
artificial NLS’s. Thus the presence of an NLS naturally correlates with nuclear
localization.

The vast majority of the DNA in a eukaryotic cell is found in the nucleus. Thus
proteins whose function is to interact with DNA are generally imported to the nu-
cleus, and therefore DNA binding motifs such as the zinc finger binding motif ���

also correlate with nuclear localization. There is however a fundamental differ-
ence between these two correlations. The zinc finger binding motif is not believed
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Freq. Description

7307 cytoplasmic (by similarity)
6380 cytoplasmic
5166 secreted
4181 integral membrane protein
3655 nuclear
3251 integral membrane protein

(potential)
2177 cytoplasmic (probable)
1862 cytoplasmic (potential)
1542 chloroplast
1241 type i membrane protein
1114 nuclear (potential)
1029 nuclear (probable)
869 nuclear (by similarity)
775 mitochondrial
721 integral membrane protein

(probable)
495 integral membrane protein. in-

ner membrane (potential)
484 mitochondrial matrix
435 integral

membrane protein. mitochon-
drial inner membrane

428 secreted (by similarity)
393 extracellular
381 periplasmic
373 integral membrane protein. in-

ner membrane
355 chloroplast thylakoid mem-

brane
352 integral membrane protein (by

similarity)
312 secreted (potential)

Freq. Description

309 integral membrane protein. in-
ner membrane (by similarity)

296 integral membrane protein. in-
ner membrane (probable)

270 membrane-bound
226 attached to the membrane by a

gpi-anchor
216 periplasmic (by similarity)
212 mitochondrial inner

membrane
211 membrane-bound. endoplas-

mic reticulum
204 cytoplasmic and nuclear (by

similarity)
202 attached to the membrane by a

lipid anchor (potential)
199 membrane-associated (by

similarity)
193 inner membrane-associated

(by similarity)
180 periplasmic (potential)
175 type i membrane protein (po-

tential)
165 attached to the membrane by a

lipid anchor (probable)
162 nuclear; nucleolar
161 mitochondrial (by similarity)
156 type ii membrane protein
156 secreted (probable)
153 integral membrane protein.

chloroplast thylakoid mem-
brane

148 lysosomal

Fig. 4. The 45 most frequent descriptions of subcellular localization in SWISS-PROT.

to exert a causal influence on nuclear localization. For example, Mingot et al. ���

has created a mutant form of a nuclear protein in which DNA binding is abolished
but nuclear localization is retained.

The correlation between zinc finger binding motifs and nuclear localization is
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Freq. Description

827 cytoplasm, nucleus
823 cytoplasm
496 nucleus
485 mitochondrion
266 ER
157 ambiguous
121 vacuole
73 punctate composite
73 nucleolus, nucleus
70 nucleolus
57 cell periphery
54 vacuolar membrane
53 nuclear periphery
39 spindle pole
34 endosome
33 late Golgi
27 actin
21 peroxisome
21 cell periphery,vacuole
19 lipid particle
18 cytoplasm, punctate compos-

ite
18 cytoplasm, mitochondrion
18 Golgi, early Golgi
15 bud neck
15 Golgi

Freq. Description

13 bud neck, cell periphery
12 cytoplasm, nucleolus, nucleus
11 punctate composite, early

Golgi
11 early Golgi
11 ambiguous, bud neck,cell pe-

riphery, bud
10 microtubule
10 cell periphery, bud
10 bud neck, cytoplasm,cell pe-

riphery
10 bud neck, cytoplasm
10 ambiguous, bud neck, cyto-

plasm, cell periphery, bud
9 ER, cytoplasm
8 nucleus, spindle pole
8 mitochondrion, punctate com-

posite
8 cytoplasm, nucleolus
8 ambiguous, bud neck, cyto-

plasm, bud
8 ER, vacuole
6 ER to Golgi
5 mitochondrion, nucleus
5 early Golgi, late Golgi
5 cytoplasm, vacuole

Fig. 5. The 45 most frequent descriptions of subcellular localization in the yeast GFP��� database.

real and useful for the prediction of native proteins. Especially since NLS’s are
relatively difficult to detect from primary sequence information—Nair and Rost
reported that NLS’s were detected in only 1% of eukaryotic proteins, using se-
quence analysis with a strict precision requirement.�	� However it should be kept
in mind that non-causal correlations such as the one between DNA binding motifs
and nuclear localization may not be robust when applied to mutant or non-native
proteins. The understanding of which correlations reflect causal influences is crit-
ical to the ability to design novel protein sequences with some desired behavior.
A classic example of this issue from another area of bioinformatics is the use
of codon usage in gene finding. Indeed the question of how to treat causal and
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Fig. 6. A schematic diagram illustrating some causal influences is shown. NLS is the nuclear local-
ization signal. Many omitted variables also exert causal influence on function and fitness.

non-causal correlations is not specific to protein localization, but is important in
any application of machine learning or statistical analysis. We refer the reader to
Pearl��� for an in depth analysis of causality in the context of statistical inference.

5. Localization and Machine Learning

An impressive number of learning and knowledge representation techniques have
been applied to the problem of predicting protein subcellular localization. Indeed
the list is fairly representative of the techniques from AI, pattern recognition, and
machine learning that have been applied across the entire field of bioinformatics.
We have attempted to organize the work in this field by classifier (Figure 7) and
by the kind of input used (Figure 8) to classify. We must admit that these two
tables are incomplete and imperfect. In particular, many works that are specific
to localization to a particular site are omitted—although many are included—and
the categorization of classifier and input type is rather arbitrary in some cases. For
papers that cover a variety of classifiers or input techniques we are likely to have
made some errors of omission as well. Nonetheless we believe that these figures
are a useful way to organize the existing body of work on localization prediction.

Many of the methods in Figure 7 are briefly described in Chapter 3. We do not
describe them in detail here. Instead we outline some of the common approaches
and we give our thoughts on the strengths and weaknesses of these methods when
applied to localization prediction.
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Prediction Schemes:
Classifier Technique Used Ref.

Rule-Based Expert System ���� �
�� �
�

Discriminant Analysis ���� ��	� ���� ���� �
�� ���� 	��

Principle Component Analysis ��� 	��

Bayesian Network ���

Naı̈ve Bayes ���� ���

Decision Trees ���

Nearest-Neighbor Methods ���� �	�� �	�

Support Vector Machines ���� ���� ���� ��	� ���

Feed-Forward Neural Network �	� ���� ���� ���� ���� ��	� ��	� ���� ��
� ���

Kohonen Self-Organizing Map ���

(Hidden) Markov Models ���� ���� ���� ���� 	��

Human-Designed Structured Model ���� ���� �
�� �
�

(Generalized) Weight Matrix ��
� ���� ���

Feature Discovery/Data Mining ��� ���� ���

Fig. 7. A partial list of classifying methods and programs that employ them to predict localization
is shown. The Bayesian network framework is general enough to encode any probability distribution,
thus including many other categories, but here we reserve the Bayesian network category for authors
who presented their methods as Bayesian networks. Weight Matrix includes methods that couple a
few fixed columns to allow for interdependence between sites. We include Markov chain models in
(hidden) Markov models. Discriminant analysis is used as a catch all for discriminant methods that
don’t fall into more specific categories.

5.1. Standard Classifiers Using (Generalized) Amino Acid Content

The correlation between amino acid composition and protein localization was ob-
served as early as 1982.��� As can be seen in Figure 8, many methods have been
developed based on amino acid composition or slightly generalized features such
as the composition of amino acid pairs separated by 0-3 amino acids, including
recent studies��	� ��� using support vector machines.���� ���

These methods achieve competitive accuracy. Moreover they have the advan-
tage that they may be accurate even for proteins that have sorting signals which are
too subtle to be found with current prediction techniques, or that localize without
the direct use of sorting signals—see Section 2.

As mentioned above, for genome projects in which putative amino acid chains
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Prediction Schemes:
Information Used as Input Ref.

(Generalized) Amino Acid Compo-
sition

���� ���� ���� ���� ��	� �
�� ��
� �	�� 	���

���� ���

N-terminal Sequence Region ���� ���� ���� ���� �
�� �
�� ���� ���� ����

��� ���� ��
� ���� ���� ���

Entire Amino Acid Sequence ���� ���� ���� �
�� �
�

Sequence Periodicity ��	� ���

Sequence Similarity ���� �	�

Sequence Motifs ��� ���� ���� ���

Protein Signatures ��
� ���� ���

Physiochemical Properties ��� ���� ���� ���� ���

mRNA Expression Data ���

Knockout lethality ���

Integral �-helix Transmembrane
Region Prediction

���� ���� ���� ���� �
�� �
�

Surface Residue Composition ��

Text Descriptions ���� �	�� �	�

Fluorescence Microscope Images �	� ��	

Meta Localization Features ���� ���� ���� �
�� �
�

Fig. 8. A partial list of types of input information and references for programs that use that input
to predict localization is shown. Generalized amino acid composition may include slightly higher-
order inputs such as the composition of adjacent pairs of amino acids. Protein Signatures—some of
which can also be classified as sequence motifs—are taken from PROSITE��� , SBASE-A��	 , and
InterPro.��� Meta localization features are the results of localization prediction programs; for example,
PSORT(II) uses a modified version of McGeoch’s signal peptide prediction program�
� as an input
feature.

may have incorrectly predicted N-terminal regions, the lack of a strong depen-
dence on N-terminal sorting signals is also a practical advantage. However, we
speculate that some of the amino acid composition bias utilized by these methods
reflects an adaptation to functioning effectively in the different chemical environ-
ments found in different compartments, as discussed in Andrade et al., �� rather
than a causal factor in their localization.

We do not dismiss all of the bias as being mere correlation. For example, hy-
drophobicity can certainly affect the integration into or transition through mem-
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branes. Still we feel that this approach is relatively prone to relying on non-
causal correlations. The potential drawbacks of such a reliance is discussed in
Section 4.4.

5.2. Localization Process Modeling Approach

PSORT�
���
� uses a tree-based reasoning scheme designed to roughly reflect the
localization process. Rules are supplied for each decision node in the tree in which
a feature is primarily chosen from biological knowledge. For example, a weight
matrix designed to detect signal peptides is used at the node representing transport
through the endoplasmic reticulum membrane.

Unlike the decision trees mentioned in Section 5.5, the tree architecture is
designed from prior knowledge rather than induced from statistical properties of a
training set. The advantage of this system is that it is not only a prediction scheme
but is also a kind of knowledge base. To the extent that biologists understand the
mechanisms of localization it should be possible to design prediction schemes that
model the process. Given the dependence on prior knowledge we expect that most
of the correlations PSORT uses are causal in nature.

One disadvantage of this approach is the labor intensive process of updating
the rules to reflect the ever growing body of knowledge regarding localization pro-
cesses. Another disadvantage is the lack of a good way—such as cross-validation,
but see Section 4.4—to estimate the accuracy on unkown sequences. It is of course
not feasible to remove the influence of a set of randomly chosen test sequences on
the body of knowledge regarding localization. Finally this method has less abil-
ity to fully leverage all correlations between sequence features and localization to
maximize prediction accuracy.

5.3. Sequence Based Machine Learning Approaches with Architectures
Designed to Reflect Localization Signals

A series of works by Nielsen, Emanuelsson, and colleagues have taken an ap-
proach in which sophisticated sequence-based classifiers are used—but knowl-
edge of localization is employed to select the classifier architecture and input
sequence region.�������� ���� ���� ��� In particular, many of those works use feed-
forward neural networks��� ��� ���� ��
 to predict sorting signals. Although prov-
ably optimal learning procedures are not known, in principle feed-forward neural
networks can learn non-linear interactions between distant amino acids that affect
localization.

Applied without careful analysis of the learned weights, neural networks gen-
erally have a tendency to produce “black box” classifiers. However the works
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describe in this section do provide some such analysis and their restriction of the
sequence region input should greatly reduce reliance on spurious correlations. In
other words, they use prior knowledge to limit the complexity of the input but rely
on machine learning techniques to determine the actual function of the input that
is used for classification. We feel this general approach should be effective for
many bioinformatics applications.

5.4. Nearest Neighbor Algorithms

PSORTII��� uses the PSORT features. But instead of using the PSORT reasoning
tree, it uses the � nearest neighbors classifier (�-NN).��� To classify a sequence,
PSORTII simply considers the � sequences in the training data whose feature
vector most closely matches, by euclidean distance, the feature vector of the se-
quence to be classified. This classifier was found to be more effective than decision
tree induction, Naı̈ve Bayes, and a structured probabilistic model roughly based
on the PSORT reasoning tree���. Predicting localization by sequence similarity
search for close homologs of known localization is another commonly employed
method,�����	� which amounts to a kind of nearest neighbor classification.

Nearest neighbor classifiers do not summarize the training data, and thus in a
machine learning sense have very little explanatory power. They do however nat-
urally provide the particular examples in the training data which are most similar
to the data to be classified. This is useful in problems such as localization where
much valuable ad hoc annotation information can be given in addition to the pre-
dicted class. For example, even if the localization site definition used does not give
nucleolar proteins their own distinct class, if the nearest neighbors to a sequence
are annotated as “nuclear; nucleolar” in SWISS-PROT, that gives a valuable clue
that the sequence may localize to the nucleolus.

We are currently designing a successor to PSORTII but plan to retain at least
some form of nearest neighbor classification. It has been reported �
� that the accu-
racy of PSORTII can be improved by using more sophisticated variants of nearest
neighbor classifiers such as discriminant adaptive nearest neighbor classifiers. ���

5.5. Feature Discovery

In this section we introduce two studies, Horton��� and Bannai et al.��, that fo-
cused on trying to automatically discover simple sequence features that are rele-
vant to protein localization. Although neither study was able to surpass previous
methods in estimated prediction accuracy, we feel their feature discovery approach
merits mention. Since the methods used in these studies are less established than
many of the classification algorithms mentioned in Figure 7, we briefly describe
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them here.
Horton��� first identified substrings in the protein sequences that correlate sig-

nificantly to localization site and then built decision trees with the standard deci-
sion tree algorithm using those substrings as potential features. Decision trees
were chosen because decision trees are relatively easy to interpret and the stan-
dard decision tree induction algorithm�	� includes feature selection. The leaves of
the decision trees are localization sites and the internal nodes are binary nodes that
represent tests of the number of occurrences of a particular substring in the input
sequence. Such trees were induced on several random subsets of the localization
data with the idea that consistently selected substring features would be important.
Figure 9 shows one of the induced trees. The prediction accuracy of this tree is far
from competitive with the best methods and many discovered features appear to
simply reflect amino acid composition bias—but we were pleased that a test for
the presence of a carboxy-terminal phenylalanine was consistently selected from
an E.coli dataset. Although we were not aware of the fact until after the feature
discovery experiment was conducted, the presence of a carboxyl-terminal pheny-
lalanine is an experimentally verified factor in localization to the outer membrane
in bacteria.�
�

Bannai et al.�� considered a broader class of features, including substrings
pattern that only require a partial match and patterns that group amino acids based
on published amino acid indexes, many of which reflect various chemical prop-
erties of amino acids. Instead of the decision tree induction algorithm they used
an extensive search of possible rules to build a decision list��� which is a special
case of a decision tree with a linear structure. Their method was able to “discover”
the known fact that mitochondrial targeting signals have an amphiphilic �-helix
structure and predict signal peptides with competitive accuracy using only a sim-
ple average of hydrophobicity over the appropriate sequence region.

5.6. Extraction of Localization Information from the Literature and
Experimental Data

This chapter has focused on predicting protein localization from information di-
rectly derivable from the amino acid sequence of the protein, which is more or less
the same problem nature is faced with. There is of course another source of infor-
mation available to use—experimental data and the vast literature based upon it.
Ultimately all of the methods mentioned in this chapter are based on information
gained by human interpretation of experimental data. But recently there has been
progress in developing computer programs to automatically extract such informa-
tion. Eisenhaber and Bork��� have developed a rule-based method for classify-
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Fig. 9. A decision tree induced for localization in E.coli is shown. The leaf nodes (green rectangles)
represent localization sites. To simplify presentation, leaves representing the same localization site
have been merged. Internal nodes (blue ovals) represent binary tests. The root node test for whether
the substring “LI” appears more than twice or not. A lower case “c” represents the C-terminal of
the amino acid sequence. Thus the condition “Fc� �” tests for the presence of a carboxy-terminal
phenylalanine. (Image credit: Adapted from Figure 15.3 of Horton.�

)

ing SWISS-PROT entries that lack an explicit “subcellular localization” tag but
contain sufficient information in their description to determine their localization.
For example, they observe that the functional description of “cartilage protein”
is sufficient to infer extracellular localization. Support vector machines have also
been applied to extracting localization information from the literature. �	� Nair and
Rost�	� also used machine learning to predict localization from SWISS-PROT
keywords. Murphy and colleagues have developed methods for classifying local-
ization from fluorescence microscopy images,�	� ��	 and methods to extract and
analyze such images automatically from figures and captions in the literature. ��	

6. Conclusion

In this chapter we have briefly discussed many aspects of protein localization in
the context of bioinformatics. We hope that the overview of the biology and some
experimental techniques presented here will be valuable background for computer
scientists seeking to develop new prediction algorithms. For biologists who are
primarily users of such algorithms, we hope that our brief summary of common
approaches to prediction will give helpful insights as to what is going on “under
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the hood” in many commonly used prediction tools, as well as providing a starting
point for algorithm developers.

We have stated our views regarding how priorities will shift in the age of
proteomics—namely towards methods that reflect the biology in a robust way.
As we have mentioned earlier, some aspects of localization cannot be understood
statically, since the localization of some proteins is dynamic or conditioned upon
the state of the cell. With proteomic-scale experiments vastly increasing our body
of knowledge, we believe that more sophisticated models incorporating some form
of time or cell state may soon become feasible. The roughly 20 years of research
reviewed in this chapter is impressive—but at the current rate of innovation we
believe the next decades will prove even more exciting.


