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Abstract. Many real-world datasets, such as biological networks and
social networks, can be modeled as graphs. It is interesting to discover
densely connected subgraphs from these graphs, as such subgraphs rep-
resent groups of objects sharing some common properties. Several algo-
rithms have been proposed to mine quasi-cliques from undirected graphs,
but they have not fully utilized the minimum degree constraint for prun-
ing. In this paper, we propose an efficient algorithm called Quick to find
maximal quasi-cliques from undirected graphs. The Quick algorithm uses
several effective pruning techniques based on the degree of the vertices to
prune unqualified vertices as early as possible, and these pruning tech-
niques can be integrated into existing algorithms to improve their per-
formance as well. Our experiment results show that Quick is orders of
magnitude faster than previous work on mining quasi-cliques.

1 Introduction

Graphs can represent complicated relationships among objects, and they have
been used to model many real-world datasets. For example, a protein-protein
interaction network can be represented as a graph where each vertex represents
a protein and edges represent interactions between proteins. A set of microarray
data can be converted to a graph in which each vertex represents a gene and an
edge between two vertices represents a strong similarity between the expression
data of the two corresponding genes. Highly connected subgraphs in these graphs
often have significant biological implications. They can correspond to protein
complexes [1] or biologically relevant functional groups [2–4].

The discovery of dense subgraphs from one or multiple graphs has attracted
increasing attention. Cliques are the densest form of subgraphs. A graph is a
clique if there is an edge between every pair of the vertices. However, this require-
ment is often too restrictive given that real-world datasets are often incomplete
and noisy. The concept of quasi-cliques has been proposed to relax the require-
ment. Different definitions have been given to quasi-cliques. Here we adopt the
definition that is based on the degree of individual vertices, that is, a graph is a
quasi-clique if every vertex in the graph is adjacent to at least ⌈γ(n − 1)⌉ other
vertices in the graph, where γ is a number between 0 and 1 and n is the number
of vertices in the graph.

⋆ This work was supported in part by a Singapore A*STAR SERC PSF grant.
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Given a graph, the search space of the quasi-clique mining problem is the
power set of its vertex set. How to efficiently and effectively prune the search
space is critical to the performance of a quasi-clique mining algorithm. However,
the downward closure property no longer holds on quasi-cliques, which makes
mining quasi-cliques much more challenging than mining cliques. Existing algo-
rithms for mining quasi-cliques from a single graph all use heuristic or random-
ized methods and they do not produce the complete set of quasi-cliques [5, 6,
2]. Although existing algorithms for mining quasi-cliques from a set of graphs
generate the complete result, they have not fully exploited the pruning power of
the minimum degree constraint [7, 8].

In this paper, we propose an efficient algorithm called Quick to mine quasi-
cliques, which uses several effective pruning techniques based on the degree of the
vertices. These pruning techniques can effectively remove unpromising vertices
as early as possible. We conducted a set of experiments to demonstrate the
effectiveness of the proposed pruning techniques.

The rest of the paper is organized as follows. Section 2 gives the formal
problem definition. Section 3 presents the Quick algorithm, and its performance
is studied in Section 4. Related work is described in Section 5. Finally, Section
6 concludes the paper.

2 Problem Definition

In this section, we formally define the quasi-clique mining problem. We consider
simple graphs only, that is, undirected graphs that have no self-loops and multi-
edges. Graph isomorphism test is very complicated and costly. To simplify the
problem and the presentation, we restrict our discussion to relational graphs
where every vertex has a unique label. In this case, graph isomorphism test can
be performed by simply comparing the vertex set and edge set of two graphs.
Note that the techniques described in this paper can be applied to non-relational
graphs as well. In the rest of this paper, the term “graph” refers to simple
relational graphs unless otherwise stated.

A simple graph G is defined as a pair (V,E), where V is a set of vertices, and
E is a set of edges between the vertices. Two vertices are adjacent if there is an
edge between them. The adjacency list of a vertex v in G, denoted as NG(v), is
defined as {u|(u, v) ∈ E}. The degree of a vertex v in G, denoted as degG(v), is
defined as |NG(v)|. The adjacency list of a vertex set X, denoted as NG(X), is
defined as {u|∀v ∈ X, (u, v) ∈ E}.

The distance between two vertices u and v in a graph G = (V,E), denoted
as distG(u, v), is defined as the number of edges on the shortest path between
u and v. Trivially, distG(u, u) = 0, and distG(u, v) = 1 if u 6= v and (u, v) ∈ E.
We denote the set of vertices that are within a distance of k from vertex v as
NG

k (v) = {u|distG(u, v) ≤ k}. The diameter of a graph G, denoted as diam(G),
is defined as maxu,v∈V distG(u, v). A graph is called connected if distG(u, v) < ∞
for any u, v ∈ V .

Definition 1 (γ-quasi-clique). A graph G = (V,E) is a γ-quasi-clique (0 ≤
γ ≤ 1) if G is connected, and for every vertex v ∈ V , degG(v) ≥ ⌈γ · (|V | − 1)⌉.
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According to the definition, a quasi-clique is a graph satisfying a user-specified
minimum vertex degree bound, and we call γ the minimum degree threshold. A
clique is a special case of quasi-clique with γ=1. Figure 1 shows two example
quasi-cliques. Graph G1 is a 0.5-quasi-clique, but it is not a 0.6-quasi-clique be-
cause the degree of every vertex in G1 is 2, and 2 is smaller than ⌈0.6 · (5 − 1)⌉.
Graph G2 is a 0.6-quasi-clique.
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v5 v2

(a) G1

v1

v3v4

v5 v2

v1

(b) G2

v1

v3v4

v2

(c) G1(V − {v5})

Fig. 1. Examples of quasi-cliques

Given a graph G = (V,E), graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. Graph G is called a supergraph of G′. If V ′ ⊂ V and E′ ⊆ E, or
E′ ⊂ E and V ′ ⊆ V , then G′ is called a proper subgraph of G, and G is called
a proper supergraph of G′. A subgraph G′ of a graph G is called an induced
subgraph of G if, for any pair of vertices u and v of G′, (u, v) is an edge of G′ if
and only if (u, v) is an edge of G. We also use G(X) to denote the subgraph of G
induced on a vertex set X ⊆ V . Given a minimum degree threshold γ, if a graph
is a γ-quasi-clique, then its subgraphs usually become uninteresting even if they
are also γ-quasi-cliques. In this paper, we mine only maximal quasi-cliques.

Definition 2 (Maximal γ-quasi-clique). Given graph G = (V,E) and a ver-
tex set X ⊆ V . G(X) is a maximal γ-quasi-clique of G if G(X) is a γ-quasi-
clique, and there does not exist another vertex set Y such that Y ⊃ X and G(Y )
is a γ-quasi-clique.

Cliques have the downward-closure property, that is, if G is a clique, then all
of its induced subgraphs must also be cliques. This downward-closure property
has been used to mine various frequent patterns in the data mining commu-
nity. Unfortunately, this property does not hold for quasi-cliques. An induced
subgraph of a γ-quasi-clique may not be a γ-quasi-clique. For example, graph
G1 in Figure 1 is a 0.5-quasi-clique, but one of its induced subgraph is not a
0.5-quasi-clique as shown in Figure 1(c). In fact, none of the induced subgraphs
of G1 with four vertices is a 0.5-quasi-clique.

Small quasi-cliques are usually trivial and not interesting. For example, a
single vertex itself is a quasi-clique for any γ. We use a minimum size threshold
min size to filter small quasi-cliques.

Problem statement (Mining maximal quasi-cliques from a single
graph) Given a graph G = (V,E), a minimum degree threshold γ ∈ [0, 1] and a
minimum size threshold min size, the problem of mining maximal quasi-cliques
from G is to find all the vertex sets X such that G(X) is a maximal γ-quasi-
cliques of G and X contains at least min size vertices.
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In some applications, users are interested in finding quasi-cliques that occur
frequently in a set of graphs. The techniques proposed in this paper can be
applied to mine frequent quasi-cliques (or so-called cross quasi-cliques [7] or
coherent quasi-cliques [8]) from a given graph database as well.

3 Efficient Mining of Quasi-cliques

3.1 The depth-first search framework

Given a graph G = (V,E), any subset of V may form a quasi-clique. Therefore,
the search space of the maximal quasi-clique mining problem is the power set
of V , and it can be represented as a set-enumeration tree [9]. Figure 2 shows
the search space tree for a graph G with four vertices {a, b, c, d}. Each node in
the tree represents a vertex set. For every vertex set X in the tree, only vertices
after the last vertex of X can be used to extend X. This set of vertices are
called candidate extensions of X, denoted as cand exts(X). For example, in the
search space tree shown in Figure 2, vertices are sorted into lexicographic order,
so vertex d is in cand exts({a, c}), but vertex b is not a candidate extension of
{a, c} because vertex b is before vertex c in lexicographic order.

{}

{a} {b} {c} {d}

{a, b} {a, c} {a, d}

{a, b, c} {a, b, d}

{a, b, c, d}

{b, c} {b, d}

{b, c, d}

{c, d}

{a, c, d}

Fig. 2. The search space tree (V = {a, b, c, d})

The Quick algorithm uses the depth-first order to explore the search space. In
the example search space tree shown in Figure 2, the Quick algorithm first finds
all the quasi-cliques containing vertex a, and then finds all the quasi-cliques
containing vertex b but not containing vertex a, and so on. The size of the
search space is exponential to the number of vertices in the graph. The main
issue in mining quasi-cliques is how to effectively and efficiently prune the search
space. As discussed in Section 2, quasi-cliques do not have the downward-closure
property, hence we cannot use the downward-closure property to prune the search
space here. According to the definition of quasi-cliques, there is a minimum
requirement on the degree of the vertices in a quasi-clique. We use this constraint
to reduce the candidate extensions of each vertex set X.

3.2 Pruning techniques used in existing work

Before describing the new pruning techniques used in the Quick algorithm, we
first describe the pruning techniques used by existing work. These pruning tech-
niques are adopted in the Quick algorithm.



5

Pruning based on graph diameters Pei et al. inferred the upper bound of
the diameter of a γ-quasi-clique based on the value of γ (Theorem 1 in [7]). In
particular, the upper bound of the diameter of a γ-quasi-clique is 2 when γ ≥ 0.5.
They used this upper bound to reduce the candidate extensions of a vertex set
as stated in the following lemma.

Lemma 1. Given graph G = (V,E) and two vertex sets X ⊂ Y ⊆ V , if G(Y ) is
a γ-quasi-clique, then for every vertex u ∈ (Y − X), we have u ∈

⋂

v∈X NG
k (v),

where k is the upper bound of the diameter of a γ-quasi-clique.

Based on the above lemma, those vertices that are not in
⋂

v∈X NG
k (v) can be

removed from cand exts(X).

Pruning based on the minimum size threshold The size of a valid γ-quasi-
clique should be no less than min size. Consequently, the degree of a vertex con-
tained in any valid γ-quasi-clique should be no less than ⌈γ · (min size − 1)⌉.
Those vertices whose degree is less than ⌈γ · (min size − 1)⌉ can be removed
since no valid γ-quasi-cliques contain them. Pei et al. [7] used this pruning tech-
nique in their algorithm.

Pruning based on the degree of the vertices For a vertex set X in the
search space, the Cocain algorithm proposed by Zeng et al. [10] prunes the
candidate extensions of X based on the number of their neighbors in X and
cand ext(X). Given a vertex u, we use indegX(u) to denote the number of
vertices in X that are adjacent to u, and exdegX(u) to denote the number of
vertices in cand exts(X) that are adjacent to u, that is, indegX(u) = |{v|(u, v) ∈
E, v ∈ X}| and exdegX(u) = |{v|(u, v) ∈ E, v ∈ cand ext(X)}|. The Cocain
algorithm uses the following lemmas to prune the search space and interested
readers may refer to [10] for their proof.

Lemma 2. If m+u < ⌈γ · (k + u)⌉, where m,u, k ≥ 0, then ∀i ∈ [0, u], m+ i <
⌈γ · (k + i)⌉.

Lemma 3. Given a vertex set X and a vertex u ∈ cand exts(X), if indegX(u)+
exdegX(u) <

⌈

γ · (|X| + exdegX(u))
⌉

, then there does not exist a vertex set Y
such that (X ∪ {u}) ⊆ Y ⊆ (X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

For a vertex v ∈ cand exts(X), if there does not exist a vertex set Y such that
(X ∪ {u}) ⊆ Y ⊆ (X ∪ cand exts(X)) and G(Y ) is a γ-quasi-clique, then v is
called an invalid candidate extension of X. The Cocain algorithm removes those
invalid candidate extensions of X based on Lemma 3. Due to the removal of
these invalid candidate extensions, some other candidate extensions of X that
appear to be valid originally may become invalid apparently. Cocain does the
pruning iteratively until no vertex can be removed from cand exts(X). However,
not all the invalid candidate extensions can be removed using Lemma 2.

The Cocain algorithm also checks the extensibility of the vertices in X using
the following lemma.
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Lemma 4. Given vertex set X and a vertex v ∈ X, if indegX(v) < ⌈γ · |X|⌉
and exdegX(v) = 0, or indegX(v) + exdegX(v) <

⌈

γ · (|X| − 1 + exdegX(v))
⌉

,
then there does not exist a vertex set Y such that X ⊂ Y ⊆ (X ∪ cand exts(X))
and G(Y ) is a γ-quasi-clique. Vertex v is called a failed vertex of X.

If there is a failed vertex in X, then there is no need to extend X further.

3.3 New pruning techniques used in the Quick algorithm

The above pruning techniques can effectively prune the search space, but they
have not fully utilized the pruning power of the minimum degree constraint yet,
and not all the invalid candidate extensions can be detected and removed by
them. Next we describe the new pruning techniques used in our Quick algorithm.

Technique 1: pruning based on the upper bound of the number of
vertices that can be added to X concurrently to form a γ-quasi-clique
Given vertex set X, the maximum number of vertices that can be added to X
to form a γ-quasi-clique is bounded by the minimal degree of the vertices in X.

Lemma 5. Let degmin(X) = min{indegX(v) + exdegX(v)|v ∈ X}, Y be a su-
perset of X such that Y ⊆ (X ∪ cand exts(X)) and G(Y ) is a γ-quasi-clique.
We have |Y | ≤ ⌊degmin(X)/γ⌋ + 1.

Proof. For every vertex v ∈ X, we have indegX(v) + exdegX(v) ≥ indegY (v) ≥
⌈γ · (|Y | − 1)⌉, so we have degmin(X) ≥ ⌈γ · (|Y | − 1)⌉. Therefore, we have
⌊degmin(X)/γ⌋ ≥ ⌊(⌈γ · (|Y | − 1)⌉)/γ⌋ ≥ ⌊γ · (|Y | − 1)/γ⌋ = |Y | − 1. So we
have |Y | ≤ ⌊degmin(X)/γ⌋+1.

Based on Lemma 5, we derive the following upper bound:

Definition 3 (Umin
X ). The maximal number of vertices in cand exts(X) that

can be added to X concurrently to form a γ-quasi-clique should be no larger than
⌊degmin(X)/γ⌋ + 1 − |X|, where degmin(X) = min{indegX(v) + exdegX(v)|v ∈
X}. We denote this upper bound as Umin

X = ⌊degmin(X)/γ⌋ + 1 − |X|.

We further tighten this lower bound based on the observation that if G(Y )
is a γ-quasi-clique, then for any subset X of Y , we have

∑

v∈X indegY (v) ≥
|X| · ⌈γ · (|Y | − 1)⌉.

Lemma 6. Let vertices in cand exts(X) be sorted in descending order of their
indegX value, and the set of sorted vertices be denoted as {v1, v2, · · · , vn}. Given
an integer 1 ≤ k ≤ n, if

∑

v∈X indegX(v)+
∑

1≤i≤k indegX(vk) < |X|·⌈γ ·(|X|+
k − 1)⌉, then for every vertex set Z such that Z ⊆ cand exts(X) and |Z| = k,
X ∪ Z is not a γ-quasi-clique.

Proof. Given a vertex set Z such that Z ⊆ cand exts(X) and |Z| = k, we have
∑

v∈X indegX∪Z(v) =
∑

v∈X indegX(v)+
∑

v∈X indegZ(v) =
∑

v∈X indegX(v)+
∑

v∈Z indegX(v) ≤
∑

v∈X indegX(v) +
∑

1≤i≤|Z| indegX(vi) < |X|· ⌈γ · (|X|+

|Z| − 1)⌉. Therefore, X ∪ Z is not a γ-quasi-clique.
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Based on the above lemma, we tighten the upper bound as follows:

Definition 4 (Upper bound UX). Let UX = max{t|
∑

v∈X indegX(v)+
∑

1≤i≤t

indegX(vi) ≥ |X| · ⌈γ · (|X| + t − 1)⌉, 1 ≤ t ≤ Umin
X } if such t exists, otherwise

UX=0. If G(Y ) is a γ-quasi-clique and X ⊆ Y ⊆ (X ∪ cand exts(X)), then
|Y − X| ≤ UX .

Lemma 7. Given a vertex set X and a vertex u ∈ cand exts(X), if indegX(u)+
UX −1 < ⌈γ · (|X| + UX − 1)⌉, then there does not exist a vertex set Y such that
(X ∪ {u}) ⊆ Y ⊆ (X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

Proof. Let Y be a vertex set such that G(Y ) is a γ-quasi-clique and (X ∪
{u}) ⊆ Y ⊆ (X ∪ cand exts(X)). Since u ∈ (Y − X), there are at most
|Y | − |X| − 1 vertices in Y − X that are adjacent to u, and |Y | − |X| − 1 ≤
UX − 1 based on the definition of UX . Based on Lemma 2 and the fact that
indegX(u)+UX −1 < ⌈γ · (|X| + UX − 1)⌉, we have indegX(u)+ |Y |−|X|−1 <
⌈γ · (|X| + |Y | − |X| − 1)⌉ = ⌈γ · (|Y | − 1)⌉. Therefore, we have indegY (u) ≤
indegX(u) + |Y | − |X| − 1 < ⌈γ · (|Y | − 1)⌉. It contradicts the assumption that
G(Y ) is a γ-quasi-clique.

Similarly, we can get the following lemma, and its proof is similar to Lemma 7.

Lemma 8. Given a vertex set X and a vertex u ∈ X, if indegX(u) + UX <
⌈γ · (|X| + UX − 1)⌉, then there does not exist a vertex set Y such that X ⊆ Y ⊆
(X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

For each vertex set X, its candidate extensions are pruned based on the
upper bound as follows. We first check whether UX=0. If it is true, then no
vertices in cand exts(X) can be added to X to form a γ-quasi-clique. Next, we
check whether there exists some vertex u ∈ X such that indegX(u) + UX <
⌈γ · (|X| + UX − 1)⌉. If such u exists, then no γ-quasi-cliques can be generated
by extending X. Otherwise, we remove the invalid candidate extensions of X
identified by Lemma 7 from cand exts(X). The removal of these invalid candi-
date extensions can in turn reduce the degree of other vertices in cand exts(X),
thus making other invalid vertices identifiable. The pruning is iteratively carried
out until no more vertices can be removed from cand exts(X).

Technique 2: pruning based on the lower bound of the number of
vertices that can be added to X concurrently to form a γ-quasi-clique
Given a vertex set X, if there exists a vertex u ∈ X such that indegX(u) <
⌈γ · (|X| − 1)⌉, then at least a certain number of vertices need to be added to
X to increase the degree of u in order to form a γ-quasi-clique. We denote this
lower bound as Lmin

X , and it is defined as follows.

Definition 5 (Lmin
X ). Let indegmin(X) = min{indegX(v)|v ∈ X}. Lmin

X is
defined as Lmin

X = min{t|indegmin(X) + t ≥ ⌈γ · (|X| + t − 1)⌉}.

Again, this lower bound can be further tightened based on Lemma 6. We sort
vertices in cand exts(X) = {v1, v2, · · · , vn} in descending order of indegX value.
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Definition 6 (Lower bound LX). Let LX = min{t|
∑

v∈X indegX(v)+
∑

1≤i≤t

indegX(vi) ≥ |X| · ⌈γ · (|X| + t − 1)⌉ , Lmin
X ≤ t ≤ n} if such t exists. Oth-

erwise LX = |cand exts(X)|+1. If G(Y ) is a γ-quasi-clique and X ⊆ Y ⊆
(X ∪ cand exts(X)), then |Y − X| ≥ LX .

Based on the definition of LX , we can get the following lemmas.

Lemma 9. Let X be a vertex set and u be a vertex in cand exts(X). If indegX(u)
+exdegX(u) < ⌈γ · (|X| + LX − 1)⌉, then there does not exist a vertex set Y such
that (X ∪ {u}) ⊆ Y ⊆ (X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

Lemma 10. Let X be a vertex set and u be a vertex in X. If indegX(u) +
exdegX(u) < ⌈γ · (|X| + LX − 1)⌉, then there does not exist a vertex set Y such
that X ⊆ Y ⊆ (X ∪ cand exts(X)), and G(Y ) is a γ-quasi-clique.

For each vertex set X, its candidate extensions are pruned based on the lower
bound as follows. We first check whether LX > UX . If it is true, then no need to
extend X further. Next, we check whether there exists some vertex u ∈ X such
that indegX(u)+ exdegX(u) < ⌈γ · (|X| + LX − 1)⌉. If such u exists, then no γ-
quasi-cliques can be generated by extending X based on Lemma 10. Otherwise,
we remove the invalid candidate extensions of X identified by Lemma 9. Again
the removal is carried out iteratively until no more candidate can be removed.

Note that the removal of the invalid candidate extensions based on Lemma
3, 7 and 9 may further tighten the two bounds LX and UX , which may in turn
make more invalid candidate extensions identifiable.

Technique 3: pruning based on critical vertices Let X be a vertex set. If
there exists a vertex v ∈ X such that indegX(v)+exdegX(v) = ⌈γ · (|X| + LX − 1)⌉,
then v is called a critical vertex of X.

Lemma 11. If v ∈ X is a critical vertex of X, then for any vertex set Y such
that X ⊂ Y ⊆ (X ∪ cand exts(X)) and G(Y ) is a γ-quasi-clique, we have
{u|(u, v) ∈ E ∧ u ∈ cand exts(X)} ⊆ Y .

Proof. Let u be a vertex such that u ∈ cand exts(X) and (u, v) ∈ E. Suppose
that u /∈ Y , then we have indegY (v) < indegX(v)+exdegX(v) = ⌈γ · (|X| + LX − 1)⌉
≤ ⌈γ · (|Y | − 1)⌉. It contradicts the fact that Y is a γ-quasi-clique.

Based on the above lemma, we can identify the critical vertices for every
vertex set X. If such critical vertex exists, let it be v, then we add the vertices in
cand exts(X) that are adjacent to v to X. Let Y be the resultant vertex set. The
remaining mining is performed on Y , and the cost for extending X ∪{u}(u /∈ Y )
is saved.

Technique 4: pruning based on cover vertices This pruning technique is
inspired by the technique used in [11] for mining maximal cliques. Tomita et al.
use the following lemma to prune non-maximal cliques.
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Lemma 12. Let X be a clique and u be a vertex in NG(X). For any vertex set
Y such that G(Y ) is a clique and Y ⊆ (X ∪ NG(X ∪ {u})), G(Y ) cannot be a
maximal clique.

Proof. Vertex u is adjacent to all the vertices in X, and it is also adjacent to
all the vertices in NG(X ∪ {u}). Hence u is adjacent to all the vertices in Y . In
other words, Y ∪ {u} is a clique, thus clique Y is not maximal.

Based on the above lemma, Tomita et al. pick a vertex with the maximal degree
from cand exts(X). Let u be the picked vertex. When X is extended using
vertices in cand exts(X), the vertex set extended from X must contain at least
one vertex that is not in NG(X ∪{u}). In this way, the subsets of (X ∪NG(X ∪
{u})) are pruned since they are not maximal.

Here we generalize the above lemma to quasi-cliques.

Lemma 13. Let X be a vertex set and u be a vertex in cand exts(X) such that
indegX(u) ≥ ⌈γ · |X|⌉. If for any vertex v ∈ X such that (u, v) /∈ E, we have
indegX(v) ≥ ⌈γ · |X|⌉, then for any vertex set Y such that G(Y ) is a γ-quasi-
clique and Y ⊆ (X ∪ (cand exts(X) ∩ NG(u) ∩ (

⋂

v∈X∧(u,v)/∈E NG(v)))), G(Y )
cannot be a maximal γ-quasi-clique.

Proof. Vertex set Y is a γ-quasi-clique, then for every vertex v ∈ Y , we have
indegY (v) ≥ ⌈γ · (|Y | − 1)⌉. Let us look at vertex set Y ∪{u}. (1) Vertex u is ad-
jacent to all the vertices in cand exts(X)∩NG(u)∩ (

⋂

v∈X∧(u,v)/∈E NG(v)) and

indegX(u) ≥ ⌈γ · |X|⌉, so we have indegY ∪{u}(u) = indegX(u) + |Y | − |X| ≥
⌈γ · |X|⌉ + |Y | − |X| ≥ ⌈γ · |Y |⌉. (2) Similarly, for every vertex v ∈ X such
that (u, v) /∈ E, v is adjacent to all the vertices in cand exts(X) ∩ NG(u) ∩
(
⋂

v∈X∧(u,v)/∈E NG(v)) and indegX(u) ≥ ⌈γ · |X|⌉, so we have indegY ∪{u}(v) =

indegX(v) + |Y | − |X| ≥ ⌈γ · |X|⌉ + |Y | − |X| ≥ ⌈γ · |Y |⌉. (3) For every ver-
tex v ∈ X such that (u, v) ∈ E, we have indegY ∪{u}(v) = indegY (v) + 1 ≥
⌈γ · (|Y | − 1)⌉ + 1 ≥ ⌈γ · |Y |⌉. (4) Similarly, for every vertex v ∈ (Y − X), we
have indegY ∪{u}(v) = indegY (v) + 1 ≥ ⌈γ · |Y |⌉. In summary, Y ∪ {u} is a
γ-quasi-clique and Y is not maixmal.

We use CX(u) to denote the set of vertices that are covered by u with respect
to X, that is, CX(u) = cand exts(X) ∩ NG(u) ∩ (

⋂

v∈X∧(u,v)/∈E NG(v)). Based

on the above lemma, we find a vertex that maximize the size of CX(u) from
cand exts(X). Let u be the picked vertex. We call u the cover vertex of X. We
prune those vertex sets that are subsets of X ∪CX(u) by putting the vertices in
CX(u) after all the other vertices in cand exts(X) and then using the vertices
in cand exts(X) − CX(u) to extend X.

Technique 5: the lookahead technique This pruning technique has been
used in mining maximal frequent itemsets [12]. Its basic idea is that before ex-
tending X using any vertex from cand exts(X), we first check whether X ∪
cand exts(X) is a γ-quasi-clique. If it is, then there is no need to extend X fur-
ther because all the vertex sets extended from X are subsets of X∪cand exts(X),
thus they cannot be maximal except for X ∪ cand exts(X) itself.
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Algorithm 1 Quick Algorithm
Input:

X is a vertex set
cand exts is the valid candidate extensions of X
γ is the minimum degree threshold
min size is the minimum size threshold

Output:

true if some superset of X can form a γ-quasi-clique, otherwise false;
Description:

1: Find the cover vertex u of X; Sort vertices in cand exts(X) such that vertices in CX(u) are
after all the other vertices;

2: bhas qclq = false;
3: for all vertex v ∈ candexts(X) − CX(u) do

4: if |X| + |cand exts(X)| < min size then

5: return bhas qclq;
6: if G(X ∪ cand exts(X)) is a γ-quasi-clique then

7: Output X ∪ cand exts(X);
8: return true;
9: Y = X ∪ {v};
10: cand exts(X) = cand exts(X) − {v};

11: candY = cand exts(X) ∩ NG

k
(v), where k is calculated based on Theorem in [7];

12: repeat

13: Calculate the upper bound UY and lower bound LY of the number of vertices that can
be added to Y concurrently to form a γ-quasi-clique;

14: if there is a critical vertex u′ in Y then

15: Y = Y ∪ (candY ∩ NG(u′));

16: candY = candY − (candY ∩ NG(u′));
17: update UY and LY ;
18: Z = {v | indegY (v) + exdegY (v) < ⌈γ · (|Y | + exdegY (v) − 1)⌉

∨

indegY (v) + UY <

⌈γ · (|Y | + UY − 1)⌉
∨

indegY (v) + exdeg(Y )(v) < ⌈γ · (|Y | + LY − 1)⌉, v ∈ X};
19: if Z is not empty then

20: candY = {};

21: Z = {v | indegY (v) + exdegY (v) < ⌈γ · (|Y | + exdegY (v))⌉
∨

indegY (v) + UY − 1 <

⌈γ · (|Y | + UY − 1)⌉
∨

indegY (v) + exdeg(Y )(v) < ⌈γ · (|Y | + LY − 1)⌉, v ∈ candY };
22: candY = CandY − Z;
23: until LY > UY OR Z = {} OR candY = {}
24: if LY ≤ UY AND |candY | >0 AND |Y | + |candY | ≥ min size then

25: bhas superqclq = Quick(Y , candY , γ, min size);
26: bhas qclq = bhas qclq OR bhas superqclq;
27: if |Y | ≥ min size AND G(Y ) is a γ-quasi-clique AND bhas superqclq==false then

28: bhas qclq = true;
29: Output Y ;
30: return bhas qclq;

3.4 The pseudo-codes of the Quick algorithm

Algorithm 1 shows the pseudo-codes of the Quick algorithm. When the algorithm
is first called on a graph G = (V,E), X is set to the empty set, and cand exts(X)
is set to {v|exdegX(v) ≥ ⌈γ · (min size − 1)⌉ , v ∈ V }.

The Quick algorithm explores the search space in depth-first order. For a
vertex set X in the search space, Quick first finds its covering vertex u, and puts
the vertices in CX(u) after all the other vertices in cand exts(X) (line 1). Only
the vertices in cand exts(X)−CX(u) are used to extend X to prune the subsets
of X ∪CX(u) based on Lemma 13 (line 3). Before using a vertex v to extend X,
Quick uses the minimum size constraint (line 4-5) and the lookahead technique
to prune search space. Quick checks whether X ∪ cand exts(X) is a γ-quasi-
clique. If it is, then Quick outputs X ∪ cand exts(X) and skips the generation
of subsets of X ∪ cand exts(X) (line 6-8).

When using a vertex v to extend X, Quick first removes those vertices
that are not in NG

k (v), where k is the upper bound of the diameter of G(X ∪
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cand exts(X)) if G(X ∪ cand exts(X)) is a γ-quasi-clique (line 11). Let Y =
X ∪{u}. Next Quick calculates the upper bound UY and lower bound LY of the
number of vertices that can be added to Y concurrently to form a γ-quasi-clique,
and uses these two bounds to iteratively remove invalid candidate extensions of
Y as follows (line 12-23). It first identifies critical vertices in Y . If there is a crit-
ical vertex u in Y , Quick adds all the vertices in cand exts(Y ) that are adjacent
to u to Y based on Lemma 11 (line 14-16). Next, Quick checks the extensibility
of the vertices in Y based on Lemma 4, 8 and 10 (line 18-20). Quick then prunes
invalid candidate extensions based on Lemma 3, 7 and 9 (line 21-22). If candY is
not empty after all the pruning, Quick extends Y recursively using candY (line
25).

The last two pruning techniques described in Section 3.3 can remove some
non-maximal quasi-cliques, but they cannot remove all. To further reduce the
number of non-maximal quasi-cliques generated, we check whether there is any
γ-quasi-clique generated from some superset of Y , and output Y only if there
is none (line 26-28). The remaining non-maximal quasi-cliques are removed in a
post-processing step. We store all the vertex sets of the γ-quasi-cliques produced
by Algorithm 1 in a prefix-tree. Quasi-cliques represented by internal nodes
cannot be maximal. For each quasi-clique represented by a leaf node, we search
for its subsets in the tree and mark them as non-maximal. At the end, the quasi-
cliques represented by the leaf nodes that are not marked as non-maximal are
maximal, and they are put into the final output.

Algorithm 1 prunes the search space based on the lemmas described in Sec-
tion 3.2 and 3.3, so its correctness and completeness is guaranteed by the cor-
rectness of these lemmas.

4 A Performance Study

In this section, we study the efficiency of the Quick algorithm and the effective-
ness of the pruning techniques used in Quick. Our experiments were conducted
on a PC with an Intel Core 2 Duo CPU (2.33GHz) and 3.2GB of RAM. The
operating system is Fedora 7. Our algorithm was implemented using C++ and
complied using g++.

We used both real datasets and synthetic datasets in our experiments. The
real datasets are protein interaction networks downloaded from DIP(http://
dip.doe-mbi.ucla.edu/). The yeast interaction network contains 4932 vertices
(proteins) and 17201 edges (interactions). The E.coli interaction network con-
tains 1846 vertices and 5929 edges. The synthetic graphs are generated using
several parameters: V is the number of vertices, Q is the number of quasi-cliques
planted in the graph, γmin is the minimum degree threshold of the planted
quasi-cliques, MinSize and MaxSize are the minimum and maximum size of
the planted quasi-cliques, and d is the average degree of the vertices. To gener-
ate a synthetic graph, we first generate a value γ between γmin and 1, and then
generate Q γ-quasi-cliques. The size of the quasi-cliques is uniformly distributed
between MinSize and MaxSize. If the average degree of the V vertices is less
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than d after all the Q quasi-cliques are planted, then we randomly add edges
into the graph until the average degree reaches d.

4.1 Comparison with Cocain

We compared Quick with Cocain [8] in terms of mining efficiency. The Co-
cain algorithm is designed for mining coherent closed quasi-cliques from a graph
database. A quasi-clique is closed if all of its supergraphs that are quasi-cliques
are less frequent than it. When applied to a single graph with minimum support
of 100%, mining coherent closed quasi-cliques is equivalent to mining maximal
quasi-cliques. The executable of Cocain was kindly provided by their authors.
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Fig. 3. Running time on four datasets

Figure 3 shows the running time of the two algorithms with respect to the
γ threshold on four datasets. The first two datasets are synthetic datasets.
Dataset V1000Q50r0.5s5-15d10 was generated with V = 1000, Q=50, γmin=0.5,
MinSize=5, MaxSize=15 and d=10. Dataset V2000Q100r0.7s5-10d20 was gen-
erated with V = 2000, Q = 100, γmin=0.7, MinSize=5, MaxSize=10 and
d=20. On all four datasets, the min size threshold is set to 1. Quick is tens of
times or even hundreds of times more efficient than Cocain on all four datasets. It
indicates that the pruning techniques used in Quick are very effective in pruning
search space. The running time of both algorithms increases with the decrease
of the γ threshold because more γ-quasi-cliques are generated and less vertices
can be pruned when γ decreases.
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Fig. 4. Varying dataset generation parameters (default parameters: V =3000, Q=100
γmin=0.5, MinSize=5, MaxSize=10, d=10.0)

We studied the scalability of the two algorithms using synthetic datasets. Fig-
ure 4 shows the running time of the two algorithms when varying the number of
vertices V , the number of planted quasi-cliques Q, the maximum size the planted
quasi-cliques MaxSize and the average degree of the vertices d respectively. The
default parameters are set as follows: V =3000, Q=100, γmin=0.5, MinSize=5,
MaxSize=10, and d=10. The running time of both algorithm increases steadily
with the increase of the number of vertices and the number of planted quasi-
cliques. They are more sensitive to the increase of the maximum size of the
planted quasi-cliques and the average degree of the vertices. We observed the
same trend on the number of maximal quasi-cliques generated.

4.2 Effectiveness of the proposed pruning techniques

In this experiment, we study the effectiveness of the proposed pruning tech-
niques. We implemented a baseline mining algorithm that does not use any of
the five pruning techniques described in Section 3.3, but it uses the pruning
techniques described in Section 3.2. We then add one of the five pruning tech-
niques to the baseline algorithm. Table 1 shows the running time of the baseline
algorithm with no or one of the five pruning techniques on dataset DIP-E.coli
with γ=0.8 and min size=1.

Table 1 shows that on dataset DIP-E.coli, the most effective pruning tech-
nique is the one based on the lower bound of the number of vertices that should
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Algorithms time speedup

Baseline 3604.67 -
Baseline+UpperBound 1032.88 3.49
Baseline+LowerBound 18.73 192.48
Baseline+CriticalVertex 3572.09 1.01
Baseline+CoverVertex 2505.75 1.44
Baseline+Lookahead 3601.45 1.00

Quick 8.95 402.71

Table 1. The effectiveness of the five pruning techniques on dataset DIP-E.coli

be added to the current vertex set concurrently to form a γ-quasi-clique (Tech-
nique 2 in Section 3.3). The lookahead technique does not help very much on
this dataset. However, on dataset V1000Q50r0.5s5-15d10, the lookahead tech-
nique can achieve a speedup ratio of 1.34. It implies that the effectiveness of the
pruning techniques also depends on the characteristics of the datasets. The over-
all speedup ratio of the Quick algorithm over the baseline algorithm is 402.71,
which is smaller than the multiplication of the speedup ratios of individual prun-
ing techniques. The reason being that some invalid candidate extensions can be
pruned by multiple pruning techniques.

5 Related Work

The problem of determining whether a graph contains a clique of at least a given
size k is a NP-complete problem [13]. It is an even harder problem to enumerate
all the maximal cliques or quasi-cliques from a graph. Bron and Kerbosch [14]
proposed an efficient algorithm to solve the problem more than 30 years ago,
which is still one of the most efficient algorithms for enumerating all maximal
cliques today. Their algorithm is recently improved by Tomita et al. [11] by using
a tree-like output format.

There is a growing interest in mining quasi-cliques in recent years. Matsuda
et al. [5] introduced a graph structure called p-quasi complete graph, which is
the same as the γ-quasi-cliques defined in this paper, and they proposed an
approximation algorithm to cover all the vertices in a graph with a minimum
number of p-quasi complete subgraphs. Abello et al. [6] defined a γ-clique in a
graph as a connected induced subgraph with edge density no less than γ. They
proposed a greedy randomized adaptive search algorithm called GRASP to find
γ-cliques. Bu et al. [2] used the spectral clustering method to find quasi-cliques
and quasi-bicliques from protein interaction networks.

The above work finds cliques or quasi-cliques from a single graph. Some work
mines the clique and quasi-clique from multiple graphs. Pei et al. [7] proposed
an algorithm called Crochet to mine cross quasi-cliques from a set of graphs,
and they required that a quasi-clique must appear in all the graphs. The prun-
ing techniques used in this paper is mainly based on the co-occurrences of the
vertices across all the graphs. Wang et al. [15] studied the problem of mining
frequent closed cliques from graph databases. A clique is frequent if it appears
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in sufficient number of graphs. A clique is closed if all of its super-cliques are
less frequent than it. Since cliques still have the downward closure property, so
mining cliques is much easier than mining quasi-cliques. Zeng et al. [8] studied a
more general problem formulation, that is, mining frequent closed quasi-cliques
from graph databases, and proposed an efficient algorithm called Cocain to solve
the problem. The same group of authors later extended the algorithm for out-
of-core mining of quasi-cliques from very large graph databases [10]. Cocain uses
several pruning techniques to prune search space, but it has not fully utilized the
pruning power of the minimum degree constraint yet. The pruning techniques
proposed in this paper can be integrated into Crochet and Cocain to improve
their performance.

There are also some work on finding densely connected subgraphs from one
single graph or from a graph database. The connectivity of a subgraph can be
measured by the size of its minimum cut [16, 17], edge density [3] or by other
measures. Hartuv and Shamir [16] proposed an algorithm called HCS which re-
cursively splits the weighted graph into a set of highly connected components
along the minimum cut. Each highly connected component is considered as a
gene cluster. Yan et al. [17] investigated the problem of mining closed frequent
graphs with connectivity constraints in massive relational graphs, and proposed
two algorithms, CloseCut and Splat, to solve the problem. Hu et al. [3] proposed
an algorithm called Codense to mine frequent coherent dense subgraphs across
massive biological networks where all edges in a coherent subgraph should have
sufficient support in the whole graph set. Gibson et al. [18] proposed an algo-
rithm to find large dense bipartite subgraphs from massive graphs, and their
algorithm is based on a recursive application of fingerprinting via shingles. Ucar
et al. [4] used a refinement method based on neighborhoods and the biological
importance of hub proteins to find dense subgraphs from protein-protein in-
teraction networks. Bader and Hogue [1] proposed a heuristic algorithm called
MCODE which is based on vertex weighting by local neighborhood density and
outward traversal from a locally dense seed protein to isolate the dense regions
according to given parameters.

6 Discussion and Conclusion

In this paper, we proposed several effective pruning techniques for mining quasi-
cliques. These techniques can be applied to mining quasi-cliques from a single
graph or a graph database. We describe the pruning techniques in the context
of relational graphs where each vertex has a unique label. It is not difficult to
apply these pruning techniques to non-relational graphs where different vertices
may have the same label. Our preliminary experiment results show that by using
these pruning techniques, our algorithm can be orders of magnitude faster than
existing algorithms for the task of mining quasi-cliques from a single graph. In
our future work, we will study the effectiveness of these pruning techniques for
mining frequent quasi-cliques from a graph database.
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