

B. Comp. Dissertation

Analytics Systems for Anti-Money Laundering

By

Ruchi Bajoria

Department of Computer Engineering

School of Computing

National University of Singapore

2010/2011

ii

B. Comp. Dissertation

Analytics Systems for Anti-Money Laundering

By

Ruchi Bajoria

Department of Computer Engineering

School of Computing

National University of Singapore

2010/2011

Project No: H114270

Advisor: Prof Limsoon Wong

Deliverables:

Report: 1 Volume

Program: 1 Diskette

iii

Abstract

The use of automated analysis tools for data mining in the field of fraud

detection has become increasingly popular over the past few decades as a

result of the growth in data volumes. This project describes our approach

to learn and detect patterns in relational data using a graph representation.

We have developed a web application which allows users to search for

suspicious patterns in relational data through graphical query creation.

Our application uses graph-based mining to analyze the query pattern

consisting of relational links among clients and companies with the

purpose of finding matching sub graphs in the data. The system can

discover unknown and known patterns in data in the domain of anti-

money laundering. This could be a useful tool for credit card companies in

dealing with fraud prevention and monitoring.

Keywords:

Data Mining, Pattern Recognition, Anti-Money Laundering

Implementation Software and Hardware:

Windows 7, Adobe Flash Builder 4.0, Flex 4, Action Script 3.0, PHP,

Apache HTTP Server, MySQL Database

iv

Acknowledgement

This final year thesis has been written at the National University of Singapore. My

topic, which was part of a more comprehensive project at the Institute for

Infocomm Research (I2R), has been both enriching and challenging. The

experience I have obtained from this project is priceless to me. I would like to take

this opportunity to express my gratitude towards some people who have

significantly helped me throughout this final year project and beyond.

First, I would like to thank Professor Wong Limsoon at National University of

Singapore for his valuable supervision during this project. I would like to express

my regards to Mr Soh Cheng Lock Donny and Mr Tew Kar Leong from I2R for

their generous help, discussions and guidance in shaping the project. I also thank

Miss Luo Xueqi Annaliese at Fusionopolis and Miss Pamela Lim Mai Fun, Miss

Tan Poh Suan at National University of Singapore for coordinating this Final Year

Project for their help in managing the administrative affairs.

Lastly, this project would not have been possible without the huge contribution of

my classmate Linxiang Du who worked on this project along with me.

v

Table of Contents

Title .. ii

Abstract ... iii

Acknowledgement .. iv

Table of Contents ... v

List of Figures .. vii

1 Introduction ... 1

1.1 Objective .. 1

1.2 Chapter Guide .. 3

2 Background ... 4

2.1 Problem Definition ... 4

2.2 Motivation .. 5

2.3 Possible Uses .. 5

3 Design ... 6

3.1 Proposed Approach .. 6

3.2 Illustration of Examples ... 7

3.3 User Interface Design Criteria .. 9

3.4 Graph-mining Algorithm .. 11

4 Implementation ... 12

vi

4.1 Application Setup ... 12

4.2 Application Workflow .. 14

4.3 Graphical User Interface .. 17

4.4 Iterative development of interface .. 17

5 Analysis ... 19

5.1 Results and Interpretation ... 19

5.2 User Feedback .. 21

5.3 Related Work .. 22

6 Summary ... 25

6.1 Problems Encountered .. 25

6.2 Limitations.. 26

6.3 Recommendation for future work .. 27

6.4 Conclusion .. 28

References .. 29

Appendix A – How to install the program ... 30

Appendix B – CD Contents ... 32

vii

List of Figures

Figure 1 Graph with a single node ... 7

Figure 2 Graph with a single relation and two nodes .. 7

Figure 3 Graph with several nodes and relations ... 8

Figure 4 The input and output format of our graph-mining algorithm 11

Figure 5 Compilation process from Adobe Flash Builder IDE to Flash .swf 12

Figure 6 Architecture diagram of the application .. 13

Figure 7 Sample Query Graph ... 14

Figure 9 Pairs of relations searched at the backend for forming results 15

Figure 10 Structure of XML file passed from the interface to the backend 15

Figure 11 Initial interface of our application ... 17

Figure 12 Final Interface of our application .. 17

Figure 13 Graph query of two persons living at same address 18

Figure 14 A relation graph with 2 persons and 1 Address 19

Figure 15 Average response time vs. number of edges ... 20

Figure 16 An i2 product to identify key individuals within target networks with

Social Network Analysis .. 21

viii

1

Chapter 1

1. Introduction

1.1 Objective

Money laundering is a way by means of which people, groups or organizations can

conceal the origin or destination of their financial transactions. Traditionally, these

transactions are not transparent and hence the practice is illegal. Most financial

institutions, for example, credit card companies, today are faced with issue of

combating this serious problem. These companies have a requirement to monitor

and report transactions of a suspicious manner to an investigation unit. For

instance, a credit card company should verify every customer’s identity and track

their transactions for possible fraudulent activities such as money laundering. For

this purpose, these financial institutions collect data about their clients and their

transactions.

Data mining applications are often deployed in this field since the amount of data

to be scrutinized is vast. Often the relevant information is hidden within massive

amounts of irrelevant data and appears harmless when studied individually (K. A.

Taipale, 2003). Traditional methods of information retrieval from a relational

database using simple SQL queries alone are not capable of detecting such hidden

patterns. Hence, the need for data mining arises to discover new knowledge in

existing data.

2

This project explores the use of graph-based data mining in anti-money laundering

practices. We have developed an application which uses such analysis for fraud

detection by recognizing patterns within a prevalent set of relational data. A user

can define a desired query graph pattern to detect a potential money laundering

activity and the system will provide the data that matches such a pattern.

3

1.2 Chapter Guide

Chapter 2: Background

This Chapter includes a brief definition of the problem at hand and the data mining

technique we use in this project. We also discuss the motivation and the

applications of our project in the finance industry.

Chapter 3: Design

This Chapter provides an overview of our proposed approach with illustrative

examples. We also discuss the interface design criteria used for this project and

short description of the searching algorithm used for this project.

Chapter 4: Implementation

This Chapter describes the selection of software specifications, the creation and

design of the user interface and other aspects of the implementation phase of the

project.

Chapter 5: Analysis

This chapter provides an analysis of the project in terms of its overall

performance. We discuss user feedback obtained and present a comparative study

of the software with relevant existing work.

Chapter 6: Summary

This chapter provides a summary of the entire project with a conclusion.

4

Chapter 2

2. Background

2.1 Problem Definition

The application of automated analysis and knowledge discovery helps to reveal

relationships among data that was earlier unknown and may be potentially useful.

A significant problem in data mining for fraud detection is that often the relevant

information is hidden within vast amounts of irrelevant data and appears harmless

when studied individually. With the rapid increase in the amount of data collected

by companies on activities of their customers, it is sensible to utilize the massive

volumes of data with a tool which automatically analyses and extracts useful

knowledge from it.

In the context of financial fraud detection, the purpose of data mining is to isolate

frequently repeated patterns of activity (for example, not paying taxes) which may

help organizations in further predicting and tracking down future suspicious

behaviour. Simple methods of information retrieval for identifying unusual

activity in data may not be as useful in the current world as much of the

information may go unnoticed when studied in isolation or may in fact hold no

meaning unless studied in relation of their link to other data.

 Therefore, to discover useful patterns in data the systems must uses existing

databases containing customer information and employ advanced mining

5

techniques to identify and analyze known and unknown patterns. One such

technique is graph-based mining.

2.2 Motivation

This project led to the development of a system to sieve out fraud circles

by filtering their relations with other entities in the dataset. This project

can be further improved and used in banks in order to allow banks to

adhere to their KYC (Know Your Customer) and AML (Anti Money

Laundering) compliances.

The main goal for this project sprung from a desire this solve an important

real-world problem. Additionally this project is an excellent platform to

get a first-hand experience of the crucial skill of product design. This

project was an ideal opportunity to develop a broad understanding of

interfacing between business needs and technological capabilities.

2.3 Possible Uses

The resultant program from this project and the techniques used to achieve this

have several possible uses. The application itself with further development would

be a useful tool for pattern recognition and to help financial organizations in

detecting and preventing fraud. The techniques used in our application would be

useful for other similar applications. With some modifications, the application

would be even usable on mobile devices and PDA. Overall, this project and its

research have many benefits for future development.

6

Chapter 3

3 Design

3.1 Proposed Approach

The data that we use for our project has been obtained from a bank, and

consists of “anonymized” information about real clients (both people and

companies) and the relationship among these clients. The data is stored in

SQL as a relational database in binary form. In this project, we use a

graph query representation to provide an effective visualization of

complex patterns.

A node in the query graph is an entity that the user is searching for, e.g. a

person or a company and a connecting edge implies a relation between

two entities. The nodes have defining attributes and the edges have types.

For example, a “person” node can have attributes like: First Name, Last

Name, Position, Passport Number and so on. Similarly, an edge between a

“person” node and a “company” node may have the type “Founder”

implying that the person is a founder of the company. The purpose of

attributes is to help the user specify details of a pattern they are looking

for. In such a setting, we want to find sub graphs that match a user-defined

query pattern.

7

3.2 pr Illustration of Examples

In this section we construct some examples to demonstrate how our

system will analyze scenarios with different structures of query graphs:

• Graph with a single node

Figure 1 Graph with a single node

In this example, the user is looking for a pattern of people who

satisfy the attributes specified for “person” node A. These

attributes may be the person’s title, location, country of origin and

so on. This node could even be a company where the attributes

would be different. In this case, our application will query the

database for people who match this pattern in terms of the

attributes alone, irrespective of their relation with other data.

• Graph with a single relation and two nodes

Figure 2 Graph with a single relation and two nodes

In this example, the user is looking for a pattern where a person

has founded a company. Similar to above case, the user may

further specify the attributes for the two nodes which will further

A

A B

Founder

8

provide more relevant results. In this case, our application will

query the database for a person-company pair which matches this

pattern in terms of the attributes and the relationship “Founder”.

• Graph with a several nodes and relations

Figure 3 Graph with several nodes and relations

In this example, suppose we have the following attributes for the nodes above:

A: Is the “Founder” of company B

B: Is a company located in Singapore

C: Is a “Director” at company B who owns company C

D: Is a company in Japan

For such a graph, the script on the application server will search for each

relation that is represented as a connection between two entities. The

query output is then consolidated to form a further reduced set of results.

Similarly, another query could help spot a money laundering circle.

Although it seems feasible to use standard SQL to address this problem, if

exact match does not exist, SQL will not be able to approximate an

answer. On the other hand, if there are many exact matches in SQL, it

A

B

C D

Founder Director

Owner

9

would be worthwhile to automatically rank them in order of a scoring

function. In some cases, exact matching may not reveal the best possible

answer. Our method can be improvised by ranking exact matches as well

as the other connections present among nodes.

3.3 User Interface Design Criteria

In any software, the graphical user interface (GUI) is the first thing a user

will see when he/she run the application and hence it is extremely

important for the interface to attract the user’s attention. The second most

important factor for a GUI is to be intuitive or easy to use. The design of a

system which is intuitive and efficient depends on a variety of factors

including usability, performance, reliability, functionality, innovation

among others.

In the recent years, more emphasis is being laid on the quality and

usability of web user interfaces. Since all software is made for a certain

target group of users, it is essential that the intended users be able to

understand the basic functionality of the software and use the menus and

interface without a manual. If the graphical user interface is not intuitive

and efficiently designed, the software isn’t likely to become very popular.

For this project, the GUI was a very significant part. As this project is

concerned with constructing and editing graphical query structures, it was

necessary that the GUI be user-friendly and simple. It is for this reason

that in the early stages of the development cycle, a research was

conducted to assimilate the essential and important features for designing

a good GUI. A strong emphasis has been laid on the conceptualization and

10

prototyping of the interface before delving into the implementation. To

evaluate the initial design, a consultation was carried out with the help of

research papers and feedback. We wanted to make out interface

interactive and simple while maintaining high coding standards.

To develop a user interface for this project we decided to follow available

principles on user interface design and summarize the common criteria

listed in the selected papers we studied. The three main principles which

must be followed to design a good user interface (John D. Gould and

Clayton Lewis, 1985) are:

• Early Focus on Users and Tasks

As a designer, it is important to identify the users of a system and

the scope of the field the software will be used in.

• Empirical Measurement

The use of prototypes and mockups during development phase is a

good practice.

• Iterative Design

The software must be tested and fixed in small cycles as the

development proceeds. The paper mentions that iterative

development cycles.

While these principles are helpful and intuitive, they are not enough to

ensure a good interface design. These guidelines only direct the designer's

attention to the common issues which must be considered. In reality,

however, there is no one approach to user interface design. The user

interface features depend on each individual system and the intended

11

users. A good design maintains a trade-off between several conflicting

features.

3.4 pr Graph-mining Algorithm

Given a query pattern like below, our algorithm will match the pattern with the

entire set of the relational database and output the resulting sub graphs which

match the pattern.

Figure 4 The input and output format of our graph-mining algorithm

In the example shown, the left column indicates the query graph pattern. On the

right, the circled pairs of nodes are the matching sub graphs in the database that

form the output of the pattern recognition algorithm in our application. As we can

observe here, the input does not need to be complete graph but in the actual

database, there may be other relations to this sub graph.

A B

Co-worker

 Input Output

12

Chapter 4

4 Implementation

4.1 Application Setup

The data for our application is kept back on the application server and the

necessary processing for the user interface is done on the web client. The

scripting at the server end is done using PHP. We use an Apache HTTP

server for our application deployment. The interface is developed on

Adobe Flash Builder IDE using a programming language (Action Script),

an XML language (MXML) and the Flex library. The following diagram

provides a better overview of how the application was developed:

Figure 5 Compilation process from Adobe Flash Builder IDE to Flash .swf

Adobe Flash Builder

13

The application can be run in a web browser and hence does not require any

software installation. So far, we have tested the interface to work on the following

browsers: Internet Explorer, Google Chrome, and Mozilla Firefox.

The browser must have Adobe Flash Player installed on it so as to be able to use
our application. The interface communicated with the web server through the
browser and the internal exchange of data is done by using the HTTP Service in
Flex. The components used for developing the interface were obtained from
various Flex libraries.

Figure 6 Architecture diagram of the application

14

4.2 Application Workflow

Figure 7 Sample Query Graph

Let us consider the example attributed query graph shown above. Given

this graph, we want to find all such entities in the database where this

pattern applies. Once the user has created the above query graph in the

interface and specified the relations, he/she can then search for this pattern

in the database.

This can be done by clicking a search button on the left accordion panel.

When the user clicks this button, an ActionScript method is called which

will generate the XML document for the query and invoke the PHP script

on the application server. Each link between two entities in the query

graph represents a relation that the script would query the database for.

For a given set of relations the script would individually query each

relation and take the union of the results obtained to form the final output.

For example, the relations to search for in this graph are A-B, B-C and B-

D. These results are then consolidated using a join algorithm in the PHP

script to form sets of matching data.

A

B

C

D

15

Figure 8 Pairs of relations searched at the backend for forming results

The query data is passed to the application server as an XML file with

parallel structure. The information is passed as node pairs that form a

relation and nodes may be repeated for various relations that it is a part of.

A sample relation tag node is shown here:

Figure 9 Structure of XML file passed from the interface to the backend

<relation>

<type> Founder</type>
<company>

<Tag>Node1</Tag>
<Name> … </Name>
<Type> … </Type>
<Industry>…</Industry>
<Location>Singapore</Location>
<Found_Year> …. </Found_Year>
<Employees>…. </Employees>
……

</company>
<person>
<Tag>Node2</Tag>
<Last_Name>… </Last_Name>
<First_Name>… </First_Name>
<Position>… </Position>
<Age>…</Age>
…….

</person>
</relation>

A B CA B A B B B D

16

4.3 Graphical User Interface

In this project, we mainly focused on two features of the user interface:

presentation and usability. The presentation of the data in an understandable

manner is much more valuable than putting the data onscreen and letting the user

try to decode it. As one of my main contributions to the project was designing the

user interface, I was working extensively to create mock-ups for the interface and

rework on the initial interface design.

4.4 Iterative Development of interface

In order to demonstrate that the interface for this project went through an

evolution cycle before it reached its final design, two particularly significant

designs are included. In the two figures displayed below, the first one is the

original design and the second is the modified final design. While both the

interfaces were developed with the intent of simple and functional design, the

second is much more refined and interactive.

In the figure below, the drawing area provided to the user for the graph is quite

small and much of the screen space is not effectively utilized. The layout seems

quite plain and not very intuitive. The table on the right side of the interface was

meant for displaying the results of the searched patterns.

17

Figure 10 Initial interface of our application

In the later stages of design, much of the similar user interface elements were

consolidated. This helped to produce a cleaner design with little clutter and more

space for the user to draw the graph. We used collapsible accordion panels for

rich interactions.

Figure 11 Final Interface of our application

18

Chapter 5

5 Analysis

5.1 Results and Interpretation

In the initial stages of development, we created a web interface which

communicated with the database through a method called URL passing. In

this method, the query information is appended to the URL string. On the

server, a PHP script simply extracts all the information from the URL uses

the information to form a SQL query. The obtained results were passed

back to the web interface encapsulated in XML format. With a complex

relation graph, there are more than one ways to interpret it and each

different interpretation may lead to a different set of expected results.

Figure 12 Graph query of two persons living at same address

19

In the above example, we have a query graph with a house where two

people live. This graph can be decomposed into two person-house

relations with all the information constraints specified. Our interface will

identify all houses with at least these two people in it and each of the

people must satisfy the criteria mentioned.

With a complex relation graph, there are more than one ways to interpret

it and each different interpretation may lead to a different set of expected

results. For instance, in the example shown earlier there is another

possible interpretation. The example can also be interpreted either as a

house that has exactly these two people living in it and no more. In this

interpretation, we are also concerned with other members living in the

house. Thus, it is evident that the interpretation varies with the focus of a

query. If we are searching for all the people that share a house with a

particular person, instead of querying for a house that accommodates only

these two people, the number of people living in the house would be

irrelevant. In our final implementation, we have used the interpretation

described in example below as it appear more intuitive to us:

Figure 13 A relation graph with 2 persons and 1 Address

The above graph has entities ሼA, B, Cሽ with edges {A, B} and {B, C}. In

our interpretation, A! = C. There may be other entities that are not

included in this graph which have relations with these entities but we are

not concerned with those since that has not been specified in this query.

For example, there may be another person D also living at the same

address, where A! = D and C! = D.

A B C

20

5.2 User Feedback

As we have used graphs as a visualization medium in our project to make

it more user-friendly, it is important to consider whether the interface and

medium used in our project is intuitive and expressive. These features

help us to evaluate the overall usability of our application and help guide

us in the path for future improvements. We asked users to record the

response time for certain graphs and based on their data, below is the

indicator of our application’s performance:

0

20

40

60

80

100

120

1 2 3 4

Performance

Figure 14 Average response time vs. number of edges

We discovered that on the whole, first-time users were quite satisfied with

most of the features and performance of our application and found it easy

to learn and use. The focus of future development in this project should be

based on the areas where users find less satisfying and still use often. This

user feedback exercise helped us to collate qualitative information

regarding further improvisation and a review of the application interface

from a user perspective.

Edges in graph

Average
response
time (sec)

21

5.3 Related Work

We have found that a company named i2 (a provider of intelligence and

investigation management software for defense and security) has done

similar work in the area of financial fraud detection. Their fraud solution

helps analysts to search multiple data sources simultaneously, find hidden

links and entities, and visualize transactions and timelines.

Figure 15 An i2 product to identify key individuals within target networks with

Social Network Analysis

The technique they have applied is social network analysis (SNA). SNA is

an approach where the structure of relations among entities such as

people, organizations, and locations and so on is examined. It emphasizes

22

on the linkages between these nodes and is geared towards uncovering

patterns of interaction in these linkages. The most distinguishing feature

of this technique is the assumption that all people are interdependent. It is

possible to unveil the structure of a network by observing the relational

patterns among entities. Similarly, the same idea can be extended to a

criminal network where a relationship between nodes aids in identification

and detection of patterns in communication.

The study of social networks and linkages can prove particularly helpful

in the credit card industry in combating collaborative fraud circles. SNA

can be utilized to reveal fraud patterns based on the information that links

fraudsters and help to reveal hidden criminal connections. This produces a

more sophisticated fraud detection process. An interactive reporting

system enables investigators and analysts to query data and search for

interesting or unusual connections.

Another related paper on pattern-matching in attributed graphs (H. Tong

et al., 2006) uses an algorithm which searches for inexact matches based a

graph input pattern. The paper describes a method where near-matches are

returned and ranked in order of “goodness”. This is a feature which we

wanted to incorporate in our application as a scoring function. However, it

is still in development at this stage.

23

Chapter 6

6 Summary

6.1 Problems Encountered

In the development phase, we encountered situations where certain

scenarios could be represented as a network on the interface but proved

challenging to query with our scripting algorithm. While we are able to

successfully match positive patterns in the data, finding outliers posed an

enhanced level of difficulty.

For example, if we want to find all the people in Germany who have never

paid taxes, we would need to modify our interface to incorporate negated

relations between nodes.

The outlier detection approach tackles this problem better as it is designed for

identifying unusual patterns in data (Martijn Onderwater, 2010). While such

scenarios are not so challenging to represent visually, to process it in the server

requires significant modifications in our existing algorithm in future.

24

6.2 Limitations

In this section, some of the main limitations of the approach used in this

project are described.

• Inaccuracy in data

If the data collected in the database be incomplete, the accuracy of the

discovered patterns can be compromised. Data cleaning techniques, more

sophisticated statistical methods to identify hidden attributes and their

dependencies, as well as techniques for identifying outliers are therefore

required.

• Presentation of the discovered patterns

In most of the applications, it is important to represent the discovered

patterns in more human understandable form such as visual or graphical

representation. In this project, we did not have sufficient time to develop a

sophisticated representation technique for displaying our results and hence

we used a simple table representation.

25

6.3 Recommendation for future work

In this section, some areas for improvement of our project are described.

• Adaptability for constantly evolving data and knowledge base

In the context of credit card companies, the transactional data collected is

increasing on a daily basis and hence it may render some previously

discovered patterns invalid. Also, the attributes recorded for a given

database may be changing with time. A good improvement would be to

include incremental learning techniques to handle these cases. This may

also be done by allowing a user to input the database to search for patterns

in.

• Adaptability for different kinds of mining from the same data

Different users may be find different kinds of knowledge relevant

depending on the context. Thus, it would be beneficial if the system could

allow for a wider scope of analysis and pattern detection scenarios. The

negation case described earlier would be a significant addition to the

application.

• Ranking of results

For some query graphs there may be many exact matches in SQL. Our

application does not implement any method to rank these results in order

of relevance. Including a scoring function in the application would be a

very helpful improvement to our algorithm.

26

6.4 Conclusion

We have presented an application that addresses the crucial problem of

money laundering by finding relevant patterns of fraud given a large

relational database. The main contributions of this work are:

• Instead of using traditional methods of data monitoring for fraud

detection, we have proposed the application of a pattern-matching

technique. We have explained why our method of approach is more

relevant in the domain of fraud detection and we believe that it could be of

key area of development in the future.

• We have introduced the significance of the problem that are we

concerned with and provided examples to demonstrate how our system

can be useful in this context.

With regard to future work on the system, we believe that system can be

made scalable and improvised based on the suggested criteria so as to be

of better use for the problem at hand. As the process of knowledge

discovery is an interaction between a user and the data mining system, it is

often difficult to ascertain the nature of the discovered information (S.

Bandyopadhyay et al., 2005). Thus, in order to produce relevant and

usable knowledge from a given dataset it is essential that the user be able

to focus their search intelligently.

27

References

[1] K. A. Taipale. Data Mining and Domestic Security: Connecting the Dots to

Make Sense of Data. (2003).

[2] Inokuchi, A., Washio, T., Motoda, H.: Complete Mining of Frequent Patterns

from Graphs: Mining Graph Data. (2003), pp. 321–354.

[3] John D. Gould and Clayton Lewis. Designing for Usability: Key Principles and

What Designers Think. (1985).

[4] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast best-effort

pattern matching in large attributed graphs. In KDD ’07: Proceedings of the 13th

ACM SIGKDD international conference on Knowledge discovery and data

mining, NY, USA, pp. 737–746.

[5] S. Bandyopadhyay, U. Maulik, Lawrence B. Holder and Diane J. Cook.

Advanced Methods for Knowledge Discovery from Complex Data. (2005).

[6] Martijn Onderwater. Detecting unusual user profiles with outlier detection

techniques, September 2010

28

Appendix A

How to install the program

To run the program, you will need to install a local Apache HTTP Server

along with MySQL and phpMyAdmin on your computer. You may install

them individually but we recommend using XAMPP. Alternatively, you

can also deploy the application on your own web server. This application

has been developed and tested in Windows alone, so there may be

potential issues on other operating systems.

How to install a local server:

Please download the XAMPP installer from “http://www.apachefriends.org/en/”

suitable for your operating system. Follow the steps to install XAMPP at a desired

location on your computer.

How to set up the database:

Access the URL "https://localhost/security/xamppsecurity.php" to set the

password for user "root" to "password". This is need to login to the database

admin on the server.

To set up the required database for the application, please navigate to the

URL "https://localhost/phpmyadmin/" and login with username as "root"

and password as "password".

29

Once logged in, create a new database called "searchdatabase" and import

the file "searchdatabase.sql" which is provided in this application folder.

Where to place the application web content:

The main directory for all WWW documents is \xampp\htdocs. Put the files

"connection.php", "pairwise.php" and "initialize.php" in this directory.

Make a new subdirectory for the application (e.g. "Application") inside the

directory "\xampp\htdocs". Copy all the remaining contents from folder “Search”

on the CD to this subdirectory. You can now access and use the application by

navigating to "https://localhost/Application/Search.html".

30

Appendix B

CD Contents

The attached CD contains a working version of the completed application.

It also contains the source code for the program and instructions on how

to install and run the program. The “Final Year Project” folder in the CD

contains the following:

ProjectReport.pdf

A PDF version of this report, viewable in Adobe Reader.

Source Code folder

This folder the complete Adobe Flash Builder project files. These files can

be imported to a new project in the Adobe Flash Builder 4 IDE and used

for further development.

Installation Details Folder

This folder contains all the necessary files to run the application and

instructions on how to deploy it on a web server. The following is a list of

the folders contents in more detail:

Readme.txt

This file contains the same instructions as Appendix A on how to install a

local web server and how to set up the application files on it.

31

Searchdatabase.sql

This is a script file which contains the schema of the database that is used

by the application and the populated data as obtained from our industry

partner.

Search Folder

This folder contains all the files, PHP scripts and images required to run

the application on a local web server.

