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Abstract

Describing and capturing significant differences between two classes of
data is an important data mining and classification research topic. In this
paper, we use emerging patterns to describe these significant differences.
Such a pattern occurs in one class of samples—its “home” class—with a
high frequency but does not exist in the other class, so it can be consid-
ered as a characteristic property of its home class. We call the collection
of all such patterns a space. Beyond the space, there are patterns that
occur in both of the classes or that do not occur in any of the two classes.
Within the space, the most general and most specific patterns bound the
other patterns in a lossless convex way. We decompose the space into a
terrace of pattern plateaus based on their frequency. We use the most
general patterns to construct accurate classifiers. We also use these pat-
terns in the bio-medical domain to suggest treatment plans for adjusting
the expression levels of certain genes so that patients can be cured.

Keywords: space of emerging patterns, convexity, structure decom-
position, medical treatment plan, PCL classifier.



1 Introduction

Patterns are often used in separating different classes of data. For example, the
pattern {Odor = none, Gill _size = broad, Ring number = 1} can be used to
distinguish edible and poisonous mushrooms, because all the three conditions in
this pattern are satisfied by about 64% of 4208 edible mushrooms stored in a data
set in [3], but none of the stored 3916 poisonous mushrooms [3] satisfies these
three conditions. Although this pattern is not 100% occurring in every edible
mushroom, its absence in the whole poisonous class makes this pattern a sharply
contrasting feature between the poisonous and the edible class. As another
example, a gene expression pattern can be used to diagnose whether a pediatric
leukemia patient suffers from the main subtype T-ALL or other subtypes [14,
32]. This pattern contains expression ranges of two genes: {38242 at < 899.95,
38147 at < 4748.5}, where 38242 at and 38147_at denote the expression level
of two genes. This pattern is discriminating, because about 96.4% of T-ALL
patients exhibit such expression ranges on the two genes but all other subtypes
express at different ranges for at least one of the two genes. We call these
patterns emerging patterns [6, 16]. Let us provide below some definitions leading
to the formal definition of emerging patterns.

Consider relational data sets that are described by a fixed number of features
fi, ..., fn. Each feature f; can take values from a domain V;, which can be a
range of numeric real values or a set of categorical values. Each record in any
of the relational data sets is expected to take the form {f; = v1, ..., fn = vn},
where vy € Vi, ..., v, € V,,. We use the term “sample” to refer to such a record.
Note that a numeric feature after discretization is considered as a feature that
takes categorical values—each value v is an interval; and the domain V is a set
of disjoint intervals.

An item is defined as a condition f; 8; v; on a feature f; and its value
v;, where §; € {=,<,>}. The “38242.at < 899.95” and “Odor = none”
above are two examples of an item, respectively for a numeric feature and a
categorical feature. An example of an item for a discretized numeric feature
fi can be “f; = (100.0,200.0]”, meaning 100.0 < f; < 200.0. Given a sample
S ={fi = vi, .., fn = vp} and an item I = f; 6; v}, we write S = I to
mean v; 6; v} holds in the domain V;. We assume that in the real domain,
{=, <, >} have the usual meaning; and that in a categorical domain, = is the
only meaningful operation and has the usual meaning. We further say that S
contains I, or I occurs in S, if S |= 1.

A pattern P is defined as a set of items {f;, i, vi,, --., fi, 0, Vi, }, where
firs -, fi,, are distinct. Such a pattern can be viewed as a conjunctive condition.
We write S |= P if S = f;; 6, v;; for each f;, 0;, v;;, € P. We say a sample S
contains a pattern P, or P “occurs” in S, if S = P.

Given a set of samples 4 which is also called a data set, the occurrence
count(P) of a pattern P in A is the number of samples in A that contain P,
and hence

count(P) =|{S € A| S |z P}|



The support support™(P) of a pattern P in A is the proportion of samples in
A that contain P, and hence

count™ (P
support™(P) = T()
Given two data sets A and B, the growth rate growthA%B (P) of a pattern P
from A to B is defined as the ratio of the support of P in B to that of P in A,
and hence

support®(P)

rowth*~B(P) =
g (P) support™(P)

For two classes, a pattern can have a very low or even zero occurrence in one
class and yet a high occurrence in the other class. Therefore, the growth rate is
sometimes a finite number, and is sometimes infinite.

In this paper, our study is focused on those patterns whose growth rate is
infinite. We define them as emerging patterns. More formally,

Definition 1.1 Given two data sets A and B, a pattern P is an emerging pat-
tern from A to B if growth*~B(P) = 0o and S = P for some S € B. We write
EPA>B to denote the set of all emerging patterns from A to B.

That is, an emerging pattern—EP for short—is a pattern whose occurrence in
one class is non-zero but in the other class is zero. The class in which an EP has
a non-zero occurrence is called the EP’s home class. The other class in which
the EP has zero occurrence is called the EP’s counterpart class. We often use
the phrase “an EP of class A” or its equivalent to mean “an EP whose home
class is A.”

Given two non-empty classes of samples, we are interested in the following
problems:

e What patterns are the most general and most specific EPs? Given patterns
P and P', we write P = P'if S = P whenever S |= P’ for every possible
sample S. The pattern P is more general than the pattern P' if P = P'. In
this case, P’ is also said to be more specific than P. In what follows unless
specially specifies, we assume that all the features are of categorical values
(including discretized values), and hence P = P’ if and only if P C P’
for any patterns P and P'.

e Can we derive other emerging patterns directly from the most general
and most specific EPs? In other words, can the whole space be concisely
represented using only the most general and most specific EPs in a lossless
way"?

e Is the space of emerging patterns organizable?

e How to make effective use of emerging patterns to solve real-world appli-
cations?



We organize our pursuit of these problems as follows. We begin in Section 2
with a discussion on a method that can be used to efficiently discover most
general EPs. Such a method is important because the most general EPs are
typically EPs that have the highest occurrence in their home class, and the
discovery of these patterns is expensive. We prove that EP spaces are convex
spaces. Therefore, the discovery of the most general and specific patterns can
be viewed as the discovery of all the patterns since the other patterns can
be directly derived from them. Furthermore, we do not need to exhaustively
enumerate all EPs to discover the most general patterns.

Then, to organize the patterns in a space, we decompose in Section 3 the
space into a series of sub-spaces, each called a plateau space, consisting of pat-
terns with the same high support. After sorting these sub-spaces, we can see a
terrace of pattern plateaus. Outside the space, some patterns may be interest-
ing as well. In particular, we discuss in Section 4 patterns that are just one-step
away from the bounds of the EP spaces.

After the theoretical investigations above into the structural geography of
the space of emerging patterns, we turn to describe the practical use of emerging
patterns in the bio-medical domain. We suggest in Section 5 a treatment plan to
cure cancer disease cells based on the most general emerging patterns discovered
from gene expression profiling data. In this suggestion, the emerging patterns
are interpreted as common characteristics of the cancer cells or the normal cells.
Let the disease characteristics disappear from a cancer cell and let the normal
characteristics appear in it, then this cancer cell would be converted into a
normal one, similar to the idea of using gene therapies [29, 31] to cure cancer
patients. This can be done by creating a treatment plan that adjusts some
genes’ expression level.

Finally, we also introduce in Section 6 a new classifier, PCL, which is a
shorthand for Prediction by Collective Likelihoods of emerging patterns. This
classifier also makes use of the most general emerging patterns. Its perfor-
mance is comparable to the best of the classical classification algorithms such
as C4.5 [24], Bagging [4], Boosting [8], SVM [5], and k-nearest neighbour on a
wide range of bio-medical data sets.

2 The Most General and Most Specific EPs

Suppose P is an emerging pattern, then |P| > 1. That is, an emerging pattern
must contain at least one feature. The addition of any items to or the removal
of any items from X, generating a proper superset or a proper subset of P
respectively, may or may not result in a new EP. The reason is that a proper
subset of P may occur in P’s counterpart class, and a proper superset of P may
not occur in P’s home class again. So the space of emerging patterns can have
interesting boundaries. In fact, this space satisfies convexity.

Proposition 2.1 Given two data sets A and B, the collection of all EPs with
A as their home class form a convex space. That is, for all emerging patterns



X € EPB7A and Y € EPB~4 and for each Z such that X= Z=Y, it is the
case that Z is also an EP of A.

The full proof for this proposition can be found in [16] for the case of all
features taking categorical values. We also claim that this proposition still holds
even when not all features are of categorical values. The proof for the latter
case is similar to that of the former case. We omit it here.

It is known that a convex pattern space C can be concisely represented by
a border (£, R}, where £ and R are two subsets of patterns of C, such that

e [ is anti-chain, R is anti-chain,

e each X € [ is more general than some Y € R,

e each Y € R is more specific than some X € £, and
e C={Z|3XelL,AYER, X =>Z=>Y}.

In fact, £ are the most general patterns in C, and R the most specific patterns
in C. We also write [£,R] for C. Note that (£, R) and [£,R] are two different
notions. The former is the border of C, but the latter is C itself.
Therefore, the pattern space EPB~4 can be concisely represented by a
border
(L,R)

where patterns in £ are the most general emerging patterns, and patterns in R
are the most specific emerging patterns. We call all these EPs boundary EPs.

All proper subsets of any of the most general emerging patterns must occur
in both classes with non-zero occurrence. So, the most general EPs are the EPs
with the highest occurrences. Next, we describe how to efficiently discover the
border of an EP space, especially the most general EPs, i.e. the patterns in L.

Let A and B be two data sets described by n features and each feature be
drawn from a set of i categorical values. Then there are 2"*! possible patterns
in A and B. Hence naive methods to extract all emerging patterns and then
boundary EPs would be too expensive. More efficient methods for extracting
only boundary emerging patterns are therefore crucial to the practical uses
of emerging patterns. Here, we discuss an efficient border-based algorithm to
discover the border of an EP space when the input data sets are described solely
by features of categorical values.

Proposition 2.2 Let A and B be two data sets. Suppose A and B have no
duplicate and are described by the same features of categorical values. Then

EPP=4 ds given by [{{}}, Al - [{{}}, B].

Observe that [{{}}, A] is the set of all patterns that have a non-zero support
in A, and [{{}}, B] is the set of all patterns that have a non-zero support in B.
So, the set difference produces exactly EPBA,

Having rewritten emerging patterns to this border formulation, we can de-
rive a more efficient approach to discovering the left boundary EPs in £. Let



{41,...,4A,} C Abesamples of A that donot occurin B. Let B = {B4y,...,Bn}.

Then
[{{}}, Al - {{}},B]
= [ A And] = [{{}} {B1, - B}
= Ui ({{H{43] - {3} ABy, -+, Bm}])
= [£,{A41,..., A }]
where

n

E:U(MIN{{sl,...,sm} | s; € A; —Bj,1<j<m})

K2

and MiIN(S) denotes the collection of the most general patterns for a given
pattern collection S.

The following proposition can be iteratively used to prove the correctness of
the above algorithm.

Proposition 2.3 Let D = [{{}},{U}] = [{{}},{S1,---,Sm}]- Let S = {{s1,
vy Sm} | 8i €U —S;, 1 <i<m}. Then

1. SCD;
2. for eachY € D, thereis X € S and X C Y; and
3. MiN(D) = Min(S).

Proof. To settle Part 1 that S C D, we proceed as follows. Let P = {sq,
.y Sm} be in S. By definition, for each s; € P, it is the case that s; € U.
Hence, P € [{{}},{U}]- Also by definition, for each s; € P, it is the case that
si ¢ Si- Hence, P & [{{}},{S1,---,9m}]. Therefore, P € D = [{{}},{U}] -
[{{}}7 {Sly s 7Sm}] Thus7 N g D.

To settle Part 2 that each Y € D is a superset of some X € S, we proceed
as follows. Let Y be in D. Then by definition of D, Y ¢ Si, ..., Y ¢ S,,.
Then there are s1 € Y, ..., s, € Y such that s; € Si, ..., and s,,, € S, Let
X ={s1,..,8m}. Then X CY and, by definition of S, X isin S .

To settle Part 3, we proceed by first proving MiN(D) C MIN(S) and then
proving MIN(S) C MiN(D). We now prove MIN(D) C MIN(S). Suppose Mp €
Min(D). By Part 2, there exists X € S such that X C Mp. By Part 1, X € D.
Since Mp is most general in D, X = Mp. So Mp € §. We now prove that
Mp € MIN(S). Assume Mp & MiN(S). Then there exists Z € MiN(S) such that
Z C Mp. By Part 1, Z € D. Since Mp € MiN(D), Z C Mp cannot be true, a
contradiction.

We next prove Min(S) C Min(D). Suppose Ms € Min(S). By Part 1,
Mg € D. Assume that Mg ¢ MIN(D). Then there exists some ¥ € Min(D)
such that Y C Mg. By Part 2, there exists some Y’ € S such that Y’ C Y. So,
Y' C Mg. But this contradicts the assumption that Mg € MiN(S). Therefore
Mg € MiN(D). This completes the proof. | |



We note that

L = MIN(U?{{Sl,...,Sm}|3j€Ai—Bj,].Sjsm}
= U?(MIN{{Sl,...,Sm} | s € A; —Bj,l <j< m})

See the proof in [16]. So, using Proposition 2.3 iteratively, we can prove the
correctness of our algorithm to discover the border of an EP space.

Example 2.4 Consider [{{}}, {{1,2,3, 4}}]-[{{}}, {{2,3}, {24}, {3,4}}]. For
convenience of writing, we use 1234 as a shorthand to represent {1,2,3,4},
similarly for representing other sets. Let U = 1234, S; = 23, S; = 24, and
S3 = 34. Note that U —S; = 14,U — Sy = 13,U — S3 = 12. By Proposition 2.3,

MiN([{{}}, {1234}] — [{{}}, {23, 24,34}])
= Mi~({111,112,131,132,411,412,431,432})

Min({1,12,13,123,14,124,134, 234})
{1,234}

Observe that 111 is a bag (multi-set) with three occurrences of 1. So, [{{}}, {1234}]—
[{{}},{23,24,34}] = [{1, 234}, {1234}].

We can see that this algorithm is much more efficient to find the left bound
of the border than a naive algorithm of enumerating all subsets of 1234, 23, 24,
and 34.

More discussions on the efficiency and refinements of the idea above to dis-
cover the most general emerging patterns can be found in [6, 16, 33], where
border-based algorithms and constraint-based algorithms are used. In particu-
lar, we note the following main points from these papers:

1. To handle features on the domain of real numeric values, there is an extra,
preparation step of discretizing such feature values. This discretization
step can be performed using an entropy method [7].

2. To handle data of very high dimension, there is an extra preparation step of
selecting top-ranked features. This feature selection step can be performed
using the entropy method [7], the x? method [18], etc. Usually, we select
20 top-ranked features as used in this paper. We do not recommend any
numbers that are larger than 100 because the EP discovery algorithm
would produce very large number of patterns.

3. To discover the most general emerging patterns from the (discretized)
data, it is efficient to use border-based algorithms based on the idea pre-
sented above.

3 A Terrace of Pattern Plateaus: Structural De-
composition of EP Spaces

The support of an emerging pattern in its home class must be one of these
values {1/m, 2/m, ..., m/m}, where m is the number of samples in this emerging



pattern’s home class. Different emerging patterns may have the same occurrence
in their home class. Based on this idea, we organize a space of emerging patterns
and partition the space into a series of sub-spaces. First, we define plateau EPs
and plateau spaces:

Definition 3.1 Let two data sets A and B described by the same features be
given. Let v be a real number such that 0 < v < 1. Then PP~4A = {P €
EPB=A | support*(P) = v} is called a plateau space at significance level v
from B to A. The emerging patterns P € PB>A are called plateau EPs at
significance level v from B to A. If A and B are understood or are unimportant,
we suppress them in our notations and simply say P,-space. If v is understood
or is unimportant, we suppress it and simply say P-space.

All patterns in a P,-space are at the same significance level in terms of their
occurrence in both their home class and counterpart class—the occurrence in
their counterpart class is zero by definition. Using P,-spaces, we can rewrite
the space of EPs from B to A as the union:

EPB—).A — U PE—)A

12 &}
ve{ iy a4l

Note that

1. some P,-spaces are empty—i.e., there does not exist any emerging pattern
at the significance level v; and

2. every emerging pattern belongs to one and only one of these P,-spaces—
i.e., no overlapping exists between any two of these P,-spaces.

Thus we can partition an EP space into a series of non-overlapping plateau
spaces. Each plateau space matches a particular support or significance level v.
These plateau spaces can be sorted into a descending order according to their
significance level. Then such a structural decomposition of an EP space can be
viewed as a terrace of plateau spaces.

Next we prove that all P,-spaces satisfy the nice property of convexity. This
means that a P,-space can be succinctly represented by its most general and
most specific patterns.

Theorem 3.2 Given two classes of data A and B described by the same set of
features, every non-empty PB=A_space is a convex space.

Proof. By definition, a PBA-space is the set of all plateau EPs with support
level v in their home class .A. Suppose two patterns X € P5~4 and Z € pE—4
satisfy X= Z. Then to prove the convexity of Pf"A, we need to show that
Y € PB7A whenever X= Y= Z. We proceed by observing the followings:

1. By definition of P74, X does not occur in any sample in B. Since
X=Y, it is the case that Y does not occur in any sample in B.



2. By definition of P24, support(Z) = v. Since Y= Z, it is the case that
support(Y) > v.

3. Since X € P24 and Z € PB4, we have support™(X) = support*(Z) =
v. Furthermore, support*(X) > support*(Y) > support”(Z) because
X= Y= Z. So, support*(Y) = v.

Combining the first two points, we have Y is an EP of \A. By the third point,
we conclude Y € PB4, Therefore, the P54-space is a convex space. |

As a plateau space P54 is a convex space, it can be concisely represented by
a border consisting of two bounds. Suppose an EP space, for example EPBA,
consists of p number of non-empty plateau spaces, then

p
EPP~A = | )L, Ri]
i=1

where (£;,R;) (i = 1,---,p) is the border of the ith of the p plateau spaces.
So, once the boundary EPs of the p plateau spaces are known, all other EPs
in EPB>4 can be derived immediately. We call this plateau sub-space border
representation for an EP space.

Having this representation, all patterns in an EP space enriched with their
support values in their home class can be derived immediately without access-
ing the two data sets A and B again. This is an advantage over the one-border
representation of EPB~4 = [£,R]. This is because by the one-border represen-
tation, the support of the represented EPs is not derivable if without accessing
the two data sets .4 and B. We claim that closed patterns [22] and key pat-
terns [2] can be used to efficiently discover the borders of plateau sub-spaces of
an EP space.

Next, let’s briefly discuss the relation of EP spaces with version spaces [20,
12] and disjunctive version spaces [25]. Suppose an EP space, denoted [£,R],
consists of p number of non-empty plateau spaces, denoted [L1,R1], [£2, R2],
wsy [£p, Rp] in a descending order of their significance level. Then, [£1,Rq], the
non-empty plateau space with the highest support, is a version space [20, 12] if
these EPs have the full 100% support level in their home class. In this sense,
our EP spaces are an important extension to the concept of version spaces. This
extension is a result of relaxing the strong consistency requirement of version
spaces. We found that the support level of the EPs in [£1,R1] is often less
than 100%. So, our extension is useful. Disjunctive version spaces [25] are also
an extension to the original concept of version spaces. However, unlike us, the
most general patterns and how to efficiently discover them are not discussed in
the work of [25].

4 Go One Step Beyond the Bounds

When we go one step outside the most specific emerging patterns of EP spaces,
there are patterns that do not have any occurrence in any of the two classes.



We are not interested in these patterns. When we go one step outside the most
general emerging patterns of EP spaces, there are patterns that have non-zero
support in both of the two classes. Therefore, all these proper subsets of the
most general EPs have a finite support growth rate between the two classes.
It is interesting to see how these subsets change their support between the two
classes, and which of them change at the highest ratio. For this purpose, we
define shadow patterns:

Definition 4.1 Let P be one of the most general EPs in EPB=A, Then all
immediate subsets of P are called shadow patterns of P.

Shadow patterns can be used to measure the interestingness of the most
general EPs. Given a most general EP P, if the growth rate of all its shadow
patterns approach oo, then the existence of this most general EP is reasonable.
This is because the ezpectedness of P being a most general EP is large. Oth-
erwise if the growth-rates of the shadow patterns are on average around small
numbers like 1 or 2, then the pattern P is adversely interesting. This is because
the expectedness of P being a most general EP is small—the existence of this
most general EP is “unexpected.” This conflict may reveal some new insights
into the correlation of the features.

Let us discuss the expectedness of being a most general EP. The expected-
ness of a most general EP can be roughly estimated by examining the shadow
patterns of this EP. Given a class A of positive samples and a class B of negative
samples, suppose P is a most general EP of the positive class, and |P| > 2. (If
|P| = 1, then its one and only one shadow pattern is {}. The empty set has
100% support in both classes. This is a trial case.) Denote P = {z1,22,---, 4},
g = |P|. Rewrite P as {z;} U A;, where A; = P — {z;}, 1 <i < gq. So, A; are
all shadow patterns of P. By definition, A; have non-zero occurrence in the
negative class, unlike its superset X, a most general EP, whose occurrence in
the negative class is zero.

Suppose support®(A;) = v;, 1 <i < g, and v1 > vy > --- > v, > 0. So,
being from a non-EP to become an EP, the shadow pattern A; decreases its
support in B most, compared to other A;’s. Therefore, if support®(A;) is close
to zero, then the expectedness of P = A; U {z1} being an EP becomes large.
Then the existence of P as an EP is reasonable. However, if support®(A;) = v;
is not close to zero—say v = 20%—then its superset P should have a non-zero
occurrence in B as well because P is expanded from A; by adding only one item.
Therefore, the expectedness of P being an EP is small. If P is indeed a most
general EP, this happening is therefore adversely interesting.

We next present an example to show a plateau space with the highest support
level in an EP space, and also show the shadow patterns of one of the most
general EPs.

Example 4.2 Two classes, N' and D, consists of 22 and 40 samples respec-
tively. The samples are described by 35 features, each feature has two categorical
values. (More details about this data set are presented in the next section.) The
plateau space with the highest support level in EPDP=N g interesting. FEvery
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patterns in this plateau space has the same support level of 77.27% in N'. The
left bound—i.e., the most general EPs—of this plateau space consists of 27 EPs.
They (only three presented) are

£= { {6,57,69}
{6,25,57}

{25,33,37,41,43,57, 59, 69}
}

The righ bound—i.e., the most specific EPs of this plateau space—is

R= { {6,13,25,29,32,35,41,43,45,47,57,65,68,69}
{13,25,29,32, 35,37, 41,43, 45, 47, 57, 59, 65, 68, 69}
{13,25,29,33, 35,37, 41,43, 45,47, 57, 59, 65, 68, 69}

}

Observe that the left boundary pattern {6,57,69} can be expanded, without loss
of any support significance, into a right boundary pattern {6, 13, 25, 29, 32, 35,
41, 43, 45, 47, 57, 65, 68, 69}.

The most general EP {6,57,69} has three shadow patterns. Their occurrence
in N and in D are as follows:

Patterns Occurrence in N Occurrence in D Growth
{6,57,69} 17 0 00
{57,69} 20 9 2.2
{6,69} 19 2 9.5
{6,57} 17 1 17.0

Observe that the growth rate of these three shadow patterns varies remark-
ablely. We can also see that the item 6 is crucial in constructing the EP
{6,57,69}. Without it, the resulting pattern {57,69} has a growth rate of only
2.2. But for the other two shadow patterns which contain the item 6, their
growth rates are close to the mazximal finite rates.

5 An EP-based Medical Treatment Plan

Over the last three sections, we have presented several theoretical results and
some discussions about emerging patterns. In this and next two sections, we
discuss how to apply the concept of emerging patterns to solve real-world prob-
lems such as medical diagnosis, treatment planning, and classification. Through
the analysis on the structure of EP spaces, we have understood that the most
general EPs are the most important patterns. They are the boundary between
EPs and non-EPs. They distinguish EPs with high support from those with low
support. Also, the most general EPs are bases to construct plateau spaces and
bases to generate shadow patterns. So, in this paper, we mainly introduce the
use of the most general emerging patterns.
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This section explores the use of the most general patterns for medical treat-
ment planning. This treatment planning uses the most general emerging pat-
terns discovered from gene expression profiles of normal and cancer cells to
convert cancer cells into normal ones. Our idea is similar to the idea of using
gene therapy [29, 31] to cure cancer diseases. By gene therapy, viral vectors
(vehicles) or non-viral vectors can ferry normal genetic material into a disease
cell to replace the abnormal genes such that the expression of this gene goes to
normal level.

DNA microarray gene expression profiling is a breakthrough technology in
molecular biology that can simultaneously measure expression levels of thou-
sands or even tens of thousands of genes. Through the analysis and under-
standing of the resulting data, many studies have discovered effective biological
markers for accurate diagnosis, outcome prediction, and disease subtype clas-
sification; and have found effective mechanisms towards the re-construction of
gene networks and the identification of new genes in a pathway [9, 32, 26, 10, 23,
30, 28]. Gene expression profiling data are usually represented in a relational
format where every feature—wiz. a gene—is of continuous values.

Based on the concept of emerging patterns, we have two intuitions behind
an approach to treatment planning. One is that top-ranked emerging patterns
in the disease class can be viewed as biological characteristics of disease cells.
To convert a disease cell into a normal one, these biological characteristics must
be made to disappear from this disease cell. The other intuition is that top-
ranked emerging patterns in the normal cell class can be viewed as biological
characteristics of normal cells. A disease cell after conversion should contain
many of these characteristics of the normal class. The operation to let emerging
patterns contained in a disease cell disappear and to let this disease cell contain
normal emerging patterns can be conducted by modulating the gene expression
levels of specific genes such that some of them are up-regulated and some are
down-regulated. Though the realization and implementation of this treatment
plan could be very difficult, our idea is in light of gene therapies [29, 31] as
mentioned above.

Next we formulate this problem. Suppose we have a class of D of gene
expression profiles of disease cells and a class of N of gene expression profiles
of normal cells. First, we discover the most general emerging patterns for the
normal and disease class respectively. Denote the top k emerging patterns of D
as EPP, EPP, ..., EPP. Denote the top k emerging patterns of N as EP{,
EPQN s e EP,gv . Note that a cell sample X € D usually does not contain
all these EPP, ..., EPP, unless the support of all these emerging patterns is
100% in the disease class. That is, EPP, EPP, ..., EPP are only common
characteristics of the class; any specific disease cells may contain only some of
them.

In other words, given a sample gene expression profile T' = {t1, ..., t,} € D,
the problem is how to change t1, ..., t,, such that the resulting T" satisfies

1. T' £ EPP for each i =1, ..., k; and
2. T = EPiN for some i =1, ..., k.
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We use a colon tumor gene expression profiling data set [1] to demonstrate
how to implement this treatment plan. This colon tumor dataset is described
by 2000 genes (features), consisting of 22 normal samples and 40 colon tumor
samples. Using the entropy measure [7] to discretize the data, only 135 of the
2000 genes are partitioned, and each of them has 2 intervals. The remaining
1865 genes are considered unimportant and eliminated by the method. We
further concentrate on the 35 genes with the lowest entropy measure amongst
the 135 genes for an easy platform where a small number of good diagnostic
indicators are concentrated. So, the reduced dataset have only 35 features, each
of them has two discretized values. Therefore, there are 70 items in this data
set in total, as listed in Figure 1. Each item refers to an expression interval of
the corresponding gene. For example, the first item means M26338 < 59.83 and
the second item means M26383 > 59.83, and so on. Here, M26383 is a gene
name.

Next, we use the efficient border-based algorithm [6, 16] to discover the
most general emerging patterns. The emerging patterns are thus combinations
of intervals of gene expression levels of these relevant genes. A total of 10548
emerging patterns are found, 9540 emerging patterns for the normal class and
1008 emerging patterns for the tumour class. The top several tens of the normal
class emerging patterns contain about 8 genes each and can reach a support of
77.27%, while many tumour class emerging patterns can reach a support of
around 65%. Some top-ranked emerging patterns are presented in Figure 2.
Note that the numbers in the emerging patterns, such as 2 or 10 in {2,10}
of Figure 2, refer to an item in Figure 1. Hence, {2,10} denotes the pattern
{M26383 > 59.83, H08393 > 84.87}.

We use a cancer cell (T1) of the colon tumor dataset as an example to show
how a tumor cell is converted into a normal one. Recall the first emerging
pattern {25,33,37,41,43,57,59,69} in Figure 2 is a common property of the
normal cells. The eight genes involved in this emerging pattern are M16937,
H51015, R10066, T57619, R84411, T47377, X53586, and U09587. Let us list
the expression profile of these eight genes in T1:

genes expression levels in T1

M16937 369.92
H51015 137.39
R10066 354.97
T57619 1926.39
R84411 798.28
T47377 662.06
X53586 136.09
U09587 672.20

However, 77.27%—17 out of 22 cases—of the normal cells have the following
expression intervals for these 8 genes:

13



Our  accession cutting

list number points Name

1,2 M26383 59.83 monocyte-derived neutrophil-activating ...

3,4 M63391 1696.22 Human desmin gene

5,6 R87126 379.38 myosin heavy chain, nonmuscle (Gallus gallus)

7,8 M76378  842.30  Human cysteine-rich protein (CRP) gene, ...

9,10  H08393 84.87 Collagen alpha 2(XI) chain (Homo sapiens)

11,12 X12671 229.99 heterogeneous nuclear ribonucleoprotein core ...
13,14 R36977 274.96  P03001 TRANSCRIPTION FACTOR IITIA

15,16  J02854 735.80 Myosin regulatory light chain 2, smooth muscle ...
17,18 M22382 447.04 Mitochondrial matrix protein P1 precursor

19,20 J05032 88.90 Human aspartyl-tRNA synthetase alpha-2 subunit
21,22 MT76378 1048.37  cysteine-rich protein (CRP) gene, exons 5 and 6
23,24 M76378 1136.74  cysteine-rich protein (CRP) gene, exons 5 and 6
25,26  M16937 390.44 Human homeo box ¢l protein mRNA

27,28 H40095 400.03 Macrophage migration inhibitory factor (Human)
29,30 U30825 288.99 Human splicing factor SRp30c mRNA

31,32 H43887 334.01 Complement Factor D Precursor

33,34 H51015 84.19 Proto-oncogene DBL Precursor

35,36 X57206 417.30 1D-myo-inositol-trisphosphate 3-kinase B isoenzyme
37,38 R10066 494.17  PROHIBITIN (Homo sapiens)

39,40 T96873 75.42 Hypothetical protein in TRPE 3’region ...

41,42 T57619 2597.85 408 ribosomal protein S6 (Nicotiana tabacum)
43,44 R84411 735.57 Small nuclear ribonucleoprotein assoc. protein ...
45,46 U21090 232.74 Human DNA polymerase delta small subunit ...
47,48 U32519 87.58 Human GAP SH3 binding protein mRNA

49,50 T71025 1695.98 Human (HUMAN)

51,52 T92451 845.7 Tropomyosin, fibroblast and epithelial muscle-type
53,54 U09564 120.38 Human serine kinase mRNA

55,56 H40560 913.77  THIOREDOXIN (HUMAN)

57,568  T47377 629.44 S-100P PROTEIN (HUMAN)

59,60 X53586 121.91 Human mRNA for integrin alpha 6

61,62 U25138 186.19 Human MaxiK potassium channel beta ...

63,64 T60155 1798.65 ACTIN, AORTIC SMOOTH MUSCLE (HUMAN)
65,66 HbH5758 1453.15 ALPHA ENOLASE (HUMAN)

67,68 750753 196.12 H.sapiens mRNA for GCAP-II/uroguanylin ...
69,70 U09587 486.17 Human glycyl-tRNA synthetase mRNA

Figure 1: The 35 top-ranked genes by the entropy measure. The index numbers
in the first column are used to refer to the two expression intervals of the corre-
sponding genes. For example, the index 1 means M26338 < 59.83 and the index
2 means M26383 > 59.83. Here 59.83 is the cutting point for the expression
level of this gene.
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Count & Support (%) Count & Support (%)

Emerging patterns in normal tissues in cancer tissues
{25, 33,37,41, 43,57, 59,69} 17(77.27%) 0

{25, 33,37,41, 43,47, 57,69} 17(77.27%) 0

{29, 33, 35, 37,41, 43, 57,69} 17(77.27%) 0

{29, 33,37,41,43,47, 57,69} 17(77.27%) 0

{29, 33,37, 41, 43,57, 59, 69} 17(77.27%) 0
{2,10} 0 28 (70.00%)
{10,61} 0 27 (67.50%)
{10, 20} 0 27 (67.50%)
{3,10} 0 27 (67.50%)
{10,21} 0 27 (67.50%)

Figure 2: The top 5 emerging patterns from the normal class and the top 5
emerging patterns from the disease class, in a descending order respectively,
sorted by their support in their home class.

genes expression interval

M16937 <390.44
H51015 <84.19
R10066 <494.17
T57619 <2597.85
R84411 <735.57
T47377 <629.44
X53586 <121.91
U09587 <486.17

Comparing T1’s gene expression levels with the intervals of the normal cells, we
see that 5 of the 8 genes—H51015, R84411, T47377, X53586, and U09587—of
the cancer cell T1 behave in a different way from those the 22 normal cells
commonly express. However, the remaining 3 genes of T1 are in the same ex-
pression range as most of the normal cells. So, if the 5 genes of T1 can be
down regulated to scale below those cutting points, then this adjusted can-
cer cell will have a common property of the normal cells. This is because
{25,33,37,41,43,57,59,69} is an emerging pattern which does not occur in
the cancer cells. This idea is at the core of our suggestion for this treatment
plan.

Interestingly, the expression change of the 5 genes in T1 leads to a chain of
other changes. These include the change that 9 extra top-ten EPs of normal
cells are contained in the adjusted T1. So all top-ten EPs of normal cells are
contained in T1 if the 5 genes’ expression level are adjusted. As the average
number of top-ten EPs contained in a normal cell is 7, the changed T1 cell
will now be considered as a cell that has the most important characteristics of
normal cells. So far we have adjusted only 5 genes’ expression level.

Note that in this example, we set the parameter k£ as 10. That is, any of
the top 10 EPs from the disease class should disappear from a disease cell, and
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some of the top 10 EPs from the normal class should be contained in a disease
cell after adjustments.

The subsequent step is to eliminate those common properties of the cancer
cells that are contained in T1. By adjusting the expression level of two other
genes, M26383 and H08393, the top-ten EPs of the cancer cells all disappear
from T1. According to our colon tumor dataset, the average number of top-ten
EPs of the cancer cells contained in a cancer cell is 6. Therefore, T1 is converted
into a normal cell as it is now holding the common properties of the normal cells
and does not include the common properties of the cancer cells.

By this method, all the other 39 cancer cells can be converted into normal
ones after adjusting the expression levels of 10 genes or so, possibly different
genes from person to person. We conjecture that this personalized treatment
plan is effective if the expression of some particular genes can be modulated by
suitable means.

We discuss a validation of this idea. The “adjustments” we made to the 40
colon tumour cells were based on the emerging patterns in the manner described
above. If these adjustments had indeed converted the colon tumour cells into
normal cells, then any good classifier that could distinguish normal vs colon
tumour cells on the basis of gene expression profiles would classify our adjusted
cells as normal cells. So, we established a SVM model using the original entire
22 normal plus 40 cancer cells as training data. The code for constructing
this SVM model is available at http://www.cs.waikato.ac.nz/ml/weka. The
prediction result is that all of the adjusted cells were predicted as normal cells.
Although our “therapy” was not applied to the real treatment of a patient,
the prediction result by the SVM model partially demonstrates the potential
biological significance of our proposal. The same process can be directly applied
to other types of tumors.

6 PCL: Prediction by Collective Likelihoods of
Emerging Patterns

We have seen the usefulness of the most general emerging patterns in the treat-
ment plan. In this section, we introduce a classifier that also uses the most
general emerging patterns as its basis. The classifier is named PCL, which is
originally proposed in our previous works [17, 14]. In this paper, we revise the
classification scores so that PCL is more suitable for assessing the confidence
of decision as discussed in [15]. We also report a comprehensive performance
comparison between the PCL and C4.5 classifiers using both low-dimensional
and high-dimensional bio-medical data sets. We begin with a description of
PCL, followed by the description of the data sets and the performance report.

6.1 PCL

Given two training datasets A and B and a test sample T, the first phase of
the PCL classifier is to discover the most general EPs of A and B. Denote the
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most general EPs of A as EP{, EPs, ..., EP, in descending order of their
support. Similarly, denote the most general EPs of B as EPP, EP§, ..., EPP,
also in descending order of their support.
Suppose the test sample T contains the following EPs of A:
EPA EPA. ...

117 22 7

,EPA

g

where i; < iy < --- < i, <1, and the following EPs of B:

B B B
EP;,EP;,---,EP;,
where j; < jo <--- < jy <J.
The next step is to calculate two scores for predicting the class label of T.
Suppose we use k (k < i and k < j) top-ranked EPs of A and B. Then we
define the score of T in the A class as

score(T) =
m=1

support (EPZ) / )

support*(EPA)

and similarly the score in the B class as

k B N
support® (EP;
scoreB(T) = E : pp—(h)/k

B(Ep PN
=, support®(EP])

If scoreA(T) > score®(T), then T is predicted as the class of A. Otherwise, it
is predicted as the class of B.

Next we demonstrate how the classification scores are computed. Suppose
k = 5, and the support of the 5 top-ranked EPs of the class 4 are sorted as
90% (EP{Y), 85% (EPs'), 80% (EP3‘), 75% (EP;}), and 70% (EP:*). Assume
the test sample T contains EP{* (90%), EPs* (80%), EP (70%), EP# (40%),
and EPg' (35%). Then

9 8 70 40 35

A

Ty= (29, D 2 0 5,
score”™(T) (90+85+80+75+70>/5 0.75

Note that

< support*(EP)
= support(EP)
supportB(EPP
< pp—B(]m) <1, 0<scoreB(T) <1
support® (EPEB)
All these values or scores appear to be like likelihood. This is a reason we use
“collective likelihood” to name our classifier. These likelihoods can be under-
stood as the probability of how many significant emerging patterns are contained
in a test sample.

<1, 0< score(T) <1,
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Let us explain when score*(T) = 1 and when score®(T) is 0. The score
score*(T) = 1 if and only if the test sample T satisfies all k top-ranked EPs
in A: EPA, EP{, ..., EP,;“. The other score score®(T) = 0 if and only if
the test sample does not satisfy anyone of the k top-ranked EPs in B. When
such scores occur, the prediction is highly confident. If the two scores are close
to each other, then the prediction should be taken carefully. But the tie-score
cases rarely occur in our analyses.

PCL can be extended to apply to applications with multiple classes. Suppose
we have C' (C > 2) classes of data, denoted D1, D5, -+, D¢. In the first phase,
PCL discovers C' groups of most general EPs. The cth (1 < ¢ < C) group is
for D, (versus Ujx.D;). (The feature selection and discretization can be done
as the same as dealing with typical two-class data.) Denote the ranked EPs of
D, as,

EP{),EP",... EPY,
in a descending order of their support.

Suppose a test sample T' contain the following EPs of D,:

EP) EP,... EPY
? Jz ?

J1 7?0 J2 ?

where j; < jo < --- < jz < .. The next step is to calculate ¢ scores for
predicting the class label of T. Suppose we use k (k < i.) top-ranked EPs.
Then the score of T in the D, class is defined as

k. supportPe (EPJ-(:L)) ;
=1 support®(EPY)) [

scoreP<(T) =

The class with the highest score is predicted as the class of T. We use the
sizes of D, 1 < ¢ < C, to break a tie.

6.2 Data Sets Description

We use two groups of bio-medical data sets to compare the performance of C4.5
(single, Bagging and Boosting) and our PCL classifier. One group includes
traditional clinical data sets stored at the widely used UCI machine learning
repository [3]. The other group includes recently published high-dimensional
profiling data sets such as gene expression profiles and proteomic mass/charge
profiles.

We use Figure 3 to summarize the background information of the 10 bio-
medical data sets from the UCI machine learning repository.

The second group of data sets include 3 high-dimensional data sets for cancer
diagnosis using gene expression or proteomic profiling data. Basically, all of
these application are classical supervised learning problems. For example, in
the pediatric leukemia data set [32], the goal is to correctly classify subtypes
of this heterogeneous disease; in the ovarian tumor data set [23], it is aimed to
classify tumor and normal cells for diagnostic purpose; while in the lung cancer
data set [10], it is aimed to differentiate two types of disease.
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Data sets # of features Class names # of samples
Breast-w 9 2,4 699(= 458 + 241)
Cleve 13 1,2 303(= 165 + 148)
Heart 13 1,2 270(= 150 + 120)
Hepatitis 19 1,2 155(= 32+ 123)
HIV 8 0,1 362(= 248 + 114)
Hypothyroid 29 h,n 3163(= 151 + 3012)
Lymph 18 2,3 142(= 81 + 61)
Promoter 60 +, - 106(= 53 + 53)
Sick 29 sick, negative 3772(= 231 + 3541)
Splice 60 EILIE,N  3175(= 762+ 765 + 1648)

Figure 3: Ten classical bio-medical data sets from the UCI machine learning
repository. The total number of samples in a data set and the number of samples
in each class are shown in the fourth column; while the third column can be

used to match the data volume in a specific class.

We use Figure 4 to summarize the background information of 6 data sets
for the subtype classification of the childhood leukemia disease. All these data
are available at our Kent Ridge Bio-medical Data Sets Repository, its URL is

http://sdmc.i2r.a-star.edu.sg/rp/.

The background information of the ovarian disease and the lung cancer dis-
ease data sets are summarized in Figure 5. The two data sets are also available

at our website mentioned above.

Data sets # of features Class names Training size Test size
BCR-ABL 12558 BCR-ABL, others 9+ 206 6+ 106
E2A-PBX1 12558 E2A-PBX1, others 18+ 197 94103
HyperL50 12558 HyperL50, others 42+ 173 22490
MLL 12558 MLL, others 14 + 201 6 + 106
T-ALL 12558 T-ALL, others 28 + 187 15+ 97
TEL-AML1 12558 TEL-AML1, others 52 + 163 27+ 85

Figure 4: Data sets for the subtype classification of the childhood leukemia
disease. The class names listed in the third column can be used to match the

number of training or test samples in a specific class.
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Data sets # of features  Class names  Training size Test size

Ovarian disease 15154 Cancer, Normal 162+ 91 —
Lung cancer 12533 MPM, ADCA 16+ 16 15 + 134

Figure 5: Basic information of the ovarian disease data set and the lung cancer
data set. The “—” sign represents no independent test data is available.

6.3 Comparison between C4.5 and PCL

We report the accuracy and error numbers of the learning algorithms on the
considered bio-medical data sets. The accuracy of a classifier is defined as the
percentage of samples in a data set that are correctly classified by a classifier in
a stratified 10-fold cross validation or in a validation on independent test data.
The error number of a classifier is defined as the number of samples in a data set
that are wrongly classified by a classifier in a stratified 10-fold cross validation
or in a validation on independent test data. The latter is specially called test
error numbers, which is widely used in the bio-medical field. When the error
numbers are represented in the format z(z : y), it means that z number of
samples from the first class and y number of samples from the second class are
misclassified, and that a total z(= z+y) number samples are wrongly classified.
Our computer is a PC of DELL dimension 4100 running RedHat Linux 7.1
with a CPU speed of 886MHz and with a 512KB Ram. The main software
package used in the experiments is Weka version 3.2, its Java open source codes
are available at http://www.cs.waikato.ac.nz/"ml/weka/ under the GNU
General Public License. Our in-house softwares like PCL are coded by C++.
The C4.5 (single tree, Bagging and Boosting), SVM, and k-NN programs were
run under all default settings in the Weka package except that “the number of
nearest neighbors to use in prediction” was reset as 3 for k-NN-—the default
is 1. For our PCL classifier, we set k as 5 when applied to the UCI data sets,
and set k as 20 when applied to the high-dimensional bio-medical data sets.
Figure 6 summarizes the performance of the classifiers on the 10 UCI bio-
medical data sets. For a simple comparison, we give the following statistics:

e Comparing PCL, C4.5, Bagging and Boosting, PCL won the best accuracy
on 5 data sets—wiz. breast-w, cleve, heart, HIV, and promoter; Bagging
won on 1 data set—hypothyroid; and Boosting won the best accuracy on
4 data sets—uwiz. hepatitis, lymph, sick, and splice.

e Comparing between PCL and C4.5, PCL won on 8 data sets, while C4.5
won on the rest 2 data sets.

e Comparing between PCL and Bagging, PCL won on 6 data sets, while
Bagging won on 4 data sets.
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Data sets Accuracy (%) Error numbers

PCL C4.5 Bagging Boost PCL C4.5 Bagging Boosting
Breast-w 96.6 94.8 96.3 96.0 24(15:9) 36(24:12) 26(14:12) 28(18:10)
Cleve 81.8 76.8 79.8 78.5 55(31:24) 70(32:38) 61(28:33) 65(33:32)
Heart  83.3 81.0 79.3 80.0 45(25:20) 50(21:29) 56(33:23) 54(25:29)
Hepatitis 80.0 78.7 80.6 83.8 31(7:24) 33(20:13) 30(19:11) 25(14:11)
HIV 91.1 859 851 89.5 32(14:18) 51(28:23) 54(30:24) 38(17:21)
Hypo  98.9 99.2 99.2 988 38(13:25) 25(14:11) 24(13:11) 39(17:22)
Lymph 83.0 77.5 817 85.2 24(13:11) 32(13:19) 26(8:18) 21(7:14)
Promoter 91.5 79.2 821  89.6 9(4:5)  22(10:12) 19(11:8) 11(1:10)
Sick 98.4 98.6 98.9 99.2 62(32:30) 52(30:22) 42(31:11) 30(20:10)
Splice 944 943 945 94.7 179 182 174 167

(44:42:93) (23:61:98) (26:54:94) (27:55:85)

Figure 6: The performance of PCL and the C4.5 family algorithms on the 10
UCI bio-medical data sets. The accuracy is used for measuring the quality of
both the learning algorithm and the data; while the error number is used to
show exact number of mistakes made in total and in each class on a data set by
a learning algorithm.

e Comparing between PCL and Boosting, PCL won on 6 data sets, while
Boosting won on 4 data sets.

On a closer examination, we found that:

1. on the lymph and splice data sets where Boosting has the best accuracy,
PCL has a very comparable accuracy to Boosting; and

2. on the hypothyroid data set where Bagging has the best accuracy, PCL is
better than Boosting.

So, generally speaking, our PCL classifier is more accurate than the traditional
decision-tree based single classifier like C4.5 or committee classifiers like Bag-
ging and Boosting. We also find that the accuracy provided by the committee
classifiers are all better than C4.5. These results confirm that the use of multiple
significant rules is an effective way to improve the accuracy of C4.5.

We next report experimental results on the 8 high-mensional profiling data
sets. The results are summarized in Figure 7 and Figure 8. We can see that
PCL is consistently—with only one exception on the TEL-AML1 data set—
better than or equal to the performance of the C4.5 family of algorithms.

Let us explain a bit more about the results on the lung cancer data set.
The training part of this data set is small, having only 32 samples, but the
test data consists about 4 times more samples than the training size. The C4.5
tree derived from this training data is very simple. It uses only one feature
to 100% accurately classify the 32 samples. However, this thin-structure tree
makes 27 mistakes on the test data. The Boosting algorithm makes the same
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Datasets Error Numbers for Test Data
PCL C4.5 Bagging Boosting SVM 3-NN

BCR-ABL 1:0 1:4 2:0 1:4 1:1 1:0
E2A-PBX1 0:0 0:0 0:0 0:0 0:0 0:0
HyperL50 2:2 4:5  4:2 1:4 0:3 14
MLL 0:0 1:1 0:0 1:1 0:0 0:0
T-ALL 0:0 0:1 0:1 0:1 0:0 0:0
TEL-AML1 2:0 3:1 1:0 1:0 1:1  2:0
Total errors 7 21 10 14 7 8

Figure 7: The error numbers of 6 classification algorithms on the data sets for
the subtype classification of childhood leukemia.

Datasets Error Numbers for Test Data

PCL C4.5 Bagging Boosting SVM 3-NN
Ovarian 4(3:1) 10(5:5) 8(4:4) 5(3:2) 5(2:3) 5(2:3)
Lung Cancer 3(1:2) 27(4:23) 18(2:16) 27(4:23) 1(1:0) 1(1:0)

Figure 8: The error numbers of 6 classification algorithms on the ovarian disease
data set and the lung cancer data set.

number of mistakes as C4.5 makes. This is because the Boosting committee is
a singleton—only one tree is contained—and is thus unable to take advantage
of the power of a real committee. This indicates that C4.5 has well learned only
one aspect of the training data, and has ignored many other significant rules.
So the possibility of making mistakes increases.

However, PCL discovers a total of 39 significant emerging patterns, and it
uses them as a committee. So, it is not a surprise to see that PCL is much
better than C4.5 on this data set.

Compared to the non-linear classifiers such as SVM and nearest-neighbour,
the performance of PCL is comparable and sometime is better. See Figures 7
and 8. PCL’s advantage over SVM and nearest neighbour is that PCL provides
easily understandable patterns and rules.

We also conduct experiments to see the speed differences between PCL and
C4.5. C4.5 is faster than PCL. This is because C4.5 is a heuristic search method,
while PCL is a global search method. In theoretical worst cases, the candidate
patterns searched by PCL is exponential to the number of features in a data set.
This is a reason why PCL needs to select top-ranked features when handling
high-dimensional medical data. However, on all the data sets presented in this
paper, PCL completes each of the experiments within a couple of minutes,
spending seconds on small data sets and longer time on other data sets. These
timing figures are not that long for diagnostic purposes.
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7 Related Work

The concept of emerging patterns was originally proposed in [6]. Under that def-
inition, emerging patterns include patterns with both infinite and finite growth
rates (larger than a threshold). For example, if a pattern has a support of
10% in one class, but in the other class its support is 2%. It is an emerging
pattern with a growth rate of 5. So, the emerging patterns studied in this pa-
per are a special type of emerging patterns under the original definition. We
have shown that all EP spaces of this study satisfy the nice property of con-
vexity. However, emerging patterns under the original definition do not satisfy
this property. Therefore, the discovery, representation, and application of those
emerging patterns become much more difficult.

Version spaces [20] and disjunctive version spaces [25] are concepts that are
closely related to EP spaces. A version space was originally defined as a set
of hypotheses—equivalent to patterns in this work—in which every hypothesis
must be contained in (or match) all positive instances but no negative instances.
So, an EP space is an extension to a version space by relaxing the strict con-
sistency conditions required in the version space. Unlike our border-structure
representation, a disjunctive version space [25] is represented by a disjunction
of conjunctions of many scoped disjunctive hypotheses. Only conceptually, a
disjunctive version space is an implicit representation of all EPs, but the most
general EPs and algorithms to discover them are not discussed in disjunctive
version spaces. In a different way, an EP space—more precisely, the border of
the space—is an explicit description of the most general and specific EPs, in ad-
dition to being an implicit representation of all other EPs. Such a concise easily
understandable semi-explicit representation can meet the demand of efficiently
retrieving solid important EPs, as well as avoid the exhaustive enumeration of
all the patterns in the space. We summarize these differences using a list of
different representations of EP spaces.

EPP = [{{}}, Al - [{{}}. B8]
VEzeA(AceesD(Ez, Ce))
= <‘C:R>

= {EP,EP,,---,EP,}

where [{{}}, A] — [{{}},B] is the rewritten form of an EP space as discussed
in Proposition 2.2. The second representation is disjunctive version space. The
fourth representation is an explicit exhaustive enumeration of all individual EPs.
The third one, constructed by the most general and most specific EPs, is a
concise border description of the fourth representation. Explicit EPs do appear
in these two representations. However, the first and second representations do
not provide any explicit EPs though each of them conceptually covers all EPs.
Our algorithms begin with the first representation, moving to derive the second
one, and finally terminating at the third. With simple extra computation, the
border structure can be transformed into an exhaustive enumeration of all the
EPs. We note that these representations may have their own advantages in
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different situations. From the data mining perspective, we believe that the third
one is optimal as it directly informs us which patterns are the most general EPs,
which are the most specific, and where the other EPs reside.

Other related work to version spaces can be found in [21, 12, 27, 13], where
generalization of version spaces are discussed. All of them are different from
ours. Though Gunter et al. [11] are concerned with efficiency issues of assumption-
based truth maintenance systems, their work contains some ideas similar to ours,
including the representation of interval closed collections using borders. The
work [19] proposes positive and negative borders to estimate the efficiency of a
level-wise algorithm which can be used to discover interesting rules such as as-
sociation rules, strong rules, and frequent episodes, but not including emerging
patterns.

The structure decomposition of EP spaces into a terrace of plateau sub-
spaces is first proposed in this paper, though a draft concept of plateau patterns
and spaces were roughly studied in our earlier work [17] where plateau spaces
are defined differently. Plateau patterns defined in [17] are those generated only
from boundary EPs that have the same home frequency. As such, the EP space’s
complementary set to these plateau spaces is not a plateau space. Therefore,
EP space cannot be decomposed to a terrace of plateau spaces.

The PCL classifier is inspired and motivated by our previous analysis on
gene expression profiling data in our bioinformatics research [17, 14, 32]. The
PCL classifier has achieved a milestone result for the subtype classification of
the heterogeneous disease of pediatric leukemia. So far, it is the most accurate
classifier on this application. In this paper, we revise the method to calculate the
classification scores so that the scores are more easily interpreted. In addition
to this, we report for the first time a comprehensive comparison between the
performance of PCL and C4.5 on a wide range of bio-medical data sets. PCL
is a rule-based classifier. Its easy interpretation from raw data to knowledge
patterns, together with its high accuracy, makes this classifier important in the
field of machine learning.

8 Conclusion

In this paper, we have studied the structure of EP spaces. EP spaces are
bounded convex spaces—the most general and most specific emerging patterns
bound the space in a lossless way. EP spaces are organizable—every EP space
can be decomposed into a terrace of plateau sub-spaces. Having this structure,
we then have a clearer view of where version spaces are located in EP spaces.
Shadow patterns are also interesting as such a neighbourhood of EP spaces can
be used to judge the interestingness of most general EPs.

The proposed medical treatment plan and the PCL classifier have demon-
strated the usefulness of the most general emerging patterns for real applica-
tions. The significance of the PCL classifier is not only in its accuracy, more
importantly, is in the easy interpretation of the patterns and rules.

As future research work, we are going to pursue along the following three
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directions:

e This paper is focused on the mining of all the most general emerging

patterns. But, the proposed PCL classifier makes use of only top k of
them. So, the question is how to efficiently pinpoint the top k instead of
the whole left bound of an EP space.

For the PCL classifier, we give one way of defining the score of a sample
T relative to two data sets. Some other ideas are possible. For example,
one way is to sum the supports of EP; and divide it by the sum of
the supports of EP,,. Basically, it is a question of how to integrate the
discriminating power of emerging patterns for classification.

For the treatment plan that converts tumor cells into healthy cells, our
heuristic is to modulate the expression levels of some specific genes accord-
ing to top-ranked emerging patterns. In general, it seems like a complex
optimization problem to select the appropriate set of genes to be modified
for the treatment. Are there any in-silico ideas underlying the biological
nature of the application? We expect some biological guidance such as
those from gene therapies [29, 31].
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