
Relative Risk and Odds Ratio: A Data Mining Perspective
(Corrected Version)

Haiquan Li, Jinyan Li, & Limsoon Wong
∗

Institute for Infocomm Research
21 Heng Mui Keng Terrace, Singapore 119613

{haiquan, jinyan,
limsoon}@i2r.a-star.edu.sg

Mengling Feng & Yap-Peng Tan
Nanyang Technological University

Block S1, 50 Nanyang Ave, Singapore 639798

{feng0010, eyptan}@ntu.edu.sg

ABSTRACT
We are often interested to test whether a given cause has a
given effect. If we cannot specify the nature of the factors
involved, such tests are called model-free studies. There are
two major strategies to demonstrate associations between
risk factors (ie. patterns) and outcome phenotypes (ie. class
labels). The first is that of prospective study designs, and
the analysis is based on the concept of “relative risk”: What
fraction of the exposed (ie. has the pattern) or unexposed
(ie. lacks the pattern) individuals have the phenotype (ie.
the class label)? The second is that of retrospective designs,
and the analysis is based on the concept of “odds ratio”:
The odds that a case has been exposed to a risk factor is
compared to the odds for a case that has not been exposed.
The efficient extraction of patterns that have good relative
risk and/or odds ratio has not been previously studied in
the data mining context. In this paper, we investigate such
patterns. We show that this pattern space can be system-
atically stratified into plateaus of convex spaces based on
their support levels. Exploiting convexity, we formulate a
number of sound and complete algorithms to extract the
most general and the most specific of such patterns at each
support level. We compare these algorithms. We further
demonstrate that the most efficient among these algorithms
is able to mine these sophisticated patterns at a speed com-
parable to that of mining frequent closed patterns, which
are patterns that satisfy considerably simpler conditions.

1. INTRODUCTION
We are often interested to test whether a given cause has

a given effect. If we cannot specify the nature of the factors
involved, such tests are called model-free studies. There
are two major strategies to demonstrate association between
risk factors (ie. patterns) and outcome phenotypes (ie. class

∗Contact author, Fax: +65-6872-5743, Tel: +65-6874-2099.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2005June 13-15, 2005, Baltimore, Maryland.
Copyright 2005 ACM 1-59593-062-0/05/06 . . .$5.00.

Disease No Disease

Exposed PD,ed PD,e−
Not Exposed PD,−d PD,−−

Figure 1: Contingency table for a prospective study
on cohort D and risk factor P .

labels): “cohort study” and “case-control study” [20].
A “cohort study” is a simple way to study whether a spe-

cific factor is associated with the risk of a specific disease.
Here, cohorts of individuals are identified ones who are ex-
posed, or not exposed, to specific factors. They are then
followed prospectively to determine if the exposure affects
their risk of disease. The data, in the form of counts, are dis-
played as a “contingency table”, as shown in Figure 1. The
analysis is straightforward. A biostatistician simply asks:
What is the ratio of the proportions of exposed and un-
exposed individuals who have developed the disease? This
ratio is termed “relative risk”. Using the notations in the
contingency table in Figure 1, the relative risk of a factor P
in a group D is

RR(P,D) =

PD,ed

PD,ed + PD,e−
PD,−d

PD,−d + PD,−−

where PD,ed is the number of individuals in D who have ex-
posure to P and have developed the disease, PD,e− is the
number of individuals who have exposure and have not de-
veloped the disease, PD,−d is the number of individuals who
have no exposure and have developed the disease, and PD,−−
is the number of individuals who have no exposure and have
not developed the disease. Under the null hypothesis, the
factor makes no difference to the occurrence of the diease
and the relative risk should equal 1. A chi-square test with
1 degree of freedom, χ2(P,D) = ((PD,ed ∗ PD,−− − PD,e− ∗
PD,−d)2∗(PD,ed+PD,−−+PD,e−+PD,−d))/((PD,ed+PD,−d)∗
(PD,e− + PD,−−) ∗ (PD,ed + PD,e−) ∗ (PD,−d + PD,−−)), is
usually applied to test whether the observed relative risk
differs significantly from 1.

We see that the cohort study is essentially a prospective
study. That is, we first identify those individuals who are ex-
posed or not exposed to a factor, then test for subsequent de-

velopment of the disease. In contrast, a “case-control” study
first identifies the individuals by disease status and then
tests retrospectively for exposure to a factor. In such a sit-
uation, the number of diseased persons (called the “cases”)
and non-diseased persons (called the “controls”) is fixed, and
thus the risk that an exposed person will become a disease
case cannot be estimated directly. Instead, we can consider
the ratio of the odds that a case has been exposed to the
odds that a control has been exposed. This ratio is called
the “odds ratio”. Using the notations in Figure 1, the odds
ratio for a factor P in a case-control study D is

OR(P,D) =

PD,ed

PD,−d

PD,e−

PD,−−

Under the null hypothesis, we expect the odds ratio to equal
1. The chi-squared test with 1 degree of freedom is used to
test the significance of deviation of the observed odds ratio
from 1. As OR(P,D) lies in the range [0,∞], it is often
transformed to the range [−1, 1] as (OR(P,D)− 1)/(OR(P ,
D) + 1). This transformed value is called Yule’s Q [2].

In a traditional data mining and classification situation,
we can think of a factor or a combination of factors P as a
pattern, an exposure to a factor as an occurrence of the pat-
tern in a transaction, and the disease states as class labels.
With such an interpretation in mind, we find that the con-
cept of patterns that have significant relative risk or odds
ratio offers a very powerful and statistically sound means for
separating meaningful patterns from less meaningful ones.

There are many previous studies [1, 3, 8, 9, 13, 15, 16,
19, 21, 12, 10, 14, 17, 18] on frequent itemsets, their closed
patterns, and their generators. There are also a number
of studies [6, 11] on emerging patterns and their borders.
However, to the best of our knowledge, the mining of odds
ratio patterns and relative risk patterns has never been in-
vestigated before. The exceptions are the two papers of
Tan et al. [17, 18]. They evaluated and compared the “in-
terestingness” of odds ratio and a number of other measures
for association mining. They showed that odds ratio, along
with Yule’s Q and Y measures, satisfied many properties
considered desirable for association mining. However, they
did not propose efficient sound and complete algorithms for
mining these patterns. Furthermore, there is no obvious way
to adapt the methods for mining frequent itemsets or emerg-
ing patterns to obtain efficient methods for mining odds ra-
tio patterns and relative risk patterns. This is because the
concepts of odds ratio and relative risk involve two datasets
or a dataset with two class labels, and they also consider
both the frequencies of occurrence and non-occurrence of
a pattern. In contrast, the concept of frequent itemsets in-
volves only one dataset without class labels and is concerned
only with frequency of occurrence. Similarly, while the con-
cept of emerging patterns involves two datasets or a dataset
with two class labels, it is concerned only with frequency of
occurrence.

The efficient mining of odds ratio patterns and relative
risk patterns therefore deserves attention. We investigate in
this paper the theoretical properties and the efficient mining
of these patterns. We show in Section 2 that the space of
odds ratio patterns and relative risk patterns can be system-
atically stratified into plateaus of convex spaces based their
support levels. Exploiting convexity, we formulate in Sec-

tion 3 a number of algorithms to extract the most general
and the most specific of such patterns at each support level.
We show that these algorithms are sound and complete; that
is, these algorithms can mine all odds ratio patterns and rel-
ative risk patterns, and can directly output these patterns
in a concise and lossless representation. We compare these
algorithms through a few experiments in Section 4, where
we also demonstrate that the most efficient among these
algorithms is able to mine these sophisticated patterns at
a speed comparable to that of mining frequent closed pat-
terns, which are patterns that satisfy considerably simpler
conditions.

2. THE SPACE OF ODDS RATIO PATTERNS
AND RELATIVE RISK PATTERNS

We first recap some results on equivalence classes, closed
patterns, generators, plateaus, and convexity that form the
basis for the concise representation and efficient mining of
frequent itemsets. Then we prove that while the space of
odds ratio patterns and relative risk patterns is not con-
vex, it can be systematically decomposed into a series of
plateaus of convex spaces. Then we provide a concise rep-
resentation of the space of odds ratio patterns and relative
risk patterns in terms of the borders—ie. the generators
and closed patterns—of these plateaus. This concise repre-
sentation forms the basis for efficiently mining of odds ratio
patterns and relative risk patterns in Section 3.

2.1 Equivalence Classes, Generators, Closed
Patterns, and Plateaus

Let I = {i1, i2, ..., im} be a set of distinct literals called
“items”. An “itemset”, or a “pattern”, is a set of items. A
“transaction” is a non-empty set of items. A “dataset” is
a non-empty set of transactions. An itemset P is said to
be contained or included in a transaction T if P ⊆ T . An
itemset P is said to be contained in a dataset D if there is
T ∈ D such that P ⊆ T .

The “support” of an itemset P in a dataset D, denoted
sup(P,D), is the number of transactions in D that contain
P . An itemset P is said to be frequent in a dataset D if
sup(P,D) is greater than or equal to a pre-specified thresh-
old ms. Given a dataset D and a support threshold ms, the
collection of all frequent itemsets in D is called the “space of
frequent itemsets”, and is denoted by F(ms,D). We assume
in general that |D| > ms.

The space of frequent itemsets can be large. However, this
space possesses the nice convexity property, which is very
helpful when it comes to concise and lossless representation
of the space and its subspaces.

Definition 2.1. A space S is said to be convex if, for
all X, Y ∈ S such that X ⊆ Y , it is the case that Z ∈ S
whenever X ⊆ Z ⊆ Y .

For a convex space S, we define the collection of all “most
general” itemsets in S as a “bound” of S, where an itemset
X is most general in S if there is no proper subset of X in
S. Similarly, we define the collection of all “most specific”
itemsets as another bound of S, where an itemset X is most
specific in S if there is no proper superset of X in S. We call
the former bound the “left bound” of S, denoted L; and the
latter bound the “right bound” of S, denoted R. We call
the pair of left and right bound the “border” of S, which

is denoted by 〈L,R〉. We also define [L,R] = {Z | ∃X ∈
L,∃Y ∈ R, X ⊆ Z ⊆ Y }. 〈L,R〉 and [L,R] are two different
notions. Specifically, [L,R] = S, but 〈L,R〉 is only a concise
representation of the whole space S in a lossless way. Note
that [{∅}, {∅}] = {∅} and [∅, ∅] = ∅.

Proposition 2.2. F(ms,D) is convex. Furthermore, its
border is of the form 〈{∅},R〉 for some R.

Proof. Suppose two itemsets X, Y ∈ F(ms,D) such that
X ⊆ Y . Then sup(X,D) ≥ sup(Y,D) ≥ ms. Let Z be any
itemset such that X ⊆ Z ⊆ Y . Then sup(Z,D) ≥ sup(Y,D).
Then sup(Z,D) ≥ ms. So, Z ∈ F(ms, D). Thus, F(ms,D)
is convex space.

Since ∅ ⊂ T for every T ∈ D, it is the case that sup(∅,D) =
|D| ≥ ms. Therefore, ∅ ∈ F(ms,D). As ∅ is a proper subset
for any non-empty itemsets, it follows that ∅ is the sole most
general element in F(ms,D). So, the border of F(ms,D) is
of the form 〈{∅},R〉, for some R.

The results stated in Proposition 2.2 are simple and well
known. In particular, the Max-Miner algorithm [5] was pro-
posed to discover frequent maximal itemsets (R in Propo-
sition 2.2) that can cover all frequent itemsets. However,
an interesting thing is that convex frequent itemset spaces
can be further decomposed systematically into convex sub-
spaces.

Definition 2.3. An “itemset plateau”, plateau(π,D), in
a dataset D is defined as the collection of all itemsets that
have the support value π in D.

Proposition 2.4. plateau(π,D) is convex.

Proof. Without loss of generality, let plateau(π,D) 6= ∅.
Suppose itemsets X and Y are in plateau(π,D) and X ⊆ Y .
Then sup(X,D) = sup(Y,D) = π. Let Z be any itemset Z
such that X ⊆ Z ⊆ Y . Then sup(X,D) ≥ sup(Z,D) ≥
sup(Y,D). As sup(X,D) = sup(Y,D) = π, it follows that
sup(Z,D) = π. Therefore the itemset Z is in plateau(π,D)
as desired.

As a convex space can be concisely represented by its bor-
der, every itemset plateau can be concisely represented by a
border. Based on Proposition 2.4, a new concise representa-
tion of frequent itemsets is proprosed. Suppose F(ms,D) is
a frequent itemset space in a dataset D, and suppose these
frequent itemsets have k distinct support values π1, π2, ...,
πk. Then

F(ms,D) =

k⋃
i=1

plateau(πi,D) =

k⋃
i=1

[Li,Ri],

where 〈Li,Ri〉 is the border of plateau(πi,D).
Two itemsets are “equivalent” in the context of a dataset

D if they are included in exactly the same transactions in D.
Formally, let us define the “filter”, f(P,D), of an itemset P
in a dataset D as f(P,D) = {T ∈ D | P ⊆ T}. Then the
“equivalence class” [P]D of P in a dataset D is the collection
of itemsets defined as [P]D = {Q | f(P,D) = f(Q,D)}.

Proposition 2.5. [P]D is convex, and the right bound of
its border is a singleton set.

Proof. Let X, Y ∈ [P]D such that X ⊆ Y . Suppose
X ⊆ Z ⊆ Y . Then f(Y, D) ⊆ f(Z, D) ⊆ f(X, D). Since
X, Y ∈ [P]D, we know f(Y, D) = f(P, D) = f(X, D). So
f(Z, D) = f(P, D) and Z ∈ [P]D. Thus [P]D is convex as
required.

Now let 〈L,R〉 be the border of [P]D. Suppose X, Y ∈ R.
Then f(X,D) = f(P,D) = f(Y,D). This implies f(X ∪
Y,D) = f(P,D). Thus X ∪ Y ∈ [P]D. Since X, Y ∈ R,
by the definition of the right bound of a border, both X and
Y are most specific. Then it must be the case that X =
X ∪ Y = Y . Thus R is a singleton set.

It is obvious that sup(X,D) = sup(Y,D) for all X, Y ∈
[P]D. Therefore, the equivalence class of any itemset P
must be a subset of plateau(π,D), where π = sup(P,D).
It now follows from the definition of equivalence classes that
plateau(π, D) is the union of non-overlapping equivalence
classes. In particular, the number of equivalence classes is
equal to the number of itemsets in the right bound of the
border of plateau(π,D).

Corollary 2.6. plateau(π,D) = [L1 ∪ L2 ∪ · · · ∪ Lr,
{R1, R2, . . . , Rr}] =

⋃r
i=1[Li, {Ri}], where {[R1]D, [R2]D,

..., [Rr]D} = {[P]D | sup(P,D) = π}, and each 〈Li, {Ri}〉
is the border of the corresponding [Ri]D.

Together with equivalence classes, frequent “closed pat-
terns” and frequent “key patterns” (also called “genera-
tors”) have been widely studied in the data mining field.
One main reason is that both of them can be separately used
to concisely represent the whole space of frequent itemsets.
We discuss next the relationship between plateau boundaries
and close and key patterns.

Traditionally, closed patterns are defined based on the no-
tion of equivalence classes or based on changes in support.
For example, [15] defines a closed pattern as the maximal
itemset of an equivalence class, while [19] defines it equiv-
alently as an itemset that has no proper superset with the
same support. As discussed, a plateau(π,D) is the collec-
tion of all itemsets whose support value in D is π. The right
bound of plateau(π,D) are itemsets that are most specific
in plateau(π,D). That is: any proper superset of any item-
set in this bound is not in plateau(π,D). So, these proper
supersets have a different support level. Hence, the itemsets
in the right bound of plateau(π,D) are all closed patterns.
Conversely, all closed patterns with the same support value
πi are in the right bound of plateau(πi,D). So, the right
bounds of our itemset plateaus capture exactly all closed
patterns.

The definition of key patterns (generators) is also based
on equivalence classes. In particular [4], a pattern P is said
to be a key pattern in D iff no proper subset of P is in
[P]D. According to this definition and our definition for
the left bound of plateau(πi,D), it can be seen that the
itemsets in the left bounds of plateaus are all key patterns.
Incidentally, an interesting property for the left bounds of
all plateau(πi,D) is that they form a convex space. [4] also
observes this property, albeit stated in a different way, and
uses it as the basis of an algorithm to find all frequent key
patterns.

Proposition 2.7. Let F(ms,D) =
⋃k

i=1 plateau(πi, D)

=
⋃k

i=1[Li,Ri], where Li and Ri are bounds of the itemset

plateaus. Then
⋃k

i=1 Li is convex.

Proof. Let K = ∪k
i=1Li. Suppose X, Y ∈ K such that

X ⊆ Y . Suppose X ⊆ Z ⊆ Y . We need to prove that
Z ∈ K. The condition X ⊆ Z ⊆ Y implies four cases:
X ⊂ Z ⊂ Y , X ⊂ Z = Y , X = Z ⊂ Y , and X = Z = Y .
We only need to prove Z ∈ K when X ⊂ Z ⊂ Y . The other
three cases are obvious.

Let sup(Z,D) = πm. Then Z ∈ plateau(πm,D). We need
to prove Z ∈ Lm. We prove this by contradiction. Assume
Z 6∈ Lm. Then there is A ∈ Lm such that A ⊂ Z because
plateau(πm,D) is a convex space.

Let Y = Z∪V such that V ∩Z = ∅. As A, Z ∈ plateau(πm,
D), we have sup(A,D) = πm = sup(Z,D). As A ⊂ Z, we
further have sup(A∪V,D) = sup(Z∪V,D) = sup(Y,D). So,
Y has a proper subset A∪V with the same support as itself.
But Y is an itemset in the left bound of a plateau. So all its
proper subsets must have a larger support than Y ’s. This is
a contradiction. So, Z ∈ Lm. Then Z ∈ K as desired.

The proposition above suggests that if a pattern is in the
left bound of a plateau, then all of its subsets are also in the
left bound of some other plateaus. In other words, these left
bounds (also called key patterns or generators) enjoy the “a
priori” property.

Proposition 2.8. Let P be a frequent generator in D.
Then every subset of P is also a frequent generator in D.

Proof. Suppose P is a generator in D. Suppose Q ⊆ P .
We want to show Q is also a generator. Suppose there is
a R ⊆ Q in [Q]D. So there is an S such that R = Q − S,
and S ⊆ Q. Let T = P − S. Let D be a transaction having
T . We have R ⊆ T , as Q ⊆ P and thus Q − S ⊆ P − S.
Then D has R as well, as R ⊆ T . Then D has Q as well,
as R ∈ [Q]D. Then D has S also, as S ⊆ Q. Then D has
P . This means every transaction having T also has P . We
already know that every transaction having P also has T .
So, P and T are in the same equivalence class. Since P is a
generator, and T = P − S, it must be the case that S = {}.
Since R = Q − S, we conclude R = Q. Hence Q is a key
pattern.

In the next subsection, we investigate the convexity prop-
erties of the space of odds ratio patterns and the space of
relative risk patterns.

2.2 Odds Ratio Patterns and Relative Risk Pat-
terns

In order to discuss the space of odds ratio patterns and rel-
ative risk patterns, let us consider only those datasets whose
transactions are labeled either as “positive” or as “negative”.
Given a dataset D, we write Dpos for those transactions in
D that are labeled as positive, and Dneg for those labeled
as negative. For our discussion on odds ratio and relative
risk, we take Dpos to be the disease cases and Dneg to be
the non-disease cases.

Since all patterns in [P]D must occur in exactly the same
transactions in D, these patterns must have the same odds
ratio, relative risk, and chi-squared value as P . Hence we
can extend our notations and write sup(E,D), OR(E,D),
RR(E,D), and χ2(E,D) respectively for the support, odds
ratio, relative risk, and chi-squared value of an equivalent
class E in D.

Proposition 2.9. Let Q ∈ [P]D. Then sup(Q,D) =
sup(P,D), OR(Q,D) = OR(P,D), RR(Q,D) = RR(P,D),
and χ2(Q,D) = χ2(P,D).

id A B C class

1 y y y pos
2 y y y pos
3 y n n pos
4 y n n pos
5 y y y neg
6 y y n neg
7 n n n neg
8 n n n neg

Figure 2: An example dataset with 4 transactions
labeled as “pos” and 4 transactions labeled as “neg”.

Moreover, if we decompose the space F(ms,D) into pla-
teaus based on the support levels of patterns in Dpos and
the odds ratio or the relative risk of these patterns, each
such plateaus is also convex.

Theorem 2.10. Let SOR
n,k (ms,D) = {P ∈ F(ms, D) |

PD,ed = n, OR(P,D) ≥ k}. Then SOR
n,k (ms,D) is convex.

Proof. Let X ⊆ Y ∈ SOR
n,k (ms,D) and X ⊆ Z ⊆ Y .

Then sup(X,Dpos) = sup(Z,Dpos) = sup(Y,Dpos) = n. Let
h = |Dpos|. Then XD,ed/XD,−d = YD,ed/YD,−d =
ZD,ed/ZD,−d = n/(h − n). Let g = |D|. Then XD,−− +
XD,e− = YD,−− + YD,e− = ZD,−− + ZD,e− = g − h. Then
XD,−−/XD,e− = (g − h − XD,e−)/XD,e− ≥ k ∗ (h − n)/n.
Thus g − h ≥ (k ∗ (h− n) ∗XD,e−/n) + XD,e−. Since X ⊆
Z ⊆ Y , we have sup(X,Dneg) = XD,e− ≥ sup(Z,Dneg) =
ZD,e− ≥ sup(Y,Dneg) = YD,e−. Thus g− h ≥ (k ∗ (h− n) ∗
ZD,e−/n)+ZD,e−. Then ZD,−−/ZD,e− ≥ k∗(h−n)/n. Thus
OR(Z,D) = (ZD,ed/ZD,−d)/(ZD,e−/ZD,−−) ≥ k. Then
Z ∈ SOR

n,k (ms,D) as desired.

Theorem 2.11. Let SRR
n,k (ms,D) = {P ∈ F(ms, D) |

PD,ed = n, RR(P,D) ≥ k}. Then SRR
n,k (ms,D) is convex.

Proof. Let X ⊆ Y ∈ SRR
D,n,k and X ⊆ Z ⊆ Y . Then

sup(X,Dpos) = sup(Z,Dpos) = sup(Y,Dpos) = n. Let h =
|Dpos|. Then RR(X,D) = (n/(h−n))∗((h−n)+XD,−−)/(n+
XD,e−) ≥ k. So, XD,−− − ((k/n) ∗XD,e−) ≥ k. Since X ⊆
Z, we have XD,e− ≥ ZD,e− and XD,−− ≤ ZD,−−. Then
ZD,−− − ((k/n) ∗ ZD,e−) ≥ XD,−− − ((k/n) ∗ XD,e−) ≥ k.
So RR(Z,D) ≥ k. Thus Z ∈ SRR

n,k (ms,D) as desired.

Since the intersection of two convex spaces is convex, the
space of patterns that simultaneously exhibit good odds ra-
tio and relative risk is also convex.

Corollary 2.12. Let SOR,RR
n,h,k (ms,D) = {P ∈ F(ms,

D) | PD,ed = n, OR(P,D) ≥ h, RR(P,D) ≥ k}. Then

SOR,RR
n,h,k (ms,D) is convex.

However, it is not possible to decompose the space of odds
ratio patterns into convex subspaces in terms of odds ratio
or relative risk alone.

Proposition 2.13. Let SOR
k (ms,D) = {P ∈ F(ms, D) |

OR(P,D) ≥ k}. Then SOR
k (ms,D) is not convex.

Proof. Consider the dataset D in Figure 2. Here,
OR({A},D) = ∞, OR({A, B, C},D) = 3, and OR({A, B},
D) = 1. Then {A}, {A, B, C} ∈ SOR

2 (2,D) and {A, B} 6∈
SOR

2 (2,D), giving a counter example.

Proposition 2.14. Let SRR
k (ms,D) = {P ∈ F(ms, D) |

RR(P,D) ≥ k}. Then SRR
k (ms,D) is not convex.

Proof. Consider the dataset D in Figure 2. Here,
RR({A},D) = ∞, RR({A, B, C},D) = 5/3, and
RR({A, B}, D) = 1. Then {A}, {A, B, C} ∈ SRR

1.5 (2,D) and
{A, B} 6∈ SOR

1.5 (2,D), giving a counter example.

Since SOR
n,k (ms,D), SRR

n,k (ms,D), and SOR,RR
n,h,k (ms,D) are

convex spaces, they can be represented by borders. There
are two approaches to the extraction of these borders. The
first approach is to first identify all the equivalence classes
and their borders in D, and filter them by their support
in Dpos and by their odds ratio and/or relative risk. This
approach is summarised by the following two propositions:

Proposition 2.15. Let ED be all the equivalence classes
in D. Let BOR

n,k (ms,D) = {〈min E, max E〉 | E ∈ ED,
sup(E,D) ≥ ms, sup(E, Dpos) = n, OR(E,D) ≥ k}. Then
SOR

n,k (ms, D) =
⋃
{[L,R] | 〈L,R〉 ∈ BOR

n,k (ms,D)} = [
⋃
{L |

〈L,R〉 ∈ BOR
n,k (ms,D)},

⋃
{R| 〈L,R〉 ∈ BOR

n,k (ms,D)}].

Proposition 2.16. Let ED be all the equivalence classes
in D. Let BRR

n,k(ms,D) = {〈min E, max E〉 | E ∈ ED,
sup(E,D) ≥ ms, sup(E, Dpos) = n, RR(E,D) ≥ k}. Then
SRR

n,k (ms, D) =
⋃
{[L,R] | 〈L,R〉 ∈ BRR

n,k(ms,D)} = [
⋃
{L |

〈L,R〉 ∈ BRR
n,k(ms,D)},

⋃
{R | 〈L,R〉 ∈ BRR

n,k(ms,D)}].

Corollary 2.17. Let ED be all the equivalence classes
in D. Let BOR,RR

n,h,k (ms,D) = {〈min E, max E〉 | E ∈ ED,

sup(E,D) ≥ ms, sup(E, Dpos) = n, OR(E,D) ≥ h, RR(E,

D) ≥ k}. Then SOR,RR
n,h,k (ms, D) =

⋃
{[L,R] | 〈L,R〉 ∈

BOR,RR
n,h,k (ms,D)} = [

⋃
{L | 〈L,R〉 ∈ BOR,RR

n,h,k (ms,D)},
⋃
{R |

〈L,R〉 ∈ BOR,RR
n,h,k (ms,D)}].

The second approach is to first obtain a plateau decom-
position of the frequent itemsets in Dpos, then extract the
border of the plateau corresponding to the support level of
n in Dpos. According to Corollary 2.6, each element Rj in
the right bound of this plateau is the closed pattern of an
equivalence class. For each Rj , we check also Dneg to see if
this Rj have good odds ratio or good relative risk. If it does
not have good odds ratio or good relative risk, then its entire
equivalence class can be discarded. If it has good odds ratio
or relative risk, then we need to consider the corresponding
left bound Lj . By Theorems 2.10 and 2.11, we need to move
Lj right to a more specialised L′j so that the requirements
on odds ratio and relative risk are satisfied.

Proposition 2.18. Let
⋃

i plateau(πi,D) be the plateau
decomposition of F(ms,Dpos). Let 〈Ln,Rn〉 be the border
of plateau(n,D). Let R′n = {Rj ∈ Rn | OR(Rj ,D) ≥ k}.
Let L′n =

⋃
Rj∈R′

n
min{B ⊆ Rj | Lj ∈ Ln, Lj ⊆ B,

OR(B,D) ≥ k}. Then SOR
n,k (ms,D) = [L′n,R′n].

Proposition 2.19. Let
⋃

i plateau(πi,D) be the plateau
decomposition of F(ms,Dpos). Let 〈Ln,Rn〉 be the border
of plateau(n,D). Let R′n = {Rj ∈ Rn | RR(Rj ,D) ≥ k}.
Let L′n =

⋃
Rj∈R′

n
min{B ⊆ Rj | Lj ∈ Ln, Lj ⊆ B,

RR(B,D) ≥ k}. Then SRR
n,k (ms,D) = [L′n,R′n].

Input: Dataset D = Dpos∪Dneg, threshold for support ms,
and threshold for odds ratio k.

Output: A concise representation of equivalence classes of
patterns having support at least ms and odds ratio at
least k. The concise representation comprises, for each
equivalence class, its borders (ie. its generators and
closed patterns), its support inDpos, its support inDneg,
and its odds ratio.

Method:
1: E := the collection of all equivalence classes of F(ms,D),

concisely represented by their borders, and annotated
with their support levels.

2: for each 〈L, {R}〉 in E do
3: x := OR(R,D);
4: y := sup(R,Dpos); z := sup(R,Dneg).
5: if x ≥ k then
6: output 〈L, {R}〉, x, y, and z.
7: end if
8: end for

Figure 3: Algorithm for mining odds ratio patterns.

Corollary 2.20. Let
⋃

i plateau(πi,D) be the plateau de-
composition of F(ms,Dpos). Let 〈Ln,Rn〉 be the border
of plateau(n,D). Let R′n = {Rj ∈ Rn | OR(Rj ,D) ≥
h, RR(Rj ,D) ≥ k}. Let L′n =

⋃
Rj∈R′

n
min{B ⊆ Rj |

Lj ∈ Ln, Lj ⊆ B, OR(B,D) ≥ h, RR(B,D) ≥ k}. Then
SRR

n,h,k(ms,D) = [L′n,R′n].

In the interest of space, for remainder of this paper, we
focus on evaluating a couple of implementations for iden-
tifying good odds ratio patterns based on the strategy in
Proposition 2.15.

3. PRACTICAL ALGORITHMS
Proposition 2.15 suggests the algorithm in Figure 3 for

mining all patterns that have support of at least ms and
odds ratio of at least k. It is also clear that all the steps
of this algorithm are simple, with the exception of Step 1,
for generating the concise representation—comprising of the
generators and the unique closed pattern of each equivalence
class—of all equivalence classes in F(ms,D). Note that by
replacing Step 3 of this algorithm with x := RR(R,D), we
get an algorithm for mining relative risk patterns.

The mining of close patterns has previously been stud-
ied intensively [3, 8, 9, 13, 15, 16, 19, 21]. The mining of
generators has also previously been investigated [12, 14, 15],
albeit to a less intensive extent. There is however not much
reported work on algorithms that produce both generators
and closed patterns, with the exception of [14].

We therefore have two options for implementing Step 1 of
the odds ratio mining algorithm of Figure 3. This first op-
tion is to apply on D a fast closed-pattern mining algorithm
and a fast generator mining algorithm to produce separately
a list of closed patterns C1, ..., Cm and a list of generators
G1, ..., Gn, as well as their support levels. By Proposi-
tion 2.5, each Ci is the closed pattern of a distinct equiva-
lence class. The corresponding generators of the equivalence
class of Ci are those Gj such that sup(Gj ,D) = sup(Ci,D)
and Gj ⊆ Ci. In this case, we use FPclose* [9] to mine
frequent closed patterns, as it is currently the fastest known
program for this problem. For the mining of generators,

none of the existing methods is sufficiently efficient. So we
develop our own method, Gr-growth, that leverages the in-
frastructure of FPclose*. This option is pursued in Subsec-
tion 3.1.

The second option is to mine generators and closed pat-
terns at the same time. However, the only reported method
that can be easily modified to provide generators and closed
patterns simultaneously, A-Close [14], is not sufficiently ef-
ficient. So we develop our own technique, GC-growth. This
option is pursued in Subsection 3.2. This second option is
likely to have an advantage over the first option since it
avoids the sorting and matching step that is needed in the
first option to properly pair up the generators with the cor-
responding closed patterns.

3.1 Mining Generators and Mining Closed Pat-
terns Separately

In this subsection, we present the Gr-growth algorithm for
mining generators that is used for the first option described
earlier for mining odds ratio patterns. We also prove its
correctness.

Let the set I = {i1, ..., im} of items be ordered according
to an arbitrary ordering <0 so that i1 <0 i2 <0 · · · <0

im. For itemsets X, Y ⊆ I, we write X <0 Y iff X is
lexicographically “before” Y according to the order <0. We
say an itemset X is a “prefix” of an itemset Y iff X ⊆ Y and
X <0 Y . We say an itemset X is a “postfix” of an itemset
Y iff X ⊆ Y and Y − X <0 Y . We write last(X) for the
item α ∈ X such that {α} is postfix of the itemset X; more
intuitively, if the items in X are α1 <0 α2 <0 · · · <0 αm,
then last(X) = αm.

A set-enumeration tree is a conceptual organization on the
subsets of I so that {} is its root node; for each node X such
that Y1, ..., Yk are all its children from left to right, then
Y1 <0 · · · <0 Yk; for each node X in the set-enumeration tree
such that X1, ..., Xk are siblings to its right, we make X∪X1,
..., X ∪Xk the children of X; |X ∪Xi| = |X|+1 = |Xi|+1;
and |X| = |Xi| = |X ∩Xi|+ 1.

We also induce an enumeration ordering on the nodes of
this set-enumeration tree so that given two nodes X and
Y , we say X <1 Y iff X would be visited before Y when
we visit the set-enumeration tree in a right-to-left top-down
manner. We say X “precedes” Y if X <1 Y . Since this visit
order is a bit unusual, we illustrate it in Figure 4. Here, the
number besides the node indicates the time at which the
node is visited.

Proposition 3.1. Let X and Y be nodes on the set-enum-
eration tree so that X ⊆ Y . Then X <1 Y .

We use the set-enumeration tree as a conceptual struc-
ture so that given any pattern X, we can efficiently test
the presence of X, the number of occurrences of X, and the
transactions in which X appears fast. In particular, for each
node X of the set-enumeration tree visited for a dataset D,
we associate the following maps, where dT is the transaction
id of the transaction T in D:

• P [X] = |{dT | T ∈ D, X is a prefix of T}|;

• P pos[X] = |{dT | T ∈ Dpos, X is a prefix of T}|;

• P neg[X] = |{dT | T ∈ Dneg, X is a prefix of T}|;

• S[X] = sup(X,D);

Figure 4: A set-enumeration tree depicting the sub-
sets of {a, b, c, d}, with d <0 a <0 b <0 c.

• Spos[X] = sup(X,Dpos);

• Sneg[X] = sup(X,Dneg);

• T [X] = true iff X is an entire transaction;

• G[X] = true iff X is a generator in D; and

• H[α] = {X|P [X] is defined, {α} is suffix of X}.

Provided these maps are constructed correctly, it is clear
that {X | G[X] = true} gives all the generators in D. We
provide in Figure 5 the pseudo codes of an efficient algo-
rithm, Gr-growth, for mining generators.

Theorem 3.2. Given a dataset D = Dpos ∪ Dneg and
a support threshold ms, Gr-growth is sound and complete
for producing the generators of F(ms,D) and their support
levels.

Proof. Without loss of generality, we assume Step 1 is
correct. Then, for any node Xi, P [Xi] (resp. P pos[Xi],
P neg[Xi]) gives the number of occurrences of Xi in D (resp.
Dpos, Dneg) as a prefix. Then, for any node Xi, the set
{X ∈ H[last(Xi)] | Xi ⊆ X} comprises precisely those pre-
fixes that contain Xi. So S[Xi] :=

∑
X∈H[last(Xi)],Xi⊆X P [X]

gives the number of occurrences of Xi in D. Thus, S[Xi] =
sup(Xi,D). Similarly, we conclude Spos[Xi] = sup(Xi,Dpos)
and Sneg[Xi] = sup(Xi,Dneg). Thus Steps 4–5 are correct.
By Proposition 2.8, Xi is a generator iff sup(Xi) ≥ ms,
sup(Xi) < sup(Xi − {α},D) for all α ∈ Xi, and Xi − {α}
is a generator for all α ∈ Xi. Thus Steps 7–10 are correct,
provided that S[Xi−{α}] and G[Xi−{α}] are already com-
puted at this point. By Proposition 3.1, and the order given
in Step 2 of Gr-growth, this is indeed the case. Thus Gr-
growth is sound. Since, Step 2 of Gr-growth enumerates all
possible itemsets, Gr-growth is complete.

There are a number of practical matters involved in get-
ting an efficient implementation of Gr-growth. First, we
run Gr-growth to mine generators after we run FPclose*
to mine closed patterns. FPclose* [9] constructs a special
prefix tree structure that is very much like the classical trie
structure [7], as well as a head table that maps every item to

Input: Dataset D = Dpos ∪ Dneg, and support threshold
ms.

Output: The generators of F(ms,D) and their support lev-
els.

Method:
1: Fill in P [·], P pos[·], P neg[·], T [·], and H[·] by making one

pass through D; set G[{}] := true.
2: Let X1, ..., Xn be the nodes in the set-enumeration

tree on the possible itemsets in D, where X1 <1 X2 <1

· · · <1 Xn.
3: for i = 1, .., n do
4: S[Xi] :=

∑
X∈H[last(Xi)],Xi⊆X P [X];

5: Spos[Xi] :=
∑

X∈H[last(Xi)],Xi⊆X P pos[X];

6: Sneg[Xi] :=
∑

X∈H[last(Xi)],Xi⊆X P neg[X];

7: if S[Xi] ≥ ms and ∀α ∈ Xi.S[Xi] < S[Xi − {α}] and
∀α ∈ Xi.G[Xi − {α}] = true then

8: G[Xi] := true;
9: output Xi, Spos[Xi], and Sneg[Xi];

10: else
11: G[Xi] := false;
12: end if
13: end for

Figure 5: Pseudo codes for Gr-growth.

all its occurrences in the prefix tree. This special prefix tree
is isomorphic1 to the set-enumeration tree if we map each
node X in the set-enumeration tree to a corresponding node
whose path is X in the prefix tree. We modify FPclose* so
that P [X], P pos[X], P neg[X], and T [X] are efficiently com-
puted and stored at the node whose path is X in FPclose*’s
prefix tree. In this case, T [X] is just a flag in the last node
of the path X in FPclose*’s prefix tree to mark if the path
X is an entire transaction. The map H[·] then corresponds
to the head table constructed by FPclose*.

Second, although we use a for-loop in Step 3 of the pseudo
codes of Gr-growth, we traverse in reality the prefix tree
generated by FPclose* in an order corresponding to a depth-
first right-to-left traversal of the set-enumeration tree. By
Proposition 2.8, if Xi is not a generator, then all its supersets
cannot be generators. By definition of the set-enumeration
tree, all the supersets of Xi are enumerated in the subtrees
of Xi and subtrees of Xi’s siblings to the left. Therefore,
by the isomorphism between our set-enumeration tree and
the prefix tree constructed by FPclose*, we can easily skip
traversing all the subtrees and eliminate the computations
for Xi’s supersets.

Third, to avoid walking up and down the prefix tree when
looking for S[X], Spos[X], Sneg[X], and G[X], we store
pointers to the node corresponding to X in a hashtable in-

dexed by a hash function κ(P) =
∑

i∈P 2î−1mod q, where q

is the hashtable size, and î = j if i is the jth item in I = {i1,
..., im} according to the ordering <0. Incidentally, X <1 Y

iff
∑

i∈X 2î−1 <
∑

i∈Y 2î−1.

1This isomorphism is partial in the sense nodes that cor-
respond to those itemsets that do not occur in the dataset
are not mapped. However, it is not necessary to store any
information for these nodes, since the information is either
not needed or can be inferred.

3.2 Mining Generators and Mining Closed Pat-
terns Together

In this subsection, we present the GC-growth algorithm
for mining generators and closed patterns simultaneously
that is used for the second option described earlier for min-
ing odds ratio patterns. We also prove its correctness.

To implement GC-growth, we observe that

Proposition 3.3. Let a dataset D be given. Let P [X] =
|{dT | T ∈ D, X is prefix of T}|. Let H[α] = {X | P [X]
is defined, {α} is suffix of X}. Let X be a generator in D.
Then the closed pattern of [X]D is

⋂
{X ′′ | X ′ ∈ H[last(X)],

X ⊆ X ′, X ′ is prefix of X ′′, T [X ′′] = true}.

Proof. Let X be a generator. Let C be the unique closed
pattern of the equivalence class of X. Then C is in every
transaction T that contains X. Let X ′ ∈ H[last(X)] such
that X ⊆ X ′. Then C is in every transaction T that contains
X ′. By construction, SX′ = {X ′′ | X ′ is prefix of X ′′,
T [X ′′] = true} are precisely those transactions having X ′

as a prefix. In other words, S =
⋃

X′∈H[last(X)],X⊆X′ SX′ =

f(X,D). Since C is a closed pattern of [X]D, it is the largest
itemset that is common to all transactions in S. Then C =⋂

S.

Therefore, to simultaneously mine generators and closed
patterns, it suffices to make a modification to the Gr-growth
algorithm presented earlier to incorporate Proposition 3.3.
The pseudo codes of the resulting algorithm, GC-growth is
presented in Figure 6. We use Spos[·] and Sneg[·] to store
the support of closed patterns—rather than generators—in
Dpos and Dneg. We also use an additional map R[·], so
that R[C] is the set of generators corresponding to closed
pattern C. The correctness of this algorithm follows easily
from Proposition 3.3 and the proof of Theorem 3.2.

Theorem 3.4. Given a dataset D = Dpos ∪ Dneg and a
support threshold ms, GC-growth is sound and complete for
producing the generators and closed patterns of F(ms,D)
and their support levels simultaneously.

There are a number of practical matters involved in get-
ting an efficient implementation of GC-growth. First, as in
Gr-growth, we use a special prefix tree and head table to
keep P [·], P pos[·], P neg[·], T [·], and H[·]. Note that in the
case of Gr-growth, FPclose* is run first to produce closed
patterns, and the prefix tree and head table are produced
as a byproduct by FPclose*. In the case of GC-growth, we
only run the part of FPclose* that builds the prefix tree and
head table, but we do not run the rest of FPclose*.

Second, as in Gr-growth, although we use a for-loop in
Step 3 of the pseudo codes of GC-growth, we traverse in
reality the prefix tree. As before, by Proposition 2.8, we
skip the traversal and computations involving supersets of
those Xi that are not generators.

Third, as in Gr-growth, to avoid walking up and down
the prefix tree when looking for S[X] and G[X], we use a
hashtable. Similarly, R[C] is implemented as a hashtable.

Fourth, we optimize the computation of S =
⋂
{X ′′ | X ′ ∈

H[last(Xi)], Xi ⊆ X ′, X ′ is prefix of X ′′, T [X ′′] = true}.
Note that in Step 4 of GC-growth, we have already identified
S′ = {X ′ ∈ H[last(Xi)] | Xi ⊆ X ′}. We can thus re-use this
in the computation of S, and avoid traversing those branches
of the prefix tree that do not contain Xi. Furthermore, the

Input: Dataset D = Dpos ∪ Dneg, and support threshold
ms.

Output: The generators and closed patterns of F(ms,D),
as well as and their support levels.

Method:
1: Fill in P [·], P pos[·], P neg[·], T [·], and H[·] by making

one pass through D; set G[{}] := true; initialize R[·] to
empty.

2: Let X1, ..., Xn be the nodes in the set-enumeration
tree on the possible itemsets in D, where X1 <1 X2 <1

· · · <1 Xn.
3: for i = 1, .., n do
4: S[Xi] :=

∑
X∈H[last(Xi)],Xi⊆X P [X];

5: if S[Xi] ≥ ms and ∀α ∈ Xi.S[Xi] < S[Xi − {α}] and
∀α ∈ Xi.G[Xi − {α}] = true then

6: G[Xi] := true;
7: C :=

⋂
{X ′′ | X ′ ∈ H[last(Xi)], Xi ⊆ X ′, X ′ is

prefix of X ′′, T [X ′′] = true};
8: R[C] := R[C] ∪ {Xi};
9: Spos[C] :=

∑
X∈H[last(Xi)],Xi⊆X P pos[X];

10: Sneg[C] :=
∑

X∈H[last(Xi)],Xi⊆X P neg[X];

11: else
12: G[Xi] := false;
13: end if
14: end for
15: for each C such that R[C] 6= {} do
16: output R[C], C, Spos[C], and Sneg[C];
17: end for

Figure 6: Pseudo codes for GC-growth.

⋂
computation can be avoided by walking down the subtree

of the node corresponding to each X ′, and keeping those
items that have a total P [·] count that is equal to P [X ′].

4. PERFORMANCE STUDIES
We next conduct a few experiments for mining odds ratio

patterns on a number of benchmark datasets—mushroom,
connect-4, and chess—stored at the FIMI Repository, http:
//fimi.cs.helsinki.fi. We use a PC with P4 CPU,
2.4GHz, and 512MB RAM.

The mining results are shown in Figure 7. It contains
the timing information of the two options as discussed in
Section 3 for mining closed patterns and generators. This
figure also contains the number of qualified closed patterns
and generators under different support threshods and differ-
ent odds ratio thresholds from the three datasets.

It is clear from Figure 7 that the second option (min-
ing generators and closed patterns simultaneously) is con-
sistently faster than the first option (mining generators and
closed patterns separately). The speed-up becomes more
significant when the threshold of the odds ratio decreases
from 10 to 2.5. There are two main reasons. The first reason
is that significant extra computations are needed for sorting
and grouping the separately mined generators with the right
closed patterns. The second reason is that the mining the
generators via Gr-growth in a separate process from mining
the closed patterns via FPclose* causes the prefix tree to be
traversed and processed twice.

We also found that our speed (by the second option) of
mining odd ratio patterns is comparable to that of mining
closed patterns by state-of-the-art algorithms FPClose* [9]

and CLOSET+ [19]. Detailed timing information is shown
in Figure 8.

5. CONCLUDING REMARKS
In this paper, we introduce two very important types of

patterns that are commonly used in clinical studies and
other real-world applications—viz. odds ratio patterns and
relative risk patterns [20]. To the best of our knowledge,
these patterns have not be previously investigated by data
mining researchers.

We study the theoretical properties of the space of odds
ratio patterns and relative risk patterns. We show that these
two pattern spaces are not convex. However, we also show
that there is a systematic way to decompose these two pat-
tern spaces into a series of plateaus, based on support levels,
such that each plateau is convex. Therefore, each plateau
can be concisely represented by a border comprising the gen-
erators and the unique closed pattern of the plateau.

Then we present two algorithms to efficiently mine odds
ratio patterns and relative risk patterns. The first one mines
the generators and closed patterns of equivalence classes sep-
arately, and then combines them to discover odds ratio pat-
terns and relative risk patterns. The second one mines the
generators and closed patterns of equivalence classes at the
same time, and then uses them to discover odds ratio pat-
terns and relative risk patterns. At the core of these algo-
rithms are two novel methods—Gr-growth for mining gener-
ators, and GC-growth for simultaneously mining generators
and closed patterns.

Finally, we perform a number of experiments, and show
that both algorithms are efficient. However, the first algo-
rithm is considerably less efficient than the second one, as it
is dominated by the cost of sorting and matching the gen-
erators to the corresponding closed patterns. We also show
that the second algorithm is able to produce odds ratio pat-
terns and relative risk patterns at a cost comparable to the
mining of closed patterns, which are a considerably simpler
type of patterns.

Correction Notes
This is the corrected version of our paper in PODS 2006. In
the version that appears in PODS 2006, Proposition 3.3 and
the pseudo codes for Gr-growth and GC-growth are given
incorrectly.

6. REFERENCES
[1] R. Agrawal, et al. Mining association rules between

sets of items in large databases. In Proceedings of 12th
ACM-SIGMOD International Conference on
Management of Data, pages 207–216, 1993.

[2] A. Agresti. An Introduction to Categorical Data
Analysis. Wiley & Sons, New York, 1996.

[3] Y. Bastide, et al. Mining minimal non-redundant
association rules using frequent closed itemsets. In
Computational Logic, pages 972–986, 2000.

[4] Y. Bastide, et al. Mining frequent patterns with
counting inference. SIGKDD Explorations, 2:66–75,
2000.

[5] R. J. Bayardo. Efficiently mining long patterns from
databases. In Proceedings of 17th ACM-SIGMOD
International Conference on Management of Data,
pages 85–93, 1998.

[6] G. Dong and J. Li. Efficient mining of emerging
patterns: Discovering trends and differences. In
Proceedings of 5th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining,
pages 15–18, 1999.

[7] E. Fredkin. Trie memory. Communications of ACM,
3:490–500, 1960.

[8] B. Goethals and M. J. Zaki. FIMI03: Workshop on
frequent itemset mining implementations. In
Proceedings of ICDM2003 Workshop on Frequent
Itemset Mining implementations, pages 1–13, 2003.

[9] G. Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In Proceedings of ICDM2003
Workshop on Frequent Itemset Mining
Implementations, 2003.

[10] J. Han, et al. Mining frequent patterns without
candidates generation. In Proceedings of 19th
ACM-SIGMOD International Conference on
Management of Data, pages 1–12, 2000.

[11] J. Li, et al. The space of jumping emerging patterns
and its incremental maintenance algorithms. In
Proceedings of 17th International Conference on
Machine Learning, pages 551–558, 2000.

[12] V. P. Luong. The closed keys base of frequent
itemsets. In Proceedings of 4th International
Conference on Data Warehousing and Knowledge
Discovery, pages 181–190, 2002.

[13] F. Pan, et al. CARPENTER: Finding closed patterns
in long biological datasets. In Proceedings of 9th
ACM-SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
637–642, 2003.

[14] N. Pasquier, et al. Discovering frequent closed
itemsets for association rules. In Proceedings of 7th
International Conference on Database Theory, pages
398–416, 1999.

[15] N. Pasquier, et al. Efficient mining of association rules
using closed itemset lattices. Information Systems,
24:25–46, 1999.

[16] J. Pei, et al. CLOSET: An efficient algorithm for
mining frequent closed itemsets. In Proceedings of
ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery, pages 21–30, 2000.

[17] P.-N. Tan, et al. Selecting the right interestingness
measure for association patterns, In Proceedings of 8th
ACM-SIGKDD International Conference on
Knowledge Dicovery and Data Mining, pages 32–41,
2002.

[18] P.-N. Tan, et al. Selecting the right objective measure
for association analysis, Information Systems,
29:293–313, 2004.

[19] J. Wang, et al. CLOSET+: Search for the best
strategies for mining frequent closed itemsets. In
Proceedings of 9th ACM-SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 236–245, 2003.

[20] K. M. Weiss. Genetic Variation and Human Disease:
Principles and Evolutionary Approaches. Cambridge
University Press, 1993.

[21] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient
algorithm for closed itemset mining. In Proceedings of
2nd SIAM International Conference on Data Mining,

pages 457–473, 2002.

mushroom

OR Support 0.1% 1.0% 2.0%
closed patterns 48247 10428 5832

2.5 # generators 95744 24322 12181
first approach (secs) 53.410 11.922 4.891

second approach (secs) 3.359 1.281 0.921
closed patterns 44343 8186 4477

5.0 # generators 89298 21087 10376
first approach (secs) 52.745 10.212 4.860

second approach (secs) 3.296 1.25 0.906
closed patterns 41799 6662 3350

10 # generators 85492 18959 8845
first approach (secs) 52.477 9.988 4.815

second approach (secs) 3.265 1.234 0.875

chess

OR Support 30.0% 40.0% 50.0%
closed patterns 795454 180764 40598

2.5 # generators 818134 181083 40609
first approach (secs) 6551 408.228 51.064

second approach (secs) 766.593 13.796 3.468
closed patterns 91389 18995 7753

5.0 # generators 91525 18995 7753
first approach (secs) 3659 140.373 15.987

second approach (secs) 515.109 12.015 3.171
closed patterns 28233 1591 21

10 # generators 28233 1591 21
first approach (secs) 647.549 34.326 6.052

second approach (secs) 543.015 11.937 3.437

connect-4

OR Support 20.0% 30.0% 40.0%
closed patterns 1 0 0

2.5 # generators 1 0 0
first approach (secs) 32.933 13.125 8.750

second approach (secs) 10.312 3.453 2.328
closed patterns 0 0 0

5.0 # generators 0 0 0
first approach (secs) 33.011 12.484 8.672

second approach (secs) 10.203 4.406 2.312
closed patterns 0 0 0

10 # generators 0 0 0
first approach (secs) 32.956 12.625 8.848

second approach (secs) 10.265 3.593 2.25

Figure 7: The number of closed patterns and gener-
ators from the three datasets that satisfy different
levels of support thresholds and odds ratio thresh-
olds, and the timing information by the two mining
approaches.

mushroom

Support 0.1% 1.0% 2.0%
FPClose* (secs) 2.468 0.703 0.421

CLOSET+ (secs) 5.547 1.156 0.657
Our method (secs) 3.359 1.281 0.921

chess

Support 30.0% 40.0% 50.0%
FPClose* (secs) 96.5 18.546 4.234

CLOSET+ (secs) 1244.250 76.610 8.328
Our method (secs) 766.593 13.796 3.468

connect-4

Support 20.0% 30.0% 40.0%
FPClose* (secs) 27.203 8.625 4.375

CLOSET+ (secs) 29.390 8.593 4.688
Our method (secs) 10.312 3.453 2.328

Figure 8: Speed comparison between our method for
mining odds ratio patterns—based on simultaneous
mining of generators and closed patterns—and two
state-of-the-art algorithms for mining closed pat-
terns. The odds ratio threshold used in our method
is 2.5. Note that this threshold is not required for
mining frequent closed patterns where only a sup-
port threshold is required.

