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Summary

Understanding the mechanisms by which biological processes function and regulate

each other is crucial. Often, one studies these biological processes as a network of

biomolecules interacting with each other through biochemical reactions. The dynamics

of interaction among the various biomolecules determines the cellular functions and

behavior. Hence, modeling and analyzing the dynamics of biochemical networks is crucial

to the understanding of biological processes. Computational Systems Biology deals

with the systematic application of computational methods to model and analyze such

biochemical networks, which are often called biopathways.

Two main paradigms exist for modeling biopathways, the deterministic and the

stochastic. In the deterministic approach ordinary differential equations (ODEs) are

commonly used while in the stochastic approaches, Markov chains are common. Our

focus is mainly on models that arise in stochastic settings. Our goal in the thesis is

to use a formal verification technique called probabilistic model checking to verify and

analyze the dynamics of stochastic models.

Model checking refers to the broad class of techniques to automatically evaluate if

a system satisfies properties expressed as temporal logic formulas. Probabilistic model

checking (PMC) deals with analysis and validation of systems which exhibit stochastic

behavior. In the context of biological pathways, explicitly dealing with Markov chains is

often infeasible due to the state space explosion problem. The results reported in [1, 2]

shows that a probabilistic graphical model called dynamic Bayesian network (DBN) can

be a more natural and succinct model to work with.

Consequently, our work concerns the analysis of DBN models of biopathways from a

model checking point of view. Specifically, we first consider the problem of probabilistic

model checking on DBNs based on probabilistic inference. However, exact inference is

hard for large DBNs. To get around this, in the first part of the thesis, we present a new

improved approximate inference method for DBNs called hybrid factored frontier. We

then formulate, for DBNs, a new probabilistic temporal logic called bounded linear time

probabilistic logic. We develop an –approximate– model checking framework based on
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DBN inference algorithms. We then verify interesting dynamical properties of biological

systems.

The second part of this thesis focuses on using another scalable probabilistic model

checking approach called statistical model checking for calibration and analysis of ODE

based models. The uncertainty concerning the initial states is modeled via a prior

distribution over an interval of values. The noisiness and the cell-population-based

nature of the experimental data are captured by the confidence level and strength of the

statistical test. The experimental data as well as qualitative properties of the pathway

are encoded as the specification formula in a temporal logic formalism. In this setting, we

use optimized versions of statistical model checking algorithms for the task of parameter

estimation. Specifically, we build a statistical model checking based parameter estimation

framework by coupling it with standard global optimization techniques. Our results

suggests that this framework is efficient, useful and scales well.

Finally, we apply our statistical model checking framework to build and calibrate

an ODE model for the Toll like receptor (TLR) 3 and TLR7 pathways. We investigate

specific crosstalk mechanisms which lead to synergy when the TLR3 and TLR7 receptors

are stimulated together in a specific order and a specific time gap. Our analysis leads to

interesting insights regarding the potential crosstalk mechanism.
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Chapter 1

Introduction

Understanding “Life” has been a major scientific quest for mankind. Central to this

quest is the study of basic unit of life, namely, the cell. The molecular composition of

parts of a cell and how they function has been the fundamental question that biologists

have been trying to answer over the past century. From DNA to RNAs, proteins etc.,

we now understand their chemical structure, basic functions and to a certain extent the

mechanisms driving the key developmental and regulatory processes of life.

This has been possible, thanks to the rapid advancements in experimental technologies.

A fitting example of the success of experimental biology is the human genome project.

In the near future, one can get a human genome sequenced in a day for as little as

US$1000 [3]. Similar technological advancements in other fronts are on the way. These

technologies are producing vast amounts of data.

With all this data pouring in, we now have a good static picture of the different

components and compositions of a cell along with their essential functions as documented

in databases such as Gene ontology [4], BRENDA [5], PDB [6], Swiss-Prot [7], UniProt

[8], TRANSFAC [9]. It is now crucial to study and understand the dynamic behavior of

these components since they interact in complex yet coherent ways to perform biological

functions. To achieve this, system level approaches to understanding biological systems

is a basic requirement.

Henri Poincarè said , “The aim of science is not things themselves, as the dogmatists

in their simplicity imagine, but the relations among things; outside these relations there

is no reality knowable”. This captures the approach to be taken if new strides are to

be made in our understanding of biological systems. For instance, it is well known
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that cancer is a complex disease, typically characterized by uncontrolled cellular growth.

However, the mechanisms which decide the fate of a normal cells to become cancerous are

so varied, complex, coordinated and systemic that studying components in isolation is

unlikely to lead to an effective treatment [10]. Almost every human disease and biological

process reflects this kind of systemic nature. The field of Systems biology stems from

this need to understand biological processes as holistic dynamical systems. Its goal is to

understand and analyze the behavior and interrelationships among functional biological

systems [11].

Studying systems of such complexity requires a multidisciplinary approach. The field

of Computational Systems Biology represents such efforts. It is at the intersection of

computer science, engineering, mathematics, physics and biology. It primarily deals with

building executable qualitative and quantitative mathematical models. It is concerned

with developing efficient data structures, algorithms and formalisms for analyzing and

visualizing the dynamics of biological processes[11]. These models, in addition to pro-

viding an understanding of the underlying mechanisms, can be used to predict system

behavior under different conditions or perturbations. They can assist in designing better

experiments. They also help by highlighting the gaps we have in our understanding.

Furthermore, they can serve as repositories of our current knowledge of these systems. It

is in this context the research in this thesis has been carried out.

1.1 Overview of the thesis

Biological processes are driven by networks of biochemical reactions. These networks are

often termed biopathways. Different mathematical formulations have been used to model

these pathways; biopathways are modeled and studied either as deterministic systems

(such as ordinary differential equations (ODEs)) or stochastic systems (such as Markov

chains). Our focus in this thesis will be on the class of models which arise in stochastic

settings. In biological systems, stochasticity appears in different ways. Randomness,

noise and uncertainty are central players in biological processes. Traditionally, in classical

biology, these aspects were considered to be a nuisance. However, increasingly these

aspects are considered important. In addition, experimental procedures are marred

by limitations in technologies available for accurate observation and measurement of
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biomolecules. Hence, incorporating these aspects into modeling is crucial. For modeling

stochastic biological processes, discrete time Markov chains (DTMC) and continuous

time Markov chains (CTMC) serve as the core mathematical formalism. Two main issues

exist in using these classes of models. First, in the context of systems biology models,

the state space associated with these models is extremely large. Explicit representation

of these systems is cumbersome and sometimes even impossible. In this context, the

probabilistic graphical model called dynamic Bayesian networks (DBNs) offers attractive

alternatives to succinctly represent pathway dynamics since they capture the probabilistic

dynamics locally. In this thesis, one of our main focus will be DBNs.

The DBNs in our setting arise as approximations of the dynamics induced by a system

of deterministic ordinary differential equations (ODE) which describe the signaling events

of biochemical networks. The technique was developed in [12]. This approximation is

derived by discretizing both the time and value domains, sampling the assumed set of

initial states and using numerical integration to generate a large number of representative

trajectories. Then based on the network structure and simple counting, the generated

trajectories are stored compactly as a DBN. One can then analyze the biochemical

network using the DBN. This approach scales well and has been used to aid biological

studies [12, 1].

Formal verification, deals with the broad class of methods which deal with using

mathematically rigorous techniques to prove or disprove that the system is “correct”

with respect to intended properties specified in a formal language. Formal verification

techniques chiefly comprise Model checking and deductive verification. They have

been traditionally used in the context of hardware circuits, embedded and software

systems which are safety critical [13]. Techniques from the domain of formal verification

can be applied for automated analysis tasks in the context of biopathway models and

hence provide a promising way to deal with model analysis. This thesis focuses on using

a formal verification technique called probabilistic model checking (PMC) for analyzing

the dynamics of stochastic biopathway models. The intended properties are specified in

probabilistic temporal logics. The probabilistic model checker traverses the state space

to quantitatively check if the stochastic model conforms to the properties.

Solving the PMC problem amounts to traversing the state space of the stochastic

model, and computing the probability of the property to hold and comparing it with the
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threshold probability dictated by the temporal logic formula. Exact methods have a high

time complexity and are suitable only for relatively small systems. In biological settings,

the size of models is considerably larger than those that can be gracefully handled by

exact methods. Hence, approximate methods for solving the problem need to be used.

Our contributions in this thesis are towards this end.

As a key contribution of this thesis, we first consider the problem of probabilistic

model checking on DBNs. Probabilistic model checking on DBNs is based on probabilistic

inference. Exact probabilistic inference is infeasible for large DBNs, hence approximate

algorithms are used. We present a major improvement to an existing inference algorithm

called the factored frontier algorithm (FF). Next, we present a new probabilistic temporal

logic and develop an approximate probabilistic model checking framework for DBNs.

Both FF and our improved version of FF called hybrid factored frontier (HFF) play a

crucial role in the solution of the associated model checking procedure.

A second class of approximate algorithms, called Statistical model checking works

by sampling a set of simulation traces from the model. Each simulation trace is evaluated

to determine if it satisfies the property, and the number of traces which satisfy the

property are used to decide the solution of the PMC problem. These algorithms offer a

promising approach to scale the applicability of PMC to large stochastic models. As a

second major contribution of the thesis we present a statistical model checking based

calibration framework for ODE models.

Finally, we apply our framework to construct and analyze a new ODE model for

toll like receptor (TLR)3 and TLR7 signal transduction which play a crucial role in

innate immune response. We use our statistical model checking framework to investigate

cross talk mechanisms between these two pathways, which lead to synergistic immune

response.

We now turn to a more detailed presentation of our contribution.

1.2 Research Contributions

1.2.1 Probabilistic model checking on DBNs

Markov chains of various kinds serve as the core mathematical formalism for modeling

stochastic biological processes. However, in many of these settings, the probabilistic
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graphical model called dynamic Bayesian networks (DBNs) [14] can be a more appropriate

model to work with. This is so since a DBN offers a factored and succinct representation

of an underlying Markov chain. Here we look at DBNs from this standpoint.

Probabilistic inference on DBNs

A DBN has a finite set of random variables with each variable having a finite domain of

values. The value of a variable at time t only depends on the values of its parents at time

t− 1. The probabilistic dynamics is captured by a Conditional Probability Table (CPT)

associated with each variable at each time point. This table will specify how the value

of a variable at t is conditioned by the values of its parent variables at time t− 1. The

global state of the system at time t is a tuple of values with each component denoting

the value assumed by the corresponding variable at time t.

To analyze DBNs, one is interested in computing the marginal probability, i.e., the

probability of a variable X taking value v at time t. To compute this exactly, we need

to compute the joint probability distribution over global states at time t. This can be

computed by propagating the joint distribution at time t− 1 through the CPTs. Doing

it exactly is infeasible for large DBNs [15]. Hence, approximate inference algorithms

such as factored frontier (FF) algorithm [16] are used. Since the inference algorithm is

approximate, it introduces errors in computing the probability distributions. To reduce

these errors, we propose an improved inference algorithm, termed hybrid factored frontier

(HFF) which is a parameterized extension of FF algorithm. The parameter acts as an

tunable control between accuracy and effort. We show that HFF is a scalable and efficient

algorithm in our setting with reduced errors. We also perform an error analysis of the

HFF algorithm. Finally, we present experimental results using large DBN models to

validate the improvements achieved by the HFF algorithm.

Probabilistic model checking based on probabilistic inference

We then formulate, for DBNs, a new probabilistic temporal logic called – bounded linear

time probabilistic logic (BLTPL) – which allows us to express dynamic properties in

terms of probability distributions. BLTPL can be considered as a probabilistic variant of

Linear Time Temporal Logic (LTL) in which the atomic propositions represent marginal

probabilities and are of the form (X, v) ≤ c or (X, v) ≥ c where X is a random variable
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corresponding to a node in the DBN, and c is a rational number in [0, 1]. The assertion

(X, v) ≤ c says that the probability of the random variable X currently assuming the

value v is less than c; similarly for the assertion (X, v) ≥ c. The remaining operators

of the logic are handled in the usual way. Semantically, BLTPL is similar to bounded

LTL [13] in the sense the logic is interpreted over only a finite set of time points. In our

logic, probability enters the picture only via atomic propositions. However, one can still

express many interesting dynamical properties.

Next, we develop an approximate model checking framework based on the probabilistic

inference algorithms on DBNs. We then use the developed algorithms to verify interesting

dynamical properties of biological systems.

1.2.2 Statistical model checking based calibration of ODE models

Statistical model checking, as discussed before, relies on drawing repeated traces of the

underlying stochastic system to statistically assert if a property holds. In the context of

biological models, these algorithms can be improved for efficiency and can be suitably

adapted to perform tasks such as model calibration of pathway models.

First, we show how statistical model checking can be used for analyzing ODE systems.

We assume that the initial concentrations of the various species take their values according

to a distribution (usually uniform) over a set of initial states, this is to account for the

substantial cell-to-cell variability in the initial states[17]. In such a setting the vector

fields defined by the ODE system will be a C1 (continuously differentiable) function and

hence one can assign a probability measure to the set of simulation traces that satisfy a

dynamical property expressed as a bounded linear time temporal logic[18] formula.

Drawing simulation traces is an expensive task. Optimizing the generation and

verification of these traces and using these algorithms for performing novel applications

such as parameter estimation is important. We use an on-the-fly approach to perform

statistical model checking where generation of the trace and model checking are performed

together. Next, we formulate a statistical model checking based framework for parameter

estimation of biopathway models. Specifically, we couple our statistical model checking

algorithm with standard global optimization techniques to calibrate and analyze these

systems. This approach has several advantages. First, both quantitative and qualitative

knowledge (which can come from the literature or general observations about the system)
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can be utilized to calibrate the model. This is in contrast to traditional methods of

pathway calibration which use only quantitative experimental time series data. The

uncertainty concerning the initial states is modeled via a prior distribution over an interval

of values that a variable can assume initially. The noisiness and the cell-population-based

nature of the experimental data are captured by the confidence level and strength of the

statistical test. It is a generic approach and can be applied in different model formalisms.

Our results reported in chapter 7 and 8 suggest that our statistical model checking based

framework is efficient, useful, and scales well.

Modeling and analysis of Toll like receptor pathway

We apply our calibration framework based on statistical model checking to model and

analyze the signaling cascades involved in toll like receptor (TLR) pathways. These

receptors are crucial players in innate immunity. They are among the key players driving

immune system and are usually the first line of defense against external attacks (such

as bacteria or viruses). Specifically, we construct an ODE based model of the TLR3

and TLR7 pathways and investigate potential cross talk mechanisms which lead to

marked synergistic activation of immune response when these receptors are activated

in a specific order and with a specific time gap. We use our statistical model checking

based parameter estimation framework to estimate unknown parameters of the pathway.

Next, we hypothesize and investigate three potential crosstalk mechanisms. Our initial

analysis suggests that the cross talk mediated by the production of Type I interferons is

the most promising candidate.

1.3 Outline of the thesis

The rest of this thesis is organized as follows.

In Chapter 2, we briefly discuss background material on modeling biological pathways,

common techniques involved in pathway construction and analysis such as parameter

estimation, sensitivity analysis and model checking.

Chapter 3 discusses Markov chains and dynamic Bayesian networks. This chapter

also discusses how DBNs arise as approximate representations of bio pathway dynamics

induced by a system of ODEs. They will serve as the main source of DBNs for all our
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case studies. However, the methods we develop in this thesis are applicable to DBNs in

general.

Chapter 4 describes probabilistic inference on DBNs, and specifically discusses our

improved inference method called hybrid factored frontier (HFF) algorithm.

Chapter 5 describes the basics of model checking, probabilistic model checking and

discusses related work on the use of model checking in computational systems biology.

Chapter 6 presents our probabilistic temporal logic called bounded linear time

probabilistic logic (BLTPL) and the probabilistic model checking framework based on

the approximate inference algorithms for DBNs.

Chapter 7 discusses our work on using statistical model checking for parameter

estimation of models that arise in the context of ODEs.

Chapter 8 discusses the application of our statistical model checking framework for

modeling the toll like receptor pathway. We present our model for the TLR3 and TLR7

pathway, and hypothesize possible crosstalk mechanisms. We discuss some of our findings

and the biological insights gained so far in the process.

Finally, Chapter 9 summarizes our main contributions in this thesis. We discuss the

significance of the obtained results and also identify directions for future research.
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Chapter 2

Preliminaries

Biological systems are composed of biomolecules whose complex yet coordinated ac-

tions leads to the numerous biological functions. We wish to reason about how these

molecules work together at the systemic level to perform various biological functions.

To systematically record and understand these interactions we construct models of

biopathways.

In this chapter, we will briefly discuss biopathway modeling. First, we describe the

main paradigms of modeling biopathways. Next, we discuss the typical modeling life

cycle with emphasis on tasks such as model construction, model calibration, validation

and analysis.

Biopathways can be broadly classified based on the biological functions they perform.

Gene regulatory networks describe the regulatory interaction between genes in a cell.

Metabolic networks describe chemical reactions involved in the production or breakdown

of different metabolites which lead to energy production and storage in the cell. Signaling

pathways describe reactions that occur with in a cell in response to external or internal

stimuli. In the case of signaling pathways, the signal from the stimuli is carried by a

cascade of proteins to the effector molecules which accordingly change the state of the

cell. Our focus in this thesis will be on signaling pathways and their associated dynamics,

although the methods developed through the thesis can be applied to other settings as

well.
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2.1 Biopathway modeling

A variety of mathematical models have been proposed for modeling signaling pathways.

These models vary from being purely qualitative [19, 20, 21] to quantitative [22, 23]

models. Model formulation can be purely deterministic, stochastic or a combination

of both[24]. The choice of the modeling framework depends on the biological systems

under study, the kind of experimental data available and the specific biological insights

we hope to gain from the modeling exercise. The main formalisms for mathematical

modeling include ODEs [25], partial differential equations (PDEs)[26], Boolean networks

[27], Petri nets [28, 29], rule-based languages [30], process algebra [31, 32] etc.

2.1.1 Deterministic models

The most common paradigm for modeling biological systems are deterministic models

based on Ordinary differential equations (ODEs). Given an initial state of the system its

future states are uniquely determined by the underlying kinetics.

ODEs capture the concentration changes of different species through the reactions

they take part in. The concentration of every molecular species is assumed to be

continuous valued and its change over time is governed by a differential equation. The

formulation is guided by the kinetic laws that govern each reaction [25]. Let us consider a

pathway, comprising of a network of N species. We let each species be represented by Xi,

i ∈ [1 . . . N ]. Let these N species, overall, participate in R reactions. Each reaction has

an identifier Yj , j ∈ [1 . . . R]. Next, assuming that the reaction is confined in a constant

volume V , let nXi(t) denote the number of particles of species Xi at time t. We refer by

[Xi](t), the concentration of Xi at time t given by nXi(t)/V . With each reaction Yj , we

also associate a kinetic function fj which represents the velocity of the reaction. Mass

action kinetics is the simplest and most commonly used commonly used kinetic function.

In this case the velocity of the reaction is proportional to the product of the reactant

concentrations to the power of their corresponding molecularities. For instance, consider

a reaction network consisting of five species as follows:
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Y1 : A+ 2B→C

Y2 : C +D→E (2.1)

Here A and B are reactants, C denotes the formed product of reaction Y1 which

in turn interacts with D to form the final product E, f1 and f2 in this case will be

k1 ∗ [A] ∗ [B]2 and k2 ∗ [C] ∗ [D] respectively. The quantity k1, k2 are called kinetic rate

constants.

In some scenarios, several reactions may be lumped or assumptions about the relative

speed or concentrations of the different species are made. This leads to more complex

kinetic functions such as Michaelis Menten, ping-pong mechanisms or Hill reaction [33, 34]

etc.

The set of coupled ODEs for the system consists of one equation for each of the

variable Xi of the form

d[Xi]

dt
=

R∑
j=1

(pij ∗ fj) (2.2)

where pij = 0 if Xi does not participate in reaction Yj , pij = 1 if Xi is a product in

the reaction Yj and pij = −1 if Xi is a reactant in the reaction. In the small example

considered before, the corresponding system of ODEs will be:

d[A]

dt
= −k1 · [A] · [B]2

d[B]

dt
= −k1 · [A] · [B]2

d[C]

dt
= k1 · [A] · [B]2 − k2 · [C] · [D]

d[D]

dt
= −k2 · [C] · [D]

d[E]

dt
= k2 · [C] · [D]

Given a well-defined system of ODEs as discussed above, the initial values of the N

species, the kinetic rate constants and suitable continuity assumptions, the solution to

the system of ODEs will have a unique solution [35]. Hence, in principle, ODE based
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models can be used to get the temporal time profile of the system behavior by solving

the corresponding system of ODEs. However, ODE systems which describe biopathway

dynamics are usually high-dimensional and nonlinear and hence do not admit closed

form solutions. Consequently, one must rely on numerical integration methods such

as the Euler method, Runge-Kutta method[36] etc., to get approximate solutions. In

addition, differential equations corresponding to biopathways are stiff [37], i.e., the

variables of the system of ODEs change at widely different scales. In such cases one has

to use specialized stiff ODE solvers such as LSODA[38] , CVODE[39], ODEPACK[40] ,

ODEINT[41].

Formulating and solving ODEs, requires one to have a detailed knowledge about the

mechanisms of the reactions, the value of rate constants etc. However, much of this

information including many rate constant values will be unknown. Hence, restricted

classes of ODEs which are derived from original ODEs by making several simplifying

assumptions are often used. Examples include the peicewise−multiaffine models which

have been used to model gene regulatory models [42, 43]. The main advantage of these

include, a simpler mathematical formalism, analysis even under parameter uncertainty,

and in many cases the qualitative properties of solution are as good as ODEs[44, 45].

Another class of simplification of the original ODE formulation are the class of qualitative

differential equations (QDE), used when quantitative knowledge about the system is

limited. It has been used for qualitative reasoning in gene regulation studies[46, 47, 48].

2.1.2 Stochastic models

Deterministic approaches such as ODEs are applicable only when the number molecules

of the different components are sufficiently high and that they are a part of a well-mixed

solution. They ignore sources of noise which are inherent to biological systems.

Stochasticity manifests in biological system due to low concentration (particle num-

bers) of various species within a cell. Biomolecules which participate in processes such

as transcription, translation, regulation of transcription etc., are in low copy numbers

and hence small fluctuations can produce significant changes in the dynamics [49]. The

concentration, localization, intrinsic state of these molecules also has an impact on the

fate of the consequent processes they trigger [50]. In addition, cell-to-cell variability can

occur due to random microscopic events in the cell which decide which reactions to occur

14



and in what order [50].

Another consideration is that experimental procedures usually measure cell population

data, each cell in the population may be in a slightly different state with respect to the

concentration of different components, the onset of reactions, the surrounding micro

environment in the cell etc. Modeling methods should factor in these aspects of the

experimental data. A good example for this is reported in [17], where differences in the

initial concentrations of various proteins regulating apoptosis was attributed to be the

main cause of cell-to-cell variability in the timing and probability of cell death, it was

shown to be the main reason that only a fraction of tumor cells were killed after exposure

to chemotherapy[17].

A popular method for modeling stochastic systems is by the Chemical Master

Equation(CME)[51]. The CME is a set of first order differential equations, which

describe the time evolution of a well-mixed, homogeneous system in a way that takes

into account the fact that number of molecules is known(and suitably low) and exhibit

randomness in their dynamical behavior, the time evolution of the system is in terms of

discrete stochastic events. The method accounts of the discreteness and stochasticity

that is inherent in biological systems. The state of the system is defined as the number of

molecules of each species at a particular time point. CME then considers the probability

distribution over its possible states and tracks the time evolution of this distribution.

Solving the CME is impractical due to resulting blow up in the state space even for

relatively small systems. In fact the time evolution of CME can be described by a

continuous time Markov chain (CTMC). So, to efficiently simulate the CME, Gillespie

proposed the stochastic simulation algorithm (SSA) [51]. This method relies on carrying

out large simulations the underlying stochastic system, until the resulting distribution of

the state of the system approaches the distribution implied by the CME. This approach

is also computationally expensive and many improvements to the original SSA have been

proposed [52, 53, 54, 55].

Other formalism for analyzing stochastic models include process algebra based method

such as Bio-PEPA[56, 32], Rule based formalisms such as κ[30] etc. Bio-PEPA is

an extension of the stochastic process algebra framework PEPA, enhanced to handle

biological networks. PEPA was originally used for performance analysis of concurrent

systems. Models in Bio-PEPA represent a formal, compositional representation of the
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biological model. These models can be converted to a CTMC and analyzed numerically.

Stochastic simulations such as SSA can also be carried out on these models.

The κ tool[30] uses a rule based modeling framework which views biological molecules

as agents. The dynamics of the system is specified by a set of rules, which express the

way these agents interact with each other. The set of rules fully specify the system. In

fact, the κ model can be interpreted as a large and complex CTMC. Next, one analyzes

them using stochastic simulations. The primary advantage of such rule based formalisms

is that they overcome the combinatorial explosion in the number of species that arise

especially during complex formation, localization of post translational modifications.

The PRISM tool[57] is a probabilistic model checker used for formal modeling and

analysis of stochastic systems. It has also been used to model and analyze stochastic

models of biopathways (which primarily arise as CTMCs[58, 59, 60, 61]). System models

are described using a high-level state-based description language. In this language a

system is described as the parallel composition of a set of modules. The PRISM model

description is then translated into a CTMC, DTMC or Markov Decision Process (MDP).

Properties are specified using PCTL (for DMTCs) or CSL (for CTMCs). In PRISM it is

possible to either determine if a probability satisfies a given bound or obtain its actual

value. There is also support for the specification and analysis of properties based on

costs and rewards.

However, the primary concern in working with stochastic models is that of scalability

and the resource intensive nature of computations. Performing stochastic simulations

is slow even for small systems; hence considering practically large pathways is almost

always intractable. The task of model calibration is also equally challenging for these

class of systems.

2.2 Model construction

Model building and the associated analysis are important steps and we will discuss them

in some detail in the current and following sections. Figure2.1 depicts the life cycle of

building and analyzing a computational model.

Once we decide the scope of the modeling exercise, we build the structure of the

model which incorporates our current understanding of the pathway. Resources such as
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Figure 2.1: Life cycle of building a reliable computational model of Biopathways

existing literature about the pathway, databases such as Reactome [62], KEGG [63] etc.,

are used for the process. The initial structure also incorporates additional insights and

domain knowledge by biologists. Next, a suitable modeling formalism is chosen to model

the pathway.

2.3 Model calibration and validation

Once the structure of the pathway and a suitable modeling formalism has been decided,

next, the task is to calibrate the model. Model calibration, often referred to as parameter

estimation, deals with estimating unknown parameters of the model (depending on

the chosen formalism). Unknown parameters usually include the kinetic reaction rate

constants and initial concentration of reactants. The goal is to calibrate the model

so that model predictions can reproduce the observations in experimental data. The

available experimental data is usually divided into two parts, one is used for calibrating

the model and the other is used to test the quality of estimated parameters. The problem

is formulated as a mathematical optimization with the aim of minimizing (or maximizing)
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an objective function. The objective function gives a measure of difference (or similarity)

between the experimental data and the model output. Parameter estimation is a resource

intensive task since evaluating the goodness of fit for each parameter combination involves

repeatedly simulating the underlying model. In large pathway models the search space

can be high dimensional (owing to the large number of unknown parameters), and the

objective function is non-linear and multi-modal.

The task of parameter estimation algorithms is to traverse the high dimensional

parameter space to look for good parameter sets which can explain the experimental

data. The major distinguishing feature of various optimization algorithms lies in the

way they traverse the parameter space. They can be classified into local and global

optimization methods. Local methods such as Levenberg-Marquardt [64, 65], Steepest

Descent [66] and Hooke and Jeeves [67] have the advantage of converging fast, but

usually suffer from the problem of settling in local minima. Global methods such as

Genetic Algorithms (GA) [68], and Stochastic Ranking Evolutionary Strategy (SRES)

[69] – although time consuming – guarantee a globally optimal solution in principle. A

typical search procedure involves iteratively performing the following two steps until

there is a good fit between model and experimental observations: 1) guess values of

parameters based on the chosen optimization method 2) evaluate the objective function

of the guessed parameters. Global optimization algorithms such as GA and SRES are

known to perform well in the context of pathway models [70]. Given the dimensionality

curse of parameter estimation, there has been some interesting work on de-compositional

approaches for parameter estimation [71, 72].

Once the model is calibrated, it is subjected to model validation. In this step the

model output is evaluated for goodness of fit with the test data (that was not used to

train the model). If the fit is reasonably good, then we have a fairly accurate model

using which further analysis tasks can be carried out. If the fit is not acceptable, then we

continue another round of parameter estimation. This process continues till we can get

reliable parameter estimates. Sometimes, we may not be able to get good parameter sets

even after performing multiple rounds of parameter estimation, in which case we may need

to go back to our original model structure and refine it by gathering more experimental

or literature evidence about the structure and dynamics in close collaboration with

biologists.
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2.4 Model analysis

Once a reliable computational model has been built, next, one can perform various model

analysis tasks using the model. Analysis methods such as bifurcation analysis [73],

provides a framework to qualitatively analyze the dependence of qualitative behavior(such

as oscillations) of the system on model parameters. It graphically describes the change

in the behavior of a system when one or more model parameters are varied. Bifurcation

points are points along the parameter space where there is switch in the desired behavior.

It has been used in the context of biological systems for robustness analysis [73, 74, 75].

Another analysis method is sensitivity analysis which aims to study how changes

in the kinetic rate constants or initial concentrations of species of the model affect the

desired of dynamic behavior the model, either qualitatively or quantitatively.

Sensitivity analysis Sensitivity analysis deals with the study of how variations in

parameters affect the dynamical behavior of the model. It helps in tasks such as robustness

analysis, model reduction, optimal experimental design, drug target selection [76, 77, 78]

etc. Sensitivity analysis methods can be classified into local and global methods. Local

methods focus on assessing the effect of changes in individual parameters around their

nominal values, locally [79, 80]. However, assessing changes locally can sometimes lead

to misleading results. Global methods [81, 82], on the other hand, assess the importance

of the parameters by varying them in a global manner. Various global methods have

been recently applied on biological pathway models [83, 84, 85, 86]. These approaches,

in general, work by drawing a representative set of samples from the parameter space,

simulating the system for the chosen parameter sets, and deriving the global sensitivities

of parameters by statistical analysis of the simulation results. For instance, Multi-

parametric sensitivity analysis (MPSA) [87, 83], classifies the sampled parameter sets

into acceptable and unacceptable classes based on a defined measure. Based on the

distribution of elements in these classes it computes the sensitivity index.

Verification and analysis using formal methods

Getting meaningful biological insights from models is crucial. However, as the scale

of these models increases, ensuring that models are in accordance with the current

knowledge of the system and conform to experimental data are crucial. On the other
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Figure 2.2: General model checking procedure

hand, modeling is essentially an iterative process, one may have to re-estimate some

parameters, add new links to the model when new experimental data becomes available

or if new hypotheses are to be incorporated into the model. At every stage of model

construction and refinement there is a natural need for verifying these models to ensure

that they are consistent with what is known about the system. In addition, for such

large models, manual analysis of simulation output is increasingly difficult and is prone

to interpretation error depending on the person analyzing the results. More importantly,

instead of resorting to simulations, techniques which can look at all possible outcomes of

the system behavior and reason about its properties are important.

Formal methods such as model checking provide an attractive approach for dealing

with these issues. The basic idea is to formalize qualitative or quantitative system

behavior into queries in a specification language - called temporal logics. These queries

are then automatically processed using efficient algorithms to decide the extent to which

the system conforms to them. There has been an increasing interest in using these

approaches for analyzing biopathway dynamics[88, 89, 90, 57, 91, 92].

Model Checking refers to the broad class of techniques to automatically evaluate if a

system model satisfies specific properties expressed as formulas in temporal logics. This

method was initiated in the seminal work of Amir Pnueli [93] who proposed temporal

logics as a formalism for specifying dynamic properties of computing systems which

was followed by the technique of model checking, proposed independently by Clarke

and Emerson [94] and Quellie and Sifakis [95]. Model checking has been widely used

in domains of embedded systems, software engineering etc., to find critical bugs in

hardware and software modules. These techniques have also been extended to analyze

stochastic systems such as Markov chains, where they are studied under the umbrella of
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probabilistic model checking.

The main components of model checking procedure are as shown in figure 2.2

1. A model M of the system, represented as a state transition graph where the nodes

(S) represent the possible states of the system and the edges (T ⊆ S× S) represent

possible transitions of the system from one state to another.

2. A labeling function L that labels each state in (S) with atomic propositions (AP )

that hold in the state i.e, L : S �→ 2AP ;

3. The property to be checked (ψ) is expressed as formulas using temporal logics.

These formulas are built using atomic propositions, propositional connectives and

temporal operators.

4. A model checker which systematically explores the state space to verify if the

property ψ holds for the model M .

The usefulness of model checking in systems biology is currently being emphasized

[96]. It is suggested that in the future a library of model-checking queries that encode key

behavioral features of a biological pathway will be built, which would be used as a yard

stick to check the reliability of a model. It will enable testing any new model against

these queries to assess its predictive power, a model that is consistent with all or most of

the behavioral features in the library viewed as being reliable. Model checking has also

been applied for model calibration and sensitivity analysis tasks [97, 98, 99, 100].
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Chapter 3

Dynamic Bayesian Networks

In this chapter, we will begin by defining the notions of Markov chains, Bayesian networks

and dynamic Bayesian networks (DBNs). Next, we will describe how DBNs arise as

approximate representations of biopathway dynamics induced by a system of ODEs. This

will form the basis for the material presented in the subsequent chapters.

3.1 Markov Chains

Consider a stochastic process {Xt, t = 0, 1, 2, 3...}. Assume that it takes values from a

finite domain, say S ∈ {s0, s1, s2, s3...sm}. Here t ranges over the time points of interest

and Xt = sk indicates that the process is at a state sk at time t. A Markov chain[101]

can be defined as a stochastic process such that:

P (Xt+1 = sj | Xt = si, Xt−1 = st−1, · · · , X0 = s0) = P (Xt+1 = sj | Xt = si) = pij ;

st−1, · · · , s0 ∈ S; i, j ∈ {0, 1, 2....,m} and t ≥ 0.

The above expression says that the conditional probability of the stochastic process

being at state sj at time t+1 (Xt+1) given all its past states (Xt−1, · · · , X0) and current

state(time Xt) is independent of all the past states and is given by pij . This is the Markov

property. Whenever the process is in some state si at time t, it will transit to state sj at

time t+ 1 with a fixed probability pij , often referred to as transition probability. As a

result, pij ∈ [0, 1] and
∑

j pij = 1. We represent the transition probabilities using the

matrix T of order m×m, whose element Tij=pij . An initial distribution λ0 is specified

over S at t = 0. The probability distribution λk over S at t = k will be given by (λ0)T k.
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3.2 Bayesian Networks

Bayesian networks (BN) ([14]) belong to a class of probabilistic graphical models consisting

of a finite acyclic graphical graph GB = (N,E) where N is the set of nodes, each node

i representing a finite valued random variable Xi taking a value from domain V of

cardinality K, for 1 ≤ i ≤ size(N). The set E of edges between nodes represent the

local dependencies between nodes. Associated with every node Xi is a conditional

probability table Ci = P (Xi|Pa(Xi)) where Pa(Xi)={Xj1, Xj2....Xjm} are the parents

of the node Xi such that {jk, i} ∈ E for 1 ≤ k ≤ m. The entries of Ci are of form

Ci(xi | xj1 , xj2 ...xjm) where xi ∈ V and (xj1 , xj2 ...xjm) ∈ V m. Bayesian networks in

essence encode and represent our assumptions about the conditional independence of

variables in a distribution. In other words, Bayesian networks compactly maintain the

joint distribution P (X1, X2......Xl) in a factorized way as
∏l

i=1Ci. Bayesian network have

found wide applications including those in computational biology[102, 103], computer

vision[104], gaming[105], information retrieval[106] etc.

3.3 Dynamic Bayesian Networks

Dynamic Bayesian Networks(DBNs) are a class of probabilistic graphical models which

are used to model dynamical systems. They extend Bayesian networks to represent

system behavior over time. DBNs have been extensively used in the fields of AI, computer

vision, signaling processing [14],[107],[108]. They have also been used in computational

biology to mainly model temporal data[109, 110]. A DBN consists of a finite set of

random variables, with each variable taking a value from a finite domain V of cardinality

K. The state of the system at a particular time point is given by the probability

distribution of these random variables at particular time point. Formally, DBN D has

an associated set of system variables X = {X1, X2, . . . , Xn}. It also has a discrete time

domain T = {0, 1, . . .} associated with it.

The structure of D consists of an acyclic directed graph GD = (N,E) with N = X×T .

Thus there will be one node of the form Xt
i for each t ∈ T and each i ∈ {1, 2, . . . , n}.

The node Xt
i is to be viewed as a random variable that records the value assumed by

the variable Xi at time t. The edge relation is derived by fixing the parenthood relation

PA : X → 2X over the system variables. Intuitively, PA(Xi) is the set of system variables
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whose values at time t -probabilistically- influence the value assumed by Xi at time t+1.

This crucial structural information is to be obtained from the application at hand and

will often be readily available.

The map PA will in turn induce the map Pa : N → 2N given by: Pa(Xt
i ) = 0 if

t = 0. For t > 0, Xt′
j ∈ Pa(Xt

i ) iff t
′ = t− 1 and Xj ∈ PA(Xi). The edge relation E is

then given by: (Xt′
j , X

t
i ) ∈ E iff Xt′

j ∈ Pa(Xt
i ). The set Pa(Xt

i ) is also referred to as

parents of variable Xt
i .

We consider a restricted class of DBNs in our discussion which are time-variant but

have regular structure i.e the structure in terms of edges between variables across time

points does not change, but the probabilistic relation between them changes. An example

of such a DBN is shown in figure3.1.

Let i, j range over {1, 2, . . . , n}. We denote by X the tuple (X1, . . . , Xn). We let xi,

ui, vi to denote a value taken by Xi. They will be unrolled over a finite number of time

points. Further, there will be no distinction between hidden and observable variables.

To sum up, in our setting,

A Dynamic Bayesian Network (DBN) is a structure D = (X , T,Pa, {Ct
i}) where,

• T is a positive integer with t ranging over the set of time points {0, 1, . . . , T}.

• X = {Xt
i | 1 ≤ i ≤ n, 0 ≤ t ≤ T} is the set of random variables. As usual, these

variables will be identified with the nodes of the DBN. Xt
i is the instance of Xi at

time slice t.

• (i) Pa(X0
i = ∅) (ii) If Xt′

j ∈ Pa(Xt
i ) then t′ = t − 1. (iii) If Xt−1

j ∈ Pa(Xt
i ) for

some t then Xt′−1
j ∈ Pa(Xt′

i ) for every t
′ ∈ {1, 2, . . . , T}. Thus the way nodes at

the (t−1)th time slice are connected to nodes at the tth time slice remains invariant

as t ranges over {1, 2, . . . , T}.

• Ct
i is the Conditional Probability Table (CPT) associated with node Xt

i specifying

the probabilities P (Xt
i | Pa(Xt

i )). Suppose Pa(X
t
i ) = {Xt−1

j1
, Xt−1

j2
, . . . , Xt−1

jm
} and

(xj1 , xj2 , . . . , xjm) ∈ V m. Then we require,
∑

xi∈V C
t
i (xi | xj1 , xj2 , . . . , xjm) = 1.

Since the DBNs we discuss here are time-variant, in general Ct
i will be different

from Ct′
i if t 
= t′.

A state of the DBN at t will be a member of V n, say s = (x1, x2, . . . , xn) specifying
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Figure 3.1: Example of a DBN

that Xt
i = xi for 1 ≤ i ≤ n. This in turn stands for Xi = xi for 1 ≤ i ≤ n at t.

Suppose Pa(Xt
i ) = {Xt−1

j1
, Xt−1

j2
, . . . , Xt−1

jm
}. Then a CPT entry of the form Ct

i (xi |

xj1 , xj2 , xjm) = p says that if the system is in a state at t − 1 in which Xjl = xjl for

1 ≤ l ≤ m, then the probability of Xi = xi being the case at t is p. In this sense the

CPTs specify the probabilistic dynamics locally. We define î = {j | Xj ∈ PA(Xi)} to

capture Pa in terms of the corresponding indices.

In this thesis, xI will denote a vector of values over the index set I ⊆ {1, 2, . . . , n}.

It will be viewed as a map xI : I → V . We will often denote xI(i) as xI,i or just xi

if I is clear from the context. If I = {i} and xI(i) = xi, we will identify xI with xi.

If I is the full index set {1, 2, . . . , n}, we will simply write x. Further, we denote by

Xt the vector of random variables (Xt
1, . . . , X

t
n). Using these notations, we can write

Ct
i (xi | uî) = p to mean that p is the probability that Xi = xi at time t given that at

time t− 1, Xj1 = uj1 , Xj2 = uj2 , . . . , Xjm = ujm with î = {j1, j2, . . . , jm}.

A primary task for analysis using DBNs is to Infer the probability distribution of the

random variables is important, this is a crucial aspect of this thesis. We will discuss, in

detail, the different probabilistic inference algorithms on DBNs in the following chapters.

As discussed before, our focus is on model checking DBN models which serve as

succinct representations of Markov chains. In this section we describe how a rich class

of DBNs arises as approximations of ODE dynamics. This method was developed in

[12],[111].
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3.4 Approximating ODE dynamics

Signaling pathways usually have external or internal stimuli triggering signaling proteins

which then cascade these signals to downstream proteins and finally the signal reaches

the effector protein which results in a biologically observable effect. The levels of these

proteins play a crucial role in how the signal is transduced. The concentration levels of

these proteins are recorded at specific time points. Experimental observations usually

have limited precision owing to limitations in experimental technology. The data available

from them are in the form of multiple repeats of the experiment, each having slightly

different values due to experimental error or changes due to cell-cell variability. Sometimes

the data may be available from different labs which are performed in slightly different

conditions etc. Hence it is better to think of these species concentrations not as point

values but being in discretized levels, the simplest being High or low etc.

In addition, ODEs describing these processes are usually nonlinear due to the nature

of the kinetic laws governing the reactions. Except for the toy examples, the ODEs

system will also be high dimensional. Hence, closed-form solutions will not be obtainable.

One must instead resort to repeated large scale numerical simulations to perform tasks

such as parameter estimation, validation and sensitivity analysis. Further, only a small

amount of noisy data of limited precision will be available to support model calibration

and validation.

With this motivation, we describe the discrete approximation of biological pathway

dynamics modeled using ODEs [112, 12, 111]. To formalize notations, let the biologically

relevant time points of interest be {0, 1, . . . , T}. Next we assume that we are interested

in the concentrations of the different species involved in the pathway (referred to as

variables from now on) only in terms of their relative levels and not as point values. Let

us assume that the pathway has n variables (species) of interest, denoted by y1, y2...yn

and m kinetic rate constants of interest denoted by r1, r2...rm respectively.

We are specifically interested in the dynamics of these pathways. Figure 3.2(a)

shows a simple network consisting of 3 reactions; a pair of reversible reactions and one

irreversible reaction. The dynamics of such a network can be modeled as a system

of ODEs; as discussed before, there one equation of the form dyi
dt = f(y, r) for each
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Figure 3.2: (a) The enzyme catalytic reaction network. (b) The ODE model

molecular species yi, with f describing the kinetics of the reactions that produce and

consume yi, while y is the set (vector) of molecular species taking part in these reactions

and r are the rate constants associated with these reactions. The speed of each reaction

will be determined by the kinetic law governing this reaction. The rate constants specify

the relative speed and affinity of the different reaction components. In figure 3.2(b),

we have assumed that the kinetics of all three reactions is governed by the mass law

[25] which states that the rate at which a reaction proceeds is directly proportional to

the current concentration levels of the reactants taking part in the reaction. Thus the

rate at which the forward reaction produces the enzyme-substrate complex ES from the

substrate S and the enzyme E is directly proportional to the current concentrations of

E and S. Further, the rate constant for this reaction, is given to be 0.1 in this example.

This produces the term 0.1× S × E in the equation for S which will capture the rate at

which S is being depleted due to the forward reaction. Similarly the term 0.2× ES will

capture the rate which S is being produced by the reverse reaction where we are given

that the rate constant for this reaction is 0.2.

The range of values of each variable yi is partitioned into |Ii| intervals where Ii =

{[vmin
i , v1i ), [v

1
i , v

2
i ), . . ., [v

Li−1
i , vmax

i ]} denotes the set of these intervals. We discretize

the range of each parameter rj (in total m of them) into |Irj | intervals where Irj =

{[vmin
rj , v1rj ), [v

1
rj , v

2
rj ), . . ., [v

Lrj−1
rj , vmax

rj ]}. The set defined by I = ∪n
i=1Ii ∪ ∪m

j=1Irj
will be called the discretization. The discretization and flow induced by the systems
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of ODEs induces a discrete time Markov chain (MC). Let vyi be a real number in

the range of yi. We define [vyi ] as the interval in which vyi falls. Similarly, let krj

be a real number in the range of rj , we define [krj ] as the interval in which krj falls

in. Next, for the vector defining all the species and kinetic parameters represented by

s = (vy1 , vy2 , . . . , vyn , kr1 , kr2 , . . . , krm), we define the interval vector - referred to as a

discrete state - as [s] = ([vy1 ], [vy2 ], . . . , [vyn ], [kr1 ], . . . , [krm ]). In our Markov chain,

a state is defined as - MC-state - is a pair (s’, t), where s’ is a discrete state and

t ∈ {0, 1, . . . , T}. Next, we define the probability of a discrete state s’ at time point t

as Pr(s’, t) = Pt({s’ | s’ ∈ I1 × I2 × . . . In × Ir1 . . .× Irm}), where Pt is the probability

distribution at time t over the σ− algebra pertaining to the flow induced by the set

of ODEs assuming that the initial values of the variables of the ODEs are uniformly

distributed within a hypercube I01×I02×. . . I0n×I0r1 . . .×I0rm , s’ = (I1, I2, . . . In, Ir1 . . . , Irm);

here Ii, I
0
i , I

0
rj and Irj will represent an interval belonging to Ii and Irj and i ∈ {1 . . . n}

and j ∈ {1 . . .m}. For more technical details, we refer the reader to [112].

An MC-state, (s’, t) is feasible iff Pr(s’, t) > 0. Next, the transition relation between

MC-states is denoted as →, it is defined as : (s’, t) → (s”, t′) iff t = t′ − 1, both

the states should be feasible and the states (s’, t) and (s”, t′) should be reachable

by the flow induced by ODEs. Having defined the states of the Markov chain and

the transition relation, next, let us now look at the transition probabilities of the

Markov chain. Let E and F denote the event that the system is in the state (s’, t)

and in (s”, t′), t′ = t+ 1, both the states being feasible. Let E ∩ F be the joint event

the system is at the (s’, t) and (s”, t′) at t′ = t + 1. Consequently, the transition

probability Pr((s’, t) → (s”, t′)) = Pr(F |E) = Pr(E ∩ F )/Pr(E). Refer to [112] for

more information. We can now define the Markov chain, MC, as (S, TS), where S is the

set of MC-states and TS is the transition probability matrix where entries correspond to

the probability of transitioning between any two MC-states ∈ S.

MC cannot be explicitly computed for ODEs since they typically do not have closed

form solutions and that it is large. Thus, one can only compute approximations of MC.

To do so, we can simulate the system by sampling the initial state many times according

to the assumed prior distribution, determine through numerical integration the MC-states

as well as the transitions along this simulated trajectory. Then through a simple counting

process involving the generated trajectories, the Markov chain can be computed as an
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Figure 3.3: DBN approximation of the ODE

approximation of MC. In the worst case, the number of states in this approximated

Markov chain will be O(Kn+m) where K is max{|Ii|, 1 ≤ i ≤ n; |Irj |, 1 ≤ j ≤ m}. As a

result, for many biological pathways, it will be too large. For instance for the pathway

models we consider, each having about 30 proteins, whose values are each discretized

into 5 intervals, the number of potential states are of the order of 530 even across a single

time step, which is too large to be represented and analyzed explicitly.

3.4.1 The DBN representation of ODE dynamics

The main observation that leads to a compact representation of the Markov chain

introduced in the last section, is that we can factorize the Markov chain, MC, by

exploiting the structure information in ODEs and representing it compactly as a time

variant DBN. First, we specify a random variable Yi for each variable yi of the ODE

model. Next, for each unknown rate constant rj , we add one random variable Rj . Since

we have m unknown parameters, each time slice of the DBN will consist of n+m nodes,

one for each of the random variables. Across every time slice, the node Y t−1
k will be in

Pa(Y t
i ) iff k = i or yk appears in the equation for d(yi)/dt. Further, the node Rt−1

j will

be in Pa(Y t
i ) iff rj appears in the equation for d(yi)/dt. On the other hand Rt−1

j will be

the only parent of the node Rt
j . Figure 3.3 shows the transformation of the ODE. In this

example, we have assumed that r3 is the only unknown rate constant.

Suppose Pa(Y t
i ) = {Zt−1

1 , Zt−1
2 , . . . , Zt−1

k }. Then a CPT entry of the form Ct
i (I |

I1, I2, . . . , Ik) = p says that p is the probability of the value of yi falling in the interval I at
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time t, given that the value of Zj was in Ij for 1 ≤ j ≤ k. The probability p is calculated

through simple counting. Suppose N is the total number of generated trajectories.

We first record, the number of trajectories whose value of Zj falls in the interval Ij

simultaneously for each j ∈ {1, 2, . . . , k} at time t− 1. Suppose this number is J . We

then determine for how many of these J trajectories, the value of Yi falls in the interval

I at time t. suppose this number is J ′, then p is set to be J ′
J (It should now be clear why

Ct
i (I | I1, I2, . . . , Ik) will be in general different from Ct′

i (I | I1, I2, . . . , Ik) if t 
= t′). If rj

is an unknown rate constant, in the CPT of Rt
j we will have P (Rt

j = Irj | Rt−1
j = I ′rj ) = 1

if I = I ′ and P (Rt
j = Irj | Rt−1

j = I ′rj ) = 0 otherwise. This is because the sampled initial

value of rj does not change during numerical integration. Suppose rj appears on the right

hand side of the equation for yi and Pa(Y t
i ) = {Zt−1

1 , Zt−1
2 , . . . , Zt−1

� } with Zt−1
� = Rt−1

j .

Then for each choice of interval values for nodes other than Rt−1
j in Pa(Y t

i ) and for each

choice of interval value Îrj for rj there will be an entry in the CPT of Y t
i of the form

P (yti = I | Zt−1
1 = I1, Z

t−1
2 = I2, . . . , R

t−1
j = Îrj ) = p. This is so since we will sample for

all possible initial interval values for rj . In this sense the CPTs record the approximated

dynamics for all possible combinations of interval values for the unknown rate constants.

These features are illustrated in figure 3.3 for the unknown rate constant r3. For more

details, we refer the reader to [112]. Once the DBN approximation has been constructed,

tasks such as parameter estimation and sensitivity analysis can be carried out efficiently

using standard DBN inferencing algorithms [12].
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Chapter 4

Inference on Dynamic Bayesian

Networks

4.1 Introduction

Probabilistic graphical models such as DBNs -as we discussed in the previous chapters-

solve the problem of succinctly representing high dimensional probabilistic dynamics.

However, the time complexity of inferring the probability distribution of states at a

given time point in these models is still exponential in the size of the network [15]. This

chapter focuses on probabilistic inference algorithms on DBNs. Specifically, the focus is

on computing the marginal probability distribution of random variables.

We first discuss existing inference algorithms for DBNs. Next, we present our improved

inference algorithm, termed hybrid factored frontier (HFF). We provide experimental

results to validate the scalability and efficiency of HFF. These inference algorithms will

play a crucial role in the model checking algorithms described later. First we look at

exact inference for DBNs.

Exact probabilistic inference

Using notations developed in Chapter 3, the joint probability distribution P (Xt
1, X

t
2, . . . , X

t
n)

describes the possible states of the system at time point t. In other words, P (Xt = x) is

the probability that the system will reach the state x at t. Starting from P (X0) at time 0,

given by P (X0 = x) =
∏

iC
0
i (xi) probabilistic inference aims to compute P (Xt

1, . . . , X
t
n)

for a any given time point t. We can compute this exactly using the CPTs to inductively
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compute this:

P (Xt = x) =
∑
u

(∏
i

Ct
i (xi | uî)

)
P (Xt−1 = u) (4.1)

with u ranging over V n.

Since |V | = K, the number of possible states at t is Kn. Hence explicitly computing

and maintaining the probability distributions is feasible only if n is small or if the

underlying graph of the DBN falls apart into many disjoint components. Neither

restriction is realistic and hence one needs approximate ways to maintain P (Xt) compactly

and compute it efficiently.

Two main deterministic approximate algorithms include the factored frontier algo-

rithm (FF)[16], the Boyen Koller algorithm (BK)[15] [113]. These algorithms maintain

the joint probability distributions approximately; such approximate distributions are

usually called belief states. In BK, a belief state is maintained compactly as a product

of the probability distributions of independent clusters of variables. This belief state is

then propagated exactly at each step through the CPTs. Then the new belief state is

compacted again into a product of the probability distributions of the clusters. This is

in contrast to FF algorithm which maintains a belief state as a product of the marginal

distributions of the individual variables. Instead of computing first the new belief state

as done by BK, the FF algorithm computes the new marginal distributions directly via

the propagation of the current marginal distributions through the CPTs. Finding the

right set of clusters in BK is important for improved results, and if the cluster size is

large, inference is still infeasible. Moreover, for our application both BK and FF have

drawbacks.

FF is attractive in terms of its simplicity and computational effort but unlike the case

of BK, it lacks a rigorous error analysis. More importantly, FF can exhibit significant

errors. As for BK, apart from the need to compute the next belief state exactly -which

can be computationally expensive- its performance depends on how one clusters the

variables. Identifying the right set of clusters is a difficult problem. There seems to be

no efficient techniques for doing this with guaranteed performance. One could avoid

the problem of identifying clusters by just using singleton clusters (the so called fully
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factored BK algorithm). However, this can also lead to significant errors. This sets the

motivation for our work. In specific, we propose an improved parameterized algorithm

called hybrid factored frontier algorithm(HFF)[114] which attempts to bridge some of the

gaps in previous algorithms. Next, we will discuss the FF algorithm in detail, since our

HFF algorithm is based on it. We will follow this up with a description of our improved

HFF algorithm and the corresponding error analysis.

4.2 The Factored Frontier algorithm

As discussed before exact inference on DBNs is infeasible for large DBNs. One must use

approximate methods, here we will focus on a simple and efficient approximate algorithm

called the Factored Frontier (FF) algorithm [16]. FF maintains and propagates joint

probability distributions Pr(Xt
1, X

t
2, . . . , X

t
n) in an approximate fashion. Approximate

probability distributions will be called belief states and denoted by B, Bt etc. Exact

probability distributions will be denoted by P , P t etc. Formally, a belief state B is a map

from V n → [0, 1] such that
∑

u∈V n B(u) = 1. Thus a belief state is just a probability

distribution but it will be convenient to linguistically separate them.

The FF algorithm uses marginal functions to represent belief states. A marginal

function is a map M : {1, . . . , n} ×V → [0, 1] such that
∑

v∈V M(i, v) = 1 for each i.

In what follows, u, v will range over V while u and v will range over V n. A belief

state B induces the marginal function MB via MB(i, v) =
∑

u|ui=v B(u). On the

other hand, from a marginal function M , one can obtain a belief state BM via BM (u) =

∏
iM(i,ui). From the above definitions it follows that for a marginal functionM , we have

MBM
=M . That is, for any i, v, MBM

(i, v) =
∑

u|ui=v BM (u) =
∑

u|ui=v

∏
j M(j,uj) =∏

j

∑
u|ui=vM(j,uj) =

(∏
j|j �=i

∑
uj
M(j,uj)

)
·M(i, v) =M(i, v). On the other hand,

for a belief state B, unless B = BM , we may have BMB

= B.

For a DBN D = (X , T,Pa, {Ct
i}) recall that î = {j | Xj ∈ PA(Xi)} captures the set

of indices of the parents of i. In what follows, Vî will denote the tuple of values defined

by î. Thus, with a slight abuse of notation, u,v will be used to denote |̂i|-dimensional

vectors of values over V .

Given a DBN D = (X , T,Pa, {Ct
i}), FF computes inductively a sequence M t of

marginal functions as:
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• M0(i, u) = C0
i (u),

• M t(i, u) =
∑

v∈Vî
[
∏

j∈îM
t−1(j,vj)]C

t
i (u | v).

It is easy to check that these are indeed marginal functions, i.e.,
∑

u∈V M
t(i, u) = 1 for

all t and i. Thus FF maintains Bt, the belief state at t, compactly via the marginal

function M t. More precisely, Bt(u) =
∏

j M
t(j,uj) = BMt(u).

Let t ≥ 1. Suppose that the DBN transforms the belief state Bt−1 into the new belief

state B̂t. In other words, B̂t is the belief state obtained by performing t− 1 steps of FF

and exact computation at the tth step. Then by Equation (4.1), we have:

B̂t(x) =
∑
u

Bt−1(u)
(∏

i

Ct
i (xi | uî)

)
(4.2)

However, the tth step of FF computes directly the marginal function M t, which then

represents the new belief state at time t as Bt = BMt . In general, Bt 
= B̂t, that is, the

belief state Bt represented via M t is an approximation of the belief state B̂t as defined

above. However, the computation of M t is itself accurate in the following sense.

Proposition 1. For all t ∈ {1, . . . , T}, M t(i, v) =M
B̂t(i, v) for each i and v.

Proof. For t > 0, we have:

M
B̂t(i, v) =

∑
v|vi=v

B̂t(v)

=
∑

v|vi=v

∑
u

∏
j

Bt−1(u)(Ct
j(vj | uĵ))

(by Equation (4.2))

=
∑
u

Bt−1(u)
∑

v|vi=v

∏
j

(Ct
j(vj | uĵ))

=
∑
u

Bt−1(u)
(∑

vn

Ct
n(vn | un̂)

)
. . .

(
Ct
i (v | uî)

)
. . .

(∑
v1

Ct
1(v1 | u1̂)

)

=
∑
u

Bt−1(u)
(
Ct
i (v | uî)

)

The last of the above equalities follows since each of the summands within the

expression add up to 1. Now, using Bt−1(u) =
∏

kM
t−1(k,uk) and splitting the above
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summation, we obtain:

M
B̂t(i, v) =

∑
u∈Vî

∑
u�∈Vî

∏
k

M t−1(k,uk)
(
Ct
i (v | uî)

)

=
∑
u∈Vî

∏
k∈̂i

M t−1(k,uk)
(
Ct
i (v | uî)

)

∑
u�∈Vî

∏
k �∈̂i

M t−1(k,uk)

=
∑
u∈Vî

∏
k∈̂i

M t−1(k,uk)
(
Ct
i (v | uî)

)

∏
k �∈̂i

∑
uk

M t−1(k,uk)

=
∑
u∈Vî

∏
k∈̂i

M t−1(k,uk)
(
Ct
i (v | uî)

)

=M t(i, v)

The second factor above is just a product of 1’s (by the definition of marginals) and the

proposition follows.

As B0 is accurate by definition, M1 will also be accurate but not necessarily B1.

Let the Marginal distribution (M t(i)) computed for each variable i at time t by FF

be the set comprising elements M t(i, u) for u ∈ V . FF generates in one sweep the

sequence of (approximate) marginal distribution vectors (M0(1),M0(2), . . . ,M0(n))

(M1(1),M1(2), . . . ,M1(n)) . . . (MT (1),MT (2), . . . ,MT (n)) (for convenience we have

assumed that all the rate constants are known). The time complexity of FF is O(T · n ·

Kd+1) where |V | = K and d is the maximum over the number of parents that a node

can have. Usually d will be much smaller than n and in this sense FF is efficient since

its time complexity is linear in n.

4.3 Hybrid Factored Frontier algorithm

It is important to consider improved algorithms for inference in DBNs, we propose the

Hybrid factored frontier (HFF) algorithm to this effect. HFF maintains the current
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belief state as a hybrid entity; for a small number of global states called spikes, their

current probabilities are maintained. The probability distribution over the remaining

states is represented, as in FF, as a product of the marginal probability distributions.

The key insight underlying this idea is that when the error produced by one step of the

inference algorithm is large for a global state, then either the probability of this state

or its estimate must itself be high. If such states are chosen to be the spikes then since

the total probability is bounded by 1, the number of spikes at each time point must be

small. The main technical component of HFF is to explicitly identify and approximately

compute the probabilities of the spikes.

A pleasing feature of HFF is that it is a parameterized version of FF with σ, the

number of spikes, being the parameter. When σ = 0, we get FF and when σ = N where

N is the total number of global states, we get the exact inference algorithm. Thus by

tuning σ, one can gain control over the error behavior. We have derived the single step

error bound for HFF, which then also leads to an error analysis for FF. We show that

the worst case one step error of HFF is lower than that of FF. The time complexity of

HFF is O(n · (σ2 +KD+1)) where n is the number of nodes in the DBN, σ is the number

of spikes, K is the maximum number of values that a random variable (associated with

each node) can assume and D is the maximum number of parents that a node can have.

This compares favorably with the time complexity of FF which is O(n ·KD+1). Since

the running time of HFF is linear in n, it scales well in terms of network size. The factor

D is determined by the maximum number of reactions that a species takes part in as a

product or reactant. For most of the networks we have encountered, D is much smaller

than n.

A simple but crucial observation is that whenever the errormaxu∈V n{|B̂t(u)−Bt(u)|}

incurred by FF at step t > 0 (ignoring the error made in the previous steps) is large for

some u then M t(i,ui) is large for every i. This is so since, M t(j,uj) = M
B̂t(j,uj) ≥

max(B̂t(u), Bt(u)), which follows from Proposition 1 and the definition of marginals.

A second important observation is that there can only be a few instances of u such

that M t(i,ui) is large for every i. For instance, there can be only one such u if we

want M t(i,ui) >
1
2 for every i. Hence, by computing B̂t(u) for a small subset of V n for

which M t is high for all dimensions and maintaining it explicitly, one can hope to reduce

the one step error incurred FF and hence the overall error too. This is the intuition
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underlying the HFF algorithm.

4.3.1 The Hybrid Factored Frontier algorithm

The overall structure of HFF is as follows. Starting with t = 0, we inductively compute

and maintain the tuple (M t, St, Bt
H , α

t), where:

• M t is a marginal function.

• St ⊆ V n is a set of tuples called spikes.

• Bt
H : V n → [0, 1] is a function s.t. Bt

H(u) = 0 if u 
∈ St and
∑

u∈St Bt
H(u) < 1.

• αt =
∑

u∈St Bt
H(u).

This hybrid state (M t, St, Bt
H , α

t) represents the following belief state Bt:

Bt(u) = Bt
H(u) + (1− αt)

∏
i

M t
H(i,ui), where

M t
H(i, v) = [M t(i, v)−

∑
{u∈St|ui=v}

Bt
H(u)]/(1− αt)

The first component of Bt(u) is the probability mass Bt
H(u) of the spike (if u is not

a spike, Bt
H(u) = 0). The second component is the product of (uniformized) marginals

M t
H(i, v), as in FF. Notice that we need to use M t

H rather than M t since the cumulative

weight of the contribution made by the spikes needs to be discounted from M t. The

coefficient (1 − αt) must be used first to ensure that M t
H is a marginal function, and

second to ensure that Bt is a belief state, as will be demonstrated subsequently.

The HFF algorithm

We initialize with M0 = C0, S0 = ∅, B0
H = 0 and α0 = 0 and fix a parameter σ. This

σ will be the number of spikes we choose to maintain. It is a crucial parameter as our

results will show. We inductively compute (M t+1, St+1, Bt+1
H , αt+1) from (M t, St, Bt

H , α
t)

as follows.
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Step 1: We first compute M t+1 as:

M t+1(i, x) =
∑
u∈St

[Bt
H(u)× Ct+1

i (x | uî)]

+(1− αt)
(∑

uî

[
∏
j∈î

M t
H(j,uj)× Ct+1

i (x | uî)]
)

Step 2: We next compute a set St+1 of at most σ spikes usingM t+1. We want to consider

as spikes u ∈ V n where M t+1(i,ui) is large for every i. To do so, we find a constant

ηt+1 such that M t+1(i,ui) ≥ ηt+1 for every i for a subset of V n containing σ elements

and for all other u′, there exists i with M t+1(i,u′
i) < ηt+1. We compute ηt+1 via binary

search. First we fix the precision with which we want to compute ηt+1 to be ξ. We have

found ξ = 10−6 to be a good choice. For this choice there will be at most 20 iterations of

the loop described below. The search for ηt+1 proceeds as follows:

• η1 = 0 and η2 = 1.

• While η2 − η1 > ξ do

1. η = η1+η2
2 .

2. Determine the set of values Ui such that v ∈ Ui iff M
t+1(i, v) > η.

3. Set ai to be the cardinality of Ui.

4. If
∏

i(ai) > σ then η1 = η; otherwise η2 = η

• endwhile

• Return ηt+1 = η2 and St+1 =
∏

i Ui

Step 3: Finally, we compute Bt+1
H (u) for each u in St+1 as follows, by only taking into

account the contribution of the current spikes.

Bt+1
H (u) =

∑
v∈St

(Bt(v)×
∏
i

Ct+1
i (ui | vî))

End of Algorithm

As in the case of FF, we denote by B̂t+1 the belief state obtained from Bt through

an exact step of the DBN:
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B̂t+1(u) =
∑
v∈V n

(Bt(v)×
∏
i

Ct+1
i (ui | vî))

Notice that Bt+1
H (u) ≤ B̂t+1(u) for all u. We recall that T is the number of time

points, σ the number of spikes, n the number of variables, V is the set of values with

K = |V |, and D be the maximum in-degree of the DBN graph.

Theorem 2. HFF has the following properties.

1. if σ = 0, the HFF algorithm is the same as FF and if σ = Kn, it is the exact

algorithm.

2. M t(i, v) = M
B̂t(i, v) for every v. Further, Bt is a belief state while M t

H and M t

are marginal functions, for every t.

3. The time complexity of HFF is O(T · n · (σ2 +KD+1)).

Proof. σ = 0 implies that the set of spikes St = ∅ for all t. This implies that αt = 0 and

the computation done by HFF is the same as FF. If σ = Kn, then St = V for all t and

αt = 1 (of course, M t
H is then not computed). Thus, this boils down to perform exact

inferencing. We have now established part (1).

We prove that for all t ≥ 1, if Bt−1 is a belief state and M t−1,M t−1
H are marginals,

then M t =M
B̂t and B

t is a belief state and M t,M t
H are marginals. We thus obtain Part

(2) by induction on t, using the fact that B0 is a belief state and M0,M0
H are marginals

by definitions. For t ≥ 0, let M t(i, v),M t
H(i, v) be marginals and Bt be a belief state.

Then at t + 1, let us start by proving M
B̂t+1(i, v) = M t+1(i, v). The first step is the

same as in Proposition 1:

M
B̂t+1(i, v) =

∑
v|vi=v

B̂t+1(v)

=
∑
u

Bt(u)
(
Ct+1
i (v | uî)

)
(by Equation (4.2))

Now however, the definition of Bt is different for HFF and so we have from (4.3) above:

M
B̂t+1(i, v) =

∑
u

Bt
H(u)

(
Ct+1
i (v | uî)

)

+(1− αt)
∑
u

( n∏
k=1

M t
H(k,uk)

)(
Ct+1
i (v | uî)

)
(4.3)
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But if u 
∈ St, then Bt
H(u) = 0. Further splitting the second term as in Proposition 1,

we obtain:

M
B̂t+1(i, v) =

∑
u∈St

Bt
H(u)

(
Ct+1
i (v | uî)

)

+ (1− αt)
∑
u∈Vî

∑
u�∈Vî

∏
k

M t
H(k,uk)

(
Ct+1
i (v | uî)

)

=
∑
u∈St

Bt
H(u)

(
Ct+1
i (v | uî)

)
+ (1− αt)

∑
u∈Vî

∏
k∈̂i

M t
H(k,uk)

(
Ct+1
i (v | uî)

) ∑
u �∈Vî

∏
k �∈̂i

M t
H(k,uk)

=
∑
u∈St

Bt
H(u)

(
Ct+1
i (v | uî)

)
+ (1− αt)

∑
u∈Vî

∏
k∈̂i

M t
H(k,uk)

(
Ct+1
i (v | uî)

)∏
k �∈̂i

∑
uk

M t
H(k,uk)

=
∑
u∈St

Bt
H(u)

(
Ct+1
i (v | uî)

)
+ (1− αt)

∑
u∈Vî

∏
k∈̂i

M t
H(k,uk)

(
Ct+1
i (v | uî)

)
× 1

=M t+1(i, v)

In the step above,
∑

uk
M t

H(k,uk) = 1 follows from our inductive hypothesis that M t
H

is a marginal. Now, we will prove the remainder of this part, i.e., M t+1,M t+1
H are

marginals and Bt+1 is a belief state. For all i, again from αt =
∑

u∈St Bt
H(u) and
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∑
v∈V C

t+1
i (v | uî) = 1, we have:

∑
v∈V

M t+1(i, v) =
∑
u∈St

[
∑
v∈V

Ct+1
i (v | uî)×Bt

H(u)]

+(1− αt)
(∑

uî

[
∑
v∈V

Ct+1
i (v | uî)×

∏
j∈î

M t
H(j,uj)]

)

=
∑
u∈St

Bt
H(u) + (1− αt)

∑
uî

∏
j∈î

M t
H(j,uj)

= αt+(1− αt)
∏
j∈î

∑
uj

M t
H(j,uj) = 1

Now, using the above and αt+1 =
∑

u∈St+1 B
t+1
H (u) (assuming αt+1 
= 1), we have:

∑
v∈V

M t+1
H (i, v) =

(∑
v∈V

M t+1(i, v)−
∑
v∈V

∑
u∈St+1|ui=v

Bt+1
H (u)

)
× 1

1− αt+1

=
(
1−

∑
u∈St+1

Bt+1
H (u)

) 1

1− αt+1
= 1

∑
u∈V n

Bt+1(u) =
∑
u∈V n

Bt+1
H (u)

+ (1− αt+1)
∑
u∈V n

∏
i

M t+1
H (i,ui)

=
∑

u∈St+1

Bt+1
H (u) + (1− αt+1)× 1 = 1

It now follows easily that for any i, v, 1 ≥ M t+1(i, v) ≥ 0 and 1 ≥ M t+1
H (i, v). It

remains to prove that M t+1
H (i, v) ≥ 0, that is M t+1(i, v) ≥ ∑

u∈St+1|ui=v B
t+1
H (u). As

Bt+1
H (u) ≤ B̂t+1(u) for all u, we have,

∑
u∈St+1|ui=v

Bt+1
H (u) ≤

∑
u∈St+1|ui=v

B̂t+1(u)

=M
B̂t+1(i, v) =M t+1(i, v)

which completes the proof of part(2).
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Turning to part (3), we note that at each time point, the step 1 of HFF has the

same complexity as FF together with the spikes contributing: O(K · n · (KD + σ)).

Step 2 makes at most K × n comparisons for each iteration of the loop and there are

only a constant number of iterations of the loop. Thus the complexity of this step

per time point is O(K × n). Step 3 computes for each spike, Bt(u) from the values of

Bt
H(u) and M t(i, u) which takes O(Kn + σn). Then, we sum over all the spikes the

value computed by multiplying n values of the CPT which takes O(σ × n). Thus, this

step overall takes O(σKn + nσ2). Hence the overall time complexity of HFF is the

sum of all these quantities which is O(T · n · (KD+1 +Kσ + σ2)) which is bounded by

O(T · n · (KD+1 + σ2)).

HFF gathers in one sweep -just as FF does- the required information about the belief

states. However, it can take more time than FF depending on the number of spikes but

the added complexity is only quadratic in the number of spikes.

4.3.2 Error analysis

It is easy to see that with each time slice t of the DBN one can associate a stochastic matrix

Tt. This stochastic matrix will capture the transformation of probability distributions

effected by the n CPTs associated with the time slice t as dictated by Equation 4.1. In

particular, we will have P (Xt) = Tt(P (Xt−1)).

We now denote the cumulative error at t as Δt and define it to be: Δt = maxu∈V n(|P (Xt =

u)−Bt(u)|). Towards deriving an upper bound for Δt, we first note that Markov chain

theory (for instance, using the Dobrushin’s coefficient, see chapter 6.7 in [115]) guarantees

the following:

Theorem 3. Let T be an n-dimensional stochastic matrix. Then for two probability

distributions A,B, we have ||T (A) − T (B)||∞ ≤ βT ||A − B||∞ where 0 ≤ βT ≤ 1 is a

constant that depends only on T .

βT is called the contraction factor. In what follows we shall write βt for the contraction

factor associated with Tt and set β = max
t

βt.

An implicit assumption in what follows is that β < 1. As pointed out in [15] this is a

very reasonable assumption since it fails for the extreme case where the variables are

completely decoupled and are independent. The case studies we report in section 4.4 also
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easily satisfy this assumption. When β < 1, due to the theorem above the maximum

error will reduce by a factor of β at each step as we step through t starting from t = 0.

Hence the cumulative error will stabilize rapidly.

Now following a reasoning similar to [15] we shall show that Δt can be bounded

by ε0(
∑t

j=0 β
j) where ε0 is the maximum one step error given by: ε0 = max

t
||Bt −

Tt(Bt−1)||∞. Notice that Tt(Bt−1) was denoted as B̂t in previous subsections.

Lemma 4. Δt ≤ ε0(
∑t

j=0 β
j). Further if β < 1, we have Δt ≤ ε0

1−β .

Proof. By definition of overall error and the above stated property of Markov chains,

Δt = |Bt − P (Xt)|

≤ |Bt − Tt(Bt−1)|+ |Tt(Bt−1)− Tt(P (Xt−1))|

≤ ε0 + βtΔ
t−1

Then by recursively computing the second factor, we obtain,

Δt ≤ ε0 + βtε0 + βtβt−1ε0 + . . .+ (βtβt−1 · · ·β1)ε0

≤ ε0(

t∑
j=0

βj)

Further if β < 1, we have:

Δt ≤ ε0(

t∑
j=0

βj) ≤ ε0(

∞∑
j=0

βj) =
ε0

1− β

We note that
∑t

j=0 β
j depends only on the DBN. Hence, theoretically comparing the

error behaviors of FF and HFF amounts to comparing their single step errors. To do so,

we shall next analyze single step error of FF followed by that of HFF.

Recall that for FF, Bt = BM
B̂t
. Thus the one-step error incurred by FF at step t

is maxu∈V n{|B̂t(u) − BM
B̂t
(u)|}. We can bound this from above by ε0 where : ε0 =

max{|B(u)−BMB
(u)|} with B ranging over the set of all possible belief states and u

ranging over V n. It turns out that ε0 can be made arbitrarily close to 1 as n, the number

of variables, tends to ∞. To see this, fix 0 < δ < 1 and consider the belief state B
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defined by B(u) = 1− δ, B(u′) = δ for some u,u′ ∈ V n such that for all i, ui 
= uj and

B(v) = 0 for all v ∈ V n \ {u,u′}. Then, MB(i,ui) = 1− δ for all i ∈ {1, . . . , n} and so

BMB
(u) = (1− δ)n. As a result we have ε0 = max|B −BMB

| ≥ (1− δ)− (1− δ)n which

tends to 1− δ as n tends to ∞. Now if we choose δ to be close to 0, 1− δ is close to 1.

Thus ε0 can be made as close to 1 as we want, with n tending to ∞. We found that the

cumulative errors made by FF can be large in practice too as shown in the next section.

Notice that for HFF too we have Bt = BM
B̂t
, and its one step error can be bound by

ε0. However, the spikes can be used to bound the single step error of HFF more precisely

as follows:

Claim 1. The one step error made by HFF is bounded by ε̂0 with ε̂0 ≤ min{(1− α), η},

where α = mint(α
t) and η = maxt(η

t).

(Proof sketch). If α is large, then the value of B̂t(u) ≤ 1 − α for u /∈ St. Also, as

Bt(u) ≤ B̂t(u), we have B̂t(u)−Bt(u) ≤ 1−α. Finally, if η is small, then by construction

for all u /∈ St, M t+1(i, v) ≤ η for some i with ui = v, and hence B̂t(u) ≤M t+1(i, v) ≤ η.

Also, B̂t(u)−Bt(u) ≤ η ×∑
v/∈St

∏
iC

t+1
i (ui | vî)) ≤ η for u ∈ St.

Thus, the worst case error for HFF with at least two spikes (implying η < 1/2) is

smaller than for FF. Taking more spikes will increase α and decrease η , reducing the

worst case error. Experiments in the next section show that the practical accuracy is

also improved as we increase the number of spikes.

4.4 Experimental evaluation

We have implemented our algorithm in C++. The experiments reported here were carried

out on an Opteron 2.2Ghz processor, with 3GB memory. The algorithms were evaluated

on five DBN models of biochemical networks: the small enzyme catalytic reaction network

shown in figure 3.2 for initial experimentation, the EGF-NGF pathway [116] under (a)

EGF-stimulation (b) NGF-stimulation (c) co-stimulation of EGF and NGF, and the

Epo mediated ERK signaling pathway. The ODE model for the EGF-NGF pathway

was obtained from the BioModels database [117] and the Epo mediated ERK signaling

pathway from [118]. For all these models, there were no unknown parameters and this

enabled us to focus on the main issue of evaluating the performance of HFF. The DBNs
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Figure 4.1: Marginal probability of E being in the interval [0, 1), M t(E ∈ [0, 1))

were constructed using the method presented in previous chapters [12]. To improve the

quality of the approximations for the large pathway models, we constructed the DBNs

using the equation based subinterval sampling method explained in more detail later. In

what follows, we highlight the main findings of our experiments.

4.4.1 Enzyme catalytic kinetics

For initial validation, we started with the enzyme catalytic reaction network shown in

figure 3.2 which has only 4 species/equations and 3 rate constants. The value space of

each variable was divided into 5 equally wide intervals ({[0, 1), [1, 2), . . . , [4, 5]}). We

assumed the initial distributions of variables to be uniform over certain intervals. We

then fixed the time horizon of interest to be 10 minutes and divided this interval evenly

into [0, 1, . . . , 100] time points. The conditional probability tables associated with each

node of the DBN were filled by generating 106 trajectories by direct random sampling

over the initial states [12].

This being a small example, we could compute the marginal distributions for each

species exactly. We ran FF and HFF(σ) with various choices of σ, the number of spikes.

The resulting estimates were then compared against the exact marginals. We also ran the

fully factored version of BK (which we call BK in this section), using the implementation

provided in the Bayes Net Toolbox of MATLAB [119].
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Figure 4.2: EGF-NGF pathway

In what follows we report the errors in terms of the absolute difference between the

marginal probabilities computed by the exact and approximate methods. Thus if we

say the error is 0.15 then this means that the actual marginal probability was p and the

marginal probability computed by the approximate algorithm was p′ with |p− p′| = 0.15.

Even for this small network, FF and BK deviated from some of the exact marginals

by as much as 0.169. Figure 4.1 shows the profile of the marginal distribution of E (the

enzyme) assuming a value in the first interval as computed by FF, BK, HFF(64) and the

exact method. The profiles of exact and HFF(64) were almost the same while FF and

BK (whose curve practically coincides with that of FF and is hence not shown) make

noticeable errors. The computation times for all the algorithms were negligible. The

maximum error incurred for the 4 species taken over all the interval values and all time

points was 0.169 for FF and 0.024 for HFF(16) and 0.003 for HFF(64). Further, the

number of errors greater than 0.1 taken over all the species, intervals and time points

reduced from 72 for FF to 0 for HFF(16). Finally, we compute the L1 error across all

marginals - per time point - between exact marginals and the one’s compute by different

approximation algorithms. Figure 4.4 shows the plots of L1 error between the various

algorithms across every time point, it shows that the L1 error is high for FF compared

to HFF which further reduced with increasing number of spikes.
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Figure 4.3: Epo mediated ERK Signaling pathway
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Figure 4.4: L1 error vs time points : Enzyme catalytic pathway
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4.4.2 The large pathway models

As explained before, during the construction of the DBN we assume that the initial

values are distributed along certain predefined intervals of a variable’s value space. The

vector of initial states for large systems will hence be high dimensional. To ensure that

the ODE dynamics is well explored, one needs to draw a large number of representative

trajectories. Naive direct sampling where we randomly pick values from the initial

intervals vector cannot ensure that all parts of the initial states region are sufficiently

probed. Hence we used a more sophisticated sampling method called equation based

subinterval sampling which is a variant of the method proposed in [12]. Suppose the

ODE equation for the variable xi involves variables xj and xk. We then subdivide the

initial intervals of the variables xi, xj and xk into J finer subintervals. Then for every

combination of subintervals say, (Ii, Ij , Ik), we pick H samples each of which will have

its xi-value falling in Ii, xj-value falling in Ij and its xk-value falling in Ik while the

values for the other variables are picked randomly from within their initial intervals. This

ensures a coverage of at least H samples for every combination of the subintervals of the

variables governing each equation which in turn ensures that ODE dynamics is being

explored systematically along each dimension at least. In general, if an equation has R

variables on its right hand side, and there are n equations and H is the required degree

of coverage per equation, we pick n ·H · JR+1 samples.

To assess the quality of the constructed DBNs in terms of the original ODE dynamics,

we used Monte Carlo integration to generate random trajectories from the prior (initial

states distribution) using the ODE. We then computed the average values of each variable

at the time points 0 ≤ t ≤ T . We term the resulting time series for each variable as

a nominal profile. We then used marginal probability values derived from the DBN

approximation to compute expected values as follows E(M t(i, u)) =
∑

u=uj
(M t(i, uj) ·L),

where L is the mid-point of the interval uj . For each variable, the resulting time series

of expected values was compared with its nominal profile. For all the models studied

below the quality of the DBN approximation measured this way was high. Due to space

limitations, the comparison plots will be shown in what follows here only for a few chosen

species in the case of the NGF stimulated EGF-NGF pathway and the Epo mediated

ERK pathway.

Finally, for the DBNs arising from EGF-NGF pathway and Epo mediated ERK
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Figure 4.5: Comparison of ODE dynamics with DBN approximation. Solid black line
represents nominal ODE profiles and dashed red lines represent the DBN simulation
profiles for (a) NGF stimulated EGF-NGF Pathway (b) Epo mediated ERK pathway

Figure 4.6: Marginal probability of Erk being in the interval [1, 2), M t(Erk ∈ [1, 2)),
under NGF-stimulation

Figure 4.7: Normalized mean error for M t(Erk ∈ [1, 2)) under NGF-stimulation.
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Figure 4.8: (a) Normalized mean errors over all marginals, (b) Number of marginals with
error greater than 0.1: NGF-stimulation

pathway, exact inference is infeasible due to the large sizes of the corresponding DBNs.

To get around this, we used simulation based inferencing of the DBN to obtain an

estimate of the exact marginal distribution. These marginals were used -in place of exact

marginals- as benchmarks to compare the performance of the various algorithms. Here

again we compared HFF(σ) for various choices of σ with FF and BK. We discuss towards

the end of this section the performance of the clustered version of BK. In what follows,

we write HFF(cK) to mean the HFF(σ) with σ = c · 1000.

The EGF-NGF pathway

The EGF-NGF pathway describes the behavior of PC12 cells under multiple stimulations.

In response to EGF stimulation they proliferate but differentiate into sympathetic neurons

in response to NGF stimulation. This phenomenon has been intensively studied [120]

and the network structure of this pathway is as shown in figure 4.2. The ODE model of

this pathway [117] consists of 32 differential equations and 48 associated rate constants

(estimated from multiple sets of experimental data as reported in [117]).

To construct the three DBNs arising out of EGF, NGF and co-stimulation, we divided

as before the value domains of the variables into 5 equally wide intervals and assumed

the initial distributions to be uniformly distributed over some of these intervals. The

time horizon of each model was set at 10 minutes which was evenly divided into 100

time points. To fill up the conditional probability tables, we used the equation based

subinterval sampling. We subdivided each of the initial states into 4 subintervals. 2.1

million trajectories were generated to get a coverage of 500 per combination of the

subinterval. As shown in figure 4.5(a), the quality of the approximations relative to the
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Figure 4.9: L1 error vs time points : NGF-stimulation

Figure 4.10: (a) Normalized mean error over all marginals (b) Number of marginals with
error greater than 0.1: EGF- stimulation
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Figure 4.11: L1 error vs time points : EGF-stimulation
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original ODE dynamics was high. Once we had the DBNs, we ran FF, BK and HFF(σ)

for various choices of σ.

For the DBN obtained for the pathway under NGF-stimulation, for 6 of the 32 species

there were significant differences between FF and BK on one hand and HFF on the other,

including some biologically important proteins such as Sos and Erk. In figure 4.6, we

show for Erk, the marginal probability of the concentration falling in the interval [1, 2)

at various time points as computed by FF, BK, HFF(3K) and HFF(32K) as well as the

pseudo-exact marginals obtained via massive Monte Carlo simulations. We observe that

HFF tends to the exact values as the number of spikes increases.

To measure the overall error behavior, noting that HFF always did better than FF,

we fixed the error incurred by FF as the base (100%) and normalized all other errors

relative to this base. Under this regime, the relationship between computation time and

normalized mean error for Erk ’s value to fall in [1, 2) is shown in figure 4.7. We observe

that the mean error reduces to 22% for HFF(32K) at the cost of approximately 104

seconds increase in running time. For HFF(σ) the errors did not decrease linearly as

the number of spikes were increased. This is to be expected since the probability mass

captured by the additional spikes will be less than what is captured by the initial spikes.

Overall, the maximum error over all the marginals (32× 5× 100 = 16000 data points)

reduced from 0.42 for FF to 0.3 for HFF(3K) and to 0.12 for HFF(32K). The normalized

mean error over all marginals went down to 60% for HFF(3K) and 30% for HFF(32K) as

shown in figure 4.8(a) which also displays the corresponding computation times. Further,

when we computed the number of marginals with errors greater than 0.1, we found that

this number reduced to about half for HFF(3K) and by more than a factor of 10 for

HFF(32K) compared to FF as shown in figure 4.8(b). We also compute the L1 error

across all marginals - per time point - between exact marginals and the one’s compute

by different approximation algorithms. Figure 4.9 shows the plots of L1 error between

the various algorithms across every time point, it shows that the L1 error is high for FF

compared to HFF which further reduced with increasing number of spikes.

For the DBN obtained for the pathway under EGF-stimulation we found similar

results. Overall, the maximum error over all the marginals reduced from 0.35 for FF

to 0.14 for HFF(3K) and to 0.07 for HFF(32K). The normalized mean error over all

marginals went down to 40% for HFF(3K) spikes and 20% for HFF(32K) spikes as shown
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Figure 4.13: L1 error vs time points : EGF-NGF Co-stimulation

in figure 4.10(a) which also displays the corresponding computation times. Further,

when we computed the number of marginals with errors greater than 0.1, we found that

this number reduced by more than a factor of 4 for HFF(3K) and to 0 for HFF(32K)

as shown in figure 4.10(b). Similar results were obtained for the DBN describing the

dynamics of the EGF-NGF pathway under co-stimulation of both NGF and EGF as

shown in figure 4.12. Figures 4.11 and 4.13 show the plots of L1 error between the

various algorithms across every time point for the DBNs obtained for EGF- stimulation

and EGF-NGF-co-stimulation respectively, it shows that the L1 error is high for FF

compared to HFF which further reduced with increasing number of spikes.

The Epo mediated ERK pathway

Next we considered the DBN model of Epo mediated ERK signaling pathway as shown

in figure 4.3. Erk and its related kinase isoforms play a crucial role in cell proliferation,
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Figure 4.14: (a) Normalized mean errors over all marginals, (b) Number of marginals
with error greater than 0.1: Epo stimulated ERK pathway

differentiation and survival. This pathway describes the effect of these isoforms on the

Epo (cytokine) induced ERK cascade. The ODE model of this pathway [116] consists of

32 differential equations and 24 associated rate constants. To construct the DBN, we

divided the value domain of variables into 5 intervals. Here the interval sizes for variables

were not all kept equal. For 23 species that have very low basal concentration level, we

set the first interval of the corresponding variables to be smaller (∼ 20%) compared to

the other 4 intervals (equal sized). The rest 9 variables all have equal sized intervals as

before. Time horizon was fixed at 60 minutes which was then divided into 100 time points.

We constructed the DBN using equation based subinterval sampling. As figure 4.5(b)

indicates, the quality of the approximation relative to the original ODE dynamics was

again high. We then ran FF, BK and HFF(σ) for various choices of σ.

FF and BK were quite accurate for many of the species. However, for some species

such as JAK2, phosphorylated EpoR, SHP1 and mSHP1 etc. which are biologically

relevant, FF and BK incurred a max error of 0.49. On the other hand, HFF(3K) incurred

a max error of 0.45 while HFF(32K) incurred a max error of 0.31. The normalized mean

error over all marginals went down to ∼ 70% for HFF(3K) and ∼ 60% for HFF(32K)

as shown in figure 4.14(a). Further, when we computed the number of marginals with

errors greater than 0.1, we found that this number reduced by around half for HFF(32K)

compared to FF as shown in figure 4.14(b).

4.4.3 Comparison with clustered BK

An important component of the BK algorithm is the grouping of the variables into clusters.

The idea is to choose the clusters in such a way that there is not much interaction between
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variables belonging to two different clusters. When this is done well, BK can also perform

well. However, choosing the right clusters seems to be a difficult task. The easy option,

namely, the fully factored BK in which each cluster is a singleton performs in our case

studies as badly (or well) as FF.

We tried to gain a better understanding of BK augmented with non-trivial clusters by

using the structure of the pathway to come up with good clusters. A natural way to form

2-clusters seemed to be to pair together the activated (phosphorylated) and inactivated

(dephosphorylated) counterparts of a species in the pathway. For the EGF-NGF pathway,

this clustering indeed reduced overall errors compared to FF and HFF(3K). However, we

found that HFF(σ) with σ > 5000 outperformed this version of BK. We did not consider

bigger clusters for two reasons: first, when we tried to increase the sizes and the number

of clusters in different ways, BK ran out of the 3GB memory. Second, there seemed to

be no biological criterion using which one could improve the error performance of BK.

For the Epo mediated ERK pathway too we tried similar clustering. Here the natural

clusters were of size 3. Unfortunately, the results were as bad as for fully factored BK.

HFF, even with 1K spikes (σ = 1000) was able to perform better than this clustered

version of BK. This suggests that the clusters we chose were not the right ones. Hence in

our setting, a clustered version of BK that performs well in terms of the computational

resources required and the errors incurred appears to be difficult to realize.
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4.5 Discussion

In this chapter we have described our improved probabilistic inference algorithm, HFF,

for DBNs. HFF algorithm reduces errors made by approximate algorithms such as FF

by maintaining a small number of full dimensional state vectors called spikes, whose

probabilities are maintained at each time slice in addition to maintaining and propagating

belief states in a factored form. By tuning the number of spikes, one can gain accuracy

at the cost of increased but polynomial (quadratic) computational cost. We have used

large DBNs to illustrate the improvements achieved by our algorithm in comparison with

FF. We have also shown that HFF is more practical than algorithms such as BK in our

setting. The following chapters will focus on probabilistic model checking.
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Chapter 5

Probabilistic Model Checking

In this chapter we will discuss the basics of probabilistic model checking. They refer to

the class of formal verification techniques for automated analysis of probabilistic systems.

We will first describe model checking in a setting where probabilities do not arise. This

will be followed by discussion of its counterpart for probabilistic systems. We will then

follow it up with a discussion on the application of model checking to computational

systems biology. It will set the background for our contributions to this topic presented

in the subsequent chapters.

5.1 Models

First we discuss Kripke structures [121], which are commonly used to describe finite state

models. Next, we discuss common probabilistic models such as discrete time Markov

chains (DTMC) and Continuous time Markov chains (CTMC).

5.1.1 Kripke structures

A Kripke structure, used to describe a finite state model, can be formally defined as a

tuple , K = < S,sinit,T ,L > where

• S is a finite set of states;

• sinit is the initial state;

• T ⊆ S × S is a transition relation between states such that ∀ s ∈ S, ∃ s′ ∈ S such

that (s, s′) ∈ T ;
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• L : S �→ 2AP , where L is a labeling function that labels each state s ∈ S with the

set of atomic propositions that are true in that state;

For probabilistic systems which usually modeled as Markov chains, we use variants of

Kripke structure. The transition relation T is replaced with a stochastic transition relation

R, which comprise of either transition probabilities (known as Discrete Time Markov

Chains (DTMCs)) or transition rates (Continuous Time Markov Chains (CTMCs)).

5.1.2 DTMC, CTMC

A labeled DTMC [122] can be defined as a tuple < S,sinit,R,L > where

• S are the finite set of states;

• sinit ∈ S is the initial starting state;

• R : S × S → [0,1] is a transition probability function such that R(s, s′) is the

probability of moving from s to s′ where s, s′ ∈ S and
∑

s′∈S R(s, s
′) = 1 for all s

∈ S.

• L : S → 2AP , where L is a labeling function that labels each state with the set of

atomic propositions(AP ) that are true in that state.

Hence, a DTMC can be considered as a Kripke structure where the transition across

states is augmented with probabilities i.e, if the system is in state s ∈ S at time t, it

stays there for one unit of time and jumps to state s′ ∈ S at time t+ 1 with probability

R(s, s′), regardless of its history up to and including time t− 1. A transition from state

s to s′ can only take place if R(s, s′) > 0. Each state s ∈ S is labeled with atomic

propositions. We define a path in the DTMC to be a finite execution (of length k) of

the DTMC starting from sinit, where each subsequent state s′ ∈ S is decided according

to R. The probability of a path sinit, s1....si...sk where si, sk ∈ S is 1 if k = init or =

R(sinit, s1)× ...×R(si−1, si)...×R(sk−1, sk) otherwise. The probability space consist of

all paths starting at sinit and of length k + 1.

A labeled CTMC [123] follows a similar definition to that of DTMC, the only difference

is that a CTMC allows modeling of continuous time. The edges carry probabilistic timing

information. This means that state changes in a CTMC can occur at arbitrary time
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unlike at fixed time interval in a DTMC. Instead of the transition state probability matrix

in DTMCs, a rate matrix R′ is defined, which gives the rates R′(s, s′) at which transitions

occur between each pair of states s, s′ ∈ S. If R′(s, s′) = 0 then no transition from state s

to s′ is possible, else if R′(s, s′) > 0, then 1−e−R′(s,s′).t denotes the probability of moving

from state s to s′ within t time units. DTMC and CTMC models have are used in the

context of biological systems [92, 124] for modeling and analysis of biopathway dynamics.

5.2 Temporal logics

Temporal logics are formalisms used to describe the set of properties about system

behavior. The set of temporal operators describe the implicit time ordering between

events of the system. There exist many different temporal logic formalisms which differ

based on the model to be analyzed and the desired expressive power of the formalism.

The choice of temporal logic formalism is crucial, since the complexity of verification

depends on it. Temporal logics may be differentiated into categories depending on the

systems they are used to reason about. They can be either probabilistic, non-probabilistic

or be considered in linear time, branched time setting etc. Examples of non-probabilistic

temporal logics include Linear Time Temporal Logic (LTL) which considers models where

time is modeled along a single path, Computation Tree Logic (CTL) which considers time

modeled as a tree representing the different paths the system could take. Probabilistic

counterparts include PCTL which is a probabilistic extension of CTL, PLTL which is a

probabilistic extension of LTL. To illustrate the ideas of these temporal logics, we will

discuss LTL and probabilistic CTL (PCTL) in the following:

Linear Time Temporal Logic (LTL)

LTL [93] was first proposed by Amir Pnueli in the context of verification of programs. It

is used to express properties along paths of the system.

Syntax of LTL Let’s assume that AP = {A1, ......An} be the set of atomic propositions.

Formulas in LTL are built from AP along with propositional logic connectives {∨,∼}

and temporal operators O,∪. Given the set AP , a LTL formula is inductively defined as:

• true, false are LTL formulas;
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• ∀ Ai ∈ AP , Ai is a LTL formula;

• If ψ is a LTL formula then ∼ ψ is an LTL formula;

• If ψ, ψ′ are LTL formula then ψ ∨ ψ′ is a LTL formula;

• If ψ, ψ′ are LTL formula then so are O(ψ), ψ ∪ ψ′.

Semantics of LTL ∀i such that i ∈ (0, 1, 2......), let πi denote the sequence of states

si, si+1, si+2... in a path π, we denote an LTL formula ψ holds in the path starting at

state si by πi |= ψ. The relation πi |= ψ is defined as follows:

• πi |= true, πi � false;

• If ψ ∈ AP , πi |= ψ iff si |= ψ (ψ is true at si);

• πi |= ∼ ψ iff πi � ψ;

• πi |= ψ ∨ ψ′ iff πi |= ψ or πi |= ψ′;

• πi |= O(ψ) iff πi+1 |= ψ;

• πi |= ψ ∪ ψ′ iff there exists a j, j � i such that πj |= ψ′ and ∀ k, i � k < j, πk |=

ψ.

The derived propositional operators such as ∧, =⇒ , ≡ and the temporal operators

G (always from now), F(sometime in the future) follow from basic operators through

the following relation, ψ ∧ ψ′= ∼ (∼ ψ∨ ∼ ψ′), (ψ =⇒ ψ′) = (∼ ψ ∨ ψ′), (ψ ≡ ψ′) =

(ψ =⇒ ψ′ ∧ ψ′ =⇒ ψ), F(ψ) = true ∪ ψ, G(ψ) = ∼ F (∼ ψ). A LTL formula formula

ψ is declared to be true iff π0 |= ψ.

Probabilistic Computation Tree Logic (PCTL)

PCTL [122] is a probabilistic extension of CTL which is a branching time temporal logic.

It is useful for reasoning about properties of stochastic systems such as ‘ ‘if the gene

encoding protein A is knocked out then is there an 85% probability that the concentration

of protein B drops?”. Carrying forward the notations for atomic propositions and temporal

and propositional operators from the discussion of LTL, we describe the syntax and

semantics of PCTL.
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Syntax of PCTL

• ∀ Ai ∈ AP , Ai is a PCTL formula;

• if ψ is a PCTL formula, then so is ∼ ψ;

• if ψ and ψ′ are PCTL formula, then so is ψ ∨ ψ′;

• if ψ and ψ′ are PCTL formula, then so are O(ψ), ψ ∪≤t ψ′; these are referred to

as path formulas.

• if ψ is a PCTL formula, p a real number with 0 ≤ p ≤ 1 and � ∈ {≤,≥, >,<},

then [ψ]�p is a PCTL formula.

The other derived operators are defined as in the previous discussion on LTL. The

main focus is on the quantity “p” which represents the probability of satisfaction of the

property. For instance, the formula ψU≤tψ′
≥p expresses that within the next t time

units, with at-least a probability p, ψ′ will become true and ψ will be true from now

until ψ′ become true.

PCTL Formulas in PCTL are interpreted over a DTMC D. D, s |= ψ means that the

formula ψ is true at state s in the DTMC D.

Let us denote by a path π, the set of infinite states (s0, s1....) such that ∀i, si are

states of D. Let us denote the set of all infinite paths starting from state si as Path(si),

si are states of D.

We will now define a probability measure over the set of paths. We will begin by

defining cylinder sets which is a measure of the set of paths with a common finite

prefix. Let s0, s1...sk be a finite sequence of states, we let Cylinder(s0, s1...sk) = {π ∈

Path(s0)|s0, s1...sk is the prefix of π}. We define its measure as Prs0(Cylinder(s0, s1...sk))

=
∏

0≤i<k R(si, si+1). For all other states of the DTMC excluding s0, Prsi(Cylinder

(s0, s1...sk)) = 0. We will now extend this to the σ−algebra generated by the cylinder sets.

The σ−algebra consists of all the Cylinder(s0, s1...sk) for the set of states s0, s1, s2...sk,

the empty set and is closed under the union and complement.

D, π |= ψ′ means that the path formula ψ′ is true for the path π in the DTMC D

and D, π[k] |= ψ′ means that the path formula ψ′ is true for the path starting at state k

of path π in the DTMC D.
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We define Prs(ψ
′) as the summation of the probability measure of all the cylinder sets

of paths ∈ Path(s) which satisfy the formula ψ′, Prs{ π ∈ Path(s)|D, π |= ψ′}. Let p be

a real number with 0 ≤ p ≤ 1, � be a comparison operator such that � ∈ {≤,≥, >,<}.

The satisfaction relation D, s |= is defined as follows:

• D, s |= true for all states;

• If ψ ∈ AP , D, s |= ψ iff ψ is true at s of the DTMC D;

• D, s |= ∼ ψ iff D, s � ψ;

• D, s |= ψ ∨ ψ′ iff D, s |= ψ and D, s |= ψ′;

• D, π |= ψ U≤t ψ′ iff there exists an i ≤ t such that D, π[i] |= ψ′ and D, π[j] |= ψ,

∀ j : 0 ≤ j < i;

• D, s |= [ψ]�p iff Prs(ψ) � p.

5.3 Model checking algorithms

Given the model and the property encoded in a specific temporal logic formalism, the

task of the model checking algorithm is to systematically traverse the state space of the

model to check if the property holds.

Model checking LTL formulas The most common method to verify LTL formulas

is using an automata-theoretical approach [125]. Informally, the procedure consists of,

first, constructing an automaton of the formula ∼ ψ where ψ is the LTL formula we

need to verify. Next, we compose the original system model which is being verified with

the constructed automaton, this produces a product automaton. Then we attempt to

find a path from the start state to the end state (of the original model) in the product

automaton using a depth first search. If we can find such a path in the product automaton,

we report that the formula ψ does not hold for the model and the path constitutes a

violation of the formula ψ, it is reported as the counter example.

Model checking PCTL formula We will now briefly discuss the model checking

algorithm for PCTL [126, 122]. The algorithm takes as input a DTMC, and the PCTL

formula ψ, and outputs the set of states in the model that satisfy ψ. First, the parse
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tree for ψ is constructed, each node in this tree is labeled with a sub formula of ψ, the

leaves represent the atomic propositions or true. we start from the leaves of this tree

onto sub formulas of increasing complexity to compute the states of the model which

satisfy the sub formula. At the end of the computation, the set of states that satisfy the

formula ψ are computed. The rules for determining if a state satisfies a formula have

already been discussed in the section on PCTL.

In real life scenarios - especially with stochastic models - the state space of models

is large, so it is important to use data structures and algorithms that minimize the

computational space and time requirements for model checking. In terms of dealing with

such large systems, two main caveats need consideration. The first deals with representing

these state spaces efficiently and compactly with in the given memory constraints. Next, is

to resort to approximate methods of model checking since performing exact computations

- especially in the case of probabilistic systems- may be infeasible or time consuming. We

will briefly discuss both these aspects in the following.

Methods for state space reduction include use of sparse matrices and symbolic methods.

The idea behind symbolic state-space representation is to exploit the regularity and

structure in the models. Examples of symbolic data structures are the Binary Decision

Diagram (BDD), Multi-Terminal Binary Decision Diagram (MTBDD). BDDs [127] are

data structures which are used to represent Boolean functions efficiently. BDDs are

directed, acyclic graph, consisting of intermediate decision nodes and terminal nodes

labeled with 0 and 1. Each decision node is labeled with a Boolean variable and has

two child nodes representing assignment of 0 or 1 to the children. Massive reduction in

state space can be achieved by ordering the variables in a specific order and eliminating

identical sub-graphs in the BDD. An MTBDD [128] is a data structure that represents a

function mapping of Boolean variables to real numbers i.e it can be seen as a directed

acyclic graph containing decision nodes and terminal nodes with real numbers (instead

of 0 and 1 in BDDs), this structure is effective to compactly represent matrices with real

values especially in probabilistic model checking.

Having decided a suitable state space representation, next, in the context of proba-

bilistic models, it is important to compute the probabilities of the properties (temporal

logic formula). This entails solving a system of linear equations. Numerical methods

exist for solving them [129]. These methods, although are highly accurate fail to scale to
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large systems. They fall into the category of exact algorithms. Unfortunately, models

considered in domains such as systems biology have a much larger state space than

those which can be efficiently verified by numerical methods. In such cases, approximate

methods are used. One such method works by employing statistical methods to obtain a

reliable estimate of the probability of a property by sampling the underlying stochastic

model. These methods fall into the category of statistical model checking. The main

advantage offered by these methods is that we can sample the stochastic models without

explicitly representing them. All we need is a simulatable version of the model in a high

level modeling formalism. The main task is to generate executions of the underlying

model which we will refer to as trace. Once a trace is generated, we check if the property

holds for this trace. When enough traces are generated, we perform statistical analysis

of these traces to see if they provide enough evidence to suggest that the truth-hood of

the property. It is known that in the asymptotic limit of the number of traces, statistical

methods converge to the true probability. However since the number of traces that can

be drawn is limited, we use statistical analysis methods to provide guarantees on the

confidence of the result and the number of traces needed. Many algorithms have been

proposed to solve the statistical model checking problem efficiently [130, 131, 132, 133].

These algorithms are based on whether the system to be verified allows for drawing traces

in an unrestricted way (white box systems) or if the number or nature of traces that can

be drawn from the model is restricted (black box systems). To assert a probabilistic

property, these algorithms either estimate the true probability of the property (statistical

estimation methods) or formulate it as a statistical hypothesis testing problem.

5.4 Model checking in computational systems biology

There has been considerable interest in adapting formal methods such as model checking

for analyzing models in computational systems biology in the past decade. Main challenges

in adapting them include, (1) formulating interesting properties to analyze keeping in

mind the complex dynamics of biological systems, (2) dealing with the varied modeling

formalisms used to model biological systems, (3) dealing with the large state spaces

associated with these models especially in probabilistic settings and (4) overall, to use it

as a tool that aids in building, calibrating and analyzing highly consistent and accurate
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models of biological systems. We will briefly discuss some of these applications in this

section.

We will discuss existing literature mainly under two themes. First, we discuss

applications which focus on non-probabilistic systems. Next, we discuss those which

focus on probabilistic systems. Under each theme, we will differentiate methods which

focus on analysis of models (assuming a consistent model has been built) and those where

model checking is used for performing tasks such as model calibration.

Among the early works to use model checking to analyze dynamics of biological

systems, the tool BIOCHAM[88, 134, 135, 136] provides a framework for modeling and

analyzing biological systems, it uses a rule based modeling framework for modeling

biological systems. The models consist of a set of system variables, their initial states

and a set of condition action rules on the variables. These rules, along with the system

variables induce a Kripke structure. Queries which constitute biologically interesting

properties and how such properties can be expressed using CTL (Computation tree

logic) are discussed. Next, a CTL based symbolic model checking algorithm is used for

analyzing several qualitative model and quantitative models. They mainly use existing

model checkers (the symbolic model checker NuSMV[137] and constraint based model

checker DMC[138]). This was among the first frameworks which provided a proof of

concept that model checking can be used for useful analysis of biological pathway models

and continues to be maintained and updated[139].

Antoniotti and colleagues [140] describe an automaton based approach to study the

temporal evolution of complex biochemical reactions modeled as a set of differential

algebraic equations. Their main motivation for the work is use model checking to interpret

and automate the reasoning process of simulation traces. They summarize simulation

traces to an automaton and use CTL to specify queries, their approach is consolidated

into a tool “Sympathetica”. They illustrate the method on a model for purine metabolism.

Batt and colleagues [89] describe a validation platform for models built with a class

of piecewise-linear (PL) differential equations that permit coarse-grained, qualitative

analysis of the network dynamics. The analysis is based solely on sign pattern of the

derivatives of system variable. Instead of numerical values for the parameters, the method

uses inequality constraints that can be inferred from the experimental literature. They

convert the equations into a state transition graphs which are conservative approximations
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of the dynamics of the underlying PL models, these graphs are amenable for temporal

logic based verification. CTL was used for specify the queries. The validation approach

was applied to the analysis of the network controlling the nutritional stress response in

E.coli.

Monteiro and colleagues [90],[141] focus on the issue of constructing interesting,

relevant queries for biological models which is usually not an easy task for non-expert

users. The authors propose use of “patterns” which are high level query templates which

capture complex biologically relevant queries that can be automatically translated into

temporal logic formulas. The queries that were represented as patterns (occurrence

pattern, exclusion pattern, consequence pattern, sequence pattern, invariance pattern)

and concerned the domain of genetic regulatory networks. They show the use of the

method on the analysis of the model of E.coli carbon starvation response. Fisher and

colleagues[20] build a discrete, state based mechanistic model of vulval development in

Caenorhabditis elegans, using the reactive modules framework. The model consists of

inductive and lateral signaling pathways involved in vulval development and cross talks

between them. Next, they use a model checking framework, consolidated in the tool

MOCHA[142] to analyze all possible behaviors of the model. Their analysis was able

to predict additional details about the mechanism of lateral signaling and the temporal

ordering of events in the pathway crucial for stable cell fate. These predictions were

also validated experimentally. Other applications of model checking for analyzing non

probabilistic systems can be found in [143], [144], [145], [146].

Next, we discuss some work on using model checking in the context of calibrating

(parameter estimation) deterministic models. The idea is to formulate expected system

behavior as formulas in the temporal logics and using the model checking procedure to

search through the high dimensional parameter search space for parameter which can

explain the expected behaviors. In this direction, [97] focus on randomly sampling the

set of unknown parameters and accepting the set of parameters if the simulation trace

satisfies LTL formulas which specify the desired properties of the system. A similar

approach is taken by [100] in the context of hybrid functional Petri-nets (HFPN), where

millions of parameter sets are sampled and the associated simulation traces are verified

in an on-line fashion. However, both methods lack a principled search method for finding

satisfactory parameters; they apply a brute force strategy to search the parameter search
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space. Typically, the parameter search space is high dimensional, in which case these

strategies will need impractically large number of samples and are unscalable. The

work reported in [99] also consider parameter estimation on a single simulation trace,

however they use a evolutionary strategy based search algorithm to guide the search.

Methods such as [147, 98] focus on parameter estimation on multi-affine ODE systems;

their method relies on explicitly constructing a symbolic encoding of the dynamics of the

pathway models and using symbolic model checking to derive parameters.

Moving on to verification in the context of probabilistic systems, [57] introduce

the tool PRISM (Probabilistic symbolic model checker), which is an analysis tool for

probabilistic systems. System models are described using the PRISM modeling language,

a high-level state-based description language. In this language a system is described as

the parallel composition of a set of modules. The prism model description is translated

into DTMC, CTMC, or a Markov Decision Process (MDP). Properties are specified using

PCTL (for DMTCs) or CSL (for CTMCs). In PRISM it is possible to either determine

if a probability satisfies a given bound or obtain the actual value. There is also support

for the specification and analysis of properties based on costs and rewards. PRISM uses

symbolic approaches to store the state space and numerical computation for quantitative

probabilistic model checking. PRISM has been widely used in the context of verifying

biological systems. In [58], a model the MAPK (Mitogen Activated Protein Kinase)

Cascade is constructed using PRISM, which is then converted into a discrete stochastic

model. In the paper a population based approach is used to replicate and validate the

dynamics of the pathway as reported in the literature. Next, [59] illustrate the use

of PRISM to study FGF (Fibroblast Growth Factor) pathway. Calder and colleagues

[61],[124] further illustrate use of PRISM for modeling and analyzing RKIP-inhibited

extra-cellular signal Regulated Kinase (ERK) pathway where in the concentration of

each protein are modeled as discrete abstract quantities, but time is continuous. The

CTMC is constructed for the pathway and continuous stochastic logic (CSL) is used to

specify temporal properties. They were mainly interested in the role of RKIP on the

behavior of the pathway and focus on verifying properties describing steady state and

transient profiles for different reaction rates and activation sequences.

Ballarini and colleagues [60] have used the PRISM model checker to gather quantita-

tive characterization of properties of biological systems exhibiting oscillatory behavior.
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They use PRISM to develop a Markovian model of both a transient oscillator, known as

the 3-way oscillator as well as of its permanent oscillation variant. Exact probabilistic

model checking such as the one used in PRISM has the disadvantage that as the models

considered become large, they suffer the state space explosion problem and hence exact

model checking takes a lot of time and effort and infeasible in some cases. In such cases

approximate methods of model checking are often used. Statistical model checking, is

one such method which relies on simulating the underlying (large) probabilistic model

using a high level simulatable description of the model, and based on the simulations and

subsequent statistical analysis, decides if a property holds for the probabilistic model.

The main advantage is that, it is not necessary to explicitly construct and store the

whole state space of the probabilistic model. These methods have a low time complexity,

require low memory and are tunable in terms of the accuracy of the result needed.

Donaldson and colleagues [91] propose a method that resort to taking a fixed number

of simulations of the underlying model. They extend probabilistic LTL with numerical

constraints (PLTLc) to formulate properties and employ Monte Carlo simulations to

approximate the probability of the PLTLc properties. Monte Carlo approximation

samples a finite set of paths through the model’s state space (trace), the probability

of properties is calculated as the number of traces that satisfy the property by the

total number of traces drawn. They also introduce a tool called the Monte Carlo

Model Checker for PLTLc properties MC2(PLTLc). They use the formulated method

to validate properties of the MAPK signaling pathway. In a subsequent paper [148],

they use the approach for the parameter estimation problem, they use the temporal

logic specification as the expected result and try to estimate the parameters for which

the underlying stochastic model conforms to the specification, a genetic algorithm is

used to drive the search. Next, [92] introduce the BIOLAB algorithm for statistical

probabilistic model checking of CTMC models of biological processes. This was among

the first applications of hypothesis testing based statistical model checking for biological

models. The main algorithm they use is that of [130], these methods convert the original

probabilistic model checking problem into a hypothesis testing problem. The set of initial

states of the system comprise of user-specified set of initial conditions and parameter

values. Properties are expressed in probabilistic bounded linear temporal logic. BIOLAB

then statistically verifies the property using sequential hypothesis testing on executions
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sampled from the model. The sequential hypothesis testing is carried out using the Walds

sequential probability ratio test. The authors show that they can bound the probability

of false-positive and false-negative errors, with regard to the predictions the algorithm

makes. They validated their approach using the T Cell receptor pathway model. We will

briefly discuss hypothesis testing based algorithms now. Here we specifically focus on the

problem of checking properties of the form Pr≥p{ψ} where p is the threshold probability

against which we want to compare the real probability p′ with.

Younes[149] proposed the single sampling based hypothesis testing algorithm where

the number of traces (n) is decided upfront. Given H0 : p′ ≥ p against H1 : p′ < p, a

constant c is also specified that decides the number of samples that should evaluate to

true to accept the hypotheses. if
∑n

i=1 xi > c then hypothesis H0 is accepted, else H1 is

accepted. The main challenge is to find the pair < n, c > such that H1 is accepted with

probability utmost α(Type 1 error) when H0 holds , and H0 is accepted with probability

at most β(Type 2 error) when H1 holds. Finding the pair < n, c > is non-trivial and

the authors describe an algorithm based on binary search to find the pair < n, c > that

obeys the bounds. These methods provide no guarantees about the result, however either

the null hypothesis or the alternate hypothesis is accepted with bounds < α, β > on the

probability of the error.

The number of samples in the previous method can be reduced by taking observations

into account as they are made, in this regard Younes [130] formulate the probabilistic

model-checking problem as a sequential hypothesis-testing problem. After every sample

trace is drawn, a statistical test is carried out, the outcome of the test decides if another

sample needs to be drawn on if a decision can be made with the last drawn sample.

Hence, these methods adapt to difficulty of the problem. For practical considerations

the original hypothesis test is relaxed as with a factor δ which represents the indifference

region around the threshold p; as indifference region tends to zero, the ideal case is

reached. Now, the original hypothesis testing problem is slightly modified to testing the

null hypothesis H0 : p′ ≥ p+ δ against the alternative hypothesis H1 : p′ < p− δ.

Let Xi be a Bernoulli random variable such that (Pr[Xi = 1] = p′ and Pr[Xi = 0] =

1 − p′). An observation of Xi, represented as xi states if the specified temporal logic

formula is true or false, for example in our case xi will be 1 if the ith sample satisfies

ψ and 0 if it does not. A sequential sampling algorithm based on Wald’s sequential
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probability test is used to solve the hypothesis testing problem. After taking n samples

(observations) x1, x2, ......xn of the system, calculate

fn =

n∏
i=1

Pr[Xi = xi | p′ = p− δ]

Pr[Xi = xi|p′ = p+ δ]
=

[p− δ](
∑n

i=1 xi)[1− [p− δ]](n−
∑n

i=1 xi)

[p+ δ](
∑n

i=1 xi)[1− [p+ δ]](n−
∑n

i=1 xi)
(5.1)

Hypothesis H0 is accepted if fn ≥ A, and Hypothesis H1 is accepted if fn ≤ B. The

constants A and B are chosen such that it results in a test of strength < α, β >. In

practice to satisfy the strength dictated by < α, β >, choose A = 1−β
α and B = β

1−α .

Samples are drawn until a decision can be made.

Younes [131] further discuss a modified SPRT algorithm, owing to the issue that the

previous algorithm satisfies the error bounds α, β only when the true probability does

not lie in the indifference region. In the modified SPRT algorithm, the error for cases

when the true probability lies in the indifference region is bounded by introducing a

factor (γ) (which controls the probability of an undecided result) such that:

Pr[s �I φ|(s |≈δ
T φ) ∨ (s |≈δ

⊥ φ)] ≤ γ. (5.2)

where s �I φ represents that the algorithm returns undecided results for φ , s |≈δ
T φ

represents that the formula φ being true (using the algorithm), and s |≈δ
⊥ φ represents

that the formula φ being false (using the algorithm). The algorithm is modified to using

two acceptance sampling tests:

H0 : p’ ≥ p against H1 : p′ < p− δ with < α, γ > (5.3)

H0
′
: p’ ≥ p+ δ against H1

′
: p′ < p with < γ, β > (5.4)

the algorithm is applied to the 2 hypotheses, and Pr≥p{ψ} is reported as true if H0

and H0
′
are accepted and false if H1 and H1

′
are accepted, any other combination the

results is reported as undecided.

Langmead and colleagues [150] argue that the current Probabilistic model checking

algorithms based on hypothesis testing uses classical statistical procedures such as Wald’s

Sequential Probability Ratio test(SPRT) to answer the decision problem are not efficient

in terms of the number of samples needed to determine the solution to problem, hence
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they suggest hypothesis testing based on Bayesian statistical procedures, which requires

fewer samples to be considered and also has the advantage of being able to use prior

knowledge(which is known in the biological pathway setting) in the form of a probability

distribution. They discuss an algorithm for performing model checking using the approach

and apply it to the yeast heterotrimetric G protein cycle pathway model. Their algorithm

verifies properties of the model expressed as formulas in probabilistic bounded temporal

logic (PBLTL) which is a probabilistic version of bounded LTL. The algorithm basically

draws samples and checks if it satisfies the temporal logic specification, the number of

samples to decide when to accept a hypothesis is decided based on the Bayes factor

(determined from the samples, it depends on the sample and the prior probabilities).

They sample until the Bayes factor goes above a particular threshold set by the user and

then decide to accept or reject the hypothesis.

Further, [151] reports the application of this method to analyze the HMGB1 signaling

pathway. Previous methods on statistical model checking applied to the domain of were

offline i.e they simulated the model to generate the whole trace, before applying the

model checking procedure on the trace. However it is a wasted effort to simulate and

generate the whole trace, which is usually an expensive operation. Instead it may be

better to use an online approach where we model check the trace as it is generated.

In this regard [152, 153] use an online approach to perform statistical model checking.

Other applications of probabilistic model checking in systems biology settings can be

found in [144, 139, 154] etc.

In summary, application of probabilistic model checking in the domain of compu-

tational systems biology are mainly focused and moving towards dealing with models

which have a large state spaces. For relatively small systems exact methods can be

used for analysis. However when considering larger systems, approximate methods such

as statistical model checking algorithms have been used. Hence, the need to develop

methods where the large state space arising in stochastic models can be effectively dealt,

either by more efficient representations or by focusing on approximate methods which

can scale.
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Chapter 6

Probabilistic model checking on

DBNs

6.1 Introduction

Thus far we have discussed how DBNs arise as succinct representations of high dimen-

sional probabilistic dynamics. We have discussed the problem of inferring probability

distribution of the state of variables in DBNs. We have also described the basics of

probabilistic model checking.

This chapter focuses on analyzing DBN models using probabilistic model checking.

Specifically, our focus is on developing probabilistic model checking algorithms for DBNs

based on probabilistic inference. Our idea is to combine DBN inference algorithms with

temporal logics for doing probabilistic model checking.

In terms of previous work involving DBNs and model checking, the works reported in

[155] and [156] are relevant. These approaches focus on solving the probabilistic inference

problem on DBNs using model checking. They convert a DBN to a corresponding Markov

chain, which is then represented using symbolic data structures such as MTBDDs. Next,

they use standard probabilistic model checking algorithms to solve the DBN inference

problem. These techniques are limited in application to restricted classes of DBNs and

to relatively small systems since it relies on explicitly constructing and symbolically

encoding the underlying Markov chain. We are instead interested in the inverse approach

of developing model checking frameworks directly on DBN models, since in our case

DBNs are succinct representations of large Markov chains. In this direction, we first
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discuss our temporal logic framework for DBNs. Next, we discuss the logic in relation

with PCTL. We follow it up with a discussion of our model checking algorithm and

discuss how we use this approach to verify interesting biological properties in our class

of DBNs.

6.2 Bounded Linear time Probabilistic Logic

We use a probabilistic variant of linear time temporal logic (LTL) [93] which we call

bounded linear time probabilistic logic (BLTPL). Informally, the atomic propositions

are of the form (X, v) ≤ c or (X, v) ≥ c where X is a finite valued random variable

corresponding to a node in the DBN and c is rational number in [0, 1], here c indicates

the threshold probability. The assertion (X, v) ≤ c says that the probability of the

random variable X currently having the value v is less than or equal to c; similarly for the

assertion (X, v) ≥ c. Though probability enters the logic only via atomic propositions it

turns out that one can still express many interesting dynamical properties. Probabilistic

inference algorithms such as the FF, BK or HFF can be used to approximately determine

the truth-hood of these atomic propositions.

6.2.1 Syntax

We will follow notations that were introduced in the previous chapters. As discussed

before, in our temporal logic, the atomic propositions will be of the form (i, v)#r with

# ∈ {≤,≥} and r ∈ [0, 1]. Here (i, v) stands for the random variable Xi of our DBN

taking a value v from its domain. The proposition (i, v) ≥ r, if asserted at time point t,

says that M t
i (v) ≥ r; similarly for (i, v) ≤ r. Given the set of atomic propositions AP , a

BLTPL formula is inductively defined as:

• true, false are BLTPL formulas;

• Every atomic proposition ∈ AP is a BLTPL formula;

• If ϕ is a BLTPL formula then ∼ ψ is an BLTPL formula;

• If ϕ, ϕ′ are BLTPL formula then ϕ ∨ ϕ′ is a BLTPL formula;

• If ϕ, ϕ′ are BLTPL formula then so are O(ϕ), ϕ U ϕ′.
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Figure 6.1: (a) The model (sequence of states) defined by the DBN. (b) The model
checking procedure.

The derived propositional connectives such as ∧,⊃,≡ etc. are defined in the standard

fashion. The temporal connectives F (“sometime from now”) and G (“always from

now”) are defined in the usual way via: F(ϕ) = true Uϕ and G(ϕ) =∼ F(∼ ϕ).

6.2.2 Semantics

The formulas are interpreted over the sequence of marginal probability distribution

vectors σ = s0s1 . . . sT generated by the DBN D. In other words, for 0 ≤ t ≤ T ,

st = (M t
1,M

t
2, . . . ,M

t
n). Consequently st(i) = M t

i for 1 ≤ i ≤ n. We also let σ(t) = st

for 0 ≤ t ≤ T . We now define the notion of σ(t) |= ϕ (ϕ holds at t in D) inductively:

• σ(t) |= (i, v) ≥ r iff M t
i (v) ≥ r. Similarly

σ(t) |= (i, v) ≤ r iff M t
i (v) ≤ r.

• σ(t) |=∼ ϕ iff σ(t) � ϕ

• σ(t) |= ϕ ∨ ϕ′ if either σ(t) |= ϕ or if σ(t) |= ϕ′

• σ(t) |= O (ϕ) iff σ(t+ 1) |= ϕ.

• σ(t) |= ϕ U ϕ′ iff there exists t ≤ t′ ≤ T such that σ(t′) |= ϕ′ and for every t′′ with

t ≤ t′′ < t′, σ(t′′) |= ϕ.

We say that the DBN D meets the specification ϕ and this is denoted as D |= ϕ iff

σ(0) |= ϕ. The model checking problem is, given D and ϕ, to determine whether or not

D |= ϕ.
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6.3 FF based model checking algorithm

We begin by letting SF (ϕ) denote the set of sub-formulas of ϕ and define it as follows.

Since ϕ will remain fixed we will write below SF instead of SF (ϕ).

SF is the least set of formulas containing ϕ such that

• ∼ ϕ′ ∈ SF implies ϕ′ ∈ SF ;

• ϕ′ ∨ ϕ′′ ∈ SF implies ϕ′, ϕ′′ ∈ SF ;

• Oϕ′ ∈ SF implies ϕ′ ∈ SF ;

• ϕ′Uϕ′′ ∈ SF implies ϕ′, ϕ′′ ∈ SF .

The main step is to construct a labeling function st which assigns to each formula

ϕ′ ∈ SF a subset of {s0, s1, . . . , sT } denoted st(ϕ′). After the labeling process is complete,

we declare D |= ϕ just in case s0 ∈ st(ϕ). Starting with the atomic propositions, the

labeling algorithm goes through members of SF in ascending order in terms of their

structural complexity. Thus ϕ′ will be treated before ∼ ϕ′ is treated and both ϕ′ and ϕ′′

will be treated before ϕ′ U ϕ′′ is treated and so on.

Let ϕ′ ∈ SF (ϕ). Then:

• If ϕ′ = A then st ∈ st(A) iff σ(t) |= A. We run FF to determine this. In other

words, st ∈ st(A) iff M t(i, v) ≥ r where A = (i, v) ≥ r and M t(i) is the marginal

distribution of Xt
i computed by FF. Similarly st ∈ st(A) iff M t

i (v) ≤ r in case

A = (i, v) ≤ r.

• If ϕ′ = ∼ ϕ′′ then st ∈ st(ϕ′) iff st 
∈ st(ϕ′′).

• If ϕ′ = ϕ1 ∨ ϕ2 then st ∈ st(ϕ′) iff st ∈ st(ϕ1) or st ∈ st(ϕ2).

• Suppose ϕ′ = O(ϕ′′). Then sT 
∈ st(ϕ′). Further, for 0 ≤ t < T , st ∈ st(ϕ′) iff

st+1 ∈ st(ϕ′′).

• Suppose ϕ′ = ϕ1U ϕ2. Then we decide whether or not st ∈ st(ϕ′) by starting with

t = T and then treating decreasing values of t. Firstly sT ∈ st(ϕ′) iff sT ∈ st(ϕ2).

Next suppose t < T and we have already decided whether or not st′ ∈ st(ϕ′) for

t < t′ ≤ T . Then st ∈ st(ϕ′) iff st ∈ st(ϕ2) or st ∈ st(ϕ1) and st+1 ∈ st(ϕ′).
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ϕ′ = F(ϕ′′) and ϕ′ = G(ϕ′′) can be handled directly. As in the case of U, we start

with t = T and consider decreasing values of t:

• Suppose ϕ′ = F(ϕ′′). Then sT ∈ st(ϕ′) iff sT ∈ st(ϕ′′). For t < T , st ∈ st(ϕ′) iff

st ∈ st(ϕ′′) or st+1 ∈ st(ϕ′).

• Suppose ϕ′ = G(ϕ′′). Then sT ∈ st(ϕ′) iff sT ∈ st(ϕ′′). For t < T , st ∈ st(ϕ′) iff

st ∈ st(ϕ′′) and st+1 ∈ st(ϕ′).

Due to the fact the model checking procedure just needs to treat one finite sequence

as a model, it is particularly simple. Its time complexity is linear in the size of the

formula ϕ whereas in traditional settings it will be exponential in the size of ϕ.

Figure 6.1 summarizes our model checking procedure. Properties of pathway dynamics

are formulated as BLTPL formulas. They are then verified using the above labeling

algorithm which will call the FF algorithm when dealing the atomic propositions.

6.3.1 HFF based model checking algorithm

We have outlined our FF based model checking algorithm in the previous subsection. We

have previously shown that probabilistic inference based FF can incur significant errors

on marginal distributions of biologically important species. In such cases it is important

to consider more accurate algorithms such as HFF.

The HFF based model checking procedure is essentially the same as that outlined

in the previous subsection, except that in order to evaluate the truth hood of atomic

propositions we run HFF with a suitable number of spikes. Therefore, referring back

to the previous subsection, st ∈ st(A) iff M t
HFF (i, v) ≥ r where A = (i, v) ≥ r and

M t
HFF (i) is the marginal distribution of Xt

i computed by HFF. Similarly st ∈ st(A) iff

M t
HFF (i, v) ≤ r in case A = (i, v) ≤ r. All the other steps are exactly same as for FF

based analysis.

6.4 Comparing PCTL with BLTPL

PCTL is the most commonly used logic for reasoning about probabilistic models especially

discrete time Markov chains. Since DBNs can be seen as factored representations of

Markov chains, it is interesting to compare and contrast PCTL with our logic BLTPL.
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Our logic BLTPL is interpreted over marginal probability distributions vectors returned

by DBN inference algorithms at each time point. The probabilistic assertions are only

encoded at the atomic proposition level. The truth value of these probabilistic assertions

is assessed by first, computing the marginal probability distributions of the variables

involved in the atomic proposition and then comparing it with the threshold specified in

the atomic proposition.

PCTL, as discussed in chapter 2, consists of state formulas and path formulas. State

formulas represent formulas that are true or false at a specific state of the Markov chain.

Path formulas on the other hand are interpreted over specific paths. Formulas with

probabilities are state formulas, however they are interpreted over paths that branch out

of a particular state.

It has been shown before that the PCTL* (and therefore PCTL which is a subset

of PCTL*) is in general incomparable with logics that interpret over probability dis-

tributions. We refer the reader to [157, 158] for more details. The basic idea is that

although PCTL can be used to reason about paths of a probabilistic system, one cannot

specifically add constraints to enforce reasoning about specific time points or steps across

these paths. Using a similar line of reasoning, our logic BLTPL is incomparable with

PCTL.

6.5 Experimental results

Next, we used our model checking procedure to verify interesting properties on the DBNs

which arise as approximations of ODE dynamics. The model checking algorithm has

been implemented in C++. All the experiments reported here were carried out on a

Opteron 2.2 Ghz processor, with 3 GB memory. In what follows we briefly describe

each of the pathways for whom we constructed the DBN approximation and verified

the corresponding properties. The ODE models of all the pathways in this section were

taken from the BioModels database [117].

The EGF-NGF signaling pathway

The details of the model have been described in Chapter 4. The model consists of 32

differential equations and 48 kinetic parameters. 20 of the 48 parameters were singled
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Figure 6.2: Segmentation clock pathway

out to be unknown. The ranges of each variable and unknown parameter were discretized

into 5 intervals of equal size. The time step Δt was fixed to be 6 seconds and 3× 106

trajectories were generated up to 600 seconds to fill up the CPTs associated with the

DBN approximation.

The segmentation clock network

During the development of vertebrate embryos, the somites are rhythmically produced

to establish the segmentation pattern of the spines. The periodic formation of somites is

driven by the oscillatory expression of a large number of genes. The expression of these

genes is controlled by an underlying signaling network called the segmentation clock

network [159]. The structure of the pathway is shown in figure 6.2. The corresponding

ODE model consists of 16 differential equations and 75 kinetic parameters. 39 of the 75

parameters were singled out to be unknown. The ranges of each variable and unknown

parameter were discretized into 5 equal-size intervals. The time step Δt was fixed to be 5

minutes while 3× 106 trajectories were generated up to 500 minutes to fill up the CPTs.

The thrombin-dependent MLC phosphorylation pathway

The endothelial cells form a dynamic barrier between blood and tissues, which plays an

important role in various physiological and pathological processes. The barrier function

is determined by the contraction of endothelial cells, which is triggered by the MLC

phosphorylation and thrombin is an agonist that can induce the MLC phosphorylation

through two different signaling cascades [160]. Due to the large size of thrombin-dependent
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Figure 6.3: The thrombin-dependent MLC phosphorylation pathway

MLC phosphorylation pathway, we only show its major signal transduction events in

figure 6.3. This rather large model consists of 105 differential equations, 110 reactions,

and 197 kinetic parameters. In constructing the DBN approximation, we singled out

164 of the 197 parameters to be unknown. We discretized the ranges of each variable

and unknown parameter into 5 equal-size intervals and fixed the time step Δt to be 2

seconds. To fill up the CPTs, we generated 3× 106 trajectories up to 200 seconds.

Verification results

For the three case studies we formulated some properties and verified whether they

were true or not. For convenience we fixed the values of rate constants and the initial

concentrations according to the models taken from the BioModels database[117]. This in

turn fixed the truth values of the propositions at time 0.

The EGF-NGF signaling pathway

• It is known that the concentration of EGF and NGF remains constantly high. We

formulated this property as the formula:
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G((EGF, I4) > 0.9)∧G((NGF, I4) > 0.9)

The property was verified to be true.

• The profile of activated ERK is expected to reach a peak after which the concen-

tration begins to fall. The corresponding formula was:

(((ERK∗, I0) > 0.6)∧F (((ERK∗, I3) > 0.6)∧

F (G((ERK∗, I2) > 0.6)))

The above query was verified to be true.

• We next checked whether the concentration of activated C3G reaches a steady

state as experimentally observed. The corresponding formula is:

((C3G∗, I0) > 0.8)∧F (G((C3G∗, I4) > 0.8))

It was verified to be true.

The segmentation clock network

We checked the oscillatory behavior of various species. Following [91], we formulated the

property for the oscillatory behavior of Axin as:

F (((Axin, I0) > 0.6)∧F (((Axin, I2) > 0.6)∧F (((Axin, I0) > 0.6)∧F (((Axin, I2) >

0.6)∧F ((Axin, I0) > 0.6)))))

The property specifies the number of peaks and troughs to be expected in an oscillation

cycle within the given time bound of the system. Specifically, it says that initially (with

a high probability) the system is at the discretized interval 0 followed by a state some

time in future where (with a high probability) the system moves to a higher discretized

interval and then falls back to initial levels and so on. This query was verified to be true.

The thrombin-dependent MLC phosphorylation pathway

The following are some of the formulas considered for this model:

• The profile of activated Rho starts at a very low level, reaches a high value after

which the concentration drops back to the initial level. The corresponding formula

was:
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((Rho∗, I0) > 0.8)∧F (((Rho∗, I4) > 0.8)∧

F ((Rho∗, I0) > 0.8)))

It was verified to be true.

• Rho gets activated and reaches its peak earlier than MLC:

((MLC∗, I4) < 0.1)U (((Rho∗, I4) > 0.8)∧

O(F ((MLC∗, I4) > 0.7)))

This was also verified to be true.

• Experimental observations suggest that the concentration of phosphorylated MLC

starts at a low level, reaches a high steady state value. The BLTPL formula used

to capture this property was:

((MLC∗, I0) > 0.7)∧F (G((MLC∗, I4) > 0.7))

It was verified to be false.

• We then formulated a BLTPL formula to describe the behavior where the concen-

tration starts with a low value, reaches a high value (peak) after which it drops

back to the initial level.

((MLC∗, I0) > 0.7)∧F (((MLC∗, I4) > 0.7)∧

F ((MLC∗, I0) > 0.7))

This formula evaluated to be true. This means the current ODE model is unable

to explain the experimental data available for this pathway. Further investigation

to identify the missing links of the pathway may be required.

FF is an approximate procedure and hence can incur errors. Finally, to check the

accuracy of our FF-based model checking procedure, we used HFF with 32, 000 spikes

to infer the marginals for the EGF-NGF and the segmentation clock pathway. All the

verification results agreed with FF-based ones except for one formula concerning the

profile of activated ERK. This suggests that a good strategy will be to start with a

FF-based verification to get an overall picture of the dynamics and then use HFF to

improve the accuracy of verification for critical properties.
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6.6 Discussion

We have shown in this chapter how algorithms performing DBN inference can be used to

for probabilistic model checking on DBNs. We have also formulated a simple probabilistic

temporal logic and constructed an approximate but efficient model checking procedure.

Though probability enters the picture solely via atomic propositions, one can still

formulate many interesting dynamic properties of pathway models. Further, due the

fact that there is a single finite run, the model checking procedure is particularly simple.

Admittedly it is an approximate procedure. The best strategy is to begin with the FF

based procedure to get a preliminary feel for the dynamics and in case a biologically

crucial property shows up, one can compute its truth value more precisely by using the

HFF algorithm.
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Chapter 7

Statistical model checking based

model calibration

7.1 Introduction

As outlined in the previous chapters, an alternate approach to scalable probabilistic

model checking is “statistical model checking”. Statistical model checking algorithms

work by sampling traces according to the underlying transition probabilities from a

stochastic dynamical system model. One then uses statistical tests to ascertain if the

drawn samples provide enough evidence to support a probabilistic assertion concerning

system satisfying a certain property expressed in temporal logic. In fact, it can be used

to verify properties of Markov chains which represent the dynamics induced by the

discretization of the value and time domains of the ODEs as described in Chapter 3.

The crucial observation that makes this possible is that these large Markov chains need

not be explicitly represented. Sampling the initial states and solving the corresponding

ODEs, according to the defined discretization scheme, amounts to picking traces from

the underlying Markov chain. The model checking procedure no longer depends on

the size of the state space of the model. There are different approaches to statistical

model checking [161, 130, 131, 18]. Generating traces from ODEs constitutes the most

expensive operation. Hence, for repeated analysis tasks many traces have to be generated.

In such cases DBNs can act as a much more efficient system to work with, since they

provide a succinct representation of the dynamics and can be analyzed efficiently with

probabilistic inference algorithms.
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Our focus in this chapter is on the applications of statistical model checking for

model analysis. Specifically, we propose a novel application of statistical model checking

for calibration of biopathway models represented by ODEs. The main considerations

w.r.t parameter estimation of ODE models is that the time series data will report the

concentration levels of only a few proteins observed at a small number of time points.

It will be of limited precision and often averaged over a population of cells. Equally

important, the initial concentration levels of the various proteins will also not be available

as point values but as interval of values due to cell-to-cell variability. Consequently, when

numerically simulating the ODE model, one must resort to Monte Carlo methods to

ensure that sufficiently many values from the relevant intervals are being sampled. As a

result, parameter estimation will require the generation of a large number of trajectories.

Furthermore the number of trajectories generated in each round must be chosen in an ad

hoc way. To get around these issues, we use a statistical model checking based approach

here.

For the parameter estimation problem we first recall that the goal is to compute the

values of unknown parameters so that the resulting model can reproduce the experimental

observations and make reliable predictions about behaviors that were not used to fit the

parameters. A common approach is to iteratively optimize the agreement between the

behavior generated by a parameter set and available experimental data by searching

through the space of parameter set values. Typically, the goodness-of-fit of a parameter

combination is evaluated by the weighted sum of square error between model prediction

and experimental data captured. The two major steps of the optimization algorithm are:

(i) “guess” the values of the parameters (ii) evaluate the goodness-of-fit of the guessed

values. For step (i), guesses may be generated randomly in the first round but later guesses

are guided by the results of previous rounds based on various search strategies. For step

(ii), one numerically simulates the ODE system up to the maximum time point for which

experimental observations are available. The algorithm is terminated if a sufficiently

good fit to data has been achieved or if the computational resources allocated for the task

have been exhausted. We propose to use statistical model checking to implement step (ii).

We use a mild variant of the probabilistic linear temporal logic PBLTL [18] to formalize

both experimental time series data and dynamic trends about pathway behaviors. For

the current set of parameter values we evaluate its goodness on the family of trajectories
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obtained by sampling from the distribution of initial conditions followed by numerical

simulations. There is usually substantial cell-to-cell variability in terms of the initial

states of different components [17]. Hence it is more appropriate to assume that the initial

concentrations of the various species take their values according to a distribution over a

set of initial states. Our specifications will state the bounded amounts of errors that can

be incurred when matching the simulated behaviors with the data points. In addition

we can also include prior knowledge about the qualitative behavior of the pathway such

as bi-stability or whether certain time profiles are transient or oscillatory. In addition,

the SPRT components of our test [18] -including its statistical nature- also caters for

the uncertainties concerning the data. Finally, the SPRT component also determines

the number of trajectories that are used to evaluate the goodness of the current set of

parameters instead of fixing this number in an arbitrary way. It also in a sense guarantees

the statistical strength of the estimation procedure. In this sense our approach deals in a

principled manner with the multiple uncertainties surrounding the parameter estimation

problem in biological settings.

7.1.1 Related work

There have been some previous attempts to calibrate and analyze pathway models using

model checking methods. For instance, the work reported in [97] focuses on randomly

sampling the set of unknown parameters and accepting the set of parameters if the

simulation trace satisfies a LTL formula that specifies the desired qualitative properties

of the system. A similar approach is taken in [100] where a large number of parameter

values sets are sampled and the associated simulation traces are verified in an on-line

fashion. However, both these studies lack a principled search method and instead rely on

a brute force strategy to sample the parameter space. Typically, the parameter search

space is high dimensional and hence such strategies would need an impractically large

number of samples for realistic pathways. The work reported in [99] considers parameter

estimation on a single simulation trace, and incorporates an evolutionary strategy based

search algorithm to guide the search, in a deterministic setting. Studies such as [147, 98]

carry out parameter estimation on restricted ODEs systems called multi affine systems.

Here one first constructs a symbolic representation of the dynamics followed by parameter

estimation using symbolic model checking. The large state space of even relatively small
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pathways and the focus on multi affine ODEs systems severely restrict the applicability

of this approach. Probabilistic model checking is used for parameter estimation in [148]

where the logic called PLTLc is used to specify properties. A genetic algorithm is used

to search for the best set of parameters. A fixed number of samples are generated and

the probability of satisfying a property is calculated to be the fraction of the samples

which satisfy the property. No attempt is made to validate the quality of the estimated

parameters.

Our work is different in the following aspects: We use a statistical model checking

framework for parameter estimation. In our specifications we encode both experimental

data as point values with confidence intervals and prior qualitative knowledge of the

dynamics. We use an on-line model checking algorithm which often terminates before the

whole simulation trace is generated and this considerably improves performance. Further

our statistical model checking fixes the number of samples to be drawn in a principled

way and we can provide statistical guarantees concerning the goodness of a parameter

set. Last but not least our method quantitatively factors in the cell-to-cell variability of

the initial states as well as the noisiness and limited precision of experimental data.

7.1.2 ODEs based model behaviors

We recall some of the notations developed in the previous sections about ODE systems,

there one equation of the form dyi
dt = f(y, r) for each molecular species yi, with f describing

the kinetics of the reactions that produce and consume yi, while y is the set (vector) of

molecular species taking part in these reactions and r are the rate constants associated

with these reactions. The range of values of each variable yi is assumed to take values in

[vmin
i , vmax

i ], vmin
i and vmin

i non negative rational numbers. Hence the state space of the

system will be V = [vmin
1 , vmax

1 ]× [vmin
2 , vmax

2 ] . . .× [vmin
n , vmax

n ] ⊆ R
n
+ where R+ denotes

the set of non-negative reals. Thus V will be a bounded subset of Rn
+. To capture

the cell-to-cell variability and uncertainties regarding the initial states we define for

each variable yi an interval [vmin:init
i , vmax:init

i ] with vmin
i ≤ vmin:init

i < vmax:init
i ≤ vmax

i .

We set INIT = [vmin:init
1 , vmax:init

1 ] × [vmin:init
2 , vmax:init

2 ] . . . × [vmin:init
n , vmax:init

n ]. In

what follows it will be convenient to represent our system of ODEs in vector form as :

dy
dt = F (y) with y = (y1, y2, . . . , yn) and F (y(i)) = fi.

A function f : V → R is a C1 function if f ′, the derivative of f exists at all v ∈ V and
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is a continuous function. Given the fact that each fi in our ODEs system is composed

out of rational functions we can assume that fi ∈ C1 for each i and hence F : V → V is

also a C1 function.

Given v ∈ V the system of ODEs will have a unique solution since F ∈ C1 [35]. We

shall denote this solution by Yv(t). It will satisfy Yv(0) = v and Y′
v(t) = F (Y(t)). We

are guaranteed that Y(t) is a C0-function (i.e. continuous function) [35]. This fact will

be crucial when we later turn to probabilistic verification.

It will be convenient to define the flow Φ : R+ ×V → V of Y′
v = F (Y) for arbitrary

initial vectors v. Intuitively, Φ(t,v) is the state reached under the ODEs dynamics if the

system starts at v at time 0. The flow will be the C0-function given by: Φ(t,v) = Yv(t).

Thus Φ(0,v) = X(0) = v and ∂(Φ(t,v))/∂t = F (Φ(t,v)) for all t [35]. Further, Φ(t, ·)

will be bijective and will satisfy Φ(t+ t′,v) = Φ(t,Φ(t′,v)) for every t, t′ in R. In what

follows we will often write Φt(v) instead of Φ(t,v).

In our application the dynamics will be of interest only up to a maximal time point

T . Fixing such a T we define a trajectory starting from v ∈ V denoted σv to be the

(continuous) function σv : [0, T ] → V satisfying: σv(t) = Φt(v). Then BEH, the behavior

of our dynamical system, is the set of trajectories given by: BEH = {σv | v ∈ INIT}.

Our goal is to probabilistically verify the dynamical properties of BEH.

7.2 Statistical model checking of ODEs dynamics

Statistical model checking sampling traces according to the underlying transition prob-

abilities from a stochastic dynamical system model. One then uses statistical tests to

ascertain if the drawn samples provide enough evidence to support a probabilistic asser-

tion concerning the system satisfying a certain property. There are different approaches

to statistical model checking [161, 130, 131, 18]. In the current work we focus on a

sequential hypothesis testing method [130]. However, other approaches can also be easily

incorporated into our analysis algorithms. We start with our specification logic.

7.2.1 Bounded linear time temporal logic

Since our trajectories will be of bounded duration it will suffice to use temporal logic

known as bounded linear time temporal logic (BLTL). An atomic proposition in our logic
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will be of the form (i, l, u) with Li ≤ l < u ≤ Ui. Such a proposition will be interpreted

as “the current concentration level of yi falls in the interval [l, u]. We fix a finite set of

such atomic propositions AP = {A1, ......Ak}. The formulas of BLTL are:

• Every atomic proposition as well as the constants true, false are BLTL formulas;

• If ψ is a BLTL formula then ∼ ψ and ψ ∨ ψ′ are BLTL formulas.

• If ψ is a BLTL formula then O(ψ) is a BLTL formula.

• If ψ, ψ′ are BLTL formulas and t is a positive integer then ψU≤tψ′ and ψUtψ′ are

BLTL formulas.

The derived propositional operators such as ∧, ⊃, ≡ and the temporal operators

G≤t, F≤t, Ft are defined in the usual way. We have mildly strengthened PBLTL so

that we can say that exactly at time t from now a certain property will hold. As we

show in the next section, this will enable us to encode experimental data in the logical

specification when solving the parameter estimation problem.

We will interpret the formulas of our logic at the finite set of time points T =

{0, 1, . . . , T}. We do so since experimental data will be available only at a finite number

discrete time points. We assume T has been chosen such that it exceeds the last time

for which experimental data is available. Secondly, high dimensional ODEs systems

will not admit a closed form solution and hence trajectories will have to be generated

through numerical simulations and hence will have values defined only at a bounded

number discrete time points. Hence it suffices to work with a sufficiently large but finite

and discrete time domain T . We assume that the unit of time interval has been chosen

appropriately and it includes all the relevant time points such as those mentioned in the

formula. Further, we have assumed here only for convenience that the time points are

spaced evenly. The semantics of the logic is defined in terms of the relation σ, k |= ϕ

where σ is a trajectory in BEH and t ∈ T .

Hence, we will define the semantics via the relation v, t |= ϕ for v ∈ INIT , with the

understanding that v stands for the trajectory σv.

• σ, t |= (i, l, u) iff l ≤ σ(t)(i) ≤ u where σ(t)(i) is the ith component of the n-

dimensional vector σ(t) ∈ V .

• σ, t |=∼ ψ iff σ, t 
|= ψ.
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• σ, t |= ψ ∨ ψ′ iff σ, t |= ψ or σ, t |= ψ′.

• σ, t |= O(ψ) iff σ, t+ 1 |= ψ, t < T .

• σ, t |= ψU≤kψ′ iff there exists k′ such that k′ ≤ k, t+ k′ ∈ T and σ, t+ k′ |= ψ′.

Further σ, t+ k′′ |= ψ for every 0 ≤ k′′ < k′.

• σ, t |= ψUkψ′ iff σ, t+ k |= ψ′. Further σ, t+ k′ |= ψ for every 0 ≤ k′ < k.

As usual, we define models(ψ) = {σ|σ, 0 |= ψ, σ ∈ BEH}.

Probabilistic BLTL

Next we wish to make statements of the form P>0.9(ψ) where the intended meaning

is that the “fraction” of trajectories in BEH that fall in models(ψ) exceeds 0.9. To

assign precise meaning such a statement we need to define a probability measure over

sets of trajectories. Note however that σ ∈ BEH is completely determined by σ(0), the

(vector) value it assumes at t = 0. Hence we will identify BEH with INIT , the set of

initial states. To make this explicit we define Models(ψ) ⊆ INIT as: v ∈Models(ψ) iff

σ ∈ models(ψ) and σ(0) = v.

To assign a probability to Models(ψ) we construct a probability measure over the

standard σ-algebra generated by the open intervals contained in INIT . To make this

more precise, recall that INIT =
∏n

i=1[v
min:init
i , vmax:init

i ]. Then B(INIT ) -written for

convenience as just B below- is the smallest subset of 2INIT satisfying:

• Suppose vmin:init
i ≤ li < ui ≤ vmax:init

i for each i. Then
∏n

i=1(li, ui) ∈ B

• INIT ∈ B

• If B ∈ B then B = INIT −B ∈ B.

• If {B1, B2, . . . Bk . . .} is a countable family of sets in B then
⋃

iBi ∈ B.

The probability measure we define over B will be based on the assumption that

each initial state in INIT is equally likely to be assumed by the system. This so called

uniform distribution assumption is made when there is no prior knowledge about which

initial states are more likely to be assumed by the pathway under study. However, when

such information is available it can be incorporated into our method in a straightforward

fashion. Here we make this assumption only for technical convenience. Now suppose
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∏n
i=1(li, ui) ∈ B. We define P (

∏n
i=1(li, ui)) =

∏n
i

ui−li
vmax:init−vmin:init . It is a standard fact

that P extends in a unique way to the probability measure P : B → [0, 1] such that

P (INIT ) = 1 and P (∅) = 0. Our goal now is to show that Models(ψ) ∈ B for every

formula ψ. This will then ensure that P (|= (ψ) is well-defined.

Let ψ be a formula and t ∈ T . Then ‖ψ‖t ⊆ INIT is defined inductively as follows.

• ‖(i, l, u)‖t = {v | σv, t |= (i, l, u)}. Recall that σv is the trajectory in BEH with

σv(0) = v.

• ‖ ∼ ψ‖t = INIT − ‖ψ‖t

• ‖ψ ∨ ψ′‖t = ‖ψ‖t ∪ ‖ψ′‖t

• ‖ψU≤kψ′‖t =
⋃

k′≤k,t+k′≤T(‖ψ′‖t+k′ ∩ (
⋂

0≤k′′<k′ ‖ψ‖t+k′′))

• ‖ψUkψ′‖t = (‖ψ′‖t+k ∩ (
⋂

0≤k′<k ‖ψ‖t+k′)

We now recall that due to the assumption that each fi is a C
1 function, the flow derived

from the solution to the ODEs is guaranteed to be a continuous function. Consequently

Φt : V → V is also a continuous function for every t ∈ [0, T ]. This in turn implies Φt is

in fact a measurable function in the sense if B ∈ B then Φ−1
t (B) = {v | Φt(v) ∈ B} is a

member of B. This fact will play a crucial role in establishing the following result.

Theorem 7.2.1. Let ψ be a formula and t ∈ T . Then the following statements

hold.

1. ‖ψ‖t ∈ B.

2. Models(ψ) = ‖ψ‖0.

3. Models(ψ) ∈ B.

Proof. To prove the first part by structural induction, we note that {v|l ≤ vv(i) ≤ u} =

∏n
j=1(lj , uj) where lj = Lj and uj = Uj if j 
= i and lj = l and uj = u if j = i and

hence B ∈ B where for convenience we set B = {v|l ≤ vv(i) ≤ u}. From the definitions

it follows that v′ ∈ ‖(i, l, u)‖t iff σv′ , t |= (i, l, u) iff l ≤ Φt(v
′) ≤ u iff Φt(v

′) ∈ B.

This shows that ‖(i, l, u)‖t = Φ−1
t (B) and since Φt is measurable we are assured that

Φ−1
t (B) ∈ B.
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Next we note that ‖ψ‖t, ‖ψ′‖t ∈ B then ‖ ∼ ψ‖t ∈ B and ‖ψ∨ψ′‖t ∈ B since B is closed

under complementation and (countable) union. Similarly from ‖ψ‖t, ‖ψ′‖t ∈ B we can

conclude that ‖ψU≤kψ′‖t, ‖ψUkψ′‖t ∈ B since B is closed under countable intersections

as well. The remaining two parts of the result follow from the definitions.

We can now define the formulas of PBLTL as:

• P≥rψ and P≤r′ψ are PBLTL formula provided r ∈ [0, 1) , r′ ∈ (0, 1] and ψ is a

BLTL formula.

• If ϕ and ϕ′ are PBLTL formulas then so are ∼ ϕ and ϕ ∨ ϕ′.

We shall say that S, the system of ODEs meets the specification P≥rψ -and this

denoted S |= P≥rψ - iff P (Models(ψ)) ≥ r while S |= P≤r′ψ iff P (Models(ψ)) ≤ r′. The

clauses for negation and disjunction are defined in the obvious way. Our goal now is to

construct a statistical model checking procedure based on sequential hypothesis testing

to verify PBLTL specifications.

7.2.2 Statistical model checking of PBLTL formulas

According to [130], whether S |= P≥rψ can be formulated as a sequential hypothe-

sis test between the null hypothesis H0 : p ≥ r + δ against the alternative hypothesis

H1 : p < r − δ where p = P (Models(ψ)). Here, δ is the indifference region supplied by

the user. The strength of the test is decided by parameters α and β which represent the

Type-1 and Type-2 errors respectively. Thus the verification is carried out approximately

but with guaranteed confidence levels and error bounds.

The test proceeds by generating a sequence of sample trajectories σ1, σ2, . . . by

randomly sampling an initial state from INIT and assume a corresponding sequence of

Bernoulli random variables Z1, Z2 . . . where each Zk takes the value 1 with probability

p and the value 0 with probability 1− p. For each trajectory σk we check if σk, 0 |= ψ

(and therefore if σk(0) ∈Models(ψ). After drawing m samples we compute a quantity

fm as:

fm =
[r − δ](

∑m
i=1 yi)[1− [r − δ]](m−∑m

i=1 yi)

[r + δ](
∑m

i=1 yi)[1− [r + δ]](m−∑m
i=1 yi)

(7.1)

Hypothesis H0 is accepted if fm ≥ Â, and Hypothesis H1 is accepted if fm ≤ B̂ . If

neither is the case then another sample is drawn. The constants Â and B̂ are so chosen
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such that it results in a test of strength 〈α, β〉. In practice, a good approximation turns

out to be Â = 1−β
α and B̂ = β

1−α .

Online model checking to verify properties specified in PBLTL

Given a PBLTL formula of the form P≥r(ψ), where ψ is an BLTL formula and r ∈ [0, 1],

we use the statistical model checking algorithms outlined before to check if the formula

holds for the system with the thresholds specified using r. The most resource intensive

task in the model checking procedure is simulating the ODEs. Typically, to verify a

simulation trace, one generates the whole ODE simulation trace (for the time frame

of interest) before applying the model checking procedure on it (off-line approaches).

Instead one can combine simulation and model checking together i.e simulate the ODE

system only until the model checker can make a decision. This approach – known as

online method– has the advantage of saving computational resources and the over head

of storing the trajectories before applying model checking.

We use a tableau based online model checking procedure. Online approaches have

the advantage of conserving CPU, memory resources and have a lower amortized time

complexity. The method relies on constructing and propagating a finite family of sets F .

Each set Fi ∈ F contains a finite number of formulas. Let ϕ, ψ and γ be BLTL formulas.

A literal is defined as an atomic proposition A ∈ AP or its negation ∼ A. For the purpose

of illustration, let us assume that we convert the given BLTL formulas into a form in

which only the atomic propositions can appear in negated form (in Negative Normal

Form). Any formula can be converted to this form in a straight forward procedure.

For a family of sets D = {D1, D2, ....., Dj}, where each Di is a set of formulas, we

first define the
⊗

operation. Suppose D1 and D2 are two such families. Then D1
⊗

D2 = {Y 1 ∪ Y 2|Y 2 ∈ D1, Y 2 ∈ D2} .

For a formula ϕ, we define the family of closure sets cl(ϕ) by structural induction on

ϕ using:

• If ϕ is a truth constant or a literal then cl(ϕ) ={{ϕ}}.

• If ϕ = ψ ∨ γ then cl(ϕ) = cl(ψ) ∪ cl(γ).

• If ϕ = ψ ∧ γ then cl(ϕ) = cl(ψ)
⊗
cl(γ).

• If ϕ = Oψ then cl(ϕ) = {{Oψ}}.
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• If ϕ = Fψ then cl(ϕ) = cl(ψ) ∪ cl(OFψ).

• If ϕ = Gψ then cl(ϕ) = cl(ψ)
⊗
cl(OGψ).

• If ϕ = ψU≤kγ then cl(ϕ) = cl(γ) ∪ (cl(ψ)
⊗
cl(O(ψU≤kγ))).

If we have a set of formulas W = {ϕ1, ϕ2, . . . , ϕn}, then the closure cl(W ) can be

written as cl(W ) = cl(ϕ1)
⊗
cl(ϕ2) . . .

⊗
cl(ϕn). We can also extend the notion of

closure to families of sets of formulas such as F = {W1,W2, . . . ,Wk}, and say that the

closure set of F is cl(F) = cl(W1) ∪ cl(W2) . . . cl(Wk). We call the set of formulas W a

leaf set iff cl(W ) =W . Further, a set W is inconsistent iff (i) for an atomic proposition

A, A ∈W and ∼ A ∈W or (ii) for some formula ϕ, both Oϕ ∈W and O ∼ ϕ ∈W .

Proposition: The following assertions hold.

• W is a leaf set iff each formula in W is a literal or a O formula.

• cl(ϕ) is a leaf family for each ϕ.

• cl(W ) is a leaf family for every finite set of formulas W .

• cl(F) is a leaf family for every family of formula sets F .

Suppose the current system state is st. If W is a leaf set then W is dead at time t iff

W is inconsistent or σ, t 
|= � for some literal � ∈W . Consequently, a family of leaf sets

F is dead iff ∀Wi ∈ F : Wi is dead. Furthermore, F is terminal iff ∃Wi ∈ F : Wi is not

dead and next(Wi) = ∅, where next(Wi) = {ψ|Oψ ∈Wi}.

Now assume we are given a formula ϕ and want to check if the system trajectory

satisfies ϕ. We propagate a family of sets and start with F0 = cl(ϕ). Inductively, assume

that we are given the family of sets F t for t < T . If F t is dead, then we set F t+1 = false,

and if F t is terminal then we set F t+1 = true. Otherwise, F t is neither dead nor terminal.

In this case we know that ∃W1,W2, ...,Wk ∈ F t, k ≥ 1 which are not dead. Since these

sets are not dead, we know that ∀i, 1 ≤ i ≤ k : next(Wi) 
= ∅. We can then build the

family of sets for time t+ 1 as F t+1 = cl(next(W1)) ∪ cl(next(W2)) . . . ∪ cl(next(Wk)).

The process terminates at time t < T if ∀W ∈ F t is false and returns s(0) 
|= ϕ or if

∃W ∈ F t which is true, and returns σ, 0 |= ϕ. Furthermore, if t = T , if F t is a terminal

leaf family at time point T , the process terminates and returns that σ, t |= ϕ. Otherwise

it returns σ, 0 
|= ϕ.
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Specifying dynamics using PBLTL

In this section we describe how our knowledge about the dynamics of the systems can be

encoded as a BLTL formula.

First we consider the case when we have experimental time course data. Let O ⊆

{x1, x2, . . . , xn} be the set of variables for which experimental data is available and

which has been fixed as training data to be used for parameter estimation. Assume

Ti = {τ i1, τ i2, . . . , τ iTi
} are the time points at which the concentration level of xi has been

measured and reported as [�it, u
i
t] for each t ∈ Ti. Here the interval [�it, u

i
t] is so chosen

that it reflects the noisiness, the limited precision and the cell-population-based nature

of the experimental data. For each t ∈ Ti we define the formula ψt
i = Ft(i, �it,u

i
t). Then

ψi
exp =

∧
t∈Ti ψ

t
i . We then set ψexp =

∧
i∈O ψ

i
exp. In case the species xi has been measured

under multiple experimental conditions, then the above encoding scheme is extended in

the obvious way.

Often qualitative dynamic trends will be available – typically from the literature – for

some of the molecular species in the pathway. For instance, we may know that a species

shows transient activation in which its level rises in the early time points and later falls

back to initial levels. Similarly, a species may be known to show oscillatory behavior with

certain characteristics. Such information can be described as BLTL formulas that we

term to be trend formulas. We let ψqlty to be the conjunction of all the trend formulas.

Finally we fix the PBLTL formula P≥r(ψexp∧ψqlty), where r will capture the confidence

level with which we wish to assess the goodness of the fit of the current set of parameters

to experimental data and qualitative trends. We also fix an indifference region δ and

the strength of the test (α, β). The constants r, δ, α and β are to be fixed by the

user. In our application it will be useful to exploit the fact that both ψexp and ψqlty are

conjunctions and hence can be evaluated separately. As shown in [130, 162], one can

choose the strength of each of these tests to be (αJ , β), where J is the total number of

conjuncts in the specification. This will ensure that the overall strength of the test is

(α, β). Further, the results for the individual statistical tests can be used to compute the

objective function associated with the global search strategy, as detailed below.
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Figure 7.1: Statistical model checking based parameter estimation

7.2.3 Parameter estimation using statistical model checking

Let θ = {c1, c2, . . . , cK} be the set of unknown rate constants whose values we wish to

estimate. The outer loop of our parameter estimation procedure will run as follows. We

shall assume for convenience that the search strategy uses a single set of parameter values

(one for each unknown rate constant) in each round. Figure 7.1 illustrates the process.

(i) Fix θ0, which assigns a value to each unknown rate constant. This represents the

initial guess. Set � = 0.

(ii) With θ� as the current set of rate constant values, run the statistical model checking

procedure to verify the individual conjuncts of ψexp∧ψqlty with the chosen strengths.

(iii) Based on the answers returned by these tests compute Obj(θ�), where Obj is the

objective function.

(iv) Check if the value of the objective function is sufficiently high or � has reached a

predetermined bound.

(v) If yes, return θ� as the estimated value.
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(vi) Else fix a new set of rate constant values θ�+1 as dictated by the search strategy.

Increment � to �+ 1 and return to step (ii).

The objective function is formed as follows. Let θ be an assignment of values to the

unknown rate constants. Let J i
exp (= Ti) be the number of conjuncts in ψi

exp and Jqlty

the number of conjuncts in ψqlty. Let J
i,+
exp(θ) be the number of formulas of the form ψt

i

(a conjunct in ψi
exp) such that the statistical test for P≥r(ψ

t
i) accepts the null hypothesis

(that is, P≥r(ψ
t
i) holds) with the strength (αJ , β), where J = Jqlty +

∑
i∈O J

i
exp. Similarly,

let J+
qlty(θ) be the number of conjuncts in ψqlty of the form ψ�,qlty that pass the statistical

test P≥r(ψ�,qlty) with the strength (αJ , β). Then Obj(θ) is computed via:

Obj(θ) = J+
qlty(θ) +

∑
i∈O

J i,+
exp(θ)

J i
exp

(7.2)

Thus the goodness to fit of θ is measured by how well it agrees with the qualitative

properties as well as the number of experimental data points with which there is acceptable

agreement. To avoid over-training the model, we do not insist that every qualitative

property and every data point must fit well with the dynamics predicted by θ. It is

possible to introduce additional terms to the objective function in order to speed up

convergence in practice. We add the term

∑(Jqlty+
∑

i∈O Ji
exp)

k=1

n+
k

nk

Jqlty+
∑

i∈O Ji
exp

to our original objective

value. Here n+k , nk denote the number of sample trajectories evaluating to true and the

total number of samples needed to verify the kth PBLTL formula.

The search strategy deployed in step (vi) above will use the values Obj(θ�) to traverse

the space of candidate parameter vectors. The search method can be local or global.

Local methods such as the Levenberg-Marquardt algorithm [64] have the advantage of

converging fast, but can get stuck in local minima. Global methods such as Genetic

Algorithms (GA) [163], and Stochastic Ranking Evolutionary Strategy (SRES) [69] –

although computationally more intensive – are much better at avoiding local minima and

in principle monotonically improve the estimates in proportion to the computational

effort.

In practice, global methods usually maintain a set of parameter value vectors in each

round. Each round is called a generation and the current set of parameter value vectors

is called a population. Here, for the sake of convenience, we have explained the basic

structure of the algorithm by pretending that each population is a singleton. We use the
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SRES strategy in our work since it is known to perform well in the context of pathway

models [70]. The particular choice of search algorithm, however, is orthogonal to our

proposed method.

7.3 Results

We discuss the application of our method using four case studies. The first model is

the repressilator pathway where we show that the model can be trained to reproduce

oscillations with specified properties. Next, we consider the EGF-NGF pathway, where

only quantitative experimental data was used to calibrate the model. Next, we look at

the segmentation clock pathway, where we use a combination of both dynamic trend

based properties and experimental data to calibrate and analyze the model.

The key parameters used for the statistical model checking algorithm were α = 0.05,

β = 0.05, δ = 0.05 for all the experiments. All experiments reported here were carried

out on a PC with a 3.4Ghz i7 processor with 8GB RAM. The framework is implemented

in MATLAB and C++. ODE systems are numerically solved using the SUNDIALS

CVODE package [164], which is integrated into our framework using wrappers from

[165, 166]. The code has been optimized to take advantage of the multi-core architecture

of modern hardware, the experiments results shown here have been run on 8 threads.

For the pathways reported in this section, we considered global optimization with

stochastic ranking evolutionary search (SRES). Additional details of the case studies are

described in the appendix.

7.3.1 The repressilator pathway

The repressilator is a synthetic gene network originally introduced by [167]. The network

consists of three genes linked in an inhibitory cycle. The ODE model of the pathway,

consists of 3 mRNA transcripts and 3 associated protein products. m1,m2,m3 represent

mRNA transcripts of 3 genes and p1, p2, p3 are the protein products for each mRNA

respectively.

dmi

dt
= −γmi +

α

1 + kpnj
dpi
dt

= β(mi − pi)
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Parameter range Parameter estimate(SRES)

α1 [0, 100] 80.0087
α2 [0, 100] 92.04954
α3 [0, 100] 56.14092
γ1 [0, 200] 168.5096
γ2 [0, 200] 176.3156
γ3 [0, 200] 140.9322
k1 [0, 16] 6.883317
k2 [0, 16] 7.521114
k3 [0, 16] 12.6742

Table 7.1: Repressilator pathway: Unknown parameters with range and parameter
estimation results

Depending on the values of the parameters α, β, γ, k, n, the protein products show

sustained oscillations.

Parameter estimation We assumed 9 parameters corresponding to the parameters

α, γ and k for each of the mRNA transcripts to be unknown. By specifying the properties

of the oscillations (see Table 7.2), we attempt to recover 9 unknown parameters. It is

interesting to note that specification of the dynamics can be made without access to

experimental data, based only on qualitative prior knowledge. All the properties were

required to hold with a high probability, the threshold probability chosen to be 0.9 (we

have also run experiments for different values of threshold probability; these results are

reported in the appendix). We fixed the range of the unknown parameters as shown in

Table 7.1. The initial states of all the species were assumed to be uniformly distributed

in a range 10% around the nominal initial concentration. For instance, the first property

in table 7.2 says that the initial concentration of p1 is less than 0.1, between 4 − 10

time points the level of p1 reaches a high value between 1.3 and 1.5 and overall the

profile of p1 shows an oscillation pattern with at-least 3 troughs and 3 crests whose

values are given in the formula. Similarly for other species of the pathway. Next, we ran

global optimization based on SRES, with population size 100 for 50 generations. After

completing the optimization, all specified properties were met. Figure 7.2 shows the time

course profiles of all 6 species sampled according to their assumed initial concentrations,

using the obtained parameter estimate. The parameter estimation procedure took 54.96

seconds. The time profile of the three protein species fits the dynamic trends encoded as

PBLTL formulas.
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Figure 7.2: Time profile of all the species in the repressilator pathway based on the best
parameters returned by SRES based parameter estimation

Species name Property

p1 [p1 ≤ 0.1]∧ ∼ F≤4([1.3 ≤ p1 ≤ 1.5] ∧ F≤10[1.3 ≤ p1 ≤ 1.5] ∧ F ([1.3 ≤ p1 ≤
1.5]∧ F ([0.3 ≤ p1 ≤ 0.4]∧ F ([1.05 ≤ p1 ≤ 1.15]∧ F ([0.35 ≤ p1 ≤ 0.45]∧ F ([1 ≤ p1 ≤
1.1] ∧ F ([0.35 ≤ p1 ≤ 0.45]))))))

p2 [1.9 ≤ p2 ≤ 2.1] ∧ F≤10[0.2 ≤ p2 ≤ 0.3] ∧ F ([0.2 ≤ p2 ≤ 0.3] ∧ F ([1.15 ≤ p2 ≤
1.25] ∧ F ([0.3 ≤ p2 ≤ 0.4] ∧ F ([1.0 ≤ p2 ≤ 1.1] ∧ F ([0.35 ≤ p2 ≤ 0.45] ∧ F ([0.95 ≤
p2 ≤ 1.05]))))))

p3 [p3 ≤ 0.2] ∧ F≤10[1.55 ≤ p3 ≤ 1.7] ∧ F ([1.55 ≤ p3 ≤ 1.7] ∧ F ([0.275 ≤ p3 ≤ 0.375] ∧
F ([1 ≤ p3 ≤ 1.2]∧F ([0.35 ≤ p3 ≤ 0.45]∧F ([1 ≤ p3 ≤ 1.2]∧F ([0.35 ≤ p3 ≤ 0.45]))))))

Table 7.2: Repressilator pathway: Properties

7.3.2 The EGF-NGF signaling pathway

We refer to the EGF-NGF pathway and the corresponding ODE model that was discussed

in Chapter 4. Figure 4.2 depicts the corresponding signaling pathway. The ODE model

consists of 32 differential equations and 48 associated rate parameters.

Parameter estimation Details of the parameters and the range of unknown parame-

ters can be found in the table 7.3. In order to test the performance of the statistical model

checking based parameter estimation method, 20 of the 48 parameters were designated

to be unknown. We synthesized experimental time series data for 9 species { bounded

EGFR, bounded NGFR, active Sos, active C3G, active Akt, active p90RSK, active Erk,

active Mek, active PI3K }, measured at { 2, 5, 10, 15, 20, 25, 30, 40, 50 } minutes. This

data was synthesized using prior knowledge about initial conditions and parameters. The

threshold probability was chosen to be 0.8. To mimic western blot data which is cell

population based, we averaged 104 random trajectories generated by sampling initial

concentration levels, then we added observation noise with standard deviation 5% to the
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Number Parameter range Parameter
estimate(SRES)

1 k1 [0, 0.000218503] 0.00009690973
2 k2 [0, 0.121008] 0.01155505
3 k3 [0, 0.00000138209] 0.0000001352723
4 k4 [0, 0.0723811] 0.008147492
5 k11 [0, 323.44] 49.13858
6 k12 [0, 359543] 327526.7
7 k15 [0, 8.84096] 2.201634
8 k17 [0, 1857.59] 77.01694
9 k23 [0, 98.5367] 13.62002
10 k27 [0, 0.213697] 0.1621894
11 k28 [0, 7635230] 6283265
12 k29 [0, 106.737] 12.21933
13 k33 [0, 0.566279] 0.4359513
14 k34 [0, 6539510] 5865839
15 k37 [0, 1469.12] 385.3151
16 k38 [0, 128762] 28287.23
17 k39 [0, 14.0145] 1.857971
18 k40 [0, 109656] 40.02646
19 k43 [0, 22.0995] 4.905653
20 k44 [0, 10254600] 3744344

Table 7.3: EGF-NGF pathway: Unknown parameters with range

simulated values. We used the data of 7 of these species for training the parameters and

reserved the rest for testing the quality of the estimated parameter values. The data

points were converted into logic formulas and used to guide parameter estimation. The

initial states of all the species were assumed to be uniformly distributed in a range of 10%

with respect to the assumed initial concentration. Error tolerance for the experimental

data was chosen to be 10% around the experimental data value. Parameter estimation

was done using the following setting : population size 200 for 150 generations. The time

taken by SRES based search was ∼ 2.9 hours. Figure 7.3(a) shows the fit to training

data for simulated time profiles with the best parameters returned by the SRES based

procedure, figure 7.3(b) shows the fit to test data which was not used for training the

parameters.

7.3.3 The segmentation clock network

We refer to the segmentation clock pathway and the corresponding ODE model that was

discussed in Chapter 6. Figure 6.2 depicts the corresponding signaling pathway. The

ODE model consists of 16 differential equations and 75 kinetic rate parameters.
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Figure 7.3: Time profile of (a)training and (b)test data for the corresponding species in
the EGF-NGF pathway based on the best parameters returned by SRES based approach

Parameter estimation We follow the case study presented in [2]. For the experiments,

we assumed 39 of the 75 parameter values as unknown. The initial states of all the species

were assumed to be uniformly distributed in a range of 10% around the nominal initial

concentration. We use a combination of dynamic trends and quantitative experimental

data in this case study. Specifically, we synthesized population based experimental time

series data for Axin 2 mRNA measured at 14 time points up to 200 minutes using the

method described in the previous example. For 5 other species (Notch protein, nuclear

NicD, Lunatic fringe mRNA, active ERK and Dusp6 mRNA), we encoded the dynamic

trends as properties in our logic. We assumed that the dynamic trend of 2 species

(cytosolic NicD and Dusp6 protein) were also available, this was used as the test data.

Table 7.4 and table 7.5 depict these properties encoded in our logic. The threshold

probability was chosen to be 0.8. Details of the parameters and the corresponding range

can be found in table 7.6. Parameter estimation was done with population size 200 for 300

generations. The time taken by SRES based search was ∼ 2.36 hours. Figure 7.4(a) shows

the simulation profile of the 6 proteins with the estimated parameters. Figure 7.4(b)

shows that dynamic trends of simulated time profiles fit the test set. The estimated

parameters fit the trend and quantitative experimental data well.

7.4 Discussion

In this chapter, we have proposed a statistical model checking based approach for the

parameter estimation of biopathway models. We used a slightly modified version of

PBLTL to encode both quantitative experimental data and qualitative dynamic trends

of pathway dynamics as logical formulas. Assuming a uniform distribution over a set of
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Species name Property

Notch protein (([0.45 ≤ Notch protein ≤ 0.55]∧F≤3([ Notch protein ≤ 0.05]))∧(F ([ Notch protein
≤ 0.05] ∧ F ([0.10 ≤ Notch protein ≤ 0.15] ∧ F ([ Notch protein ≤ 0.05] ∧ F ([0.10 ≤
Notch protein ≤ 0.15]))))))

nuclear NicD (([ nuclear NicD ≤ 0.012]) ∧ (F ([0.07 ≤ nuclear NicD ≤ 0.08] ∧ F ([ nuclear NicD
≤ 0.012] ∧ F ([0.07 ≤ nuclear NicD ≤ 0.08] ∧ F ([ nuclear NicD ≤ 0.012]))))))

Lunatic fringe mRNA (([ Lunatic fringe mRNA ≤ 0.4])∧(F ([ Lunatic fringe mRNA ≥ 2.2]∧F ([ Lunatic
fringe mRNA ≤ 0.4] ∧ F ([ Lunatic fringe mRNA ≥ 2.2] ∧ F ([ Lunatic fringe
mRNA ≤ 0.4]))))))

active ERK ([ active ERK ≤ 0.27] ∧ F≤3([1.9 le active ERK ≤ 2.2])) ∧ (F ([1.9 le active ERK
≤ 2.2] ∧ F ([ active ERK ≤ 0.27] ∧ F ([1.9 le active ERK ≤ 2.2] ∧ F ([ active ERK
≤ 0.27])))))

Dusp6 mRNA ([ Dusp6 mRNA ≤ 1]) ∧ (F ([ Dusp6 mRNA ≥ 5.5] ∧ F ([ Dusp6 mRNA ≤ 1] ∧ F ([
Dusp6 mRNA ≥ 5.5] ∧ F ([ Dusp6 mRNA ≤ 1])))))

Table 7.4: Segmentation pathway: Properties used for training, additional constraints
were added to limit the number of crests and troughs

Species name Property

Dusp6 protein (([ Dusp6 protein ≤ 0.5]) ∧ (F ([9 ≤ Dusp6 protein ≤ 11] ∧ F ([ Dusp6 protein
≤ 0.5] ∧ F ([9 ≤ Dusp6 protein ≤ 11] ∧ F ([ Dusp6 protein ≤ 0.5]))))))

cytosolic nicD (([ cytosolic nicD ≤ 0.5])∧(F ([ cytosolic nicD ≥ 1.0]∧F ([ cytosolic nicD ≤ 1.0]∧F ([
cytosolic nicD ≥ 1.0] ∧ F ([ cytosolic nicD ≤ 1.0]))))))

Table 7.5: Segmentation pathway:Test properties
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Figure 7.4: Time profile of (a)training and (b)test data for the corresponding species in
the segmentation clock pathway based on the best parameters returned by SRES based
approach
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Number Parameter range Parameter estimate(SRES)

k1 KdN [0, 2.8] 1.854774
k2 vsN [0, 0.46] 0.2254612
k3 vdN [0, 5.64] 3.016938
k4 kt1 [0, 0.2] 0.1066553
k5 kt2 [0, 0.2] 0.1228041
k6 KdNan [0, 0.002] 0.001628184
k7 V dNan [0, 0.2] 0.1067782
k8 KdMF [0, 1.536] 1.395118
k9 KIG1 [0, 5] 1.969339
k10 vsF [0, 6] 2.358976
k11 vmF [0, 3.84] 3.098625
k12 KdF [0, 0.74] 0.2501358
k13 vdF [0, 0.78] 0.6268464
k14 ksF [0, 0.6] 0.2876905
k15 kd2 [0, 14.124] 4.661996
k16 vMB [0, 3.28] 1.432242
k17 KaB [0, 1.4] 1.187312
k18 vMXa [0, 1] 0.9953178
k19 ksAx [0, 0.04] 0.03657672
k20 vdAx [0, 1.2] 0.05869855
k21 KdAx [0, 1.26] 0.5040457
k22 kt3 [0, 1.4] 0.08752867
k23 kt4 [0, 3] 2.460013
k24 ksDusp [0, 1] 0.6604028
k25 vdDusp [0, 4] 2.230291
k26 KdDusp [0, 1] 0.03116861
k27 kcDusp [0, 2.7] 2.352255
k28 KaFgf [0, 1] 0.03527007
k29 KaRas [0, 0.206] 0.1144681
k30 KdRas [0, 0.2] 0.1080222
k31 KaMDusp [0, 1] 0.6799779
k32 KdMDusp [0, 1] 0.9590261
k33 VMsMDusp [0, 1.8] 1.344481
k34 VMdMDusp [0, 1] 0.7772506
k35 VMaRas [0, 9.936] 8.065443
k36 VMdRas [0, 0.82] 0.3543762
k37 VMaErk [0, 6.6] 6.375076
k38 VMaX [0, 3.2] 3.097873
k39 VMdX [0, 1] 0.537238

Table 7.6: Segmentation Clock pathway: Unknown parameters with range

Pathway Number of pa-
rameters

Search algorithm set-
ting

SRES Avg sam-
ple size per
test

(min,max)
samples

Repressilator 9 Gen : 50 Pop : 100 54.94sec 12.96 (3, 439)
Clock 39 Gen : 300 Pop : 200 2.36hrs 45 (6, 1484)
EGF-NGF 20 Gen : 150 Pop : 200 2.9 hrs 150.11 (37, 1831)

Table 7.7: Summary of parameter estimation tasks
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initial states we show how the probability of the property being met by the behavior of

the model can be assessed using a statistical model checking procedure. By combining

this method with a global search strategy, we arrive at a parameter estimation procedure.

We demonstrated the applicability of our method with the help of 3 ODE based

biopathway models: the repressilator pathway, the EGF-NGF pathway and the segmen-

tation clock network. Our method successfully obtained good parameter estimates using

noisy cell-population data and qualitative knowledge. The results show that our method

scales well and can cope with large biological networks.
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Chapter 8

Toll like receptor modeling

The previous chapter discussed our statistical model checking framework for parameter

estimation of ODE models. This chapter focuses on the application and scalability

of our approach to the study of Toll like receptor (TLR) pathways which are crucial

players in immune response. Specifically, we built a new ODE model for the TLR3 and

TLR7 pathways. We investigate possible crosstalk mechanisms which lead to synergistic

immune response when these receptors are triggered in a certain order and a specific

time interval. This study has been conducted in collaboration with biologists from the

Department of Biological Science, National University of Singapore. The pathway is

considerably large; we estimated 100 unknown rate constants using our framework. Here,

we use a combination of both dynamic trend based properties and experimental data

to calibrate and analyze the model. The results show that our framework is scalable to

large systems. More importantly, we were able to gain crucial insights about the most

plausible crosstalk mechanism which could lead to the observed synergy effect.

8.1 Biological context

Toll like receptors (TLRs) [168, 169, 170, 171] are a class of receptor molecules that play

a crucial role in innate immune response. They act as the first line of defense against

attack by external agents such as viruses and bacteria. These receptors are members

of a broader family of pattern recognition receptors (PRRs). They recognize specific

pathogen-associated molecular patterns (PAMPs) on the external agents and through

a series of signaling events, trigger immune response manifested through production of

interferons(IFNs) and inflammatory cytokines.
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Figure 8.1: Overview of TLR pathway. Taken from http : //www.cellsignal.com

There are 13 TLRs characterized in mammals. All the TLR receptors are structurally

conserved, and are mainly divided into 2 groups based on their cellular localization and

the PAMPs they recognize. TLR-1,2,4,5,6,11 are expressed mainly on cell surface and

recognize microbial membrane components such as lipids, proteins etc. TLR-3,7,8,9

are expressed in the intracellular vesicles such as endoplasmic reticulum, endosomes,

lysosomes and endo-lysosomes; they mainly recognize microbial nucleic acids. Figure 8.1

provides an overview of TLR signaling pathways. Our interest is mainly on TLR3 and

TLR7 receptors, the signaling cascades they trigger, the immune response they lead to

and the crosstalk mechanisms they are involved in. Now, we will describe the signaling

cascades triggered by the TLR3 and TLR7 pathways.
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TLR3 pathway TLR3 recognizes double stranded Ribo-Nucleic acid (dsRNA) derived

from viruses or virus-infected cells and synthetic analogues of dsRNA such as polyinosinic-

polycytidylic acid(poly(I:C)).

TLR3 transduces the signal mainly via the adaptor protein TIR domain containing

adapter-inducing interferon-β (TRIF) dependent pathway. The signal culminates in

the activation of IRF3 and NF-kB which subsequently leads antiviral immune response,

characterized the production of interferons and cytokines.

Specifically, TRIF forms a multi protein signaling complex along with TRAF6,

TRADD, FADD and RIP1 for the activation of TAK1 complex as shown in figure 8.3.

Activated TAK1 complex, in turn activates the IKK complex (NEMO:IKKb:IKKa).

Usually NF-kB is associated with IkBa in the cytoplasm, here, IkBa sequesters with

the transcription factor NF-kB which renders NF-kB inactive. Activated IKK complex,

phosphorylates IkBa (that is sequestered to NF-kB), this leads to the dissociation and

nuclear translocation of NF-kB. NF-kB then induces the transcription and translation of

inflammatory cytokines. TAK1 complex simultaneously activates the MAPKs Erk, p38

and JNK by inducing the phosphorylation of MAPK kinases, which in turn activates the

AP-1 transcription factor which then induces the transcription of inflammatory cytokines.

More significantly, the TRIF-dependent pathway leads to IRF3 activation and subse-

quent type-1-IFN production. TRIF, along with TRAF3 recruits a signaling complex

involving TBK1 and IKKi (IKKe), which catalyze the phosphorylation of IRF3 and

induce its nuclear translocation. Phosphorylated IRF3 in the nucleus, is a transcription

factor, then induces the transcription and subsequent translation of Type-1-IFNs.

In summary, TLR3 induces antiviral immune response by promoting production

of type 1 IFNs predominantly and cytokines to a lesser extent. The main signaling

intermediaries in this pathway are IRF3, NF-kB and AP-1. IRF3 leads to the production

of Type 1 IFNs while NF-kB and AP-1 lead to production of inflammatory cytokines.

Details of the pathway can be found in figure 8.3.

TLR7 pathway TLR7 on the other hand, recognizes single stranded RNA (ssRNA)

from ssRNA viruses and imidazoquinoline derivatives such as imiquimod and resiquimod

(R-848) in endolysosomes. TLR7s are highly expressed in plasmacytoid dendrite cell

(pDCs), although their expression can be observed in macrophages too. In fact, in our
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Figure 8.2: TLR3, TLR7 synergy

case, we are interested in their effect on macrophages. They predominantly activate NF-

kB and IRF7 via MyD88 dependent pathway to induce the production of inflammatory

cytokines and type I IFNs respectively. Details of the TLR7 pathway can be found in

figure 8.3.

TLR7 initiates its response cascade by first activating MyD88 which in turn recruits

and activates IL-1 receptor associated kinases, IRAK4, IRAK1, IRAK2 and IRAK-M.

Activated IRAK complex then interacts with TRAF6. These proteins then activate TAB2

and TAB3, the regulatory components of the kinase TAK1 complex, to activate TAK1.

Activated TAK1 complex, in turn activates the IKK complex (NEMO:IKKb:IKKa).

Usually NF-kB is associated with IkBa in the cytoplasm which renders NF-kB inactive.

Activated IKK complex, phosphorylates IkBa (that is sequestered to NF-kB), this leads to

the dissociation and nuclear translocation of NF-kB. NF-kB, which is a transcription factor

then induces the transcription and translation of inflammatory cytokines. TAK1 complex

simultaneously activates the MAPKs Erk, p38 and JNK by inducing the phosphorylation

of MAPK kinases, which in turn activate various transcription factors, including AP-1.

These transcription factors then induce the transcription of inflammatory cytokines.

These form the predominant signaling events of the TLR7 signaling cascade.

To a lesser extent, the TLR7 cascade activates the transcription factor IRF7, which

is usually constitutively expressed in the nucleus and is in inactive form. IRF7 binds to

forms a multi protein signaling complex with IRAK4, TRAF6, TRAF3, IRAK1. This

leads to the phosphorylation of IRF7, which then dissociates from the complex and

translocates into the nucleus. Here it plays a role in the transcription of genes for type I

IFNs.
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Synergistic crosstalk between TLR3 and TLR7 pathways There have been

several studies which show the cooperation between different TLR pathways [172, 173,

172, 174]. In this study, we are interested in the possible crosstalk between the TLR3 and

TLR7 pathways which leads to synergistic immune response (see figure 8.2). Experimental

data suggests that when mouse bone marrow derived macrophage(BMDM) cells are

stimulated with either R848 or Poly(I:C) separately they elicit normal immune response.

However, when the system is stimulated combinatorially with a particular ordering

of these ligands, with a particular time interval between the stimulation, the immune

response is synergistically increased. Specifically, the -Poly(I:C)-8 hour interval- R848-

stimulation is shown to have maximum synergy effect. Our goal is to investigate specific

crosstalk mechanisms between these two pathways which can help explain the synergy.

The following hypotheses were formulated in collaboration with biologists and through

literature. Details of the associated crosstalk mechanisms are shown in red in figure 8.3.

H1: TLR3 activation leads to activation of IRF3 to its phosphorylated form. Next,

the phosphorylated IRF3 or one of its downstream activated molecules, which we

refer to as FactorX, bind to NF-kB and activated AP-1 to form an enhanceosome

complex inside the nucleus. This enhanceosome in turn enhances the transcription

of IL6 and IL12 mRNA in a synergistic manner[175, 176].

H2: TLR3 activation leads to production of type I IFNs. Type I IFNs can further

bind to the cell surface and trigger a second series of signaling cascades which

leads to, first, activation of the PI3K-Akt cascade that in turn activate the NEMO-

IKKb-IKKa complex. The activated complex helps in the breakdown of NF-kB

complex, leading to the release of NF-kB which further activates IL6 and IL12

mRNA production[177].

H3: TLR3 activation leads to production of Type I IFNs. Type I IFNs further bind

to the cell surface and trigger a second series of signaling cascades which leads

to, first, activation of the Tyk2-Jak1 complex and then the Stat1-Stat2 proteins.

These activated protein complexes further activate a protein, which we refer to as

Factor Y. Factor Y bind to NF-kB and activated AP-1 to form an enhanceosome

complex inside the nucleus, this enhanceosome in turn enhances the transcription

of IL6 and IL12 mRNA in a synergistic manner[176, 177].
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8.2 Construction of the ODE model

A schematic representation of combined pathway is shown in figure 8.3. The edges and

the key components of the pathway were chosen based on existing literature about TLR

signaling and specific mechanisms we were interested in investigating. The initial ODE

model was implemented using the tool COPASI[178]. It consists of 84 species (including

delay variables), 103 reactions and 127 kinetic rate constants. Out of these 127 kinetic

rate constants, 27 rate constants which correspond to NF-kB pathway were adapted from

[179], the remaining parameters were assumed to be unknown and estimated. Biological

processes such as protein degradation, association, transport, delay, translation etc. are

modeled using mass action kinetics. Activation of proteins is modeled with Michaelis-

Menten kinetics. Transcription is modeled using the formalism outlined in [180], this

formalism allows for modeling synergistic activation and deactivation explicitly.

In terms of previous work on using computational systems biology approaches to

study TLR pathways, Oda and Kitano[181] present a comprehensive map of the TLR

signaling network. They build a statistic representation of the network using existing

literature. This representation, although is useful to understand the links between the

different players involved in the pathway, is not useful for studying the kinetic aspects of

the system. There are models which study the dynamics of TLR3 and TLR4 signaling

based on ODEs in [182, 183, 184, 185]; but these models are either very crude or are

incomplete and have too few pathway players. This limits their use for a systematic

study of these pathways. There is a however rich literature on modeling the NF-kB

pathway [186, 187, 188, 179] which constitutes one of the core components of the TLR

pathway.

8.3 Parameter estimation

As discussed before, we implemented our initial model in the tool COPASI, which offers

a good user interface for initial model construction. The details of unknown parameters

can be found in table 8.1 and table 8.2.

Time course data was available for activated ERK, activated p38, phosphorylated

JNK, phosphorylated IkBa, IL6mRNA and IL12mRNA. The different experimental

conditions for which we had time course experimental data and those that were used

114



F
ig
u
re

8.
3:

T
h
e
re
ac
ti
on

n
et
w
or
k
gr
ap

h
of

th
e
m
at
h
em

at
ic
al

m
o
d
el

of
T
L
R

p
at
h
w
ay
.
T
h
e
re
d
d
ot
te
d
li
n
es

in
d
ic
at
e
th
e
p
ro
p
os
ed

cr
os
st
al
k
m
ec
h
an

is
m
s.

T
h
e
k
in
et
ic

eq
u
at
io
n
s
o
f
in
d
iv
id
u
al

re
a
ct
io
n
s
ca
n
b
e
fo
u
n
d
in

th
e
ap

p
en
d
ix
.

115



in the current study were 1) TLR3 stimulation (I) 2) TLR7 Stimulation (R) 3) TLR7

and TLR3 stimulation at the same time (IR) 4) TLR3 stimulation initially followed by a

8 hour interval, after which TLR7 pathway is stimulated (I08R) 5) TLR3 stimulation

initially followed by a 24 hour interval, after which TLR7 pathway is stimulated(I24R).

The time frame of the model was 48 hours (2880 minutes).

We used the statistical model checking framework discussed in the previous chapter

for parameter estimation. For activated ERK, activated p38, phosphorylated JNK and

phosphorylated IkBa, we converted the time course data for different time points into

formulas in our logic. For IL6mRNA, IL12mRNA, for all the experimental repeats,

we encoded the experimental data into dynamic trends in our logic. Table 8.3 depicts

these properties encoded in our logic. The time course data corresponding to the I24R

experiment was reserved as test data to evaluate the quality of our parameter estimates,

the data of all other experiments was used to calibrate the model.

The threshold probability was fixed to be 0.8, initial concentrations were allowed to

vary 5% around their nominal values . Parameter estimation was done with a population

size 100 for 500 generations.

Figures 8.4 , 8.8, 8.5 , 8.6 and 8.7 show the fit to data for the simulation profiles

using the best predicted parameter values from our SRES based search method for the

activated ERK, activated p38, phosphorylated JNK, phosphorylated IkBa, IL6mRNA

and IL12mRNA species. Figure 8.9 shows the fit to test data. The model predictions fit

the training experimental data well for most of the cases. In some cases, for instance,

the simulation profiles of activated ERK and activated p38 in case of TLR3 stimulation

(I) were unable to reproduce the trends of the data well. This is likely due to the

simplifications assumed by our model. For instance, the species that have not been

included in the model may affect the fitting results. However during our analysis we

found that the particular wing of the pathway contributed less to the synergy effect that

we intended to investigate. Hence, we went ahead with the current model for further

analysis. To understand the dependence of the immune response with respect to the

time duration between the TLR3 and TLR7 stimulation, we simulated the model with

increasing time duration between the I and R stimulation. Figure 8.10 shows that the

immune response (IL6mRNA and IL12mRNA) steadily increases until about the 8 hour

interval mark, after which the immune response starts to drop (for clarity, we only plot
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Figure 8.4: TLR pathway- parameter estimation results, training data - (R) stimulation
(normalized concentration vs time(minutes))
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Figure 8.5: TLR pathway- parameter estimation results, training data - (IR)stimulation
(normalized concentration vs time(minutes))

one simulation trace from the assume initial value intervals).

We started with the model with all the 3 hypothesized crosstalk mechanisms. To

understand which among them was the most crucial, we knock out each mechanism

one at a time to see the observed effect on the system. Figure 8.11(a) depicts the case

when all the three crosstalk mechanisms are included in the model. Next, we shut

down the reactions leading to H1, keeping reactions involved in H2 and H3 intact. The

results can be found in figure 8.11(b). It can be observed that this crosstalk only affects

the IR stimulation, i.e when this crosstalk is knocked out the synergy observed during

IR stimulation is affected. There is no significant effect on the levels of IL6mRNA or

IL12mRNA when there is a time gap between Poly(I : C) and R848 stimulations.

Next, we knocked out reactions involved in H2, keeping reactions involved in H1 and

H3 intact. The results can be found in figure 8.11(c). It is observed that this crosstalk

has negligible effect on the observed synergy effect. Finally, we knocked out reactions

corresponding to H3, keeping reactions involved in H1 and H2 intact. The results can be

found in figure 8.11(d). The results show that this crosstalk has the maximal effect on
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Parameter range Parameter estimate(SRES)

k0 [0, 10] 4.313
k1 [0, 125] 62.0718
k2 [0, 160] 79.7282
k3 [0, 40] 18.3319
k4 [0, 0.5] 0.40115
k5 [0, 1] 0.55527
k6 [0, 1] 0.45502
k7 [0, 20] 10.2145
k8 [0, 0.5] 0.11481
k9 [0, 100] 49.5518
k10 [0, 1000] 93.6679
k11 [0, 100] 11.5939
k12 [0, 1000] 83.0183
k13 [0, 5] 0.85
k17 [0, 0.5] 0.065976
k18 [0, 0.5] 0.49757
k19 [0, 1] 0.85
k21 [0, 1] 0.4798
k22 [0, 1] 0.3374
k23 [0, 0.5] 0.092955
k24 [0, 0.5] 0.032515
k25 [0, 0.5] 0.2846
k26 [0, 0.5] 0.000000019
k27 [0, 0.5] 0.44633
k28 [0, 0.5] 0.05
k29 [0, 100] 53.21
k30 [0, 100] 64.0901
k31 [0, 1] 0.85
k32 [0, 0.5] 0.12827
k33 [0, 0.5] 0.12776
k35 [0, 1] 0.024
k37 [0, 1] 0.39288
k56 [0, 10000] 9952
k57 [0, 1] 0.66636
k58 [0, 1] 0.93819
k59 [0, 0.5] 0.019657
k60 [0, 1] 1
k61 [0, 0.5] 0.0061633
k62 [0, 1] 0.88438
k63 [0, 1] 1
k64 [0, 1] 0.9936
k65 [0, 1] 0.81826
k66 [0, 1] 0.24018
k67 [0, 1] 0.040904
k68 [0, 0.5] 0.018947
k69 [0, 0.5] 0.012172
k70 [0, 1] 1
k71 [0, 0.5] 0.18546
k72 [0, 1] 0.54758
k73 [0, 0.5] 0.0029922
k74 [0, 0.5] 0.0033346

Table 8.1: TLR pathway: Unknown parameters with range 118



Parameter range Parameter estimate(SRES)

k75 [0, 0.5] 0.055068
k76 [0, 0.5] 0.0045339
k77 [0, 0.5] 0.0045044
k78 [0, 0.5] 0.4142
k79 [0, 0.5] 0.34747
k80 [0, 10] 4.178
k81 [0, 0.5] 0.011097
k82 [0, 10000] 7712.52
k83 [0, 10] 2.3537
k84 [0, 20000] 19991.5
k85 [0, 0.5] 0.11164
k86 [0, 0.1] 0.0000045
k87 [0, 0.5] 0.49955
k88 [0, 0.5] 0.000004564
k89 [0, 0.5] 0.00007886
k90 [0, 0.5] 0.0018139
k91 [0, 0.5] 0.37241
k92 [0, 0.5] 0.040712
k93 [0, 0.5] 0.016907
k94 [0, 0.5] 0.038708
k95 [0, 0.5] 0.013188
k96 [0, 0.5] 0.15234
k97 [0, 10] 4.9829
k98 [0, 0.5] 0.00008793
k99 [0, 0.5] 0.0010413
k100 [0, 0.5] 0.0000345
k101 [0, 1] 0.83475
k102 [0, 0.5] 0.16222
k103 [0, 1] 0.9542
k104 [0, 1] 0.62167
k105 [0, 1] 0.000079701
k106 [0, 10] 8.8227
k107 [0, 1.5] 0.10893
k108 [0, 10] 9.7043
k109 [0, 0.5] 0.00012893
k110 [0, 100] 83.7732
k111 [0, 0.5] 0.18255
k112 [0, 100] 18.5703
k113 [0, 10] 4.3817
k114 [0, 100] 55.1036
k115 [0, 1] 1
k116 [0, 0.5] 0.27158
k117 [0, 0.5] 0.42091
k121 [0, 0.5] 0.12151
k122 [0, 0.5] 0.0079654
k123 [0, 0.5] 0.0069245
k124 [0, 0.5] 0.0081743
k125 [0, 1] 0.83038
k126 [0, 0.5] 0.0024459

Table 8.2: TLR pathway: Unknown parameters with range
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Experiment Species name Property

R IL6mRNA (¬(F≤90([IL6mRNA ≥ 0.014]))) ∧ (F≤98([0.014 ≤ IL6mRNA ≤ 0.06])) ∧
F (([IL6mRNA ≥ 0.014]) ∧ F ([IL6mRNA ≤ 0.005]))

R IL12mRNA ((¬(F≤60([IL12mRNA ≥ .10]))) ∧ (F≤98([0.1 ≤ IL12mRNA ≤ 0.15]))) ∧
F (([IL12mRNA ≥ .10]) ∧ F ([IL12mRNA ≤ 0.004]))

I IL6mRNA G([IL6mRNA ≤ 0.005])
I IL12mRNA G([IL12mRNA ≤ 0.02])

IR IL6mRNA ((¬(F≤75([IL6mRNA ≥ 0.14]))) ∧ (F≤100([0.14 ≤ IL6mRNA ≤ 0.165]))) ∧
F (([IL6mRNA ≥ 0.14]) ∧ F ([IL6mRNA ≤ 0.05]))

IR IL12mRNA ((¬(F≤90([IL12mRNA ≥ .43]))) ∧ (F≤98([0.35 ≤ IL12mRNA ≤ 0.6]))) ∧
F (([IL12mRNA ≥ .43]) ∧ F ([IL12mRNA ≤ 0.05]))

I08R IL6mRNA ((¬(F≤120([IL6mRNA ≥ 0.4]))) ∧ (F≤195([0.4 ≤ IL6mRNA ≤ 0.6]))) ∧
F (([[IL6mRNA ≥ 0.4]]) ∧ F ([IL6mRNA ≤ 0.05]))

I08R IL12mRNA ((¬(F≤120([IL12mRNA ≥ 4.3]))) ∧ (F≤195([4.3 ≤ IL12mRNA ≤ 6]))) ∧
F (([IL12mRNA ≥ 4.3]) ∧ F ([IL12mRNA ≤ 0.5]))

Table 8.3: TLR pathway: Properties of IL6mRNA and IL12mRNA, the total time frame
of the system (2880 minutes) was divided into 576 time points each separated by 5
minutes
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Figure 8.6: TLR pathway- parameter estimation results, training data - (I08R)stimulation
(normalized concentration vs time(minutes))
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Figure 8.7: TLR pathway, parameter estimation results, training data - IL6mRNA and
IL12mRNA profiles (normalized concentration vs time(minutes))
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Figure 8.8: TLR pathway- parameter estimation results, training data - (I) stimulation
(normalized concentration vs time(minutes))
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Figure 8.9: TLR pathway- parameter estimation results, test data - (I24R) stimulation
(normalized concentration vs time(minutes))
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Figure 8.10: Model prediction for concentrations profiles of IL6mRNA and IL12mRNA
with increasing time interval between I and R stimulation (normalized concentration vs
time(minutes))
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Figure 8.11: Effect of different crosstalk mechanisms on synergy (normalized concentration
vs time(minutes))

the synergy.

8.4 Discussion

We have constructed an integrated ODE model for the TLR3 and TLR7 pathways to

investigate synergistic crosstalk mechanisms between the two pathways. We estimated

unknown parameters using our statistical model checking framework. Next, we performed

knock-out experiments to find the most important crosstalk mechanism leading to synergy.

Our initial analysis suggests that the crosstalk mediated by Type-1-IFN and subsequent

release of factors which affect the transcription of IL6 and IL12 is the most promising

candidate. We are currently working with biologists to see if these findings can be

experimentally validated.

In the future we plan to investigate other crosstalk mechanism namely, TLR7 pathway

results in activation of IRF7, and this phosphorylated IRF7 causing the activation of

IRF3 which triggers its response in the usual way (discussed early in the section). This

link may be especially important when considering stimulation in the other order namely

stimulation of TLR7 stimulation followed by stimulation of TLR3. We have not considered

this aspect in the current study.
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Chapter 9

Conclusion

The focus of this thesis was on developing and application of scalable approximate

probabilistic model checking algorithms for analysis of dynamics of stochastic models of

biopathways.

First, we developed a probabilistic model checking framework for analyzing DBNs

which can arise as succinct representations of Markov chains. Specifically, we have

proposed a new temporal logic called BLTPL, tailored for analysis of DBN models.

Probabilities are encoded in BLTPL at the level of atomic propositions. BLTPL formulas

are interpreted over a linear sequence of marginal probability vectors. Interesting

properties concerning the dynamics of biopathways can be formulated using BLTPL.

Model checking on DBNs is based on using probabilistic inference for computing

the marginal probability distributions of variables. Atomic propositions of BLTPL are

evaluated against these marginal probability distributions. However, it is well known

that exact probabilistic inference on DBNs is infeasible for large DBNs such as those

used in our setting.

Approximate methods for probabilistic inference of DBNs, such as FF and BK, rely

on computing and propagating probability distributions approximately. These algorithms

can make considerable errors, as evident in our case studies. To get around this, we

proposed an improved probabilistic inference method for DBNs called HFF, which, in

addition to maintaining and propagating belief states in a factored form, also maintains a

small number of full dimensional state vectors called spikes and their probabilities at each

time slice. By tuning the number of spikes, one can gain accuracy at the cost of increased

but polynomial (quadratic) computational cost. We have provided an error analysis for
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HFF as well as FF which shows that HFF is more accurate. We have demonstrated the

efficiency of HFF with the help of relatively large DBNs arising from the EGF-NGF

pathway and the Epo mediated ERK signaling pathway. In all cases, we found that

the errors suffered by FF and BK (with singleton clusters) were high for the marginal

distributions of some biologically significant species. The errors incurred by HFF were

always lower and they reduced monotonically when the number of spikes was increased.

We proposed an approximate but efficient probabilistic model checking framework

for DBNs based on FF and HFF algorithms. Our approach is generic and can be used

for analyzing DBNs that arise in other settings.

Next, we focused on statistical model checking algorithms. We proposed a statistical

model checking based approach for parameter estimation of biopathway models. We

used a slight variant of temporal logic PBLTL to encode both quantitative experimental

data and qualitative properties of pathway dynamics as logical formulas. We assume

a uniform distribution over a set of initial states and show how the probability of the

property being met by the behavior of the model can be assessed using a statistical

model checking procedure. By combining this method with a global search strategy, we

arrive at a parameter estimation procedure. We have demonstrated the applicability of

our method with the help previously published ODE based models of the represillator

pathway, the EGF-NGF pathway, the segmentation clock network pathway. Our method

successfully obtains good parameter estimates using noisy cell-population data and

qualitative knowledge. The results show that our method scales well and can cope

with large biological networks. The procedures we developed are generic and have the

potential to be applied to other stochastic models of biopathways [189].

We then applied our developed framework to build and analyze a new ODE model

for the TLR3 and the TLR7 pathway based on existing literature in collaboration

with biologists. We were specifically interested in investigating the observed synergy

in immune response when these two pathways were triggered in a certain order and

with a certain time interval. First, we hypothesized 3 crosstalk mechanisms that could

explain the synergy and modeled them into our pathway. We then trained the model

using our statistical model checking framework to explain the available experimental

data. Once we had trained the model, we performed knock out experiments to find the

most important crosstalk mechanism. Our initial analysis suggests that the crosstalk
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mediated by Type-1-IFN and subsequent release of factors which affect the transcription

of IL6 and IL12 is the most promising candidate.

9.1 Future work

There are many interesting future lines of work that can be considered. First, for the

HFF algorithm, we maintain spikes which are full dimensional state vectors. These spikes

are propagated with minimal error to reduce overall errors. We recognize that it may

not be necessary to maintain spikes which are full dimensional state vectors. Instead,

like BK, it may be interesting to maintain spikes over cluster of variables which do not

considerably affect each other. This would reduce the overall overhead of maintaining

and propagating full dimensional probability vectors. Finding the right way to cluster

variables would still be a concern.

Our logic, BLTPL is simple in the sense that the probabilistic assertions are encoded

at the atomic propositions level. Although, we are able to express many interesting

biological properties with this logic, a challenging future work will be to consider more

sophisticated forms of the logic which are more expressive.

Applying model checking for analyzing probabilistic graphical models such as dynamic

Bayesian networks is still at infancy, we envision that these approaches will be an active

area of research in the near future. Another direction of future research is that our logic

and procedure is currently used for reasoning about DBNs in a bounded time setting.

We assume that the time frame of interest is bounded; this is so since in our application

we know the time frame of interest. It will be interesting to enhance these methodologies

for unbounded time horizons which arise in more general settings.

Statistical model checking has been an active area of research recently, since it offers

a scalable, model-size independent alternative for probabilistic model checking. Our

work on using statistical model checking for parameter calibration can be further applied

to other stochastic modeling formalisms such as those arising as CTMCs, stochastic

differential equations [189, 150] etc. It will be interesting to adapt our procedure for

performing sensitivity analysis tasks.

Another direction of work is the use of GPU for both these lines of work, primarily

by taking advantage of the potential of parallelism offered by both these approaches.
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Currently, we do not exploit the use of GPU for performing our DBN based model

checking framework. Specifically FF and HFF can be implemented on GPUs. In this

context, the sum-of-product algorithm implementation presented in [190] promises to

offer helpful pointers. Similarly, the statistical model checking framework has a massive

amount of inherent parallelism which can be exploited, the SPRT test can be parallelized

by considering group-sequential sampling where one performs statistical tests after

drawing a group of samples rather than a single sample as it is done currently. In this

connection, works such as [191], [192] promise to offer helpful pointers.

Finally, there are a number of extensions possible on our work with Toll like receptors,

we intend to use our predictions from the model to formulate and analyze more crosstalk

mechanisms and biological hypotheses. In general, there is no established computational

model for the TLR3 and TLR7 pathway. Hence, our model can be used as a crucial

starting point for future modeling efforts of the TLR system. It is well known that the

immune system is highly coordinated. Models for other components of immune systems

such as the complement system[1], T-cell activation[193] etc., exist. It will be interesting

to integrate these models together to gain a holistic view of the immune system.
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Chapter 10

Appendix

10.1 Statistical model checking

This section presents additional details about our case studies in the statistical model

checking chapter.

If there is a limit on the number of samples that can be drawn to evaluate the test,

[194] discuss computing the p-value of the hypotheses to make a decision on the truth

hood. This method is adapted from statistical model checking of black box systems[133].

This is useful in our case too since, we can limit the samples for the evaluation of each

parameter combination.

We evaluated this strategy for our case studies since we have to repeatedly perform

the test for every combination of parameters picked by the search algorithm. In some

cases the number of samples that may be needed to be drawn can be high, in such

cases it is practical to have a limit on maximum number of samples that can be drawn

to evaluate the test. We set this sample limit to 100, i.e. once the test consumes 100

samples, we uses a p-value based approach to decide the truth-hood of the formula. A

comparison of this heuristic with the original statistical test is presented for all the case

studies described in the main text.
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Figure 10.1: (a)Time profile of all the species in the repressilator pathway based on the
best parameters returned by SRES based parameter estimation,(b) objective value vs
number of generations, r=0.8

0 5 10 15
0

0.5

1

1.5

2

time points

m
1

0 5 10 15
0

1

2

3

time points

m
2

0 5 10 15
0

1

2

3

time points

m
3

0 5 10 15
0

0.5

1

1.5

time points

p1

0 5 10 15
0

1

2

3

time points

p2

0 5 10 15
0

0.5

1

1.5

2

time points

p3

(a)

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

(b)

Figure 10.2: (a)Time profile of all the species in the repressilator pathway based on the
best parameters using the p-value based, SRES search,(b) objective value vs number of
generations, r=0.8
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Figure 10.3: (a)Time profile of all the species in the repressilator pathway based on the
best parameters returned by SRES based parameter estimation,(b) objective value vs
number of generations, r=0.9
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Table 10.1: Repressilator pathway: Unknown parameters with range : SRES

Parameter range SRES, r =
0.8

SRES(p −
value), r =
0.8

(SRES), r =
0.9

SRES(p −
value), r =
0.9

α1 [0, 100] 81.21886 71.4383 80.0087 86.15479
α2 [0, 100] 51.95532 69.58357 92.04954 68.90892
α3 [0, 100] 75.57755 72.6164 56.14092 73.12696
γ1 [0, 200] 189.7099 152.5638 168.5096 178.5928
γ2 [0, 200] 88.04731 139.5069 176.3156 130.0404
γ3 [0, 200] 163.9563 154.6911 140.9322 156.9079
k1 [0, 16] 10.86995 11.94785 6.883317 11.73143
k2 [0, 16] 8.125588 8.763583 7.521114 12.15338
k3 [0, 16] 11.99097 10.42376 12.6742 14.44549
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Figure 10.4: (a)Time profile of all the species in the repressilator pathway based on the
best parameters using the p-value based, SRES search,(b) objective value vs number of
generations, r=0.9
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Figure 10.5: Segmentation clock (a)Parameter estimation results - training and test data
- SRES algorithm (b) objective value vs number of generations, r=0.8
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Figure 10.6: Segmentation clock (a)Parameter estimation results - training and test data
- SRES algorithm - p-value (b) objective value vs number of generations, r=0.8
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Table 10.2: Segmentation Clock pathway: Unknown parameters with range : SRES

ID Parameter range SRES, r =
0.8

SRES(p −
value), r =
0.8

(SRES), r =
0.9

SRES(p −
value), r =
0.9

k1 KdN [0, 2.8] 1.854774 2.217943 2.315076 2.69582
k2 vsN [0, 0.46] 0.2254612 0.2586278 0.2352315 0.2306074
k3 vdN [0, 5.64] 3.016938 4.191141 4.595336 4.409697
k4 kt1 [0, 0.2] 0.1066553 0.1094273 0.07170109 0.08448644
k5 kt2 [0, 0.2] 0.1228041 0.1841493 0.194562 0.03265237
k6 KdNan [0, 0.002] 0.001628184 0.0005853016 0.0005344087 0.0007947555
k7 V dNan [0, 0.2] 0.1067782 0.0914824 0.09176074 0.115546
k8 KdMF [0, 1.536] 1.395118 0.8349247 1.130922 1.501019
k9 KIG1 [0, 5] 1.969339 1.870566 4.074387 3.100746
k10 vsF [0, 6] 2.358976 2.90498 3.354143 5.584448
k11 vmF [0, 3.84] 3.098625 2.905488 3.231351 3.670347
k12 KdF [0, 0.74] 0.2501358 0.6605053 0.2122703 0.3421939
k13 vdF [0, 0.78] 0.6268464 0.6216776 0.7059511 0.7366934
k14 ksF [0, 0.6] 0.2876905 0.4768662 0.4896845 0.3595641
k15 kd2 [0, 14.124] 4.661996 3.49936 2.54389 4.613024
k16 vMB [0, 3.28] 1.432242 0.1834212 0.46476 0.3118348
k17 KaB [0, 1.4] 1.187312 0.9453801 1.314423 1.33507
k18 vMXa [0, 1] 0.9953178 0.989499 0.9818487 0.9960803
k19 ksAx [0, 0.04] 0.03657672 0.03321188 0.01616315 0.003290748
k20 vdAx [0, 1.2] 0.05869855 0.2735278 0.09342579 0.5846336
k21 KdAx [0, 1.26] 0.5040457 0.947641 0.7892819 0.869053
k22 kt3 [0, 1.4] 0.08752867 0.9508061 0.6430629 0.1705873
k23 kt4 [0, 3] 2.460013 2.635853 2.711086 2.202319
k24 ksDusp [0, 1] 0.6604028 0.8951006 0.9289015 0.4887567
k25 vdDusp [0, 4] 2.230291 2.920256 2.269688 2.257857
k26 KdDusp [0, 1] 0.03116861 0.1623344 0.6197283 0.6940275
k27 kcDusp [0, 2.7] 2.352255 0.8794429 0.5670736 1.910287
k28 KaFgf [0, 1] 0.03527007 0.73803 0.3965763 0.2437455
k29 KaRas [0, 0.206] 0.1144681 0.1505811 0.08747173 0.1371592
k30 KdRas [0, 0.2] 0.1080222 0.1814883 0.1394507 0.1714378
k31 KaMDusp [0, 1] 0.6799779 0.9006577 0.5618566 0.5469411
k32 KdMDusp [0, 1] 0.9590261 0.7786136 0.3420334 0.2816923
k33 VMsMDusp [0, 1.8] 1.344481 1.401655 1.352437 1.144567
k34 VMdMDusp [0, 1] 0.7772506 0.7288679 0.8075002 0.4979048
k35 VMaRas [0, 9.936] 8.065443 8.570167 8.82782 6.304438
k36 VMdRas [0, 0.82] 0.3543762 0.7806555 0.4856174 0.4095424
k37 VMaErk [0, 6.6] 6.375076 5.869864 4.52774 5.053729
k38 VMaX [0, 3.2] 3.097873 2.386614 2.121978 1.573657
k39 VMdX [0, 1] 0.537238 0.8771659 0.6829796 0.7114252
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Figure 10.7: Segmentation clock (a)Parameter estimation results - training and test data
- SRES algorithm (b) objective value vs number of generations, r=0.9
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Figure 10.8: Segmentation clock (a)Parameter estimation results - training and test data
- SRES algorithm - p-value(b) objective value vs number of generations, r=0.9
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Figure 10.9: EGF-NGF pathway (a)Parameter estimation results - training and test data
- SRES algorithm (b) objective value vs number of generations, r=0.8
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Table 10.3: EGF-NGF pathway: Unknown parameters with range : SRES

ID Parameter range SRES, r =
0.8

SRES(p −
value), r =
0.8

(SRES), r =
0.9

SRES(p −
value), r =
0.9

1 k1 [0, 0.000218503] 9.691E − 05 8.963E − 05 7.507E − 05 1.474E − 04
2 k2 [0, 0.121008] 1.156E − 02 6.262E − 02 5.840E − 02 9.109E − 03
3 k3 [0, 0.00000138209] 1.353E − 07 1.366E − 07 1.381E − 07 1.372E − 07
4 k4 [0, 0.0723811] 8.148E − 03 7.956E − 03 1.167E − 02 9.021E − 03
5 k11 [0, 323.44] 4.914E + 01 1.659E + 02 3.469E + 01 2.530E + 02
6 k12 [0, 359543] 3.275E + 05 3.072E + 05 3.220E + 05 1.113E + 05
7 k15 [0, 8.84096] 2.202E + 00 1.298E + 00 2.962E + 00 8.484E − 01
8 k17 [0, 1857.59] 7.702E + 01 5.948E + 01 1.152E + 02 4.744E + 01
9 k23 [0, 98.5367] 1.362E + 01 6.885E + 00 1.071E + 01 5.036E + 00
10 k27 [0, 0.213697] 1.622E − 01 1.578E − 01 1.092E − 01 1.928E − 01
11 k28 [0, 7635230] 6.283E + 06 6.305E + 06 4.411E + 06 7.609E + 06
12 k29 [0, 106.737] 1.222E + 01 2.716E + 01 2.662E + 01 8.661E + 01
13 k33 [0, 0.566279] 4.360E − 01 4.463E − 01 4.652E − 01 4.354E − 01
14 k34 [0, 6539510] 5.866E + 06 6.200E + 06 6.420E + 06 6.238E + 06
15 k37 [0, 1469.12] 3.853E + 02 4.447E + 02 7.847E + 02 8.062E + 02
16 k38 [0, 128762] 2.829E + 04 1.584E + 04 1.228E + 05 2.708E + 04
17 k39 [0, 14.0145] 1.858E + 00 9.790E + 00 5.759E + 00 1.033E + 01
18 k40 [0, 109656] 4.003E + 01 2.394E + 02 1.909E + 02 2.197E + 02
19 k43 [0, 22.0995] 4.906E + 00 1.458E + 01 9.742E + 00 1.899E + 01
20 k44 [0, 10254600] 3.744E + 06 5.994E + 06 4.885E + 06 6.776E + 06
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Figure 10.10: EGF-NGF pathway (a)Parameter estimation results - training and test
data - SRES algorithm - p-value (b) objective value vs number of generations, r=0.8
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Figure 10.11: EGF-NGF pathway (a)Parameter estimation results - training and test
data - SRES algorithm (b) objective value vs number of generations, r=0.9
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Figure 10.12: EGF-NGF pathway (a)Parameter estimation results - training and test
data - SRES algorithm - p-value(b) objective value vs number of generations, r=0.9

Pathway number
of pa-
rameters

search algo-
rithm setting

SRES Avg sample
size per test

(min,max)
samples

SRES-
pvalue

Avg
sample
size per
test

(min,max)
samples

Repressilator 9 Gen : 50
Pop : 100

54.94sec 12.96 (3, 439) 46.64 sec 10.35 (3, 100)

Clock 39 Gen : 300
Pop : 200

2.36hrs 45 (6, 1484) 2.1 hrs 41.53 (6, 100)

EGF-NGF 20 Gen : 150
Pop : 200

2.9 hrs 150.11 (37, 1831) 1.7 hrs 83.3 (37, 100)

Table 10.4: Summary of parameter estimation tasks
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10.2 TLR3-TLR7 : the ODE model

d(x0)
dt = -(1*k0*x2*x0) ;

d(x1)
dt = +(1*k0*x2*x0) -(1*k1*x1) ;

d(x2)
dt = -(1*k0*x2*x0) +(1*k0*x2*x0) ;

d(x3)
dt = +(1*k2*x1*x4) -(1*k3*x3*x5*x6) ;

d(x4)
dt = -(1*k2*x1*x4) +(1*k6*x7) ;

d(x5)
dt = -(1*k3*x3*x5*x6) +(1*k18*x10) ;

d(x6)
dt = -(1*k3*x3*x5*x6) -(1*(k25*x6*x8-k26*x9)) +(1*k18*x10) -(1*k60*x42*x44*x6)

+(1*k70*x45) ;

d(x7)
dt = +(1*k3*x3*x5*x6) -(1*k6*x7) ;

d(x8)
dt = -(1*(k25*x6*x8-k26*x9)) + (1*k34*x26) - (1*k36*x8) - (1*k53*x22*x8) +

(1*k53*x22*x8) ;

d(x9)
dt = +(1*(k25*x6*x8-k26*x9)) ;

d(x10)
dt = +(1*k6*x7) -(1*k7*x10*x59) +(1*k7*x10*x59) -(1*(k8*x10*x11-k27*x33)) -

(1*k18*x10) ;

d(x11)
dt = -(1*(k8*x10*x11-k27*x33)) -(1*(k58*x42*x11-k59*x43)) +(1*k69*x43) ;

d(x12)
dt = +(1*k23*x16) -((k9*x61*x12)/(x12+k82));

d(x13)
dt = +(1*k24*x17) -((k10*x61*x13)/(x13+k83));

d(x14)
dt = -(1*k11*x14*x16) +(1*k17*x15) ;

d(x15)
dt = +(1*k11*x14*x16) -(k19*x15*x20) +(k19*x15*x20) -(1*k17*x15) ;

d(x16)
dt = -(1*k11*x14*x16) + (1*k11*x14*x16) - (1*k23*x16) + (1*((k9*x61*x12)/(x12+k82)));

d(x17)
dt = -(1*k12*x19*x17) + (1*k12*x19*x17) - (1*k24*x17) + (1*(k10*x61*x13)/(x13+k83));

d(x18)
dt = +(1*k12*x19*x17) -(k13*x18*x20) +(k13*x18*x20) -(1*k22*x18) ;

d(x19)
dt = -(1*k12*x19*x17) +(1*k22*x18) ;

d(x20)
dt = -(k19*x15*x20) -(k13*x18*x20) +(k28*x78) -(k31*x31*x20) ;

d(x21)
dt = -(1*k80*x21*x61) +(k20) -(1*k49*x21) -(1*k103*x74*x21) ;

d(x22)
dt = -(1*k14*x22*x24) +(1*k54*x35) -(1*k39*x22*x23) +(1*k40*x36) -(1*k41*x22)

-(1*k50*x22) -(1*k53*x22*x8) +(1*k81*x60) +(1*k103*x74*x21) ;

d(x23)
dt = -(1*k16*x25*x23) +(1*k47*x27) -(1*k48*x23) -(1*k39*x22*x23) -(k44*x23-

k45*x75) ;

d(x24)
dt = -(1*k14*x22*x24) +(1*k16*x25*x23) -(1*k38*x24) +(k43*x76) ;
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Identifier Name Initial
concentration

x0 TLR7 0.5311
x1 bTLR7 0
x2 R848 0
x3 actMyD88 0
x4 MyD88 0.87387
x5 IRAK1-4 0.12871
x6 TRAF6 1
x7 actMyD88-IRAK1-4-TRAF6 0
x8 A20 0.0048
x9 TRAF6-A20 0
x10 actIRAK1-4-TRAF6 0
x11 TRAF3 0.2
x12 Mkk1-2 0.99308
x13 Mkk3-6 0.00017715
x14 ERK 0.075538
x15 actERK 0
x16 actMkk1-2 0
x17 actMkk3-6 0
x18 actp38 0
x19 p38 0.45797
x20 AP-1 0.2
x21 NEMO:IKK-b:IKK-a 0.2
x22 NEMO:IKK-b-p:IKK-a 0
x23 IkBa 0.0025
x24 IkBa-Nfkb 0.0592
x25 Nfkb 0.003
x26 A20mRNA 0
x27 IkBamRNA 0
x28 IRF7 0.2
x29 JNK 0.31951
x30 actMkk4-7 0
x31 pJNK 0
x32 Mkk4-7 0.0064145
x33 actIRAK1-4-TRAF6-TRAF3 0
x34 IkBa-p 0
x35 NEMO:IKK-b-p:IKK-a-Nfkb-IkBa 0
x36 NEMO:IKK-b-p:IKK-a-IkBa 0
x37 inactiveIKK 0
x38 Poly(I:C) 0
x39 TLR3 0.21814
x40 bTLR3 0
x41 TRIF 0.2
x42 actTRIF 0
x43 actTRIF-TRAF3 0
x44 TRADD-FADD-RIP1 0.2
x45 actTRIF-TRADD-FADD-RIP1-TRAF6 0

Table 10.5: TLR3-TLR7 Pathway. List of species
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Identifier Name Initial
concentration

x46 Ikki 0.2
x47 actIkki 0
x48 TBK1 0.17637
x49 actTBK1 0
x50 actTBK1Ikki 0
x51 IRF3 0.18486
x52 A 0
x53 A2 0
x54 A3 0
x55 B2 0
x56 B3 0
x57 IL6mRNA 0
x58 IL12mRNA 0
x59 Tak1-Tab2-Tab3 0.99997
x60 NEMO:IKK-b:IKK-actTak1-Tab2-Tab3 0
x61 actTak1-Tab2-Tab3 0
x62 B 0
x63 C 0
x64 C2 0
x65 C3 0
x66 Type1-IFN 0
x67 Tyk2-Jak1 0.26036
x68 actTyk2-Jak1 0
x69 Stat1-Stat2 0.5845
x70 actStat1-Stat2 0
x71 PI3k 0.6152
x72 activatedPI3k 0
x73 Akt 0.24483
x74 activatedAkt 0
x75 IkBa-n 0.0034
x76 IkBa-n-Nfkb-n 0.0001
x77 Nfkb-n 0.0023
x78 actAP-1 0
x79 nucactStat1-Stat2 0
x80 factX 0
x81 facY 0
x82 IRF3-p 0
x83 IRF7-p 0

Table 10.6: TLR3-TLR7 pathway. List of species
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Parameter Value

k14 60
k15 0.15
k16 30
k20 0.0015
k21 0.4798
k22 0.3374
k34 30
k38 0.0012
k39 12
k40 6
k41 0.09
k42 30
k43 0.6
k44 0.085
k45 0.04
k46 0.024
k47 30
k48 0.006
k49 0.0075
k50 0.0075
k51 0.0075
k52 0.00003
k53 6
k54 6
k55 0.00003

Table 10.7: TLR3-TLR7 Pathway. List of known parameters
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d(x25)
dt = -(1*k16*x25*x23) -(k15*x25) +(1*k38*x24) +(1*k54*x35) ;

d(x26)
dt = +(k52*x77) -(1*k34*x26) +(1*k34*x26) -(1*k35*x26) ;

d(x27)
dt = +(k55*x77) -(1*k47*x27) +(1*k47*x27) -(1*k46*x27) ;

d(x28)
dt = -(k4*x33*x28) +(k5*x83) ;

d(x29)
dt = -(1*k29*x29*x30) +(1*k32*x31) ;

d(x30)
dt = -(1*k29*x29*x30) +(1*k29*x29*x30) - (1*k33*x30) + (1*(k30*x61*x32)/(x32+k84));

d(x31)
dt = +(1*k29*x29*x30) -(k31*x31*x20) +(k31*x31*x20) -(1*k32*x31) ;

d(x32)
dt = +(1*k33*x30) -(1*(k30*x61*x32)/(x32+k84));

d(x33)
dt = +(1*(k8*x10*x11-k27*x33)) -(k4*x33*x28) +(k4*x33*x28) ;

d(x34)
dt = -(1*k37*x34) +(1*k38*x24) +(1*k54*x35) +(1*k40*x36) ;

d(x35)
dt = +(1*k14*x22*x24) -(1*k54*x35) ;

d(x36)
dt = +(1*k39*x22*x23) -(1*k40*x36) ;

d(x37)
dt = +(1*k41*x22) -(1*k51*x37) +(1*k53*x22*x8) ;

d(x38)
dt = -(1*k56*x38*x39) +(1*k56*x38*x39) ;

d(x39)
dt = -(1*k56*x38*x39) ;

d(x40)
dt = +(1*k56*x38*x39) -(1*k57*x40*x41) +(1*k57*x40*x41) -(1*k67*x40) ;

d(x41)
dt = -(1*k57*x40*x41) +(1*k69*x43) +(1*k70*x45) ;

d(x42)
dt = +(1*k57*x40*x41) -(1*(k58*x42*x11-k59*x43)) -(1*k60*x42*x44*x6) ;

d(x43)
dt = +(1*(k58*x42*x11-k59*x43)) -(1*k69*x43) ;

d(x44)
dt = -(1*k60*x42*x44*x6) +(1*k70*x45) ;

d(x45)
dt = +(1*k60*x42*x44*x6) -(1*k61*x45*x59) +(1*k61*x45*x59) -(1*k70*x45) ;

d(x46)
dt = -(1*k62*x43*x46) +(1*k66*x50) ;

d(x47)
dt = +(1*k62*x43*x46) -(1*k64*x49*x47) ;

d(x48)
dt = -(1*k63*x43*x48) +(1*k66*x50) ;

d(x49)
dt = +(1*k63*x43*x48) -(1*k64*x49*x47) ;

d(x50)
dt = +(1*k64*x49*x47) -(k65*x50*x51) +(k65*x50*x51) -(1*k66*x50) ;

d(x51)
dt = -(k65*x50*x51) +(k68*x82) ;

d(x52)
dt = -(1*k71*x52) -(1*k72*x52) + k113*(1-((1/(1+k105*x78))* (1/(1+k106*x78*x77*x811.5))*

(1/(1+k107*x77))* (1/(1+k108*x77*x80*x78)))) ;

d(x53)
dt = +(1*k72*x52) -(1*k73*x53) ;

d(x54)
dt = +(1*k73*x53) -(1*k74*x54) ;

d(x55)
dt = +(1*k75*x62) -(1*k76*x55) ;
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d(x56)
dt = +(1*k76*x55) -(1*k77*x56) ;

d(x57)
dt = +(1*k74*x54) -(1*k78*x57) ;

d(x58)
dt = +(1*k77*x56) -(1*k79*x58) ;

d(x59)
dt = -(1*k7*x10*x59) -(1*k61*x45*x59) +(1*k21*x61) ;

d(x60)
dt = +(1*k80*x21*x61) -(1*k81*x60) ;

d(x61)
dt = +(1*k7*x10*x59) - (1*k80*x21*x61) + (1*k61*x45*x59) - (1*k21*x61) +

(1*k81*x60) ;

d(x62)
dt = -(1*k75*x62) + k114*(1-((1/(1+k109*x77)) * (1/(1+k110*x78*x77*x811.5)) *

(1/(1+k111*x78)) *(1/(1+k112*x77*x82*x78))));

d(x63)
dt =+(k85*(0.0001+0.9999*(1-(1/(1+k87*x82))*(1/(1+k88*x78*x82*x77))))) -(1*k121*x63)

-(1*k125*x63) +(k86*(0.0001+0.9999(1-(1/(1+k89*x83)))));

d(x64)
dt = +(1*k121*x63) -(1*k122*x64) ;

d(x65)
dt = +(1*k122*x64) -(1*k123*x65) ;

d(x66)
dt =+(1*k123*x65) -(1*k124*x66) -(1*k90*x66*x67) +(1*k90*x66*x67) + (k98*(0.0001+0.9999(1-

(1/(1+k99*x79))))) - (1*k100*x66*x71) + (1*k100*x66*x71) ;

d(x67)
dt = -(1*k90*x66*x67) +(1*k92*x68) ;

d(x68)
dt = +(1*k90*x66*x67) -(1*k91*x68*x69) +(1*k91*x68*x69) -(1*k92*x68) ;

d(x69)
dt = -(1*k91*x68*x69) +(1*k93*x70) ;

d(x70)
dt = +(1*k91*x68*x69) -(1*k93*x70) -(k94*x70-k95*x79) ;

d(x71)
dt = -(1*k100*x66*x71) +(1*k102*x72) ;

d(x72)
dt = +(1*k100*x66*x71) -(1*k101*x72*x73) +(1*k101*x72*x73) -(1*k102*x72) ;

d(x73)
dt = -(1*k101*x72*x73) +(1*k104*x74) ;

d(x74)
dt = +(1*k101*x72*x73) -(1*k103*x74*x21) +(1*k103*x74*x21) -(1*k104*x74) ;

d(x75)
dt = -(0.2*k42*x77*x75) +(k44*x23-k45*x75) ;

d(x76)
dt = +(0.2*k42*x77*x75) -(k43*x76) ;

d(x77)
dt = -(k52*x77) +(k52*x77) - (k55*x77) + (k55*x77) +(k15*x25) - (0.2*k42*x77*x75);

d(x78)
dt = +(k19*x15*x20) +(k13*x18*x20) -(k28*x78) +(k31*x31*x20) ;

d(x79)
dt = +(k94*x70-k95*x79) ;

d(x80)
dt = +(0.2*k115*x82) -(0.2*k116*x80) ;

d(x81)
dt = +(0.2*(k96*(0.0001+0.9999(1-(1/(1+k97*x79)))))) -(0.2*k126*x81) ;

d(x82)
dt = +(k65*x50*x51) -(k68*x82) -(0.2*k115*x82) +(0.2*k115*x82) ;

d(x83)
dt = +(k4*x33*x28) -(k5*x83) ;
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Platzer, and Paolo Zuliani. A bayesian approach to model checking biological

systems. In Proceedings of the 7th International Conference on Computational

Methods in Systems Biology, CMSB ’09, pages 218–234, Berlin, Heidelberg, 2009.

Springer-Verlag.

[19] E. Simao, E. Remy, D. Thieffry, and C. Chaouiya. Qualitative modelling of

regulated metabolic pathways: application to the tryptophan biosynthesis in e. coli.

Bioinformatics, 21(suppl 2):ii190–ii196, 2005.

144



[20] J. Fisher, N. Piterman, A. Hajnal, and T.A. Henzinger. Predictive modeling of

signaling crosstalk during c. elegans vulval development. PLoS Computational

Biology, 3(5):e92, 2007.

[21] M.A. Schaub, T.A. Henzinger, and J. Fisher. Qualitative networks: a symbolic

approach to analyze biological signaling networks. BMC systems biology, 1(1):4,

2007.

[22] F. Hua, S. Hautaniemi, R. Yokoo, and D.A. Lauffenburger. Integrated mechanistic

and data-driven modelling for multivariate analysis of signalling pathways. Journal

of The Royal Society Interface, 3(9):515–526, 2006.

[23] K.A. Janes and M.B. Yaffe. Data-driven modelling of signal-transduction networks.

Nature Reviews Molecular Cell Biology, 7(11):820–828, 2006.

[24] T. Immonen, R. Gibson, T. Leitner, M.A. Miller, E.J. Arts, E. Somersalo, and

D. Calvetti. A hybrid stochastic-deterministic computational model accurately

describes spatial dynamics and virus diffusion in hiv-1 growth competition assay.

Journal of Theoretical Biology, 2012.

[25] Bree B. Aldridge, John M. Burke, Douglas A. Lauffenburger, and Peter K. Sorger.

Physicochemical modelling of cell signalling pathways. Nature Cell Biology, 8:1195–

1203, 2006.

[26] A.W. Leung. Systems of Nonlinear Partial Differential Equations: Applications

to Biology and Engineering. Mathematics and Its Applications. Kluwer Academic

Publishers, 1989.

[27] L Raeymaekers. Dynamics of Boolean networks controlled by biologically mean-

ingful functions. Journal of theoretical biology, 218(3):331–341, oct 2002. PMID:

12381434.

[28] Hiroshi Matsuno, Yukiko Tanaka, Hitoshi Aoshima, Atsushi Doi, Mika Matsui, and

Satoru Miyano. Biopathways representation and simulation on hybrid functional

Petri net. In Silico Biol, 3(3):389–404, 2003.

[29] Derek Ruths, Melissa Muller, Jen Te Tseng, Luay Nakhleh, and Prahlad T. Ram.

The signaling Petri net-based simulator: a non-parametric strategy for characteriz-

145



ing the dynamics of cell-specific signaling networks. PLoS Computational Biology,

4(2):1–15, 2008.

[30] Vincent Danos, Jérôme Feret, Walter Fontana, Russell Harmer, and Jean Krivine.

Rule-based modelling of cellular signalling. In CONCUR, pages 17–41, 2007.

[31] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: Probabilistic

Symbolic Model Checker. In Proc. 12th Int. Conf. Modelling Techniques and Tools

for Computer Performance Evaluation (TOOLS ’02), pages 200–204, 2002.

[32] Federica Ciocchetta, Andrea Degasperi, Jane Hillston, and Muffy Calder. Some

Investigations Concerning the CTMC and the ODE Model Derived From Bio-PEPA.

Electr. Notes Theor. Comput. Sci., 229(1):145–163, 2009.

[33] H.M. Sauro. Enzyme Kinetics for Systems Biology. Future Skill Software, 2011.

[34] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach. Systems Biology in

Practice. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG, 2005.

[35] Morris W. Hirsch, Stephen Smale, and Robert L. Devaney. Differential equations,

dynamical systems and an introduction to chaos. Elsevier, 2 edition, 2004.

[36] K.E. Atkinson. An introduction to numerical analysis. Wiley, 1989.

[37] J. D. Lambert. Numerical Methods for Ordinary Differential Systems. New York:

Wiley, 1992.

[38] LR Petzold and AC Hindmarsh. Lsoda. Computing and Mathematics Research

Division, I-316 Lawrence Livermore National Laboratory, Livermore, CA, 94550,

1997.

[39] Scott D. Cohen and Alan C. Hindmarsh. Cvode, a stiff/nonstiff ode solver in c.

Comput. Phys., 10(2):138–143, March 1996.

[40] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. Scientific

Computing, pages 55–64, 1983.

[41] K. Ahnert and M. Mulansky. Odeint-solving ordinary differential equations in c++.

arXiv preprint arXiv:1110.3397, 2011.

146



[42] Gregory Batt, Calin Belta, and Ron Weiss. Temporal logic analysis of gene networks

under parameter uncertainty. IEEE Trans Circuits Syst I / Automat. Control

(Special Issue on Systems Biology), 53:215–229, 2008.

[43] Hidde de Jong. Modeling and simulation of genetic regulatory systems: a literature

review. J Comput Biol, 9(1):67–103, 2002.

[44] L. Glass and S.A. Kauffman. Co-operative components, spatial localization and

oscillatory cellular dynamics. Journal of theoretical biology, 34(2):219–237, 1972.

[45] L. Glass and S.A. Kauffman. The logical analysis of continuous, non-linear bio-

chemical control networks. Journal of Theoretical Biology, 39(1):103–129, 1973.

[46] R.B. Trelease, R.A. Henderson, and J.B. Park. A qualitative process system for

modeling nf-κb and ap-1 gene regulation in immune cell biology research. Artificial

Intelligence in Medicine, 17(3):303–321, 1999.

[47] T. Akutsu, S. Miyano, and S. Kuhara. Algorithms for inferring qualitative models

of biological networks. In Pacific Symposium on Biocomputing, volume 5, pages

290–301, 2000.

[48] K.R. Heidtke and S. Schulze-Kremer. Design and implementation of a qualitative

simulation model of lambda phage infection. Bioinformatics, 14(1):81–91, 1998.

[49] H.H. McAdams and A. Arkin. Stochastic mechanisms in gene expression. Proceed-

ings of the National Academy of Sciences, 94(3):814–819, 1997.

[50] M.B. Elowitz, A.J. Levine, E.D. Siggia, and P.S. Swain. Stochastic gene expression

in a single cell. Science Signalling, 297(5584):1183, 2002.

[51] D.T. Gillespie. Exact stochastic simulation of coupled chemical reactions. The

journal of physical chemistry, 81(25):2340–2361, 1977.

[52] M.A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical

systems with many species and many channels. The journal of physical chemistry

A, 104(9):1876–1889, 2000.

147



[53] Y. Cao, H. Li, and L. Petzold. Efficient formulation of the stochastic simula-

tion algorithm for chemically reacting systems. The journal of chemical physics,

121(9):4059–4067, 2004.

[54] H. Resat, H.S. Wiley, and D.A. Dixon. Probability-weighted dynamic monte carlo

method for reaction kinetics simulations. The Journal of Physical Chemistry B,

105(44):11026–11034, 2001.

[55] D.T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting

systems. The Journal of Chemical Physics, 115(4):1716–1733, 2001.

[56] Federica Ciocchetta, Adam Duguid, Stephen Gilmore, Maria Luisa Guerriero, and

Jane Hillston. The Bio-PEPA tool suite. In QEST ’09, pages 309–310, Washington,

DC, USA, 2009. IEEE Computer Society.

[57] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM: probabilistic sym-

bolic model checker. In Computer Performance Evaluation: Modelling Techniques

and Tools, pages 113–140. 2002.

[58] Marta Kwiatkowska, Gethin Norman, and David Parker. Using probabilistic model

checking in systems biology. SIGMETRICS Perform. Eval. Rev., 35(4):14–21, 2008.

[59] John Heath, Marta Kwiatkowska, Gethin Norman, David Parker, and Oksana

Tymchyshyn. Probabilistic model checking of complex biological pathways. Theor.

Comput. Sci., 391(3):239–257, 2008.

[60] Paolo Ballarini, Radu Mardare, and Ivan Mura. Analysing biochemical oscillation

through probabilistic model checking. Electron. Notes Theor. Comput. Sci., 229(1):3–

19, 2009.

[61] Muffy Calder, Vladislav Vyshemirsky, David Gilbert, and Richard Orton. Analysis

of signalling pathways using continuous time markov chains. In Transactions on

Computational Systems Biology VI, pages 44–67. 2006.

[62] G. Joshi-Tope, M. Gillespie, I. Vastrik, P. D’Eustachio, E. Schmidt, B. de Bono,

B. Jassal, GR Gopinath, GR Wu, L. Matthews, et al. Reactome: a knowledgebase

of biological pathways. Nucleic acids research, 33(suppl 1):D428–D432, 2005.

148



[63] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa. Kegg: Kyoto

encyclopedia of genes and genomes. Nucleic acids research, 27(1):29–34, 1999.

[64] K. Levenberg. A method for the solution of certain nonlinear problems in least

squares. Quart. Appl. Math., 1994:164–168, 2.

[65] D.W. Marquardt. An algorithm for least squares estimation of nonlinear parameters.

SIAM Journal, 11:431–441, 1963.

[66] D.B. Fogel, L.J. Fogel, and J.W. Atmar. Meta-evolutionary programming. In 25th

Asiloma Conference on Signals, Systems and Computers., pages 540–545, Asilomar,

1992. IEEE Computer Society,.

[67] R. Hooke and T. A. Jeeves. “Direct search” solution of numerical and statistical

problems. Journal of the Association for Computing Machinery, 8:212–229, 1961.

[68] T. Back, D.B. Fogel, and Z. Michalewicz. Handbook of evolutionary computation.

Oxford University Press, 1997.

[69] T. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary opti-

mization. IEEE Transactions on Evolutionary Computation, 4:284–294, 2000.

[70] Carmen G. Moles, Pedro Mendes, and Julio R. Banga. Parameter estimation in

biochemical pathways: A comparison of global optimization methods. Genome

Research, 13(11):2467 –2474, 2003.

[71] Geoffrey Koh, Huey Fern Carol Teong, Marie-Veronique Clement, David Hsu,

and P. S. Thiagarajan. A decompositional approach to parameter estimation

in pathway modeling: a case study of the Akt and MAPK pathways and their

crosstalk. volume 22, pages e271–e280, 2006.

[72] Geoffrey Koh, Lisa Tucker-Kellogg, David Hsu, and P. S. Thiagarajan. Composing

globally consistent pathway parameter estimates through belief propagation. In

Proceedings of the 7th international workshop on Algorithms in Bioinformatics,

WABI ’07, pages 420–430, Berlin, Heidelberg, 2007. Springer-Verlag.

[73] M. Morohashi, A.E. Winn, M.T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano.

Robustness as a measure of plausibility in models of biochemical networks. Journal

of theoretical biology, 216(1):19–30, 2002.

149



[74] D. Battogtokh and J.J. Tyson. Bifurcation analysis of a model of the budding

yeast cell cycle. arXiv preprint q-bio/0404006, 2004.

[75] J. Lu, H.W. Engl, P. Schuster, et al. Inverse bifurcation analysis: application to

simple gene systems. Algorithms Mol. Biol, 1(11), 2006.

[76] George Von Dassow, Eli Meir, Edwin M Munro, and Garrett M Odell. The segment

polarity network is a robust developmental module. Nature, 406(6792):188–192,

2000.

[77] Maria Rodriguez-Fernandez, Pedro Mendes, Julio R Banga, et al. A hybrid

approach for efficient and robust parameter estimation in biochemical pathways.

Biosystems, 83(2):248–265, 2006.

[78] Marta Cascante, Laszlo G Boros, Begoña Comin-Anduix, Pedro de Atauri, Josep J

Centelles, Paul W-N Lee, et al. Metabolic control analysis in drug discovery and

disease. Nature Biotechnology, 20(3):243–249, 2002.

[79] B. Schoeberl, C. Eichler-Jonsson, E.D. Gilles, and G. Muller. Computational

modeling of the dynamics of the map kinase cascade activated by surface and

internalized egf receptors. Nature biotechnology, 20(4):370–375, 2002.

[80] H.X. Zhang, W.P. Dempsey, and J. Goutsias. Probabilistic sensitivity analysis of

biochemical reaction systems. Journal of Chemical Physics, 131(9):Art–No, 2009.

[81] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,

and S. Tarantola. Global sensitivity analysis: the primer. Wiley-Interscience, 2008.

[82] M. Rodriguez-Fernandez, J.R. Banga, and F.J. Doyle III. Novel global sensitivity

analysis methodology accounting for the crucial role of the distribution of input

parameters: application to systems biology models. International Journal of Robust

and Nonlinear Control, 2012.

[83] Kwang Hyun Cho, Sung Young Shin, Walter Kolch, and Olaf Wolkenhauer. Ex-

perimental design in systems biology, based on parameter sensitivity analysis

using a Monte Carlo method: A case study for the TNFα-mediated NF-κB signal

transduction pathway. Simulation, 79(12):726–739, 2003.

150



[84] Zhike Zi, Kwang Hyun Cho, Myong Hee Sung, Xuefeng Xia, Jiashun Zheng, and

Zhirong Sun. In silico identification of the key components and steps in IFN-γ

induced JAK-STAT signaling pathway. FEBS Letters, 579(5):1101–1108, 2005.

[85] Maria Rodriguez-Fernandez and Julio R. Banga. Global sensitivity analysis of a

biochemical pathway model. In IWPACBB, pages 233–242, 2008.

[86] Zhike Zi, Yanan Zheng, Ann E Rundell, and Edda Klipp. SBML-SAT: a sys-

tems biology markup language (SBML) based sensitivity analysis tool. BMC

Bioinformatics, 9:342, aug 2008.

[87] J.Y. Choi, J.W. Harvey, and M.H. Conklin. Use of multi-parameter sensitivity

analysis to determine relative importance of factors influencing natural attenuation

of mining contaminants. US Geological Survey Toxic Substances Hydrology Program:

Contamination from hard-rock mining, 1:185, 1999.

[88] Nathalie Chabrier and François Fages. Symbolic model checking of biochemical

networks. In Proceedings of the First International Workshop on Computational

Methods in Systems Biology, pages 149–162, London, UK, UK, 2003. Springer-

Verlag.

[89] Gregory Batt, Delphine Ropers, Hidde de Jong, Johannes Geiselmann, Radu

Mateescu, Michel Page, and Dominique Schneider. Validation of qualitative models

of genetic regulatory networks by model checking: analysis of the nutritional stress

response in Escherichia coli. Bioinformatics, 21(suppl 1):i19 –i28, 2005.

[90] Pedro T. Monteiro, Delphine Ropers, Radu Mateescu, Ana T. Freitas, and Hidde

de Jong. Temporal logic patterns for querying dynamic models of cellular interaction

networks. Bioinformatics, 24(16):i227–233, aug 2008.

[91] Robin Donaldson and David Gilbert. A Monte Carlo model checker for proba-

bilistic LTL with numerical constraints. Technical report, University of Glasgow,

Department of Computing Science, 2008.

[92] Edmund Clarke, James Faeder, Christopher Langmead, Leonard Harris, Sumit

Jha, and Axel Legay. Statistical model checking in BioLab: applications to the

151



automated analysis of T-Cell receptor signaling pathway. In Computational Methods

in Systems Biology, pages 231–250. 2008.

[93] Amir Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57, 1977.

[94] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization

skeletons using Branching-Time temporal logic. In Logic of Programs, Workshop,

pages 52–71, London, UK, UK, 1982. Springer-Verlag.

[95] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concur-

rent systems in CESAR. In Proceedings of the 5th Colloquium on International

Symposium on Programming, pages 337–351, London, UK, 1982. Springer-Verlag.

[96] William S Hlavacek. How to deal with large models. Molecular Systems Biology,

5:240, 2009.

[97] L. Calzone, N. Chabrier-Rivier, F. Fages, and S. Soliman. Machine learning bio-

chemical networks from temporal logic properties. Transactions on Computational

Systems Biology VI, pages 68–94, 2006.

[98] Jiri Barnat, Lubos Brim, Adam Krejci, Adam Streck, David Safranek, Martin

Vejnar, and Tomas Vejpustek. On parameter synthesis by parallel model checking.

IEEE/ACM Trans. Comput. Biol. Bioinformatics, 9(3):693–705, may 2012.
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