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AbstrAct

This chapter considers the problem of “conditional contrast pattern mining.” It is related to contrast 
mining, where one considers the mining of patterns/models that contrast two or more datasets, classes, 
conditions, time periods, and so forth. Roughly speaking, conditional contrasts capture situations where 
a small change in patterns is associated with a big change in the matching data of the patterns. More 
precisely, a conditional contrast is a triple (B, F1, F2) of three patterns; B is the condition/context pattern 
of the conditional contrast, and F1 and F2 are the contrasting factors of the conditional contrast. Such a 
conditional contrast is of interest if the difference between F1 and F2 as itemsets is relatively small, and 
the difference between the corresponding matching dataset of B∪F1 and that of B∪F2 is relatively large. 
It offers insights on “discriminating” patterns for a given condition B.  Conditional contrast mining 
is related to frequent pattern mining and analysis in general, and to the mining and analysis of closed 
pattern and minimal generators in particular. It can also be viewed as a new direction for the analysis 
(and mining) of frequent patterns.  After formalizing the concepts of conditional contrast, the chapter 
will provide some theoretical results on conditional contrast mining. These results (i) relate conditional 
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contrasts with closed patterns and their minimal 
generators, (ii) provide a concise representation 
for conditional contrasts, and (iii) establish a 
so-called dominance-beam property. An efficient 
algorithm will be proposed based on these results, 
and experiment results will be reported. Related 
works will also be discussed. 

IntroductIon

This chapter formalizes the notions of conditional 
contrast patterns (C2Ps) and conditional contrast 
factors (C2Fs), and studies the associated data 
mining problem. These concepts are formulated 
in the abstract space of patterns and their match-
ing datasets. 

Roughly speaking, C2Ps are aimed at captur-
ing situations or contexts (the conditional contrast 
bases or C2Bs) where small changes in patterns 
to the base make big differences in matching 
datasets. The small changes are the C2Fs and 
their cost is measured by the average number of 
items in the C2Fs. The big differences are the 
differences among the matching datasets of the 

C2Fs; we use the average size of the differences 
to measure the impact (of the C2Fs). Combining 
cost and impact allows us to find those C2Fs 
which are very effective difference makers. In 
formula, a C2P is a pair 〈B, {F1, ..., Fk}〉, where k 
>1, and B and Fi are itemsets; B is the C2B and 
the Fi’s are the C2Fs. 

For k=2, Figure 1 (a) shows that F1 and F2 are 
small itemset changes to B. Panel (b) shows that 
the matching datasets of B∪F1 and B∪F2 are 
significantly different from each other. The k>2 
case is similar.1 

We use the impact-to-cost ratio, defined as 
the impact divided by the cost, as well as other 
measures, to evaluate the goodness of C2Ps and 
C2Fs. Observe that one can also consider other 
factors involving class, financial benefit or utility 
in defining this ratio. 

Example 1.1 C2Ps can give new insights to 
many, especially medical/business, applications. 
We illustrate the concepts using a medical dataset. 
From a microarray gene expression dataset used 
in acute lymphoblastic leukemia subtype study 
[Yeoh et al, 2002], we got a number of C2Ps, 
including the following2. 

Figure 1. Conditional contrast patterns/factors: (a) F1 and F2 are small itemset changes to B, and (b) 
the matching dataset of B ∪F1 is very different from that of B ∪F2.
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PL=〈{gene-38319-at≥15975.6}, {{gene-33355-
at < 10966}, {gene-33355-at ≥ 10966}}〉

Here {gene-38319-at ≥15975.6} is the C2B, 
{gene-33355-at < 10966} is F1, and {gene-33355-
at ≥ 10966} is F2. This C2P says that the samples 
that satisfy gene-38319-at ≥ 15975.6 (which are 
the samples of B-lineage type) are split into two 
disjoint parts: the first part are the E2A-PBX1 
subtype (18 samples), and the other part are the 
other B-lineage subtypes (169 samples). Expressed 
as a rule, PL says: Among the samples satisfying 
gene-38319-at ≥ 15975.6, if the expression of 
gene-33355-at is less than 10966, then the sample 
is E2A-PBX1; otherwise, it belongs to the other 
types of B-lineage. 

This C2P nicely illustrates how the regula-
tion of gene-38319-at and gene-33355-at splits 
patients into different acute lymphoblastic leu-
kemia subtypes.                                              

Typically, an individual C2F of a C2P does 
not make the big differences between matching 
datasets; the differences are made by two or more 
C2Fs of the C2P. For example, in a C2P with two 
C2Fs F1 and F2, the set of items in F1∪F2 makes 
the differences. 

The mining of C2Ps/C2Fs has several inter-
esting applications. We highlight a few here. (a) 
The C2Fs of a C2P are difference makers, in a 
sense similar to issues that cause voters to swing 
in elections, or factors that cause customers to 
switch companies. It may be worthwhile to pay 
more attention to the most interesting C2Fs and 
the items in them in real world applications. (b) 
Given a dataset, it may be interesting to find the 
most significant C2Ps as important states of the 
dataset, and the most significant C2Fs as state 
transitions. (c) C2P/C2F mining can be used for 
unsupervised feature selection, for association 
mining, clustering, and other forms of knowledge 
pattern mining. (d) We note that one can also de-
fine some indices which can be used to identify 
important “distinguishing items,” based on how 
frequently the items occur in C2Bs or C2Fs. 

Besides formulating the concepts of C2Ps and 
C2Fs, we make the following contributions: (a) We 
present theoretical results on properties of C2Ps 
and C2Fs, concerning a so-called dominance 
beam property (DBP), relationship to closed and 
key (generator) patterns, and concise represen-
tation of C2Ps and C2Fs. The results are useful 
for expansion-based search for situations where 
anti-monotonicity does not hold. (b) We present 
an algorithm for mining C2Ps, called C2Pminer. 
It utilizes the theoretical results on the relation-
ship of C2Ps/C2Fs with closed itemsets and keys, 
and the dominance beam property, for efficient 
mining. It produces all C2Ps under a special C2P 
representation. (c) We report experiment results 
performed on some data sets for cancer research 
and some datasets from the UCI repository. 

Section 1.1 discusses related works. Section 2 
formulates the main concepts. Section 3 presents 
the dominance beam property. Section 4 considers 
representation issues. Section 5 presents the C2P-
miner algorithm. Section 6 gives an experimental 
evaluation. Section 7 concludes. 

related Work

This chapter is related six groups of previous 
studies. 

1. There are several interesting differences 
between conditional contrast mining and 
association mining [Agrawal et al., 1993]. 
In association mining one is interested in 
frequent itemsets or association rules. In 
conditional contrast pattern (C2P) mining 
one is interested in interactions among 
groups of patterns (namely the C2B and the 
C2Fs). Hence the C2P pattern type is quite 
complementary to association mining.  

2. This work leads to new insights to the field 
of Formal Concept Analysis (FCA) [Gan-
ter & Wille, 1999] and to the direction of 
closed pattern mining [Mineau & Ganter, 
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2000, Pasquier et al., 1999, Zaki & Hsiao, 
2002, Wang et al., 2003]. It relates C2P/C2F 
mining with closed pattern and key min-
ing. Moreover, a C2P can be considered as 
identifying important groups of concepts, 
and C2Fs can be viewed as small patterns 
that cause big data changes to the formal 
concepts. 

3. This work is related to the direction on min-
ing of contrast patterns (including patterns 
on changes and differences) [Dong & Li, 
1999, Bay & Pazzani, 2001, Ganti et al., 
1999, Liu et al., 2000, Webb et al., 2003, Ji 
et al, 2005], in a non-temporal, non-spatial, 
and unsupervised setting. The mining of 
emerging patterns and contrast (classifica-
tion) patterns have been limited to situations 
where a number of classes are given. In this 
work, there is no need to have classes; the 
data cohorts corresponding to the C2B-C2F 
combinations can be viewed as dynamically 
discovered “classes,” and the C2Fs can be 
viewed as the emerging/contrast patterns 
between those dynamically discovered 
“classes.” 

4. The notion of conditional contrast pattern 
is somehow related to the (generalized) 
disjunction free representation [Bykowski 
& Rigotti, 2001] for itemsets. Our study on 
representation issues of conditional contrast 
patterns is also related to other studies on 
concise representation of frequent itemsets 
and association rules [Kryszkiewicz, 2001, 
Calders & Goethals, 2002]. It is also related 
to the rough set approach [Pawlak, 1991]. 

5. This work is also related to interesting-
ness [Tan et al., 2002] of association rules, 
especially the so-called “neighborhood 
based” interestingness [Dong & Li, 1998], 
and related to actionable rules [Jiang et al., 
2005]. 

6. The mining of C2Ps/C2Fs can be used for un-
supervised feature selection [Liu & Motoda, 
1998]. Indeed, C2Fs and the items in them 

can be viewed as important features, since 
they participate in making big differences 
between data cohorts. Moreover, C2P/C2F 
mining does not depend on the existence of 
classes. 

bAckground:  
concepts of condItIonAl 
contrAst pAtterns

We formulate here the concepts of conditional 
contrast patterns (C2Ps) and conditional contrast 
factors (C2Fs), together with cost, impact, and 
(relative) impact-to-cost ratio. 

Let I be a set of items. An itemset, or a pattern, 
is a set of items. A transaction is a non-empty set 
of items, which is also associated with a unique 
transaction identity (TID). A dataset is a non-
empty multi-set of transactions. Following a 
popular convention, we write an itemset such as 
{a, b, c} as abc, and an TID set such as {1,2,3,5} as 
1235. A transaction T is said to contain a pattern 
X if X ⊆ T. The matching dataset of an itemset X, 
denoted mat(X), is the set of transactions contain-
ing X. The support of a pattern X in a dataset D, 
denoted supp(X), is the number |mat(X)|. A pattern 
X is frequent w.r.t. ms in a dataset D if supp(X) ≥ 
ms, where ms is a given support threshold. 

We now turn to the main concepts. We first 
define potential conditional contrast patterns, and 
then add restrictions to define the true conditional 
contrast patterns and conditional contrast factors. 
Intuitively, a conditional contrast pattern consists 
of a base and a set of conditional contrast factors, 
where small changes—the conditional contrast 
factors—make big differences. 

Definition 2.1 A potential conditional contrast 
pattern3 (or PC2P for short) is an ordered pair P 
= 〈B, {F1, ..., Fk}〉 where:

• k>1, an integer, is the arity of the PC2P, 
• B, an itemset, is the conditional contrast 

base (C2B) of the PC2P, 



300  

Mining Conditional Contrast Patterns

• F1 ,..., Fk, k distinct itemsets, are the condi-
tional contrast factors (C2Fs) of the PC2P, 
and {F1,...,Fk} is the conditional contrast 
factor set (C2FS) of the PC2P. 

Example 2.2 The pair P = 〈abc, {d, ef}〉 
is a PC2P; abc is the C2B, d and ef are the 
C2Fs, and {d, ef} is the C2FS consisting of two 
C2Fs.                                                      

We are interested in the C2Fs’ ability to effec-
tively make big differences among their matching 
datasets, at a low cost. A C2B is like an efficient 
“watershed”, where the C2Fs are “small” and 
they separate and direct the data into different 
valleys. The C2Fs can be considered as “tipping 
patterns/factors”, since these small patterns are 
associated with big differences. Figure 1 illustrates 
these points. 

To capture the intuition of “small changes 
making big differences,” we need two functions 
on PC2Ps: cost measures how expensive the first 
change is, and impact measures how significant 
the second (induced) change is. They measure dif-
ferent properties: the former is focused on syntax 
(items) and the latter on the behavior (matching 
datasets, etc). 

Definition 2.3 Given a PC2P P =〈B, {F1,...,Fk}〉, 
we define cost(P) to be the average number of 
items used in the C2Fs, and impact(P) to be the 
average size of the matching dataset differences 
among the C2Fs; in formula4. 

• cost(P) = 
k

Fk

i i∑ =1
||

 
• impact(P) =  
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−
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Combining the two, we define a ratio to 
measure “per-item ability of conditional contrast 
factors to make dataset changes”. 

Definition 2.4 The impact-to-cost ratio and 
relative impact-to-cost ratio of a PC2P P are 
respectively defined by:

 
• icr(P) =  

)cost(
)impact(

P
P

• ricr(P) = 
)supp(

)icr(
B

P

 
The ricr can be more useful than icr, since it 

is relative to (the size of) mat(B). 
Example 2.5 Let D be a dataset which contains 

8 transactions and which satisfies the following 
(for brevity, the data set itself is omitted): mat(abc) 
= 12345678, mat(abcd) = 12345, mat(abcef ) = 
13468, and mat(abcg) = 12678. For P = 〈abc, {d, 
g}〉, we have: 
• cost(P) = (|d| + |g|)/2 =1
• impact(P)  =|mat(abcd)Δmat(abcg)| 
   = 6
• ricr(P) =

|)mat(|
)cost(/)impact(

B
PP

 
 = 

8
1/6  =0.75.

By letting B′= B∪ k
i 1=∩ Fi and iF ′= Fi - B′ , a 

PC2P P = 〈B, {F1, ..., Fk}〉 can be simplified into a 
PC2P P′= 〈 B′ , { 1F ′ , ..., kF ′}〉 where the following 
hold: icr( P′)≥icr(P), k

i 1=∩ iF ′= ∅, B′⊇B, and for 
each i, B′∩ iF ′= ∅, iF ′⊆ Fi and mat(B∪Fi) = mat(
B′∪ iF ′) (C2Fs of P′  describe the same datasets 
as C2Fs of P). Below we assume PC2Ps satisfy 
these conditions unless specified otherwise. 

Definition 2.6 Given a threshold η > 0, an 
η-conditional contrast pattern is a PC2P P =〈B, 
{F1, ..., Fk}〉 such that ricr(P) ≥ η. 

Example 2.7 Continuing with Example 2.5, 
we have: P = 〈abc, {d, g}> is a 0.75-C2P, but it is 
not a 0.8-C2P. 

The conditional contrast factors (C2Fs) can 
be viewed as “actionable” patterns for the situa-
tion described by the C2B: By “making” certain 
C2Fs false or true through “item-changing ac-
tions” (such as financial incentives or medical 
treatments), certain objects in one C2F’s match-
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ing dataset may be switched into another C2F’s 
matching dataset. As noted earlier, one can also 
use C2Fs to identify globally important individual 
items, which participate in many small C2Fs that 
make big differences. 

We can also modify the icr/ricr definition to 
encourage the C2Fs to contain different classes or 
conditions on some (financial) utility attributes, 
and to consider the varying degree of difficulty 
in changing items over general attributes.5

One may use additional measures to help select 
interesting C2Ps, especially when there are glob-
ally rare items. Consider a dataset D containing 
a very rare item a. There can be many C2Ps P = 
<B, {a, {}}> where supp(B) and ricr(P) are high, 
due to the global rarity of a, not by a’s interesting 
interaction with B; we are not interested in such 
C2Fs. We can use the minC2Fsupp threshold to 
fix the problem. We also use the minC2Bsupp 
threshold to help find C2Ps which cover relatively 
large number of tuples/transactions. 

domInAnce beAm results

We now consider properties of C2Ps, especially 
the “dominance beam” property (DBP), for ef-
ficient C2P mining. We motivate and define this 
property, and then establish the results concerning 
this property which are used in our algorithm. 

the dominance beam property 

One might be tempted to try to adapt the frequently 
used anti-monotone property for efficient C2P 
mining. One may define a measure function f (e.g. 
ricr) to be anti-monotone over the C2Ps w.r.t. a 
partial order ≤ if f(X) ≥ f(Y) for all C2Ps X and 
Y such that X ≤ Y. (We need to replace the usual 
⊆ for itemsets by ≤ for C2Ps, since C2Ps are no 
longer sets.) Unfortunately, it is not clear if there 
exist such partial orders ≤ over C2Ps for which 
ricr has the anti-monotone property. 

Note: The f function discussed in the above 
paragraph has the C2Ps as its domain. Its range 
can be any type that has a partial order on it. 
For example, the range can be the real numbers 
when f is ricr. 

Let us see what anti-monotonicity gives us. 
It is well known that it allows efficient search by 
join-based expansion, where one needs to examine 
a candidate Y only if every immediate subset X 
of Y is a valid result. 

The “dominance beam property” introduced 
below can also be used for efficient search, and 
it is a dual of anti-monotonicity in some sense: 
we need to examine a candidate Y if at least one 
of its immediate predecessors X is a valid result; 
in other words, we only need to search along the 
branches of the search tree whose nodes are all 
valid results. 

Definition 3.1 A function f has the dominance 
beam property (DBP) w.r.t. a partial order ≤ over 
C2Ps if, for each C2P P, there exists some C2P 
P' such that P' is an immediate predecessor of P 
under ≤ and f(P') ≥ f(P). 

The DBP can be used for efficient mining 
when anti-monotonicity does not hold. This ap-
plies to C2P mining. Suppose f has the DBP, σ 
is a threshold, and we want to mine all C2Ps P 
such that f(P) ≥σ. The mining can proceed as 
follows: We start by constructing an initial set 
of C2Ps, to consist of all minimal C2Ps P (under 
≤) such that f(P)≥σ. Then we expand the search 
by recursively generating all immediate succes-
sors of the computed C2Ps P which satisfy f(P) 
≥σ; the DBP ensures that this search will find all 
desired C2Ps. 

One can define several natural partial orders 
over the C2Ps, including those based on C2B 
containment, C2FS containment, or C2F con-
tainment. Among them, the most useful for us 
is the one based on C2FS containment. Luckily, 
we can establish the dominance property for this 
partial order. 
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dominance beam w.r.t. conditional 
contrast factor set

We now present our most useful dominance beam 
results, for beams which link C2Ps that differ 
by exactly one C2F. Such results are especially 
useful because they imply that we only need to 
search by adding/replacing one C2F at a time 
when mining C2Ps. 

The partial order for such dominance beams 
is ≤C2FS defined by: Given C2Ps P1= 〈B, FS1〉 and 
P2= 〈B, FS2〉, we say P1≤C2FS P2 if FS1 ⊆ FS2. In 
this partial order, P1 is an immediate predecessor 
of P2, and P2 is an immediate successor of P1, if 
FS2 – FS1 contains exactly one itemset (viewed 
as a C2F). Moreover, only C2Ps with identical 
C2Bs are comparable. 

Proposition 3.2 (ricr Dominance Beam w.r.t. 
C2FS) Let P = 〈B, FS〉 and FS = {F1, .., Fk} where 
k>2. Then for each 1<k'<k, there is a P'= 〈B,FS'〉, 
where FS'⊂ FS and |FS'| =k', such that icr(P') ≥ 
icr(P) and ricr(P') ≥ ricr(P). In particular, the 
above is true for k' = k – 1. 

Proof: By induction, it suffices to consider k' 
= k – 1. For each J ⊂ {1, ..., k} with |J| = k – 1, 
define ssd(J)= jiJji <∈∑ ,, |mat(B ∪Fi)Δmat(B ∪ Fj)|, 
and sz(J)= Ji∈∑ |Fi|. 

Let us suppose, for a contradiction, that for all 
J ⊂{1, ..., k} where |J| = k – 1, we have 

)(
)(

Jsz
Jssd

< icr(P)*(k – 2)/2. So ssd(J) <sz(J) * icr(P) * (k 
– 2)/2. Summing over all possible J, we get ΣJ 
ssd(J) < ΣJ sz(J)*icr(P)*(k – 2)/2. 

  For each pair of distinct i, j∈{1, ..., k}, there 
are









−
−

3
2

k
k

= k – 2

subsets J of {1,...,k}, where |J| = k – 1 and 
{i, j}⊆J. Hence ΣJ ssd(J )=(k – 2) *Σ1≤i<j≤k 
|mat(B∪Fi)Δmat(B∪Fj)| = (k −2)∗impact(P)∗k ∗(k 
−1)/2. For each i ∈{1,...,k}, there are









−
−

2
1

k
k

 = k − 1 

subsets J of {1,...,k}, where |J|=k −1 and i ∈J. 
Hence ΣJsz(J)=(k−1)∗Σ1≤i≤k |Fi| = k ∗(k −1)∗cost(P). 
Plugging these equalities into ΣJ ssd(J) < ΣJ sz(J) 
∗icr(P) ∗(k− 2)/2, we get (k − 2) ∗impact(P)∗k ∗(k 
− 1)/2 < icr(P)∗ cost(P)∗k ∗(k − 1) ∗(k − 2)/2. It 
follows that icr(P) > icr(P), a contradiction. 

So there is a J ⊂{1,...,k} where |J| = k − 1 and 

)(
)(

Jsz
Jssd

≥ icr(P)∗(k − 2)/2, proving the icr case. Since the 
conditional contrast bases for P and P' are identi-
cal, the statement for ricr follows.                              

Proposition 3.2 says that the impact-to-cost 
ratio can be increased by deleting C2Fs. Such 
increase can be achieved until the C2P is reduced 
to just two C2Fs. No more deletion is possible, 
since a C2P must have ≥ 2 C2Fs by definition. 

One may wonder what happens when we fur-
ther simplify a C2P with just two C2Fs. Here we 
note that the impact-to-cost ratio still can increase 
after we replace one of the C2Fs by {}. 

Proposition 3.3 Let P = 〈B, {F1, F2}〉. Then 
there exists i such that icr(Pi) ≥ icr(P) and ricr(Pi) 
≥ ricr(P), where Pi = 〈B, {Fi,{}}〉. 

Proof: Suppose to the contrary that 
icr(Pi)<icr(P) for each i. Then |mat(B∪Fi) Δmat(B)| 
< icr(P)∗|Fi|/2. So |mat(B∪F1)Δmat(B∪F2)| < 2

1=∑i

|mat(B∪Fi) Δ mat(B)| < icr(P)∗(|F1| + |F2|)/2. This 
leads to icr(P)<icr(P), a contradiction. Hence 
icr(Pi) ≥ icr(P) for some i. Since the conditional 
contrast base has remained the same, we have 
a l s o  r i c r (P i)> r i c r (P )  f o r  s o m e  i .                           
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representAtIon Issues And 
relAtIonshIp WIth closed  
pAtterns And mInImAl  
generAtors 

A conditional contrast pattern is intended to 
capture changes in the underlying dataset under 
some given condition. It is possible for two distinct 
C2Ps to correspond to exactly the same changes. 
We consider here the issue of representing such 
changes and the corresponding C2Ps of such 
changes. We also discuss C2P/C2F’s relationship 
with closed patterns and minimal generators. 

We first define denotational equivalence on 
PC2Ps, then we take icr into consideration. Let 
D be a fixed data set. 

Definition 4.1 The denotation [|P|] of a PC2P P 
= 〈B,FS〉 is defined to be the collection {mat(B∪F) 
| F∈FS} of sets. The equivalence class [P] of P is 
defined to be the set { P′  | [| P′ |] = [|P|]} of PC2Ps 
that have the same denotations as P. Moreover, 
we say that P = 〈B,FS〉 is redundant if |[|P|]| < 
|FS|—i.e., there are distinct F, F'∈FS such that 
mat(B∪F) = mat(B∪F'). 

Before discussing Definition 4.1, we give some 
background definitions. The equivalence class [X] 
of an itemset X is defined as the set of patterns 
Y that occur in exactly the same transactions as 
X in the given dataset D—viz., [X] = {Y| mat(X) 
= mat(Y)}. The closed patterns are defined as 
the most specific patterns in these equivalence 
classes—viz., X is a closed pattern if X ⊇Y for 
all Y ∈[X]. The key patterns are defined as the 
most general patterns (or equivalently, minimal 
patterns) in these equivalence classes—viz., X is 
a key pattern, if there is no pattern Y∈[X] such 
that Y ⊆ X and Y≠X. It is well known that (i) [X] is 
convex (∀Y1, Y2, and Z, Z ∈[X] holds if Y1,Y2 ∈[X] 
and Y1 ⊆ Z ⊆ Y2); (ii) [X] has exactly one closed 
pattern and it has one or more key patterns. 

The definition of [|P|] is set theoretic and ig-
nores the icr. There can be multiple PC2Ps in an 
equivalence class. The definition of redundancy is 
aimed at avoiding uninformative C2Fs. Consider 

P1 = 〈B, {F1, {}}〉, P2 = 〈B, {F2, {}}〉, and P12= 〈B, 
{F1, F2, {}}〉, where B∪F1 and B∪F2 are distinct 
key patterns of [B∪F1]. Then P1, P2 and P12 are in 
the same equivalence class. The C2Fs F1 and F2 in 
P12 are referring to the same underlying matching 
dataset, which is why P12 is redundant. The defini-
tion ensures that every C2F in a non-redundant 
PC2P refers to a distinct matching dataset. We 
focus on non-redundant PC2Ps from now on. 

Equivalence classes have some nice structural 
properties. 

Proposition 4.2 Let P = 〈B, {F1,..., Fk}〉 be a 
PC2P. For each i, let cFi be the closed itemset of 
[B∪Fi]. 

1. Let BS([P])={ B′ | there is a FS’ where 〈
B′ , FS’〉 ∈ [P]} be the set of all C2Bs that occur 
in [P]. Then BS([P]) is convex, {} is its most 
general (minimum) itemset, and B̂ =∩ 1

k
i cFi is 

its most specific (maximum) itemset.
2. Given itemset B'∈BS([P]) and i ∈[1..k], 

let FBS([P],B',i)={F'| there is a FS’ such that 〈B', 
FS’〉 ∈[P], F'∈FS’, and mat(B'∪F') = mat(B∪Fi)}. 
That is, FBS([P], B', i) is the set of all C2Fs that 
can substitute for Fi for a fixed C2B B'. Then 
FBS([P], B', i) is convex and cFi is its most specific 
itemset. 

Proof: To prove Part (1), note that 〈{}, 
{cF1,...,cFk}〉 and 〈B̂, {cF1,...,cFk}〉 are clearly in 
[P]. Thus {} and B̂ are in BS[P]. It is obvious that 
{} is minimum in BS[P].

To show that B̂ is maximum in BS([P]), let P′  = 
〈 B′ , FS’〉 be an arbitrary PC2P in [P]. Then [|P'|]= 
{mat( B′∪F) | F ∈FS’} =[|P|]= {mat(B∪F1),..., 
mat(B∪Fk)}. Since B′

 occurs in all transactions 
in the denotations of P′ , we know that B′

 occurs 
in all transactions in mat(B∪Fi), for 1≤ i ≤ k. Then  
B′⊆ cFi for 1≤ i ≤ k, since cFi is the closed pattern 
of [B∪Fi]. Hence B' ⊆ B̂= ∩ 1

k
i cFi. Therefore B̂is 

the maximum among all the C2Bs of [P]. 
To show that BS([P]) is convex, suppose X⊆ 

Y⊆ Z and X, Z ∈BS([P]). Then Y ⊆ Z ⊆ B̂= ∩ 1
k
i cFi. 

Then mat(Y∪cFi) = mat(cFi) = mat(B∪Fi) for 1≤ 
i ≤ k. Thus 〈Y, {cF1, ..., cFk}〉∈[P]. So Y ∈BS([P]), 
proving Part (1). 
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To prove Part (2), note that for any B'∈BS([P]), 
it is the case that 〈B', {cF1, ..., cFk}〉 ∈[P]. Thus 
cFi ∈FBS([P], B', i), for B′∈BS([P]) and 1≤ i ≤ 
k. Suppose F'∈ FBS([P], B', i). Then mat(B'∪F') 
= mat(B ∪ Fi) = mat(cFi) by construction. Since 
cFi is the closed pattern of mat(B∪Fi), we have 
B′∪F'⊆ cFi. Thus F'⊆ cFi. So cFi is the most 
specific itemset in FBS([P], B', i). 

To show that FBS([P], B′ ,i) is convex, suppose 
X⊆Y⊆Z and X,Z∈FBS([P],B',i). Then mat(B'∪X) 
= mat( B′∪Z) = mat(B∪Fi) by construction. Thus 
B'∪X ∈ [B∪Fi] and B′∪Z ∈ [B∪Fi]. Then B'∪Y 
∈ [B∪Fi] by convexity of [B∪Fi]. So mat( B′∪Y) 
= mat(B∪Fi). It follows that 〈 B′ , {cF1, ..., cFi-1, 
Y, cFi+1, ..., cFk}〉∈[P]. Thus Y∈FBS([P], B′ ,i). So 
FBS([P], B′ ,i) is convex as required.             

We note that a C2B can influence the choice 
of patterns that can be used as C2Fs. Specifically, 
a C2B B'∈BS([P]) cannot be too specific, since it 
must leave some items in cFi for use in the C2Fs 
to uniquely identify mat(B∪F1), ..., mat(B∪ Fk); 
but it can be very general. 

We now show that the equivalence classes 
of C2Ps can be represented by key and closed 
patterns. 

Proposition 4.3 Let P = 〈B, FS〉 be a PC2P, 
where FS = {F1, ..., Fk}. Let cFi be the closed pattern 
of [B∪Fi] for 1≤ i ≤ k. Let B̂= ∩ 1

k
i cFi. Then:

 
1 〈B̂, {cFi −B̂| 1≤ i ≤ k}〉 ∈ [P]. 
2 〈∩1≤i≤ k kFi, {kFj − ∩1≤i≤k kFi| 1≤ j ≤ k}〉 ∈ [P], 

where kFi is a key pattern of [B∪Fi] for 1≤ i 
≤ k. 

3 〈B̂, {kFi − B̂| 1≤ i ≤ k}〉 ∈ [P], where kFi is a 
key pattern of [B∪Fi]. 

4 〈B', FS’〉 ∈ [P] iff (a) for each F'∈FS’, there 
is F∈FS satisfying kF ⊆ B′∪F'⊆ cF; and (b) 
for each F ∈FS, there is F'∈FS’ satisfying 
kF ⊆B'∪F'⊆ cF, where kF is a key, and cF 
is the closed, pattern of [B∪F]. 

Proof: Parts (1), (2), and (3) follow from the 
fact that [B∪Fi] = [cFi] = [kFi] for 1≤ i ≤ k. Part (4) 
follows from the fact that, for any pattern X and 

Y, it is the case that Y∈[X] iff kX ⊆Y⊆cX, where 
kX is a key pattern of [X] and cX is the closed 
pattern of [X].                                           

Consequently, for any PC2P P = 〈B, {F1, ..., Fk}〉, 
the following are possible choices for a “canonical” 
representative of its equivalence class [P] (where 
cFi is the closed pattern of [B∪Fi] for 1≤i≤k): 

• minCP is the (singleton) set of non-redundant 
PC2Ps in CP = {〈 ∩1≤ i ≤ k cFi, {cFj − ∩1≤ i ≤ k cFi | 
1≤j≤k }〉}; 

• minKP is the set of non-redundant PC2Ps in 
KP = {〈∩1≤ i ≤ k kFi, {kFj−∩1≤ i ≤ k cFi | 1≤j≤k }〉 | kFi 
is a key pattern of [B∪ Fi]}; and 

• minCKP is the set of non-redundant PC2Ps 
in KCP = {〈 ∩1≤ i ≤ k cFi,{kFj−∩1≤ i ≤ k cFi| 1≤j≤k }〉 | 
kFi is a key pattern of [B∪Fi] for 1≤i≤k }. 

The choice of minCP as a canonical represen-
tative of the equivalence class is nice in the sense 
that it is guaranteed to be a unique representa-
tive. But it has one weakness because it often has 
low—though not always the lowest6—impact-to-
cost ratio in PC2Ps of its equivalence class. 

On the other hand, PC2Ps in the set minKP 
generally have high—though not always the high-
est7—impact-to-cost ratios among the PC2Ps in 
[P]. Similar to minCKP, they do not guarantee a 
unique canonical representative. They are worse 
than minCKP is this aspect. All the PC2Ps in 
minCKP have exactly the same conditional con-
trast base, because of the uniqueness of closed 
patterns. In contrast, the PC2Ps in minKP may 
not have the same conditional contrast base. 

As mentioned above, the PC2Ps in the set 
minCKP do not guarantee a unique canonical 
representative, even though they have the same 
conditional contrast base. Nevertheless, they are 
nice in a different way. Specifically, they have 
the highest impact-to-cost ratios among the 
non-redundant PC2Ps in [P]. For this reason, we 
recommend the PC2Ps in minCKP as canonical 
representatives, and think that the mining of 
conditional contrast patterns should be restricted 
to these canonical PC2Ps. 
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Proposition 4.4 (Optimality of minCKP) 
For each non-redundant PC2P P''∈ [P], there is 
a P'∈ minCKP⊆[P], such that icr(P') ≥ icr(P'') 
and ricr(P') ≥ ricr(P''). Consequently, the PC2Ps 
in minCKP are among the non-redundant PC2Ps 
having the highest icr and ricr in [P]. 

Proof: Let P = 〈B, {F1, ..., Fk}〉. Let P''= 〈B'', {
1F ′′, ..., kF ′′ }〉 be a non-redundant PC2P in [P]. By 

rearrangement if necessary, by Part (4) of Proposi-
tion 4.3, we can assume that kFi ⊆B''∪ iF ′′ ⊆ cFi, 
where cFi is the closed pattern of [B∪Fi] and kFi 
is some key pattern of [B∪Fi], for 1≤i≤k. 

Now, let B' =∩1≤ i ≤ k cFi, iF ′= k iF ′− B', and P' 
= 〈B', { iF ′, ..., kF ′}〉. By Proposition 4.2, we have 
B''⊆B'. For each 1≤i≤k, from k iF ′⊆B''∪ iF ′′ , we get 

iF ′=k iF ′− B'⊆ (B'∪ iF ′′ ) −B'⊆ iF ′′ . So (i) cost(P') 
≤ cost(P''). 

We know by construction that [B'∪ iF ′
] = [k iF ′] = [B''∪ iF ′′ ]. So mat(B'∪ iF ′) = 
mat(B''∪ iF ′′ ), for 1≤i≤k. This implies (ii) 
impact(P')≥impact(P''). Combining (i) and (ii), 
we obtain (iii) icr(P')≥icr(P''). 

By Proposition 4.2, we have B''⊆B'. So 
supp(B'')≥supp(B'). Combined with (iii), we get 
ricr(P')≥ricr(P).                                            

Another nice property enjoyed by minCKP is 
that the unique C2B in these PC2Ps is a closed 
pattern. This special property is useful for the 
mining of conditional contrast patterns, as it al-
lows us to anchor the mining process on closed 
patterns. 

Proposition 4.5 Given an equivalence class 
[P], the C2B of the PC2Ps in minCKP is unique 
and is a closed pattern. 

In practice, one may want to be able to eas-
ily test whether an arbitrary PC2P P'  is in the 
equivalence class of another PC2P P. Representing 
an equivalence class by a single canonical PC2P 
does not facilitate such tests. We suggest that 
the equivalence class [P] of a (non-redundant) 
PC2P P = 〈B, {F1, ..., Fk}〉 be represented by a set 
of borders 〈B', {〈 1K ′, 1C′〉, ..., 〈 kK ′ , kC′ 〉}〉, where 
Ci is the closed pattern of [B∪Fi], Ki is the set 
of key patterns of [B∪Fi], B' = ∩1≤ i ≤ k Ci, iC′ = 

Ci −B', and iK ′= {K −B' | K ∈Ki}, for 1≤i≤k. This 
representation allows us to readily test if a PC2P 
is in a particular equivalence class as per Part (4) 
of Proposition 4.3. It also let us quickly enumer-
ate all minCKP, which are the PC2Ps having the 
highest impact-to-cost ratios in [P]. 

the c2pmIner AlgorIthm

In this section, we present our C2PMiner algo-
rithm for mining conditional contrast patterns. 
The algorithm uses four thresholds: minC2Pricr, 
maxC2Fcost, minC2Bsupp and minC2Fsupp. The 
first two thresholds ensure that only interesting 
conditional contrast patterns with low cost and 
high ricr are discovered. The last two param-
eters ensure that the mined conditional contrast 
patterns have big absolute changes, and the big 
changes are not caused by conditional contrast 
factors alone but caused by adding conditional 
contrast factors to conditional contrast bases. A 
conditional contrast pattern P = 〈B, {F1,F2, .., Fk}〉 
is called desired if P satisfies supp(B) ≥ minC2B-
supp, ricr(P) ≥minC2Pricr, |Fi|≤maxC2Fcost and 
supp(Fi) ≥minC2Fsupp for all i∈ [1, k]. 

The C2PMiner algorithm first mines fre-
quent closed itemsets and keys with respect to 
minC2Bsupp simultaneously using the GcGrowth 
algorithm [Li et al., 2005]. The frequent closed 
itemsets are used as candidate conditional contrast 
bases. We modified the GcGrowth algorithm to 
mine those closed itemsets X and their keys kX 
such that |kX − B| ≤maxC2Fcost, supp(kX− B) 
≥minC2Fsupp and B⊂ X, where B is some frequent 
closed itemset. We build inverted files on closed 
itemsets to facilitate subsequent superset search. 
Next C2PMiner generates all C2Ps containing 
only one non-empty conditional contrast factor, 
and then uses these C2Ps as starting patterns to 
generate all the C2Ps containing more than one 
non-empty C2Fs based on the dominance-beam 
properties given in Section 3. The pseudo-code of 
the C2PMiner algorithm is given in Algorithm 1. 

iK ′
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It calls a procedure DFSMineC2P(B, CandC2Fs, 
L) to generate all the C2Ps containing more than 
one non-empty C2Fs. This procedure uses the 
dominance beam properties to search for C2Ps 
meeting the thresholds. 

Now we describe how DFSMineC2P(B, Can-
dC2Fs, L) works. Besides using the dominance-
beam properties, C2PMiner uses the relative 
impact of conditional contrast factors with respect 
to conditional contrast bases to prune the search 
space. The relative impact of a conditional contrast 
factor F with respect to a conditional contrast base 
B is defined as rimp(F,B)=(supp(B)−supp(B∪F))/
supp(B). 

Lemma 5.1 Let P = 〈B, {F1, ..., Fk}〉. If 
ricr(P)≥minC2Pricr, then we have ∑

k
i 1=  rimp(Fi, 

B) ≥k'* minC2Pricr/2, where k' is the number of 
non-empty  conditional contrast factors in P. 

Proof:
minC2Pricr ≤ ricr(P) 
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Hence we have ∑ k
i 1=

 rimp(Fi, B) ≥k'* minC2
Pricr/2.                                                   

When generating the C2Ps containing only one 
non-empty conditional contrast factor, C2PMiner 
also maintains the list of candidate conditional 
contrast factors for each conditional contrast 
base B, denoted as CandC2Fs(B), and calculates 
the relative impact of the candidate conditional 
contrast factors. Here we say a conditional con-
trast factor F is a candidate conditional contrast 
factor of B if |F| ≤ maxC2Fcost and supp(F) ≥ 
minC2Fsupp. Any combination of the candidate 
conditional contrast factors can form a conditional 
contrast factor set of B, so the search space of 
conditional contrast factor set wrt B is the power 
set of CandC2Fs(B). The C2PMiner algorithm 
explores the search space in the depth-first order. 
It sorts the candidate conditional contrast factors 
of B in ascending order of relative impact. The 
candidate extensions of a conditional contrast fac-

Input: A dataset D and four thresholds: minC2Bsupp, minC2Fsupp, maxC2Fcost, minC2Pricr. 

Output: 

All desired C2Ps satisfying the thresholds, under the minCKP representation. 

Description: 

1: Use a modified GcGrowth to mine a) the set of frequent closed itemsets CSb wrt minC2Bsupp and all of their keys, and b) the set 

of closed itemsets CSf  and their keys such that for each closed itemset X ∈CSf , there exists a closed itemset Y ∈CSb such that X ⊃ Y , |kX 

− Y | ≤maxC2Fcost and supp(kX− Y)≥minC2Fsupp. Build inverted files on CSb ∪CSf  to facilitate subsequent superset search. 

2: For each closed itemset B ∈CSb do: 

2.a) Use the inverted files to find all the supersets of B. For each superset X, test and generate C2Ps of the form P=〈B, {kX − B, {}}〉, 

where kX is a key of X satisfying |kX−B| ≤maxC2Fcost and supp(kX−B) ≥minC2Fsupp. Maintain all the generated C2Fs kX− B in a list 

CandC2Fs. Output P if ricr(P) ≥ minC2Pricr. 

2.b) Call DFSMineC2P(B, CandC2Fs, |CandC2Fs|) to generate all the C2Ps with B as conditional contrast base and containing more 

than one non-empty C2Fs. This procedure uses the dominance beam properties to search for C2Ps meeting the thresholds. 

Box 1. Algorithm 1 C2PMiner 
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tor include all the conditional contrast factors that 
are before it in the ascending order. During the 
mining process, C2PMiner maintains the accu-
mulated relative impact of the C2Fs on the current 
path, denoted as rimp_sum. Let F be the current 
candidate C2F to be appended. If rimp_sum<k'* 
minC2Pricr/2 and rimp(F)<minC2Pricr/2, where 
k' is the number of non-empty C2Fs on the current 
path, then there is no need to explore the current 
branch further based on Lemma 5.1. 

The C2PMiner algorithm uses the dominance 
beam property with respect to C2FS as follows. 
It explores the search space in ascending order 
of relative impact of the conditional contrast 
factors, and the candidate extensions of a condi-
tional contrast factor includes all the conditional 
contrast factors that are before it in the ascending 
order of relative impact. Therefore, the subsets 
of a conditional contrast factor set FS are always 

discovered before FS. C2PMiner maintains the 
maximal number of conditional contrast factors 
contained in the desired conditional contrast pat-
terns that have been generated, denoted as kmax. If 
the current exploration depth is greater than kmax, 
it means that none of the immediate subsets of the 
current conditional contrast factor set FS satisfies 
the minC2Pricr threshold, so there is no need to 
explore further based on Proposition 3.2. 

Algorithm 2 shows the pseudo-codes of 
the DFSMineC2P(B, CandC2Fs, L) procedure. 
During the depth first exploration, C2PMiner 
maintains the set of C2Fs on the current path, 
denoted as FS, the accumulated relative impact 
of the C2Fs in FS, denoted as rimp_sum, the 
number of non-empty C2Fs in FS, denoted as k' 
and the maximal number of conditional contrast 
factors contained in the conditional contrast fac-
tor sets that have been generated, denoted as kmax. 

Input: 

B is a conditional contrast base, CandC2Fs is the set of candidate C2Fs of B and L is the size of CandC2Fs

Output: 

All desired C2Ps containing more than one non-empty C2Fs with B as base. 

Description: 

    1: for i=1 to L do 

    2:    FS = FS ∪CandC2Fs[i]; 

    3:     rimp_sum = rimp_sum + rimp(CandC2Fs[i], B); 

    4:     if CandC2Fs[i] ≠ ∅ then 

    5:         k' = k'+1; 

    6:     if k'≥ 2 AND ricr(P=〈B, FS〉) ≥ minC2Pricr then 

    7:         Output P = 〈B, FS〉; 

    8:         if kmax<|FS| then 

    9:              kmax = |FS|;

 10:      if i>0 AND |FS| ≤ kmax AND (rimp_sum ≥ k'*  minC2Pricr/2 OR rimp(CandC2Fs[i−1], B) ≥ minC2Pricr/2) then 

   11:                DFSMineC2P(B, CandC2Fs, i−1)); 

   12:     FS = FS− CandC2Fs[i]; 

   13:     rimp_sum = rimp_sum − rimp(CandC2Fs[i],B); 

   14:     if CandC2Fs[i] ≠ ∅ then 

   15:            k' = k' − 1; 

Box 2. Algorithm 2 DFSMineC2P(B, CandC2Fs, L)
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Initially, rimp_sum and k' are set to 0, kmax is set 
to 2 and FS is set to {}. 

The correctness and completeness of the C2P-
Miner algorithm is guaranteed by Proposition 3.2, 
Proposition 3.3 and Lemma 5.1. 

experImentAl evAluAtIon

This section describes an experimental evaluation 
of the performance of the C2Pminer algorithm. We 
will show that the algorithm is effective in C2P 
mining; there is of course still room for further 
improvement. Since this is the first paper on C2P 
mining, there are no previous algorithms to com-
pare against. The program was written in C++. 
The experiments were performed on a machine 
running Microsoft Windows XP professional, 
with a 3.00GHz CPU and 2GB memory. 

Datasets Used: In this paper (here and Section 
1) we consider four datasets: two microarray gene 
expression datasets (one for acute lymphoblastic 
leukemia sub-type study [Yeoh et al, 2002] and 
another for prostate cancer [Singh et al., 2002]), 
and two datasets from the UCI repository. All are 
dense datasets and frequently used in data mining 
evaluations. An entropy-based method [Fayyad 
& Irani, 1993] was used to discretize continuous 
attributes into ≥2 bins. (-23, 24] represents an in-

terval; <11 represents the interval of (−∞,11). Each 
gene has an ID of the form 36533_at. The other 
two datasets are available at the UCI repository. 
The adult dataset was extracted from the 1994 
U.S. Census. It was originally collected to predict 
whether an individual’s income exceeds $50K 
per year based on census data. The attributes are 
concerned with personal economical, educational, 
and family conditions etc. Each sample contains 15 
features. The mushroom dataset consists of 8124 
hypothetical mushroom samples. Each sample 
has 23 features. 

Runtime Performance: The first experiment 
evaluates C2PMiner’s efficiency w.r.t. the four 
thresholds. We conducted this experiment on 
datasets adult and mushroom. Figures 2–5 show 
the results. In the figures, a question mark “?” 
indicates that the threshold is the varying one. 

Figure 2 reports the runtime behavior of C2P-
miner when varying minC2Pricr. The thresholds 
are fixed at (10%, 30%, 1,?) for adult, and at (10%, 
50%, 1,?) for mushroom. The figure shows that 
execution time grows at roughly a linear speed 
when ricr decreases. 

Figure 3 reports the runtime behavior of C2P-
Miner when varying minC2Bsupp. The thresholds 
are fixed at (?, 30%, 1, 0.8) for adult, and at (?, 
50%, 1, 0.8) for mushroom.

Figure 2. Runtime vs ricr Figure 3. Runtime vs minC2Bsupp
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Figure 4 reports the runtime behavior when 
varying minC2Fsupp. The thresholds are fixed at 
(10%, ?, 1, 0.8) for both datasets. 

Figures 3 and 4 show that the running time of 
C2PMiner grows much faster than linear when 
minC2Bsupp or minC2Fsupp decreases. The 
reason is that when minC2Bsupp decreases, the 
number of candidate conditional contrast bases 
increases significantly, and when minC2Fsupp 
decreases, the number of candidate conditional 
contrast factors increases greatly. Both cases ex-
pand the search space dramatically. Nevertheless 
the C2PMiner algorithm can finish the mining 
within 10-20 minutes for the most challenging 
parameter settings in the figures. 

Figure 5 reports the runtime behavior of C2P-
Miner when varying maxC2Fcost. The thresholds 
are fixed at (10%, 50%, ?, 0.8) for adult, and at 
(10%, 60%, ?, 0.8) for mushroom. When indi-
vidual C2F size of 2 is allowed, the execution 
time becomes much longer than when it is limited 
to 1. The reason is: The most expensive step in 
the C2PMiner algorithm generates all the C2Ps 
containing more than one non-empty conditional 
contrast factors, and the search space of condi-
tional contrast factor sets is exponential to the 
number of candidate conditional contrast factors; 
moreover, when maxC2Fcost increases from 1 to 

2, the number of potential candidate conditional 
contrast factors increases sharply.

concludIng remArks

This chapter introduced the concepts of condi-
tional contrast patterns and conditional contrast 
factors, as pattern types for data mining. These 
concepts capture small patterns that make big 
matching dataset differences. The paper presented 
theoretical results on the dominance beam prop-
erty (which allows expansion-based search), on 
representation issues of conditional contrast pat-
terns, and on relationship of conditional contrast 
patterns/conditional contrast factors with closed 
itemsets and keys/generators. It also designed 
an algorithm called C2PMiner based on those 
results. Experimental results demonstrated the 
performance of the algorithm, and produced inter-
esting patterns from datasets on cancer research 
and from UCI. 
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endnotes

1 There is no k=1case. To contrast the match-
ing dataset of B∪F1 against that of B, one 
can use the C2P of 〈B,{F1,{}}〉.

2 We also found similar C2Ps from other 
datasets, including a prostate cancer mi-
croarray gene expression dataset [Singh et 
al., 2002] and some datasets from the UCI 
repository.

3 One may also define a PC2P as a set {X1,...,Xk} 
of itemsets, and define the C2B and C2Fs 
as B = k

i 1=∩ Xi and Fi = Xi – B.
4 We denote the symmetric set difference as 

Δ. Given two sets X and Y, the set X Δ Y is 
defined to be (X-Y) ∪ (Y-X).

5 Reference [Jiang et al., 2005] considers 
changing utility attributes for actionable 
rules. Reference [Dong & Duan, 2008] con-
siders the mining of converter sets (each of 
which is a set of attribute changes) to convert 
undesirable objects into desirable ones.

6 To see that the unique PC2P in minCP does 
not have the lowest icr among PC2Ps in [P], 
consider D = {abcdk, abek, abfgjk, bg, ah}

 and P = 〈b, {ak, fg}〉. Then minCP = {P'} = 
{〈abk, {{}, fgj}〉}

 

and icr(P)=1<4/3=icr(P'). 
7 To see that PC2Ps in minKP do not have the 

highest icr among PC2Ps in [P], consider D
 = {abcdk, abek, abfk, bg, ah}. Let P = 〈b, 

{a, f}〉. Then one of PC2Ps in minKP is P'= 
〈{}, {ab, f}〉. Clearly, icr(P')<icr(P). 


