
Finding Minimum Representative Pattern Sets

Guimei Liu
School of Computing
National University of

Singapore
liugm@comp.nus.edu.sg

Haojun Zhang
School of Computing
National University of

Singapore
zhanghao@comp.nus.edu.sg

Limsoon Wong
School of Computing
National University of

Singapore
wongls@comp.nus.edu.sg

ABSTRACT
Frequent pattern mining often produces an enormous num-
ber of frequent patterns, which imposes a great challenge
on understanding and further analysis of the generated pat-
terns. This calls for the need of finding a small number of
representative patterns to best approximate all other pat-
terns. An ideal approach should 1) produce a minimum
number of representative patterns; 2) can restore the sup-
port of all patterns with error guarantee; and 3) have good
efficiency. Few existing approaches can satisfy all the three
requirements. In this paper, we develop two algorithms,
MinRPset and FlexRPset, for finding minimum representa-
tive pattern sets. Both algorithms provide error guarantee.
MinRPset produces the smallest solution that we can pos-
sibly have in practice under the given problem setting, and
it takes a reasonable amount of time to finish. FlexRPset
is developed based on MinRPset. It provides one extra pa-
rameter K to allow users to make a trade-off between result
size and efficiency. Our experiment results show that Min-
RPset and FlexRPset produce fewer representative patterns
than RPlocal—an efficient algorithm that is developed for
solving the same problem. FlexRPset can be slightly faster
than RPlocal when K is small.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data Mining

Keywords
representative patterns, frequent pattern summarization

1. INTRODUCTION
Frequent pattern mining is an important problem in the
data mining area. It was first introduced by Agrawal et
al. in 1993 [4]. Frequent pattern mining is usually per-
formed on a transaction database D = {t1, t2, ..., tn}, where
tj is a transaction containing a set of items, j ∈ [1, n]. Let
I = {i1, i2, ..., im} be the set of distinct items appearing in

D. A pattern X is a set of items in I, that is, X ⊆ I. If
a transaction t ∈ D contains all the items of a pattern X,
then we say t supports X and t is a supporting transaction
of X. Let T (X) be the set of transactions in D support-
ing pattern X. The support of X, denoted as supp(X), is
defined as |T (X)|. If the support of a pattern X is larger
than a user-specified threshold min sup, then X is called
a frequent pattern. Given a transaction database D and a
minimum support threshold min sup, the task of frequent
pattern mining is to find all the frequent patterns in D with
respect to min sup.

Many efficient algorithms have been developed for mining
frequent patterns [9]. Now the focus has shifted from how
to efficiently mine frequent patterns to how to effectively uti-
lize them. Frequent patterns has the anti-monotone prop-
erty: if a pattern is frequent, then all of its subsets must be
frequent too. On dense datasets and/or when the minimum
support is low, long patterns can be frequent. All the sub-
sets of these frequent long patterns are frequent too based
on the anti-monotone property. This leads to an explosion
in the number of frequent patterns. The huge quantity of
patterns can easily become a bottleneck for understanding
and further analyzing frequent patterns.

It has been observed that the complete set of frequent pat-
terns often contains a lot of redundancy. Many frequent
patterns have similar items and supporting transactions. It
is desirable to group similar patterns together and represent
them using one single pattern. Frequent closed pattern is
proposed for this purpose [14]. Let X be a pattern and S be
the set of patterns appearing in the same set of transactions
as X, that is, S = {Y |T (Y ) = T (X)}. The longest pattern
in S is called a closed pattern, and all the other patterns in
S are subsets of it. The closed pattern of S is selected to
represent all the patterns in S. The set of frequent closed
patterns is a lossless representation of the complete set of
frequent patterns. That is, all the frequent patterns and
their exact support can be recovered from the set of frequent
closed patterns. The number of frequent closed patterns can
be much smaller than the total number of frequent patterns,
but it can still be tens of thousands or even more.

Frequent closed patterns group patterns supported by ex-
actly the same set of transactions together. This condition
is too restrictive. Xin et al. [23] relax this condition to fur-
ther reduce pattern set size. They propose the concept of
δ-covered to generalize the concept of frequent closed pat-

dcswls
Typewritten Text
To appear in Proc. KDD 2012.



tern. A pattern X1 is δ-covered by another pattern X2 if X1

is a subset of X2 and (supp(X1)−supp(X2))/supp(X1) ≤ δ.
The goal is to find a minimum set of representative pat-
terns that can δ-cover all frequent patterns. When δ=0, the
problem corresponds to finding all frequent closed patterns.
Xin et al. show that the problem can be mapped to a set
cover problem. They develop two algorithms, RPglobal and
RPlocal, to solve the problem. RPglobal first generates the
set of patterns that can be δ-covered by each pattern, and
then employs the well-known greedy algorithm [8] for the set
cover problem to find representative patterns. The optimal-
ity of RPglobal is determined by the optimality of the greedy
algorithm, so the solution produced by RPglobal is almost
the best solution we can possibly have in practice. However,
RPglobal is very time-consuming and space-consuming. It
is feasible only when the number of frequent patterns is not
large. RPlocal is developed based on FPClose [10]. It inte-
grates frequent pattern mining with representative pattern
finding. RPlocal is very efficient, but it produces much more
representative patterns than RPglobal.

In this paper, we analyze the bottlenecks for finding a mini-
mum representative pattern set and develop two algorithms,
MinRPset and FlexRPset, to solve the problem. Algorithm
MinRPset is similar to RPglobal, but it utilizes several tech-
niques to reduce running time and memory usage. In par-
ticular, MinRPset uses a tree structure called CFP-tree [13]
to store frequent patterns compactly. The CFP-tree struc-
ture also supports efficient retrieval of patterns that are δ-
covered by a given pattern. Our experiment results show
that MinRPset is only several times slower than RPlocal,
while RPglobal is several orders of magnitude slower. Algo-
rithm FlexRPset is developed based on MinRPset. It pro-
vides one extra parameter K which allows users to make
a trade-off between efficiency and the number of represen-
tative patterns selected. When K = ∞, FexRPset is the
same as MinRPset. With the decrease of K, FlexRPset be-
comes faster, but it produces more representative patterns.
When K=1, FlexRPset is slightly faster than RPlocal, and
it still produces fewer representative patterns than RPlocal
in almost all casese.

The rest of the paper is organized as follows. Section 2 in-
troduces related work. Section 3 gives the formal problem
definition. The two algorithms, MinRPset and FlexRPset,
are described in Section 4 and Section 5 respectively. Ex-
periment results are reported in Section 6. Finally, Section
7 concludes the paper.

2. RELATED WORK
The number of frequent patterns can be very large. Besides
frequent closed patterns, several other concepts, such as gen-
erators [5], non-derivable patterns[7], maximal patterns [12],
top-k frequent closed patterns [19] and redundancy-aware
top-k patterns [22], have been proposed to reduce pattern
set size. The number of generators is larger than that of
closed patterns. Furthermore, the set of generators itself is
not lossless. It requires a border to be lossless [6]. Non-
derivable patterns are generalizations of generators. A bor-
der is also needed to make non-derivable patterns lossless.
The number of maximal patterns is much smaller than the
number of closed patterns. All frequent patterns can be
recovered from maximal patterns, but their support infor-

mation is lost. Another work that also ignores the support
information is [3]. It selects k patterns that best cover a
collection of patterns.

Frequent closed patterns preserve the exact support of all
frequent patterns. In many applications, knowing the ap-
proximate support of frequent patterns is sufficient. Several
approaches have been proposed to make a trade-off between
pattern set size and the precision of pattern support. The
work by Xin et al. [23] described in Section 1 is one such ap-
proach. Another approach proposed by Pei et al. [15] mines
a minimal condensed pattern-base, which is a superset of
the maximal pattern set. Pei et al. use heuristic algorithms
to find condensed pattern-bases. All frequent patterns and
their support can be restored from a condensed pattern-base
with error guarantee.

Yan et al. [24] use profiles to summarize patterns. A profile
consists of a master pattern, a support and a probability dis-
tribution vector which contains the probability of the items
in the master pattern. The set of patterns represented by a
profile are subsets of the master pattern, and their support
is calculated by multiplying the support of the profile and
the probability of the corresponding items. To summarize a
collection of patterns using k profiles, Yan et al. partition
the patterns into k clusters, and use a profile to describe each
cluster. There are several drawbacks with this profile-based
approach: 1) It makes contradictory assumptions. On one
hand, the patterns represented by the same profile are sup-
posed to be similar in both item composition and supporting
transactions, thus the items in the same profile are expected
to be strongly correlated. On the other hand, based on how
the support of patterns are calculated from a profile, the
items in the same profile are expected to be independent.
It is hard to make a balance between the two contradicting
requirements. 2) There is no error guarantee on the esti-
mated support of patterns. 3) The proposed algorithm for
generating profiles is very slow because it needs to scan the
original dataset repeatedly. 4) The support of a pattern is
not determined by a single profile, but by all the profiles
whose master pattern is a superset of the pattern. Thus
it is very costly to recover the support of a pattern using
profiles. 5) The boundary between frequent patterns and
infrequent patterns cannot be determined using profiles.

Several improvements have been made to the profile-based
approach. Jin et al. [11] develop a regression-based ap-
proach to minimize restoration error. They cluster patterns
based on restoration errors instead of similarity between pat-
terns, thus their approach can achieve lower restoration er-
ror. However, there is still no error guarantee on the restored
support. CP-summary [16] uses conditional independence
to reduce restoration error. It adds one more component to
each profile: a pattern base, and the new profile is called
c-profile. The items in a c-profile are expected to be in-
dependent with respect to the pattern base. CP-summary
provides error guarantee on estimated support. However,
patterns of a c-profile often share little similarity, so a c-
profile is not representative of its patterns any more.

Profiles can be considered as generalizations of closed pat-
terns. Wang et al.[18] make generalization on another con-
cise representation of frequent patterns—non-derivable pat-



terns. They use Markov Random Field (MRF) to summa-
rize frequent patterns. The support of a pattern is estimated
from its subsets, which is similar to non-derivable patterns.
Markov Random Field model is not as intuitive as profiles,
and it is also expensive to learn. It does not provide error
guarantee on estimated support either.

3. PROBLEM STATEMENT
We follow the problem definition in [23]. The distance be-
tween two patterns is defined based on their supporting
transaction sets.

Definition 1 (D(X1, X2)). Given two patterns X1 and

X2, the distance between them is defined as D(X1, X2) =

1 − |T (X1)∩T (X2)|
|T (X1)∪T (X2)|

.

Definition 2 (ǫ-covered). Given a real number ǫ ∈
[0, 1] and two patterns X1 and X2, we say X1 is ǫ-covered
by X2 if X1 ⊆ X2 and D(X1, X2) ≤ ǫ.

In the above definition, condition X1 ⊆ X2 ensures that the
two patterns have similar items, and condition D(X1, X2) ≤
ǫ ensures that the two patterns have similar supporting trans-
action sets and similar support. Based on the definition, a
pattern ǫ-covers itself.

Lemma 1. Given two patterns X1 and X2, if pattern X1

is ǫ-covered by pattern X2 and we use supp(X2) to approxi-

mate supp(X1), then the relative error
supp(X1)−supp(X2)

supp(X1)
is

no larger than ǫ.

Proof. supp(X1)−supp(X2)
supp(X1)

= 1− supp(X2)
supp(X1)

= 1− |T (X2)|
|T (X1)|

≤

1 − |T (X1)∩T (X2)|
|T (X1)∪T (X2)|

≤ ǫ.

Lemma 2. If a frequent pattern X1 is ǫ-covered by pattern

X2, then supp(X2) ≥ min sup · (1 − ǫ).

Proof. Based on Lemma 1, 1− supp(X2)
supp(X1)

≤ ǫ, so we have

supp(X2) ≥ supp(X1) · (1 − ǫ) ≥ min sup · (1 − ǫ).

Our goal here is to select a minimum set of patterns that
can ǫ-cover all the frequent patterns. The selected patterns
are called representative patterns. Based on Lemma 1, the
restoration error of all frequent patterns is bounded by ǫ.
We do not require representative patterns to be frequent.
Based on Lemma 2, the support of representative patterns
must be no less than min sup·(1−ǫ). The problem is how to
find a minimum representative pattern set? In the next two
sections, we describe two algorithms to solve the problem.

4. THE MINRPSET ALGORITHM
Let F be the set of frequent patterns in a dataset D with
respect to threshold min sup, and F̂ be the set of patterns
with support no less than min sup · (1− ǫ) in D. Obviously,

F ⊆ F̂ . Given a pattern X ∈ F̂ , we use C(X) to denote

the set of frequent patterns that can be ǫ-covered by X. We
have C(X) ⊆ F . If X is frequent, we have X ∈ C(X).

A straightforward algorithm for finding a minimum repre-
sentative pattern set is as follows. First we generate C(X)

for every pattern X ∈ F̂ , and we get |F̂ | sets. The elements
of these sets are frequent patterns in F . Let S = {C(X)|X ∈

F̂}. Finding a minimum representative pattern set is now
equivalent to finding a minimum number of sets in S that
can cover all the frequent patterns in F . This is a set cover
problem, and it is NP-hard. We use the well-known greedy
algorithm [8] to solve the problem, which achieves an ap-

proximation ratio of
∑k

i=1
1
i
, where k is the maximal size of

the sets in S. We call this simple algorithm MinRPset.

The greedy algorithm is essentially the best-possible poly-
nomial time approximation algorithm for the set cover prob-
lem. Our experiment results have shown that it usually takes
little time to finish. Generating C(X)s is the main bottle-

neck of the MinRPset algorithm when F and F̂ are large
because we need to find C(X)s over a large F for a large

number of patterns in F̂ . We use the following techniques to
improve the efficiency of MinRPset: 1) consider closed pat-
terns only; 2) use a structure called CFP-tree to find C(X)s
efficiently; and 3) use a light-weight compression technique
to compress C(X)s.

4.1 Considering closed patterns only
A pattern is closed if all of its supersets are less frequent than
it. If a pattern X1 is non-closed, then there exists another
pattern X2 such that X1 ⊂ X2 and supp(X2) = supp(X1).

Lemma 3. Given two patterns X1 and X2 such that X1 ⊆
X2 and supp(X1) = supp(X2), if X2 is ǫ-covered by a pat-

tern X, then X1 must be ǫ-covered by X too.

The above lemma directly follows from Definition 2. It im-
plies that instead of covering all frequent patterns, we can
cover frequent closed patterns only, which leads to the fol-
lowing lemma.

Lemma 4. Let F be the set of frequent patterns in a dataset

D with respect to a threshold min sup. If a set of patterns

R ǫ-covers all the frequent closed patterns in F , then R ǫ-
covers all the frequent patterns in F .

Lemma 5. Given two patterns X1 and X2 such that X1 ⊆
X2 and supp(X1) = supp(X2), if a pattern X is ǫ-covered
by X1, then X must be ǫ-covered by X2 too.

This lemma also directly follows from Definition 2. It sug-
gests that we can use closed patterns only to cover all fre-
quent patterns.

The number of frequent closed patterns can be orders of
magnitude smaller than the total number of frequent pat-
terns. Consider only closed patterns improves the efficiency
of the MinRPset algorithm in two aspects. On one hand, it



Table 1: An example dataset D
TID Transactions

1 a, c, e, f, m, p
2 b, e, v
3 a, b, f, m, p
4 d, e, f, h, p
5 a, c, d, m, v
6 a, c, h, m, s
7 a, f, m, p, u
8 a, b, d, f, g

Table 2: Frequent patterns (min sup=3)
ID Itemsets ID itemsets ID itemsets
1 a:6 9 ac:3 17 acm:3
2 b:3 10 af:4 18 afm:3
3 c:3 11 am:5 19 afp:3
4 d:3 12 ap:3 20 amp:3
5 e:3 13 cm:3 21 fmp:3
6 f:5 14 fm:3 22 afmp:3
7 m:5 15 fp:4
8 p:4 16 mp:3

ma:3

ma:3 a:3

a:5m:3 a:4f:4

b:3 c:3 d:3 e:3 p:4 f:5 m:5 a:61

2 3

4

5

6

7

Figure 1: CFP-tree constructed on the frequent pat-
terns in Table 2

reduces the size of individual C(X)s since now they contain
only frequent closed patterns. On the other hand, it reduces
the number of patterns whose C(X) needs to be generated
as now we need to generate C(X)s for closed patterns only.

4.2 Using CFP-tree to findC(X)s efficiently
The CFP-tree structure is specially designed for storing and
querying frequent patterns [13]. It resembles a set-enumer-
ation tree [17]. We use an example dataset D in Table 1 to
illuminate its structure. Table 2 shows all the frequent pat-
terns in D when min sup = 3. The CFP-tree constructed
from the frequent patterns is shown in Figure 1.

Each node in a CFP-tree is a variable-length array. If a node
contains multiple entries, then each entry contains exactly
one item. If a node has only one entry, then it is called a
singleton node. Singleton nodes can contain more than one
item. For example, node 2 in Figure 1 is a singleton node
with two items m and a. An entry E stores several pieces
of information: (1) m items (m ≥ 1), (2) the support of E,
(3) a pointer pointing to the child node of E and (4) the
id of the entry which is assigned using preordering. In the
rest of this paper, we use E.items, E.support, E.child and
E.preorder to denote the above fields.

Every entry in a CFP-tree represents one or more patterns
with the same support, and these patterns contain the items
on the path from the root to the entry. Items contained in

singleton nodes are optional. Let E be an entry, Xm be the
set of items in the multiple-entry nodes and Xs be the set of
items in the singleton nodes on the path from the root to the
parent of E respectively. The set of patterns represented by
E is {Xm∪Y ∪Z|Y ⊆ Xs, Z ⊆ E.items, Z 6= ∅}. The longest
pattern represented by E is Xm ∪Xs ∪E.items. Let us look
at an example. Node 4 contains only one entry. For this
entry, we have Xm = {p}, Xs = {f} and E.items = {m, a}.
Hence node 4 represents 6 itemsets: {p, m}, {p, a}, {p, m, a},
{p, f, m}, {p, f, a} and {p, f, m, a}. We use E.pattern to
denote the longest pattern represented by E.

The above feature makes CFP-tree a very compact structure
for storing frequent patterns. The number of entries in a
CFP-tree is much smaller than the total number of patterns
stored in the tree. For each entry, we consider its longest
pattern only based on Lemma 3 and Lemma 5. For an entry
E, only its longest pattern can be closed. Other patterns of
E that are shorter than the longest pattern cannot be closed
based on the definition of closed patterns. If the longest
pattern of an entry is not closed, then we call the entry a
non-closed entry.

The CFP-tree structure has the following property.

Property 1. In a multiple-entry node, the item of an

entry E can appear in the subtrees pointed by entries before

E, but it cannot appear in the subtrees pointed by entries

after E.

For example, in the root node of Figure 1, item p is allowed
to appear in the subtrees pointed by entries b, c, d and e, but
it is not allowed to appear in the subtrees pointed by entries
f , m and a. This property implies the following lemma.

Lemma 6. In a CFP-tree, the supersets of a pattern can-

not appear on the right of the pattern. They appear either

on the left of the pattern or in the subtree pointed by the

pattern.

4.2.1 Finding one C(X)
Given a pattern X, C(X) contains the subsets of X that can
be ǫ-covered by X. CFP-tree supports efficient retrieval of
subsets of patterns. To find the subsets of a pattern X in a
CFP-tree, we simply traverse the CFP-tree and match the
items of the entries against X. For an entry E in a multiple-
entry node, if its item appears in X, then entry E represents
some subsets of X and the search is continued on its subtree.
Otherwise, entry E and its subtree is skipped because all the
patterns in the subtree of E contain E.items /∈ X, and these
patterns cannot be subsets of X. An entry E in a singleton
node can contain items not in X, and these items are simply
ignored.

Algorithm 1 shows the pseudo-codes for retrieving C(X).
Initially, cnode is the root node of the CFP-tree. Parameter
Y contains the set of items to be searched in cnode. It is set
to X initially. Once an entry E is visited, the item of E is
removed from Y when Y is passed to the subtree of E (line
8, 18). The item of E is also excluded when Y is passed
to the entries after E (line 21). This is because the item of



Algorithm 1 Search CX Algorithm

Input:

cnode is a CFP-tree node; //cnode is the root node initially.
Y is the set of items to be searched in cnode; //Y =X initially.
supp(X) is the support of X;

Output:

C(X);
Description:

1: if cnode contains only one entry E then

2: if E.support == supp(X) AND E.pattern ⊂ X then

3: Mark E as non-closed;
4: if E is not marked as non-closed then

5: if E.items
⋂

Y 6= ∅ AND E.support ≤
supp(X)
(1−ǫ)

then

6: Put E.preorder into C(X);
7: if E.child 6= NULL AND Y − E.items 6= ∅ then

8: Search CX(E.child, Y − E.items, supp(X));
9: else if cnode contains multiple entries then

10: for each entry E ∈ cnode from left to right do

11: if E.items ∈ Y then

12: if E.support == supp(X) AND E.pattern ⊂ X

then

13: Mark E as non-closed;
14: if E is not marked as non-closed then

15: if E.support ≤
supp(X)
(1−ǫ)

then

16: Put E.preorder into C(X);
17: if E.child 6= NULL AND Y − E.items 6= ∅ then

18: Search CX(E.child, Y − E.items, supp(X));

19: if supp(E.pattern ∪ Y ) >
supp(X)
(1−ǫ)

then

20: return ;
21: Y =Y − E.items;

E cannot appear in the subtrees pointed by entries after E
based on Property 1.

During the search of C(X)s, we also mark non-closed pat-
terns. If the longest pattern of E is a proper subset of X
and E.support=supp(X), then E is marked as non-closed
(line 2-3, 12-13), and it is skipped in subsequent search.

The early termination technique. If a pattern is ǫ-
covered by X, then its support must be no larger than
supp(X)
(1−ǫ)

based on Definition 2. We use this requirement to

further improve the efficiency of Algorithm 1. Given an en-
try E in a multiple-entry node, after we visit the subtree of

E, if we find supp(E.pattern ∪ Y ) > supp(X)
(1−ǫ)

, where Y is

the set of items that is passed to E, then there is no need to
visit the subtrees pointed by entries after E (line 19-0). The
reason being that all the subsets of X in these subtrees must
be subsets of (E.pattern ∪ Y ), and their support must be

larger than supp(X)
(1−ǫ)

too based on the anti-monotone prop-

erty. We call this pruning technique the early termination

technique.

4.2.2 Finding C(X)s of all closed patterns
Algorithm 2 shows the pseudo-codes for generating all C(X)s.
It traverses the CFP-tree in depth-first order from left to
right. Using this traversal order, the supersets of a pattern
X that are on the left of X are visited before X. If the
support of X is the same as one of these supersets, then X
should be marked as non-closed when Search CX is called
for that superset. If X is not marked as non-closed when
X is visited, it means that X is more frequent than all its
supersets on its left. Based on Lemma 6, the supersets of
a pattern appear either on the left of the pattern or in the

subtree pointed by the pattern. If X is also more frequent
than its child entries, then X must be closed. The conditions
listed at line 2 and line 3 ensure that Algorithm 2 generates
C(X)s for only closed patterns.

Algorithm 2 DFS Search CXs Algorithm

Input:

cnode is a CFP-tree node; //cnode is the root node initially.
Output:

C(X)s;
Description:

1: for each entry E ∈ cnode from left to right do

2: if E is not marked as non-closed then

3: if E is more frequent than its child entries then

4: X=E.pattern;
5: C(X) = Search CX(root, X, E.support);
6: if E.child 6= NULL then

7: DFS Search CXs(E.child);

In Algorithm 2, if an entry E is marked as non-closed be-
cause it has the same support as one of its supersets on
its left, then all the patterns in the subtree pointed by E
are non-closed. We can safely skip E and its subtree in
subsequent traversal (line 2). The same pruning is done in
Algorithm 1 (line 4, 14). This observation has been used
in almost all frequent closed pattern mining algorithms to
prune non-closed patterns [10, 20].

4.3 CompressingC(X)s
In a CFP-tree, each entry E has an id, which is denoted
as E.preorder. In Algorithm 1, we put the ids of entries in
C(X)s if E is ǫ-covered by X (line 6, 16). Each id takes 4
bytes. Both the total number of C(X)s and the size of indi-
vidual C(X)s grow with the number of frequent (closed) pat-
terns. When the number of frequent closed patterns is large,
the total size of C(X)s can be very large. If the main mem-
ory cannot accommodate all C(X)s, the greedy set cover
algorithm becomes very slow.

To alleviate this problem, we compress C(X)s using a light-
weight compression technique [21]. Each entry id occupies
one or more bytes depending on its value. To reduce the
number of bytes needed for storing entries ids, we sort the
entry ids in ascending order and store the differences be-
tween consecutive ids instead. Our experiment results show
that this compression technique can reduce the space needed
for storing C(X)s by about three quarters.

Algorithm 3 MinRPset Algorithm

Description:

1: Mine patterns with support ≥ min sup · (1 − ǫ) and store
them in a CFP-tree; let root be the root node of the tree;

2: DFS Search CXs(root);
3: Remove non-closed entries from C(X)s;
4: Apply the greedy set cover algorithm on C(X)s to find rep-

resentative patterns;
5: Output representative patterns;

Algorithm 3 shows the pseudo-codes of the MinRPset algo-
rithm, and it calls Algorithm 2 to find C(X)s. Note that
we store all patterns, including non-closed patterns, with
support no less than min sup · (1 − ǫ) in a CFP-tree (line
1). Non-closed patterns are identified during the search of
C(X)s. Hence it is possible that some C(X)s contains some

dcswls
Highlight



non-closed entries. These non-closed entries are removed
from C(X)s (line 3) before the greedy set cover algorithm is
applied.

5. THE FLEXRPSET ALGORITHM
When the number of frequent patterns is large on a dataset,
the MinRPset algorithm may become very slow since it needs
to search subsets over a large CFP-tree for a large number
of patterns. Furthermore, the set of C(X)s may become too
large to fit into the main memory. To solve this problem,
instead of searing C(X)s for all closed patterns, we can se-
lectively generate C(X)s such that every frequent pattern is
covered a sufficient number of times, in the hope that the
greedy set cover algorithm can still find a near-optimal solu-
tion. Apparently, the fewer the number of C(X)s generated,
the more efficient the algorithm is. This is the basic idea of
the FlexRPset algorithm.

The FlexRPset algorithm uses a parameter K to control the
minimum number of times that a frequent pattern needs to
be covered. Algorithm 4 shows how FlexRPset selectively
generates C(X)s. The other steps of FlexRPset are the same
as those of MinRPset.

Algorithm 4 Flex Search CXs Algorithm

Input:

cnode is a CFP-tree node; //cnode is the root node initially.
K is the minimum number of times that a frequent closed
pattern needs to be covered;

Output:

C(X)s;
Description:

1: for each entry E ∈ cnode from left to right do

2: if E is not marked as non-closed then

3: if E.child 6= NULL then

4: Flex Search CXs(E.child);
5: if E is more frequent than its child entries then

6: if (E is frequent AND E is covered less than K times)
OR (∃ an ancestor entry E′ of E such that E′ is fre-
quent, E′ can be ǫ-covered by E and E′ is covered less
than K times) then

7: X=E.pattern;
8: C(X) = Search CX(root, X, E.support);

Algorithm 4 still uses the depth-first order to traverse a
CFP-tree from left to right. It traverses the subtree of an
entry E first (line 3-4) before it processes entry E (line 5-8),
which means that when entry E is processed, all the super-
sets of E have been processed already based on Lemma 6,
and entry E cannot be covered any more except by E itself.
If E is frequent and it is covered less than K times, then we
generate C(E.patterns) to cover E (the first condition at
line 6). If E has already be covered at least K times when
E is visited, then we look at the ancestor entries of E. For
an ancestor entry E′ of E, most of its supersets are already
processed too when E is visited, hence not many remaining
entries can cover E′. If E′ is frequent, E′ can be ǫ-covered
by E and E′ is covered less than K times, then we also gen-
erate C(E.patterns) to cover E′ (the second condition at
line 6).

6. EXPERIMENTS
In this section, we study the performance of our algorithms.
The experiments were conducted on a PC with 2.33Ghz Intel

Duo Core CPU and 3.25GB memory. Our algorithms were
implemented using C++. We downloaded the source codes
of RPlocal from the IlliMine package [2]. All source codes
were compiled using Microsoft Visual Studio 2005.

6.1 Datasets
The datasets used in the experiments are shown in Table
3. They are obtained from the FIMI repository [1]. Table
3 shows some basic statistics of these databases: number
of transactions (|T |), number of distinct items (|I|), maxi-
mum length of transactions (MaxTL) and average length of
transactions (AvgTL).

Table 3: Datasets
dataset |T | |I| MaxTL AvgTL

accidents 340183 468 52 33.81
chess 3196 75 37 37.00

connect 67557 129 43 43.00
mushroom 8124 119 23 23.00

pumsb 49046 2113 74 74.00
pumsb star 49046 2088 63 50.48

6.2 Comparing with RPlocal
The first experiment compares MinRPset and FlexRPset
with RPlocal. Let N be the number of representative pat-
terns generated by an algorithm. Figure 2 shows the ratio
of N to the number of representative patterns generated by
RPlocal when min sup is varied. Obviously, the ratio is al-
ways 1 for RPlocal. ǫ is set to 0.2 on mushroom and to 0.1
on other datasets. In [23], the authors have shown that the
number of representative patterns selected by RPlocal can
be orders of magnitude smaller than the number of frequent
closed patterns. MinRPset further reduces the number of
representative patterns by 10%-65%. The FlexRPset algo-
rithm generates a similar number of representative patterns
with MinRPset when K is large. When K gets smaller, the
number of representative patterns generated by FlexRPset
increases. When K=1, FlexRPset still generates less repre-
sentative patterns than RPlocal in most of the cases.

Figure 3 shows the running time of the several algorithms
when min sup is varied. The running time of MinRPset and
FlexRPset includes time for mining frequent patterns. The
running time of all algorithms increases with the descrease of
min sup. MinRPset has similar running time with RPlocal
on mushroom. On accidents and pumsb star, when min sup
is relatively high, the running time of MinRPset and RPlocal
is similar too. In other cases except for dataset pumsb,
MinRPset is several times slower than RPlocal. RPglobal
is often hundreds of times slower than RPlocal as shown in
[23]. This indicates the techniques used in MinRPset is very
effective in reducing running time. On pumsb, MinRPset is
more than 10 times slower than RPlocal when min sup ≤
0.7, but it achieves the greatest reduction in the number of
representative patterns on this dataset.

FlexRPset has similar running time with RPlocal when K is
small. When K=10, the running time of FlexRPset is close
to that of RPlocal, and the number of representative pat-
terns generated by FlexRPset is close to that of MinRPset.



 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

ra
tio

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(a) accidents, ǫ=0.1

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ra
tio

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(b) chess, ǫ=0.1

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ra
tio

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(c) connect, ǫ=0.1

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

ra
tio

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(d) mushroom, ǫ=0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.6 0.65 0.7 0.75 0.8

ra
tio

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(e) pumsb, ǫ=0.1

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

ra
tio

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(f) pumsb star, ǫ=0.1

Figure 2: Number of representative patterns when varying min sup

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7

tim
e 

(s
ec

)

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(a) accidents, ǫ=0.1

 0.01

 0.1

 1

 10

 100

 1000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tim
e 

(s
ec

)

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(b) chess, ǫ=0.1

 1

 10

 100

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

tim
e 

(s
ec

)

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(c) connect, ǫ=0.1

 0.1

 1

 10

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

tim
e 

(s
ec

)

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(d) mushroom, ǫ=0.2

 1

 10

 100

 1000

 0.6 0.65 0.7 0.75 0.8

tim
e 

(s
ec

)

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(e) pumsb, ǫ=0.1

 1

 10

 100

 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

tim
e 

(s
ec

)

min_sup

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(f) pumsb star, ǫ=0.1

Figure 3: Running time when varying min sup

Therefore, K=10 represents a good trade-off between run-
ning time and result size.

Figure 4 compares the number of representative patterns
generated by the three algorithms when ǫ is varied. When ǫ
increases, MinRPset achieves greater reduction in the num-
ber of representative patterns. However, its running time
increases quickly too as shown in Figure 5. The running

time of RPlocal is relatively stable with respect to ǫ, so is
the running time of FlexRPset when K ≤ 10. When K ≥ 5,
FlexRPset achieves greater reduction in the number of rep-
resentative patterns as ǫ increases in general.

6.3 Effect of the early termination technique
In Algorithm 1, we use an early termination technique (de-
scribed at the end of Section 4.2.1) to improve the efficiency



 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.05  0.1  0.15  0.2  0.25  0.3

ra
tio

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(a) accidents, min sup=0.2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05  0.1  0.15  0.2  0.25  0.3

ra
tio

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(b) chess, min sup=0.6

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.05  0.1  0.15  0.2  0.25  0.3

ra
tio

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(c) connect, min sup=0.4

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.05  0.1  0.15  0.2  0.25  0.3

ra
tio

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(d) mushroom, min sup=0.001

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05  0.1  0.15  0.2  0.25  0.3

ra
tio

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(e) pumsb, min sup=0.7

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.05  0.1  0.15  0.2  0.25  0.3

ra
tio

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(f) pumsb star, min sup=0.2

Figure 4: Number of representative patterns when varying ǫ

 10

 100

 0.05  0.1  0.15  0.2  0.25  0.3

tim
e 

(s
ec

)

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(a) accidents, min sup=0.2

 0.1

 1

 10

 100

 0.05  0.1  0.15  0.2  0.25  0.3

tim
e 

(s
ec

)

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(b) chess, min sup=0.6

 1

 10

 100

 0.05  0.1  0.15  0.2  0.25  0.3

tim
e 

(s
ec

)

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(c) connect, min sup=0.4

 1

 10

 0.05  0.1  0.15  0.2  0.25  0.3

tim
e 

(s
ec

)

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(d) mushroom, min sup=0.001

 1

 10

 100

 1000

 0.05  0.1  0.15  0.2  0.25  0.3

tim
e 

(s
ec

)

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(e) pumsb, min sup=0.7

 1

 10

 100

 0.05  0.1  0.15  0.2  0.25  0.3

tim
e 

(s
ec

)

ε

RPlocal
K=1
K=5

K=10
K=100

K=1000
MinRPset

(f) pumsb star, min sup=0.2

Figure 5: Running time when varying ǫ

of Algorithm 1. Table 4 shows the effect of the early termina-
tion technique on the running time of MinRPset. Columns
“W/O (sec)” and “With (sec)” are the running time of Min-
RPset without and with the early termination technique re-
spectively. The last column is the ratio of “With (sec)” to
“W/O (sec)”. On dataset pumsb, the early termination tech-
nique achieves the lowest reduction in running time. This is
one reason why MinRPset is more than 10 times slower than

RPlocal on pumsb. On other datasets, the early termination
technique can reduce the running time by 5-15 times.

The early termination technique is more effective when ǫ is
smaller. This is because when ǫ is smaller, fewer subsets
of X can be ǫ-covered by X, and more subsets of X that
do not satisfy the support constraint can be pruned by the
early termination technique.



Table 4: Running time of MinRPset with and with-
out the early termination technique.

dataset min sup ǫ W/O(sec) With(sec) ratio
accidents 0.2 0.1 12.139 2.406 19.8%
accidents 0.2 0.05 10.280 1.640 16.0%

chess 0.3 0.1 323.964 48.107 14.8%
chess 0.3 0.05 240.312 22.392 9.3%

connect 0.2 0.1 104.444 15.014 14.4%
connect 0.2 0.05 88.492 5.625 6.4%

mushroom 0.001 0.2 3.312 0.312 9.4%
mushroom 0.001 0.1 0.281 3.266 8.6%
mushroom 0.001 0.05 0.265 3.266 8.1%

pumsb 0.6 0.1 160.670 242.33 66.3%
pumsb 0.6 0.05 34.687 106.388 32.6%

pumsb star 0.1 0.1 109.796 24.904 22.7%
pumsb star 0.1 0.05 88.148 13.934 15.8%

7. DISCUSSION AND CONCLUSION
In this paper, we have described two algorithms, MinRPset
and FlexRPset, for finding minimum representative pattern
sets. Both algorithms generate less representative patterns
than previous work RPlocal. FlexRPset takes one extra
parameter K, which allows users to make a trade-off be-
tween result size and efficiency. With the increase of K,
FlexRPset produces less representative patterns, but its run-
ning time increases. When K is small, FlexRPset can be
slightly faster than RPlocal even though RPlocal integrates
frequent pattern mining with representative pattern finding,
while FlexRPset first mines frequent patterns and then finds
representative patterns in a post-processing step.

Definition 2 allows a pattern to cover its subsets only. This
condition allows users to restore the support of a pattern by
searching the supersets of the pattern in the representative
pattern set, and then using the highest support of the su-
persets to approximate the support of the pattern. Without
this condition, it is impossible to estimate the support of a
pattern as we do not know which representative pattern cov-
ers it. In MineRPset and FlexRPset, all frequent patterns
are stored in a CFP-tree compactly. Users can retrieve the
support of patterns from the CFP-tree directly. The set of
representative patterns merely provides a concise view of all
patterns. In this situation, the subset condition becomes
unnecessary. We can relax Definition 2 by removing condi-
tion X1 ⊆ X2 to further reduce the number of representative
patterns. This will be our future work.

8. ACKNOWLEDGMENT
This work is supported in part by Singapore Agency for
Science, Technology and Research grant SERC 102 101 0030.

9. REFERENCES
[1] Frequent itemset mining dataset repository.

http://fimi.cs.helsinki.fi/data/.

[2] Illimine system package.
http://illimine.cs.uiuc.edu/download/.

[3] F. N. Afrati, A. Gionis, and H. Mannila.
Approximating a collection of frequent sets. In KDD,
pages 12–19, 2004.

[4] R. Agrawal, T. Imielinski, and A. N. Swami. Mining
association rules between sets of items in large
databases. In SIGMOD Conference, pages 207–216,
1993.

[5] Y. Bastide, N. Pasquier, R. Taouil, G. Stumme, and
L. Lakhal. Mining minimal non-redundant association
rules using frequent closed itemsets. In Proc. of

Computational Logic Conference, pages 972–986, 2000.

[6] A. Bykowski and C. Rigotti. A condensed
representation to find frequent patterns. In PODS,
2001.

[7] T. Calders and B. Goethals. Mining all non-derivable
frequent itemsets. CoRR, cs.DB/0206004, 2002.

[8] V. Chvatal. A greedy heuristic for the set-covering
problem. Mathematics of Operations Research,
4(3):233–235, 1979.

[9] B. Goethals and M. J. Zaki. Advances in frequent
itemset mining implementations: Introduction to
fimi03. In Proc. of the ICDM 2003 Workshop on

Frequent Itemset Mining Implementations, 2003.

[10] G. Grahne and J. Zhu. Efficiently using prefix-trees in
mining frequent itemsets. In FIMI, 2003.

[11] R. Jin, M. Abu-Ata, Y. Xiang, and N. Ruan. Effective
and efficient itemset pattern summarization:
regression-based approaches. In KDD, pages 399–407,
2008.

[12] R. J. B. Jr. Efficiently mining long patterns from
databases. In SIGMOD Conference, pages 85–93, 1998.

[13] G. Liu, H. Lu, and J. X. Yu. Cfp-tree: A compact
disk-based structure for storing and querying frequent
itemsets. Inf. Syst., 32(2):295–319, 2007.

[14] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In ICDT, pages 398–416, 1999.

[15] J. Pei, G. Dong, W. Zou, and J. Han. On computing
condensed frequent pattern bases. In ICDM, pages
378–385, 2002.

[16] A. K. Poernomo and V. Gopalkrishnan. Cp-summary:
a concise representation for browsing frequent
itemsets. In KDD, pages 687–696, 2009.

[17] R. Rymon. Search through systematic set
enumeration. In KR, pages 539–550, 1992.

[18] C. Wang and S. Parthasarathy. Summarizing itemset
patterns using probabilistic models. In KDD, pages
730–735, 2006.

[19] J. Wang, J. Han, Y. Lu, and P. Tzvetkov. Tfp: An
efficient algorithm for mining top-k frequent closed
itemsets. IEEE Trans. Knowl. Data Eng.,
17(5):652–664, 2005.

[20] J. Wang, J. Han, and J. Pei. Closet+: searching for
the best strategies for mining frequent closed itemsets.
In KDD, pages 236–245, 2003.

[21] T. Westmann, D. Kossmann, S. Helmer, and
G. Moerkotte. The implementation and performance
of compressed databases. SIGMOD Record,
29(3):55–67, 2000.

[22] D. Xin, H. Cheng, X. Yan, and J. Han. Extracting
redundancy-aware top-k patterns. In KDD, pages
444–453, 2006.

[23] D. Xin, J. Han, X. Yan, and H. Cheng. Mining
compressed frequent-pattern sets. In VLDB, pages
709–720, 2005.

[24] X. Yan, H. Cheng, J. Han, and D. Xin. Summarizing
itemset patterns: a profile-based approach. In KDD,
pages 314–323, 2005.




