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High-throughput protein interaction data, with ever-increasing volume, are becoming

the foundation of many biological discoveries. However, high-throughput protein inter-
action data are often associated with high false positive and false negative rates. It is
desirable to develop scalable methods to identify these errors. In this paper, we develop

a computational method to identify spurious interactions and missing interactions from
high-throughput protein interaction data. Our method uses both local and global topo-
logical information of protein pairs, and it assigns a local interacting score and a global
interacting score to every protein pair. The local interacting score is calculated based

on the common neighbors of the protein pairs. The global interacting score is computed
using globally interacting protein group pairs. The two scores are then combined to ob-
tain a final score called LGTweight to indicate the interacting possibility of two proteins.

We tested our method on the DIP yeast interaction dataset. The experimental results
show that the interactions ranked top by our method have higher functional homogeneity
and localization coherence than existing methods, and our method also achieves higher
sensitivity and precision under 5-fold cross validation than existing methods.
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1. Introduction

Protein-protein interactions play a critical role in most cellular processes and form

the basis of biological mechanisms. Protein interactions have been traditionally

studied on an individual basis, which is accurate but is often slow and laborious.

In the past several years, high-throughput experimental techniques—such as yeast

two-hybrid assay, mass spectrometry, protein chip and phage display—have been

introduced to detect a large number of interactions simultaneously, which enables

the study of protein-protein interactions at the proteome scale. However, high-

throughput protein interaction data are often associated with high false positive and

false negative rates due to the limitations of the associated experimental techniques

and the dynamic nature of protein interaction maps. It is therefore desirable to

develop computational methods to identify these errors.

Many computational approaches have been proposed to assess the reliability of

high-throughput protein interaction data or predict new protein interactions. Vari-

ous information has been used in these approaches, including protein primary struc-
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tures and associated physicochemical properties [1], 3D structures of protein com-

plexes [10], gene fusion [18], protein domains [13, 14], literature [23], co-localization

information [8] and co-evolution information [11, 22]. Every method for protein in-

teraction assessment and prediction is limited by the availability and reliability of

the information it uses, and methods using different information sources are com-

plementary to one another. Some work integrates multiple information sources to

achieve better performance [12, 20].

Recent screening techniques have made large amounts of protein-protein interac-

tion data available, which makes it possible to assess or predict protein interactions

using solely the topology of the protein interaction networks [4, 5, 24, 25, 29]. Saito

et al. [24, 25] introduced two measures called IG1 and IG2 which use the local

topological structure of protein pairs to assess their reliability, and they do not con-

sider topological properties beyond the candidate protein pair and their neighbors.

Chen et al. [4] proposed a more global measure called IRAP, which is defined as

the collective reliability of the strongest alternative path between two proteins. The

authors later improved the IRAP measure by iteratively removing low-confidence

interactions from the network and adding high-confidence new interactions to the

network [5]. Yu et al. [29] proposed a method to predict new protein interactions

by completing defective cliques. Chua et al. [6] proposed a measure called FSweight

which exploits indirect neighbors to predict protein functions. The same group of

authors later showed that FSweight could also be used to predict protein interac-

tions and it outperformed IG1, IG2 and IRAP on large interaction datasets [3].

FSweight is still a local measure. In this paper, we propose a computational

method which uses both local topological information of protein pairs and global

topological structures discovered from the whole interaction network to assess and

predict protein interactions. The local interacting score of a protein pair is calculated

based on the neighbors of the two proteins, and the reliability of the interactions

between these two proteins and their neighbors is also taken into consideration. The

global interacting score is obtained based on the observation that if one group of

proteins interact with another group of proteins, then it is likely that the interac-

tion between these two protein groups is mediated by an underlying complementary

binding domain/motif pair. The above observation has been used to discover inter-

acting motif pairs [16, 19, 27]. We call such protein group pairs interacting protein

group pairs. If a protein pair participates in an interacting protein group pair, that

is, the two proteins belong to different groups of the interacting protein group pair,

then the interaction between the two proteins is likely to be true.

To calculate global interacting scores, we first generate groups of proteins that

have common interacting partners from the interaction network using frequent item-

set mining techniques, and then for every pair of discovered protein groups, we

calculate their interacting scores. The global interacting score of a protein pair is

computed based on the interacting score of the interacting group pairs it partic-

ipates in and the degree of its participation. We studied the performance of our

method on the DIP yeast interaction dataset. Our experiment results showed that
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our method outperforms FSweight, especially for predicting new interactions.

The rest of the paper is organized as follows. Section 2 describes our method,

and the experiment results on the DIP yeast interaction dataset are presented in

Section 3. Section 4 discusses and concludes the paper.

2. Method

In this section, we first describe how to calculate local interacting scores and global

interacting scores of protein pairs, and then discuss how to combine them together

to get the final score. The following notations are used in this section. A protein

interaction network can be modeled as an undirected graph G = (V,E) where vertex

set V is the set of proteins and edge set E is the set of interactions between proteins.

We use u, v, x to denote individual vertices (proteins), V1, V2 to denote vertex sets

(protein groups), and (u, v) to denote the edge between u and v. The neighbor set

of a vertex u in G, denoted as Nu, is defined as Nu = {v|(u, v) ∈ E}.

2.1. Local interacting score

The local interacting score is defined based on the observation that if two proteins

have many common neighbors, then these two protein are likely to interact with each

other. We use a variant of the CD-distance measure to calculate local interacting

score of protein pairs. The CD-distance measure was originally proposed by Brun et

al. [2] for function prediction, and later was shown to be very effective in assessing

the reliability of high-throughput interaction data [3].

It has been estimated that more than half of current high-throughput data are

spurious [15, 26, 28], and these spurious interactions usually have a low score. To

alleviate the impact of spurious interactions, we iteratively apply the scoring method

on the weighted interaction network. The local interacting score of a protein pair

in the k-th (k > 0) iteration, denoted as wk

L
(u, v), is defined as follows:

wk

L(u, v) =

∑
x∈Nu∩Nv

wk−1

L
(x, u) +

∑
x∈Nu∩Nv

wk−1

L
(x, v)

∑
x∈Nu

wk−1

L
(x, u) +

∑
x∈Nv

wk−1

L
(x, v) + λk

u + λk
v

(1)

where wk−1

L
(x, u) is the score of (x, u) in the (k-1)-th iteration, w0

L
(x, u)=1 if (x, u) ∈

E and w0
L
(x, u)=0 if (x, u) /∈ E. The two terms, λk

u and λk
v , are used to penalize

proteins with very few neighbors (as in [6]), and they are defined as follows:

λk

u = max{0,

∑
x∈V

∑
v∈Nx

wk−1

L
(v, x)

|V |
−

∑

v∈Nu

wk−1

L
(v, u)} (2)

When k=1, the local interacting score is similar to the CD-distance score except

that it uses λ1
u and λ1

v to penalize proteins with very few neighbors. In our experi-

ments, we have found that the local interacting score reaches the best performance

when k=2, and the subsequent iterations do not improve the performance further.
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2.2. Global interacting score

The global interacting score is based on the observation that if one group of proteins

interact with another group of proteins, then it is likely that the interaction between

these two protein groups is mediated by an underlying complementary binding

domain/motif pair. We call such protein group pairs interacting protein group pairs.

Given a protein pair (u, v) and an interacting protein group pair (V1, V2), we say

(V1, V2) contains (u, v) if u ∈ V1 and v ∈ V2. We also say that (u, v) participates

in the interacting protein group pair (V1, V2). If a protein pair participates in an

interacting protein group pair whose two groups are densely connected, then the

interaction between these two proteins is likely to be true.

Proteins on one side of an interacting group pair are expected to have some

common domains or motifs, so we expect that they have some common interacting

partners. Also it is not desirable to have very few proteins on either side of an

interacting group pair, because otherwise, the underlying interacting domain/motif

pair may not be significant. Here we use two thresholds min sup and min size

to restrict the minimum number of common neighbors and the minimum size of

a protein group. We call min sup the minimum support threshold and min size

the minimum size threshold. For an interacting protein group pair, each of its two

protein groups must has at least min sup common neighbors and contains at least

min size proteins.

The calculation of global interacting scores of protein pairs consists of three

steps. In the first step, protein groups that have at least min sup common inter-

acting partners and contain at least min size proteins are generated. In the second

step, the interacting score of every pair of discovered protein groups is calculated.

In the last step, the global interacting score of a protein pair is computed.

2.2.1. Generating protein groups

The protein groups that have at least min sup common interacting partners and

contain at least min size proteins are generated using frequent itemset mining tech-

niques. The adjacency matrix of an undirected graph can be regarded as a transac-

tion database where each adjacency list is a transaction and each vertex (protein)

is an item. The support of an itemset (protein group) is defined as the number of

transactions (adjacent lists) containing it, which is equal to the number of common

partners of the corresponding protein group. Finding protein groups that have at

least min sup common interacting partners and contain at least min size proteins

is equivalent to finding frequent itemsets occurring in at least min sup transactions

and containing at least min size items. Frequent itemset mining algorithms use the

anti-monotone property of itemsets to prune the search space, that is, if an itemset

appears in less than min sup transactions, then all of its supersets also appear in

less than min sup transactions, thus the itemset can be pruned. Given that the ad-

jacency matrix of a protein interaction network is usually sparse, frequent itemset

mining algorithms can generate the desired protein groups within several minutes.
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In this paper, we use the AFOPT algorithm [17] to generate the protein groups.

2.2.2. Calculating interacting confidence score of protein group pairs

Let V1 and V2 be two protein groups generated in the first step. The interacting

confidence score of V1 and V2, denoted as conf(V1, V2), is defined as the ratio of the

number of interactions between V1 and V2 to the total number of distinct protein

pairs contained in (V1, V2):

conf(V1, V2) =
|{(u, v)|(u, v) ∈ E, u ∈ V1, v ∈ V2}|

|V1| · |V2| − |V1 ∩ V2| · (|V1 ∩ V2| + 1)/2
(3)

When calculating the total number of distinct protein pairs contained in (V1, V2),

we need to consider the situation that V1 and V2 may contain some common proteins.

In the simple case that the two protein groups contain no common proteins, the

total number of distinct protein pairs contained in (V1, V2) is simply |V1| · |V2|.

Otherwise, among the |V1| · |V2| protein pairs, there are |V1 ∩ V2| self-interactions

and |V1∩V2|·(|V1∩V2|−1)/2 duplicated protein pairs, and they should be discarded.

Therefore, the total number of distinct protein pairs contained in (V1, V2) is |V1| ·

|V2|− |V1 ∩V2|− |V1 ∩V2| · (|V1 ∩V2|− 1)/2 = |V1| · |V2|− |V1 ∩V2| · (|V1 ∩V2|+1)/2.

2.2.3. Calculating global interacting score of protein pairs

The global interacting score of a protein pair is computed based on the interacting

confidence score of the interacting group pairs it participates in and the degree of

its participation, and it is defined as follows:

wG(u, v) = max{conf(V1, V2) ·
2|Nu ∩ V2|

|V2| + |Nu|
·

2|Nv ∩ V1|

|V1| + |Nv|
|u ∈ V1, v ∈ V2} (4)

where 2|Nu∩V2|
|V2|+|Nu|

and 2|Nv∩V1|
|V1|+|Nv|

are the participation degree of protein u and v respec-

tively.

2.3. The final interacting score of protein pairs

The final interacting score of a protein pair is simply defined as the sum of its local

interacting score and its global interacting score. For local interacting scores, we set

k = 2.

LGTweight(u, v) = w2
L(u, v) + wG(u, v). (5)

The higher the interacting score is, the more likely the two proteins interact

with each other. After the interacting scores of the protein pairs are calculated, we

rank the protein pairs in descending order of their score.
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3. Results

In this section, we study the performance of our method and compare it with

FSweight [6] and the original CD-distance [2]. We used the DIP (http://dip.

doe-mbi.ucla.edu/) yeast interaction dataset dated 10/07/2007 in our experi-

ments, which contains 17491 interactions. After removing duplicate interactions

and self-interactions, the dataset contains 4932 distinct proteins and 17201 inter-

actions. The DIP yeast core dataset contains 6459 interactions that were validated

according to the criteria described in [9], and it is used as golden standard in our

experiments.

3.1. Functional homogeneity and localization coherence

By the “guilt-by-association” principle [21], true interacting proteins usually share

some common functional role or are in the same cellular components. Hence we use

the degree of functional homogeneity and localization coherence of protein pairs

as one of the measures to evaluate our method. The interacting score of a protein

pair indicates the interacting possibility of the protein pair. The higher the score

is, the more likely the two proteins interact with each other. If we use a cut-off

value min score to select the protein pairs with score no less than min score as

interacting protein pairs, we expect that the proportion of the protein pairs sharing

common functions or localizations in the selected protein pairs increases with the

increase of min score.

We use the annotations in Gene Ontology (GO) (http://www.geneontology.

org/) to calculate functional homogeneity and localization coherence. The Gene

Ontology comprises three orthogonal taxonomies or aspects that hold terms de-

scribing molecular functions, biological processes and cellular components of a gene

product. We use the terms in the first two taxonomies for functional homogeneity

calculation, and the terms in the last taxonomy for localization coherence calcula-

tion. The GO terms are organized hierarchically. Two different GO terms may share

a common parent or a common child in the hierarchy. GO terms at high levels may

occur in many proteins, and they are too common to be useful. GO terms appear-

ing in very few proteins are also not very useful. In our experiments, we select only

those informative GO terms. A GO term is informative if itself occurs in at least 30

proteins, but none of its children appears in at least 30 proteins. Using the proteins

in the DIP yeast dataset, 50 molecular function terms, 110 biological process terms

and 42 cellular component terms are selected.

Among the 4932 proteins in the DIP yeast dataset, 3251 proteins have functional

annotations. There are 11229 interactions whose two proteins both have functional

annotations, and among them 3660 interactions have common function annotations

between its two proteins. We consider only those protein pairs whose two proteins

both have functional/localization annotations when calculating the degree of func-

tional homogeneity and localization coherence of a set of protein pairs. Thus the

degree of functional homogeneity of the DIP yeast interaction dataset is 32.6%. The
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overall functional homogeneity of all the possible protein pairs is 3.4%. There are

1615 proteins with cellular component annotations and 4246 interactions whose two

proteins both have localization annotations. Among them, 2321 interactions have

common localization annotations between its two proteins, so the degree of localiza-

tion coherence of the DIP yeast dataset is 54.7%. The overall localization coherence

over all protein pairs is 4.9%.

3.1.1. The effect of the number of iterations on local interacting scores

Our first experiment is to study the effect of the number of iterations on the per-

formance of local interacting scores. Figure 1(a) shows the degree of functional

homogeneity of the interactions in the DIP dataset ranked using local interacting

scores under different k values. It shows that the local interacting score reaches the

best performance when k=2. The subsequent iterations do not improve the per-

formance much. We use local interacting scores to rank the protein pairs that are

not in the DIP dataset and select the top ranked protein pairs as predicted new

interactions. Figure 1(b) shows the degree of functional homogeneity of these new

interactions ranked under different k values. Again, the performance of the local in-

teracting score reaches the best when k=2. We also observed the same trend using

localization coherence. In the following experiments, we set k=2.
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Fig. 1. The effect of the value of k (a) interactions in the DIP yeast dataset (b) New interactions
predicted.

3.1.2. Assessing and predicting interactions

Our second experiment is to compare the performance of our method with that

of FSweight and CD-distance in terms of functional homogeneity and localiza-

tion coherence. When calculating global interacting scores, we set min sup=1 and

min size=5. More specifically, the generated protein groups have at least one com-

mon neighbors and contains at least five proteins. Frequent itemset mining algo-

rithms use the minimum support threshold min sup to prune the search space. Here

the value of min size is larger than that of min sup, so we swapped the values of

the two thresholds and used min size as the minimum support threshold to first
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find the partner groups of the desired groups, and then generated the desired protein

groups in a post-processing step. The time used for generating the protein groups

is less than one minute on a PC with 2.33GHz CPU.

Every protein group pair has an interacting confidence score. In our experiments,

we retained only those protein group pairs with a confidence score no less than

0.1. We assessed the significance of these retained protein group pairs as follows.

For a protein group pair (V1, V2), we randomly generate 1000 protein group pairs

(V ′
1 , V ′

2) such that |V ′
1 | = |V1|, |V ′

2 | = |V2| and |V ′
1 ∩ V ′

2 | = |V1 ∩ V2|. We then

calculate the interacting confidence score of those random protein group pairs, and

use the percentage of those random group pairs whose confidence score is no less

than conf(V1, V2) to approximate the p-value of (V1, V2). We have found that the

p-value of all of the retained protein group pairs is no larger than 0.005.
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Fig. 2. Performance of the four methods in assessing reliability of interactions (a) functional

homogeneity (b) localization coherence
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Fig. 3. Performance of the four methods in predicting new interactions (a) functional homogeneity
(b) localization coherence

Figure 2(a) shows the functional homogeneity and localization coherence of the

interactions in the DIP datasets ranked using five methods: LGTweight, local in-

teracting score, global interacting score, FSweight and CD-distance. Protein pairs
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ranked by global interacting score show lower functional homogeneity and localiza-

tion coherence than those ranked by other methods. The reason being that local

interacting score, FSweight and CD-distance rank protein pairs based on their level-

1 neighbors, and proteins are more likely to share common functions or localizations

with their level-1 neighbors than with other proteins. The global interacting score

ranks protein pairs based on interacting protein group pairs. A protein pair con-

tained in an interacting group pair may have no common neighbors at all. The

local interacting score performs better than FSweight and CD-distance, and its

performance can be improved when combined with global interacting score.

Figure 3 shows the functional homogeneity and localization coherence of the new

interactions predicted by the five methods. CD-distance performs the worst among

the five methods. The global interacting score still performs worse than FSweight,

but the gap between it and FSweight becomes smaller. Local interacting score and

LGTweight perform significantly better than FSweight. LGTweight performs better

than local interacting score due to the use of global interacting score.

3.2. Five-fold cross validation

Our last experiment is to study the performance of our method using five-fold cross

validation. Here we use the DIP yeast core dataset as the golden standard. We divide

the proteins into five disjoint groups. For each group, we remove the interactions

between proteins in that group, and use the remaining interactions as the training

dataset. The testing dataset contains all the possible pairs of proteins in the group.

The removed interactions that are in the DIP yeast core dataset are regarded as

the correct answers. The number of proteins in each of the five groups is 986, the

average number of interactions in the five training datasets is 16723, the number

of testing interactions in each of the five testing datasets is 486591 and the average

number of correct-answer interactions is 307.

Sensitivity and specificity are two commonly used measures to assess prediction

algorithms, and they are defined as follows.

sensitivity =
TP

TP + FN
(6)

specificity =
TN

TN + FP
(7)

where TP (True Positive) is the number of true interacting protein pairs that are

also predicted to be interacting, FN (False Negative) is the number of true interact-

ing protein pairs that are predicted to be non-interacting, TN (True Negative) is the

number of non-interacting protein pairs that are predicted to be non-interacting,

and FP (False Positive) is the number of non-interacting protein pairs that are

predicted to be interacting.

In our testing data, the number of non-interacting protein pairs is orders of

magnitude larger than the number of interacting protein pairs. Only 0.063% testing
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Fig. 4. Sensitivity vs. precision.

protein pairs are considered as truly interacting. In this case, the specificity of an

algorithm can be always very high. In our experiments, the specificy of all the

algorithms is no less than 97.8% when they reach their maximal sensitivity. To have

a clearer comparison of the algorithms, here we use another measure called precision

to assess the algorithms, and it is defined as the percentage of true interactions

among all the predictions made by the algorithms.

precision =
TP

TP + FP
(8)

Figure 4 shows the precision of the five methods with respect to their sensitiv-

ity. CD-distance shows very poor performance. FSweight performs worse than the

other three methods. Under the same sensitivity, the precision of FSweight is lower

than that of the other methods. It indicates that FSwegith makes more false posi-

tive predictions than other methods. However, the maximal sensitivity achieved by

FSweight is 50.5%, which is higher than the other methods. The maximal sensitiv-

ity achieved by LGTweight is 49.9%, which is higher than that of local interacting

score (46.3%) and global interacting score (40.0%). Under the same sensitity, the

precision of LGTweight is also higher than that of local interacting score and global

interacting score, which shows that by combining local interacting score and global

interacting score, we can obtain both higher sensitivity and higher precision than

using them alone.

Note that here we regard only those interactions in the DIP core dataset as

true interactions. However, some interactions not in the core dataset may be true

interactions, so using the core dataset as the golden standard may underrate the

performance of the methods. The actual performance of the methods tested should

be better than what reported here.

4. Discussion and Conclusion

In this paper, we have proposed a computational approach to assessing and pre-

dicting protein interactions. The proposed method uses both local topological infor-

mation of protein pairs and global topological structures discovered from the whole

network to calculate interacting scores of protein pairs, and it outperforms existing
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methods, especially for predicting new interactions. We used an iterative approach

to calculate local interacting scores. We have tried to apply this iterative approach

to FSweight, and we also observed a significant improvement on the performance of

FSweight. Here we uses a simple method to combine the local interacting score and

global interacting score of a protein pair. It is possible to use a more sophisticated

method to achieve better results.

In this paper, we use only the network topology to assess and predict interac-

tions. It is complementary to those methods using other information for assessing

and predicting protein interactions. The performance of our method, and other

methods using solely interaction network topology, is limited by the availability

and quality of existing interaction data. Chua et al. [7] proposed a framework for

integrating multiple information sources. We can use their method or other methods

to integrate other information sources into our approach, or integrate our method

with other methods to obtain better results.
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