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Abstract—Protein complexes are key entities in the cell respon-
sible for various cellular mechanisms and biological processes. We
propose here a method for predicting protein complexes from
a protein-protein interaction (PPI) network, using information
on mutually exclusive PPIs. If two interactions are mutually
exclusive, they are not allowed to exist simultaneously in the
same predicted complex. We introduce a new regularization term
which checks whether predicted complexes are connected by mu-
tually exclusive PPIs. This regularization term is added into the
scoring function of our earlier protein complex prediction tool,
PPSampler2. We show that PPSampler2 with mutually exclusive
PPIs outperforms the original one. Furthermore, the performance
is superior to well-known representative conventional protein
complex prediction methods. Thus, it is is effective to use mutual
exclusiveness of PPIs in protein complex prediction.

I. INTRODUCTION

In the cell, many proteins form multi-protein structures,
called protein complexes, by non-covalent protein-protein in-
teractions (PPIs). These proteins are allowed to exert their
inherent functions in the form of these protein complexes.
Thus, protein complexes are necessary basic entities in the
cell, with a role in various cellular mechanisms and biological
processes.

Various methods for protein complex prediction can be
found in survey papers [1], [2], [3]. These methods take PPIs
as input because the components of complexes are connected
via PPIs. These methods are based on the observation that
densely connected subnetworks of a whole PPI network of-
ten overlap with known complexes. A commonly recognized
problem of these conventional methods is that a given input
PPI network is static, i.e., the dynamics of proteins and their
interactions are not represented in conventional PPI networks,
although protein complexes in the cell are dynamical entities
[4].

If two proteins are not able to interact with the same protein
simultaneously due to physical constraints, those interactions
are said to be mutually exclusive. One promising step toward
the dynamical protein complex prediction is to exploit the
mutual exclusiveness of PPIs [4], [5], [6].

In particular, Jung et al. [5] have determined 458 pairs
of interactions which are mutually exclusive to each other
based on interaction interfaces. Their idea of predicting protein
complexes from mutually exclusive interactions as well as a

PPI network is to generate PPI subnetworks in which any
pair of interactions are not mutually exclusive. The resulting
networks are called simultaneous protein interaction networks
(SPINs). A disadvantage of this approach is that the possible
number of SPINs is 2n for n pairs of mutually exclusive
interactions. Thus, the computational cost of directly applying
existing clustering algorithms to every SPIN is prohibitive. The
procedure the authors took actually is explained as follows. At
first, the whole original PPI network is separated into relatively
large PPI subnetworks by a conventional clustering algorithm.
From each of the subnetworks, SPINs are generated. Then,
the conventional clustering algorithm is again applied to every
SPIN generated in the previous step, whose outputs are pre-
dicted complexes. They have shown the effectiveness of using
mutually exclusive PPIs by applying SPINs to MCODE [7]
and LCMA [8], which are conventional clustering algorithms.

In this work, instead of generating many SPINs, we pro-
pose another approach to exploit the mutual exclusiveness of
interactions. We then formulate a regularization term which
determines whether a connected cluster of proteins is con-
nected under the assumption that PPIs that are mutually
exclusive to each other are not allowed to exist simultaneously
within the cluster. This regularization term is added to the
scoring function of our protein complex prediction method,
PPSampler2 [9]. An advantage of the method is that we can
easily extend the scoring function by adding new terms to the
existing scoring function, and optimize the resulting scoring
function by the same sampling algorithm. Furthermore, the
original version of PPSampler2 checks whether a predicted
cluster is connected via PPIs in the optimization process. By
introducing the mutual exclusiveness information, the internal
PPI structure within a cluster is evaluated more precisely.

We call PPSampler2 with the regularization term based
on mutually exclusive interactions PPSampler2-PIME, where
PIME stands for ”pair of interactions which are mutually
exclusive.” We show that PPSampler2-PIME outperforms the
original version of PPSampler2. Thus we empirically conclude
that information of mutually exclusive interactions is effective
for predicting complexes more precisely.
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II. METHOD

A set of PPIs together with their reliabilities can be repre-
sented by an edge-weighted undirected graph, G = (V,E,w),
where V is a set of proteins, E is a set of interactions between
two proteins, and w(e) represents the weight of an interaction
e ∈ E. A partition C of V is defined as

C =

d1, . . . , dn ⊆ V

∣∣∣∣∣∣
1 ≤ i ≤ n, di ̸= ∅;
∪1≤i≤ndi = V ;
∀i, j(̸= i), di ∩ dj = ∅

 .

All elements, di, in C of size two or more are considered to be
predicted complexes, and called predicted clusters of proteins
to distinguish them from known complexes. PPSampler2 and
PPSampler2-PIME generate a single partition as an output.

A. Regularization of protein clusters by mutually exclusive
interactions

An overview of our approach in this work is explained as
follows. In the process of predicting complexes, a candidate
for them, which is a set of proteins, is checked whether every
pair of proteins within the cluster is connected via PPIs under
the condition that, for every set of the PPIs that are mutually
exclusive to each other, all but at most one PPI are temporarily
assumed not to exist. Among all possible combinations of such
deletions of these mutually exclusive PPIs, if there is a case
where every pair of proteins is still connected, the cluster is
allowed to exist.

We here formulate a regularization term based on mutually
exclusive interactions which decides whether a predicted clus-
ter is connected without violating mutual exclusion constraints.
Suppose that we have two interactions between two proteins,
h and p1, and between h and another protein, p2, and that p1
and p2 can not interact with h simultaneously due to physical
constraints. In this case, we say that these two interactions
are mutually exclusive, and h is called the host protein of
these interactions. We call these interactions a PIME (pair of
interactions which are mutually exclusive).

In our previous methods, PPSampler1 and PPSampler2, any
predicted clusters of proteins are required to be connected
via the internal PPIs, i.e., there should be a path of adjacent
PPIs between every pair of proteins within a cluster. This is a
biologically reasonable constraint on predicted clusters.

In this work, we design a more biologically plausible con-
nectivity constraint based on PIMEs. Consider the following
simple example. Suppose that there is a connected cluster
including n+1 proteins, p1, . . . , pn, and h, and that p1, . . . , pn
interact with h and these interactions are mutually exclusive.
Namely, every pair of interactions, {pi, h} and {pj , h} is a
PIME. Under this context, all but at most one interaction
among the n interactions are assumed not to exist within
the cluster simultaneously, from the definition of PIME, when
determining whether the internal PPI structure of the cluster is
still a single connected graph with those PIMEs. If one of the
resulting PPI structures is connected, we say that the cluster is
connected with the PIMEs, and otherwise it is disconnected.

(a)

(b) (c)

(d) (e)

Fig. 1: Example of PIMEs. (a) a cluster including four pro-
teins, p1, p2, p3, and h, where every pair of three interactions
between h, and p1, p2 and p3 is a PIME. The four subsequent
graphs, (b)-(e), represent different combinations of removed
interactions.

Here is an example when n = 3 in Fig. 1. Fig. 1a is a given
cluster including four proteins, p1, p2, p3, and h. We suppose
that every pair of three interactions between h and p1, p2 and
p3 is a PIME. In this case, there are four combinations of
removed interactions, which correspond to Fig. 1b, 1c, 1d,
and 1e.

Consider a set of interactions of a host protein, h, with pro-
teins, p1, p2, . . . , pn. If every pair of two interactions, {pi, h}
and {pj , h}, is a PIME, we call the set of the interactions a
clique because the graph where a node is an interaction and
an edge represents a PIME is a clique.



We then describe our algorithm for determining whether a
connected cluster of proteins is still connected with PIMEs.
Recall that the input data sets to our method are a set of PPIs
and a set of PIMEs. If an interaction of a PIME is not included
in the PPI set, the PIME is discarded.

1) We here consider every PIME whose three proteins are
all included in the cluster.

2) For the set of all interactions of PIMEs with the same
host protein, all maximal cliques of the set are generated.
For example, suppose that the pair of {p1, h} and
{p2, h} and that of {p2, h} and {p3, h} are mutually
exclusive but that of {p1, h} and {p3, h} is not. In this
case, there are two maximal cliques, which are {{p1, h}
and {p2, h}} and {{p2, h} and {p3, h}}.

3) At most one interaction in every maximal clique is
allowed to exist within the cluster and the remaining
interactions are assumed not to exist due to the mutual
exclusiveness. We then consider a truth assignment for
each maximal clique in which at most one interaction
is assumed to be true, i.e., to exist and the others are
false, i.e., not to exist. Notice that different maximal
cliques can share the same interactions. If an interaction
is shared by multiple maximal cliques, the assignment
values in different maximal cliques for the interaction
should be consistent.

4) For each truth assignment, we check whether the cluster
is still connected. If the cluster is disconnected in all
truth assignments, the score of this cluster is set to be
the infinity. This means that any collection of clusters
that includes this cluster is not acceptable. Otherwise,
the resulting value of this function is zero, which means
no contribution to the current score.

For a partition C of proteins, the function, hpime(C), returns
the sum of the output values for the above algorithm for the
clusters in C, which is eventually either the infinity or zero.

B. PPSampler2-PIME

Our previous method, PPSampler2, minimizes the scoring
function

f(C) = hden(C) + hsz(C) + hnp(C),

for a partition, C, of proteins by a MCMC-based sampling
method [9]. The terms of the scoring function, which are
hden(C), hsz(C), and hnp(C), are formulated as follows.

The first term, hden(C), is defined as the sum of hden(d)
over each cluster d ∈ C where

hden(d) =


0 if |d| = 1,
∞ else if |d| > N or

d is disconnected,
−density(d) otherwise,

where N is the possible maximum size of clusters in C and
density(d) is a weighted density measure defined as

density(d) =
1√
|d|

∑
u,v(̸=u)∈d

w(u, v).

The second term, hsz(C), regulates the distribution of sizes
of predicted clusters in C. It is defined as

hsz(C) =

N∑
i=2

(ψC(i)− ψ(i))2

2σ2
2,i

where ψC(i) is the relative frequency of clusters of size i in C
for i = (2, 3, . . . , N), and ψ(i) is the power-law distribution
ranged from 2 to N ,

1∑N
j=2 j

−γ
· i−γ

where γ is the power-law parameter. The reason why we
add this term is as follows. In major collections of curated
complexes of organisms, including the CYC2008 database
for yeast [10] and human complexes in the MIPS CORUM
database [11], the number of complexes of size i is approxi-
mately proportional to the power-law [12].

The function hnp(C) regulates the number of proteins
within clusters of size two or more in C. It is defined as

hnp(C) =
(s(C)− λ)2

2σ2

where s(C) is the number of proteins within clusters of size
two or more in C, i.e.,

s(C) =
∑

d∈Cs.t.|d|≥2

|d|.

λ is a parameter representing the target value of s(C). σ2 is
the variance parameter in the resulting Gaussian probability
density function.

The scoring function of PPSampler2-PIME is obtained by
adding hpime(C) to that of PPSampler2. We explain how to
minimize these scoring functions in the next section.

C. MCMC algorithm

Fig. 2: The proposal function of PPSampler2. A randomly
chosen protein, u, will be moved to one of the neighboring
clusters to u via PPIs.

The optimization algorithm of the original version of PP-
Sampler2 [9] can be applied to the scoring function, f(C),
of PPSampler2-PIME. The search algorithm is a Metropolis-
Hastings algorithm. The next candidate partition of proteins is
proposed from a current partition by the following algorithm
(see Fig. 2).



1) A protein, u, in a current partition, C, is chosen uni-
formly at random.

2) The cluster including u is denoted by d.
3) With a constant probability, β, u is removed from d and

a singleton cluster of u is newly generated.
4) With the remaining probability, 1− β, by the following

procedure, u is moved from d to a neighboring cluster
to u via PPIs:

a) All proteins which share an interaction with u are
sorted by the interaction weights in descending
order. The ith protein in the sorted list is denoted
by vi.

b) A neighboring cluster, d′, is chosen at random with
the probability proportional to∑

i s.t. vi∈d′,{u,vi}∈E

1/i2.

It should be noted here that one of the advantages of PP-
Sampler2 is that the search algorithm theoretically works for
arbitrary scoring functions of a partition of proteins.

D. Matching metrics

In this section, we describe how to evaluate a collection
of clusters predicted by a prediction method for protein
complexes.

The overlap ratio between a predicted cluster, d, and a
known complex, k is measured by the Jaccard index between
d and k,

|d ∩ k|
|d ∪ k|

.

We say that d matches k at matching threshold η if |d∩k|
|d∪k| ≥ η.

Based on this matching criterion, we define the precision
and recall measures for a set, C, of predicted clusters and a
set, K, of known complexes as follows:

precision(C,K) =
|Npc(C,K)|

|C|
,

where

Npc(C,K) = {d|d ∈ C, ∃k ∈ K, d matches k},

and
recall(C,K) =

|Nkc(C,K)|
|K|

,

where

Nkc(C,K) = {k|k ∈ K, ∃d ∈ C, d matches k}.

The F-measure of C to K is defined as the harmonic mean
of the corresponding precision and recall, i.e.,

F (C,K) = 2 · precision(C,K) · recall(C,K)

precision(C,K) + recall(C,K)
.

In this work, we use the same very stringent matching
criteria as Yong and Wong [4], in which the matching threshold
is 1 for the small known complexes of size two and three, and
it is 0.75 for the larger complexes.

III. RESULTS

A. Materials

The input data set to PPSampler2-PIME is sets of PPIs and
PIMES. The input set of PPIs used in this work is obtained
from the WI-PHI [13] database. It includes 49,607 non-self
interactions with 5,953 proteins. The degree of a protein is
averagely 16.7. The raw weights of the interactions range from
6.6 to 146.6. The normalized weights, which are divided by
the maximum value, are used.

Jung et al. [5] gave 458 PIMEs found by using the crystal
structures recorded in PDB [14]. Among them, 430 PIMEs
are those of which both interactions are non-self interactions.
Furthermore, among the 430 PIMEs, 304 PIMEs are those of
which both interactions are also included in WI-PHI. These
304 PIMEs include 73 host proteins. These 304 PIMEs are
used as an input set.

CYC2008 [10] is a protein complex database of S. cere-
visiae, which contains 408 curated complexes. It is reported
in [12] that among the complexes, 172 (42%) and 87 (21%)
complexes are of size two and three, respectively.

B. Performance comparison

To evaluate the effectiveness of the regularization term
based on mutually exclusive interactions, we have conducted
performance comparison of PPSampler2-PIME with various
existing tools, MCL [15], MCODE [7], DPClus [16], CMC
[17], COACH [18], RRW [19], NWE [20] as well as our
previous tool, PPSampler2 [9].

TABLE I: The values of parameters of PPSampler2.

Parameter Value
λ 2,000
σ2 106

γ 2
σ2
2,i 103/1.1i

Number of iterations 2× 106

β 0.01

The parameter settings of the seven existing methods are
the same as in our previous work [12], which are almost
the default settings. However the resulting performance scores
reported here are different from those in the previous work [12]
because, as mentioned before, the more stringent matching
criteria is applied to the predictions of those methods. PP-
Sampler2 and PPSampler2-PIME are executed with the default
parameter values, shown in Tab. I, 20 times.

Fig. 3 shows the results on precision, recall, and F-measure
calculated from all predicted complexes by PPSampler2 and
PPSampler2-PIME. The bar height shows the mean of a
performance measure and the error bar shows ± one standard
deviation. As we can see, the precision, recall, and F-measure
are slightly but all improved by using PIMEs, from 0.279
to 0.283, from 0.279 to 0.288, and from 0.279 to 0.286,
respectively. We have also conducted a two-sample t-test for
difference in the mean of the F-measure values of PPSam-
pler2 and that of PPSampler2-PIME. The resulting p-value is
0.0274. This means that the null hypothesis that the two means
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Fig. 3: Precision, recall, and F-measure of PPSampler2, and
PPSampler2-PIME. In each group of precision, recall, and F-
measure, the left and right bars correspond to PPSampler2 and
PPSampler2-PIME, respectively. The height of a bar represents
the mean, and the error bar shows ± one standard deviation.

are the same is rejected with the ordinary significance level of
0.05. This statistical significance is a good evidence supporting
that our method with PIMEs can improve the predictability of
protein complexes. Thus, we empirically conclude that it is
clearly effective to regulate predicted clusters of proteins by
adding a regularization term based on mutual exclusiveness
PPIs.

Details of performance of PPSampler2, PPSampler2-PIME,
and the other methods are given in Tab. II. We have not
included the other methods in Fig. 3 because their F-measure
values except that of NWE are considerably lower than those
of PPSampler2 and PPSampler2-PIME.

C. Size-specific evaluation

Recall that, among 408 CYC2008 complexes, 172 (42%)
and 87 (21%) complexes are of size two and three, respec-
tively. Thus, it is interesting to see how well size-specific
predictions perform. In addition, some of existing methods
are designed for predicting relatively larger complexes. For
example, COACH does not predicted complexes of size two
from the WI-PHI PPIs.

We formulate size-specific precision, recall, and F-measure
as follows. For a set of clusters of proteins, C, let C|i =
{c ∈ C||c| = i} and C|≥i = {c ∈ C||c| ≥ i}. In
the same way, we define the notations of K|i and K|≥i.
We then calculate the F-measure values w.r.t. size two, size
three, and size four or more from precision(C|2,K|2) and
recall(C|2,K|2), precision(C|3,K|3) and recall(C|3,K|3),
and precision(C|≥4,K|≥4) and recall(C|≥4,K|≥4), respec-
tively.

The resulting precision, recall, and F-measure values of
PPSampler2 and PPSampler2-PIME are shown in Fig. 4.
Fig. 4a shows the result w.r.t. size-two complexes In precision,
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Fig. 4: Size-specific performance results. (a), (b), and (c) show
the results on size two, size three, and size four or more,
respectively. In each of precision, recall, and F-measure, the
left and right bars correspond to PPSampler2 and PPSampler2-
PIME, respectively.



TABLE II: The matching results of all predicted clusters. #protein shows the number of proteins within predicted clusters.
#cluster gives the number of predicted clusters. Avg. size represents the average size of predicted clusters. Additional numbers
are standard deviations.

Tool name #protein #cluster Avg. size Npc Nkc Precision Recall F

MCL 5869 880 6.7 12 13 0.014 0.032 0.019
MCODE 2432 156 15.6 2 2 0.013 0.005 0.007
DPClus 4888 925 6.9 18 19 0.019 0.047 0.027
CMC 4845 3613 4.0 103 100 0.029 0.245 0.051
COACH 4094 1353 13.3 27 22 0.020 0.054 0.029
RRW 4240 1984 2.1 87 88 0.044 0.216 0.073
NWE 1626 720 2.3 117 118 0.163 0.289 0.208
PPSampler2 2010.4±0.9 398.2±6.3 5.1±0.1 111.0±3.6 113.9±3.7 0.279±0.009 0.279±0.009 0.279±0.009
PPSampler2-PIME 2009.9±0.4 405.3±4.1 5.0±0.1 114.7±3.9 117.5±4.0 0.283±0.010 0.288±0.010 0.286±0.010

TABLE III: The matching results of predicted clusters of size two. #protein shows the number of proteins within predicted
clusters. #cluster gives the number of predicted clusters. Additional numbers are standard deviations.

Tool name #protein #cluster Npc(= Nkc) Precision Recall F-measure

MCL 462 231 4 0.017 0.023 0.020
MCODE 6 3 0 0 0 0
DPClus 2 1 0 0 0 0
CMC 1534 767 23 0.030 0.134 0.049
COACH 0 0 0 0 0 0
RRW 3648 1824 55 0.030 0.320 0.055
NWE 1264 632 78 0.123 0.453 0.194
PPSampler2 197.4±8.4 98.7±4.2 31.5±2.3 0.319±0.022 0.183±0.013 0.233±0.016
PPSampler2-PIME 220.2±6.6 110.1±3.3 34.6±1.4 0.314±0.015 0.201±0.008 0.245±0.010

TABLE IV: The matching results of predicted clusters of size three. #protein shows the number of proteins within predicted
clusters. #cluster gives the number of predicted clusters. Additional numbers are standard deviations.

Tool name #protein #cluster Npc Precision Recall F-measure

MCL 456 152 0 0 0 0
MCODE 162 54 1 0.019 0.011 0.014
DPClus 120 40 1 0.025 0.011 0.016
CMC 2519 1576 20 0.013 0.230 0.024
COACH 60 20 0 0 0 0
RRW 309 103 14 0.136 0.161 0.147
NWE 162 54 19 0.352 0.218 0.270
PPSampler2 262.5±17.6 87.5±5.9 21.3±1.8 0.243±0.021 0.244±0.021 0.244±0.019
PPSampler2-PIME 250.4±11.2 83.5±3.7 22.1±1.4 0.265±0.016 0.253±0.016 0.259±0.015

TABLE V: The matching results of predicted clusters of size four or more. #protein shows the number of proteins within
predicted clusters. #cluster gives the number of predicted clusters. Avg. size represents the average size of predicted clusters.
Additional numbers are standard deviations.

Tool name #protein #cluster Avg. size Npc Nkc Precision Recall F-measure

MCL 4951 497 10.0 8 9 0.016 0.060 0.025
MCODE 2264 99 22.9 1 1 0.010 0.007 0.008
DPClus 4799 884 7.1 17 18 0.019 0.121 0.033
CMC 2839 1270 6.4 60 57 0.047 0.383 0.084
COACH 4052 1333 13.4 27 22 0.020 0.148 0.036
RRW 283 57 5.0 18 19 0.316 0.128 0.182
NWE 200 34 5.9 20 29 0.588 0.195 0.292
PPSampler2 1550.5±19.7 212.0±3.5 7.3±0.1 58.2±1.6 61.1±1.7 0.275±0.009 0.410±0.011 0.329±0.010
PPSampler2-PIME 1539.4±13.7 211.8±3.6 7.3±0.1 58.1±2.6 60.9±2.7 0.274±0.012 0.415±0.018 0.330±0.014



the score of PPSampler2-PIME is slightly lower than that of
PPSampler2. However, in recall, the score of PPSampler2-
PIME is higher than that of PPSampler2. The difference
in recall is larger than that in precision. As a result, in
F-measure, the score of PPSampler2-PIME is higher than
that of PPSampler2. It is 5% improvement. The result that
performance is improved in size-two complexes is interesting
because the regularization term, hpime, checks the connectivity
of clusters of size three or more with PIMEs and does not
directly regularize clusters of size two. However, the method
with PIMEs is superior to the original ones. The reason will be
that the direct regularization by hpime to clusters of size three
or more indirectly improves the quality of size-two clusters,
because the structure of predicted clusters is a partition of
proteins and modification of a cluster affects another. Details
of the matching results including the other methods can be
found in Tab. III.

The result w.r.t. size-three complexes is given in Fig. 4b. As
can be seen, in precision, recall, and F-measure, performance
is improved by using PIMEs. However, the score of F-measure
is still lower than NWE (see Tab. IV), although the score of
F-measure of NWE for all complexes is lower than those of
PPSampler2 and PPSampler2-PIME.

The result w.r.t. size four or more is given in Fig. 4c. In
every measure, the scores of both methods are almost the same,
though predicted clusters of those sizes are directly regulated
by the regularizer based on mutually exclusive interactions.
Details of the matching results can be found in Tab. V.

From the analysis of size-specific evaluation of predicted
clusters, we can see that the improvement in F-measure of
PPSampler2-PIME from PPSampler2 for all predicted com-
plexes is brought by the improvements w.r.t. size-two and three
complexes.

D. Precision-recall graph

Fig. 5 shows a precision-recall graph of PPSampler2 and
PPSampler2-PIME. To draw this graph, we used the cohe-
siveness of a cluster, d, which is defined as

win(d)

win(d) + wbound(d)

where

win(d) =
∑

u,v(̸=u)∈d

w(u, v),

wbound(d) =
∑

u∈d,v ̸∈d

w(u, v).

All predicted clusters of an output are sorted in descending
order of cohesiveness, and the precision and recall scores
for the top H% sorted clusters are calculated for H =
10/3, 20/3, 30/3, · · · , 100. Note that the point for all clusters
is the rightmost one in the graph. We can see that most of
the points of PPSampler2-PIME, except the points in the left
region of recall less than 0.1, are located in the right upper
region of those of PPSampler2. Though the gaps between the
corresponding points are not large, this result is also a good

evidence that information on mutually exclusive interaction
can contribute to the improvement of performance of protein
complex prediction.

IV. CONCLUSIONS

We have proposed a regularization term, based on mutually
exclusive interactions, which evaluates whether a predicted
complex is still connected when mutually exclusive inter-
actions are removed, and presented a prediction method,
PPSampler2-PIME, by adding the term to the scoring function
of our earlier protein complex prediction method, PPSam-
pler2. PPSampler2-PIME outperforms PPSampler2, and the
other conventional methods. Thus we empirically conclude
that information of mutually exclusive PPIs is effective for
predicting complexes more precisely. In addition, this result
implies that if more accurate and genome-wide information on
mutually exclusive PPIs are obtained, the resulting prediction
will be superior to the current ones.

Furthermore, an interesting future work in protein complex
prediction is the modeling of the internal PPI structure of
predicted complexes. If we model it in some appropriate way,
we will predict complexes more reliably. Information on the
dynamics of proteins and PPIs will be a good source for this
modeling.
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