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Abstract

The rigid all-versus-all adjacency required by a max-
imal biclique for its two vertex sets is extremely vul-
nerable to missing data. In the past, several types of
quasi-bicliques have been proposed to tackle this prob-
lem, however their noise tolerance is usually unbalanced
and can be very skewed. In this paper, we improve the
noise tolerance of maximal quasi-bicliques by allowing
every vertex to tolerate up to the same number, or the
same percentage, of missing edges. This idea leads to a
more natural interaction between the two vertex sets—
a balanced most-versus-most adjacency. This general-
ization is also non-trivial, as many large-size maximal
quasi-biclique subgraphs do not contain any maximal bi-
cliques. This observation implies that direct expansion
from maximal bicliques may not guarantee a complete
enumeration of all maximal quasi-bicliques. We present
important properties of maximal quasi-bicliques such as
a bounded closure property and a fixed point property
to design efficient algorithms. Maximal quasi-bicliques
are closely related to co-clustering problems such as doc-
uments and words co-clustering, images and features co-
clustering, stocks and financial ratios co-clustering, etc.
Here, we demonstrate the usefulness of our concepts
using a new application—a bioinformatics example—
where prediction of true protein interactions is investi-
gated.

Keywords: Maximal quasi-bicliques, maximal bi-
cliques, balanced noise tolerance, co-clustering applica-
tions, prediction of missing protein-protein interactions.

1 Introduction

Maximal bicliques, also known as maximal complete
bipartites, are a classical concept in graph theory [9,
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2, 16]. A biclique in a graph consists of two disjoint
vertex subsets between which every vertex is adjacent
to all vertices in the other subset, exhibiting a type
of all-versus-all interaction (connection). A biclique
H is maximal in a graph G if and only if there is
no other biclique in G that contains H. This strict
all-versus-all interaction requirement makes maximal
bicliques extremely vulnerable to missing data—if any
edge in a maximal biclique is missing, the resulting
subgraph is not a maximal biclique any more. Also, this
strong requirement prevents the discovery of bipartite
subgraphs that exhibit a most-versus-most interaction
between the two vertex subsets, which may be a more
natural interaction in many real-life situations.

We generalize here the concept of maximal bicliques
by relaxing the all-versus-all interaction requirement to
meet demands from real-life applications such as infor-
mation retrieval, biological and financial data mining
problems where missing and noisy data are common.
Specifically, we introduce two types of most-versus-most
interactions, and we call such subgraphs maximal quasi-
bicliques.

Our first idea is to permit every vertex in the two
vertex subsets to disconnect from up to µ number of
vertices in the other subset, but at the same time
this vertex must be adjacent to at least µ number of
them. The second idea is to allow each vertex in the
two vertex subsets to disconnect from up to a small
fraction (δ%) of vertices in the other subset. Both ideas
emphasize a balanced noise tolerance. “Balanced” is in
the sense that “all” vertices are freed to accommodate
missing edges or disconnections up to the same level of
degree. Thus, our maximal quasi-bicliques can avoid
skewed distribution of missing edges, which cannot
be achieved by those quasi-bicliques proposed in the
literature [1, 4, 28, 18, 10, 25]. For example, the ε-
bicliques [18] allow only one side of the vertices to
tolerate the same degree of missing edges, thus this
concept achieves only an asymmetric form of noise
tolerance. The α-quasi-bicliques [28] allow only some
of the vertices in the graph to have the same degree
of noise tolerance, and thus some other vertices may
have a very low connectivity. Our previous definition



of maximal ε-quasi-bicliques as proposed in [25] causes
the problem that a set of fully isolated vertices can form
exponential number of maximal quasi-bicliques. Other
works such as eigenvector-based quasi-bicliques [4], and
dense bipartite cliques [1, 10] all require only a minimum
global density of the edges—thus some specific vertex
may, again, have a very low connectivity, even a possible
zero-connectivity.

It is interesting that our newly defined maximal
quasi-bicliques in a graph G sometimes do not contain
any maximal biclique of G. This indicates that maximal
quasi-biclique subgraphs of a graph can be categorized
into two non-overlapping types: those that contain
a maximal biclique and those do not contain any.
Therefore, the introduction of the concept of maximal
quasi-bicliques can bring up novel subgraph patterns
that can never be covered by the definition of maximal
bicliques, or never be extended to. Hence, the change
from the all-versus-all to most-versus-most is a non-
trivial generalization for maximal bicliques.

As a maximal quasi-biclique in a graph G does
not always contain a maximal biclique of G, a direct
expansion from all maximal bicliques may not give a
full answer for enumerating all maximal quasi-bicliques
of a graph. Enumerating all maximal quasi-bicliques
from a graph is thus technically non-trivial, even when
all maximal bicliques are known. For example, algo-
rithms reported in [24, 2, 14, 8] for enumerating max-
imal bicliques are not directly usable. The algorithm
shown in [28] enumerates only α-quasi-bicliques that are
subgraphs generated from maximal bicliques by adding
their maximal α-extensions. So, it is not usable either.
We study some properties of maximal quasi-bicliques
such as a bounded closure property and a fixed point
theorem, and make use of them to develop a new al-
gorithm to enumerate all maximal quasi-bicliques from
large graphs.

Maximal bicliques and maximal quasi-bicliques are
closely related to many co-clustering applications. For
example, they are related to documents-and-words,
stocks-and-financial ratios, or images-and-features co-
clustering in the information retrieval field [6, 7, 22, 18,
25]. They are also related to web community mining
[23, 20] and many bioinformatics studies such as inter-
acting protein groups’ discovery [13, 4, 19], disease and
genes co-clustering [12], and phylogenetic tree construc-
tion [28, 24, 8]. The computational problem there is
to find a maximal number of object entities that are
contained in a maximal number of attribute entities,
given the binary containment relation of all the enti-
ties. As our definition generalizes the concept of max-
imal bicliques, and it is more comprehensive than the
maximal quasi-bicliques used before, a straightforward

application of our newly proposed concept is for finding
balanced noise-tolerance co-clusterings from the binary
containment relation databases. To show the high po-
tential of our maximal quasi-bicliques, we suggest a new
application—the prediction of true interactions for pro-
teins in a cell.

Contribution of this paper:

• Two types of maximal quasi-bicliques that have
balanced noise tolerance are introduced. These new
maximal quasi-bicliques can effectively overcome
the main limitations of existing maximal quasi-
bicliques—the skewed noise tolerance that often
leads to some edges with very low connectivity.

• Our maximal quasi-bicliques are not a trivial gen-
eralization of the classical maximal bicliques be-
cause there exist many large size maximal quasi-
bicliques that cannot be directly expanded from
any maximal biclique. We present proof and ex-
amples to verify this. We also present a bounded-
closure property and a fixed point theory for our
maximal quasi-bicliques.

• Our comprehensive experimental results obtained
from benchmark and real-life graph data sets show
that Mishra’s ε-bicliques [18], the most related
maximal quasi-bicliques, can easily suffer from
skewed noise tolerance, and that Mishra’s algo-
rithm is significantly slower than our algorithm.
We also introduce a new co-clustering application
for bioinformatics where protein interactions can be
predicted by using our maximal quasi-bicliques.

In the following sections, we review some basic def-
initions for maximal bicliques, and then formally define
our maximal quasi-bicliques. We elaborate these new
ideas with examples, properties, and theorems in Sec-
tion 4. To find our maximal quasi-bicliques, we present
a modified version of the completeQB [25] algorithm in
Section 5. Detailed literature work review are presented
in Section 6. Finally, we report experimental results and
give a conclusion.

2 Background on Maximal Bicliques

An undirected graph G is a pair 〈V, E〉, where V is a set
of vertices and E ⊆ V × V 1 is a set of edges between
the vertices. Two vertices are adjacent or connected
if there is an edge between them. The neighbourhood
β(v, G) of a vertex v in G = 〈V, E〉 is the set of vertices
adjacent to v, denoted β(v,G) = {u | {u, v} ∈ E}.
The neighbourhood β(X, G) of a set of vertices X in

1As the graph is undirected, for convenience, we define V × V
as the set {{u, v} | u ∈ V , v ∈ V }.



G = 〈V,E〉 is the set of vertices adjacent to every vertex
in X; that is, β(X,G) =

⋂
v∈X β(v, G) = {u | u ∈ V ,

and X ⊆ β(u, G)}.
A graph can be equivalently described by its adja-

cency matrix. Let G = 〈V,E〉 be a graph with V = {v1,
v2, ..., vp}. The adjacency matrix A of G is the p × p
matrix defined by

A[i, j] =
{

1 if {vi, vj} ∈ E
0 otherwise

A graph G′ = 〈V ′, E′〉 is a subgraph of a graph
G = 〈V, E〉 if V ′ ⊆ V and E′ ⊆ E. If V ′ ⊂ V or
E′ ⊂ E, we say G′ is a proper subgraph of G. If G′ is
a subgraph of G, we say G is a superset graph of G′, or
G contains G′.

A graph G = 〈V, E〉 is a bipartite if its vertex set V
can be partitioned into two disjoint nonempty sets V1

and V2, and every edge in E connects a vertex in V1 and
a vertex in V2. So, there is no edge in E connecting two
vertices within V1 or two vertices within V2. A bipartite
G is often denoted as G = 〈V1, V2, E〉.

A bipartite G = 〈V1, V2, E〉 is called a biclique if, for
every v1 ∈ V1 and v2 ∈ V2, there is an edge between v1

and v2. Thus the edge set E of a biclique G = 〈V1, V2, E〉
is completely determined by the two vertex sets V1 and
V2. So we can omit the edge set and denote a biclique
G simply as G = 〈V1, V2〉.
Definition 2.1. (Maximal biclique) Let G′ be a bi-
clique subgraph of a graph G. If there does not exist any
other biclique subgraph G′′ of G such that G′ is a proper
subgraph of G′′, then G′ is a maximal biclique of G.

Our previous work [14] has shown that efficiently
listing a complete set of maximal bicliques from a
graph G is equivalent to the mining of all closed
patterns [21, 26, 11, 27] of the adjacency matrix of G.
An earlier algorithm, called a concensus algorithm [2],
can be also used to enumerate all maximal bicliques
from a large graph. However, it is much slower than the
method based on closed pattern mining as described
in [14, 15].

3 New Concepts: µ-tolerance and δ%-tolerance
Maximal Quasi-Bicliques

As mentioned, due to the strict all-versus-all require-
ment, maximal bicliques have zero-tolerance for miss-
ing and/or noise data. Here, we define maximal quasi-
bicliques to generalize maximal bicliques, so that our
maximal quasi-bicliques can accommodate missing data
in a balanced manner. Our new concept has two ways
for noise tolerance: (1) tolerating some absolute num-
ber of missing edges; and (2) tolerating a percentage of
missing edges.

Definition 3.1. (Quasi-biclique subgraph) A bi-
partite subgraph H = 〈V1, V2, EH〉 of a graph G = 〈V, E〉
is a quasi-biclique subgraph of G if EH = (V1×V2)∩E.

Note that EH is fully determined given V1, V2, and
E. Thus we often abbreviate a quasi-biclique subgraph
as H = 〈V1, V2〉 when the context G is clear.

Definition 3.2. (µ-tolerance maximal quasi-
biclique) Let H = 〈V1, V2〉 be a quasi-biclique subgraph
of G. Let µ be a small integer number. Then H is
a µ-tolerance quasi-biclique subgraph of G if for each
v ∈ Vi, i = 1 or 2,

(i) v is disconnected from at most µ number of vertices
in Vj, j 6= i, and

(ii) v is adjacent to at least µ number of vertices in Vj.

H is a µ-tolerance maximal quasi-biclique subgraph of
G if there is no other µ-tolerance quasi-biclique subgraph
H ′ = 〈V ′

1 , V ′
2〉 of G such that V ′

1 ⊇ V1 and V ′
2 ⊇ V2.

The condition (ii) “v is adjacent to at least µ num-
ber of vertices in Vj” is important. This requirement
can prevent µ-tolerance maximal quasi-bicliques from
some skewness of missing edges. For example, given a
graph G consisting of n vertices but no edges, let µ = 2,
then any two disjoint pairs of vertices of G can form
a µ-tolerance maximal quasi-biclique if the condition
(ii) is not required. Observe that all these µ-tolerance
maximal quasi-bicliques are useless. However, under
our Definition 3.2, there is no such µ-tolerance maxi-
mal quasi-biclique in G. This is a subtle and critical
difference between our definition and the one that we
previously proposed in [25] for maximal quasi-bicliques,
as the condition (ii) is not required by [25].

Definition 3.3. (δ%-tolerance maximal quasi-
biclique) Let H = 〈V1, V2〉 be a quasi-biclique subgraph
of G. Let δ% be a small percentage value. Then H is
a δ%-tolerance quasi-biclique subgraph of G if for each
v ∈ Vi, i = 1 or 2, v is disconnected from at most
δ% number of vertices in Vj , j 6= i. H is a δ%-tolerance
maximal quasi-biclique subgraph of G if there is no other
δ%-tolerance quasi-biclique subgraph H ′ = 〈V ′

1 , V ′
2〉 of

satisfying V ′
1 ⊇ V1 and V ′

2 ⊇ V2.

Example. Figure 1(a) shows a graph G consisting
of 6 vertices and 5 edges. The quasi-biclique sub-
graph 〈{v1, v2}, {v5, v6}〉 is a µ-tolerance maximal quasi-
biclique subgraph of G for µ = 1. However, it is
not a δ%-tolerance maximal quasi-biclique for δ% =
20%. Two 20%-tolerance maximal quasi-bicliques are
〈{v1}, {v4, v5, v6}〉 and 〈{v6}, {v1, v2, v3}〉, which are
also maximal biclique subgraphs of G.
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Figure 1: (a) Maximal quasi-bicliques contained in a graph G; (b) maximal bicliques all contained in a maximal
quasi-biclique.

4 Properties

We give counter-examples to prove that a maximal
quasi-biclique subgraph in a graph G can contain none
of the maximal biclique subgraphs of G. We then
present a bounded closure property for µ-tolerance max-
imal quasi-bicliques. We also prove that δ%-tolerance
maximal quasi-bicliques do not have this property. We
further show that both µ-tolerance and δ%-tolerance
maximal quasi-bicliques have a fixed point property.
All these properties are useful for discovering quasi-
bicliques from a graph.

Proposition 4.1. A µ-tolerance or a δ%-tolerance
maximal quasi-biclique subgraph H of a graph G does
not always contain a maximal biclique subgraph of G.

Proof. We use the graph G in Figure 1(a) again. It
is known that H = 〈{v1, v2}, {v5, v6}〉 is a µ-tolerance
maximal quasi-biclique subgraph of G for µ = 1. It
is also a δ%-tolerance maximal quasi-biclique for δ% =
50%. The two and only maximal bicliques of G are:
M1 = 〈v1, {v4, v5, v6}〉 and M2 = 〈v6, {v1, v2, v3}〉.
Observe that neither M1 nor M2 is contained in H. So,
this proposition is true.

In fact, this happens quite often in benchmark
graphs. For example, for the c-fat200-1 and c-fat500-1
graph from the Second DIMACS Challenge benchmarks
2, many maximal quasi-biclique subgraphs do not con-
tain any maximal biclique subgraphs. Detailed results
are presented in Section 7.

Proposition 4.2. Let H = 〈V1, V2〉 be a maximal
biclique of a graph G. Then (i) there exists at least
one maximal quasi-biclique that contains H; and (ii)
the total number of µ-tolerance maximal quasi-bicliques
can be less than that of maximal bicliques for some µ.

2Available at ftp://dimacs.rutgers.edu/pub/challenge/

graph/benchmarks/clique/

Proof. For (i), by definition, H = 〈V1, V2〉 is a µ-
tolerance or δ%-tolerance quasi biclique for any µ and
δ. If no vertex in G can be added into V1 or V2, then
H itself is a maximal quasi-biclique. So, there exists at
least one maximal quasi-biclique that contains H.

For (ii), we prove by using an example. In
Figure 1(b), there is one and only one µ-tolerance
(µ = 2) maximal quasi-biclique in graph G =
〈{v1, v2, v3}, {v4, v5, v6}〉, which is G itself. How-
ever, there are at least 8 maximal bicliques in this
graph such as 〈{v1}, {v4, v5, v6}〉, 〈{v1, v2, v3}, {v6}〉,
〈{v1, v2}, {v4, v6}〉, etc. So, this graph contains less
number of maximal quasi-bicliques than that of max-
imal bicliques.

This proposition says that every maximal biclique
of a graph is contained in at least one maximal quasi-
biclique, but the total number of maximal quasi-
bicliques is not necessarily bigger than maximal bi-
cliques, as multiple maximal bicliques can be contained
in the same maximal quasi-biclique. By Propositions 4.1
and 4.2, we see that the mining of maximal quasi-
bicliques is a technically non-trivial task, even when all
maximal bicliques are known in advance.

Next we present a bounded closure property for µ-
tolerance quasi-bicliques. We then use this property to
design a depth-first algorithm to enumerate µ-tolerance
quasi-bicliques.

Theorem 4.1. Let H = 〈V h
1 , V h

2 〉 be a µ-tolerance
quasi-biclique of a graph G = 〈V,E〉 satisfying
|V h

1 |, |V h
2 | > 2µ. Let V1 ⊆ V h

1 , V2 ⊆ V h
2 , and |V1|, |V2| ≥

2µ. Then K = 〈V1, V2, E
k〉 is also a µ-tolerance quasi-

biclique of G where Ek = (V1 × V2) ∩ E.

Proof. For all v ∈ Vi, i = 1 or 2, then v ∈ V h
i . Then

v is disconnected from at most µ number of vertices in
V h

j , j 6= i. This implies that v is disconnected from at
most µ number of vertices in Vj .
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Figure 2: No closure property in δ%-tolerance quasi-
bicliques.

On the other hand, since v is disconnected from at
most µ number of vertices in Vj , then v is adjacent to
at least (|Vj | − µ) number of vertices in Vj . Observe
that (|Vj | − µ) ≥ µ. Therefore, K = 〈V1, V2, E

k〉 is a
µ-tolerance quasi-biclique.

It is interesting to define a minimal quasi-biclique:

Definition 4.1. [µ-tolerance minimal quasi-biclique]
Let H = 〈V1, V2〉 be a µ-tolerance quasi-biclique sub-
graph of G. H is a µ-tolerance minimal quasi-biclique
subgraph of G if there is no other µ-tolerance quasi-
biclique subgraph H ′ = 〈V ′

1 , V ′
2〉 of G such that V1 ⊇ V ′

1

and V2 ⊇ V ′
2 .

Note that the maximum vertex size (for |V1| and
|V2|) of µ-tolerance minimal quasi-bicliques in a graph G
is 2µ due to Theorem 4.1. However the minimum vertex
size (for |V1| and |V2|) of µ-tolerance minimal quasi-
bicliques is µ by definition. Quasi-bicliques between
them may be µ-tolerance, may be not.

By Theorem 4.1, it follows that if a subgraph
H = 〈V1, V2〉, where |V1|, |V2| ≥ 2µ, is not a µ-
tolerance quasi-biclique, then all its superset graphs are
not a µ-tolerance quasi-biclique either. This bounded
closure property is used in our µ-completeQB algorithm,
presented in Section 5, for enumerating all µ-tolerance
maximal quasi-bicliques.

We next use a counter-example to explain that this
bounded closure property (Theorem 4.1) is not true for
δ%-tolerance maximal quasi-bicliques.

Example. For the graph G in Figure 2, the quasi-
biclique H = 〈{1, 2, 3}, {a, b, c}〉 is a 40%-tolerance
quasi-biclique. It is also maximal for δ% = 40%.
However, the quasi-biclique H ′ = 〈{1, 2}, {a, b}〉 is
not a 40%-tolerance quasi-biclique. But the quasi-
biclique 〈{1}, {b}〉 or 〈{2}, {a}〉 is a 40%-tolerance quasi-
biclique.

Therefore, a non-δ%-tolerance quasi-biclique does
not mean that its superset quasi-bicliques are not δ%-
tolerance; it is possible that some of them are. So a
level-wise depth-first search for δ%-tolerance maximal

quasi-bicliques has to be exhaustive, which should be
avoided.

We introduce a fixed point theorem for determining
quasi-bicliques when a quasi-biclique is a maximal δ%-
tolerance quasi-bicliques in a graph. Before presenting
the theorem, we define an extended version of the
neighbourhood for a set of vertices.

Definition 4.2. (Extended neighborhood of a
vertex set) Let X be a nonempty set of vertices in
a graph G. The µ-neighborhood βµ(X, G) of X in G is
the set of vertices in G adjacent to at least (|X| − µ)
number of vertices in X. That is,

βµ(X, G) = {v | |β(v, G) ∩X| ≥ (|X| − µ)}
Similarly, the δ%-neighbourhood βδ%(X, G) of X in

G is the set of vertices in G adjacent to at least (1−δ%)
of vertices in X. That is,

βδ%(X, G) =
{

v

∣∣∣∣
|β(v,G) ∩X|

|X| ≥ (1− δ)
}

A quasi-biclique (βµ(X,G), X) may not be µ-
tolerance. However, some subset of βµ(X,G) to-
gether with X can form a quasi-biclique. Suppose
W ⊆ βµ(X,G) such that 〈W,X〉 is a µ-tolerance quasi-
biclique. If W is maximal, we denote W = β∗µ(X,G).
Similarly, we define β∗δ%(X, G).

Theorem 4.2. Let X and Y be two disjoint subsets of
vertices of a graph G. Let µ ≥ 0 be a small integer
number, and 0 ≤ δ% < 1 be a percentage value. Then
the quasi-biclique H = 〈X, Y 〉 is µ-tolerance maximal if
and only if

X = β∗µ(Y, G), and Y = β∗µ(X,G)

And it is δ%-tolerance maximal if and only if

X = β∗δ%(Y, G), and Y = β∗δ%(X, G)

Proof. We first prove the left-to-right direction. Sup-
pose H = 〈X, Y 〉 is a µ-tolerance maximal quasi-
biclique. Then Y ⊆ βµ(X,G). As there is no more
vertex in G that can be added in Y , it is maximal in
βµ(X,G). Therefore, Y = β∗µ(X,G). We can also prove
X = β∗µ(Y,G) in a similar fashion.

We now prove the right-to-left direction by contra-
diction. Suppose H = 〈X, Y 〉 is not a maximal quasi-
biclique. Then w.l.o.g., a new vertex can be added in X
or Y such that the new subgraph is a maximal quasi-
biclique. We denote the new subgraph as 〈X ∪ {a}, Y 〉.
Then (X ∪ {a}) = β∗µ(Y,G). This is contradictory to
the assumption that X = β∗µ(Y,G). Therefore, H is a
maximal quasi-biclique.



This theorem induces a function f(H) for finding
δ%-tolerance maximal quasi-bicliques. That is, starting
from a quasi-biclique H, f can be iteratively applied
to expand it until a fixed point is reached, which
is guaranteed to be a δ%-tolerance maximal quasi-
bicliques containing H. Thus this theorem is helpful
to find all δ%-tolerance maximal quasi-bicliques that
contain a group of pre-specified vertices. Without this
theorem, such a task needs an exhaustive search. We
also note that enumerating all δ%-tolerance maximal
quasi-bicliques from a given graph under a certain δ is
still a challenging computational problem that we will
be working on in future.

5 Our Algorithm

As maximal quasi-bicliques of a small vertex size are
prone to random patterns, we are more interested in
those whose vertex size at each side exceeds a pre-
specified threshold ms ≥ µ. By Theorem 4.1, if
ms ≥ 2µ, then maximal ε-quasi bicliques [25] (where
ε = µ) are actually our µ-tolerance maximal quasi-
bicliques. So, we can use the completeQB algorithm
[25] as a subroutine to mine one part of our µ-tolerance
maximal quasi-bicliques. Maximal ε-quasi bicliques
have balanced noise tolerance, but they can still be
easily skewed because they do not require the condition
(ii) as of our Definition 3.2. Details of the CompleteQB
algorithm can be found in [25]. If ms < 2µ, we
conduct a depth-first search for µ-tolerance maximal
quasi-bicliques whose vertex size is between ms and 2µ.
Algorithm 1 presents the pseudo codes of our modified
algorithm.

Lines 4-15 are necessary per Theorem 4.1 and Def-
inition 4.1. For non-bipartite graphs, our algorithm
needs a pre-process step to transform them into equiv-
alent bipartite graphs; we also need a post process to
remove duplicate maximal quasi-bicliques. This graph
transformation is as follows: Let G = (V, E) be the
general graph. We transform it to a bipartite graph
G′ = (V, V ′, E′) where V ′ = {v′i | vi ∈ V } and
E′ = {(vi, v

′
j) | (vi, vj) ∈ E}. Note that G′ has dou-

ble the number of vertices and number of edges. Also,
for any A,B ⊆ V , 〈A,B〉 is a biclique of G if and only
if 〈A,B′〉 is a biclique of G′.

6 Related Work on Quasi-bicliques

In a conceptual conjunctive clustering research work,
Mishra et al. [18] defined a concept called ε-bicliques.
A bipartite subgraph H = 〈V1, V2〉 is an ε-biclique
if every vertex in V1 is adjacent to at least (1 − ε)
of the vertices in V2. Though this asymmetry of
the “quasi” between V1 and V2 is a special need for
the conceptual conjunctive co-clustering between the

Algorithm 1 Algorithm µ-CompleteQB

Input:
A bipartite graph G = (V1, V2, E); ms—the minimum
size threshold for the vertex sets; µ—a small integer
number;

Description:
1: if ms ≥ 2µ then
2: Use completeQB(G, ms, ε = µ) to mine and output

all maximal ε-quasi bicliques;
3: Return;
4: if ms < 2µ then
5: Let ms1 = 2µ;
6: Use completeQB(G, ms1, ε = µ) to mine and output

maximal ε-quasi bicliques;
7: Extract all ms-size µ-tolerance quasi-bicliques by ex-

haustive search;
8: Let {G1, . . . , Gn} be these quasi bicliques;
9: for all Gi do

10: Expanding Gi to become bigger µ-tolerance quasi-
biclique by depth-first search till at most level
(2µ− 1);

11: Let M be the set of all these expanded µ-tolerance
quasi-bicliques;

12: for all H ∈ M do
13: if H is not a subgraph for any of maximal quasi-

bicliques output by Step 6 then
14: output H as a µ-tolerance maximal quasi-

biclique;
15: Return;

objects and attributes, ε-bicliques may not be well
applied to other applications such as web community
co-clustering, interacting protein groups co-clustering,
documents and words co-clustering, and etc. This is
because “every vertex in V1 is adjacent to at least (1−ε)
of the vertices in V2” does not mean every vertex in V2 is
adjacent to at least (1−ε) of the vertices in V1. However,
in many real-life applications, every vertex is equally
treated, and balanced and symmetrical noise tolerance
for every vertex is commonly required.

Our definition of δ%-tolerance maximal quasi-
bicliques is related to but quite different from α-quasi-
bicliques [28]. An α-quasi-biclique is an ordered pair
〈XB ∪XE , YB ∪ YE〉, where 〈XB , YB〉 is a maximal bi-
clique and 〈XE , YE〉 is its maximal α-extension. An
α-extension of 〈X, Y 〉 is an ordered pair (Xe, Ye) where
Xe ⊆ X, Ye ⊆ Y , and Xe ∩ Ye = ∅, such that every
vertex in Xe and in Ye is adjacent to at least α% of the
vertices in Y and in X, respectively. So, all α-quasi-
bicliques [28] are exactly an expansion from a maximal
biclique. As many of our δ%-tolerance maximal quasi-
biclique do not contain any maximal biclique, semanti-
cally, α-quasi-bicliques and our δ%-tolerance maximal
quasi-biclique can have a big area of non-overlapping.



They also differ in that the α percentage is only locally
in terms of XB or of YB , whereas the δ% in our defini-
tion is globally in terms of XB ∪XE or YB ∪ YE . One
more difference is that an α-quasi-biclique may not be
a δ%-tolerance maximal quasi-biclique for any δ.

Our difference common to both ε-bicliques [18] and
α-quasi bicliques [28] is that they are limited to only
bipartite graphs. In contrast, our definitions work for
non-bipartite graphs as well.

Our previous work by Sim et al. [25] introduced a
type of quasi-bicliques called maximal ε-quasi bicliques,
which tolerates noisy/missing data for co-clustering
stocks and financial ratios. Those maximal bicliques
have balanced noise tolerance for every vertex just
like maximal quasi-bicliques introduced here, but those
maximal bicliques [25] can be easily skewed because
they do not require the condition (ii) as of Definition 3.2
in this work. As mentioned above, this normally leads
to many maximal quasi-bicliques that actually do not
contain any edge, namely useless bipartite subgraphs.
Also in [25], the percentage-tolerance maximal quasi-
bicliques were not introduced.

An eigenvector-based bioinformatics research
work [4] proposed a quasi-bipartite sub-structure
to analyse topological structure of protein-protein
interaction networks. However, it is not clear how
the quasi-bipartites are defined in [4]. Instead, a
quasi-bipartite is just roughly described as two disjoint
protein groups between which high level connectivity is
expressed. All the quasi-bipartites are determined by
eigenvectors with a negative eigenvalue of the adjacency
matrix of the graph.

The density-based quasi-bicliques, usually called
dense bipartite cliques, include those defined in [1, 10]
where all bicliques require only a minimum global
density of the edges—thus some specific vertex may,
as said in Introduction, have a very low connectivity,
even a possible zero-connectivity. All these are skewed
distribution of missing edges.

Besson et al. introduced DR-bi-sets [3] as a new
fault-tolerant pattern type alternative to formal con-
cept discovery. DR-bi-sets are similar to maximal quasi-
bicliques. However, we differ at: (a) Our Definition
3.2 (µ-tolerance maximal quasi-bicliques) requires two
bounds: one is a upper bound for noise tolerance, the
other is a lower bound for necessary connectivity of a
vertex. The two bounds together ensure the mathe-
matical soundness of the definition. It is theoretically
important to raise the second bound. However, Besson
et al. did not introduce the second bound for their DR-
bi-sets; (b) Our Proposition 4.1 says that a maximal
quasi-biclique H of a graph G sometimes may not con-
tain any maximal biclique of G. It indicates that maxi-

mal quasi-biclique is a non-trivial generalization to the
classical maximal biclique, bringing up novel subgraphs.
Besson et al. did not touch this point in their paper.
(c) Our δ-tolerance maximal quasi-bicliques (Definition
3.3) and the related fixed point theorem (Theorem 4.2)
were not studied by Besson et al. This theorem induces
a function f(H) for finding δ-tolerance maximal quasi-
bicliques. Specifically, starting from a quasi-biclique H,
f(H) can be iteratively applied to expand it until a fixed
point is reached, which is guaranteed to be a δ-tolerance
maximal quasi-biclique containing H. Thus this the-
orem is helpful to find all δ-tolerance maximal quasi-
bicliques that contain a group of pre-specified vertices.
Without this theorem, such a task needs an exhaustive
search.

7 Experimental Results

We evaluate our maximal quasi-bicliques in three as-
pects: (1) We conduct experiments to demonstrate that
there are many large-size maximal quasi-bicliques from
benchmark graphs that do not contain any maximal bi-
cliques; (2) We show that Mishra’s ε-bicliques [18] may
have very skewed noise tolerance and missing edge dis-
tribution, we also compare the efficiency of our algo-
rithm with Mishra’s algorithm; (3) We introduce a new
bioinformatics application based on the idea of maximal
quasi-bicliques.

7.1 Many Maximal Quasi-bicliques Contain No
Maximal Biclique In this section, we report our ex-
perimental results obtained from two benchmark graphs
of the DIMACS Challenge. See the first two rows of
Table 1 for their edge connectivity and density informa-
tion.

Datasets #vertices #edges edge density
c-fat500-1 500 4459 0.0357
c-fat200-1 200 3235 0.163
yeast-p2p 4904 17440 0.00145

Table 1: A protein interaction graph and 2 DIMACS
benchmark graphs.

As shown in Table 2, about 81% of maximal quasi-
bicliques in c-fat500-1, whose vertex set sizes are ≥ 5,
do not contain any maximal bicliques, though there
are 278352 maximal bicliques in c-fat500-1. A similar
phenomenon can be observed for the other graph c-
fat200-1.

We also found many large-size maximal quasi-
bicliques. For example, in the c-fat500-1 graph, there
are 917 µ-tolerance (µ = 1) maximal quasi-bicliques



graph min. size
(ms) for |V1|
and |V2|

# max quasi-
bicliques that
contain a max
biclique

# max quasi-
bicliques that do
not contain a max
biclique (%)

c-fat200-1 6 12301 2143 (15%)
5 45047 132263 (75%)

c-fat500-1 6 168758 6305 (4%)
5 390174 1753973 (81%)

Table 2: The number of µ-tolerance maximal quasi-bicliques that contain a maximal biclique subgraph for µ = 1,
and the number of those that do not contain any maximal biclique subgraphs.

whose two vertex set sizes are both ≥ 8. However,
there is no maximal biclique in this graph whose two
vertex set sizes are both ≥ 8. Furthermore, none of the
917 maximal quasi-bicliques contains any of the 278352
maximal bicliques. This means that none of the above
large-size maximal quasi-bicliques can be obtained by
expanding any of the maximal bicliques. So, our def-
inition indeed non-trivially generalizes the concept of
maximal bicliques, bringing up many novel subgraph
patterns of large size.

These benchmark examples highlight again that:
The concept of α-quasi-bicliques [28] is semantically
very different from our quasi-bicliques, as any α-quasi-
biclique must contain a maximal biclique, but ours are
not necessarily to contain any.

7.2 Skewness and Efficiency Comparison with
Mishra’s ε-bicliques We implemented the Approx-
imate Maximum Biclique Algorithm [18] to mine
ε-bicliques, and we used a modified version of
CompleteQB, as shown in Algorithm 1, to mine µ-
tolerance maximal quasi-bicliques. We applied both of
them to the benchmark graph of the DIMACS Chal-
lenge c-fat200-1, and also to a real dataset, the yeast
protein-protein interaction (ppi) dataset downloaded
from DIP 3. The yeast ppi dataset is represented in the
form of an undirected graph. See Table 1 for its edge
connectivity and density information.

For constrasting the skewness, we compared just
1000 ε-bicliques [18] and 1000 µ-tolerance maximal
quasi-bicliques mined from each graph, as the Approx-
imate Maximum Biclique Algorithm does not mine the
complete set of ε-bicliques.

To measure the skewness of a vertex in a ε-biclique
and in a µ-tolerance maximal quasi-biclique, we calcu-
late the vertex’s missing edges to its opposite vertex set
in percentage. We set µ = 1, ms = 5 for c-fat200-
1 and µ = 1, ms = 3 for yeast ppi dataset as pa-
rameter settings to generate 1000 µ-tolerance maximal

3http://dip.doe-mbi.ucla.edu/
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Figure 3: Distribution of the missing edges of vertices in
ε-bicliques. Here, ε-bicliques are mined from c-fat200-1.

quasi-bicliques from each dataset. Due to the defini-
tion of µ-tolerance maximal quasi-biclique, the missing
edges of vertices in µ-tolerance maximal quasi-bicliques
from c-fat200-1 and yeast ppi dataset are bounded by
µ/ms = 1/5 = 20% and µ/ms = 1/3 = 33.33% respec-
tively, thus the skewness of the missing edges is pre-
vented.

For ε-bicliques, we set ε = 20%, ms = 5 for c-
fat200-1 and ε = 33.33%, ms = 3 for yeast ppi dataset
to mine ε-bicliques. The distribution of the missing
edges of all vertices in the 1000 ε-bicliques has a long
tail, as expected. See Figure 3 for detailed distribution
information for the ε-bicliques from c-fat200-1, and
Figure 4 for the distribution information from the yeast
ppi dataset.

Observe that many vertices’ missing edges exceed
ε = 20% and ε = 33.33%, implying that these vertices
are skewed. There are even some vertices which are
100% not connected to any vertex in the opposite side
of its ε-biclique, as shown in Figure 4. This skewness is
mainly attributed to the asymmetrical quasi tolerance
allowed in ε-bicliques.

Figure 5(a) and 5(b) show two examples of skewed
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Figure 4: Distribution of the missing edges of vertices
in ε-bicliques. Here, ε-bicliques are mined from yeast
ppi dataset.

ε-bicliques discovered. In Figure 5(a), the skewed ε-
biclique is mined from c-fat200-1. Its node v1 is highly
skewed as it has 80% missing edges to its opposite vertex
set. In Figure 5(b), the skewed ε-biclique is mined from
yeast ppi dataset. Its nodes v1 and v2 are highly skewed
as both have 50% missing edges to its opposite vertex
set.

V1

(a)

V1

V2

(b)

Figure 5: (a) A skewed ε-biclique in c-fat200-1. (b) A
skewed ε-biclique in yeast ppi dataset.

We next examine the efficiency of the Approximate
Maximum Biclique Algorithm and our µ-CompleteQB
Algorithm, by comparing their running time for mining
the ε-bicliques and µ-tolerance maximal quasi-bicliques
respectively. The Approximate Maximum Biclique
Algorithm needs to set another 3 parameters m̂, m
and t for mining ε-bicliques. The algorithm uses these
parameters to determine the number of vertices to be
picked to find ε-bicliques within them. Details of the
parameters is explained in [18].

Initially, we used the settings recommended in [18]
to mine the ε-bicliques, but the algorithm could not
complete after running 12 hours on either of c-fat200-1

or the yeast ppi dataset. Hence, we find the optimal
parameter settings for the datasets in a heuristic way.
To simplify the process, we set m̂ = m = t. Figure
6(a) and 6(b) present the running time taken to mine
1000 ε-bicliques on c-fat200-1 and yeast ppi datasets
respectively under different parameter settings for m̂,
m and t. We can see that the optimum settings for c-
fat200-1 is at m̂ = m = t = 50, and for yeast ppi dataset
is at m̂ = m = t = 600. We do not present the running
time for the µ-CompleteQB Algorithm under these
Figures because µ-CompleteQB does not require these
parameters and it only took 26 seconds and 2 seconds
to mine 1000 µ-tolerance maximal quasi-bicliques from
c-fat200-1 and yeast ppi dataset respectively.

7.3 Protein Interaction Prediction by Co-
clustering Proteins Co-clustering problem refers to
an unsupervised learning process that identifies two dis-
joint vertex sets of a graph G between which every pair
of vertices are adjacent to each other. So, in fact it is
equivalent to the mining of maximal bicliques from G.
Note that co-clustering is different from co-partitioning
problem as in co-partitioning problems, subsets of nodes
in one side of a bipartite graph are required to be non-
overlapping.

Very often in co-clustering applications, the graph
G is specialized and represented by a bipartite graph
〈V1, V2〉 where V1 and V2 are of two different kinds of
vertices. For example, in the documents-and-words co-
clustering problem [6, 7], V1 usually represents a set of
documents but V2 represents a set of words. This is
similar for images-and-features co-clustering problems
[22] and stocks-and-ratios co-clustering problems [25].
This situation can be also found in a bioinformatics
research problem—the reconstruction of the supertree
of Life [28, 24, 8]. Its computational problem is to
find a maximal number of genes that are contained in
a maximal number of species (taxa), given the binary
containment relation of all the genes and taxa.

While for other co-clustering applications, all ver-
tices in the graph G are of the same kind. This includes
the web community co-clustering problem [23, 20],
and the discovery of interacting protein group pairs
[13, 4, 19]. For these situations, the graph G is usu-
ally represented as a general graph.

As our newly defined maximal quasi-bicliques are
capable of a balanced noise tolerance and possess a
most-versus-most connection, they are useful for find-
ing enlarged co-clusterings for these applications. The
enlarged co-clusterings can in turn strengthen the asso-
ciation between the two vertex sets, and thus can im-
prove the quality of the applications. We demonstrate
the usefulness of our maximal quasi-bicliques by a new
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Figure 6: Running time of the Approximate Maximum Biclique Algorithm on the c-fat200-1 and yeast ppi datasets.

application—prediction of missing interactions in a pro-
tein interaction network.

The background of this bioinformatics problem is as
follows. Using laboratory experiments to determine the
interactions is very expensive and time-consuming; the
current known and validated interaction data is also far
from complete. So, it is important to use computational
methods to make prediction of protein interactions. Our
idea is based on the observation that certain protein
groups in a protein network interact with one another
in a way like a maximal biclique subgraph in a graph
[4, 13, 19]. So, if a maximal quasi-biclique subgraph
H is identified from a protein interaction graph, then
the missing edges in H are most likely to be true
interactions. Here, a protein is represented by a vertex,
and an interaction between two proteins is represented
by an edge.

We apply this idea to a widely accepted protein
interaction graph, called MIPS CYGD dataset, which
is the whole-genome protein interaction network of
yeast [17]. This dataset contains 15,456 protein inter-
actions and 4554 distinct proteins. We removed dupli-
cated interactions and self-interactions from the dataset.
The remaining number of interactions is 12,319, and we
use this cleaned dataset to conduct the experiments.

We consider quasi-bicliques whose vertex sets con-
tain at least 10 vertices each, as recommended by
[4, 13, 19]. A total of 34026 µ-tolerance maximal quasi-
bicliques (µ = 1) are discovered. And there are 809 dis-
tinct missing edges in these µ-tolerance maximal quasi-
bicliques.

The question now is that whether these 809 miss-
ing edges are potentially true interactions. As there is
no explicit biological information to verify our predic-
tion, we evaluate the interactions using a very recent
bioinformatics method [5]: A pair of proteins in a true
biological interaction are much more likely to be similar

in function than random protein pairs. We found that
148 pairs (18%) of the 809 pairs of potentially inter-
acting proteins have a common annotated function in
MIPS for both proteins in the pair. This rate is much
higher than for random protein pairs. Actually, we gen-
erated 100 sets of 809 random protein pairs using the
function-annotated yeast proteins in MIPS. The aver-
age number of the random pairs that are homogeneous
in function is only 42.5 out of 809, namely 5%, with a
standard deviation of 6.73. As 18% is 3.6 folds higher
than 5%, our prediction results are far better than the
random results. In fact, the 148 potentially interact-
ing proteins can be ranked according to the concept
of “guilt by association of common interacting part-
ners” [5]; that is, two proteins are more likely to inter-
act if a larger proportion of their interaction partners
are actually shared. A simple way to do such a ranking
is S(u, v,G) = |β(u,G) ∩ β(v,G)|/|β(u, G) ∪ β(v, G)|,
where u and v are the pair in question, and G is the
original protein interaction graph. Under this ranking,
as S(u, v, G) increases from 0 to 0.4, the fraction among
our predicted interaction proteins that share a common
function increases from 18% (148/809) to 78% (11/14),
nearly 15 folds higher than that of random pairs under
the same S(u, v, G) thresholds.

We also validate our prediction in a second way. We
randomly remove 30% of the edges from the interaction
graph of the MIPS CYGD dataset. Then we consider
those quasi-bicliques having at least 7 vertices in each
of their vertex sets, and discover µ-tolerance maximal
quasi-bicliques (µ = 1). The missing edges in these
maximal quasi-bicliques were predicted as true interac-
tions. We found that about 50% of these predicted in-
teractions are actually those that we have removed—i.e.,
the true interactions. The balance of the predicted in-
teractions may also be true interactions, but we are un-
able to confirm due to the incompleteness of the MIPS



CYGD dataset. Nevertheless, based on our experiments
with respect to function homogeneity above, we believe
that at least 78% of the remaining predictions are most
likely true.

These preliminary results shows high potential of
maximal quasi-bicliques in the prediction of missing pro-
tein interactions. There are many interesting related
problems for future research. For example, why small-
size quasi-bicliques cannot be used for interaction pre-
diction (any biological evidence), what is the trade off
between the vertex set size and µ, the coverage, the sen-
sitivity, and precision. The contribution here is that we
show the potential of using maximal quasi-bicliques in
a new application area of co-clustering.

8 Conclusion

We have proposed two types of most-versus-most
connections—µ-tolerance and δ%-tolerance—to refine
maximal quasi-bicliques for balanced noise tolerance of
missing edges. We have made the observation that a
maximal quasi-biclique of a graph does not always con-
tain a maximal biclique subgraph of this graph. This ob-
servation suggests that the expansion approach should
be avoided to enumerate maximal quasi-bicliques. We
have discussed a bounded closure property and a fixed
point theorem, which are useful for designing efficient
algorithms for enumerating maximal quasi-bicliques.
We have also presented a new co-clustering applica-
tion where true protein interactions can be identified
through our quasi-bicliques.

As for future work, we note that the noise tolerance
by our maximal quasi-bicliques is fixed at level µ (or
δ%) for every vertex. We can extend the definition
such that vertices from different sides are allowed to
tolerate different level of missing data. Also, the current
definition does not avoid those bipartite subgraphs with
small sizes. So, an important sub-problem is how to
directly enumerate maximal quasi-bicliques with large
sizes which are statistically stronger than the small ones.
We also plan to further investigate the prediction of
protein interactions, and other co-clustering problems.
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