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SUMMARY 

 

 The recent rapid growth of biological data opens a whole range of exciting 

possibilities for and necessitates development of data mining methods tailored 

towards understanding the complex mechanisms of biological systems. 

Bioinformatics has gone from providing support, in terms of data management, 

visualization, and such, to generating new insights and directing future experiments. 

One key topic in molecular biology is the understanding the regulatory process and 

mechanism of gene expression. 

 

 This project focuses on addressing issues related to gene expression regulation, 

namely identification of relevant or responsive genes from microarray data and 

analysis of sequencing-based localization of interaction sites of transcription factor 

(TF) and DNA. 

 

 We began by creating a model for complex system which accounts for intricate 

relationships between the observable input and output data as well as the potential 

noise that confound both the input and the output. In the context of gene regulation, 

the inputs are genomic sequences and genomic signals while the output is gene 

expression. We then decouple the analysis of input, i.e. distilling genomic signals, and 

output, i.e. identifying relevant and responsive genes. 

 

 On the output front, we focused on analyzing microarray data. The first task was 

to develop a method that would identify a minimal gene signature cassette, a problem 
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which we translated as determining robust and non-redundant set of genes for 

classification. A key modification of the well-known boosting framework was found 

to satisfy the requirement and also outperform the widely successful support vector 

machine (SVM). The second task was to better utilize time-course expression data to 

identify primary response genes. Rather than attempting to rank genes based on their 

own predictive power or expression pattern, we explored the notion of primary 

response and devised the Friendly Neighbor framework that exploits the relationship 

between primary response and other downstream response. Genes were assessed 

based on their shared expression dynamics, rather than their individual profiles. Our 

experiments showed that this property indeed helped to propel the performance of 

unsupervised identification of primary response genes to much closer to the 

performance of supervised algorithms. 

 

 In terms of genomic signals, we researched on models and methods to decipher 

high-throughput sequencing-based TF-DNA interaction data. In particular, we started 

by devising a simple formula to assess the sequencing adequacy of a given library. 

The formula can be used to obtain a relative estimate of the sequencing saturation. 

Leveraging on the unique characteristic of ChIP-PET, we proposed a new model for 

ChIP fragment size distribution. This model worked well on all the test libraries and 

outperformed the earlier model. We developed a model of fragment enrichment that 

attempts to parameterize the quality of the dataset and the extent of actual TF-DNA 

interactions. Following which, an analytical model of random fragment accumulation 

was constructed. This model allowed for more efficient and principled identification 

of TF-DNA interaction regions. A sliding-window based extension was also proposed 

to mitigate systematic biases in the data arising from aberrant genomic copy number 
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of the underlying biological model system. Experimental results demonstrate the 

accuracy of our analytical models, for assessing library quality and calculating chance 

accumulation probability, and the effectiveness of the adaptive method, in reducing 

false positive identifications of TF-DNA interaction regions. 
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Chapter 1 

Introduction 

 

1.1  Overview 

 

The field of bioinformatics has grown rapidly in the recent years, producing a 

multitude of computational tools and offering new insights. The vast amount and 

rapid growth of biological data and databases, while remain a major reason for the 

need of bioinformatics, is no longer its main reason of existence. More computational 

analysis methods developed went beyond data management, organization, and 

manipulation (e.g. efficient storing and fast searching) and ventured into hypothesis 

testing and knowledge discovery, generating new insights leading to novel or refined 

biological paradigms, for example the Fragile Breakage Model of genome 

rearrangement proposed by Pevzner and Tesler (2003). 

 

The understanding of how genes are regulated and the knowledge of what set 

of complexes is affecting which group of genes are paramount in the effort of 

deciphering and reconstructing the molecular clockwork of cells. While the 

identification and discovery of the mechanisms and rules of gene regulation are 

accelerated by technological developments of the measuring apparatus and protocols 

(e.g. DNA-microarray (Schena et al., 1998; Barret and Kawasaki, 2003), ChIP-chip 

(Iyer et al., 2001; Ren et al., 2000), and next generation sequencing machines), the 

challenges and complexities are also growing in tandem. The paradigm of promoter-

sufficient gene regulation, for example, worked well in lower order organisms like 
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yeast, but is clearly insufficient to explain the regulatory complexities found in higher 

order organisms. The growing body of available data related to gene regulation and 

expression presents an opportunity for novel theoretical inferences and hypotheses 

building. 

 

1.2 Project Scope and Objectives 

Although we are interested in the broad spectrum of computational analysis and 

prediction of gene expression and regulation, within the context of this project, we 

limit ourselves by partitioning the problem into two major sub-problems of regulated 

(or responsive) genes identification and genomic regulatory elements discovery, 

which are easily reframed in terms of feature selection and classification problems. 

This project is targeted at developing data mining methods for analyzing microarray 

and high-throughput genomic sequencing data. Specifically, we aim to: 

1. Formulate a unified framework of gene expression and regulation analysis, 

2. Design algorithms for identifying minimal and non-redundant set of gene 

signature from microarray data and for predicting the primary responsive genes 

upon treatments, and 

3. Devise methodologies for analyzing sequencing-based high-throughput genome-

wide transcription factor (TF) DNA interaction data. 

 

Parts of this thesis have been published in the Machine Learning (Long and Vega, 

2003), IEEE BIBE (Karuturi and Vega, 2004), PLOS Genetics (Lin, Vega, et al., 

2007), and the International Conference on Computational Science (Vega, Ruan, and 

Sung, 2008). 
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1.3 Report Organization 

The reminder of the report is organized as follows. Chapter 2 provides the domain 

knowledge and outlines the overarching problems and details our proposed paradigm 

for delving into the problems. Background information, motivation, and problem 

formulations are further expounded in the chapter. Chapter 3 presents our algorithms 

for analyzing microarray data to identify gene signature cassettes and primary 

responsive genes. Chapter 4 delves into the analysis of sequencing-based TF-DNA 

interaction data.  We conclude this report with a summary and cursory exploration of 

the possible future directions in Chapter 5. 
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Chapter 2 

 

Models for Understanding Gene Expression and 

Regulation  

 

2.1 Domain Background 

 

This section serves as a primer on the field of molecular biology, in particular on 

topics that are relevant to our project. Two things are emphasized here, namely: (i) the 

definitions and concepts related to gene regulation, and (ii) the relevant technologies 

used to generate the data. 

 

2.1.1 Gene Expression Regulation and Its Mechanism 

Central Dogma of Molecular Biology 

Cell is a very complex system. The three key components of living cells are DNA, 

RNA, and protein. Central dogma of molecular biology teaches us that, in all known 

living organisms, DNA serves as the template or the blueprint for constructing RNAs 

and in turn proteins (Crick, 1970; Strachan and Read, 1999; Snustad and Simmons, 

2000). Proteins and ncRNA (non-coding RNA (Eddy, 1999; Eddy, 2001)), the true 

workhorses in cells, carry out complex cell functions, mediate molecular signaling, 

catalyze chemical reactions, provide structural foundation, and a number of other vital 

processes. DNA, on the other hand, encodes the molecular instructions for building 

the proteins. As the carrier of molecular instruction, DNA is also the vehicle for 

propagating hereditary messages during cell replication. For these reasons, many have 
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described DNA as informational, protein as functional, and RNA as both 

informational and functional. 

 

Regulations and Expression 

For the cell to have a “meaning” or state, the contents of the cell need to be 

controlled. Since it is impossible to control every action of every single molecule in 

the cell, what is being controlled is the amount of those molecules that are present 

within the cell. The synthesis of proteins from their DNA templates comprises 

transcription (i.e. the formation of mRNA from DNA) and translation (i.e. the 

assembly of amino acids sequences from mRNA). 

 

A DNA sequence is a string of nucleic acids and is represented as a string from 

the alphabet set {A,C,G,T} (denoting adenine, cytosine, guanine, and thymine) 

written in the direction from 5’-end to 3’-end. A genome is the complete set of DNA 

sequences of an organism. At present, a genome is generally associated to a single 

species, unless specified otherwise for particular application. A gene is a region of the 

genome that can be converted into RNA. The word “gene” carries many meanings 

and has evolved with the development of molecular biology, ranging from the unit of 

hereditary to protein association (one gene one protein) to unit of transcription. In the 

context of this study, a gene is tied into a location in the genome and is implicitly 

assumed to be subject to transcription. 

 

Strictly speaking a gene is said to be expressed when its corresponding final 

functional gene product is produced, proteins for most cases or RNAs for genes that 

encode functional non-coding RNAs (Eddy, 1999; Eddy, 2001). 
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Transcription Regulations and Transcription Factors 

The process of transcription starts from the beginning of the gene (also known as the 

Transcription Start Site (TSS)). Transcription is initiated only when the 

RNA-polymerase, assisted by other proteins, bind to the 5'-upstream of the TSS. The 

binding of this transcription machinery is followed by the unwinding of DNA double 

helix, initiation of RNA chain, elongation of RNA, and termination of transcription by 

the release of RNA and RNA-polymerase. Inducement (or inhibition) of such binding 

leads to the increase (or decrease) in the amount of transcripts in the cell. This is how 

the cell regulates transcriptions. By controlling when and where the transcription 

complexes bind, the cell directs which genes to be transcribed and manages the 

amount of mRNAs present. The cell exercises its regulatory role on transcriptions 

through a class of proteins known as transcription factors (or TF for short) (Strachan 

and Read, 1999; Snustad and Simmons, 2000), which could both activate or repress 

(Gaston and Jayaraman, 2003) transcription. 

 

 To exert their regulatory roles, transcription factors (TFs) need to bind to 

specific segments of the DNA, known as the transcription factor binding sites 

(TFBS). The requirement of TF binding to TFBS is important and serves as a means 

to identify the genes that they can regulate. It would be meaningless if transcription 

factors could affect genes indiscriminately. The specificity of TF binding is postulated 

to be largely dependent on the sequence composition of a DNA fragment, which is 

often termed as the TF recognition sequence (or more popularly binding sequence or 

binding motif). Stated this way, computationally speaking, the location of TFBS can 
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be identified by searching the locations in the genome that bear good resemblance to 

the TF’s binding sequence. 

 

DNA binding sites are usually found in the proximal sequences of the genes, 

dubbed as cis-regulatory regions. The cis-regulatory region includes sequences 5' 

upstream and 3' downstream of the gene. Many call the 5'-upstream sequences as the 

promoter region and consider only 5' upstream sequences as the regulatory regions. It 

has been shown in a number of cases that regulatory sequences exist in 3' downstream 

of the genes, e.g. Lamb and Rizzino (1998) reported a binding site of Oct4 in the 

3'-UTR (UnTranslated Region) of FGF-4 gene, and even in distal sequences. 

 

 Besides directly binding to a specific site in the genome, TF might indirectly 

interact with the DNA by forming a complex with other TFs or DNA-binding proteins 

which would in turn bind to their associated sites in the genome. Such possibility, 

coupled with the fact that TFBS are commonly short (and thus ubiquitous), confound 

sequence analysis efforts in pinning down real functional TFBS. Barraged by these 

uncertainties, it is the molecular dynamics of protein-DNA interactions and genomic 

chromatin structure that facilitates the recognition and discrimination of binding sites 

by their transcription factors. 
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2.1.2 Measurement Apparatus for High-Throughput Molecular Biology 

Measuring Expression  

Abundance of RNA in the cell can be quantified in many ways. mRNA microarray 

(Barrett and Kawasaki, 2003; Shena et. al., 1998) offers a unique advantage in terms 

of throughput, time, cost, and quality. mRNA microarray (or microarray for short) 

exploits the property that a single strand DNA hybridizes to its complementary strand 

to form a (more) physically and chemically stable double strand (Mulligan, 2003). A 

microarray contains a vast number of single strand oligonucletides (short DNA) 

pieces. A probe is a group of DNA pieces of exactly the same sequence and 

proximally placed on the array. Each probe is typically constructed based on the 

sequence of a gene. The level of RNA in the cell is detected by first converting the 

RNA into DNA (i.e. reverse transcribing RNA to cDNA), followed by labeling the 

CDNA with certain fluorescent dye, hybridizing them into the microarray, and finally 

reading the amount of hybridized fragment using a laser scanner. The more fragments 

coming from a gene, the brighter the probe associated to it will be. 

 

Chromatin-ImmunoPrecipitation 

A key technology in the study of transcription factor is the 

ImmunoPrecipitation (IP) assay.  In brief, the IP experiment extract a certain (or 

certain group of) protein from a given biological sample, based on the prepared 

antibody. Such extraction brings with it all other compounds that form a complex with 

the target protein. Since transcription factors are expected to interact (i.e. form 

complexes) with the DNA, immobilization of such TF-DNA complexes followed by 

extraction of these complexes using the IP protocol allows researchers to collect DNA 
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where such complexes have occurred. This procedure is known as Chromatin-

ImmunoPrecipitation (or ChIP). The ChIP procedure produces DNA fragments that 

are bound by the transcription factor if interest. These fragments can be further 

utilized for a number of applications, including: determination of TF binding motif, 

localization of TFBS, measurement of TF activity. In this project, we are particularly 

interested in its use for the localization of the TFBS through the coupling of high-

throughput sequencing. High-throughput sequencing in this context refers to the 

application of sequencing technology to sequence only a fraction of each fragment in 

the interest of characterizing larger pool of fragments. With the availability of whole 

genome sequences, partial sequencing of a fragment is, in principle, sufficient to 

uniquely locate the source of the fragment in the genome. Additional details are given 

in Section 2.4 below and in Chapter 4. 
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2.2 Overall Problem Description and Abstraction 

 

We are interested in the problem of determining a gene’s response towards a certain 

stimulant, given its associated genomic sequences. More precisely, we are interested 

in learning and predicting the transcriptional activities of a gene (proxied by 

microarray readouts (Barrett and Kawasaki, 2003; Shena et. al., 1998)), with respect 

to a certain transcription factor, based on the gene's regulatory sequences (which are 

typically, but not necessarily, be the genomic DNA sequences surrounding the gene’s 

transcription start site (TSS)). 

 

Problem 2.1 (Predicting transcriptional activities) Given a Transcription Factor T , genes' regulatory 

regions { }NssS ,...,1= , and their corresponding transcript readings { }NrrR ,...,1= under the 

stimulation of T , where *},,,{ TGCAsi =  and n
ir ℜ∈ , learn the function M such that 

n
i rsM ℜ∈= ˆ)(  and irsMi −∀ )(:  is minimized. Note that is  here could extend beyond Ns , 

i.e. M  should generalize well to unseen examples. 

 

In the above, R  could be the actual expression readouts, the normalized 

expression readouts (e.g. expression ratio to some form of control data), or otherwise. 

Problem 2.1 lays out the problem in terms of measurable and collectible data, hiding 

several dimensions about the nature of the system. For one, it subtracts out the fact 

that the state of the cell, in addition to the input data is , plays a key role in influencing 

the response ir . Gene expressions (i.e. ir ) is significantly influenced by the current 

state of the cell. It also folds out the interdependencies between two response 

readouts, ir  and jr , and assumes that the genes are completely independent. 
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Also, nothing is explicitly said about the nature of the input, is , which in 

reality contains superfluous noise unrelated to the response ir . A gene’s regulatory 

region ( is ) can be expected to contain noise as well as other information that may not 

be relevant in the current state of the cell. The same is true for the response variable ir  

as well. The real interest is in fact the conceptual entities, let's call them the Control 

Signal and the Outcome, that respectively govern the generation (or at least reflected 

by) of is  and ir . The relationship between the Control Signal and the Outcome are the 

actual gold. However, since those are not easily quantifiable, by mining S  and R  we 

hope to shed some light about the underlying model. Figure 1 illustrates this situation. 

 

 
Figure 1. Modeling a complex system. Dashed shapes and arrows 
represent unobservable information. Solid boxes indicate known or 
measurable information. Solid double-line arrow indicates a simplifying 
assumption (that output is directly resulted from input) often taken 
when analyzing such data. 
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In the model depicted in Figure 1, only two sets of data are known: the input 

stream, which reflects or is generated by the Control Signal of interest coupled with 

other irrelevant signals and/or the background noise, and the output stream, which 

reflects or is generated by the true Outcome and sprinkled by the background noise. 

The overall goal is to learn the relationship between the control signal model and the 

outcome model. The model also highlights the fact that the non-direct relationship 

between the observed input and output streams1, which allows for the possibility that 

two matching inputs, ji ss = , could yield different responses, i.e. ji rr = . Having 

described the intricacies of problem 2.1, we can now shape it into a more generic 

framework: 

 

Problem 2.2 (Two streams framework) Let { }NssS ,,1 K=  be the sequences of observed input 

stream and { }NrrR ,,1 K=  be the observed sequences of corresponding output stream (or 

response), where ∗Σ∈ Cis  and ∗Σ∈ Oir . CΣ  and OΣ  denote the alphabet sets for input and output 

respectively. The generation of S  is governed by an unobservable model C , other control signals, and 

systematic noise. C  in turn influences an unobservable  model O  which governs the generation of R , 

along with some noise. The task is to learn an algorithm M , which given ∗Σ∈ Cis  outputs a prediction 

of ∗Σ∈ Oir̂  that minimally deviates fro the true response ir . 

 

Again, the annunciation of problem 2.2 is motivated by the huge underlying 

(unmeasured and unknown) complexities present in gene regulation mechanism. 

Problem 2.2 implies that in building a predictor of gene regulation based on DNA 

sequence, one should be wary of over-fitting and focus on generalization error. This is 

quite evident in the current situation where, unlike in other more closed system setup 
                                                 
1 As a side note, the word ``streams'' is purposely employed to underline the expected 
complexity and volume of the data 
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(e.g. spam filtering, handwriting recognition, network routing), the more data 

produced (e.g. more TF binding sites identified) the further we seem to be getting 

from being able to conclusively predict gene expression. And that, we are brought 

into the realization of the need of additional cell-state data (e.g. epigenetics data (Bird 

,2007; Reik, 2007)). This formulation of the problem also implies that learning 

algorithms and models that incorporate, explicitly or implicitly, the underlying 

relationships could be expected to fare better in the long run. Examples of such tools 

include Hidden Markov Model and Artificial Neural Network. Note that the 

declaration of problem 2.2 is intended more to help structure the thought process in 

viewing the overarching problem addressed by this project as a philosophical 

framework and less for being directly solved as an explicit mathematical problem 

statement. 

 

Evidently, this framework also encompasses a range of different problems. 

Surely, the transcriptional activity prediction based on sequence data fits into this 

framework. Prediction of stock prices based on newspaper articles also falls under this 

scheme. Events, C , that influence the behaviour of market players, O , (and thus the 

stock prices R ) are partially captured in noisy newspaper articles S . Another 

example is automated monitoring software that screens incoming and outgoing traffic 

from the internet into a large intranet and designed to intercept and thwart possible 

hacking attempts. Forecasting of the election results from newspaper articles could 

also be similarly modeled. All of these examples share a common theme that the 

response variable ir  is not a direct product, or one-to-one mapping, of the input is . 
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Two different strategies are possible in approaching problem 2.2: 

1. Trying to directly learn the relationship between S  and R . This could be done 

through classification or regression of vector-valued response variables. 

Although conceptually simple, in practice such algorithms can be complex and 

might be intractable. 

2. The alternative approach involves abstracting out or simplifying/reducing the 

complexity of either the input or the response or both. The idea is intuitive, by 

reducing the response variables or the input vector, applications of existing 

algorithms become feasible. The challenge lies in devising an algorithm that 

captures the appropriate features from each stream. In other word, the aim is to 

develop feature extraction, reduction, and selection algorithms. 

 

Although the goals of problems 2.1 and 2.2 are extremely desirable, the present 

genomic technologies and experimental limitations prevented us from executing 

effective research into them. Staying within the scope of the thesis, we concerned our 

research with gaining more insights into the true nature of the Outcome and the 

Control Signal, as well as the elements of Background Noise and other signals 

peppering them. The Output Stream needs to be dissected first, as it could 

considerably reduce the input space, by identifying the relevant ones, and provide 

additional domain knowledge. Following which, the Control Signal needs to be 

distilled from the Input Stream. In summary, we decoupled the main problem into the 

analysis of the Output Stream, i.e. expression of regulated genes, and the analysis of 

the Input Stream, i.e. genomic regulatory signal. 
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2.3 Expression of Regulated Genes 

 

Within the framework outlined in Problem 2.1, the set of transcript readings R 

encompasses the set of genes within genome, as comprehensive as possible. The 

larger the set R, the more complex the model M could potentially be, as each gene 

reading ri is associated with a regulatory sequence si. Assuming that many (or even 

most) of the measured transcripts are not related to the regulation by transcription 

factor T, the complexity of the Input Stream, and hence the resultant model M, can be 

reduced through proper selection of subsets of R. 

 

2.3.1 Minimal Set of Gene Signature 

In situations whereby stimulation of transcription factor T is not possible or that such 

data is not readily available, activity of transcription factors is sometimes investigated 

through comparison of different cell types where the transcription factors of interest 

are known to exhibit distinct behaviors. For example, the transcription factor PPARγ 

is known to be expressed in adipocytes but not in pre-adipocytes (Fu et al., 2005). 

Genes regulated by PPARγ could therefore be identified by comparing expression 

profiles of adipocytes and pre-adipocytes. In such setup, genes that can be used as 

markers for the different cell type are potentially regulated by the transcription factor 

of interest. Stated this way, the problem is now rendered into the familiar problem of 

feature selection for classification. Our interest, however, was more specific. We 

wanted to not only attain a robust set for microarray classification, but to do so using 

as few genes as possible.  
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Problem 2.3 (Minimal Gene Set for Class Discovery) Let },...,{ 1 ByyY =  be the labels of 

B samples and  },...,{ 1 BHHX = be their expression profiles, where ],,[ ,,1 iNii xxH K=  

represent a vector of N  genes’ expressions. Let AC  be a classification algorithm that utilizes 

expression values of gene subset },,1{ NA K⊆  to predict the sample labels Y . Determine the 

subset A , minimizing its size while maintaining a good generalized performance of AC . 

 

Why did we aim to compile as few and as non-redundant genes as possible? 

Although the differentially expressed genes in this setup are likely to be truly 

regulated by the transcription factor T, the regulation may be indirect. It is more likely 

that the transcription factor T regulates a core set of primary targets, which in turn 

influence the regulatory network. The non-redundant criterion functions as a filter for 

direct target, while minimizing the set of selected genes reduces the overall noise. 

Moreover, the formulation of Problem 2.3 in fact appeals to a number of other 

applications, for example in gene marker discovery where the goal is to identify a set 

of genes whose protein level, typically measured by ELISA (Parker, 1990) or such, 

can be used as a predictive variable for certain cell state/disease. There, it is essential 

to obtain a small (due to resource constraint) and redundant (for robustness purposes) 

set of features. 

 

2.3.2 Dominant Set of Expression Pattern 

When the activity of transcription factor T can be subjected by external stimulation or 

perturbation, more ideal experiments for finding genes directly regulated by T could 

be performed. Typically the experimental setup consists of perturbing the biological 

system with external stimulant and monitoring the expression levels across several 
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timepoints. Timecourse expression data of non-perturbed system is also generated as 

the corresponding control data. 

We shall now construct a general model for the problem by treating it as a 

system. Let Z be a system and ],,[ 1 NxxH K=  be a vector of N sensor readouts (or 

features ℜ∈ix ) taken on the system, describing the state of the system. Let's also 

assume that the system can be subjected to an arbitrary factor T and that jTH ,  

captures the state of the system at time j, under the influence of factor T. Unless stated 

otherwise, let jH ,0  denotes the state of the system at time j given no external factors. 

Note that for a given system Z and an external factor T, the features H can either be 

directly affected (primary response), indirectly affected, or unaffected by T. Our goal 

is to identify features that are directly influenced by T. 

 

We can now define BN ×  matrix X as the net effect of factor T over B 

consecutive time points as: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

BNN

B

xx

xx
X

,1,

,11,1

L

MOM

L

 

We additionally define: 

],,[ ,1, Biii xxG K=  , and T
jNjj xxH ],,[ ,,1 K=  

Note that the above formulation is in line with the response variables of the 

framework outlined in Problem 2.2. Gi is in fact B
Oir Σ∈ , where ℜ=Σ O . In the 

context of gene expression data, H represents a single microarray reading that 

simultaneously probes N transcripts, while Gi is the expression level of gene (or 

transcript) i across B microarrays. 
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We shall now try to model the direct and indirect responses, for each 

timepoint. Let }1,0{∈id  be a binary variable denoting the primary response 

indicator to T, i.e. feature i is a primary response of T if and only if 1=id . We can 

define ],,[ 1 NeeE K=  as the ‘basal’ response of T such that 

ii
T
ii exxdi =−⇒=∀ )(1: 0 . Then, for all indirect response feature i, the observed 

effect is proportional to the wighted sum of the effect to direct responses, i.e. 

∑
=

×=−⇒=∀
1;

,
0 )(0:

jdj
jjii

T
ii efxxdi  with ℜ∈jif , . Altogether: 
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or more generally: 

)( TDEFH = , where
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

NNN

N
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ff
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L

 , ),,( 1 NdddiagD K= , and if 1=id  then 

1, =iif  and 0: , =∀ jifj . 

 

It is clear from the above that our goal is to solve matrix D, since primary 

responsive feature i has 1=id . Note also that the formulation captures the states and 

configuration (matrices F, D, B) for a particular given observation, and they may 

change with time. Thus, for each time point j, )( T
jjjj EDFH = . Nevertheless, to 

simplify, we assume that Dj is constant, i.e. DDj = . 
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Problem 2.4 (Direct response features) Given a time series data X consisting the observed changes 

of N features due to presence of external factor T across B consecutive timepoints as described above, 

find the features that were directly influenced by T, i.e. find i such that 1=id . 

 

Note also that the primary response features, i.e. features with 1=id , are in 

fact dominating the response landscape, since the indirect responses were propagated 

from primary responses, as modeled through matrix F. If matrix F is sufficiently 

sparse, then the overall patterns of response X would be dominated by the patterns 

exhibited by primary responses. As such, Problem 2.4 can be viewed as finding the 

dominant pattern. 
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2.4 Genomic Regulatory Signal 

 

For the purpose of our study, we define Genomic Regulatory Signals as the 

information contained in DNA sequences that are relevant to the gene regulatory 

activity of transcription factors. Discussions on genomic regulatory signal typically 

bring into mind a host of computational and algorithmic challenges, such as motif 

discovery, sequence alignment, evolutionary analyses, and phylogenetic tree 

construction. During the course of our research, however, the landscape of data 

mining of regulatory signals has been transformed from medium throughput (for 

example analysis of promoter sequences or other set of sequences, arranged based 

expression profiles or other biologically meaningful categorization) into high-

throughput genome-wide analyses. 

 

The trend of high-throughput genome-wide analysis was initiated circa late 

2000, employing a technique known as Chromatin-Immunoprecipitation on chip, or 

ChIP-on-chip (Ren et al., 2000), where ChIP fragments are quantified by hybridizing 

them into a DNA microarray. A major technological advancement was the 

introduction of sequencing-based Chromatin-Immunoprecipitation (ChIP), spurred by 

the rapid development of the so-called next generation sequencing machines. One 

clear advantage of sequencing-based approach is that it is less biased compared to 

hybridization-based, which introduce a heavy bias during the probe selection stage. 

Various variants have since been introduced, including ChIP-SACO (Impey et al., 

2004), ChIP-PET (Wei et al., 2006), ChIP-STAGE (Bhinge et al., 2007), and the most 

recent ChIP-Seq (Johnson et al., 2007). 
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In the context of high-throughput sequencing of ChIP fragments (or htsChIP), 

due to the vast number of unspecific fragments sequenced along with the ChIP-

enriched ones, the challenge is to identify locations in the genome where the observed 

fragment enrichment can be confidently ascribed to TF-DNA interaction. This project 

focused on data generated through the ChIP-PET protocol. In particular, five 

questions were addressed: 

1. How can we quickly assess whether a given ChIP-PET library has 

been adequately sequenced? 

2. What is the best model of ChIP fragment length distribution? 

3. How can we assess a given ChIP-PET library in terms of its quality 

and total number of bound regions? 

4. Can we distinguish (at finer resolution) regions that are bound by TF 

from those that were fragment-enriched by chance? 

5. Without the presence of a control library, how can we reduce a 

systematic genome bias originating from fluctuations of genomic copy 

number (which is common among model systems based cell-lines)? 

 

The exact problem formulations will be discussed in chapter 4. 
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Chapter 3 

Inferring Patterns of Gene Expression 

 

3.1 Overview 

 

In this chapter, we detail our approaches for solving the problem of inferring relevant 

genes from microarray data, focusing on two specific challenges: the identification of 

minimal set of signature genes (Section 3.2) and the identification of treatment 

responsive genes based on time-course microarray studies (Section 3.3). 

 

 

3.2 Modifying Boosting for Class Prediction in Microarray 

Data 

 

Identification of minimal set of signature genes is pertinent in the context of 

microarray-based tissue type prediction. While creating a good-performing 

microarray-based tissue type predictor is somewhat straightforward (e.g. approaches 

based on k-NN, SVM, and other generic machine learning models), the challenge of 

discovering a minimal yet robust set of genes is still relevant. Biologically, such 

minimal gene set might represent a key cellular regulator important for a specific 

tissue type (e.g. cancer) and could potentially be regulated by a similar mechanism  

(e.g. similar set of transcription factors). When the different tissue type is in fact 

derived from treatment of ligands that interact or activate certain transcription factor 

or that the tissue types were substantially related to activity of a specific transcription 
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factor, such list of signature genes reflect the representative set (or the core set) of 

genes’ response to the treatment, which could mean that the genes are more likely to 

be direct targets of the activated transcription factor (see Section 2.3.1). 

 

3.2.1 Problem Description 

Following the definition stated in Problem 2.3, we model the problem as follows: let 

}1,1|{ , BjNixX ji ≤≤≤≤ℜ∈= be the set of expression array arranged as an BN ×  

matrix, where xi,j is the expression level of i-th gene in the j-th sample. 

[ ]ByyY ,,1 K=  is the sample labels, where jy  denotes the label of the j-th sample. 

For ease of notation, let ],,[ ,1, Biii xxG K=  represents the expressions of i-th gene 

across all samples and ],,[ ,,1 jNjj xxH K=  denotes the expression profile of j-th 

sample. Our goal is to develop a learning algorithm ),,( kYXM , that takes as input 

the expression data X, the associated labels Y, and the maximum number of genes k 

that the classifier is allowed to use, and outputs a classifier )(HCA ′ . Given a vector 

H ′  of gene expression data of a biological sample, the classifier )(HCA ′  predicts the 

label of H ′  based on the gene subset },,1{ NA K⊆ . This gene subset A should be 

examinable from the output classifier )(HCA ′ . 

 

3.2.2 Support Vector Machine Algorithms 

Prior to our investigation, there have been a couple of papers describing the 

application of Support Vector Machines (SVM) for class prediction in the context of 

microarray data. As part of our experiment, we employed several variants that were 

more in line with the specific goal of identifying a minimal gene subset for 

classification. 
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Wilcoxon/SVM 

Mann-Whitney Wilcoxon Rank-Sum test (Mann and Whitney, 1947; Wilcoxon, 1949) 

has proved to be useful in multiple contexts of microarray data analysis, especially for 

discovering differentially expressed genes. In conjunction with SVM, the test can be 

used to select genes for building a classifier. Specifically, this algorithm: 

• Chooses the k genes identified as differentially expressed between the two 

types of tissues according to the Wilcoxon-Mann-Whitney test with the 

highest confidence (using the training data provided), and 

• Applies SVM with a linear kernel and soft margin with the cost parameter C. 

 

In our experiments, the parameter C is chosen to minimize the five-fold cross-

validation error on the training set of the entire inductive process including feature 

selection. The optimization was done using a simple successive refinement algorithm. 

 

SVM-RFE 

Another version is our implementation of SVM with Recursive Feature Elimination 

(Guyon et al., 2002). It has a parameter k, the number of genes used. The data is first 

rescaled and translated so that each attribute has mean 0 and variance 1 over the 

training data (the parameters are chosen using the training data, and any test data is 

rescaled and translated in the same way). Training proceeds in a number of iterations.  

 

In each iteration: 

• A separating hyperplane is trained using SVM with a linear kernel and the 

default value of C from SVMlight (Joachims, 1998) (some cross-validation 
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experiments suggested that this performed better than the value C = 100 used 

in Guyon et al. (2002), 

• the features (in this case genes) are ranked by the absolute magnitude of their 

corresponding weights in this hyperplane, and 

• the bottom ranking half are deleted. 

 

When the last step would reduce the number of genes to less than k, then instead 

genes are removed from the bottom of the list until k genes remain. This is the less 

computation-intensive of the algorithms proposed by Guyon et al. (2002). It appeared 

impractical to evaluate the more computation-intensive algorithm in a similar way. It 

also appeared impractical to choose C using cross-validation on the training set. 
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3.2.3 Practical Variants of AdaBoost for Expression Data 

In this section, we describe several boosting algorithms customized for expression 

data. Recall that, for comparison, pseudo-code for AdaBoost is given in Fig. 2. 

 
Figure 2. Pseudo-code for AdaBoost applied with decision stumps (adapted 
from Freund & Schapire (1996)). 

 

AdaBoost-VC 

We view AdaBoost-VC as the most theoretically principled variant of AdaBoost that 

we propose. Our design of AdaBoost-VC is guided by the following commonly 

adopted point of view (Vapnik & Chervonenkis, 1971; Vapnik, 1982, 1989, 1995, 

1998; Valiant, 1984; Haussler, 1992). We assume that a probability distribution over 

instance/class pairs is used to generate the training data. We further assume that after 

the algorithm comes up with the classification rule, the instances on which it must be 
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≠ iit yxhi

i iD
)(:

)(  

o Calculate the error ∑
≠

=
iit yxhi

it iD
)(:

)(ε , 

o Set the update factor )1/( ttt εεβ −=  
o Update the distribution: 

 For each i, set 
⎩
⎨
⎧ =

=′+ otherwise        )(
)( if    )(

)(1 iD
yxhiD

iD
t

iittt
t

β
 

 Normalize 1+′tD  to get 1+tD , i.e. for each i, set 
∑ +

+
+ ′

′
=

j
t

t
t jD

iD
iD

)(
)(

)(
1

1
1 , 

o Set the weight 
t

t β
α 1ln= with which decision stump t votes (if 0=tβ , then 

0=tα  and the algorithm can halt) 

• Return the final classification rule: 
⎪⎩

⎪
⎨
⎧

−

>
=

∑∑
−==

otherwise     1

 if         1
)( 1)(:1)(: xht

t
xht

t
ttxh

αα
 



Chapter 3 – Inferring Patterns of Gene Expression  27 
 

applied, together with their correct classifications, are also generated according to the 

same distribution. In the below discussion, it will be useful to consider a collection of 

random variables, one for each decision stump s, that indicate whether, for a random 

instance/class pair ),( yx , it is the case that yxs ≠)( . We will refer to each such 

random variable as an error random variable, or an error for short. Due to the 

reweighting of the examples, the classification rules returned by different invocations 

of the base learner tend to have negatively associated errors, say in the sense of 

(Dubhashi & Ranjan, 1998). Negative association formalizes the idea that a collection 

of random variables tend to behave differently. Boosting promotes this property in the 

error random variables by weighting the examples so that examples on which 

previous decision stumps were incorrect are more important, and thus tend not to be 

errors for future decision stumps. 

 

When the errors of the decision stumps output by boosting are negatively 

associated, all else being equal, adding more voters improves the accuracy of the 

aggregate classifier by reducing the variance of the fraction of voters that correctly 

classify a random instance, making the correct fraction less likely to dip below 1/2 

(this is for a similar reason that adding more independent coin flips reduces the 

variance of the fraction coming up heads - negative association accentuates this effect 

(Dubhashi & Ranjan, 1998)). However, when the errors of the individual voting 

classification rules are unequal, there is a balance to be struck, informally, between 

the diversity of opinion and its quality. In the case in which the errors are exactly 

independent, one can work out how optimally to strike this balance (Duda & Hart, 

1973): it involves assigning weights to the voters as a function of their accuracy, and 

taking a weighted vote. To a first approximation, the weighting of the voters 
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computed by AdaBoost might be viewed as akin to this, but taking some account of 

what dependence there is among the errors. 

 

Intuitively, one would like the errors of the voting classification rules to be 

negatively associated with respect to the underlying distribution generating the test 

data. However, some theory (Schapire & Singer, 1999; Kivinen &Warmuth, 1999) 

suggests that the tendency of the voters in the output of AdaBoost to have negatively 

associated errors is a byproduct of the more direct effect that the voting classification 

rules tend to have negatively associated errors with respect to the distribution that 

assigns equal weight to each of the training examples. 

 

The above viewpoint, that AdaBoost approximates finding a set of 

classification rules with negatively associated errors and then weighting them 

optimally, also suggests that the weights assigned to the voters should be a function of 

their accuracy with respect to the underlying distribution. A special case of this is the 

observation mentioned in the introduction that a voter that is perfect on the training 

data should not vote with infinitely large weight, as is done in the standard AdaBoost. 

 

In AdaBoost, the weight assigned to a voting classifier, and the reweighting of 

the examples after it is chosen, is based on the (weighted) error of the voter on the 

training data. We propose to instead use an estimate of the error with respect to a 

probability distribution over the entire domain. The probability distribution can be 

obtained by (i) starting with the original underlying distribution, (ii) reweighting 

every possible instance/class pair according to the number of previously chosen voters 

that got it wrong in the analogous way as is done by AdaBoost on the training data, 
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and (iii) normalizing the result so that it is a probability distribution (i.e., the 

distribution used in “boosting-by-filtering” (Freund, 1995)). 

 

How to obtain such an estimate? For an individual voter, the weighted error on 

the training data can be viewed as an estimate of the error according to the reweighted 

underlying distribution. However, the estimate is biased by the fact that the voterwas 

chosen to minimize this weighted error. Vapnik (1982) proposed to counteract biases 

like this with a penalty term obtained though a theoretical analysis (Vapnik & 

Chervonenkis, 1971; Vapnik, 1982). Informally, in this case, this analysis provides 

bounds on the difference between the observed error rate of the best decision stump 

and the true error rate with respect to the underlying distribution that hold with high 

probability for any distribution on the instance/class pairs; Vapnik proposed to adjust 

the estimate by adding this bound. Kearns et al. (1997) proposed a variant based on a 

guess of what the result of the tightest possible analysis would be. In our context, if m 

is the number of examples, n is the number of genes, and empε  is the (weighted) 

training error, the estimate obtained is 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++

n
m

m
n emp

emp

ln
11ln εε    (3.2.1) 

(The fact that the estimate is based on a weighted sample weakens the link between 

their recommendation and this application; if the weight is concentrated in a few 

examples, the effective number of examples is less than m. Coping with this in a 

principled way is a potential topic for future research.) The following expression 

matches theory a little more closely (Vapnik, 1982; Haussler, Littlestone, &Warmuth, 

1994; Talagrand, 1994; Li, Long, 

& Srinivasan, 2001) 
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(In short, it has been shown that the mln  term is necessary in the theoretical bounds 

on how accurate the best decision stump can be.) Another issue must be confronted: 

what to do if a classifier returned by the base learner correctly classifies all of the 

data. Even if Eq 3.2.1 or Eq. 3.2.2 is used, since no errors are made, none of the 

weights of any of the examples will change, and the base learner will return the same 

classification rule again the next time it is called, and so on for the remaining number 

of rounds. We get around this by requiring that a given gene can be used in only one 

decision stump. 

 

When we began experimentation with an algorithm that used Eq. 3.2.2 

together with only allowing each gene to appear once, it became immediately obvious 

that the penalty term in Eq. 3.2.2 was too severe: the estimates were immediately far 

above 1/2. However,  Eq. 3.2.2 is based on an analysis concerning a worst-case 

probability distribution. In practice, the “effective” number of genes will be much 

less. In microarray data, this could be because many genes (i) have expression profiles 

similar to other genes, or (ii) are completely unassociated with the class label, and 

therefore present substantially less of a threat to be in decision stumps that fit the data 

well by chance. One could imagine estimating the effective number of genes, for 

example by clustering genes based on their expression profiles and counting the 

number of clusters with members that correlate significantly with the class label. 

Instead of incurring the resulting expense in system complexity and computation time, 

we use the following expression 
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with d as an adjustable parameter. In our experiments, we chose d from among 

}3,,0{ K  to minimize five-fold cross-validation error on the training set. In case of a 

tie, the geometric mean of the values of d attaining the minimum was used. Pseudo-

code for AdaBoost-VC is in Fig. 3. 

 

 
Figure 3. Pseudo-code for AdaBoost-VC. 
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AdaBoost-NR (“no repeat”) 

This algorithm is like AdaBoost, with two changes. First, as in AdaBoost-VC, each 

gene is constrained to be in at most one decision stump. Second, if a decision stump 

correctly classifies all of the training data, its weight is set as if its weighted error on 

the training data was m/1.0 , where m is the number of samples. This is instead of the 

infinite weight given to such a stump by AdaBoost. The choice of m/1.0  is intended 

to have the effect, in most cases, of ensuring that the decision stump has the largest 

weight of those chosen. We evaluated this algorithm to gain insight into the share of 

the improvement seen by AdaBoost-VC that could be attributed to using each gene at 

most once. However, it appears to be a useful algorithm in its own right. 

 

AdaBoost-PL (“piecewise linear”) 

This algorithm is an instantiation of AdaBoost with “confidence-rated” predictions 

(Schapire and Singer, 1999). The classes are designated by 1 and −1, and the base 

classifiers are functions from expression profiles to the continuous interval [−1, 1]. 

When a base classifier h is applied to an expression profile x, the sign of h(x) is 

interpreted as its class prediction, and the magnitude of h(x) is interpreted as its 

confidence in that prediction. 

 

The base classifiers used in our implementation of AdaBoost-PL are 

piecewise-linear generalizations of decision stumps. Note that a decision stump that 

predicts 1 exactly when θ≥ix  can be written as outputting )( iixsign θ− . This is 

replaced with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −

i

ii

c
x
σ
θ

π , where: 

- π  is defined by 
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- iσ  is the standard deviation of feature ix  on the training data, and 

- c is an adjustable parameter, chosen to minimize five-fold cross-validation 

error on the training set (the values in }0.2,0.1,5.0,2.0,1.0,05.0{  were tried, 

and the geometric mean of the values resulting in the minimum error was 

used) 

Similarly, )( iixsign θ−−  is replaced by ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−

i

ii

c
x
σ
θ

π . The base classifier ht of round 

t is chosen in minimize ∑ −
i tiit iDyxh )(|)(| , where the weights )(iDt  of the 

examples are updated as in Schapire & Singer (1999). 

 

Arc-x4-RW (“re-weight”) and Arc-x4-RW-NR 

Since the main problem with AdaBoost on expression data appears to be 

concentrating too much weight on the predictions of decision stumps that do well on 

the training data, an anonymous referee asked whether an algorithm like Arc-x4 

(Breiman, 1998) might be well-suited to such data. Arc-x4-RW is like boosting, 

except: (i) all base classifiers in the final class prediction rule vote with equal weight, 

and (ii) the weight of example i in round t is proportional to 4
,1 tic+ , where tic ,  is the 

number of base classifiers prior to round t that classified example i incorrectly. The 

difference between Arc-x4-RWand Arc-x4 is that, instead of minimizing the weighted 

training error as in Arc-x4-RW, Arc-x4 resamples from the training set m times with 

probabilities proportional to the weights, and minimizes the error on the result. Arc-
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x4-RW-NR, is like Arc-x4-RW, except with the added constraint that each gene 

appears in at most one decision stump. 

 

3.2.4 Evaluation 

Dataset 

Seven datasets were used in our experiments. Six were part of the published version 

of this work: 

• In the well-known ALL-AML dataset (Golub et al., 1999), the task is to 

determine whether a given gene expression profile belongs to an Acute 

Lymphoblastic Leukemia (ALL) tissue or an Acute Myeloid Leukemia (AML) 

tissue. It contains 72 samples (47 ALL, 25 AML), each with expression 

profiles concerning 7129 genes. 

• Liver cancer (HCC) dataset (Neo et al., 2004) with an additional inclusion of a 

matched tumor-normal pair, totaling 76 samples (38 tumor and 38 normal) 

with expression profiles concerning 9050 genes measured with a cDNA 

microarray. Ratios against a universal human reference containing a mixture 

of tissues types were measured, a log transform was applied, and the data was 

normalized so that the average log ratio for each array was 0. 

• Another dataset concerns colon cancer (Alon et al., 1999): again, it contains 

expression profiles for tumor and normal samples. 

• The next two datasets analyze expression profiles of breast cancer samples 

(West et al., 2001) with classes defined by (i) whether the gene responsible for 

estrogen response is being expressed (ER), and (ii) whether the tumor has 

spread to the lymph nodes (LN). 
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• Another dataset (Pomeroy et al., 2002) involves predicting whether a patient 

with a brain tumor survives after treatment. 

• The final dataset (Kuriakose et al., 2004) requires us to predict whether a 

sample is generated from human head and neck normal mucosa or cancer 

tissue. 

 

Aside from the HCC dataset, on which we applied standard preprocessing steps, we 

used all datasets exactly as we found them. 

 

We evaluated all of the algorithms with two constraints on the number of 

genes (k) they used, 10 or 100. For the boosting-based algorithms, this was achieved 

by limiting the number of rounds of boosting to k. The use of k in the algorithms used 

by SVM was described in Section 3.2.2. For each algorithm and each dataset, we 

performed the following steps 100 times and averaged the results: (a) randomly split 

into a training set with 2/3 of the examples and a test set with 1/3 of the examples, (b) 

apply the algorithm on the training set, (c) calculate the error rate on the test set. This 

is similar to what was done by Dudoit, Fridlyand, and Speed (2002); they argued 

persuasively that this is preferable to more standard techniques like k-fold cross-

validation and leave-one-out cross-validation when the goal is to compare the 

performance of different algorithms, since it reduces the variance of the estimates of 

the generalization error rates. We subjected all of the algorithms to the same 

training/test splits, eliminating one source of variance in the estimates of the 

differences between their average training set errors. 
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It is worth emphasizing that feature selection was redone using only the 

training data after each training-test split. Doing cross-validation after feature 

selection can optimistically bias the resulting error estimates dramatically (Ambroise 

& McLachlan, 2002; Miller et al., 2002). Also, whenever an algorithm had 

parameters to set, these were chosen separately for each training-test split, by doing 

cross-validation on the training set only. 

 

Our results are summarized in Table 1. The first observation is that, on the 

ALL-AML and HCC datasets, where there is a strong association between expression 

profiles and class designations, AdaBoost-VC, AdaBoost-NR, and Arc-x4-RW-NR all 

substantially improved on the performance of raw AdaBoost. These algorithms also 

compare well with the two algorithms using SVM on the ALL-AML and HCC 

datasets, and to a lesser extent on the ER dataset, especially when only 10 genes are 

used. 

 

Generally, it appears that as the association between expression profiles and 

class designations grows weaker, the relative performance of the algorithms using 

SVM improves. Arc-x4-RW-NR appears to substantially improve on Arc-x4-RW 

overall. The additional inductive bias in favor of weighting genes equally appears to 

be being rewarded. Note that while AdaBoost-VC reduces the weight associated with 

stumps that perform well on the training data, which has the effect of evening out the 

weights among the stumps, it also reduces the weights of stumps that perform 

moderately well on the training data, in some cases reducing them to nearly zero. 

Thus, overall, the effect of AdaBoost-VC is not necessarily to even out the weights 

among the voters. Arc-x4-RW-NR appears to perform the best overall, though its 
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performance on the ALL-AML and HCC datasets is nearly indistinguishable from the 

performance of AdaBoost-VC and AdaBoost-NR. The similarity in performance was 

also recapitulated in HNC (in particular those based on 100 genes). Taken together, 

these results supported our intuition that a key modification in the application of 

boosting  for expression data involves reduction of reliance to the classification 

performance of the individual decision stump / weak classifier. It is conceivable that 

this rule also apply to other datasets with small number of samples and significantly 

larger number of features. 

 

Algorithm 
Gene 
limit

ALL‐
AML

HCC ER Colon LN Brain  HNC

Adaboost  10 6.2 7.8 19.9 25.3 40.4 42.3  16.8

Adaboost‐VC  10 3.9 5.6 18.1 24.4 43.8 41.1  11

Adaboost‐NR  10 3.5 6 19.5 25.1 42.7 41.2  11.5

Adaboost‐PL  10 7 7.2 20.6 23.4 36.5 41.9  8

Arc‐x4‐RW  10 6.5 8.2 19.8 25 39.1 41.4  11.1

Arc‐x4‐RW‐NR  10 3.3 5.5 17.8 24.7 42.1 40.7  9.7

SVM‐RFE  10 13.4 8.6 20.9 19.2 48.4 39.2  15.6

Wilcoxon/SVM  10 6.4 6.7 23.2 24.3 35.4 39.3  8.2

Adaboost  100 5.2 6.9 16.1 23.4 35.4 38.2  16.6

Adaboost‐VC  100 2.8 4.8 13.8 22.6 42.8 38.2  10.4

Adaboost‐NR  100 2.7 4.9 13.2 21.9 40.6 36.5  9.9

Adaboost‐PL  100 5 5.4 17.2 23.2 36.2 38.6  9.4

Arc‐x4‐RW  100 5.4 7.4 16.6 23.7 36.9 38  12

Arc‐x4‐RW‐NR  100 2.6 4.8 12.8 21.6 41.1 36.1  10

SVM‐RFE  100 6.5 6.7 12.6 20.7 48.1 35.7  11.8

Wilcoxon/SVM  100 3.3 4.1 17.5 23.6 40.4 37.8  7
Table 1. Performance of algorithms for microarray classification. Comparison of 
cross-validation estimates of generalization error percentage of eight algorithms 
on seven microarray datasets. 
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3.3 Friendly Neighbour Method for Identification of Treatment 

Responsive Cassettes 

 

As mentioned earlier in Section 2.3.2, when the activity of a transcription factor T 

could be influenced by external stimulation or perturbation, a more ideal experiment 

to identify direct target genes of the transcription factor would be a timecourse 

experiment, measuring the expression of genes in samples of subjected to the external 

stimulation and contrasting it to those from untreated samples. A handful of 

techniques tailored to exploit temporal information embedded within time-course data 

have been proposed prior to our study. (Park et al., 2003) developed a statistical test 

that extends ANOVA and coupled it with permutation test to arrive at an empirical p-

value for each gene. The CAGED algorithm (Ramoni et al., 2002) models each gene’s 

time-course readings using autoregressive models and progressively merge models, 

two at a time, into single model as long as the resultant model has a higher marginal 

probability. Kasturi et al. (2003) viewed each gene’s time-course profile as a 

probability distribution over time and employed Kullback-Leibler (KL) divergence to 

quantify dissimilarity of the shape of the expression profiles between a pair of genes. 

The utility of constructing and fitting biologically-motivated mathematical models for 

the discovery of important genes in time-course data is illustrated in (Xu et al., 2002), 

where they built a statistical model for a gene’s expression level at each time-point, 

estimated its parameters using the empirical data, and performed significance tests on 

the fitted parameters. Note that many of the time-course specific methods mentioned 

here include a preprocessing step of gene filtering. Again, most employed threshold-

based filtering.  
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Threshold-based filtering assumes that noisy gene profiles in the subjects of 

interest exhibit low expression values or low expression deviations from the control. 

There also exists a different kind of noise in microarray data. If we are to define noisy 

genes as irrelevant genes to the study, then randomly oscillating genes, regardless of 

their absolute or relative expression levels, are in fact noise. Such genes might not be 

weeded out by thresholding. Wilcoxon-Mann-Whitney test does a good job in 

removing such genes for supervised analysis of single time-point multiple-array 

studies. 

 

If randomly expressed genes are basically noise, what then is non-random 

expression pattern that constitutes non-noisy genes? With regard to the data, we can 

define non-random expression patterns as those shared by large groups of genes. In 

time-course data, this means that a gene is significant (or rather, non-noisy) if its 

expression profile across time is shared with a number of other genes. Its significance 

is proportional to the number of genes that share its profile. 

 

3.3.1 Problem Description 

Reformulating the generalized model outlined in the Section 2.3.2, the input 

expression ratio data of N genes/transcripts measured over B time-points is modeled 

in BN ×  matrix: 
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And correspondingly: 

],,[ ,1, Biii xxG K=  , and T
jNjj xxH ],,[ ,,1 K=  
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Where ℜ∈jix ,  is the expression ratio of the ith gene at the jth  timepoint. Gi can be 

viewed as the expression ratio profile of gene i across the measured time-points and 

Hj is the expression ratios within timepoint j. Similar to the goal outlined in Problem 

2.4, the goal here is also to determine the genes that are directly regulated by T. 

Likewise, the direct target attribute is encoded in the matrix ),,( 1 NdddiagD K= , 

where gene i is a direct target if and only if 1=id . Recall that D should actually be 

defined for each time point j. For simplicity, we maintain the assumption that D is 

constant across all timepoints, i.e. DDj j =∀ : . Recall also that we model the net effect 

observed at each timepoint as a mixture of basal signals E dependent on mixing 

matrix F and the direct response indicator D, i.e. )( T
jjjj EDFH = . 

 

Challenges and Observations 

Given that none of the matrices F, D, and E are not known, one might estimate them 

by trying to fit these parameters with sufficient replicates of X. Such a luxury, we 

believe, would be rare for the present moment. In most settings, chances are that there 

is inadequate amount of data for directly solving the matrices F, D, and E. Finding 

proxies for detecting i where 1=id  is more feasible. 

 

In a natural system, it's not inconceivable to expect matrix F to be sparse, for 

instance we expect that each gene should only be affected by a handful of other genes. 

To certain extent, we also expect it to be stable (i.e. 1~ +jj FF ). By stable, here we 

mean that non-zero components in jF  would most likely be non-zero and having the 

same sign in 1+jF , and vice-versa. For example, if a feature j is truly affected by (and 
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let's say positively propotional to) i at one time point, we expect j to be similarly 

influenced by (and positively proportional to) i at other time points. In the following 

discussion, we will also assume that only a single replicate of X is available. 

 

3.3.2 Unsupervised Algorithms 

Problem 2.4 calls for ranking algorithms that require no training examples. We list 

here potential unsupervised approaches that could be employed to detect the direct 

responders. 

 

Statistical ranking 

By making some reasonable hypotheses or expectations, one can easily compute a 

statistics and use it to rank the features based on their likelihood of being direct 

responders. 

Such methods include: 

• Deviations of the means. Recall that X gives the net effect, due to factor T, 

measured on the system. For the unresponsive features u, it's not unreasonable 

to expect their net effects to be around zero or, in other words, the mean of 

0≈uG . Further, since we assume that jD  is constant and 1~ +jj FF , direct 

responders i can be expected to yield a mean that deviates substantially from 

zero. Statistical tests that assess whether the mean of a given set of values is 

zero, such as t-test and wilcoxon rank sum test (Mann and Whitney, 1947; 

Wilcoxon, 1949), are clearly applicable. 

• Dynamics of the net effect. Still assuming that only the non-responsive 

features have near-zero values, we can exploit the observed dynamics of the 

net effect values. Among them would be to base the ranking of the features on 
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the maximum magnitude of the response (i.e. |)(|max , jij
x ), the variance, or 

the range of the values (i.e. |)(|min|)(|max ,, jijjij
xx − ). Each of these carries 

the expectation that significantly deviating genes are the responsive ones. 

 

Clustering based 

Clustering algorithm, a powerful tool for data mining and explorations, might also be 

used to generate putative ranking of features. As is, clustering outputs are meant for 

investigating relationship between examples, with respect to the underlying similarity 

measure. The resultant clusters are not directly translatable to ranking or ordering of 

the clustered items, unless certain assumptions are made. For this problem, 

responding features can be reasonably assumed to form tight (i.e. having a good 

similarity) and sizeable clusters. Hence, given a hierarchical clustering of the features, 

a putative order of response can be generated by giving a higher ranking to features 

that fall in a tighter and larger cluster. 

 

3.3.3 Supervised Algorithms 

Although problem 2.4 is naturally unsupervised, the identity of some direct 

responders might have been uncovered from other means. This is useful for both (i) 

ranking of other features that yet to have their nature determined and (ii) evaluating 

the putative ranking generated by unsupervised approaches. Listed below are a couple 

of potentially useful supervised algorithms for identifying direct responders. 

 

SVM based 

The widely successful and generic classification algorithm Support Vector Machine 

(Vapnik, 1995) treats examples as vectors and classifies (or predicts the label of) a 
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new example based on the sign of its distance (see Eq. 3.3.1) to the separating 

hyperplane, which was learned from the training examples. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑

∈SuppVectori
iii GGKybsignGy ),()( λ   (3.3.1) 

 

For the purpose of ranking, we can base the ranking on the raw distance to the 

hyperplane. Assuming that the direct responders are assigned positive labels, G can be 

ranked on descending )(' Gy , where 

∑
∈

+=
SuppVectori

iii GGKybGy ),()(' λ    (3.3.2) 

 

k-NN based 

The application of the k-Nearest Neighbour (kNN) algorithm for ranking is also 

straightforward. Given a previously unseen example, instead of predicting its label 

based on the dominant labels of its k-nearest neighbours, we can order the unseen 

examples, G, based on the number of positive examples among the k-nearest known 

examples of each unseen example. 

 

3.3.4 Friendly Neighbour Approach 

Motivation 

When only direct responses are assumed to be present in the system, the matrices F 

and D are both reduced to identity matrices, making jj EH = . The problem can be 

then easily solved by identifying non-zero ie  in iE , while controlling for noise 
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and/or minimizing fitting error1. Presence of indirect responses, although 

confounding, can be exploited to help the identification of direct responses. 

 

The constraint described in section 2.3.2 states that direct responders are only 

influenced by themselves (if 1=id  then jif ji =⇔= 1, ). Unless otherwise stated, 

for simplicity, we also assume that the direct targets influence indirect target in the 

same direction, i.e. 0:, , ≥∀ jifji . 

 

 The expectation that the matrix F is relatively sparse (see Section 3.3.1) 

means that an indirect responder j has only a handful of direct responders, 

}10|{ , =∧≠= ijij dfiA , affecting it, while the stability hypothesis implies that Gj 

and Gi, where jAi∈ , should be tangibly similar. Clearly, most (if not all) direct 

responders would then possess a sizeable number of other features that are similar. 

 

Main algorithm 

To exploit the interaction between the direct and indirect responders, we introduce the 

notion of friendly. Two features i and j are called to be friendly, under a given 

similarity function ),( YXsim , if ),( ji GGsim  is above a certain threshold θ . For 

each feature i, its Friendly Neighbor score can then be defined as the total number of 

features that are friendly to it, or: 

 

}),(|{)( θ>= jiscore GGsimjiFN   (3.3.3) 

                                                 
1 Recall that matrix X gives the changes in the measured values due to external factor T. Hence, ideally, 
all non-zeros are caused by T. If we then assume that only direct responders are present, all non-zeros 
are then direct responders. 
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To identify the direct responders, the features can be ranked based on decreasing 

order of their FNscore. In the settings of gene expression, the FNscore(i) measure the 

number of genes that are similar to gene Gi. The higher the score the more probable 

that the feature i responses directly to T. 

 

Similarity measures 

The calculation of FNscore relies on the underlying similarity function ),( YXsim , 

where ],,[ 1 nxxX K=  and ],,[ 1 nyyY K= . An appropriate similarity function 

should exploit and leverage on the underlying nature of the data being investigated. 

Several useful similarity measures (including those described in (Karuturi and Vega, 

2004) are: 

 

Sign Match (SM) The sign match similarity function, ),( YXSM , counts the 

number of features corresponding elements of vectors X and Y whose signs 

agree. Let's first define a step function: 

⎩
⎨
⎧

≤
>

=
0 if     0
0 if      1

)(
a
a

aσ  

Hence, ∑ ×=
i

ii yxYXSM )(),( σ . For uniformity, the similarity score is 

normalized to be a real value between 0 and 1. The refined sign match 

similarity function is thus: 

∑ ×=
i

ii yx
n

YXSM )(1),( σ  

Longest Consecutive Sign Match (LCSM) The above simple sign match similarity 

assumes that elements of the vectors are completely independent of each 
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other. If the elements of the vectors are ordered in some meaningful manner 

(e.g. in temporal order, just like the settings for problem 2.4) and suppose 

that consecutive consistent behaviour is desirable, we might opt for a stricter 

measure that prefer consistency or continuity across consecutive elements. 

The longest consecutive sign match intends to capture the most persitent sign 

agreement between vectors X and Y. It considers the longest stretch of sign 

agreements as the representative “consistent” similarity between two vectors. 

),( YXLCSM can be calculated as: 

ii
wYXLCSM max),( = , where 

)1)((:],1[ 1−+×=∈∀ iiii wyxwni σ  and 00 =w  

This similarity score is also normalized such that 1),(0 ≤≤ YXLCSM  by 

using the alternative formula ii
w

n
YXLCSM max1),( = . 

Weighted Consecutive Sign Match (WCSM) The sign agreement based similarity 

can be further generalized into what we call the weighted consecutive sign 

match. In this framework, consecutive matches are given bonuses. The bonus 

is proportional to a constant Δ , while mismatches reduce accumulated the 

bonus score. The similarity score can then be formulated as: 

∑ +×=
i

iii wyxYXWCSM )1)((),( σ , where 

( )0),1)(2(max:],2[ 111 −×Δ+=∈∀ −−− iiii yxwwni σ  and 01 =w  

 

The normalized score can also be calculated by dividing the raw score by the 

maximum possible score: 
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Pearson Correlation (PC) Pearson Correlation is one of the widely used similarity 

function. It characterizes the linear relationship between the two vectors. The 

score ranges from +1 to -1, representing perfect positive linear correlation to 

perfect negative linear correlation. It is computed by: 
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Normalization of the correlation, into ]1,0[),( ∈YXPC , is also 

straighforward. We might choose not to normalize it, so as not to lose the 

intuitive interpretation of the score. 

 

3.3.5 Evaluation 

Dataset 

For evaluation purposes, we shall use the microarray data from (Lin, Vega, et al., 

2004), which was generated as part of the effort to identify genes regulated by 

estrogen receptor. Estrogen receptor (ER) is a nuclear hormone receptor, and a 

transcription factor, that gets activated by estrogen or E2, an estrogen agonist. The 

data were obtained by hybridizing human cell lines that have received and have not 

received (to act as the control or baseline) E2 treatment into microarrays containing 

~18,000 genes, i.e. 000,18≈N . This was done across 16 timepoints (i.e. B=16), 

namely from 1 to 8 hours after treatment with an hour intervals and from 10 to 24 

hours with two hours intervals. Computational analysis of this set is hoped to produce 

a list of genes that are directly responsive towards estrogen. Biological 
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experimentations are no doubt still required to confidently ascertain the response of 

the genes. 

 

After the initial publication of our work, a list of ~370 experimentally 

determined ER responsive genes was subsequently published as in the Estrogen 

Responsive Genes Database (ERGDB; Tang et al., 2004). Although timecourse data 

is somewhat abundant, such accompanying list of direct targets is quite rare. In our 

experiments, this list acts as the list of positives (i.e. genes that are directly regulated 

by estrogen). Note that absence from the list does not immediately translate into a 

gene being a real negative. We can only say that those genes not in the list are 

putatively negative. For simplicity, however, we assume that they are negatives. 

 

Experimental setup 

The matrix X was obtained by taking the log of the expression ratios between the 

treated versus untreated cell lines. From this 16000,18~ ×  matrix, our task is to 

identify the genes that are directly regulated by estrogen. During our preliminary 

analysis, we observed that timepoints 4 and 5 exhibit unusual behaviours, including 

significant presence unsually high log-expression ratio values. Depending on the 

nature of the algorithm, excluding them might be beneficial. In our experiment runs, 

we tested both with and without these timepoints. 

For performance measure, we opt to plot the ROC curves obtained from each 

of the methods. The area under the ROC curves (AUC of ROC curves) provides a 

quick and useful measure for comparing different ordering of genes. The (normalized) 

AUC value ranges from 0 to 1, where 1 signifies the perfect ranking and 0.5 indicates 

ranking that could be due to chance alone. 
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Unsupervised approaches 

For this microarray expression data we experimented with the friendly neighbor 

method, statistical ranking approaches, and a clustering based ranking procedure as 

discussed above. In applying the friendly neighbour approach, three different 

similarity measures were employed: sign match, longest consecutive sign match, and 

Pearson correlation. The ranking based on hierarchical clustering output is done as 

described in Section 3.3.2, using Pearson correlation, as the similarity function, and 

average linkage clustering. Note that the output of a hierarchical clustering is, to some 

extent, depending on the order of the dataset. To remove this bias, we scrambled the 

ordering of the genes in the input before clustering them. This was done five times, 

and the average of the performance is reported. 

 

 

Supervised approaches 

The list of known and verified estrogen responsive genes allows us to experiment 

with supervised algorithms, serving as both a comparative “ideal performance” for 

unsupervised algorithms as well as to gain insight on the nature of the data. For this 

SVM-based and kNN-based rankings were employed. Both SVM and kNN has been 

shown to work reasonably well on microarray data. We use the SVMlight (Joachims, 

1998) implementation of SVM, and -unless stated otherwise- the default settings of 

the parameters were kept. Several kernels were applied, namely linear kernel, 

polynomial kernel, and the radial basis function (RBF) kernel. Pearson correlation is 

used as the similarity measure for k-NN. 
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In our evaluation, we performed the following steps 100 times and the average 

performance was reported: 

a) split the dataset into a training set, with 2/3 of the examples, and a test set, 

containing 1/3 of the examples, 

b) use the training set to train the classifier, and 

c) measure its performance on the test set. 

 

Unsupervised Algorithm E2 Complete E2 Excluding time 4 & 5 
FN (SM, θ=0.75) 0.701 0.722
FN (SM, θ=0.80) 0.704 0.723
FN (SM, θ=0.85) 0.710 0.723
FN (SM, θ=0.90) 0.701 0.719
FN (SM, θ=0.95) 0.669 0.700
FN (SM, θ=1.00) 0.668 0.699
FN (LCSM, θ=0.65) 0.638 0.667
FN (LCSM, θ=0.75) 0.623 0.696
FN (LCSM, θ=0.85) 0.673 0.698
FN (LCSM, θ=0.95) 0.665 0.701
FN (LCSM, θ=1.00) 0.675 0.703
FN (PC, θ=0.25) 0.645 0.723
FN (PC, θ=0.50) 0.638 0.727
FN (PC, θ=0.75) 0.679 0.725
FN (PC, θ=0.95) 0.705 0.721
FN (PC, θ=1.00) 0.494 0.485
T-test 0.489 0.464
Wilcoxon rank-sum test 0.424 0.409
Maximum of absolute 0.533 0.586
Variance 0.539 0.601
Dynamic range 0.528 0.587
Hierarchical Clustering-based 0.578 0.411

Table 2. The performance of unsupervised algorithms for detecting estrogen 
responsive genes, measured by calculating the area under the ROC curves. The 
Friendly Neighbour (FN) approach employed normalized sign match (SM), 
normalized longest consecutive sign match (LCSM), and Pearson Correlation 
(PC). The thresholds were varied to observe their effect to the performance. For 
comparison, statistics-based and clustering-based ranking were performed. The 
hierarchical clustering used pearson correlation and average linkage. 
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Results 

Unsupervised algorithms 

Table 2 gives the performance results for each method. Evidently, the Friendly 

Neighbour methods consistently showed a good performance. Note that the Pearson 

correlation measure used here is not normalized (i.e. it ranges from -1 to 1). Hence a 

threshold of 0.5 in PC roughly corresponds to a threshold of 0.75 under a normalized 

similarity function. Ignoring the fourth and fifth timepoints benefit algorithms that are 

based on FN and that make use of the dynamics of the expression ratios. This 

indicates that timepoint 4 and 5 are somewhat erroneous. 

 

  
(a)      (b) 

  
(c)      (d) 

Figure 4. ROC curves for (a) non-FN unsupervised algorithms, (b) FN with sign 
match, (c) FN with longest consecutive sign match, and (d) FN with Pearson 
Correlation. Among the unsupervised methods, FN with SM/LCSM consistently 
showed good performance. FN with PC is somewhat sensitive to the threshold, 
which can be observed more clearly in Fig. 5. 

 



Chapter 3 – Inferring Patterns of Gene Expression  52 
 

Figures 4a to 4d show the actual ROC curves for the different unsupervised 

methods and FN-based methods using different similarity measures, under various 

thresholds. Overall, the FN-based rankings offer the best and stable performance. 

Care must be taken when using FN with Pearson correlation, as it seems that the 

performance is affected rapidly as the threshold is nearing 1 (see Fig. 5). 

 
Figure 5. Area under the ROC curves for different threshold settings for Friendly 
Neighbour with Pearson correlation as the similarity measure. 

 

Supervised algorithms 

The results of the two classification algorithms are about the same (see Table 3). Both 

the k-NN and SVM (under various settings) reported a performance of around 0.75 

(AUC of ROC). Under SVM, a cost factor ratio (between making errors on positive 

examples to making errors on negative examples) of 60 seems to work well. This is in 

line with the actual fact that negative examples are roughly 60 times more than the 

positive ones. Inclusion or exclusion of the two noise timepoints (the fourth and fifth) 

appear to have non-significant and non-consistent effect to the performance of the two 



Chapter 3 – Inferring Patterns of Gene Expression  53 
 

classification algorithms. The steady results made under various k for k-NN hinted 

that the positive examples are somewhat proximal to each other. 

Supervised Algorithm E2 Complete E2 Excluding time 4 & 5 
SVM (linear, j=1)  0.706 0.681 
SVM (linear, j=30)  0.764 0.763 
SVM (linear, j=60)  0.765 0.765 
SVM (linear, j=90)  0.756 0.759 
SVM (linear, j=100)  0.750 0.755 
SVM (linear, j=150)  0.649 0.638 
SVM (RBF, γ=0.25, j=1)  0.746 0.746 
SVM (RBF, γ=0.25, j=60)  0.754 0.775 
SVM (RBF, γ=0.5, j=60)  0.746 0.739 
SVM (RBF, γ=1, j=60)  0.739 0.741 
SVM (RBF, γ=2, j=60)  0.739 0.749 
SVM (RBF, γ=4, j=60)  0.738 0.741 
SVM (Poly d=2, j=1)  0.746 0.745 
SVM (Poly d=2, j=60)  0.756 0.756 
SVM (Poly d=3, j=60)  0.763 0.747 
SVM (Poly d=4, j=60)  0.764 0.753 
SVM (Poly d=5, j=60)  0.766 0.756 
kNN (k=1)  0.715 0.705 
kNN (k=3)  0.721 0.729 
kNN (k=5)  0.734 0.734 
kNN (k=7)  0.74 0.733 
kNN (k=9)  0.741 0.742 
kNN (k=15)  0.748 0.752 
kNN (k=21)  0.746 0.745 

Table 3. Performance of the supervised algorithms, under various settings. 
Three types of kernel were used. To compensate for the lack of positive 
examples (only ~370 of ~18,000 genes are known to be responsive), their 
importance is elevated (through parameter $j$). Overall, the performance of 
supervised algorithms is good, about 0.75 on the average. 

 

As expected, supervised algorithms outperformed unsupervised algorithms. It is 

worth to note, nevertheless, that the friendly neighbour methods' performance tops 

those among other unsupervised approaches and is still comparable to the supervised 

ones. Performance increase for unsupervised algorithms can be expected if we 

combine multiple approaches. Additionally, we have also showed that the FN 

framework can be applied for the detection of cell-cycle regulated genes (Karuturi and 

Vega, 2004).  
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Chapter 4 

Inferring Regulatory Signals in Genomic Sequences 

 

4.1 Overview 

 

As described in Section 2.4, with regard to deciphering regulatory signals in the 

genome, we focused on the recent development of high-throughput sequencing-based 

localization of TF-DNA interaction sites, in particular towards a comprehensive 

analysis of data generated using the Chromatin-ImmunoPrecipitation (ChIP) Paired-

End diTagging (PET) approach (Wei et al., 2006) developed within the Genome 

Institute of Singapore. Briefly, the ChIP-PET protocol couples enrichment of DNA 

fragments involved in TF-DNA interactions (through a ChIP assay) with efficient 

sequencing of the fragments’ ends. 

 

The Chromatin Immuoprecipitation (ChIP) assay (see also Section 2.1.2), a 

powerful approach to study in vivo protein-DNA interactions, consists of five major 

steps: (i) cross-link the DNA binding proteins to the DNA in vivo, (ii) shear the 

chromatin fibers (using sonication or otherwise) to a certain range of fragment size, 

(iii) immunoprecipitate the chromatin fragments using specific antibody against given 

protein targets, (iv) reverse the cross-linking of protein-bound DNA, and (v) analyze 

the ChIP enriched DNA fragments. These DNA fragments can then be profiled using 

low throughput methods, e.g. real-time qPCR, as well as high throughput approaches, 

such as hybridization-based ChIP-chip analysis (Iyer et al., 2001; Ren et al., 2000; 
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Horak et al., 2002; Weinmann et al., 2002) or direct DNA sequencing, as mentioned 

in Section 2.4. 

 

The sequencing approaches have their advantages over the hybridization-

based approaches by elucidating the exact nucleotide content of target DNA 

sequences. In a ChIP-PET experiment, 5' (18bp) and 3' (18bp) signatures for each of 

the ChIP enriched DNA fragments were extracted and joined to form the paired end 

tag structure (PET or ditag) that were then concatenated for efficient sequencing 

analysis. The PET sequences were then mapped to the reference genome to infer the 

full content of each of the ChIP DNA fragments. As such, the paired-end sequencing 

has the benefit being able to determine the genomic source of a fragment without 

sequencing the fragment in its entirety. Thus allowing much more fragments to be 

sequenced and inspected. Figure 6 illustrates the typical processes in the construction 

of a ChIP-PET library. 

 

 
Figure 6. A schematic of typical stages in the construction of a ChIP-PET library. 
Cross-linking “freezes” the chromatin configuration, including TF interaction with 
DNA. Sonication cuts the DNA into much manageable fragments. The 
immunoprecipitation (IP) stage captures fragments cross-linked with the desired 
TF. Reverse cross-linking frees the DNA fragments, which are then sequenced 
at their two ends. The sequenced ends are then mapped into the reference 
genome. The mapped ditags (or PETs) are then clustered. 
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We addressed five issues in our study: (i) conducting preliminary assessment 

on the quality of a given library, (ii) constructing a better model of ChIP fragment 

lengths, (iii) modeling of ChIP fragment distribution in the whole-genome, (iv) 

identifying the true transcription factor binding regions, and (v) minimizing the effect 

of aberrant genome. All these were carried out in the context of ChIP-PET data, 

although the techniques and approaches were definitely general enough to be applied 

for data generated using other platforms. 

 

4.2 Initial Assessments of ChIP-PET Library 

4.2.1 Sequencing Saturation Analysis 

The appeal of ChIP-PET (or other htsChIP protocols) comes from the potential of 

being able to map transcription factor binding sites in an unbiased manner across the 

whole genome. Prior to analyzing any given ChIP-PET library in depth, the first 

question to ask is whether we have collected enough fragments to be confidently say 

that we have a complete genome-wide coverage or, at the very least, to know the 

caveats and limitations of the given library when pursuing further analyses. We want 

to know the fragment sampling has reached a certain saturation level (given the 

experimental and technological limitations). That is to say, we want to assess how 

much information would extra sequencing add to the current library. If the library is 

fully saturated, extra sequencing should only replicate the already known useable 

information. In this analysis, the usable information is uniquely mapped PET 

fragment. Figure 7 reviews the processing stages involved in the ChIP-PET mapping 

pipeline. The uniquely mapped PET fragment is obtained at the end of this pipeline. 
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Figure 7. Four stages in PET mapping. Partially adapted from (Chiu et al., 
2006). Sequenced ditags are first group into unique tags, based on sequence 
similarity. These unique tags are then mapped to the genome and further 
grouped based on location. 

 

We used the Hill function (Hill, 1910) to model the growth of usable 

information (i.e. uniquely mapped fragment) as a function of total sequences 

produced. The Hill function has been shown to be useful in modeling dynamics of 

gene expression level (Alon, 2006; Kuznetsov et al., 2002). The exact formula for 

Hill function is: 

 

bb

b

xc
axxf
+

=)(      (4.2.1) 

 

Where x is the total number of PETs sequenced (i.e. the size of “Sequenced Tags” 

input in Fig. 7), )(xf  is the number of unique locations recovered (i.e. the size of 

“Unique Locations” output in Fig. 7), a is the maximum number of recoverable 

unique location in the library, and b and c are positive constants. To estimate the 

saturation level of a given library, we perform the following steps: 

 
Sequenced Tags 

 
Unique Tags 

 
Mapped Tags 

 
Unique Locations 

Sequence 
Grouping 

Mapping Location 
Grouping 
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1. If chronological sequencing data is available, generate an empirical curve of 

the number of total unique location obtained (y-axis) as a function of total 

number of PETs sequenced (x-axis). If not, progressively sample the library 

(without replacement) to construct the empirical curve. 

2. Fit the Hill function to empirical curve. In our implementation, we make use 

of the nonlinear least-squares Marquardt-Levenberg algorithm (Bates and 

Watts, 1988) to perform the fitting. 

3. Report the fraction of total unique location observed divided by the estimated 

maximum (a) as the saturation level of the library. Estimation done without 

chronological sequencing data is estimated as the average of multiple runs 

(typically 100 runs). Note that in practice, the fitting sometimes required 

manual intervention (in terms of adjusting the initial values), for example 

when local minima were reported and visual inspection showed erroneous 

fitting. 

 

Figure 8 shows an example of such Hill function fitting to assess the saturation level 

of the ER ChIP-PET library (Lin et al., 2007). 
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Figure 8. Saturation analysis of the ER ChIP-PET library. Fitting of Hill function 
(green curves) to the empirical chronological sequencing data (red curve) 
showed that the ER ChIP-PET library reached 73.23% of the saturated level. 

 

Ideally, such saturation analysis should be embedded into the automated 

pipeline of ChIP-PET library construction. This would allow feedback into the system 

should the saturation is not sufficient. We noted two weaknesses of the current 

saturation estimation procedure that inhibit its incorporation into the automated 

pipeline, namely: (i) the need of manual intervention during the fitting process, and 

(ii) the time taken for running multiple fittings should chronological data be missing. 

Even with presence of chronological data, a considerable manual manipulation of the 

data was still needed, due to file formats and other issues. Observing that saturation is 

essentially a measurement of multiplicity, i.e. the number of sequenced PETs that 

identify a unique location, we developed the Multiplicity Index to roughly gauge the 

relative saturation level across different libraries. Multiplicity is created when two or 

more PETs are merged or grouped into one. Such merging happens twice in the 

mapping pipeline (see Fig. 7): (i) grouping of Sequenced Tags into Unique Tags, and 
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(ii) merging of Mapped Tags into Unique Locations. We define Multiplicity Index 

(MI) as: 

 

BAMI ×=      (4.2.2) 

ulocmtagB
utagstagA
/

/
=
=

 

Where stag, utag, mtag, and uloc are the number sequenced tags, unique tags, mapped 

tags, and unique locations respectively. The ratio between stag and utag, i.e. A, can be 

viewed as the multiplicity factor obtained during sequence clustering. The ratio 

between mtag and uloc, i.e. B, can be viewed as the multiplicity factor achieved after 

PET mapping. The MI is then the geometric average of the two multiplicity factors. 

 

Using seven ChIP-PET libraries (p53 ChIP-PET (Wei et al., 2006), ER ChIP-

PET (Lin et al., 2007), Oct4 ChIP-PET (Loh et al., 2006), Nanog ChIP-PET (Loh et 

al., 2006), Sox2 ChIP-PET (data unpublished), PPARγ ChIP-PET (Hamza et al., 

under review), RXR ChIP-PET (Hamza et al., under review)), we estimated their 

saturation levels as described earlier and computed their Multiplicity Indices (see 

Table 4). We observed that the two values were significantly correlated (Pearson’s r = 

0.9516; p-value 9.64e-4). This correlation means that we can use the Multiplicity 

Index to give a rough indication of the saturation level of the library. Note however 

that the Multiplicity Index is a relative indicator which could not be directly translated 

into saturation level. 
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Library  Saturation  Multiplicity Index  

p53  79.466%  2.40141 

ER  73.233%  1.82667 

PPARγ  62.684%  1.78874 

RXR  65.204%  1.77775 

Oct4  27.964%  1.18124 

Sox2  27.541%  1.16744 

Nanog  19.641%  1.12613 

Table 4. Comparison of estimated saturation level and Multiplicity Index (MI). 
Multiplicity Index correlates well with the estimated saturation. However, their 
direct mathematical relationship is not apparent.  

 

4.2.2 Modeling ChIP-PET Fragment Length 

The characterization of both ends in the ChIP-PET protocol offers an additional 

advantage of being able to precisely model the distribution of ChIP fragment. ChIP 

fragment length is an important parameter in analyzing genome-wide ChIP library 

(see Sections 4.3 and 4.4 below, and (Qi et al., 2006)). Qi et al. (2006), who used the 

fragment length in construction the “influence function” that models the spread of 

signals from a given binding site to its surrounding, suggested modeling the fragment 

length as a Gamma distribution. Using ChIP-PET libraries, we can assess the 

accuracy of this model. For a given ChIP-PET library, we fitted the Gamma fragment 

length model by first constructing a frequency histogram of ChIP-PET lengths based 

50bp bins and fitting the Gamma distribution to the empirical distribution using the 

nonlinear least-squares Marquardt-Levenberg algorithm. Manual intervention in terms 

of adjusting the initial values was done whenever necessary. Figure 9 shows the best 

Gamma fitting for six ChIP-PET libraries (p53, ER, Oct4, Sox2, Nanog, and NF-κB 

(Lim et al., 2007)). 



Chapter 4 – Inferring Regulatory Signals in Genomic Sequences 62 
 

  
(a) p53      (b) ER 

 

  
(c) Oct4      (d) Sox2 

 

  
(e) Nanog      (f) NF-κB 

 
Figure 9. Fitting Gamma distribution to ChIP fragment length. The x-axis and y-
axis represent the fragment length and the fraction of fragments having certain 
length. Although the fragment distribution of p53 ChIP-PET library (a) was 
reasonably good, Gamma distribution could not fit the other five libraries: (b) ER, 
(c) Oct4, (d) Sox2, (e) Nanog, and (f) NF-κB. 
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Gamma distribution appeared to fit the fragment size distribution from the p53 

ChIP-PET library reasonably well. However, when fitted on the other five libraries’ 

fragment lengths, Gamma distribution could not model them well, even after manual 

intervention attempts. 

 

Normal-Exponential Convolution 

We observed that the Gamma distribution underestimated the amount of short length 

fragments (100-300bp) while overestimated the proportion of medium length 

fragments (600-1500bp). It seemed that there were intense accumulations of short 

fragments. If the genome was truly sheared randomly through the sonication process 

and that all nucleotides in the genome were equally likely to be shear, then in fact the 

length distribution is expected to follow an exponential distribution. Gamma 

distribution, ),( csG , allows an additional flexibility of not having all points equally 

probable to serve as the shearing point, but it still imposes a uniform mean distance 

(characterized by the scale parameter c) between shearing points and/or muted-

shearing points and expects a fixed number of muted-shearing points between 

shearing points (reflected by the shape parameter s). 

 

 Plots in Fig. 9 suggest that there is a kind of minimum fragment length where 

the probability of obtaining fragments shorter than that is significantly and rapidly 

decreasing. This notion was also reflected in the EMSA gel-shift images produced 

from the ChIP fragment (data not shown; obtained from colleagues at the Genome 

Institute of Singapore). The images showed a kind of thick band around the shorter 

end of fragment lengths. We postulated that in addition to the random shearing points, 

there are “unbreakable regions” or “atomic sizes” of fragments that prevent the 
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fragments from being sheared below certain lengths. The in-between regions, on the 

other hand, are sheared randomly. Figure 10 illustrates our proposed model. 

 

 
Figure 10. DNA shearing model with “atomic” units. This model takes into 
account the observed increase proportions of fragments with certain length.  

 

While it is hard to ascertain the true origin of such atomic units, several 

sources are possible. This “atomic units” could be caused by the underlying biological 

constructs and structure, for example: the region could be “protected” by some protein 

complexes (e.g. nucleosomes or the transcription factors complexes). It could also be 

that the pseudo atomic length was an artifact of the limit of the shearing technology. 

 

Under the new model, the length of a ChIP fragment is the sum of the atomic 

unit plus the distances between random shearing points. Since the shearing points are 

now assumed to be completely random, i.e. on the non-“atomic” region, the distance 

distribution should follow the exponential distribution (parameterized by the rate λ ). 

Further, it is reasonable to assume that the size of these atomic units follows the 

normal distribution (with mean μ  and standard deviation σ ). The probability of a 

ChIP fragment having a length x-bp is ),,;( λσμxf  where it is a convolution of the 

normal and exponential distributions, as follow: 

);(),;(),,;( λσμλσμ xExpxNxf ∗=  

 

Genome 

Expected length = expected size of “atomic” unit + random breakage distance 
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Expanding further: 
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Hence, the probability density function for the ChIP fragment length under the new 

model is: 
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Where )(xerf  is the error function. 

 

Evaluation of the ChIP Fragment Length Model 

To evaluate our proposed model, we took the same six ChIP-PET libraries and 

similarly fitted the Normal*Exponential distribution to 50bp binned histogram of 

ChIP-PET lengths using the nonlinear least-squares Marquardt-Levenberg algorithm. 

The fitted parameters are tabulated in Table 5 and fitted curves are shown in Fig. 11. 

The proposed Normal*Exponential distribution were able to model the ChIP-PET 

fragment lengths of the six libraries very well and generally much better than the 

Gamma distribution (Fig. 9). Interestingly, we observed in the fitted parameters for 

the atomic unit that the mean (μ) was around one nucleosome (~146bp) and the 

overall size of the atomic unit is around one or two nucleosomes, supporting the 

hypothesis that nucleosome structure might play a part in protecting a region from 

being sheared. 

Library μ σ 1/λ 

p53  197.3 136.01 437.8284

ER  133.9 51.74 452.9234

Oct4  131.4 55.14 408.4967

Sox2 159.2 57.86 262.3102

Nanog 191.8 73.25 440.7616

NF-κB 132.5 50.91 192.3232
Table 5. Parameters of Normal*Exponential distribution fitted to PET fragment length. 
The mean (μ) and standard deviation (σ) of the atomic unit seemed to fluctuate around 
the size of one to two nucleosomes. 1/λ was tabulated for the exponential part to give a 
sense of the average distances between random shearing points. 
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(a) p53      (b) ER 

 

  
(c) Oct4      (d) Sox2 

 

  
(e) Nanog      (f) NF-κB 

 
Figure 11. Curves of fitted Normal*Exponential distribution to ChIP fragment 
length. The x-axis and y-axis represent the fragment length and the fraction of 
fragments having certain length. Six libraries were used: (a) p53, (b) ER, (c) 
Oct4, (d) Sox2, (e) Nanog, and (f) NF-κB. The Normal*Exponential distribution 
had better fit better than the Gamma distribution (see Fig. 9). 
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4.3 Modeling Genome-Wide Distribution of ChIP Fragments 

4.3.1 Problem Description 

The ChIP experiment involves numerous factors that influence the quality and 

properties of the resultant libraries. The factors include: (i) number of actual bound 

regions, (ii) number of fragments sequenced, (iii) the quality of ChIP assay, (iv) size 

of the genome, and (v) fragment lengths. Note that a number of these factors are 

typically not directly measured in the context of htsChIP experiment. We asked 

ourselves whether we could provide some quantification on some of the unmeasured 

factors based on the available information, in particular the total number of TF-bound 

regions and a sense of ChIP enrichment strength. 

 

Problem 4.1 (Parameterizing ChIP-PET Library) Given a ChIP-PET library of T ditags mapped to a G-

bp long reference genome, estimate the total number of binding regions and the signal strength of the 

underlying ChIP assay, in terms of ChIP enrichment over control. 

 

4.3.2 A Mathematical Model of ChIP-PET Library 

Let T be the number of ChIP fragment sequenced and uniquely mapped to the 

reference genome of length L basepairs. Assume as well that the fragments are around 

k-bp in length. Let’s suppose that we bin the genome into B bins of equal lengths (say, 

v-bp), and that the T PETs are distributed across these B bins. If the T fragments are 

completely random and their distribution is completely unbiased, then the distribution 

of number of PETs per bins (=X) should follow the Poisson distribution: 

 

)|(Pr),|(Pr B
T

poisbackg XTBX == λ    (4.3.1) 
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Now, let ]1,0[∈ξ  be the fraction of B bins that contain binding sites and 

]1,0[∈α  be the fraction of ChIP fragments that were bound by the relevant 

transcription factor. Among the )*( Bξ bins, the PET accumulation rate is influenced 

by both the randomly distributed T)1( α−  fragments distributed across B bins and by 

Tα fragments distributed exclusively among )*( Bξ  bins as well. Thus: 

∑
=

−=−===
x

i
B

T
poisB

T
poisbound ixiTBxX

0

)1( )|(Pr*)|(Pr),,,|(Pr α
ξ
α λλαξ      

(4.3.2) 

and 

)|(Pr),,|(Pr )1(
B

T
poisnonbound XTBX αλα −==     (4.3.3) 

taken together 

),,|(Pr)1(),,,|(Pr),,,|(Pr αξαβξαξ TBXTBXTBX nonboundbound −+=     

(4.3.4) 

 

Modeling non-uniform IP enrichment 

The probability function above (Eq. 4.3.4) for computing the number TF-

bound PETs sampled from a binding-site-containing bin assumes a fixed and constant 

binding affinity. In general, we can restate the formulation as: 

∑
=

−
− =−==

x

i
B

T
poisboundTFbound ixTBiTBxX

0

)1( )|(Pr*),,,|(Pr),,,|(Pr αλαξαξ

 

Let iw  be the relative binding signal strength of binding-site-containing bin i, such 

that 
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Thus, 

∑
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Assuming fixed and constant binding affinity across all bins, i.e. 
B
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the formulation above is simplified into 
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which is equivalent to Eq. 4.3.2. 

 

If the binding signal intensity follows Gamma distribution, i.e. ),( csGW ∝ , 

we need to model wi carefully. Let us choose ),( csG , where s is shape and c is scale, 

such that 1)],([ =csGE . Since cscsGE *)],([ = , then we can choose sc /1= . 

Thus, to achieve 1
1

=∑
=

B

i
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ξ

, we can set 
B

ssGwi ξ
)/1,(~ . Following this, the 

probability for a binding-site-containing bin to have i TF-bound PETs sampled 

follows the following distribution: 

)),(|(Pr

)),(|(Pr1

)|(Pr1),,,|(Pr

1

1

1

1

T
B
ssGi

T
B
ssGi

B

Twi
B

TBi

pois

B

j
pois

B

j
jpoisboundTF

α
ξ

λ

α
ξ

λ
ξ

αλ
ξ

αξ

ξ

ξ

−

=

−

=
−

==

==

==

∑

∑

 

 



Chapter 4 – Inferring Regulatory Signals in Genomic Sequences 71 
 

 

∫

∫

∫

∂
Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

∂
Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

∂==

==

−
−

−

−

−

−

−

−

−

−

−

x
s
sex

i
B
Txe

x
ss

ex
i

B
Txe

xssxT
B
xi

T
B
ssGiTBi

sxs
s

i
B
Tx

s

s
x

s

i
B
Tx

pois

poisboundTF

)(
*

!

))((
*

!

),|(Pr*)|(Pr

)),(|(Pr),,,|(Pr

1

1
1

1

1

1

ξ
α

ξ
α

α
ξ

λ

α
ξ

λαξ

ξ
α

ξ
α

γ

 

 

Thus, 

∞
−−+

∞

+−−
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−

−+

−−
−

−−
−

−−
−

−

⎥
⎦

⎤
⎢
⎣

⎡
+−++Γ+−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎦

⎤
⎢
⎣

⎡
+−

Γ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

∂
Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∂
Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

∂⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Γ

=

∂
Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

=

∫

∫

∫

∫

0

0
1

1

1

1

1

))(,11())((
)(!

))((
)(!

)(!

)(!

)(!

)(!

),,,|(Pr

xs
B
Tsixs

B
Tx

si
s

B
T

xs
B
TEx

si
s

B
T

xex
si

s
B
T

xxex
si

s
B
T

x
B
Txex

si
s

x
si

s
B
Txex

TBi

siis
si

si
is

si

s
B
T

x
is

si

i
xs

B
Tx

s
si

i
xs

B
Tx

s
s

s
i

xs
B
Tx

s

boundTF

ξ
α

ξ
α

ξ
α

ξ
α

ξ
α

ξ
α

ξ
α

ξ
α

ξ
α

αξ

ξ
α

ξ
α

ξ
α

ξ
α

 
 
 



Chapter 4 – Inferring Regulatory Signals in Genomic Sequences 72 
 

 
Further, 
 

[ ]))0,((),(

)(!

))(,(

)(!

))(,(
))(()(!

),,,|(Pr

0

0

isis

s
B
Tsi

s
B
T

xs
B
Tis

s
B
Tsi

s
B
T

xs
B
Tis

xs
B
T

x
si

s
B
T

TBi

is

s
i

is

si

is

issi

boundTF

+Γ−−∞+Γ−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

⎥
⎦

⎤
⎢
⎣

⎡
++Γ−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+Γ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++Γ
+

−
Γ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

=

+

∞

+

∞

+

+

−

ξ
α

ξ
α

ξ
α

ξ
αξ

α

ξ
α

ξ
αξ

α

αξ

 

Or more simply: 

is
s

i

boundTF s
B
Ts

B
T

si
isTBi

−−

− ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Γ
+Γ

=
ξ
α

ξ
ααξ

)(!
)(),,,|(Pr   (4.3.5) 

 

 

Estimating relative signal strength 

 Now that the model for genome-wide distribution of ChIP fragments has been 

developed, we are in the position to generate an estimation of the relative signal 

strength. We define relative signal strength, 0≥z , as the average multiplicative 

factor of the number of fragments found in bins with binding sites compared bins with 

no binding site (i.e. no significant binding of TF). As such, 2=z  is interpreted that 

bins with binding sites has twice as many ChIP fragments as bins with no binding 

sites. Similarly, 1=z  means that there is no enrichment of fragments in bins with 

binding sites. This definition is in line with the typical quantification quoted for ChIP-
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qPCR measurement, which is the current golden standard for detection of TF-DNA 

interaction. 

 

Note that z directly influence α , the fraction of fragments that are bound by 

the TF. α  can also be thought of as the probability of sampling a fragment that is 

bound by the TF from the total pool of fragments in the sample. If we assume that the 

sampling probability is roughly proportional to the size of the respective fragments 

and regions, then α  can be estimated as: 

)())1(( zkBL
zkB

×××+×−
×××

≈
ξξ

ξα     (4.3.6) 

Recall that k is the expected length of fragments and L is the length of the genome. 

The first term of the denominator is the sampling weight of non TF-bound region, 

while the second term is the sampling weight of TF-bound region. Equation 4.3.6 can 

be further rewritten as: 

)()/)1(()())1(( zkBL
zk

zkBL
zkB

××+×−
××

=
×××+×−

×××
≈

ξξ
ξ

ξξ
ξα  

 

Since BLv /=  is the size of bin, then 
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Rearranging the terms, we have: 
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4.3.3 Evaluation 

Dataset 

To evaluate our model, we chose ChIP-PET libraries which we had access to the 

ChIP-qPCR validation data. This was critical since there was virtually no way for us 

to experimentally measure the true α  and ξ , and instead we relied on evaluating the 

predicted z  (which in turn is tightly dependent on the former two variables) against 

the actual readout from ChIP-qPCR.. The four datasets used in our evaluation were: 

• The p53 ChIP-PET library published in (Wei et al., 2006). This library had 

65,714 PETs uniquely mapped. The reference genome for this library was 

human genome build hg17 (~3.1 Gbp). 

• The Oct4 and Nanog ChIP-PET libraries from (Loh et al., 2006). In these 

libraries, a total of 366,639 PETs (Oct4) and 265,676 PETs (Nanog) were 

uniquely mapped to the mouse genome (UCSC mm5; ~2.6Gbp). 

• The NF-κB ChIP-PET library reported in (Lim et al., 2007). This library 

contained 177,437 PETs mapped to the human genome (UCSC hg17). 

 

In addition to the real datasets, we generated a number of simulated datasets to 

explore the potential limitations of the current model as well as the limitations of the 

fitting procedure. For a given set of parameters (genome size, fragment size, total 

number of “binding sites”, and enrichment ratio), a probability distribution spanning 

the specified genome length was constructed, taking into account the number of sites. 

The fragments were then “sampled” from this artificial genome based on the 

probability distribution. Note that α  and ξ  were computed from the above 

parameters. 
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Experimental setup 

Given a ChIP-PET library, we first transformed the mapped tag data into a frequency 

table by grouping them into fixed bins of equal length, which in our experiments was 

fixed to 5kbp. The model (Eq. 4.3.4) was then fitted to the observed data by searching 

the α  and ξ  that minimized the sum of squared error (SSE) between the cumulative 

distribution function (CDF) of the observed data and the model. The choice of using 

the CDF, rather than probability density function (PDF), as the cost function is to 

counter the frequently detected noise of spurious spikes of tag densities in certain 

areas of the genome due to mapping or other issues. A grid-search algorithm was 

implemented for this fitting. Unless specified otherwise, we use an increment of 0.005 

in estimating both α  and ξ . In addition to finding the best α  and ξ , we ran a series 

of bootstrapping iterations to estimate the stability of the estimates. The bootstrapping 

was done upon the bins, to account for systematic noise that might be present among 

the bins. One hundred bootstrapping iterations were done for each fitting. To assess 

the accuracy of the estimates of real datasetd, we compared the predicted relative 

signal strength (z) to the ChIP-qPCR output. Since relative signal strength is defined 

as enrichment of bound sites over non-bound sites, we contrasted the predicted z with 

summary statistics of ChIP-qPCR readings of bound sites (defined as enrichment 

greater than 2-fold). Note that qPCR experiment reports the multiplicative factor of 

DNA abundance at a given region between two distinct samples. 

 

Experimental results 

The results from parameter fitting on the four real libraries are tabulated in Table 6. 

The table shows estimates from a single run (using the complete observed data) and 

the bootstrapped runs. The estimates appeared to be quite stable, with the 
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bootstrapped runs producing a small variance. Based on the known and estimated 

parameters, we computed the relative signal strength (z) using Eq. 4.3.7. Across all 

libraries, the predicted z values were similar to the mean of the ChIP-qPCR fold 

enrichments of the binding sites and showed similar trend to that of the mean and 

median enrichment (see Table 7). 

 

Librar
y 

Genome 
size 

(non-gap) 
No. of 
PETs 

Average 
PET 

length 

Single Estimate Bootstrapped 
(100 runs; bin-sampling) 

Alpha Xi Relative 
Strength

Alpha 
(mean) 

Alpha 
(StDev) 

Xi 
(mean) 

Xi 
(StDev)

p53  ~3.1Gbp  65,714  625 0.065 0.005 110.7 0.0709 0.0097  0.0066  0.0023

Oct4  ~2.6Gbp  366,639  627 0.32 0.18 17.1 0.31645 0.0065  0.1764  0.0067

Nanog  ~2.6Gbp  265,676  623 0.27 0.065 42.7 0.2726 0.0048  0.0662  0.0026

NF‐kB  ~3.1Gbp  177,437  361 0.165 0.06 42.9 0.16475 0.0129  0.0598  0.0099

Table 6. Alpha and Xi estimates for the four real libraries. The results from 100 
bootstrapping iterations showed that the estimates were quite stable. 

 

Library ChIP‐qPCR fold enrichment 
Min  Median  Mean  Max 

p53  11.56 95.51 160.7 900.6 
Oct4  2.02 12.22 16.3 97.57 
Nanog  2.56 15.53 32.95 201.2 
NF‐kB  2.6 25.3 33.93 183.3 

Table 7. Summary statistics of ChIP qPCR validation for the real libraries. 
 

Experiments using artificial datasets (see Table 8). In general the estimation 

managed to recapitulate the original parameters used to generate the artificial datasets. 

The estimates were also shown to be very stable under bootstrapping experiments. 

The only outliers (poor and unstable) of performance were observed when the dataset 

itself was too noise (see the two last rows of Table 8), i.e. alpha is very close or equal 

to 0. In such dataset, there is almost no distinction between calling no bin to be 

binding (i.e. alpha=0) or all bins to be bound (alpha=1), mathematically speaking.  
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Simulation setup No. of 
PETs 

Single Estimate Bootstrapped 
(100 runs; bin-sampling) 

Alpha Xi Alpha 
(mean) 

Alpha 
(StDev) 

Xi 
(mean) 

Xi 
(StDev) 

alpha=0.368, 
xi=0.00833, 

genome=3Gbp 

50k 0.37 0.01 0.37 0 0.01 4.00E-10
100k 0.37 0.01 0.37 0 0.01 4.00E-10
150k 0.37 0.01 0.37 0 0.01 4.00E-10

alpha=0.47, 
xi=0.025, 

genome=3Gbp 

50k 0.48 0.03 0.48 1.90E-08 0.03 0
100k 0.48 0.03 0.4795 0.0021 0.03 0
150k 0.48 0.03 0.4775 0.0043 0.03 0

alpha=0.84, 
xi=0.15, 

genome=3Gbp 

10k 0.79 0.12 0.804 0.0147 0.1248 0.005
50k 0.83 0.14 0.83 2.90E-08 0.14 1.16E-08
100k 0.83 0.14 0.83 2.90E-08 0.14 1.16E-08
150k 0.83 0.14 0.83 2.90E-08 0.14 1.16E-08
200k 0.83 0.14 0.83 2.90E-08 0.14 1.16E-08

alpha=0.055, 
xi=0.016, 

genome=3Gbp 

10k 0.06 0.02 0.0708 0.0223 0.0296 0
50k 0.06 0.02 0.06 0 0.02 0
100k 0.06 0.02 0.06 0 0.02 0
150k 0.06 0.02 0.06 0 0.02 0
200k 0.06 0.02 0.06 0 0.02 0

alpha=0.0207818, 
xi=0.15, 

genome=3Gbp 

50k 0.01 0.07 0.252 0.2975 0.5745 0.4321
100k 0.08 0.78 0.1993 0.2009 0.5339 0.4603
150k 0.01 0.04 0.1508 0.1856 0.4274 0.4475

alpha=0, 
xi=0, 

genome=3Gbp 

10k 0.81 1 0.8305 0.1366 0.9994 0.0024
50k 0.54 1 0.5312 0.199 1 0
100k 0.01 0.08 0.0796 0.1755 0.2966 0.3684
150k 0.03 1 0.4581 0.4116 0.894 0.2651
200k 0.16 0.99 0.2406 0.2299 0.7852 0.3668

Table 8. Alpha and Xi estimates for the artificial libraries under various settings. 
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4.4 Modeling Localized Enrichment of ChIP Fragments 

4.4.1 Problem Description 

The problem addressed in this section pertains to how ChIP fragments are enriched in 

finer resolution regions. Going beyond just distinguishing large regions, like in the 

previous Section 4.3, that are bound (i.e. binding regions) and not bound, we are 

mostly interested in determining the precise locations of the TF-DNA interactions (i.e. 

binding sites). We set ourselves to model the accumulation of ChIP fragments around 

binding site and around non binding site, in order to better identify the binding sites as 

well as to reduce false positive in our binding site calling. 

 

Problem 4.2 (PETs Accumulation in Local Region) Given a ChIP-PET library of T ditags mapped to a 

G-bp long reference genome, develop a model for fragment accumulation around binding site and non 

binding site. Additionally, compute the probability of chance accumulation for assessing the likelihood of 

a region being bound or not bound. 

 

4.4.2 Fragment Clustering 

The protein-DNA interaction regions enriched by ChIP procedure will have more 

DNA fragments representing the bound regions than the non-bound regions. 

Therefore, with sufficient sequence sampling in the DNA pool of a ChIP experiment, 

multiple DNA fragments originated from the bound regions will be encountered, 

while the non-bound regions will contribute no or minimal number of fragments 

(which can be constitutively categorized as background nois). As such, assuming that 

bound fragments should cover the actual binding sites, clustering of fragments would 

give us an indication of the precise location of actual binding sites. 
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The primary ChIP-PET data is the locations and lengths of the ChIP-PET 

fragments. The tuple <s, l> represents an l-bp long PET fragment mapped into 

location s. Two PET fragments <s1,l1> and <s2,l2>, where 21 ss ≤ , are said to be 

overlapping if 211 sls ≥+ . A ChIP-PET cluster is defined as the largest set of 

cascading overlapping PET fragments. Figure 12 shows an abstraction of ChIP-PET 

library, after the clustering stage is performed. Further assuming that binding site can 

be located anywhere in a bound fragment, the precise location of the binding site is 

expected to be approximately located at the center of such accumulation. It has been 

validated that the clustering of overlapping PET fragments is an effective readout to 

distinguish true signals of protein-DNA interactions from background noises (Wei et 

al., 2006; Loh et al., 2006). 

 

 
Figure 12. Relationship between ChIP fragments, PETs, and ChIP-PET clusters. 
ChIP fragments might be TF-bound (shaded circles) or simply noise. Mapped 
ChIP fragments are called PETs. Overlapping PETs are grouped into ChIP-PET 
clusters. 

 

 

 

Reference 
Genome 

ChIP 
fragments 

PETs 

PET clusters 
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4.4.3 Fragment Accumulation around Non-Bound Sites 

Cluster size as a predictive variable 

Presence of PET clusters is clearly an initial indication of genomic loci enriched for 

ChIP PET fragments, most likely due to ChIP pull down of TF-bound fragments. 

Ideally clusters are generated only by real enrichment due to TF-DNA interactions, 

i.e. active binding regions. The more PETs that a cluster has, the more probable the 

TF bounds to the region. There is, however, a possibility that some of the clusters 

occurred simply by chance alone, resulted from clustering of noisy PETs. We can set 

a minimum cut-off criterion, say h, and classify clusters with at least h PETs (i.e. 

PETh+ clusters) to be the highly probable clusters with TF binding. To appropriately 

determine this threshold, a Monte Carlo approach could be employed. We have shown 

that this approach was considerably effective (Wei et al., 2006). 

 

More analytically, if we assume that the noisy PETs are randomly and 

uniformly distributed along the genome, then the distance, d, between any two 

consecutive random PETs is expected to follow the exponential distribution with rate 

GT /=λ , where T is the total number of PETs and G is the genome length. By 

definition, two PETs can be clustered if they overlap by at least one base pair. 

Suppose k is the expected length of a PET. The probability of two PETs overlapping 

(i.e. the distance between them is less than or equal the (expected) PET length) by 

chance alone is );(Prexp λkX ≤  where expPr  is the cumulative exponential distribution 

function whose rate is λ . The exact formula for the cumulative function is: 

kekX λλ −−=≤ 1);(Prexp . Note that two overlapping PETs can be found in a PET2 

cluster and beyond. Thus, the probability  );(Prexp λkX ≤  is the probability of a 

PET2+ cluster to happen simply by chance alone. Obviously, successive overlaps of 
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PETs form a higher PETn cluster. Hence, more generally, the probability of the 

occurrence of a PETn+ cluster by random is: 

 

( ) ( ) )1()1(
exp 1);(Pr),;(Pr −−− −=≤≈≥

nkn
PET ekXknY λλλ   (4.4.1) 

 

In place of the Monte Carlo simulations, one can readily compute the p-value 

of random PETn+ clusters using the above equation to determine the appropriate 

threshold for a given ChIP PET library. 

 

Using maximum support to identify binding regions 

While number of PETs forming a cluster indeed provides useful information for 

assessing whether the cluster is more likely to be true signal, clusters with seemingly 

good number of PETs can still be generated by random noise. It is not uncommon to 

find big clusters whose overlapping regions are not well concentrated, going against 

the intuition that real binding sites should produce crisp and well defined core, an 

indication that they were formed simply by chance. 

 

Figure 13 shows a snapshot of two clusters from real libraries as visualized by 

the T2G browser (a GIS in-house visualization suite based on the UCSC genome 

browser), contrasting a typical good cluster (left part of the figure), having well 

defined core, to a configuration with scattered overlap region (right part of the figure) 

most likely formed by random PETs. Note that both clusters are PET5 clusters, but 

the left cluster contains a clear and strong core region of 5 overlapping PETs, while 

the right cluster has four contiguous sub-regions with two PET overlap each. We call 

a PET cluster as a moPETn (maximum overlap PET n) cluster if all of its sub-region is 
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supported by at most n PETs. Similar to the previous definition, moPETn+ clusters 

represent the set of moPETm clusters where nm ≥ . The left PET5 cluster in Fig. 13 is 

of moPET5, while the right PET5 cluster is of moPET2. 

 

 
Figure 13. Contrasting high fidelity cluster and noisy cluster. Shown here are two 
clusters from a real library, visualized using the T2G browser, a GIS in-house 
visualization tool based on the UCSC genome browser. Good clusters are 
generally well-defined (left cluster), containing a strong overlapping region. 
Dispersed ChIP PET segments (right cluster) hint the possibility of cluster 
formation purely at random and by chance alone. 

 

The probability of a moPETn to be initiated by an arbitrary PET <s,l> can be 

estimated by the probability of observing additional (n-1) PET starting sites at most l-

bp away from s. Under the assumption of random uniform distribution of PET start 

sites, this probability follows that of Poisson distribution for observing (n-1) events 

whose rate is λ  within the interval k (=expected PET length). More formally, the 

probability of an arbitrary PET to initiate a moPETn cluster: 

 

( )
)!1(
)());1((Pr),;(Pr

)1(

−
=−=≈=

−−

n
keknXknY

nk

poissonmoPET
λλλ

λ

 (4.4.2) 

 

Using ),;(Pr λknYmoPET =  and given the acceptable p-value level, we can 

determine the appropriate cut-off of moPETn for identifying true TF-binding regions. 

 

PETs 

PET 
density 
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4.4.4 Adaptive Approach for Biased Genomes 

The estimation of rate λ , i.e. the expected number of PETs per nucleotide, plays a 

critical role in Eqs. 4.4.1 and 4.4.2. This rate signifies the expected noise level of the 

dataset. So far, we have only talked about a single global rate λ , reflecting the 

assumption that the noisy PETs are randomly uniformly distributed across the 

genome. Although the genome-wide uniform noise assumption maybe acceptable in 

general, in cases where apriori knowledge about the presence of biasing factors in the 

genome is available, it should be exploited accordingly. The prevalence of significant 

genome rearrangements in tumor cells and cancer cell lines, for example, calls for a 

fine tuning of the generic method described earlier. For instance, the MCF-7 cell line, 

which has been a platform for Estrogen related studies, contains at least 21 regions of 

high-level copy number alterations (Shadeo and Lam, 2006). Such biases affect the 

ChIP-PET data. Regions with significant deletions will contain less than expected 

PETs and their true binding loci will be much weaker. Amplified regions will have 

higher PET counts than the overall genome, making their purely random clusters bear 

stronger signal than those of normal regions. Using single global λ  would result in 

higher false positive rates in amplified regions and higher false negative rates in 

deleted regions. 

 

We devised a two-phase adaptive approach that takes into account of local 

biases (see Fig. 14) in predicting the most probable source (true binding vs. noise) of 

each PET cluster. Given a cluster c, the first phase considers the local window of 

some predefined size L centered on the cluster c, and, estimates the total number of 

noise PETs. The second phase computes the local λ  and calculates a local moPET (or 
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PET) cut-off cutT . Clusters c is considered to be a binding region if its moPET (or 

PET) count is greater than cutT . 

 
Figure 14. Pseudocode of the adaptive thresholding algorithm. GoodCluster() takes 
as input the cluster c, the p-value cutoff p, and window size L. It will return TRUE if 
cluster c meets the significance requirement. The algorithm consists of two main 
steps: (i) local noise estimation and (ii) local threshold determination. Function 
geomean(X) computes the geometric mean of set X. Functions mo(d) and pet(d) 
return the moPET and PET count of cluster d. In line 7, ()PrmoPET  can be replaced 

with ()PrPET . Estimation of cutT  can also be done through Monte Carlo simulations. 

 
 

The noise estimation step (first phase) counts the number of potentially noisy 

PETs within the window. This needs to be performed carefully, since there is no 

actual labeling of which clusters within the current window are real. Overestimation 

of noise would increase false negatives, while underestimation would add false 

positives. We adhere to two heuristics, namely: (i) the current cluster should not be 

assumed as real and (ii) other clusters within the windows that seem to be real clusters 

should, as much as possible, not be counted as noise. The first rule is stemming from 

the fact that most of the clusters (especially PET1 clusters) are noise. Observations 

that binding sites are sometimes located proximal to each other motivated the second 

rule. The choice of window size L also influences the noise estimation accuracy. In 

GoodCluster(c,p,L) : 

1. Let D be the set of clusters that are located at most 
2
L

 basepairs away 

(upstream or downstream) of c 
2. Let {}=G  

3. For each Dd ∈ , if )()( cmodmo ≤  then )}({ dpetGG ∪=  

4. Let g be the geometric mean of G, i.e. )(Ggeomeang =  

5. Estimate the total local noisy PET ( )∑
∈

=
Dd

gdsizeS ),(min  

6. Set 
L
S

=λ  

7. Determine cutT  such that:  
( )});(Pr|{min pknYnT moPETcut ≤≥= λ  

8. If )(cmoTcut <  then return TRUE else return FALSE 

Noise 
Estimation 

Threshold 
Determination 
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our analysis we set L to be at least twice of the expected distance between two PETs 

(i.e. 1−λ ). 

 

In our implementation, the noise estimation starts by identifying the probable 

noisy clusters. Using the moPET count and based on the assumption that the current 

cluster c is noisy, clusters with higher moPET counts than the current cluster c are 

contextually considered non-noise (see line 3 in Fig. 14). Next, we want to know what 

the expected typical PET count is for a noisy cluster. The expected PET count g of a 

noisy PET cluster is calculated by taking the geometric mean of the PET counts of the 

noisy clusters identified earlier. Geometric mean was employed since the PET counts 

can be considered as the rate of noise per cluster (McAlister, 1879; Fleming and 

Wallace, 1986). The final sum of noisy PETs, S, is calculated by adding the noisy 

PET counts of all the clusters within the current window. If a cluster's PET count is 

less than or equal to g, the entire cluster is considered noisy and its PET count added 

to the final sum. If a cluster's PET count is greater than g, then it should only 

contribute an estimated noisy count (i.e. g) towards the final sum. This is done to 

avoid noise overestimation in windows with multiple real clusters. 

 

The second step is quite straightforward through the application of the Eqs. 

4.4.1 or 4.4.2 (using the local rate λ  ( LS /= ) and considering the window length L) 

or performing sufficient iterations of Monte Carlo simulations, using S as the total 

number of fragment within the L-bp region. 
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4.4.5 Evaluation 

Dataset 

In our evaluation, we made use of both artificial and real datasets. The artificial 

datasets were generated to assess the preciseness of our analytical formulations (Eqs. 

4.4.1 and 4.4.2) in modeling the chance accumulation of ChIP fragments around non-

bound regions. Three real datasets were: the p53 ChIP-PET (Wei et al., 2006), the 

Oct4 ChIP-PET (Loh et al., 2006}, and the Estrogen Receptor (ER) ChIP-PET (Lin et 

al., 2007}. For each dataset, a set of PET-clusters most likely to represent TF-binding 

regions were selected based on our proposed algorithms. The selected clusters were 

then evaluated indirectly by enrichment of putative relevant binding motifs and 

(whenever available) directly using ChIP qPCR validation data. 

 

The p53 library was the first and the smallest dataset, which contains 65,714 

PETs (average length 625bp) and was constructed using the human HCT116 cancer 

cell lines. The ER ChIP PET library comprised 136,152 PETs, whose average length 

is 672bp, was assayed on human MCF-7 breast cancer cell lines. The largest library 

among the three, the Oct4 ChIP PET, was based on mouse E14 cell lines and consists 

of 366,639 PETs of 627bp on average. The non-gapped genome lengths for human 

and mouse are estimated at ~2.8Gbp (UCSC hg17) and ~2.5Gbp (UCSC mm5) 

respectively. 

 

Experimental setup 

Evaluation of the analytical models was done using artificial libraries. To 

generate an artificial random PET library, we preformed a Monte Carlo simulation 

while taking into account the overall genome length (G), the total number of PETs 
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(T), and the desired PETs' lengths (minimum and maximum lengths; lmin to lmax). In 

each Monte Carlo simulation, T points were randomly picked along the G-bp genome, 

mimicking the generation of a PET library containing completely random fragments. 

For each picked point, a random length was sampled from a uniform distribution 

within the given minimum and maximum bounds. Overlapping PETs are clustered, 

similar to what would have been done for real PET libraries. Statistics of PETn+ and 

moPETn clusters were collected and averaged over a sufficient number of Monte 

Carlo iterations. These are then compared to numerical results from application of 

Eqs. 4.4.1 and 4.4.2 on the same parameters. In our study we generally ran 100,000 

Monte Carlo iterations. The five setups that we tested are listed in Table 9. For the 

analysis of real libraries, we used a cut-off of p-value < 1e-3 in selecting good 

clusters. We tested cluster selection based on both PET and moPET counts and using 

global threshold as well as adaptive threshold. 

Simulation Set A B C  D E 
Genome Length 2 Mbp 3 Mbp 20 Mbp 10 Mbp 10 Mbp 

No. of PETs 300 300 3000 2000 5000 
Min. PET length 500 bp 700 bp 500 bp 200 bp 300 bp 
Max. PET length 500 bp 700 bp 500 bp 1000 bp 700 bp 

Table 9. Simulation setups for artificial ChIP-PET libraries. FiveMonte Carlo 
simulation sets run to assess the analytical model of random PETn+ and 
moPETn clusters formations. 

 

Results 

Using the artificial random data were generated through a series of Monte Carlo 

simulations as described above, we compared the analytical estimations of PETn+ / 

moPETn clusters distributions to the empirical ones. The collected statistics were used 

to construct empirical distributions which were then compared with the proposed 

analytical framework. In each simulation set of 100,000 Monte Carlo runs, we 

calculated the probability (or the fraction) of PETn+ and moPETn clusters observed in 

the simulated library. Figure 15a contrasts the empirical probability of PETn+ 
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occurrence (thick lines) against the analytical estimations (thin lines). A similar plot 

for moPETn analysis is shown in Fig. 15b. The analytical curves track the empirical 

curves very well, reconfirming the validity of the analytical distributions. 
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Figure 15. Comparison of analytical computation and empirical simulation. Probability 
of (a) a random PETn+ cluster or (b) a random moPETn cluster being generated simply 
by chance alone across different library setups, computed empirically through Monte 
Carlo simulations (thick lines) and analytically (thin lines) based on )(Pr XPET  of Eq. 

4.4.1 or )(Pr XmoPET  of Eq. 4.4.2. The analytical curves match the empirical curves 
well. 
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Based on the moPET framework and the p-value cutoff of < 1e-3, the selected 

(good) clusters for p53 is moPET3+, for ER is moPET3+ and for Oct4 is moPET4+. 

With the similar cut-off of p-value < 1e-3 and employing the PET size criteria, the 

selected set of clusters for p53 is PET3+, for ER is PET4+, and for Oct4 is PET4+. 

 

Table 10 gives the validations of each PET cluster group in each library, based 

on motifs prevalence and additional ChIP qPCR assays on samples of the PET cluster 

group. We can observe sharp motif enrichment at the selected cut-offs in all libraries, 

i.e. moPET3+, moPET4+, moPET3+ for p53, Oct4 and ER respectively, especially 

when compared to the PET2/moPET2 group which is expected to contain many noisy 

(i.e. random) clusters. Note, however, that PET2/moPET2 clusters are not all noise. 

They still contain TF-bound regions. Completely random genomic regions have lower 

motif occurrence rate. 

 

Table 10 also shows how many clusters were further subjected to ChIP-qPCR 

validations and their validation success rate. The p53 library undoubtedly had the 

highest validation rate with 100% of the tested sites showing enrichment of p53 

binding. The high ChIP-qPCR success rate (>95%) for the selected Oct4 moPET4+ 

clusters also increased our confidence of the validity of the cluster selection approach. 
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Cluster Group Total clusters % with motifs ChIP-qPCR tested % success 
PET2 1453 15.97% 0 N/A 
PET3 161 59.63% 0 N/A 
PET4 66 80.30% 5 100.00% 
PET5 38 65.79% 4 100.00% 
PET6 29 89.66% 8 100.00% 
PET7 13 84.62% 5 100.00% 

PET8+ 29 82.76% 18 100.00% 
moPET2 1489 16.25% 0 N/A 
moPET3 140 67.14% 1 100.00% 
moPET4 69 81.16% 6 100.00% 
moPET5 30 70.00% 4 100.00% 
moPET6 26 88.46% 9 100.00% 

moPET7+ 35 88.57% 20 100.00% 
(A) p53 ChIP-PET clusters 

 
Cluster Group Total clusters % with motifs ChIP-qPCR tested % success 

PET2 29453 16.74% 10 10.00% 
PET3 5556 24.62% 31 9.68% 
PET4 1540 34.35% 17 88.24% 
PET5 550 42.36% 21 90.48% 
PET6 223 52.47% 11 100.00% 
PET7 102 49.02% 5 100.00% 

PET8+ 201 45.77% 20 95.00% 
moPET2 32739 17.57% 10 10.00% 
moPET3 3734 27.64% 34 8.82% 
moPET4 724 41.57% 40 95.00% 
moPET5 189 54.50% 14 100.00% 
moPET6 93 70.97% 8 100.00% 

moPET7+ 146 43.15% 9 100.00% 
(B) Oct4 ChIP-PET clusters 

 
Cluster Group Total clusters % with motifs 

PET2 5704 40.06% 
PET3 930 57.31% 
PET4 341 65.69% 
PET5 181 70.72% 
PET6 124 76.61% 
PET7 78 78.21% 

PET8+ 216 83.33% 
moPET2 6100 41.02% 
moPET3 756 61.90% 
moPET4 281 64.77% 
moPET5 134 76.12% 
moPET6 95 78.95% 

moPET7+ 208 85.10% 
(C) ER ChIP-PET clusters 

 
Table 10. Validation rate and motif enrichments of clusters selected by global 
thresholding. Evaluation of the various groups of ChIP-PET clusters for the (A) p53, 
(B) Oct4, and (C) ER ChIP PET libraries. Note that the ’good’ PET clusters for the 
p53, Oct4, and ER libraries are PET3+, PET4+, and PET4+ respectively, or 
moPET3+, moPET4+, and moPET3+ respectively. The lower PET/moPET groups 
(e.g. PET2 or moPET2) are presented as a comparison. The top half of each table 
shows the ChIP PET clusters’ enrichment for each corresponding binding site motif, 
which serves as a good proxy of how likely the clusters are to be true 
clusters.Whenever possible, results from ChIP qPCR validations on random subsets 
of ChIP PET clusters within each group are presented in the bottom half of the tables. 
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Prior to running the ChIP-qPCR validation for the ER library, we noticed 

unusual concentrations of PETs in some regions. These regions correlated well with 

the regions previously reported to be amplified in the underlying MCF-7 cell lines 

(Shadeo and Lam, 2006), for example: some parts of chromosomes 17 and 20. Under 

the global moPET analysis, the good clusters of ER ChIP PET library are the 

moPET3+ clusters, totaling 1,474 clusters. The top two good-clusters-containing 

chromosomes are chromosomes 20 and 17, with about 10% and 9.5% of the selected 

clusters. Note that both chromosomes 20 and 17 were reported to be highly amplified 

in MCF-7 (Shadeo and Lam, 2006). This prompted us to employ the adaptive moPET 

thresholding algorithm to "normalize" the amplified regions. We also applied the 

adaptive approach on the other two datasets, to see its effect on other libraries from 

relatively normal cell lines (i.e. the p53 and Oct4 libraries). The result is summarized 

in Table 11. 
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Cluster 
Group 

Total 
clusters 

% with 
motifs 

ChIP-qPCR 
tested % success 

PET2 0 N/A N/A N/A 
PET3 125 68.80% 0 N/A 
PET4 66 80.30% 5 100.00% 
PET5 38 65.79% 4 100.00% 
PET6 29 89.66% 8 100.00% 
PET7 13 84.62% 5 100.00% 

PET8+ 29 82.76% 18 100.00% 
moPET2 0 N/A N/A N/A 
moPET3 140 67.14% 1 100.00% 
moPET4 69 81.16% 6 100.00% 
moPET5 30 70.00% 4 100.00% 
moPET6 26 88.46% 9 100.00% 

moPET7+ 35 88.57% 20 100.00% 
(A) p53 ChIP-PET clusters 

 
Cluster Group Total clusters % with motifs ChIP-qPCR tested % success 

PET2 0 N/A N/A N/A 
PET3 404 34.16% 6 16.70% 
PET4 510 41.18% 16 93.80% 
PET5 305 47.54% 19 100.00% 
PET6 167 58.08% 11 100.00% 
PET7 88 52.27% 5 100.00% 

PET8+ 195 45.64% 20 95.00% 
moPET2 0 N/A N/A N/A 
moPET3 524 36.83% 6 16.70% 
moPET4 717 41.84% 40 95.00% 
moPET5 189 54.50% 14 100.00% 
moPET6 93 70.97% 8 100.00% 

moPET7+ 146 43.15% 9 100.00% 
(B) Oct4 ChIP-PET clusters 

 
Cluster Group Total clusters % with motifs ChIP-qPCR tested % success 

PET2 0 N/A N/A N/A 
PET3 453 64.24% 18 72.20% 
PET4 253 68.77% 8 75.00% 
PET5 144 72.92% 5 100.00% 
PET6 107 78.50% 4 100.00% 
PET7 69 84.06% 1 100.00% 

PET8+ 208 82.69% 1 100.00% 
moPET2 0 N/A N/A N/A 
moPET3 552 65.58% 20 70.00% 
moPET4 245 68.57% 6 83.30% 
moPET5 134 76.12% 7 100.00% 
moPET6 95 78.95% 2 100.00% 

moPET7+ 208 85.10% 2 100.00% 
(C) ER ChIP-PET clusters 

 
Table 11. Validation rate and motif enrichments of clusters selected by adaptive 
thresholding. Validation results on the (A) p53, (B) Oct4, and (C) ER ChIP-PET 
libraries on clusters selected by adaptive thresholding, where the top half of each table 
shows the motif enrichment and the bottom half lists the ChIP-qPCR outcomes. All of 
the breakdowns shown are based on clusters selected through the adaptive algorithm. 
The ChIP qPCR for p53 and Oct4 presented here is a subset of what was reported 
earlier in Table 10. ChIP qPCR for ER was done by taking random clusters from the 
clusters selected by the adaptive approach. 
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Note that the application of adaptive thresholding might both exclude clusters 

selected under the global thresholding and re-include clusters which would otherwise 

be excluded because they were below the global threshold. Application of global and 

adaptive moPET thresholding on the p53 library produced the same results (compare 

Table 10a and 11a). Interestingly, application of adaptive thresholding on the Oct4 

library re-included some of the moPET3 clusters, with a higher proportion of motif-

containing clusters compared to the entire moPET3 clusters. Only a tiny fraction of 

the moPET4 was rejected, without any significant impact on the motif enrichment. 

The ChIP qPCR success rates for the adaptive-selected clusters were higher than 

before. For the ER ChIP PET library, a sizeable portion of the moPET3+ was no 

longer considered to be TF-bound. The overall increase in the proportion of motif-

containing clusters indicated that the selected clusters were likely to be real. 

Additional ChIP-qPCR assays on random samples of the selected clusters confirmed 

that further. The highly amplified chromosomes 17 and 20 no longer had the most 

number of selected clusters. Chromosomes 1 and 2 contained the selected clusters the 

most, which was expected since they are the two longest chromosomes (see (Lin et 

al., 2007)). 
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Chapter 5 

Conclusion 

 

5.1  Summary 

 

Our research was motivated by the recent phenomenal growth and growing 

complexity of biological data. In particular we were interested in developing 

computational approaches to help understand the regulatory mechanisms of genes and 

identify (from relevant datasets) the regulatory targets and genomic regulatory 

signals. We started off by constructing a paradigm that models and encompasses 

complex system containing indirect relationship between the observable input and the 

measurable outpus. We then focused on expression data generated using mRNA 

microarray and genomic data of TF-DNA interactions obtained from the sequencing-

based ChIP-PET protocol. To give more details: 

 

• In Chapter 2, we construct a paradigm that models a complex system, where 

the relationship between the input and the output might be indirect and is 

confounded with presence of background noise. For our research, we decided 

to decouple the analysis of the input and output. The subsequent sections 

describe in more depth the set of problems that we were investigating. 

 

• Chapter 3 focuses on Microarray data as the primary source data for the output 

stream in the gene regulation system. We identified and researched on two 

issues: (i) determination of minimal gene signature cassette, and (ii) 
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identifying primary response genes from time-course microarray data. Our 

results showed that AdaBoost can be adequately modified to tackle the first 

task. An important modification was imposing an additional restriction that 

each feature could only be used once in building the classifier. This restriction 

is not typically enforced in AdaBoost. We found that this restriction was 

critical due to the high-dimensionality of microarray data and actually 

rendered the AdaBoost to identify the minimal gene set as originally desired. 

For the second issue, we develop the Friendly Neighbour approach to exploit 

the intuition that primary response genes are responsible for (or at least very 

influential to) the expression regulation of other genes. Rather than ranking 

based on the genes ability to separate treatment labels, genes are appraised 

based on the number of other genes that share its expression pattern. Our 

results showed that this method well outperformed other non-supervised 

methods and was quite close to the performance of supervised methods. 

 

• Chapter 4 opens with a description of the ChIP-PET protocol. Our interest in 

this subject was fivefold: (i) to provide a quick assessment criteria for library 

sequencing adequacy, (ii) to model ChIP fragment size more accurately, (iii) 

to model the distribution of ChIP fragments detected for inferring the overall 

signal strength, (iv) to model fragment accumulation at true TF-DNA 

interaction sites, and (v) to develop an algorithm that automatically 

normalized the effect of aberrant genome. We developed the Multiplicity 

Index for a quick assessment of sequencing saturation. The Multiplicity Index 

was shown to correlate significantly to the more rigorous saturation analysis. 

For ChIP fragment size, we devised the Normal*Exponential model that 
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incorporates the possible presence of unbreakable region. This model 

outperformed the previously proposed Gamma distribution. We proposed a 

model of fragment distribution that factored in the proportion of bound 

fragments and the bound regions. Fitting the model to the data allowed us to 

estimate the property of the library. The estimated relative signal strength 

agreed with the experimental ChIP-qPCR readings. An analytical model was 

explored for calculating the probability of fragment accumulation around non-

bound sites. It was further used to distinguish fragment enrichment of bound 

regions from random enrichments. Expanding the analysis further, we 

developed a sliding-window based algorithm that estimates the local noise 

level and then applying local threshold for selecting binding regions. Our 

results demonstrated that this approach improves the quality of the selected 

regions, both in aberrant genome and in (expectedly) normal genome. 

 

5.2  Future Directions 

 

Several interesting research questions emerged during the course of our research. 

Among them are: 

• Optimizing the similarity measure for FN. The similarity measure in the FN 

has an implicit assumption to the relationship of the genes. It is conceivable 

then to actually construct similarity measures that reflect or favor certain 

properties (e.g. gene activation rather than repression) and use the FN 

approach to identify “primary regulators” in an arbitrary dataset 

• Modeling the binding affinity distribution. In our formulation of a model 

for ChIP fragment distribution, we have made the provision that the binding 
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regions could yield different binding affinities (and thus enrichment factor). It 

has not, however, been properly and thoroughly assessed. A comprehensive 

evaluation would necessitate additional experimental wet-lab data, though. 

• Accounting for Fragment Length Distribution. Our analytical formulae to 

compute probability of random fragment enrichment assumes a fixed fragment 

length. Monte Carlo simulations procedure has the benefit of faithfully 

incorporate the empirical fragment distribution, when estimating the p-value. 

We have also shown that Normal*Exponential distribution seemed to model 

the fragment length well. Needless to say, an open task is to incorporate the 

fragment length distribution into the analytical formulae. 
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