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Summary

This thesis explores data analysis involved in genome-wide association studies

(GWAS) using Hadoop technologies and data mining techniques. GWAS is

amongst the most popular study designs to identify potential genetic variants

that are linked to the etiologies of diseases. In future, GWAS is also expected to

play an important role in personalized medicine. The complex data analysis in

GWAS calls for new technologies and techniques.

We first give an independent, empirical comparison of epistasis detection

methods in GWAS. The experimental results show that methods that examine all

possible candidate pairs are more powerful. Also, the results encourage users to

choose suitable test statistics to detect corresponding epistasis. These two obser-

vations lead us to use a powerful, fault-tolerant and parallel technology—Hadoop.

We are probably the first practitioners to effectively “marry” the epistasis detec-

tion in GWAS with Hadoop, resulting in two new computing tools for detecting

epistasis called CEO and efficient CEO (eCEO). Our experiments show that CEO

and eCEO are computationally efficient, flexible, and scalable. However, CEO

and eCEO are limited to binary datasets.

Another major category of GWAS concerns quantitative traits, especially

high-dimensional traits. Seeing the advantage of using Hadoop in GWAS, we

adapt a powerful machine learning technique—Random Forest (RF)—to develop

a Parallel Random Forest Regression (PaRFR) algorithm on Hadoop for high-

dimensional traits. The algorithm is significantly faster than a standard imple-

mentation of RF. The motivating application of this algorithm on Alzheimer’s

Disease Neuroimaging Initiative (ADNI) data illustrates its power in detecting

known Alzheimer-linked genes like APOE. We further extract insights from the

ADNI data by hypothesizing that (i) there is a large set of biomarkers (mutation

patterns) that are relevant to the development of Alzheimer’s Disease (AD) and

(ii) the more members of this set are observed in a patient, the more likely he/she
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has a more severe level of AD. To validate this, we define the mutation patterns

and the severity of AD in a novel way. Through investigating the relationship

between the count of certain mutation patterns and the severity of AD, we have

established a positive correlation between these two, and the hypotheses are thus

supported.

The final part of this thesis investigates another two research problems in

GWAS: tag SNP selection and SNP imputation. We realize that the computation-

ally expensive and memory-intensive tag SNP selection methods in the literature

cannot work on genome-wide data. So we propose a fast and efficient genome-

wide tag SNP selection algorithm (called FastTagger) using multi-marker linkage

disequilibrium. The algorithm can work on data with more than 100k SNPs

that previous methods cannot handle. We further utilize the rules produced by

FastTagger and develop a new tag-based imputation method called RuleImpute,

which suggests rules with minimum span to achieve the best imputation accuracy.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Genome-wide association studies (GWAS)

A genome-wide association study (GWAS) searches for inherent expression (ge-

netic patterns) from a genome that is potentially associated with outward expres-

sion (phenotypes) in a carefully designed study. A typical study usually consists

of 500k∼1,000k [Psychiatric GWAS Consortium Coordinating Committee et al.,

2009] genetic markers. These markers capture at least 80% of common genetic

variations of the human genome using a cost-effective genotyping platform. The

phenotypes of the study normally record the observed characteristics of hundreds

or thousands of samples selected from a certain population. Such a study design

provides an unbiased, full-genome search for genetic patterns in samples with

different phenotypes. The identified genetic patterns act as risk factors of devel-

oping certain outward expression. Depending on the research methods, there are

different associations between genetic patterns and outward expressions. Broadly

speaking, three widely studied genetic patterns are single-marker, multi-marker

and pair-marker. The early research focuses on identifying susceptible single-

marker patterns that are associated with outward expression. These studies are

relatively less powerful and account for less amount of explained heritability. By

considering several genetic markers simultaneously in a statistical model [Hog-

gart et al., 2008; Wang et al., 2012], the multi-marker patterns reported are more
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powerful since complex diseases are possibly caused by multiple causal variants.

To further explain the “missing heritability” [Eichler et al., 2010; Manolio et al.,

2009], pair marker patterns (gene-gene interaction), termed as epistasis [Bateson,

1909; Phillips, 2008], attract more attention. The discovery of epistasis is moti-

vated by biological observations and statistical findings. On the other hand, the

outward expression, also termed trait/phenotype/disease status interchangeably,

has a variety of forms. They can be a sample’s body mass index when studying

quantitative trait; they can be the healthy and disease status for a case-control

study; they can be the record of a large number of different voxels in brain images

for a high-dimensional imaging genetic study. Different forms of inherent genetic

patterns and outward expression make GWAS a rather general concept. GWAS is

expected to be superior to conventional linkage and candidate gene studies [Psy-

chiatric GWAS Consortium Coordinating Committee et al., 2009] in terms of

power and fine-mapping due to its unbiased, large-cohort and full-genome study

design.

The first exciting finding of GWAS was on age-related macular degenera-

tion (AMD) [Klein, 2005], which uncovers a disease allele (tyrosinehistidine poly-

morphism) with an effect size of 4.6 in 100,000 single nucleotide polymorphisms

(SNPs). In 2007, Wellcome Trust Case Control Consortium (WTCCC) [Bur-

ton et al., 2007] released its well-designed GWAS data of seven complex diseases

to researchers, which was the landmark of GWAS discovery in the past decade.

Research on WTCCC GWAS data has uncovered many previously unknown sus-

ceptible genes in type 1 diabetes, type 2 diabetes, breast cancer, multiple sclero-

sis, Crohn’s disease, colorectal cancer, and prostate cancer. Since then, reported

GWAS discoveries have accumulated significantly and have therefore largely ex-

panded our understanding of the etiology of complex diseases. As of June 2012,

there are 1,287 publications and 6,499 reported SNPs associated with over 300

traits or diseases. All these discoveries are done in 7 years; thus the success of

GWAS is undeniable [Visscher et al., 2012].

2
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1.1.2 Computational challenges in GWAS

Despite the successful application of GWAS, it poses some computational chal-

lenges to the community. The early analysis of GWAS is centered around single-

marker analysis using different test statistics. The main reason is due to the heavy

computational burden in estimating model parameters if hundreds of thousands

of SNPs are analyzed together. For example, the two-locus χ2 test requires con-

structing a contingency table with 2 rows and 9 columns, and the three-locus χ2

test requires 2 rows and 81 columns. The number of columns to construct grows

exponentially when more SNPs have to be considered together. Currently, it is

impossible go beyond three-locus association test due to limited sample size and

computational complexity. Therefore, as described in Chapter 2, the assumption

that a small number of SNPs are jointly associated with the phenotype is imposed

for retrospective (like χ2 test) and prospective (like logistic regression) statistical

modeling.

Studies on gene ontologies, protein-protein interaction networks, protein com-

plexes, protein triplets, and pathways have accumulated a wealth of biological

knowledge. Although they are not complete and still evolving, researchers agree

that these biological and other domain knowledge can be used to benefit GWAS.

Some researchers [Wilke et al., 2008] suggest we should not begin GWAS before

we have extensive of knowledge on candidate genes and pathways. However, there

is still no consensus on what the best way to integrate the abundant “high level”

knowledge into GWAS is. Moreover, there is no all-in-one database that stores

different types of biological knowledge in one place and supports cross query in

different formats. The computational challenge not only comes from storing, ex-

tracting, and loading these data, but also from the proper use of the accumulated

knowledge in an efficient and meaningful way.

Computational challenge also arises when the aim of GWAS is to detect gene-

gene/environment interactions (epistasis) that are associated with a phenotype.

Biologically, epistasis [Bateson, 1909] is defined as the change of segregation ratio

and the interaction of genes. However, detecting epistasis in GWAS is computa-

tionally challenging because it involves analyzing a large number of SNP pairs.

Given that current SNP chips can genotype at least 1 million SNPs, the number

3
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of possible SNP pairs can be as large as 5*1011. Ma et al. [2008] estimate that 4.8

years are needed to finish epistasis testing of 1 million SNPs using a sequential

program on a 2.66 GHz single processor. Different heuristics have been proposed

to prune the huge number of pairs so that the remaining pairs are within a more

manageable size, ranging from several hundreds to thousands [Long et al., 2009;

Yang et al., 2009].

Computational challenges not only occur in statistical analysis, but also in ma-

chine learning techniques. Most machines learning techniques are non-parametric,

and are able to handle high dimensionality. Although they are widely used in

the analysis of GWAS data, the computational obstacle is the headache of many

researchers. For example, Random Forest [Breiman, 2001] is a popular method

for detecting epistasis [Cook et al., 2004; Jiang et al., 2009; Lunetta et al., 2004]

by modeling epistasis as the two connected nodes of an edge in a tree of a ran-

dom forest. In applying Random Forest to a typical case-control data set with

1,000,000 SNPs and 2,000 samples, on average 1,000 SNPs are used to construct

a tree. A rough estimate for building a tree with 1,000 nodes for 2,000 data

points is ∼ 1 hour on a typical PC. How many trees are “ideal” for detecting

epistasis? There are 1,000 SNPs in each tree on average and in total there are

1,000,000 SNPs. So the probability of a given SNP being in a specific tree is

10−3. The probability of the two specific SNPs occurring in the same tree is then

10−6. This means that, after building 1,000,000 trees, we can only expect to

see the two SNPs occurring in the same tree once. But building 1,000,000 trees

takes 1,000,000 hours in a single PC, or, 114.15 years. This makes the analysis

of typical GWAS data a computationally prohibitive task.

1.1.3 Big data, Hadoop and associated technologies

We live with digital data every day. Searching keywords, reading news, sending

emails, listening to music, browsing websites, sharing social media feeds, shopping

online, watching videos and so on are part of daily routines of 2.5 billion netizens

in the world. All these digital activities are backed by a variety of data and
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related technologies. As long as one accesses the Internet of things1 , he/she is in

the process of generating, communicating and consuming data. Data is no longer

a meaningless bit that people can neglect. It is now considered as a digital asset

for a person, an organization and an industry [Manyika et al., 2011].

Big data, describing the current digital era situation which we are in, is dis-

tinguished from traditional data in the four “V”s2: Volume, Velocity, Variety

and Variability. Volume indicates that the size of data is too big to process us-

ing traditional IT infrastructures. Velocity defines the speed at which data are

processed. Depends on the task, the requirement of velocity can be real-time or

within several hours. Variety describes the analysis complexity of big data which

is a mix of structured and un-structured data. Variability refers to the flexible

ways of interpreting the insights extracted from big data, and different questions

lead to different story tellings. These four “V”s characteristics of big data attract

academic institutes and industrial companies to mine value out of them.

To support aggregation, manipulation, management and analysis of big data,

many innovative technologies that use distributed storage and computation are

emerging rapidly. In particular, Hadoop, an open-source framework originally de-

veloped based on Google’s MapReduce [Dean and Ghemawat, 2004] and Google

File System [Ghemawat et al., 2003], has now become the kernel of the Hadoop

ecosystem which is a project under Apache Software Foundation. The core parts

of the Hadoop ecosystem are HDFS and MapReduce. Hadoop Distributed File

System (HDFS) is the distributed storage file system that creates user-defined

replicas of data blocks and distributes them on data nodes throughout a cluster

to enable fault-tolerant and fast computations. MapReduce is a programming

model that divides data processing into map and reduce phases which have been

known and used in functional programming. To better utilize the power of dis-

tributed storage and computation, the Hadoop ecosystem is adding other useful

1http://www.mckinsey.com/insights/mgi/research/technology_and_innovation/

the_internet_of_things
2http://blogs.forrester.com/brian_hopkins/11-08-29-big_data_brewer_and_a_

couple_of_webinars
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Table 1.1: Summary of different big data technologies

Technology Summary
Cassandra A scalable and high-availability distributed database

management system for large-scale data.
BI softwares They are used to read, analyze, and generate standard

report to the user, possibly, on a periodic basis. Exam-
ple softwares are IBM Cognos Series 10, Tableau, SAP
NetWeaver BI and so on.

ETL tools They are used for tasks of Extract, Transform and Load
data. Example tools are SAP BusinessObjects Data In-
tegrator, SQL Server Integration Services, and Informat-
ica Powercenter.

R An open-source, powerful programming language and
software mainly for statistical computing. The R frame-
work has been extended to analyze big data recently.

Visualization This use pictures, diagrams, shapes and animations to
better present the insights extracted from data. Popu-
lar tools include IBM Cognos Insight, Palantir financial,
and SAP Visual Intelligence.

components. Some examples are Hive1, HBase2, Pig3 and Mahout4. Hive is

developed as SQL-like data warehouse for data summarization, query and anal-

ysis. Pig is a high-level data flow language used to ease the burden of map and

reduce functional programming. HBase is built on top of HDFS to store un-

structured data, thus it is fault-tolerant and can cooperate with MapReduce jobs

seamlessly. Mahout is an open-source machine learning library specifically for

large-scale data analysis on Hadoop. The Hadoop ecosystem is evolving and be-

coming the “standard” technology for big data analysis. As Manyika et al. [2011]

suggested, other big data technologies include Cassandra, business intelligence

(BI) software, Extract-transform-load (ETL) tools, R, visualization and so on.

Their descriptions are given in Table 1.1.

1http://hive.apache.org/
2http://hbase.apache.org/
3http://pig.apache.org/
4http://mahout.apache.org/
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1.1.4 Hadoop in genome analysis

Considering the consistently dropping cost of sequencing technologies, it is antici-

pated that by mid 2013, we will enter an era of sequencing one genome at the cost

of $1,000 or below1. At that time, we will need to analyze and interpret whole-

genome data for personalized medicine. Currently, many preparations for genome

analysis using big data technologies are on the way. Hadoop-BAM [Niemenmaa

et al., 2012], specifically designed for sequence alignment of NGS data, provides a

library for directly manipulating the aligned NGS data, which is stored in BAM

file (Binary Alignment Map). Eoulsan [Jourdren et al., 2012] provides a cloud

computation framework including analysis of high-throughput sequence data from

upstream quality control to downstream differential expression detection. Schatz

et al. [2010] provide a Hadoop software to accelerate the SNP calling and sequence

alignment. Langmead et al. [2010] develop an ultrafast and memory efficient pro-

gram called Bowtie for aligning short DNA sequence reads to large genomes. The

same group [Langmead et al., 2009] also develop a cloud-computing pipeline—

Myran—for analyzing transcriptome sequencing (RNA-Seq) data. CEO [Wang

et al., 2010b] and eCEO [Wang et al., 2011] focus mainly on dividing the expo-

nential combination of tests into the distributed computing tasks in the cloud.

Wang et al. [2012] further extend this work by providing a general framework for

combinatorial data analysis.

1.2 Outline of the thesis

This thesis investigates the use of big data technologies for GWAS data analysis.

Computational complexity is always a factor to consider when analyzing the ever-

growing volume of genomic data. Effective application of big data technologies

can free researchers to uncover more biological insights. The outline of this thesis

is as follows:

Chapter 1 presents an overview of GWAS, big data technologies, Hadoop and

the motivation for combining them. The research contributions are listed.

Chapter 2 provides background on GWAS data analysis and two components

1http://en.wikipedia.org/wiki/$1,000_genome
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of big data technologies: Hadoop HDFS and MapReduce.

Chapter 3 is an empirical study of current epistatic interaction detection meth-

ods in GWAS. The study motivates us to use big data technologies for GWAS in

Chapter 4, 5, and 6.

Chapter 4 investigates the marriage between big data technologies and GWAS

epistatic interaction detection. The computational difficulties are largely allevi-

ated.

Chapter 5 proposes an even more efficient approach for detecting epistasis in

the cloud than that described in Chapter 4.

Chapter 6 continues the discussion of using big data technologies in GWAS

but in a more challenging setting: analyzing high-dimensional phenotypes instead

of binary data. A novel hypothesis on the connection between the number of

mutations and severity of the Alzheimer’s disease is proposed and preliminary

results are obtained. This may inspire further application of such analysis in

GWAS.

Chapter 7 discusses another two research problems in GWAS: tag SNP selec-

tion and SNP imputation. A novel algorithm called FastTagger is developed to

reduce the number of tag SNPs and to improve efficiency. FastTagger is further

extended for the SNP imputation problem.

Chapter 8 concludes the thesis with some discussion on the achievements

reached.

1.3 Research contributions

In the following, the detailed contribution of each chapter is outlined:

Chapter 3:

Many new methods have recently been proposed for detecting epistatic inter-

actions in GWAS data. There is however no in-depth independent comparison

of these methods yet. This chapter provides an independent, empirical compar-

ison of the epistatic interaction detection methods in the literature on different

8
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simulation settings. Unexpectedly, the comparison results show that all the non-

exhaustive methods are computationally efficient but at the cost of losing power.

This is not a desirable property when designing algorithms for detecting epistatic

interactions. That being said, the work guides researchers to design algorithms

that can examine all possible pairs or not miss any pairs to achieve enough power,

given the increasing computational power. This work also distinguishes the con-

cept of “pure epistasis” and “epistasis allowing for association”, which is not

clearly mentioned in the literature. This chapter is based on the following paper:

• Yue Wang, Guimei Liu, Mengling Feng, Limsoon Wong. An empiri-

cal comparison of several recent epistatic interaction detection methods.

Bioinformatics, 27(21):2936–2943, November 2011. Corrigendum in Bioin-

formatics, 28(1):147–148, January 2012.

Chapter 4 and Chapter 5:

The results of Chapter 3 reveal the necessity of exhaustively examining all pos-

sible pairs of genes for epistatic interactions. Such an exhaustive examination is

computationally costly and calls for effective parallelization. Chapter 4 describes

the first-ever cloud-based epistasis model using Hadoop HDFS and MapReduce

technologies. Chapter 5 expands the work of Chapter 4 by describing several

ideas for optimizing the distributed computations and significantly speeding up

the calculations of test statistics and mining of epistatic interactions. For ex-

ample, to construct a contingency table, we adopt a Boolean representation of

the data and use a bit operation to get the intersection of two Boolean arrays,

which is memory efficient and computationally fast compared with using a link

list representation and hash operations. The new square chopping model refines

the distributed model further by “square chopping” candidate SNP pairs, which

can reduce computation further when there is a lot more computation resources.

The open-source software eCEO, is specifically designed for users to conduct ex-

haustive epistatic interaction analysis in private clusters and commercial cloud

platforms in several days, which is impossible for a single PC. Additionally, the

software has the option of choosing different test statistics for epistasis, depending

on the definition of epistasis. For example, the χ2 test is designed for “epistasis

9
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allowing for association” and likelihood ratio test with 4 df is designed for “pure

epistasis”. Since the software is open sourced, user can adapt the codes to include

more ad-hoc definitions of epistasis. The experimental results and our design of

the software demonstrate that it is computationally efficient, flexible, scalable and

practical. These two works are published in a conference and a journal separately.

• Zhengkui Wang, Yue Wang, Kian-Lee Tan, Limsoon Wong, Divyakant

Agrawal. CEO: A Cloud Epistasis cOmputing model in GWAS. In Proceed-

ings of 4th IEEE International Conference on Bioinformatics & Biomedicine,

pages 85–90, Hong Kong, December 2010.

• Zhengkui Wang, Yue Wang, Kian-Lee Tan, Limsoon Wong, Divyakant

Agrawal. eCEO: An efficient Cloud Epistasis cOmputing model in genome-

wide association study. Bioinformatics, 27(8):1045–1051, April 2011

In the two papers above, the greedy and square chopping load-balancing model

design should be attributed to Wang Zhengkui. My contribution is the statistical

test design, Boolean data operation optimization, and problem abstraction to the

MapReduce framework.

Chapter 6:

Chapters 4 and 5 deal with binary traits in GWAS, but another major cate-

gory of GWAS is those concerning quantitative traits, especially high-dimensional

quantitative traits. High-dimensional traits arise naturally in recent neuroimag-

ing genetics studies, in which the phenotypic variability in the human brain is

measured by means of 3D neuroimaging data. Random Forest (RF) is amongst

the best performing machine learning algorithms for classification tasks and has

been successfully applied to the identification of genome-wide associations in case-

control studies. RF can also be applied to population association studies with

multivariate quantitative traits, whereby the classification task is replaced by a

regression task. When applied to whole-genome mapping involving hundreds of

thousands of SNPs and multivariate quantitative traits, a very large ensemble

of regression trees must be inferred from the data in order to obtain a stable
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SNP ranking. The effective application of Hadoop technologies in previous chap-

ters shows a promising direction of analyzing GWAS data. Therefore, Chapter

6 continues the discussion of using Hadoop technologies for analyzing the more

challenging high-dimensional quantitative phenotype data on Alzheimer’s dis-

ease. We have developed a parallel version of RF for regression tasks with both

univariate and multivariate responses, called PaRFR (Parallel Random Forest

Regression), to support multivariate quantitative trait loci mapping in unrelated

subjects. PaRFR takes advantage of the MapReduce programming model and

is deployed on Hadoop. Notable speed-ups have been obtained by introducing a

distance-based criterion for node splitting. We also present experimental results

from a genome-wide association study on Alzheimer’s disease in which the quan-

titative trait is a high-dimensional neuroimaging phenotype that describes the

longitudinal changes in the human brain structure. PaRFR provides a ranking

of SNPs that reflects their predictive power, and produces pair-wise measures of

genetic proximity that can be directly compared to pair-wise measures of phe-

notypic proximity. Several known AD-related variants have been identified, in-

cluding APOE4 and TOMM40. Based on the top-ranked SNPs from PaRFR, we

further propose a hypothesis on the relation between the number of top-ranked

SNP patterns (frequent mutation patterns) and the severity of the Alzheimer’s

disease. Specifically, the more frequent mutation patterns an individual carries,

the more severe the disease an individual has, which is supported by Alzheimers

Disease Neuroimaging Initiative (ADNI) data. This work is summarized in the

following manuscript to be submitted to a journal.

• Yue Wang, Limsoon Wong, Giovanni Montana. Parallel random forests

regression on Hadoop for multivariate quantitative trait mapping. In prepa-

ration

Part of this work was done when I visited Imperial College London between

Jan 2012 to Jun 2012.

Chapter 7:
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This chapter discusses two other research problems in GWAS: tag SNP selec-

tion and SNP imputation. Tag SNP selection aims at selecting a small number

of SNPs (called tag SNPs) from a large number of SNPs using the non-random

association (linkage disequilibrium, LD) between SNPs. SNP imputation is used

to impute the missing SNPs which may be caused by quality control or not being

included in a genotyping chip. The imputed SNPs can be further used to study

the association with the traits. The two problems are interlinked with each other.

Tag SNP selection is usually used to design genotyping chips. Depending on the

algorithms used, chips from different companies genotype a different set of “tag

SNPs”. SNP imputation can be applied to impute the values of different missing

SNPs in different chips, thereby producing a unified set of genotyping data where

all SNPs are present uniformly. The small number of genotyped tag SNPs also

reduces genotyping cost. However, those genotyped tag SNPs may not be the

“causal” SNPs in an association study. SNP imputation is applied to improve

the chance of detecting “causal” SNPs.

Algorithms based on the r2 LD statistic (defined in Equation 7.1) have gained

popularity because r2 is directly related to statistical power in detecting disease

associations. Most existing r2 based algorithms use pairwise LD. Recent studies

show that multi-marker LD can help further reduce the number of tag SNPs.

However, existing tag SNP selection algorithms based on multi-marker LD are

both time and memory consuming. They cannot work on chromosomes containing

more than 100k SNPs using length-3 tagging rules.

We propose an efficient algorithm called FastTagger to calculate multi-marker

tagging rules and select tag SNPs based on multi-marker LD. FastTagger uses

several techniques to reduce running time and memory consumption. Our exper-

imental results show that FastTagger is several times faster than existing multi-

marker-based tag SNP selection algorithms, and it consumes much less memory

at the same time. As a result, FastTagger can work on chromosomes containing

more than 100k SNPs using length-3 tagging rules. FastTagger also produces

smaller sets of tag SNPs than existing multi-marker-based algorithms.

The generated tagging rules can be used for genotype imputation. We thus

develop a rule-based imputation method called RuleImpute. To study the pre-

diction accuracy of individual rules, we have proposed 5 different rule selection

12
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strategies, and experimental results show that rules with minimum span give the

highest prediction accuracy. This Chapter is based on the following papers:

• Guimei Liu, Yue Wang, Limsoon Wong. FastTagger: An efficient algo-

rithm for genome-wide tag SNP selection using multi-marker linkage dise-

quilibrium. BMC Bioinformatics, 11:66, February 2010.

• Yue Wang, Guimei Liu, Limsoon Wong. A study of different rule se-

lection strategies for rule-based SNP imputation. Poster in The 20th In-

ternational Conference on Genome Informatics,Yokohama, Japan, 14-16

December 2009.
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Chapter 2

Background

2.1 Inherent expression: Genotype

The human genome consists of 23 chromosome pairs and some mitochondrial de-

oxyribonucleic acid (DNA). For every chromosome pair, one is from the mother

and the other from the father. The first 22 chromosome pairs are called auto-

somes, and the remaining pair depends on the gender: for male it is a X and a

Y chromosome and for female it is two X chromosomes. Each chromosome pair

is made of DNAs and has a double helix structure formed by base-wise pairing

of the two long strands of DNAs. In total, approximately 3.4 billion base pairs

are aligned in 46 chromosomes. Some stretches of DNA nucleotides, called genes,

are meaningful segments since they tell cells how to make proteins. Currently,

there are ∼25,000 genes identified in the human genome [Stein, 2004]. The nu-

cleotides on the two DNA strands in a chromosome, are paired in accordance to

the Crick-Watson rule: adenine (A) is paired with thymine (T) and cytosine (C)

is paired with guanine (G). The nucleotide base may be differ from individual

to individual at the same location of a chromosome strand. Such a difference

is called a Single Nucleotide Polymorphism (SNP). A rough estimate is that an

SNP exists every 100∼300 nucleotide bases, leading to a total of 10-30 million

potential SNPs in the human genome. According to the latest NCBI SNP statis-

tics, there are 38,077,993 SNPs with validated information either supported by

non-computational methods or by frequency information associated with them.
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However, this number may go up or down since different researchers use differ-

ent scrutiny criteria. Compared to other genetic variations like copy number

variation, segment insertion and deletion, the amount of SNP genetic markers

is considered more abundant and informative. The relationship between human

genome, chromosome, gene and SNP is illustrated in Figure 2.1. The possible

bases that can be observed at the locus of an SNP are called the alleles of that

SNP. The alleles of a SNP is usually given as a pair due to its chromosome pair,

and is called a genotype. In this thesis, we focus on biallelic SNPs, which are

SNPs having only two alleles. The allele that appears in the majority of a pop-

ulation is termed the major allele, the other is called the minor allele. In our

illustration, the genotypes of the 3 SNPs for the 1st, 2nd and nth sample are:

(GC,CT,AG), (CG,CT,AG) and (GG,TT,GG). If a study population only con-

sists of these 3 samples, then the major allele for first SNP is G since it occur 5

times in 3 samples. To ensure the allele is not too rare in the population, a minor

allele frequency threshold like 1% is imposed for all SNPs. In this illustration,

the minor allele frequency of all three SNPs passes this threshold.

2.2 Outward expression: Phenotype

A phenotype represents the outward expression of inherent genetic code for an

organism. An outward expression is either an observable or visible characteristic,

trait or behavior. Different Body Mass Indexes (BMI) for a study population

constitute an example of visible traits. While other phenotypes like brain vol-

ume size change rate, which is not directly visible, can be observed by Magnetic

Resonance Imaging (MRI) technology. Samples with the same genetic patterns

may not lead to the same phenotypes and vice versa, since a phenotype is deter-

mined both by genotype and by natural environment. For example, a “mimicry”

phenotype is mainly determined by interactions with the environment and the

genotype plays a lesser role, while a Mendelian disease phenotype is mostly de-

termined by genetic patterns and the environment plays a lesser role. These two

types of phenotypes are illustrated in Figure 2.2. The relationship of genotypes
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Figure 2.1: Illustration of genome, chromosome, gene and SNP. Here we omit the
genetic information from mitochondrial DNA. Each sample in a population has
23 chromosome pairs, one is from his father and the other from his mother. A
gene is labeled in one stretch of the first chromosome. Three SNPs are indicated
by down triangles in the right part of the figure. Note that it is not necessary
that SNPs reside in a gene region.

and phenotypes is described as follows [Herskowitz, 1977]:

Genotype+Environment+Genotype×EnvironmentInteraction→ Phenotype

In this thesis, we assume that the environment covariates are properly adjusted.

Therefore, we do not study how the environment and genotype×environment

interaction affect the phenotypes, and the focus is to study the association rela-

tionship between genotypes and phenotypes as follows:

Genotype→ Phenotype
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Affected  Father Healthy  Mother

Aa aa

Aa Aa aa aa

Affected Male Affected Female Healthy Male Healthy Female

                   Phenotype largely affected by environment Phenotype largely affected by genotype

Figure 2.2: Illustration of two types of observable phenotype. Mimicry is largely
determined by interactions with the environment and Mendelian’s disease deter-
mined by genetic patterns.

Two types of phenotypes are studied in this thesis: case-control disease status

and high-dimensional quantitative traits. The case-control disease status is used

in a retrospective case-control study, where the healthy and disease samples are

carefully selected so that their age, gender, race and other covariates are matched.

The cases are those affected by the disease under the study and the controls are

the healthy samples. The case-control phenotypes contain coarse information

since only two states of disease information are recorded. In contrast, quantitative

measurements of the phenotype can provide more information and get closer to

representing the phenotype. For samples diagnosed with the same disease, the

severity of disease varies person by person. We study the quantitative change

of brain atrophy over time for a study group of Alzheimer’s disease samples.

147,721 brain signatures located in various parts of the brain, called voxels, are

selected to represent brain shapes. This phenotype information is recorded in a

high-dimensional voxel value vector, each element of the vector summarizes the

brain volume change rate over time. The two studied phenotypes are illustrated

in Figure 2.3.
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Affected  samples

Healthy  samples

1 1 1

0 0 0

Case-control phenotype High-dimensional phenotypes

Figure 2.3: Illustration of two studied phenotypes, the case-control phenotype
labels the disease status of a sample while high-dimensional brain image pheno-
types record the change rate of brain volume size and thus are more close to the
disease.

2.3 Overview of analysis flow of GWAS

Linkage studies [Bush and Haines, 2001; Pericak-Vance, 2001] have great suc-

cess in identifying single genes of large effect which cause Mendelian diseases like

neurofibro-matosis. However, there has been little progress in linkage studies of

complex diseases. The design of such studies is usually limited to family mem-

bers and the diseases studied are related only to family heritance (i.e, Mendelian

diseases). The findings are hard to generalize to a population. Candidate gene

studies [Zhu and Zhao, 2007] carefully select a few to hundreds of genetic vari-

ants based on the plausible and incomplete biology knowledge, and aims to test

a researcher’s proposed hypothesis. Unlike linkage studies and candidate gene

studies, GWAS searches for susceptible genetic patterns that are associated with

the study phenotypes from the whole genome in an unbiased way. The bedrock

of GWAS relies on the “common disease, common variant” (CDCV) hypothe-

sis [Chakravarti, 1998; Lander, 1996, 2001; Risch and Merikangas, 1996], which

assumes that a common disease like diabetes and hypertension is caused by a

set of common variations in some population. To define the common variations,

the frequency of occurrence is at least 1% in a studied population [Buchananet
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An overview of GWAS  design

Study samples are selected,  
matched and covariates are
carefully adjusted. 
Their DNAs are genotyped as
the raw data for the next step

Rigorous statistical test/machine 
learning techniques are applied, 
resulting in a list of statisti-
cally significant candidate SNPs/
SNP pairs

The candidate SNPs/SNP pairs 
are further validated  by functional 
study, re-sequencing  or indepen-
dent  study

The genotyping error is corrected.  
Population stratification, and other 
covariates like gender, smoking 
are adjusted through stringent 
quality control(QC)

Figure 2.4: A typical workflow of case-control GWAS.

al., 2011]. The CDCV hypothesis has been criticized by the fact that a com-

mon/complex disease can also be caused by rare variants. Currently, there is no

finalized conclusion on the exact distribution of disease-causing variant frequency.

However, we are sure that disease etiology is far more complicated than we pre-

viously expected as we study more common/complex diseases. As a first step

to elucidate the pathology of a complex disease, GWAS provides various clues

to understand gene and pathway functions. As shown in Figure 2.4, the general

workflow of GWAS can be divided into four steps: (1) study design, (2) quality

control, (3) statistical test analysis, (4) results validation. They are described in

the following sections respectively.
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2.3.1 Study design

The study design of GWAS can be categorized into two types: retrospective study

and prospective study. The most common retrospective study is the case-control

study, in which the samples are selected as cases and corresponding counterparts

as controls. Case-control study is efficient and cheap compared to prospective

study. However, it assumes that the cases have the same severity of disease

and controls are totally disease free. This assumption may cause spurious false

negatives. In reality, the cases may have different severity and some controls may

also be at a high risk to develop the disease. Thus quantitative phenotypes like

brain image change rate [Stein et al., 2010b], height [Estrada et al., 2009], blood

pressure [Levy et al., 2009] are believed to better characterize disease status in

some situations. To directly measure the risk of developing a disease and make less

biases, a more expensive and time-consuming prospective study called a cohort

study may be needed. It includes a representative group of samples with similar

phenotypes of interest and genetic variants at the beginning of the study. Until

certain time of the study progress, some samples developed the diseases. Their

genetic patterns are compared with the other samples to detect the presence

of any disease mutation pattern. Such studies have received more attention in

GWAS recently [Cupples et al., 2007].

2.3.2 Quality control

Study samples are carefully selected and genotyped mainly using Illumina or

Affimetrix chips. The genotype data obtained from the chips are raw data, which

may contain genotyping errors. Genotyping errors may lead to spurious findings.

Thus a set of quality control procedures [Teo, 2008] are used.

(1) A SNP calling threshold like 95% is applied to each SNP. The genotyping

technology is not perfect, not every SNP is genotyped in every sample, and some

genotypes are missing in some samples. The SNP calling value of a SNP is

calculated as the proportion of samples for which the genotypes of this SNP are

successfully determined. A calling threshold like 95% means that the genotypes

of the SNP are successfully determined in at least 95% of samples. SNPs less

than the calling threshold are removed. Even though a SNP satisfies the calling
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threshold, there may still be some samples for which the genotypes of this SNP

are not successfully determined. In such a situation, the missing genotypes can be

imputed using methods such as IMPUTE [Howie et al., 2009] and Plink [Purcell

et al., 2007].

(2) An allele frequency threshold like 1% or 5% is applied to each SNP. An

allele whose frequency is lower than the threshold is considered a rare allele. All

the rare alleles of SNPs are removed because they are less likely to be responsible

for the associated traits. For the rare disease, rare variants are important. How-

ever, the assumption of GWAS is common disease, common variants (CDCV) as

mentioned in section 2.3.

(3) The significance of the Hardy-Weinberg equilibrium (HWE) test should be

as stringent as 10−6. HWE states that the frequency of allele and genotype in a

population is constant from ancient generations to current generations. This is an

ideal setting. In reality, many disturbing factors like mutation and non-random

mating could occur.

Suppose the frequencies of a biallelic SNP are denoted as p (the major allele)

and q (the minor allele). According to HWE, the equation p + q = 1 describes

the frequency of a gene with two alleles, and the equation p2 + 2pq + q2 = 1

describes the frequency of the three possible genotypes of a gene with two al-

leles. The two homozygous genotypes have allele frequency p2 and q2 and the

heterozygous genotype has frequency 2pq. A χ2 test is applied to compare the

expected genotype distribution from HWE with the observed count of the three

genotypes from the population. A χ2 value lower than 10−6 is usually considered

a strong evidence of deviation from HWE. SNPs that significantly deviate from

HWE need to be removed because their expected proportions of genotypes are

not consistent with observed allele frequency.

(4) Other than SNP quality control, sample quality controls are also used:

i) For a sample, the proportion of SNPs that are not successfully genotyped

or removed—using criteria (1), (2) and (3)—should be below 5%. Otherwise, the

sample is removed.

ii) When the proportion of heterozygotes is higher than the user-specified

threshold, the samples may be contaminated or may contain related or duplicated

samples.
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iii) Race information should be consistent with the reported race.

iv) Gender information should be consistent with the reported gender.

(5) Population substructures is removed from the data. In GWAS, a majority

of SNPs are not associated with disease, a strong association signal can be caused

either by some true associated SNPs or by population structure. Before perform-

ing statistical association analysis of the genotype data, a tool like “Structure”

[Pritchard et al., 2000] should be used to detect population substructures.

2.3.3 Statistical analysis

After the genetic data are properly cleaned, the next step is to conduct rigorous

statistical analysis. Potential confounding factors like gender, smoking and drink-

ing should be properly incorporated into the statistical model or adjusted before

formal analysis. Otherwise, false positive associations may be detected. There

are (1) single-SNP association analysis, (2) multi-SNP association test, and (3)

SNP-SNP interaction test (epistasis). Different statistical tests are derived for

these three tasks. Before we proceed to the description of the statistical tests,

here are some assumptions :

(1) We assume each base pair has biallelic polymorphism.

(2) For a SNP, we write “A” as the major allele and “a” as the minor allele;

therefore three genotype combinations AA, Aa, aa are used for a SNP.

(3) We use case-control disease status as phenotype when describing a statistical

test.

2.3.3.1 Single-SNP association test

Single-SNP χ2 test, also known as the homogeneity test or the genotypic test,

is used to test the association with case-control status without assuming any re-

lationship between genotype and case-control status. The null hypothesis and

alternative hypothesis are respectively:

H0: The proportion of case vs control is independent of the frequency distri-

bution of the three genotypes.
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Table 2.1: Single-SNP χ2 test contingency table for the additive model
AA Aa aa Total

Case n1,0 n1,1 n1,2 n1,

Control n0,0 n0,1 n0,2 n0,

Total n,0 n,1 n,2 n

Table 2.2: Single-SNP χ2 test contingency table for the recessive model
AA Aa or aa Total

Case n1,0 n1,1 + n1,2 n1,

Control n0,0 n0,1 + n0,2 n0,

Total n,0 n,1 + n,2 n

HA: The proportion of case vs control is dependent on the frequency distri-

bution of the three genotypes.

The two alleles in a genotype interact according to one of three possible effects:

dominant, recessive, and additive. Given a SNP with two possible alleles (A and

a). If AA and aa individuals show different phenotypes, and Aa individuals show

the same phenotype as AA individual, then the allele A is said to be dominant and

the allele a is said to be recessive. If instead Aa has the same phenotype as aa, the

allele a is said to be dominant and A is recessive. On the other hand, the additive

effect is the form of allelic interaction in which dominance is absent, resulting in

a heterozygote that is intermediate in phenotype between homozygotes for the

alternative alleles.

The observed genotype counts in the case group for AA, Aa, aa are n1,0, n1,1,

n1,2 and in the control group are n0,0, n0,1, n0,2, respectively. The first number 0

and 1 indicates the control or case status, and the second number 0, 1, 2 indicates

the number of minor allele copy in the genotype. The three contingency tables

corresponding to the three kinds of allelic interaction effects are constructed as

follows:

For a genotype with additive effect, Table 2.1 is used to calculate the χ2 test

statistics. The formula is :
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Table 2.3: Single-SNP χ2 test contingency table for the dominant model
AA or Aa aa Total

Case n1,0 + n1,1 n1,2 n1,

Control n0,0 + n0,1 n0,2 n0,

Total n,0 + n,1 n,2 n

χ2 =
1∑

i=0

2∑
j=0

(ni,j − ni,n,j/n)2

ni,n,j/n
,

where n =
∑1

i=0

∑2
j=0 ni,j, ni, =

∑2
j=0 ni,j, and n,j =

∑1
i=0 ni,j.

The χ2 test statistic follows asymptotically the χ2 distribution with 2 degrees

of freedom (df). If the null hypothesis is rejected at a nominal significance level

like 0.05, then there exists an association between the SNP and the case-control

disease status. However, we do not know which genotype increases or decreases

the disease rate. A more detailed insight can be obtained by calculating the Pear-

son correlation coefficient. When the “aa” cell (rare variants) of the contingency

table has count less than 5, the Fisher’s exact test should be used because the

approximation by the χ2 test statistic is not accurate in this scenario.

For a genotype with the recessive or the dominant effect, the association be-

tween the SNP and the case-control disease status can be tested by aggregating

the two columns of Table 2.1. For example, the null hypothesis and the alterna-

tive hypothesis for the dominant model can be restated as follow:

H0: The proportion of case vs control is independent of the frequency distri-

bution of the two genotypic groups (AA or Aa and aa).

HA:The proportion of case vs control is dependent of the frequency distribu-

tion of the two genotypic groups (AA or Aa and aa).

The dominant and recessive test statistics follow the χ2 distribution but with

1 df. In general, the dominant test has optimal power if the inherent genetic

model is the dominant model.

Another commonly used test is the Cochran-Armitage trend test, which is
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often preferred over allele frequency test. Both test the same null hypothesis but

the latter assumes the HWE. The null hypothesis to be tested is:

H0: the frequency for allele “a” in the case group is the same as in the control

group.

The general formula for calculating the Cochran-Armitage trend test is :

Zx =

√
n
∑2

i=0 gi(
n1,i

n1,
− n0,i

n0,
)√

n(n1,+n0,)

n1,n0,

[∑2
i=0 g

2
i θi − (

∑2
i=0 g

2
i θi)

2
]

where θi=
n1,in0,i

n
, i=0,1,2. The coding of <g0,g1,g2> represents three genotype

combinations of a SNP, like AA, Aa, and aa. To encode AA, Aa and aa, there are

three main models: additive, recessive, and dominant model. Normally, if users

choose additive model, then <g0,g1,g2> is coded as <0,1,2>. If users choose

recessive model, then <g0,g1,g2> is coded as <0,1,1>, and for dominant model

<g0,g1,g2> is coded as <1,1,0>. Although there are three coding schemes, the

additive coding scheme is recommended in the literature since it does not assume

the high-risk allele “A” in the dominant model and “a” in the recessive model.

However, Li et al. [2009] proposes a MAX statistic which uses the maximum of the

three genetic models to determine the p-value since the true underlying genetic

model is unknown. Their experiments show that the MAX statistics has high

power. The above Cochran-Armitage trend test statistic Zx follows the normal

distribution with mean 0 and standard deviation 1, and the null hypothesis is

rejected when |Zx| > 1.96. This test is equivalent to the test statistic derived

from the standard logistic regression model with following form:

log

(
Pr(case|g)

1− Pr(case|g)

)
= α + βg + γz

where z can be a covariate like sex, drinking quantity and g represents the geno-

typic coding. The null hypothesis H0 is β = 0.

2.3.3.2 Multi-SNP association test

Single-SNP test assumes that different SNPs are independent and therefore assert

no joint effect on the phenotype. It simplifies the genetic cause of disease, while a
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multi-SNP association test is considered more informative and powerful because

it takes into account the joint effect of SNPs [Kim et al., 2010; Slavin et al., 2011].

One natural extension from single-SNP association to multi-SNP association is

the multivariate logistic regression model:

log

(
Pr(case|g)

1− Pr(case|g)

)
= α +

l∑
i=1

βigi + γz

The subscript in the above model indicates the ith SNP. The null hypothesis

H0i for the ith SNP is: βi = 0. If some hypotheses are rejected, the corresponding

SNPs are associated with the disease jointly.

A test like the χ2 test and the Fisher’s exact test can be easily extended from

being a single-SNP association test to become a multi-SNP association test. For a

three-SNP association test constructed by the contingency table with 81 columns

(df 80), most of the cells are sparse if the sample size is not large enough. The

power of such a test drops significantly. Currently such a retrospective association

test is limited only to two-SNP association. For a prospective model like logistic

regression, a similar problem also exists when the number of SNPs is far more

than the sample size, as the estimation of coefficients is problematic.

To overcome these issues, the assumption that only a small number of SNPs

are associated with the phenotype is imposed, and a penalty term can be incor-

porated to estimate the coefficients. In the literature, the lasso and ridge penalty

regression have been proposed [Liu et al., 2011b; Wu et al., 2009; Zhao and Chen,

2012]. Another method is to select a small number of SNPs to consider before

multivariate modeling, thus dimensional reduction techniques like least-squares

kernel machines [Kwee et al., 2008], partial least-squares [Xue et al., 2012; Zhang

et al., 2011] and principle component analysis have been used [Wang and Abbott,

2008].

A variety of powerful Bayesian modeling methods have also been proposed

[Albrechtsen et al., 2006; Kilpikari and Sillanp, 2003; Marttinen and Corander,

2010]. These methods are powerful in the sense that their modeling framework

can easily include diverse prior knowledge, handle missing data, avoid multiple

testing correction procedure, control false-positive and avoid model overfitting.

Su et al. [2009] develop a novel association test by incorporating genealogy infor-
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mation from the HapMap data to improve the signal detection. Logsdon et al.

[2012] provide a Bayes statistic to control the false-positive and model complexity.

Stephens and Balding [2009] present an overview of Bayesian modeling methods

and discuss their advantages over frequentist statistics.

2.3.3.3 SNP-SNP interaction test (Epistasis)

Upto June 2012, there are 1,287 publications and 6,499 reported SNPs associated

with over 300 traits or diseases. These reported SNPs still explain a small propor-

tion of heritability. In the search of “missing heritability”, SNP-SNP interaction

detection plays an important role. The concept is originally proposed by Bate-

son [1909] who defines it as the effect of one gene masking the effect of another.

Moore [2005] presents a global view of epistasis and classifies the epistasis into

three levels:

• Genetic epistasis is the interaction of DNA sequence variants so that the

phenotype is affected through a set of biological processes ranging from

transcription to physiological homeostasis.

• Biological epistasis is the interactions between proteins and other biomolecules

that affect final expressed phenotype in a sample.

• Statistical epistasis results from genetic epistasis and biological epistasis

occurring in a population. It uses statistical language to describe the bio-

logical epistasis and detects it using statistical methods.

Here we focus on statistical epistasis detected through a statistical test. With-

out special notation, we refer to epistasis as statistical epistasis in the rest of the

thesis.

Cordell [2002] defines statistical epistasis as a deviation from the additive

linear model. If there is no epistasis, the linear model is additive since there is

no interaction term. To assess such a deviation, a natural extension from the

logistic regression model is to add an interaction term to the model and test the

significance of the coefficient:
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log

(
Pr(case|g)

1− Pr(case|g)

)
= α + β1g1 + β2g2 + β1,2g1 ∗ g2 + γz

The subscript in the above equation indicates the 1st and 2nd SNP. The null

hypothesis H0 for this statistical epistasis is: β12 = 0. If the hypothesis is rejected,

the corresponding SNP pair (epistasis) is associated with the disease.

In some loose situation [Wan et al., 2010b], the definition of epistasis allows for

incorporating the association of a single SNP. Therefore, the null hypothesis is:

β12 = β1 =β2. This is in contrast to a pure epistasis test [Wan et al., 2010a] which

only considers the interaction term. Therefore, when there is a single association

in the genetic model (main effect), the power of the test which considers the

association of single SNPs is expected to be higher than that of the pure test.

Other than tests derived from statistical models, recently a new statistic called

IndOR [Emily, 2012] has been proposed based on the biological definition of epis-

tasis [Cordell, 2002], where epistasis is defined as a departure from independence

between the two loci of interest. The name IndOR stands for independence-based

odds ratio, and it uses odds ratio to measure the amount of independence be-

tween SNP pairs in cases and controls. The test statistics is shown globally more

powerful than a likelihood ratio test derived from logistic regression model [Wan

et al., 2010a] in 45 different simulated epistasis models. Emily [2012] extends this

further to search for the missing heritability caused by epistasis.

Another group of methods without using statistical model and test are called

model-free methods. The Multifactor Dimensionality Reduction (MDR) method

[Ritchie et al., 2001] is the most popular one. Using two-SNP epistasis as an

example, the basic idea is to group the 9 genotypic combinations into high-risk and

low-risk groups based on the proportion of cases in each genotypic combination.

This technique reduces a two-SNP pair with 9 combinations to a one dimension

variable with two states. The newly transformed variables are used as predictors

and the classification performance is evaluated by cross-validation. The one with

the most accurate performance is selected as the most “significant” epistasis.

The method is good at handling high dimensional interaction especially when

the epistasis involves more than two SNPs. Also, the computational burden is

relatively lesser than classical statistical methods. However, there are many issues
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not addressed in the original MDR paper like handling an imbalanced case-control

data set [Velez et al., 2007]. Since then, many variants have been derived from

this work [Bush et al., 2006; Chung et al., 2006; Dai et al., 2012; Fang and Chiu,

2012; Lee et al., 2007; Motsinger and Ritchie, 2006; Pattin et al., 2009].

2.3.4 Validation of results

The rigorous statistical analysis—as described in the previous subsection—provides

a ranked list of SNPs or epistasis. Only some of them are the biological links to the

phenotypes of interest, the rest are false positives. Therefore, a replicated study

is often used to validate the discoveries in an independent sample. For example,

Sim et al. [2011] conduct a GWAS on Chinese, Malay and Indian type 2 diabetes

mellitus populations and the discovered SNPs can serve as an independent val-

idation of the SNPs identified in type 2 diabetes mellitus European population.

However, not all results can be replicated easily due to population stratification,

quality control, sample selection bias and other factors. To overcome the incon-

sistency between different studies, a large cohort is often needed [NCI-NHGRI

Working Group, 2007]. When there are some susceptible loci validated in differ-

ent studies, a more rigorous functional study is conducted. A general approach is

to study LD where the susceptible loci may not show obvious function or resides

in a gene “desert”. Studying the SNPs in LD is inspired by the observation that

some loci are inherited together and may serve similar function. The SNPs in

high LD with susceptible SNPs may yield some new biological discovery [Yeager

et al., 2007]. A further re-sequencing of the region where susceptible loci reside

can help identify rare variants with more functional implication [Libioulle et al.,

2007]. Some other functional studies like knockout or knock-in [Frayling and

McCarthy, 2007] are also used to uncover function implicated by plausible SNPs.

2.4 Big data and Hadoop technologies

Big data means the storage, integration and analysis of data whose volume is

beyond the computational capability of a single PC. The processing of big data

demands new technologies that are especially designed for them. Big data tech-
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Table 2.4: Summary of different extended R packages or technology
Packages Description
RODBC An interface to connect SQL-based Database for data

manipulation
biglm A solution to build generalized linear models on big data
ff Providing fast access functions to data that cannot be

loaded into memory
bigmemory Offering an efficient and parallel data mining techniques

for large-scale data
snow A high-level interface using a workstation cluster for par-

allel computations in R
SPRINT A parallel framework designed on high performance

computing
Revolution R An efficient, optimized and scalable R implementation

nologies are used to integrate, model, analyze, share and visualize big data to

extract potential insights. Some of these popular technologies are developed orig-

inally to analyze data that can be loaded into a single PC. They are gradually

extended to handle the emerging big data. For example, R is well known for data

analysis and visualization in computer science, finance and other disciplines. Tra-

ditionally it works using random access memory, and this causes serious scalability

issues. Recently new packages like “RODBC” “biglm”,“ff”,“bigmemory”, “snow”

and parallel frameworks like “sprint” are developed to resolve issues caused by

big data. “Revolution R”—a scalable, efficient and optimized R distribution—is

designed specifically for heavy computation of big data. The description of these

packages are listed in Table 2.4.

Other technologies are developed for big data analysis. The software platform

from Palantir, is now adopted in finance companies and government agencies. Its

successful applications include detecting financial fraud1 and informing the out-

break of disease in Haiti2 by using its powerful integration and visualization tech-

nology. Hadoop is a software framework for large-scale distributed data analysis

under the Apache Software Foundation. Originally it is derived from two pub-

lished papers on “MapReduce” and “Google File System” [Dean and Ghemawat,

1http://www.palantir.com/tag/anti-fraud/
2http://www.palantir.com/2010/04/haiti-effective-recovery-through-analysis/
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Figure 2.5: The recent Apache Hadoop ecosystem diagram from hadoop-
sphere.com.

2004; Ghemawat et al., 2003], but now it has evolved as an ecosystem consisting

of different sub-systems. Hadoop performs especially well at handling scalable,

fault-tolerant and efficient large-scale data analysis. Because of these advantages,

it becomes a standard technology used in many industries which require big data

analysis. Figure 2.51 illustrates the Hadoop ecosystem and Table 2.5 describes

the functions of the different components.

In this thesis, we only use the Hadoop Distributed File System (HDFS) and

MapReduce for GWAS analysis. In the next two sections. the working principle

of these two components is described.

1http://www.hadoopsphere.com/2013/03/apache-hadoop-ecosystem-march-2013_12.

html
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Table 2.5: Summary of different components in Hadoop Ecosystem
Component name Description
Whirr Provide a set of API/libraries to run different cloud ser-

vices
ZooKepper A high-performance coordination service for distributed

applications
Sqoop A data import mechanism to import/export structured

data from RMDBS
Nutch Used for importing data from Web
Flume A data import mechanism to import/export stream data
Hive A data warehouse infrastructure that provides data

summarization and ad hoc querying
Hbase A scalable, distributed database that supports struc-

tured data storage for large tables
Pig A high-level data-flow language and execution frame-

work for parallel computation
Mahout A scalable machine learning and data mining library for

large-scale data
HDFS A scalable, portable and fault-tolerant filesystem for dis-

tributed computing for large-scale data
MapReduce A functional programming library for large-scale data

analysis for large-scale data

2.4.1 HDFS

HDFS is designed for large data storage and streaming data access on commodity

hardware. Its design is suitable for an application to read all the data many times

and perform analysis on the data instead of random data access or write data

many times. It is also well applicable when partial data analysis can be done

independently and later be aggregated into final results. Like other filesystems,

there is a minimum unit (by default, this is 64MB) of reading and writing called

a block in HDFS. A normal file, when loaded into HDFS, is divided into block-

sized chunks, which are stored as blocks in HDFS. When a file is too large to be

loaded in any node, the blocks of the file can be stored in different nodes of a

Hadoop configured cluster through network transfer, which is transparent to the

users. The design of block unit storage is also for the sake of fault-tolerance. For

large-scale data analysis, it is common that part of the data is not available or
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Figure 2.6: Hadoop cluster consists of NameNode and DataNode for HDFS and
JobTracker and TaskTracker for MapReduce.

is corrupt due to task failure. Therefore, it is necessary to detect and restore the

broken blocks and restart the analysis if there are replicates available in other

computing nodes. In fact, HDFS has a block replication mechanism so that each

block is replicated to a user-defined number (the default is 3) of different nodes

in a Hadoop cluster.

HDFS considers the Hadoop cluster as consisting of two types of storage nodes:

namely, a single NameNode and the rest are DataNodes, as illustrated in Figure

2.6. The NameNode works as a master of the file system, which is responsible for

splitting data into blocks and distributing the blocks to the DataNodes with repli-

cation for fault tolerance. The NameNode stores two types of files: namespace

image and the edit log. Namespace image keeps the filesystem tree and metadata

like which blocks of a file is located in which DataNode. The edit log keeps the

history of file system modifications. Both files are important for file system recov-

ery. DataNodes, physically store file blocks allocated by the NameNode. They

communicates with the NameNode through heartbeat to notify the NameNode

that they are working. DataNodes can communicate with each other to move

replicates from one to another or replicate blocks when requested. Additionally,
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a secondary NameNode can be configured in a Hadoop cluster. The secondary

NameNode is not to replace the NameNode when it fails to work. Rather, it

works as a helper node for the NameNode to periodically build snapshots of the

namespace image file and the edit log. When the most serious single point of

NameNode fails, these snapshots are used to recover the filesystem structure by

applying actions in the edit log to the namespace image file. However, since the

snapshots are kept periodically, the recovered file system may not be the exact

filesystem structure when the NameNode fails.

The NameNode keeps meta information of blocks. The meta information

tell the DataNodes to make the computation done at the block’s node instead

of transferring the data to other DataNodes. This move-codes-to-data design

largely reduces the traffic of unnecesary data transfer over the network and, thus,

improves efficiency. This data locality design makes HDFS outperform other file

systems when running large-scale computationally intensive analysis.

2.4.2 MapReduce

MapReduce Architecture Under the MapReduce framework, the system architec-

ture of a cluster consists of two kinds of nodes: JobTracker node and TaskTracker

node. A JobTracker usually runs on the NameNode and keeps track of job infor-

mation, job execution and job fault tolerance in the cluster. A job may be split

into multiple tasks, each of which is assigned to a TaskTrack node. A TaskTracker

node is responsible for task execution and communication with the JobTracker.

In a Hadoop cluster, it is common to assign a master node both as NameNode

and JobTracker, and slave node both as a DataNode and TaskTracker, as illus-

trated in Figure 2.6.

MapReduce Computational Paradigm The MapReduce computational paradigm

exploits parallelism by dividing a running job into smaller tasks, each of which

runs on a task node. The computation of MapReduce follows a fixed model with

a map phase followed by a reduce phase. The MapReduce library is responsi-

ble for splitting the data into chunks and distributing each chunk to processing

units (called mappers) on different nodes. Mappers process the data read from
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the file system and produce a set of intermediate results which are shuffled to

other processing units (called reducers) for further processing. Users can set

their own computation logic by writing the map and reduce functions in their

applications. The input and output of map and reduce function are (key, value)

pairs. The read and write of a file need to be transformed into the read and write

of (key, value) pairs, which is the essential design of such functional programming.

Map Phase The map function is used to process the (key, value) pairs (k1, v1)

which are read from data blocks. The input set of (k1, v1) pairs are transformed

into a new set of intermediate (k2, v2) pairs through the map function. The

MapReduce library then sorts and partitions all the intermediate pairs and pass

them to reducers.

Shuffling Phase The partitioning function is used to partition the emitted

pairs from the map phase into M partitions on local disks, where M is the to-

tal number of reducers. The partitions are then shuffled to the corresponding

reducers by the MapReduce library. Users can specify their own partitioning

function.

Reduce Phase The intermediate (k2, v2) pairs with the same key that are shuf-

fled from different mappers are sorted and merged together to form a values list.

The key and the values list are fed to the user-written reduce function. The

reduce function operates on the key and values to produce a new (k3, v3) pairs.

The resulting output (k3, v3) pairs are written back to the file system.

MapReduce Workflow Figure 2.7 gives an example of how MapReduce works.

The task of the example is to count the frequency of each word in a very large

text file from the Web. The input is a text file with each line containing some

words, therefore the key is the line number and value is one-line string. The file is

so big that it is not possible to store it in single PC. Using HDFS, the file can be

divided into different blocks and stored in different disks in a cluster. The figure

only shows one split of the data that is fed into a map task. The map function in

this example splits each line into different words and gives each word one count.
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Fine, thank you 

Welcome, are you fine

Input split
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(how,1)
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A simple word counting example illustrate how is MapReduce workflow

Figure 2.7: A simple word counting example to illustrate the work flow of MapRe-
duce

This is done at the map phase. The output of map are partitioned according to

the reducers they are sent to and, within each partition, the output is sorted by

the key. When the map output size is larger than the memory buffer of the map

task, the output is spilled into disks and then merged into a single sorted map

output file. This file is fetched by reducers through HTTP. At the reduce phase,

each reducer receives input data from different map tasks. So a reduce task

needs to copy the output of the corresponding map tasks when the latter finish.

In this example the reduce function just sums up the value of each element of

the value list in <key, value list> and outputs the count of each word.
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Chapter 3

An empirical comparison of

several recent epistatic

interaction detection methods

3.1 Introduction

A genome-wide association study (GWAS) examines the association between phe-

notypes and genotypes in a study group. The first exciting finding was on age-

related macular degeneration (AMD) [Klein, 2005], which uncovers a disease allele

(tyrosine-histidine polymorphism) with an effect size of 4.6 in ∼100,000 single-

nucleotide polymorphisms (SNPs). Since then, over 600 GWAS have been con-

ducted for 150 diseases and traits; and ∼800 associated SNPs have been reported.

The methodologies of these studies are similar: A quality control criteria is first

defined to filter the genotype data; then the remaining genotypes are each tested

for association with the disease phenotypes. Finally, the significant SNPs are re-

ported after multiple-testing correction. Most of these GWAS could only identify

disease alleles with moderate effect size. Thus, single-SNP association studies

could explain very limited heritability of these diseases [Emahazion et al., 2001].

Consequently, researchers have started exploring multi-SNP interactions in the

hope of discovering more significant associations. Multi-SNP interactions are also

called “epistatic interactions”. This term originated from Bateson’s definition of
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epistasis one hundred years ago [Bateson, 1909]. It was defined as the change of

segregation ratio and the interaction of genes. However, in the current literature,

there is a debate on the exact definition of epistasis [Phillips, 1998, 2008]. Our

paper focuses on evaluating epistatic interaction detection methods in their com-

putational aspect and all the experiments are based on simulation data. Thus,

we consider epistatic interactions as the statistically significant associations of

k-SNP interaction (k ≥ 2) with phenotypes.

There are mainly two types of epistatic interaction detection methods: model-

based methods and model-free methods. In general, model-based methods [Wan

et al., 2010a; Wu et al., 2010, 2009; Yang et al., 2009] predefine a statistical model

between phenotypes and genotypes; then they fit the data to the model; and fi-

nally they output the significant SNPs. They work well for only a small number

of important and filtered candidate SNPs; but they often fail when the number

of SNPs grows to hundreds of thousands. To make model-based methods more

efficient, researchers have proposed a variety of heuristic and filtering techniques.

For example, Wan et al. [2010a] develop an upper bound of the likelihood ratio

test statistic for two-locus epistatic interaction to prune the search space and a

Boolean transformation of data to make collection of contingency table informa-

tion faster. As another example, Wu et al. [2010] devise a two-stage analysis so

that the overall analysis is more efficient. As a third example, Yang et al. [2009]

use a stochastic search to identify only 40-50 (set by the user) groups of candidate

epistatic interactions for follow-up model-fitting analysis.

In contrast, model-free methods [Ritchie et al., 2001; Wan et al., 2010b; Zhang

et al., 2010] have no prior assumption on the data and the model. Given the

genotype data, these methods only examine the test statistic of each possible

epistatic interaction with phenotypes. Zhang et al. [2010] propose a minimum

spanning tree (MST) structure to represent the data; by traversing this MST,

exhaustive search of every epistatic interaction is an order faster than that of

brute-force search. Wan et al. [2010b] connect the epistatic interactions with

predictive rules and use a rule mining strategy to find epistatic interactions.

Our evaluation study of epistatic interaction detection methods is different

from earlier studies such as Motsinger-Reif et al. [2008b], Motsinger-Reif et al.

[2008a] and Sucheston et al. [2010]. Firstly, Motsinger-Reif et al. [2008a] com-
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pare only approaches based on neural networks while our selected methods cover

both data mining and statistical methods. Secondly, Motsinger-Reif et al. [2008b]

evaluate multifactor dimensionality reduction (MDR) [Ritchie et al., 2001], gram-

matical evolution neural networks (GENN) [Motsinger-Reif et al., 2006], focused

interaction testing framework (FITF) [Millstein et al., 2006], random forests

(RF) [Breiman, 2001], and logistic regression (LR) [D. W. Hosmer, 2000] meth-

ods. They show that MDR is superior in all settings. After two years of ad-

vancement, most methods selected in this chapter have demonstrated that their

performance is better than that of MDR; we therefore omit discussing methods

mentioned in Motsinger-Reif et al. [2008b]. Thirdly, Sucheston et al. [2010] com-

pare AMBIENCE [Chanda et al., 2008] with MDR, restricted partitioning method

(RPM) [Culverhouse, 2007] and logistic regression. They conclude that the per-

formance of AMBIENCE is equivalent to that of logistic regression for two-locus

models and better than that of RPM and MDR. However, according to Wan

et al. [2010a], the performance of BOOST is better than that of PLINK [Purcell

et al., 2007], which uses a pure logistic regression model. Therefore we omit the

evaluation of AMBIENCE and RPM in our study. Lastly, Wan et al. [2010b] and

Yang et al. [2009] have shown that their overall performance is much better than

that of BEAM [Zhang and Liu, 2007]. We thus omit BEAM.

In this chapter, we give an independent empirical comparison of five meth-

ods for detecting epistatic interactions—namely, TEAM [Zhang et al., 2010],

BOOST [Wan et al., 2010a], SNPRuler [Wan et al., 2010b], SNPHarvester [Yang

et al., 2009], and Screen and Clean [Wu et al., 2010]—to help users better un-

derstand which method is more suitable for their data, which method is good for

Table 3.1: Summary of the features of the five methods: BOOST (B), TEAM
(T), SNPRuler (SR), SNPHarvester (SH), Screen and Clean (SC)

B T SR SH SC
Exhaustive Search ×

√
× × ×

Logit Model Assumed
√

× ×
√ √

Multi-Stage × × × ×
√

Permutation Test ×
√

× × ×
Bonferroni correction

√
×

√ √ √

Programming language C C++ Java Java R
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detecting epistatic interactions with and without main effect, and which method

is scalable to larger datasets. We also analyze why combining several of these

methods cannot enhance power. Their basic characteristics are given in Table 3.1.

The organization of this chapter is as follows. We first formulate the problem

in Section 3.2. Then we briefly introduce each of the five methods in Section 3.3.

We describe how the evaluation data is simulated in Section 3.4 and the detailed

setting of each experiment in Section 3.5. After that, we present the results under

each setting in Section 3.6. Finally, we discuss the performance of each method

and provide advice to users in Section 3.7.

3.2 Problem formulation

In a typical GWAS, researchers collect two types of data: genotype data that

encode the genetic information of each individual, and phenotype data that mea-

sure the quantitative traits of each individual. Here, we consider only bi-allelic

SNPs. The allele that occurs more frequently is called the major allele, denoted

as A. The allele that occurs less frequently is called the minor allele, denoted as

a. The two alleles form three genotypes—AA, Aa and aa—and they are encoded

as 0, 1 and 2 in raw data. For phenotype data, we consider the binary form (0 for

control and 1 for case). With minor modification, current methods can handle

other types of phenotype data, e.g., by discretizing a continuous phenotype.

The goal of each method is to identify k-SNP (k ≥ 2) epistatic interactions

significantly associated with the phenotype. Thus, each method outputs a list of

epistatic interactions, each involving up to k SNPs (usually k is set to 2) and is

accompanied by its P-value after correction for multiple testing.

There are two challenges. First, if we constrain k to be 1, then the number of

statistical tests is equal to the number of SNPs in a dataset. When k increases

by 1, the number of tests grows by n-fold (n is the number of SNPs in a dataset).

Thus, the total number of tests grows quickly as k increases, resulting in the

inability of current methods to test all the combinations. For example, to study

a moderate size of 500,000 SNPs, we can test only two-locus epistatic interactions

if we use the EPISNP program [Ma et al., 2008] on a 2.66GHz single processor,

as it may take 1.2 years to finish all the tests. Therefore, heavy computation cost
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is one of the challenges for current methods [Wang et al., 2011]. Second, since a

huge number of possible combinations are tested, a large proportion of significant

associations are expected to be false positives. Thus, reducing the number of

false positives while retaining power is another challenge.

3.3 Methods

3.3.1 SNPRuler

SNPRuler [Wan et al., 2010b], MDR [Ritchie et al., 2001], and a few other pattern-

based methods [Li et al., 2006; Long et al., 2009] adopt data mining approaches

for detecting epistatic interactions. These methods do not assume a model-fitting

procedure but use some filtering methods to reduce the number of SNP com-

binations to be tested. SNPRuler [Wan et al., 2010b] is a rule-based approach

motivated by the fact that each epistatic interaction induces a set of rules. For ex-

ample, SNP1 ∧ SNP2 ⇒ Disease contains 9 rules, they are SNP1 = i ∧ SNP2 = j

⇒ Disease, i, j ∈ {0, 1, 2}. In the paper, the quality of a rule is given by its χ2

test value. We define SNP1 ∧ SNP2 ⇒ Disease as a SNP-level epistatic interac-

tion and SNP1 = i ∧ SNP2 = j ⇒ Disease, i, j ∈ {0, 1, 2} as allele-level epistatic

interactions. To identify epistatic interactions that are significant, SNPRuler

traverses a set enumeration tree where the nodes of the tree are the genotypes

of the SNPs, the leaves of the tree are the phenotypes, and the path from the

root to a leaf is an allele-level epistatic interaction. Exhaustive tree traversal is

theoretically possible but practically impossible due to the explosive number of

combinations as the tree grows. Therefore, the authors propose an upper bound

on the χ2 test statistic to prune the search space. After the search procedure, a

post-processing step is used to get and rank SNP-level interactions. There are

two hidden problems in this work. First, the upper bound they derived from the

χ2 formula is not a true upper bound and does not possess the anti-monotone

property [Agrawal and Srikant, 1994]. Although it helps prune a large search

space, it also prunes many true-positive epistatic interactions. Second, the upper

bound is based on the assumption that the number of cases should be larger than

or equal to that of controls in a dataset; otherwise, the upper bound does not
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hold. This assumption is inconvenient since the number of controls is larger than

that of cases in most GWAS datasets.

3.3.2 SNPHarvester

SNPHarvester [Yang et al., 2009] is a stochastic search algorithm to identify

epistatic interactions. It consists of two steps: a filtering and a model-fitting

step. The filtering step is to identify m (40–50) significant SNP groups for the

subsequent model-fitting step. In the filtering step, it first removes significant

single SNPs according to their χ2 test values, because this method is only inter-

ested in epistatic interactions that have weak marginal effect but significant joint

effect. Then it randomly picks k SNPs. These form an active set S = {SNP1,

SNP2, ..., SNPk}. The rest of the SNPs form a candidate set Sc. After all

these preparations are done, the nested PathSeeker algorithm is called to swap

SNPi ∈ S with SNPj ∈ Sc to get the group with the highest χ2 test value. A

total of k(n− k) combinations need to be tested to identify such a group. After

this, the identified group is removed from the n SNPs. The next iteration con-

tinues to select k SNPs to form an active set and the remaining n − 2k SNPs

form a candidate set. The same procedure is repeated again. The complexity to

identify m groups is O(knm), which is affordable even when there are > 100, 000

SNPs. In the second step, each of the m significant groups is fitted into the L2

penalized logistic regression model; see [Park and Hastie, 2008] for details.

3.3.3 Screen and Clean

The Screen and Clean method [Wu et al., 2010] uses a two-stage analysis; datasets

from stage 1 for the screening and datasets from stage 2 for the cleaning. In the

screening stage, it only considers tag SNPs and marginal significant SNPs. These

SNPs are first fitted into the main effect lasso logistic regression model

g(E[Y |X]) = β0 +
N∑
j=1

βjXj
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where Xj is the encoded genotype value 0, 1 or 2, Y is the encoded phenotype

value 0 or 1. This model first identifies a set of SNPs whose coefficients satisfy

βj 6= 0, j ∈ {1,2,...,n}; then it obtains the least square estimates β̂k, k ∈ {1,2,...,n}
of these SNPs. To test the significance of each regression coefficient, the t-test

statistic value is calculated. Only the significant SNPs and their corresponding

two-SNP combinations enter the interaction model

g(E[Y |X]) = β0 +
N∑
j=1

βjXj +
∑

i<j;i,j=1,...,N

βijXiXj.

A similar procedure applies to interaction model fitting. After this stage, the

“surviving” SNP pairs go to the second cleaning stage for controlling type-1

error. T-test is used again to remove SNP pairs whose significance level is lower

than a user-specified threshold.

3.3.4 BOOST

BOOST [Wan et al., 2010a] contributes to the epistatic detection problem in

two aspects. Firstly, it provides a new Boolean representation of the data. By

transforming the data representation to the Boolean type, BOOST uses estab-

lished methods [Wegner, 1960] of logic operations to collect contingency table

information, which is very efficient. Secondly, it proposes an upper bound for

the likelihood ratio test statistic to prune insignificant epistatic interactions. The

likelihood ratio test is originally based on the deviance of difference between the

full logistic regression model

log
P (Y = 1|Xl1 = i,Xl2 = j)

P (Y = 2|Xl1 = i,Xl2 = j)
= β0 + β

Xl1
i + β

Xl2
j + β

Xl1
Xl2

ij ,

Xl1 and Xl2 are genotype variables, i, j ∈ {0,1,2}, and the main logistic regression

model

log
P (Y = 1|Xl1 = i,Xl2 = j)

P (Y = 2|Xl1 = i,Xl2 = j)
= β0 + β

Xl1
i + β

Xl2
j .

We denote the log likelihood of the full model under maximum likelihood es-

timate (MLE) as L̂F , the log likelihood of the main model under MLE as L̂M , the
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log likelihood of log-linear saturated model as L̂S, and the homogeneous model as

L̂H . The likelihood ratio statistic between the main model and the full model is

−2(L̂M − L̂F ). The log-linear homogeneous association model corresponds to the

main logistic regression model and the log-linear saturated model corresponds to

the full logistic regression model [Agresti, 2002]. This leads to an upper bound

for the two log-linear models: −2(L̂S − L̂H). Matsuda [2000] uses Kirkwood Su-

perposition Approximation to get a lower bound of the homogeneous association

model (L̂KSA ≤ L̂H). Therefore, the upper bound of the likelihood is established

(L̂S − L̂H ≤ L̂S − L̂KSA). This upper bound is tight and most nonsignificant in-

teractions can be pruned. Its GPU version GBOOST [Yung et al., 2011] provides

40-fold speedup compared with that of BOOST.

3.3.5 TEAM

TEAM [Zhang et al., 2010] is an exhaustive algorithm to detect two-locus epistatic

interactions in GWAS. It controls false positives by using permutation test. Per-

mutation test is generally more accurate at finding the cut-off p-value thresh-

old than direct adjustment methods like Bonferroni correction [Benjamini and

Hochberg, 1995], but at a much higher cost. TEAM needs to compute the con-

tingency table for every pair of SNPs on all the permutations to calculate p-values,

which is very expensive. To reduce the computation cost, the authors observe

that if two SNPs have the same genotype values on many individuals, then the

computation of their contingency tables can be shared by considering only those

individuals with different values. TEAM uses a Minimum Spanning Tree (MST),

where nodes are SNPs and the weight of edges is the number of individuals with

different values on the two SNPs, to maximize the sharing of contingency table

computation. As the construction of MST can be costly, TEAM constructs an ap-

proximate MST instead. The performance of TEAM is faster than the brute-force

approach by an order of magnitude. As TEAM does not presume any statistical

model, it is applicable to any test statistic—e.g., χ2 test, exact likelihood ratio

test, and entropy-based test—based purely on contingency table information.
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3.4 Data simulation

We simulate different types of datasets to evaluate the power, type-1 error rate,

and scalability of each method.

3.4.1 Power

For each setting in both data with and without main effect below, 100 datasets

are generated. In each dataset, we embed one ground truth epistatic interaction.

Power is defined as the fraction of the 100 datasets on which the top prediction

matches the ground truth.

Data with main effect

The embedded epistatic interaction demonstrates both main effect and interaction

effect. There are at least fifty different models that satisfy the constraints for two-

locus epistatic interactions [Li and Reich, 2000]. We consider the three commonly

used models [Marchini et al., 2005] given in Tables 3.2,3.3 and 3.4, respectively.

We simulate the data based on these three models. For each model, we try two

different minor allele frequencies (MAF) at 0.2 and 0.5, and three different main

effect values at 0.2, 0.3 and 0.5; thus giving a total of six different settings. These

values represent the low and high value for each parameter. We use 2,000 samples

and 1,000 SNPs for each dataset, as per previous works. These datasets are avail-

able from http://compbio.ddns.comp.nus.edu.sg/~wangyue/public_data/.

Table 3.2: Model 1: Two-locus multiplicative disease effect between and within
loci

AA Aa aa
BB a a(1 + θ) a(1 + θ)2

Bb a(1 + θ) a(1 + θ)2 a(1 + θ)3

bb a(1 + θ)2 a(1 + θ)3 a(1 + θ)4

Data without main effect

This type of epistatic interaction demonstrates weak main effect but strong in-

teraction effect. Finding such type of epistatic interactions is a challenging “dark
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Table 3.3: Model 2: Two-locus multiplicative disease effect between loci
AA Aa aa

BB a a a
Bb a a(1 + θ) a(1 + θ)2

bb a a(1 + θ)2 a(1 + θ)4

Table 3.4: Model 3: Two-locus threshold effect
AA Aa aa

BB a a a
Bb a a(1 + θ) a(1 + θ)
bb a a(1 + θ) a(1 + θ)

area” which many methods fail to explore. We use data from Dartmouth Medi-

cal School. The website, http://discovery.dartmouth.edu/epistatic_data,

provides 70 models, composed of combinations of the following parameter values.

(1) Two MAF settings of 0.2 and 0.4. (2) Seven heritability settings of 0.4, 0.3,

0.2, 0.1, 0.05, 0.025 and 0.01. (3) Five different penetrance tables. Each model

is simulated using four sample sizes of 200, 400, 800 and 1,600. The number of

SNPs is 1,000 for each dataset.

3.4.2 Type-1 error rate

We simulate 1,000 datasets without embedding any epistatic interaction, each

with 2,000 samples and 1,000 SNPs. The MAF of each SNP is uniformly dis-

tributed in [0.05, 0.5]. Type-1 error rate of the methods is defined as the pro-

portion of the 1000 datasets on which the significance level of the top prediction

satisfies the user-specified threshold.

3.4.3 Scalability

To test the scalability, we use datasets with 100, 1,000, 10,000 and 100,000 SNPs.

Each of the 4 datasets has 2,000 samples.
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3.5 Experiment setting

All the experiments are conducted on a 64-bit Ubuntu system, with Intel (R)

Xeon(R) CPU 2.66GHz, 16G memory.

SNPRuler provides a Java program. The heap size is set to -Xmx7000M, giving

the maximum memory for the program to use. The maximum number of rules

is set as 50,000. The rule length is set to 2 since we focus on two-locus epistatic

interactions. The pruning threshold is set as 0, to test as many combinations as

possible.

SNPHarvester also provides a Java program; it has two running modes. One is

the “Threshold-Based” mode, where the user indicates the threshold significance

level and the program outputs all results whose significance level is lower than the

threshold. Another is the “Top-K Based” mode, where the program outputs the

top K most significant results regardless of their significance level. The “Top-K

Based” mode is used for our analysis.

TEAM provides a C++ program which consists of two sub programs: (1) to

test all combinations and record the corresponding test statistic value and (2) to

get the SNP pairs according to the user-specified False Discovery Rate (FDR).

We use the default setting of other parameters and set the FDR value to 1.

BOOST provides a C program that only runs on Windows system. To let

all programs run on the same hardware configuration, we use the Wine program

(http://www.wine.org) which allows us to run a Windows program on a Unix

system. There is no setting for BOOST; the output is the list of results whose

likelihood ratio test statistic values are higher than 30 with 4 degrees of freedom.

Screen and Clean provides an R program; it has 4 running strategies, among

which we choose the “Kitchen Sink”. We set the P-value threshold to 0.1 and

the number of pairs to be tested to 100.

BOOST filters out epistatic interactions with test statistic values less than 30

with 4 degrees of freedom. This corresponds to 0.1 significance level. For fair

comparison, we add a post-processing step to filter output with P-values higher

than 0.1 for other methods.

47

http://www.wine.org


3. An empirical comparison of several recent epistatic interaction
detection methods

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&1&

λ=0.2"

λ=0.3"

λ=0.5"

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&1&

λ=0.2"

λ=0.3"

λ=0.5"

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&2&

λ=0.2"

λ=0.3"

λ=0.5"

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&3&

λ=0.2"

λ=0.3"

λ=0.5"

MAF&=&0.2&

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&2&

λ=0.2"

λ=0.3"

λ=0.5"

MAF&=&0.5&

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&3&

λ=0.2"

λ=0.3"

λ=0.5"

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&1&

λ=0.2"

λ=0.3"

λ=0.5"

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&1&

λ=0.2"

λ=0.3"

λ=0.5"

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&2&

λ=0.2"

λ=0.3"

λ=0.5"

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&3&

λ=0.2"

λ=0.3"

λ=0.5"

MAF&=&0.2&

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&2&

λ=0.2"

λ=0.3"

λ=0.5"

MAF&=&0.5&

0"

0.2"

0.4"

0.6"

0.8"

1"

T" B" SR" SH" SC"

Po
w
er
&

Model&3&

λ=0.2"

λ=0.3"

λ=0.5"

Figure 3.1: Power comparison under three main effect models. Each model has
two MAF settings and three λ settings which control the main effect of the ground
truth SNP. For each model, we generate 100 datasets. For each dataset, the sam-
ple size is 2,000 (1,000 cases and 1,000 controls) and the number of SNPs is 1,000.
Abbreviations of the methods are: T (TEAM), B (BOOST), SR (SNPRuler), SH
(SNPHarvester) and SC (Screen and Clean). The p-value for one-way ANOVA
test is 0.0009.

3.6 Results

3.6.1 Model with main effect

The results here are obtained by using data generated in the first part of Sec-

tion 3.4.1. Figure 3.1 shows that in each setting, TEAM outperforms all other

methods. For the other four methods, different model settings lead to different

rankings. For example, in Model 1 with λ=0.3, SNPRuler is second; in Model 2

with λ=0.5, Screen and Clean is second. The different performance of TEAM

and BOOST is due to a key difference in defining the interaction effect. TEAM

uses the χ2 test to measure the significance of two-locus interactions and thus

makes no assumption about the data. BOOST uses a log likelihood ratio test to
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get the deviance difference between the log likelihood of the log-linear homoge-

neous association model and log-linear saturated model. BOOST performs well

when the interaction terms contribute significantly to the model. However, when

single-SNP association terms fit the model well and interaction terms do not con-

tribute significantly, BOOST may not be able to detect the ground truth. This

type of epistatic interactions is often referred as “statistical epistasis” [Cordell,

2002] and is widely accepted by the statistical community. SNPRuler is not an

exhaustive method, but the test used is the same as that of TEAM. We set the

pruning threshold to 0; thus it explores as many epistatic interactions as possible.

Compared to TEAM, this method potentially misses true positives. The result

of SNPHarvester is expected as its randomization technique makes it difficult to

perform better than exhaustive search. Screen and Clean performs poorly, due to

its numerous filtering steps in the two-stage design. In the screening step, before

the main-effect lasso procedure starts, it includes only marginally significant and

tag SNPs. After that, it still only considers n (set by the user) pairs of SNPs in-

stead of all the possible pairs to continue the interaction model fitting procedure.

In the cleaning step, the filtering test is applied to only a small number of SNP

pairs, resulting in little power to detect the ground truth.

All five methods perform best on Model 1 compared to Model 2 and Model 3.

This is because of the multiplicative effect between and within the two loci, mak-

ing the epistatic interaction effect stronger and easier to detect. Model 2 only

considers the multiplicative effect between two loci; the power to detect epistatic

interactions drops obviously for all methods. The interaction effect of Model 3

is even weaker than Model 2, leading to the lowest power in all methods. It is

also noted that the higher the main effect of the model, the easier it is for each

method to detect epistatic interactions. However, SNPRuler and SNPHarvester

do not follow this pattern because, when the main effect of the ground truth pair

is large, these two methods prune such main effect SNPs at the filtering stage.

This leads to the missing detection of ground truth.
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Figure 3.2: Power comparison under 70 models without main effect. For each
model, we simulate data using four different sample sizes. These sizes simulate
the study design from small scale to large scale. Abbreviations of the methods
are: B (BOOST), T (TEAM), SR (SNPRuler), and SH (SNPHarvester).

3.6.2 Model without main effect

The results here are obtained using data generated in the latter part of Sec-

tion 3.4.1. Screen and Clean is applicable only to data with main effect; thus

we omit it here. Figure 3.2 gives an overall picture of the performance of the

methods for each sample size, while Figure 3.3 and 3.4 gives the details. The

median power of BOOST is the highest followed by TEAM. The performance of

SNPRuler is close to that of an exhaustive method (TEAM) but is at a lower com-

putational cost. BOOST performs the best in each setting and TEAM second;

but the difference is not as obvious as that in data with main effect. SNPHar-

vester performs relatively poorly for each sample size. All methods perform well

when heritability is high; when heritability reduces to 0.001, all methods have

little power. Lescai and Franceschi [2010] point out in their study of neurological

cancers that low heritability caused by phenocopy level (PE) is the main reason

for the methods to lose power. We also notice that increasing the sample size
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Figure 3.3: Detailed results of four methods on data without main effect for MAF
0.2. In particular, for models with heritability 0.001, MAF 0.2 and sample size
200, the results of these datasets were not reported previously; all four methods
have zero power on them. This shows the limitations of purely statistical methods.
The p-value for one-way ANOVA test is 0. 0997. Abbreviations of the methods
are: B (BOOST), T (TEAM), SR (SNPRuler), and SH (SNPHarvester)

helps all these methods to improve their power in each heritability setting.

When we evaluate the four methods on data without main effect, we use

all datasets that are publicly available. They include 70 models and 4 different

sample sizes for each model. Part of these datasets are also used in BOOST,

SNPRuler and SNPHarvester. BOOST does not include the results of 70 models

for 200 samples. SNPRuler and SNPHarvester merely show results of 60 models

and each model with 400 samples. Our reported results are consistent with pre-

vious reported results and are complementary to them. In particular, for those

models with 0.001 heritability, 0.2 MAF and 200 samples, the results of these

datasets were not reported previously; and all four methods have zero power (see

Figure 3.3 ). This shows the limitations of purely statistical methods.
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Figure 3.4: Detailed results of four methods on data without main effect for MAF
0.4. Abbreviations of the methods are: B (BOOST), T (TEAM), SR (SNPRuler),
and SH (SNPHarvester)

3.6.3 Scalability

We apply all methods to datasets with 100, 1,000, 10,000, and 100,000 SNPs.

From Table 3.5, BOOST is the fastest under the first three settings. This is

due to its fast Boolean operation to collect contingency tables and upper-bound-

pruning technique. When the SNP size grows to 100,000, it is much slower than

the two non-exhaustive methods SNPHarvester and Screen and Clean. TEAM is

the slowest in all settings for two reasons. First, the overall running time is only

an order faster than that of a brute-force approach. Second, the permutation

procedure makes it even more expensive, although traversing MST helps reduce

the cost. SNPRuler cannot execute on the dataset with 100,000 SNPs because we

get the “out of memory” error, even though we have set the heap size to 12.8G

for the Java virtual machine, which is the maximum on our PC. SNPHarvester

and Screen and Clean only identify a fixed number of candidate epistatic interac-

52



3. An empirical comparison of several recent epistatic interaction
detection methods

Table 3.5: Running time comparison of the five methods. Abbreviations of the
methods are: SR (SNPRuler), SH (SNPHarvester), SC (Screen and Clean).

# SNPs TEAM BOOST SR SH SC
100 58.23s 0.16s 2.43s 2.29s 7.39s

1,000 353.20s 2.47s 21.73s 22.33s 55.48s
10,000 7,406.29s 156.16s 1,097.65s 224.24s 626.96s

100,000 ∼36 days 15,010.42s NA 6,616.65s 5,858.34s

tions, and then fit them to a statistical model for follow-up analysis. Thus, their

scalability is much better than the other three methods when SNP size grows.

3.6.4 Type-1 error

We define the type-1 error rate of a method as the proportion of datasets that

the method reports the existence of significant epistatic interactions, out of the

1,000 datasets in which no epistatic interactions are actually embedded. The

significance level is set to 0.05 after Bonferroni correction. The type-1 error rate

for TEAM is 0.018, BOOST is 0.065, and SNPRuler and SNPHarvester both are

0.003. TEAM and BOOST have higher power thus their higher type-1 error rates

are reasonable. Screen and Clean has problems controlling type-1 error, as its

type-1 error rate is as high as 0.86.

3.6.5 Completeness

SNPRuler, SNPHarvester and BOOST use some pruning techniques to speed up

the search. Hence they have better scalability than TEAM as shown in Table 3.5.

The side effect of using pruning techniques is the loss of power—the most sig-

nificant SNP pairs may be thrown away. To study the magnitude of this side

effect, we pick the most significant SNP pair on each dataset and study how

many of them are pruned. For each method, the most significant SNP pair is

the SNP pair with the lowest p-value calculated using the statistical test used by

the method. Thus, for BOOST, the most significant SNP pair is the SNP pair

with the lowest p-value calculated using likelihood-ratio test. For the other two

methods, the most significant SNP pair is the SNP pair with the lowest p-value

calculated using the chi-square test. BOOST is a complete method in the sense
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that there is no incorrect prunning for the most significant SNP pairs. Figure

3.5 also shows that the number of incorrectly pruned datasets of SNPRuler is

smaller than that of SNPHarvester for both types of data. Correspondingly, the

power of SNPRuler is higher than that of SNPHarvester.

3.7 Discussion

The five methods all demonstrate respective utilities through the experiment

results above. No single method is simultaneously the most powerful, the most

scalable, and has the lowest type-1 error rate in every setting. When users want

powerful results and are not concerned with computation cost, we recommend

using TEAM and BOOST. Compared with TEAM, BOOST uses a model-fitting

procedure. If the data fits the model well, the result is usually good; otherwise, a

model-free method may be the alternative choice. When users expect moderate

running time and power, we recommend using SNPRuler. Its pruning technique

helps reduce running time albeit at the risk of losing power. If users are conscious

of computation cost and have to run very large datasets, we recommend using

SNPHarvester because it only identifies a small number (40–50) of groups for the

model-fitting procedure.

Our evaluations are based on simulation results. In a real study, users usually

have no idea of the “ground truth” in the dataset. Hence it may not be sufficient

to rely only on one method to obtain results. We suggest that, if time and

computation resources permit, users try both the recommended model-free (i.e.,

TEAM) and model-fitting (i.e., BOOST) methods.

It is tempting to consider taking a “majority vote” of the results of two or

more methods. For example, let every algorithm report their top-3 predictions.

A SNP pair receives k votes if it is reported by k methods. We select the one

with the highest vote as the final prediction. When there is a tie, we choose

the one with the lowest P-value. Unfortunately, for both types of data tested,

we find that an ensemble using such a strategy cannot increase power over using

solely BOOST or TEAM. In Figure 3.6, we see that for data without main effect,

BOOST’s ground truth predictions highly overlap with the other three methods’,

so any ensemble cannot contribute a significant number of new ground truth
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predictions. Specifically, the proportion of BOOST’s ground truth predictions

that are not predicted by the other three methods is 4.1%, while the proportion

of the other methods’ ground truth predictions not predicted by BOOST is 0.2%.

Similarly, for data with main effect, no ensemble can outperform TEAM.

Our evaluations above only focus on two-locus epistatic interaction. Recently,

Wang et al. [2010a] and Liu et al. [2011a] provide a general model that can be ex-

tended to n-locus epistasis. They also provide mathematical details of dissecting

the χ2 test into different epistatic components. For example, two-way epistatic

interaction can be partitioned into four epistatic components: additive × addi-

tive, additive × dominant, dominant × additive and dominant × dominant. This

helps characterize epistatic interactions in a more specific way and provides more

physiological insights.
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Figure 3.5: The completeness space for the four methods. As there are two types
of datasets and two types of test statistics, four venn diagrams are drawn respec-
tively. In Part (a), all three methods—TEAM, SNPRuler and SNPHarvester—
use χ2 test. TEAM’s outputs represent the 28,000 (20,320 + 1,977 + 2,660+
3,043) top significant SNP pairs in 28,000 datasets. SNPHarvester can identify
22,297 (20,320+1977) of them. Among the 28,000 top SNP pairs, 20,320 of them
can be identified by all three methods. Parts (b), (c) and (d) follow similar
explanations.
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Figure 3.6: The power space for the four methods on data with and without main
effect. In part (a), there are in total 1,800 datasets for 18 settings of the simulated
datasets, which corresponds to 1,800 ground truth. Among these ground truth,
only 800 of them can be detected by at least one of the four methods, while
the best method—TEAM—identifies 787 ground truth out of 800. This explains
why using ensemble methods cannot outperform TEAM. Similar observation is
illustrated in Part (b).
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Chapter 4

CEO: A Cloud Epistasis

cOmputing model in GWAS

4.1 Introduction

It is becoming increasingly important and challenging in genome-wide association

study (GWAS) to identify single nucleotide polymorphisms (SNPs) associated

with phenotypes such as human diseases (e.g, breast cancer, diabetes and heart

attacks). Traditionally, researchers focused on the association of individual SNPs

with the phenotypes. Such methods can only find weak associations as they ignore

the genomic and environmental context of each SNP [Moore and Williams, 2009].

However, SNPs may interact (known as epistatic interaction) and jointly influence

the phenotypes. As such, there has been a shift away from the one-SNP-at-a-

time approach towards a more holistic and significant approach that detects the

association between a combination of multiple SNPs with the phenotypes [Moore

et al., 2010].

In the meantime, the number of discovered SNPs is becoming larger and

larger. For example, the dataset from the Hapmap project1contains 3.1 million

SNPs and the 1000 Genome project2 provides approximately 15 million SNPs.

From a computational perspective, it is very time consuming to determine the

1http://hapmap.ncbi.nlm.nih.gov/
2http://www.1000genomes.org/page.php
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interactions of SNPs. Given n SNPs, the number of k-locus is nCk = n!
k!(n−k)! .

This renders existing statistical modeling techniques (which work well for a small

number of SNPs) [Wu et al., 2010, 2009; Yanget al., 2010; Zhao and Chen, 2012]

impractical. Likewise, techniques that enumerate all possible interactions [Wan

et al., 2010a; Zhang et al., 2010] are not scalable for a large number of SNPs.

To reduce the computation overhead, heuristics [Wu et al., 2010, 2009; Zhao

and Chen, 2012] have also been developed. These schemes add a filtering step

to select a fixed number of candidate epistatic interactions and fit them to a

statistical model. However, these approaches risk missing potentially significant

epistatic interactions that may have been filtered out, as concluded in the previous

chapter. Therefore, a scalable and efficient approach becomes attractive for such

a computationally intensive task in large-scale GWAS.

A promising solution to the computation challenge is to exploit parallel pro-

cessing. There are a variety of high-performance computing solutions. For ex-

ample, Ma et al. [2008] describes a tool for processing single-locus and two-locus

SNPs analyses using a supercomputer. However, it is not easy for researchers

to rewrite their own programs on specialized hardware. As another example,

two-locus SNPs analysis is performed using graphics processing units (GPU) in

Greene et al. [2010]. However, this requires the users to understand the GPU

architecture well to fully exploit the computation power of GPU. Instead, we

aim to develop a cloud-based solution which has a number of benefits. First,

the MapReduce framework (available in most cloud services) offers high scala-

bility, ease of programming and fault tolerance. Second, most software can be

easily deployed on the cloud and made accessible to all. Third, there are already

low-cost commercially available cloud platforms (e.g., Amazon Elastic Compute

Cloud (Amazon EC2)). Fourth, the pay-as-you-use model of such commercial

platforms also makes them attractive for end-users who need not own, manage,

and (over-)provision any computational resources.

In this chapter, we propose a cloud-based epistasis computing (CEO) model

to find statistically significant epistatic interactions. Our solution is based on

the MapReduce framework [Dean and Ghemawat, 2004], and implemented on

Hadoop1, an open-source-equivalent implementation of the MapReduce frame-

1http://hadoop.apache.org/
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work. We develop solutions for determining significant interactions for two-loci

and three-loci as well as computing the top-k most significant answers efficiently.

As a first cut, we have adopted a brute force approach that examines all possible

interactions among the SNPs. This ensures that we will not miss any statistically

significant interactions for two-loci and three-loci. Our method can be easily ex-

tended to deal with heuristics approaches. We validate our proposed CEO on a

local cluster of more than 40 nodes. Our results show that our CEO is efficient,

and that the MapReduce framework can be effectively deployed for bioinformatics

research such as GWAS.

The rest of this chapter is organized as follows. Section 4.2 provides the

problem formulation and reviews some background knowledge. In Section 4.3, we

propose our CEO processing model for both two-loci and three-loci analysis. We

also present an efficient approach to retrieve the top-k most significant answers.

Section 4.4 reports results of a performance study on our own cluster. In Section

4.5, we provide additional discussion, and finally, we conclude the chapter in

Section 4.6.

4.2 Problem formulation

Typically a GWAS uses two types of data—genotype data that codes the genetic

information of each individual, and phenotype data that measures the individual’s

quantitative traits. For simplicity, we use bi-allelic genotype data (i.e., a locus

has allele A and a which can form three types of genotypes, AA, Aa and aa.) and

are encoded as 0, 1 and 2 in the raw data. For phenotype data, we consider the

binary form (0 for control and 1 for case). Our model can handle other types of

genotype and phenotype data also. The table on the left of Figure 4.1 shows an

example of the raw data format for a dataset with m samples and 6 SNPs. Each

row contains the raw data of an individual sample. The first and last columns

are the sample id and phenotype. The rest of the columns are the genotype of

each SNP.

For our scheme to work, the raw data has to be pre-processed to transform

the SNP information into the following new data format: 〈SNPi, PT , GT ,

list(sampleID)〉where SNPi, PT and GT are the ith SNP, phenotype value and
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Figure 4.1: Data formats before and after preprocessing

the SNP genotype respectively. list(sampleID) stores all the sample ids in the

data set whose phenotype and SNP genotype on the SNPi are PT and GT

respectively. The table on the right of Figure 4.1 depicts the transformed data.

The pre-processing can be performed in one MapReduce job efficiently. For

example, pre-processing 100,000 SNPs only takes 76 seconds on a 43-node cluster.

As this is not the focus of our work, we shall not discuss this further. For the rest

of this chapter, we assume that the input to our algorithm is the pre-processed

data.

The goal of our research is to identify a set of most significant SNP pairs

(epistatic interactions) that correlate to the phenotype. To measure the associ-

ation between epistatic interaction and phenotype in our CEO model, we adopt

the χ2-test [Balding , 2006], which is widely used. Moreover, as our CEO frame-

work assumes no statistical model fitting and thus parameter free, the χ2-test is

effective in capturing any order interactions.

Take two-locus epistatic interactions as an example. Let n0(j,k) denote the
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Figure 4.2: SNP-pairs representation and distribution to reducers

number of samples in the control group whose first locus’s genotype code as

‘j’ and second locus’s genotype code as ‘k’, where j and k take on values 0,

1 or 2. Likewise, we can denote n1(j,k) for the case group. For two-loci, we

have 18 combinations (2 ×3 × 3). Moreover, let n =
∑1

i=0

∑2
j=0

∑2
k=0 ni(j,k),

ni =
∑2

j=0

∑2
k=0 ni(j,k), and nj,k =

∑1
i=0 ni(j,k). The null hypothesis behind the

χ2-test is that there is no association between the two-locus epistatic interaction

and phenotype. We thus calculate the χ2-test value of this epistatic interaction

using the following formula:

χ2 =
∑1

i=0

∑2
j=0

∑2
k=0

(ni(j,k)−nin(j,k)/n)
2

nin(j,k)/n

As the χ2-test follows the χ2 distribution, the corresponding significance level

can be obtained after Bonferroni correction. The lower the value is, the more

confident we are to reject the null hypothesis. The resultant p-value for the two-

locus epistatic interaction can be obtained as P (x > C) where C is the χ2 value,

and P (x) is the probability at value x under the χ2 distribution. The above

expressions can be easily generalized for three-locus interaction.
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Figure 4.3: Two-locus epistatic analysis example with 6 SNPs

4.3 CEO processing model

In this section, we introduce our CEO processing model using MapReduce. In

our system, we provide several components including two-locus epistatic analysis,

three-locus epistatic analysis and top k retrieval. Moreover, users can choose to

output all the epistatic interactions information or the ones whose statistical

values are not less than a user-specified threshold. In the following section, we

introduce them one by one.

4.3.1 Two-locus epistatic analysis

For two-locus epistatic analysis, we aim at finding statistically significant inter-

action between two SNPs among all SNP-pairs. For each two-locus SNP com-
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bination, we can get contingency table and calculate its statistical value. Using

the statistical value, we can derive the p-value to identify the significance of this

combination. For N SNPs in the data set, we need to calculate N(N − 1)/2

two-locus SNP combinations, as depicted in Figure 4.2. Each row represents a

subset of SNP-pair computations where the starred node has to be paired up with

a circled node. Thus, row 1 has (N-1) pairs, row 2 has (N-2) pairs and so on.

Our goal essentially is to split these N(N−1)/2 pairs of SNPs across all nodes

to be processed in parallel. We have two issues to address here: (a) How do we

split the SNP pairs across all nodes? (b) How to perform two-locus analysis under

the MapReduce framework?

We shall first look at issue (a). Given N SNPs and M reducers, we consider

the following two simple strategies:

Naive Model. The most straightforward approach is to simply distribute ap-

proximately equal number of rows to each reducer. This is depicted by the square

brackets on the LHS of Figure 4.2 where the first N
M

rows are assigned to the first

reducer, the next N
M

rows are assigned to the second reducer and so on. Here, the

number of SNP-pairs can be easily determined without any additional meta-data,

e.g., for row 1, we know that we need to pair up SNP1 (starred node) with all

other remaining SNPs ( circled node), resulting in (N-1) pairs.

Greedy Model. Under the naive model, some reducers are more heavily loaded

than others, e.g., reducer one is likely to be a bottleneck. To achieve better

load balancing, we also examine a greedy solution. Ideally, each reducer should

process N(N − 1)/2M SNP pairs. Therefore, starting from the first row, we

seek to allocate consecutive rows to a reducer such that the total number of

SNP pairs for these rows is closest to N(N − 1)/2M . In Figure 4.2, the square

brackets on the RHS show that, under the greedy scheme, each reducer may be

assigned different number of rows to process. However, the computation task in

each reducer is about the same. Like the naive scheme, this method also requires

minimum meta-data to be transferred.

As we shall see in our experimental study, in Section 4.4, it turns out that

these schemes are surprisingly effective (in the sense that the processing cost is

almost proportional to the number of pairs/triples to be computed).

We are now ready to look at issue (b). Without loss of generality, let us assume
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we have M reducers. Under the MapReduce framework, the mapper essentially

determines the reducer in which an SNP pair should be sent to, and the reducer

computes the statistical significance of each SNP pair allocated. Figure 4.3 shows

how the CEO model processes the data having 6 SNPs.

Map Phase : Each mapper reads a chunk of the input (pre-processed) data.

For each SNP, it then determines the reducers which this SNP should be shuffled

to. We shall discuss how the reducers are determined later. It suffices now to

assume that this information is available to the mapper. We note that one SNP

information may be shuffled to multiple different reducers. For example, in

Figure 4.2, SNPN needs to be shuffled to all the reducers. This, unfortunately,

is not supported by the MapReduce framework which allows only one output

(key, value) pair emitted from a mapper to be shuffled to one reducer.

Shuffling Phase: We write our own partitioning function to parse the reducer marker

in the key and partition the emitted pairs to multiple reducers.

Reduce Phase: The MapReduce library sorts and merges the intermediate

results based on the key. The (key, value) pairs with the same key, are grouped

together as (key, set(values)) pair where set(values) is a set of values for that key.

The (key, set(values)) pairs are supplied to a user’s reduce function in order.

Because all the keys have same reducer marker , the key will be sorted only

based on the SNPi. Thus, the data for SNPi are sent to the reduce function

before those for SNPj where i < j. This means that the starred nodes are

supplied earlier than the circled nodes. Therefore, in each reducer, only the

starred nodes need to be cached in the main memory. As the circled nodes are

received, they can be immediately paired up with the starred nodes to compute

its p-value, after which the circled nodes can be discarded. As such, our CEO

model significantly reduces the memory utilization.

In our processing model, the two-locus analysis can be finished in one MapRe-

duce job.

4.3.2 Three-locus epistatic analysis

Three-locus epistatic analysis aims at finding statistically significant interaction

between three SNPs. Here we propose one way of doing three-locus epistatic
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Figure 4.4: All the Three-locus SNPs having SNP1

analysis using the output of two-locus epistatic analysis. Note that the output

data of two-locus analysis are written to the file system.

As what we have discussed before, from each row in Figure 4.2 , we can get all

the needed two-locus SNP combinations involving the tree head SNPs (i.e., the

first SNPs that are sent to reducers). Further, if we combine any two two-locus

SNPs from one tree, we can get all possible three-locus SNPs involving the head

node SNP. Figure 4.4 shows an example of finding all the three-locus SNPs with

SNP1 using the two-locus SNP information from the first row in the 6 SNPs

example. In the same way, all the possible three-locus SNPs involving SNPm can

be generated from the combinations of two-locus SNPs of the row whose starred

node is SNPm.

For three-locus epistatic analysis, the same processing model can be adopted

here. All the two-locus SNPs which are derived from the same computation tree

need to be processed in the same reducer to get all the three-locus SNPs.

Map Phase: The two-locus SNP data is split into small chunks and each chunk

is assigned to each mapper by the MapReduce library. As already mentioned

above, the two-locus SNPs derived from the same computation tree must be

shuffled to the same reducer. To achieve this, the key in the output (key, value)

pair from the Map phase is set as SNPi.SNPj where SNPi and SNPj are the

starred node and the circled node respectively.

The advantage of setting the output key in this format is that, after sorting

the intermediate result according to the keys by the MapReduce library, all the

two-locus SNPs in one tree can be grouped closely and fed into the reduce func-

tion continuously. In the reduce phase, after processing all the two-locus SNPs

from one tree, the data can be discarded from the memory to minimize memory
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Figure 4. (a), (b) and (c) are the evaluation results for two-locus epistatic analysis. (d) is the performance evaluation result for three-locus epistatic analysis

the keys by MapReduce library, all the two-locus SNPs
from one row can be grouped closely and fed into the
reduce function continuously. In the reduce phase, after
processing all the two-locus SNPs from one row, the data
can be discarded from the memory to minimize the memory
utilization.

Shuffling phase: Our specified partitioning function is
used to partition the pairs according to SNPi value in the
integer part of the key. The intermediate result from the
mappers with the same SNPi will be shuffled to the same
reducer.

Reduce phase: After sorting and merging the intermediate
result, the two-locus SNPs information with smaller starred
node, will be supplied to reduce function earlier than
the others. Combining any two two-locus SNPs at the
reducer, we get the three-locus SNPs and calculate its
statistical significance. The result is then output to the file
system.

The load balancing algorithm can also be used here for
optimization. Three-locus analysis can be performed using
one MapReduce job using the two-locus SNPs data.

IV. EXPERIMENTS AND RESULTS

Apache Hadoop is an open source equivalent implemen-
tation of the MapReduce framework, running on HDFS
(Hadoop distributed file system). We run a series of experi-
ments on our local cluster of more than 40 nodes to evaluate
our model in Hadoop. Each node consists of aX3430 4(4)
@ 2.4GHZ CPU running Centos 5.4 with 8GB memory and
2x 500G SATA disks. Moreover, since our tasks at hand are
computationally intensive, we set the number of reducers
per node to be equal to the number of cores at the node,
which is 4. This guarantees that each reducer can get
one core. Therefore, there are a total of 4*N reducers
which can be run simultaneously on a N-node cluster.

Effect of number of reducers: For Hadoop application, a
user can specify the number of reducers to be used in
one job. Because we have preconfigured the total number
of reducers to be 4*N for a N-node cluster, this may
require multiple phases to complete a job. For example, if

N=30, then by specifying 120 reducers in one job, we
can complete it in 1 phase; with 360 reducers, it will
then take 3 phases to complete the job. Our first experiment
is to investigate the optimal number of reducers that
should be set for one job based on a given cluster size. This
experiment is conducted with a 10,000 SNPs dataset on a
30-node cluster. Note that all the datasets we used include
2000 samples. Figure 4(a) presents the running time for both
the Naive and Greedy models. As shown, there is a certain
optimal number of reducers that should be used. When
the number of reducers is too small, the computation
resources are not fully utilized. On the other hand, when
the number of reducers is too large, the processing may
require multiple phases which increases the communication
overhead. We note that while the Greedy model is optimal
when the number of reducers corresponds to the actual
configured value (i.e., 120), the Naive model is optimal when
a larger number of reducers is used (i.e., 240). This is
because for the Naive model, a larger number of reducers
means that the reducer with the most skewed load will be
allocated smaller load. In fact, as the number of reducers
increases, the Naive scheme performs as well as the Greedy
model.

Based on the above results, for the following experiments,
we only use the Greedy model.

Scalability: In this experiment, we study the scalability
of the CEO model as the system resources increase. Figure
4(b) shows the completion time analyzing 10,000 SNPs
as the cluster sizes increases from 10 to 40 nodes. The
reducer numbers in each job are set as 40, 80, 120 and
160 respectively. From the result, we can see that when more
nodes are added for processing, the completion time reduces.
In fact, we observe a linear speedup in performance. When
we double the resources, the execution time reduces to half,
such as the execution time on 10/20/40-node clusters.

Two-locus analysis: In this experiment, we study the
performance of the CEO model for two-locus analysis as we
vary the number of SNPs processed. Figure 4(c) shows the
processing time for the data sets with 10,000, 20,000, 50,000
and 100,000 SNPs on a 43-node cluster. As expected, the

Figure 4.5: Dependence of Job Completion Time on Reducer Numbers

utilization.

Shuffling Phase: Our specified partitioning function is used to partition the

pairs according to SNPi value in the integer part of the key. The intermediate

result from the mappers with the same SNPi will be shuffled to the same reducer.

Reduce Phase: After sorting and merging the intermediate results, the two-

locus SNP information with smaller starred node, will be supplied to reduce

function earlier than the others. Combining any two two-locus SNPs at the

reducer, we get the three-locus SNPs and calculate its statistical significance.

The result is then output to the file system.

The load balancing algorithm can also be used here for optimization. Three-

locus analysis can be performed using one MapReduce job using the two-locus

SNP data.
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Figure 4. (a), (b) and (c) are the evaluation results for two-locus epistatic analysis. (d) is the performance evaluation result for three-locus epistatic analysis

the keys by MapReduce library, all the two-locus SNPs
from one row can be grouped closely and fed into the
reduce function continuously. In the reduce phase, after
processing all the two-locus SNPs from one row, the data
can be discarded from the memory to minimize the memory
utilization.

Shuffling phase: Our specified partitioning function is
used to partition the pairs according to SNPi value in the
integer part of the key. The intermediate result from the
mappers with the same SNPi will be shuffled to the same
reducer.

Reduce phase: After sorting and merging the intermediate
result, the two-locus SNPs information with smaller starred
node, will be supplied to reduce function earlier than
the others. Combining any two two-locus SNPs at the
reducer, we get the three-locus SNPs and calculate its
statistical significance. The result is then output to the file
system.

The load balancing algorithm can also be used here for
optimization. Three-locus analysis can be performed using
one MapReduce job using the two-locus SNPs data.

IV. EXPERIMENTS AND RESULTS

Apache Hadoop is an open source equivalent implemen-
tation of the MapReduce framework, running on HDFS
(Hadoop distributed file system). We run a series of experi-
ments on our local cluster of more than 40 nodes to evaluate
our model in Hadoop. Each node consists of aX3430 4(4)
@ 2.4GHZ CPU running Centos 5.4 with 8GB memory and
2x 500G SATA disks. Moreover, since our tasks at hand are
computationally intensive, we set the number of reducers
per node to be equal to the number of cores at the node,
which is 4. This guarantees that each reducer can get
one core. Therefore, there are a total of 4*N reducers
which can be run simultaneously on a N-node cluster.

Effect of number of reducers: For Hadoop application, a
user can specify the number of reducers to be used in
one job. Because we have preconfigured the total number
of reducers to be 4*N for a N-node cluster, this may
require multiple phases to complete a job. For example, if

N=30, then by specifying 120 reducers in one job, we
can complete it in 1 phase; with 360 reducers, it will
then take 3 phases to complete the job. Our first experiment
is to investigate the optimal number of reducers that
should be set for one job based on a given cluster size. This
experiment is conducted with a 10,000 SNPs dataset on a
30-node cluster. Note that all the datasets we used include
2000 samples. Figure 4(a) presents the running time for both
the Naive and Greedy models. As shown, there is a certain
optimal number of reducers that should be used. When
the number of reducers is too small, the computation
resources are not fully utilized. On the other hand, when
the number of reducers is too large, the processing may
require multiple phases which increases the communication
overhead. We note that while the Greedy model is optimal
when the number of reducers corresponds to the actual
configured value (i.e., 120), the Naive model is optimal when
a larger number of reducers is used (i.e., 240). This is
because for the Naive model, a larger number of reducers
means that the reducer with the most skewed load will be
allocated smaller load. In fact, as the number of reducers
increases, the Naive scheme performs as well as the Greedy
model.

Based on the above results, for the following experiments,
we only use the Greedy model.

Scalability: In this experiment, we study the scalability
of the CEO model as the system resources increase. Figure
4(b) shows the completion time analyzing 10,000 SNPs
as the cluster sizes increases from 10 to 40 nodes. The
reducer numbers in each job are set as 40, 80, 120 and
160 respectively. From the result, we can see that when more
nodes are added for processing, the completion time reduces.
In fact, we observe a linear speedup in performance. When
we double the resources, the execution time reduces to half,
such as the execution time on 10/20/40-node clusters.

Two-locus analysis: In this experiment, we study the
performance of the CEO model for two-locus analysis as we
vary the number of SNPs processed. Figure 4(c) shows the
processing time for the data sets with 10,000, 20,000, 50,000
and 100,000 SNPs on a 43-node cluster. As expected, the

Figure 4.6: CEO Scalability and Performance Comparison

4.4 Experiments and results

Apache Hadoop is an open-source-equivalent implementation of the MapReduce

framework, running on HDFS (Hadoop distributed file system). We run a series

of experiments on our local cluster of more than 40 nodes to evaluate our model

in Hadoop. Each node consists of a X3430 4(4) @ 2.4GHZ CPU running Centos

5.4 with 8GB memory and 2x 500G SATA disks. Moreover, since our tasks at

hand are computationally intensive, we set the number of reducers per node to

be equal to the number of cores at the node, which is 4. This guarantees that

each reducer can get one core. Therefore, there are a total of 4*N reducers

which can be run simultaneously on a N-node cluster.

68



4. CEO: An Cloud Epistasis cOmputing model in GWAS

 0

 5

 10

 15

 20

 25

10000 20000 50000 100000

R
un

ni
ng

 T
im

e(
H

rs
)

Number of SNPs

Figure 4.7: CEO Performance on Processing Different Number of SNPs on Local
Cluster with 43 Nodes

Effect of number of reducers on completion time: For Hadoop application,

a user can specify the number of reducers to be used in one job. Because we

have preconfigured the total number of reducers to be 4*N for a N-node cluster,

this may require multiple phases to complete a job. For example, if N=30, then

by specifying 120 reducers in one job, we can complete it in 1 phase; with 360

reducers, it will then take 3 phases to complete the job. Our first experiment

is to investigate the optimal number of reducers that should be set for one job

based on a given cluster size. This experiment is conducted with a 10,000 SNPs

dataset on a 30-node cluster. Note that all the datasets we used include 2000

samples. Figure 4.5 presents the running time for both the Naive and Greedy
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Figure 4.8: Three-locus Epistatic Analysis on Local Cluster with 43 Node

models. As shown, there is a certain optimal number of reducers that should be

used. When the number of reducers is too small, the computation resources are

not fully utilized. On the other hand, when the number of reducers is too large,

the processing may require multiple phases which increases the communication

overhead. We note that while the Greedy model is optimal when the number of

reducers corresponds to the actual configured value (i.e., 120), the Naive model

is optimal when a larger number of reducers is used (i.e., 240). This is because

for the Naive model, a larger number of reducers means that the reducer with

the most skewed load will be allocated smaller load. In fact, as the number

of reducers increases, the Naive scheme performs as well as the Greedy model.

Based on the above results, for the following experiments, we only use the Greedy
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model.

Scalability : In this experiment, we study the scalability of the CEO model

as the system resources increase. Figure 4.6 shows the completion time analyzing

10,000 SNPs as the cluster size increases from 10 to 40 nodes. The reducer

numbers in each job are set as 40, 80, 120 and 160 respectively. From the result,

we can see that when more nodes are added for processing, the completion time

reduces. In fact, we observe a linear speedup in performance. When we double

the resources, the execution time reduces to half, such as the execution time on

10/20/40-node clusters.

Two-locus analysis: In this experiment, we study the performance of the CEO

model for two-locus analysis as we vary the number of SNPs processed. Figure

4.7 shows the processing time for the data sets with 10,000, 20,000, 50,000 and

100,000 SNPs on a 43-node cluster. As expected, the processing time is essentially

proportional to the number of interacting SNP-pairs to be evaluated. We observe

that even for 100,000 SNPs, the CEO model only takes 25 hours to complete the

processing. This shows that our CEO model is effective.

Three-locus analysis: We also evaluate the performance of three-locus analysis

on the 43-node cluster. The result is presented in Figure 4.8 for SNP size of 500,

800, 1,000 and 2,000. We observe that the running time is also proportional to

the number of SNP-triples. This confirms that the CEO scheme can effectively

balance the load across all nodes.

4.5 Top-K retrieval

In our system, we store the result of the two-locus and three-locus analysis in

HDFS to allow users to do further analysis. One important function that we

can further provide is to allow users to retrieve only the top-k most significant

results with the lowest p-value. We have also provided such a capability in our

system under the MapReduce framework. The basic idea is to split the output

of the two/three-locus analysis into chunks. Each chunk is then assigned to one

mapper. Next, each mapper will select the top-k most significant pairs/triples

and shuffled these results to one reducer. Finally, the reducer can determine the

global top-k answers based on all local top-k ones it receives. Our top-k scheme
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is very efficient. For example, retrieving the top 10 most significant SNP pairs

from the two-locus output of size 54GB only takes 132 seconds in the 43-node

cluster.

4.6 Conclusion

According to Ma et al. [2008], it would require 1.2 years to do the pairwise epista-

sis testing of 500,000 SNPs using a serial program on a 2.66 GHz single processor

without parallel processing. In this chapter, we have provided a cloud epistatic

computing model (CEO) for large-scale epistatic interactions using the MapRe-

duce framework. Our experimental results demonstrate the practical advantage

of using the CEO model to exhaustively search two-locus epistatic interactions.

We also provided a three-locus analysis approach as an example of k-locus anal-

ysis using our model. More importantly, by using the MapReduce framework,

we have shown that large-scale data analysis in GWAS can be easily performed

over commodity computers or cloud resources. The scalability of the MapRe-

duce framework to thousands of machines with good fault tolerance will make

such compute-intensive computations acceptable. Currently, we have used the

popular χ2 test to measure the interaction effect. Our CEO model can be eas-

ily adapted to handle other methods that utilize contingency table information

to determine interaction effect (e.g., likelihood ratio, normalized mutual infor-

mation, uncertainty coefficient). Also, for existing methods involving a filtering

step and statistical model fitting step, our work can be used as a filtering step

to retrieve the top-k most significant interactions for follow-up analysis. As fu-

ture work, we plan to look at other strategies to allocate SNPs to nodes. For

example, a best-fit model may assign the next available row to the reducer

with the least number of SNP pairs. Alternatively, an ideal model may assign

the SNP pairs in a round-robin fashion to the reducers so that every reducer

will end up with the same number of SNP-pairs. We will explore such meth-

ods to study their effectiveness. The CEO source codes can be downloaded at

http://www.comp.nus.edu.sg/~wangzk/document/CEOSOURCECODE.tar.gz
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Chapter 5

eCEO: An efficient Cloud

Epistasis cOmputing model in

GWAS

5.1 Introduction

Finding significant epsitatic interactions of SNPs involve two major computa-

tional challenges:

1. Given a large number of combinations of SNPs, how can we distribute them

across multiple processing nodes effectively to achieve load balancing?

2. Given a single combination of SNPs, how can we efficiently compute the

significance of its association with the phenotype?

Chapter 4 describes the CEO model where we design the Greedy parallel dis-

tribution approach to tackle the first challenge and adopt a naive solution for the

second challenge. Here, we propose an efficient Cloud-based Epistasis Computing

(eCEO) model to find statistically significant epistatic interactions. Our eCEO

model is based on Google’s MapReduce framework [Dean and Ghemawat, 2004],

and is implemented on Hadoop, an open-source-equivalent implementation of the

MapReduce framework. We develop solutions for the two computational chal-

lenges mentioned above. For the first challenge, we develop and study two ap-
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proaches to distribute a large number of combinations of SNPs across processing

nodes—a Greedy model and a Square-chopping model. For the second challenge,

we adopt a Boolean operation approach, which is similar to the method used in

[Wan et al., 2010a], and other optimizations.

We first apply our solutions for determining significant interactions for two-

locus and three-locus as well as retrieving the top-k most significant answers. As

a first cut, we have adopted a brute force approach that examines all possible

interactions among the SNPs. This ensures that we do not miss any statistically

significant interactions. Our method can be easily extended to deal with heuris-

tics approaches. We validate our proposed eCEO model on our local cluster of

over 40 nodes and on a public cloud (viz., Amazon EC2). Our results show that

our eCEO model is efficient, and that the MapReduce framework can be effec-

tively deployed for bioinformatics research such as the GWAS.

We then conduct an experimental study to show that eCEO outperforms

CEO by a wide margin. For example, our experiment result shows that the exe-

cution time for processing 500,000 SNPs in a 43-node cluster is reduced from the

25 to 30 days using CEO model to the 9 hours using the eCEO model. Com-

pared with CEO, our eCEO model supports four test statistics to measure the

significance of the association between a combination of SNPs and the phenotype;

and users can choose an appropriate one that meets their needs.

The rest of this chapter is organized as follows. Section 5.2 provides some

background knowledge. In Sections 5.3, and 5.4, we present our solutions to

address the two computational challenges for finding significant epistatic interac-

tions. Section 5.5, we report results of a performance study on our own cluster

and Amazon EC2. We also present an efficient approach to retrieve the top-k

most significant answers. Finally, we discuss and conclude this chapter in Section

5.7.
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Figure 5.1: (a) is the raw data format with 6 SNPs from 8 individual samples;
(b1) is the data format after pre-processing with sample id list in CEO model;
(c1) illustrates the hashing method for finding the intersection between two lists
of sample ids in CEO model- one is sample id list from the SNP 1 whose PT and
GT are 0 and 1, the other is the sample id list from the SNP 2 whose PT and
GT are 0 and 0 ; (b2) is the data format after pre-processing using bit strings
representation in eCEO model; (c2) illustrates the way of finding the intersection
from two lists with bit strings in eCEO model.

5.2 Background on statistical significance of SNP

combinations

Typically a GWAS uses two types of data—genotype data that codes the genetic

information of each individual, and phenotype data that measures the individual’s

quantitative traits. We use the same notation as Section 4.2.1 to describe the

two types of data. Figure 5.1 (a) shows an example of the raw data format for a

data set with 8 individual samples and 6 SNPs. Each row contains the individual

sample information of raw data. The first and last columns are the sample id and

phenotype. The rest of the columns are the genotype of each SNP.

The goal of our research is to identify a set of most significant combinations

of multiple SNPs (epistatic interactions) that correlate to the phenotype. To

measure the significance of the association between k-locus SNPs and phenotype

in our eCEO model, we have implemented four test statistics—χ2 test, likeli-

hood ratio, normalized mutual information and uncertainty coefficient. Users

can choose any of these tests based on their preferences and needs. As our eCEO

framework assumes no statistical model fitting and is thus parameter free, these

measures are effective in capturing interactions of arbitrary order. Without loss
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of generality, we focus on the χ2-test [Balding , 2006], which is used as the default

in eCEO, in the following discussion.

5.3 Efficient algorithm for finding association sig-

nificance

For our scheme to work, the raw data has to be pre-processed to collect the

single SNP information in a new data format (to facilitate MapReduce process-

ing). The straightforward way, which is adopted in our CEO model of the pre-

vious chapter [Wang et al., 2010b], is to reorganize the data into the format of

〈SNPi, PT,GT, list(sampleID)〉 where SNPi, PT and GT are the ith SNP, phe-

notype value and the SNP genotype respectively. list(sampleID) stores all the

sample ids in the data set whose phenotype and SNP genotype on the SNPi are

PT and GT respectively. Figure 5.1(b1) depicts the transformed data from the

raw data in Figure 5.1(a). The single SNP information can be sent to different

processing nodes to calculate the χ2-test value by collecting the contingency table

from the combination of multiple SNPs. Let us still take two-locus as an example.

In order to collect the contingency table, the first step is to calculate the ni(j,k)

from the single SNP information. If we want to calculate the ni(j,k) for the pair

of SNP x and SNP y, we need the information from 〈x, i, j, list1(sampleID)〉 in

SNP x and 〈y, i, k, list2(sampleID)〉 in SNP y. We can derive ni(j,k) from the

intersection between the two sample id lists. This can be easily done as follows:

first, we build a hash table for the sample ids in the first list; second, we use the

sample ids in the second list to probe the hash table for matching sample ids.

For example, to get n0(1,0) for the pair of SNP 0 and SNP 1, we intersect the two

sample lists as shown in Figure 5.1(c1).

However, our preliminary study suggests that using such an approach to col-

lect the contingency table is computationally expensive.

In our eCEO model, we adopt an alternative approach. Instead of storing the

sample ids in the list, we use a n-bit bit string to capture the sample ids, where

n is the total number of samples. Each position in the bit string corresponds

to a sample id. For example, from right to left, the first bit in the bit string
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Figure 5.2: Data format in bytes. J, 1, 1, K bytes are used to store the SNP ID,
phenotype, genotype and the bit string of the sample id list. User can choose the
value of J and K according to their data size.

Figure 5.3: SNP-pairs representation and distribution to reducers

corresponds to the sample with id 1, the second bit corresponds to the sample

with id 2 and so on. If the sample id is in the list, its corresponding position is set

to 1, otherwise, it is set to 0. Therefore, in our system, the new transformed data

is represented as bit strings as in Figure 5.1(b2). With such a representation,

we can perform an AND operation on the two bit strings to find the intersection

between them more efficiently. We can easily get the number of intersection

samples from counting the 1’s bits from the AND result. Figure 5.1(c2) depicts

calculating n0(1,0) for the pair of SNP 0 and SNP 1 using bit strings. This method

provides a more cpu-efficient way of collecting the contingency table.

To further improve performance, we incorporate several optimizations in our

eCEO model. 1) We use the mutable decoding scheme in our system. From

our observation, immutable decoding of objects from the key/values into Java

77



5. eCEO: An efficient Cloud Epistasis cOmputing model in GWAS

objects, used in the CEO model, is a time-consuming operation since it needs

to create a unique Java object for each object in the key/values. For example,

parsing ten objects in each record for one million records requires generating ten

million immutable objects! With mutable decoding scheme, we can reuse ten

mutable Java objects. Therefore, no matter how many records are decoded, only

ten objects are created and reused. 2) We store all the data information into

bytes including the SNP id, genotype, phenotype and bit strings as shown in the

Figure 5.2. This follows from our observation that it is time-consuming to use

Java string split function to split the objects in a record. We parse the objects

in a record by directly fetching from the bytes records. 3) We write our own

algorithm to count the intersection of the 1’s bits without using the Java API.

5.4 Parallel distribution model

5.4.1 Two-locus epistatic analysis

For two-locus epistatic analysis, we aim at finding statistically significant inter-

action among all SNP pairs. For each pair of SNP combination, the p-value is

computed (as described in Section 5.2) to determine its significance. For N SNPs

in the data set, we need to calculate N(N−1)
2

two-locus SNPs combinations, as

depicted in Figure 5.3. Each row represents a subset of SNP-pair computations

where the starred node has to be paired up with a circled node. Thus, row 1 has

(N-1) pairs, row 2 has (N-2) pairs and so on.

Our goal essentially is to split these N(N−1)
2

pairs of SNPs across all nodes to

be processed in parallel. We have two issues to address here: (a) How do we split

the SNP pairs across all nodes? (b) How to perform two-locus analysis under the

MapReduce framework?

We shall first look at issue (a). Given N SNPs and M reducers, a naive

approach is to simply distribute approximately equal number of rows to each

reducer. This is depicted by the square brackets on the LHS of Figure 5.3 where

the first N
M

rows are assigned to the first reducer, the next N
M

rows are assigned

to the second reducer and so on. Here, the number of SNP-pairs can be easily

determined without any additional meta-data, e.g., for row 1, we know that we
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need to pair up SNP1 (starred node) with all other remaining SNPs (circled

node), resulting in (N-1) pairs. However, such a naive solution will result in load-

imbalance as some reducers are more heavily loaded than others, e.g., reducer

one is likely to be a bottleneck. To achieve better load balancing, we propose a

new load-balanced solutions in this chapter:

Square-chopping Model. Under the Greedy model, the granularity of distri-

bution of computation pairs is a single row. In some cases, if users have plenty

of resources to use, they may want to reduce the number of computation pairs in

each reducer further. Our Square-chopping model, which is an adaptation of the

scheme in [Ma et al., 2008], can be used in these scenarios. Instead of sending the

combination pairs according to rows, we distribute them by “Square-chopping”

as shown in Figure 5.3. This can be achieved by dividing N SNPs into m subsets

evenly. Each subset has n SNPs where n equals N
m

. For simplicity, n is assumed to

be integer. Then we assign any two subsets into one reducer. As shown in Figure

5.3, each off-diagonal reducer receives n2 combination pairs and each diagonal

reducer receives n(n+1)
2

combination pairs. Therefore, this scheme needs m(m+1)
2

reducers.

We are now ready to look at issue (b), i.e., performing two-locus analysis in

MapReduce framework. The basic principles of map, shuffle and reduce phases are

described in Section 4.3.1. However, some new technical solutions are mentioned

below.

Map Phase: In Figure 5.3, SNPN needs to be shuffled to all the reducers.

This is not supported by the MapReduce framework which allows only one out-

put (key, value) pair emitted from a mapper to be shuffled to one reducer. We

resolve this problem by replicating and emitting as many copies of a SNP as re-

quired. In addition, each such pair is “tagged” with the corresponding reducer

identifier to distinguish the reducer that the pair should be shuffled to. In other

words, for each reducer for which an SNP, SNPi, should be shuffled to, we

generate and emit a (key, value) pair where key is set as SNPi.reducer marker

(reducer marker is the identifier of the reducer that this SNPi should be shuf-

fled to), as shown in the Figure 4.3 subgraph (2), and value contains the rest

of the SNP information including the genotype, phenotype and the bit string

representing the sample id list. In this way, all the output (key, value) pairs with
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the same reducer marker are shuffled to the same reducer.

Reduce Phase: Because all the keys at the reducer have the same reducer marker,

the keys will be sorted only based on the SNPi. Thus, the data for SNPi are

sent to the reduce function before those for SNPj where i < j. For the Greedy

model of previous chapter, this means that the starred nodes are supplied earlier

than the circled nodes. Therefore, in each reducer, only the starred nodes need

to be cached in the main memory. As the circled nodes are received, they can

be immediately paired up with the starred nodes to compute its p-value, after

which the circled nodes can be discarded. For the Square-chopping model of

this chapter, this guarantees that information from one subset of SNPs will be

supplied earlier than another. Therefore, we only need to keep one subset of the

SNPs information in memory. As such, our eCEO model significantly reduces

the memory utilization.

In our processing model, the two-locus analysis finishes in one MapReduce

job.

5.4.2 Three-locus epistatic analysis

Three-locus epistatic analysis aims at finding statistically significant interaction

between three SNPs. The way we conduct three-locus epistatic analysis is de-

scribed in Section 4.3.2. However, the load balancing algorithm can also be used

here for optimization.

5.5 Results

Apache Hadoop is an open source equivalent implementation of the MapReduce

framework, running on HDFS (Hadoop distributed file system). We conduct

a series of experiments on our local cluster with over 40 nodes, and a public

cloud environment, Amazon Elastic Compute Cloud (Amazon EC2). For our

local cluster, each node consists of a X3430 4(4) @ 2.4GHZ CPU running Centos

5.4 with 8GB memory and 2x 500G SATA disks. For Amazon EC2, we use 20

extra large instances, each with 8 EC2 Compute Units (4 virtual cores with 2

EC2 Compute Units each), 15 GB of memory, and 1690 GB of local instance
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storage running on a 64-bit platform. Moreover, since our tasks at hand are

computationally intensive, we set the number of reducers per node to be equal

to the number of cores at the node, which is 4 in our local cluster and 8 in EC2

instances. This guarantees that each reducer can get one core. Therefore, there

are a total of 4*N and 8*N reducers which can be run simultaneously on a

N-node local cluster and EC2 clusters respectively.

Effect of number of reducers: For Hadoop application, a user can specify

the number of reducers to be used in one job. Because we have preconfigured

the total number of reducers to be 4*N for a N-node cluster, this may require

multiple phases to complete a job. For example, if N=30, then by specifying 120

reducers in one job, we can complete it in 1 phase; with 360 reducers, it will

then take 3 phases to complete the job. Our first experiment is to investigate

the optimal number of reducers that should be set for one job based on a given

cluster size. This experiment is conducted with a 50,000-SNPs dataset on a local

30-node cluster. Note that all the datasets we used include 2000 samples.

Figure 5.4 presents the running time for the Greedy model. As shown, there

is a certain optimal number of reducers that should be used. When the number

of reducers is too small, the computation resources are not fully utilized. On

the other hand, when the number of reducers is too large, the processing may

require multiple phases which increases the communication overhead. We note

that the Greedy model is optimal when the number of reducers corresponds to

the actual configured value (i.e., 120).

Figure 5.5 presents the running time for the Square-chopping model. Here, the

50,000-SNPs are evenly split into 10, 16, 20, 25 and 40 partitions corresponding

to 55, 136, 210, 325 and 820 reducers needed. From the results, we observe that

when the reducer number is close to a multiple of N, where N is the total number

of reducers configured in the cluster, its performance is good; otherwise, (N -

R%N) reducers in the last phase, where R is the reducer number set in the job,

will be wasted.

Looking at the results for the Greedy and the Square-chopping models, we ob-

serve that the Square-chopping model is generally inferior to the Greedy model.

This is because of wasted reducers in the last phase (as discussed above). Its

performance, however, is closer to the Greedy model as the partition number in-
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Figure 5.4: Effect of number of reducers for Greedy model

creases because the task in each reducer is smaller, and hence the wasted reducers

in the last phase will not affect the total performance so much. Based on these

results, for the subsequent experiments, we only use the Greedy model.

Scalability: First, we study the scalability of the eCEO model as the system

resources increase. Figure 5.6 shows the completion time to analyze 50,000-SNPs

as the cluster sizes increases from 10 to 40 nodes. The reducer numbers in each

job are set as 40, 80, 120 and 160 respectively. From the result, we can see that

completion time reduces with increasing number of nodes. In fact, we observe

a (almost) linear speedup in performance. When we double the resources, the

execution time reduces by half.

Now, let us consider the scalability of eCEO as the number of SNPs increases.
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Figure 5.5: Effect of number of reducers for Square-chopping model

Figure 5.7 shows the processing time for exhaustively computing all the significant

interactions for two-locus with 50,000, 100,000, 200,000 and 500,000 SNPs on a

local 43-node cluster, and output the results whose p-values are smaller than

0.05. We make two interesting observations. First, the result shows that our

eCEO offers a feasible and practical solution to perform pairwise epistasis for a

large number of SNPs. According to [Ma et al., 2008], it would require 1.2 years

to do the pairwise epistasis testing of 500,000-SNPs using the serial program

on a 2.66 GHz single processor without parallel processing. Our eCEO model

can accomplish this task in no more than 9 hours using only a 43-node cluster.

Second, we note that the processing time is essentially proportional to the number

of interacting SNP-pairs to be evaluated. For example, the number of SNP-pairs

83



5. eCEO: An efficient Cloud Epistasis cOmputing model in GWAS

 0

 5

 10

 15

 20

 25

 30

10 20 30 40

R
un

ni
ng

 T
im

e(
M

in
s)

Cluster Size

Figure 5.6: eCEO Scalability on different clusters

for the 500,000-SNPs dataset is 100 times more than that for the 50,000-SNPs

dataset, and 6 times more than that for the 200,000-SNPs dataset. The running

time for the 500,000-SNPs dataset ( 538 mins) is no more than 100 times that of

the 50,000-SNPs dataset ( 7 mins), and is about 5 times more than the 200,000-

SNPs dataset ( 109 mins).

Performance Comparison between CEO and eCEO models: We also evaluate

CEO’s scalability with respect to the number of SNPs. The result is shown in

Figure 5.7. Clearly, eCEO outperforms CEO by a wide margin. We did not run

the experiments for 200,000 and 500,000 SNPs in the CEO model because it will

take a long time—we estimated the execute time for 500,000 SNPs to be roughly

25∼30 days. But our eCEO model only needs 9 hours to complete. We expect
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Figure 5.7: CEO and eCEO performance comparison

our eCEO model to be able to process 1 million SNPs in around ten hours on a

200-node cluster. The results confirm that our various optimizations are effective

and efficient, and that our eCEO model is a practical and effective solution for

processing large number of SNPs.

Three-locus analysis: We also evaluate the performance of three-locus analysis

on a 43-node local cluster. We output all the two-locus analysis result and then

perform the three-locus analysis. The result is presented in Figure 5.8 for SNP

sizes of 2,000, 3,000, 4,000 and 5,000. We observe that the running time is also

proportional to the number of SNP-triples. This confirms that the eCEO scheme

can effectively balance the load across all nodes.
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Figure 5.8: Three-locus epistatic analysis

Top-K Retrieval: In our system, we store the results of the two-locus and

three-locus analyses in HDFS to allow users to do further analysis. One important

function that we can further provide is to allow users to retrieve only the top-k

most significant results with the lowest p-values. We have also provided such a

capability in our system under the MapReduce framework. The basic idea is to

split the output of the two/three-locus analysis into chunks. Each chunk is then

assigned to one mapper. Next, each mapper will select the top-k most significant

pairs/triples and shuffled these results to one reducer. Finally, the reducer can

determine the global top-k answers based on all local top-k ones it receives. Our

top-k scheme is very efficient. For example, retrieving the top 10 most significant

SNPs from the two-locus output (with size of 56GB) only takes 145 seconds in
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Figure 5.9: eCEO performance on EC2

the 43-node cluster.

Evaluation on and experience with a public cloud: eCEO is developed with

the intention for users to exploit cloud computing for epistasis analysis. As such,

we also evaluate our Greedy model on a public cloud, namely, Amazon EC2. Our

quota of using Amazon EC2 instances in our research grant is 20. We use 20

extra-large instances in our experiments, including 1 master node and 19 slaves

nodes. There are 19 computation nodes in this experiment. Figure 5.9 shows the

execution time for two-locus analysis as we vary the number of SNPs from 50,000

to 500,000. From the results, we can see that the execution time is essentially

proportional to the number of interacting SNP-pairs as we observed in our local

cluster.
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Our experience with Amazon EC2 shows the ease in which we can deploy our

eCEO model. In fact, in the Hadoop package that we use, it provides tools to

launch Amazon EC2 cluster with Hadoop directly. Therefore, we do not need to

make any changes to our codes. We do not even need to set up Hadoop at all.

Once we launch the cluster in Amazon EC2, we simply upload our eCEO pro-

gram and run it. With many cloud providers offering services to use MapReduce

program directly (such as Amazon EC2, Amazon Elastic MapReduce and so on),

our eCEO model is an important tool for large-scale epistasis analysis on a public

cloud.

5.6 Theoretical cost analysis and suggestion for

a major improvement

5.6.1 Theoretical cost analysis

In the Amazon EC2, the cost that a user needs to pay is measured by how much

instance hour is used. In our two proposed models, the time can be broken down

into three parts given the same configuration of instances used in AWS:

1. data transfer from map phase to reduce phase;

2. data to be loaded into memory and

3. computation in the memory.

We use following symbols to derive the cost of each part:

• ns: the number of SNPs to be considered;

• nu: the number of SNP pairs that an instance on AWS is able to process

within 1 instance hour and

• nn: the number of instances used in the AWS, nn = ns ∗ (ns− 1)/(2 ∗ nu).

(1) How much data transfer is needed.

The data transfer can be divided into head SNP transfer and paired SNP transfer.
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Head SNP files are copied once each, and paired SNP files are copied as many

times as they are paired to head SNPs in a instance. For both the Greedy and

the Square-chopping model, the number of times paired SNP files are transferred

works out to nu times, where nu is the number of SNP pairs that can be computed

in one instance hour on one instance. However, the number of times that head

SNP files are transferred is different. For the Square-chopping model, there are

ns ∗ (ns − 1)/2 SNP pairs to be computed. Each node is processing nu pairs

and we have nn nodes. At each of these nodes, sqrt(nu) SNPs are paired to

sqrt(nu) SNPs. The number of times head SNP files are transferred is sqrt(nu)

for each instance. For the Greedy model, the number of times head SNP files are

transferred is different for different instances, but the maximum number of head

SNP is sqrt(nu). Therefore, the data transfer cost overall is slightly less for the

Greedy model than that for the Square-chopping model.

(2) How much data is loaded into memory.

For both the Greedy and Square-chopping models, the transferred data are loaded

into memory. When the memory is full, the data to be loaded into memory reside

at local disks of an instance. They are loaded after an instance finishes calculating

the current SNP pairs test statistics and clears the current memory. Therefore

the cost of loading data is a little less for the Greedy model than that for the

Square-chopping model.

(3) SNP pair computing cost.

When a SNP pair is loaded into memory, it takes the same cost to calculate for

both the Greedy and Square-chopping models. Since they calculate the same

amount of SNP pairs (ns ∗ (ns − 1)/2)) and we assume both models run in the

same configuration of instances (nn and nu). The cost is the same for the Greedy

and Square-chopping models.

Adding up the above three parts, the total cost for the Greedy model is slightly

less than that for the Square-chopping model, which is shown in Figure 5.4 Figure

5.5 (running time for the Greedy model is slightly less than that for the Square

chopping model), assuming our local clusters simulate the behavior of AWS EC2.
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5.6.2 Suggestion for a major improvement

In the current implementation, repetitive head SNP and paired SNP files are

transferred and therefore repetitive costs are incurred. A better implementation

can reduce cost by transferring the head SNP and paired SNP identifiers instead

of actual SNP files, assuming there is a cache mechanism that can store all the

preprocessed SNP genotyping files. Amazon EBS service provides such a cache

mechanism in the sense that it loads once and only once the absent files when an

instance tries to access them. After that the files are kept locally for accessing.

Therefore, both models should mount the EBS volume on all EC2 instances so

that SNP files (one file per SNP) are stored on the EBS. When an instance uses the

SNP file of a paired SNP for the first time, the file is obtained and cached in that

instance. The SNP file of this paired can be reused later since there is a cached

copy, instead of getting another copy like our current implementation. Such an

improvement can therefore reduce the cost of transferring data and loading data

into memory.

Future work may investigate the exact amount of the reduction given the

same configure of instances in AWS. The reduction in these costs is expected to

be significant:

(1) How much data transfer is needed.

For the Greedy model, the cost of data transfer for each instance is now equal to

the number of SNP files that this instance needs to access—i.e., the number of

head SNPs and paired SNPs that it has to process. Specifically, instance1 needs

to see the files of ns SNPs, including those of the nu/ns head SNPs assigned to

this instance; instance2 needs to see the files of (ns − nu/ns) SNPs, including

those of the nu/(ns − nu/ns)) head SNPs; instance3 needs to see the files of

(ns−nu/ns−nu/(ns−nu/ns)) SNPs, including those of the (nu/(ns−nu/ns−
nu/(ns − nu/ns))) head SNPs; and so on, until instancenn which needs to see

roughly the files of approximately the last 2 ∗ sqrt(nu) SNPs, including those of

approximately sqrt(nu) head SNPs. Thus each instance in the Greedy model

generally needs to see the files of at least 2 ∗ sqrt(nu) SNPs. Since there are

nn instances, the total number of SNP files to be transferred exceeds nn ∗ 2 ∗
sqrt(nu), but is at most nn∗ns. In contrast, for the Square-chopping model, each
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instance has sqrt(nu) head SNPs and sqrt(nu) paired SNPs. Thus each instance

needs 2 ∗ sqrt(nu) SNP files. So the total number of files to be transferred is

nn ∗ 2 ∗ sqrt(nu). That is, with this modification to the implementation, the

Square-chopping model needs much less data transfer than the Greedy model,

reversing the situation in our current implementation. Furthermore, the amount

of transfer needed in both models with this modification to the implementation

is significantly less than that in the current implementation (nn ∗ 2 ∗ sqrt(nu)

versus nn ∗ nu).

(2) How much data is loaded into memory.

In the current implementation, when a SNP is paired to ns − 1 head SNPs in

an instance, its associated data is transferred and loaded ns − 1 times into the

memory of that instance. With the improved implementation, it is loaded only

once, so long as that instance has enough memory to hold the data of its entire

head SNPs and one paired SNP in memory. Therefore, the total amount of data

being loaded into memory for the Greedy model is at least nn ∗ 2 ∗ sqrt(nu) and

at most nn ∗ ns, while that for the Square-chopping model is nn ∗ 2 ∗ sqrt(nu).

Again, with this modification to the implementation, the Square-chopping model

becomes more efficient than the Greedy model. Furthermore, both the Square-

chopping model and the Greedy model become more efficient than the current

implementation (nn ∗ 2 ∗ sqrt(nu) versus nn ∗ nu).

(3) SNP pair computing cost.

The modification to the implementation does not change the SNP pair computing

cost.

5.7 Conclusion

This chapter aims at providing an efficient epistasis computing model for large-

scale epistatic interaction in GWAS which can be run on a computing cluster

(local or cloud-based). We have proposed an efficient and feasible solution, called

eCEO based on the MapReduce framework. As such, eCEO inherits the nice

properties of MapReduce, which is high scalability and good fault tolerance.

Moreover, it can leverage cloud computing with almost unlimited elastic com-

puting resources. We have demonstrated the practical advantage of using eCEO
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model to exhaustively search two-locus and three-locus epistatic interactions. Our

eCEO model can also retrieve top-k most significant interactions. We have con-

ducted extensive experimental study on a local cluster of over 40 nodes and on

20 instances on Amazon EC2. The results showed that our eCEO model is com-

putationally efficient, flexible, scalable and practical. As future work, we plan to

implement more test statistics. We also plan to explore the possibility of inte-

grating eCEO as a filtering step to other methods, e.g., those based on statistical

model fitting. Finally, we plan to develop pruning strategies based on domain

knowledge, and integrate these into our scheme. For example, by knowing that

certain SNPs do not interact, their computations can be avoided totally.
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Chapter 6

Parallel random forest regression

on Hadoop for multivariate

quantitative trait mapping

6.1 Introduction

The last few years have seen extensive efforts to correlate human genetic and phe-

notypic variation. An increasing number of population GWAS have been carried

out to discover causal associations between common genetic variations and com-

plex human traits. These studies rely on high-throughput platforms that measure

genetic changes at hundreds of thousands or even million single-nucleotide poly-

morphisms (SNPs) across the human genome in large random samples. Full se-

quencing of human genomes has shown that, in any given individual, there are on

average approximately 4 million genetic variants [Frazer et al., 2009]. The most

common study design generally involves comparing a sample of healthy control

subjects with a sample of diseased subjects, with the goal of identifying patterns

of polymorphisms that vary systematically between these two populations and

could, therefore, represent the effects of risk-enhancing alleles. Such abundance

of genetic markers has now made it possible to identify quantitative trait loci

(QTL), which are regions of a chromosome or even individual sequence variants

that are responsible for trait variation. For many diseases, such as asthma or
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attention deficit hyperactivity disorder (ADHD), investigators routinely measure

multiple endophenotypes that are thought to be more proximal to the biological

etiology of the clinical disorder [Ferreira and Purcell, 2009].

Traditional statistical genetics methodologies have started to be complemented

with, or even replaced by, machine learning algorithms because they often make

minimal assumptions about the underlying causal disease mechanism, which is

generally unknown. Case-control studies can be analysed by performing feature

(e.g. SNP) selection and ranking in the context of pattern classification. Ran-

dom Forest (RF), which is amongst the top performing algorithms for supervised

learning, has been found particularly promising in case-control studies [Boulesteix

et al., 2012; Goldstein et al., 2010, 2011; Nicodemus, 2011]. Phenotypic variation

in human populations is typically due to underlying genetic complexity from mul-

tiple interacting loci, with allelic effects that are sensitive to the environmental

conditions each individual experiences. RF has also been regarded as a partic-

ularly powerful approach to capture gene-environment interactions and epistatic

effects [Jiang et al., 2009; Lunetta et al., 2004; Molinaro et al., 2011; Sun, 2010].

Our interest in this work is on detecting genetic variants associated with

quantitative, and possibly multivariate and very high-dimensional, traits. When

a QTL is found to be linked to a causative marker locus, then individuals with

different marker locus genotypes will have different mean values of the quanti-

tative trait. In this respect, the QTL mapping problem can also be treated as

a feature selection and ranking problem, albeit in a regression setting. Several

studies mapping QTL that affect human diseases and complex traits have uncov-

ered new loci. Although much emphasis has been placed on linkage mapping, or

QTL mapping in families, there is now increasing interest for QTL mapping in

unrelated individuals from the same population, or association mapping [Mackay

et al., 2009]. An instance of association mapping with very high-dimensional

quantitative traits is found in the area of imaging genetics, an emerging field

that is rapidly identifying genetic variants that influence the brain structure and

function [Glahn et al., 2007; Meyer-Lindenberg, 2012; Smit et al., 2012]. Many

research groups are now scanning unrelated individuals with structural and func-

tional MRI (Magnetic Resonance Imaging), DTI (Diffusion Tensor Imaging) and

other imaging modalities to characterise variability in the brain. In whole-brain
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studies, an imaging phenotype may consist of thousands or millions of measure-

ments in a 3D space, representing for instance gray matter intensities. These

studies create important statistical challenges due to the very high dimension-

ality of the quantitative trait being observed. Power gains can be expected by

analysing all these measurements jointly, rather than performing multiple inde-

pendent analyses each involving a univariate response or using summary measures

[Vounou et al., 2012]. The use of such multivariate heritable imaging signatures

of disease may increase the power in detecting causal variants, when compared

with a simpler case-control status, since gene effects are expected to be more

penetrant at the imaging level, rather than at the diagnostic level [Hibar et al.,

2011; Meyer-Lindenberg and Weinberger, 2006]. Although neuroimaging genetics

studies have already identified coherent anatomical patterns of gene effects in

three-dimensions using advanced statistical methods [Stein et al., 2010a,b; Silver

et al., 2012; Vounou et al., 2012], the potential of machine learning methods in

that area has not yet been fully explored, and this may be due to the lack of

scalable implementations.

We describe here a parallel implementation of RF for regression problems with

multivariate responses. Our implementation has been specifically designed to run

on large Hadoop clusters, including those available through cloud computing ser-

vices such as Amazon Elastic MapReduce. The Hadoop ecosystem consists of

a set of tools for building distributed systems, including tools for storage, data

analysis, and coordination, thus enabling algorithms to be run on thousands of

computational nodes. Hadoop was originally designed to address two main issues

that arise when distributing data and computations across a very large cluster.

First, the problem of hardware failure, which is addressed through replication;

redundant copies of the data are kept by the system so that in the event of

failure, there is always another copy available. Second, the problem of reliably

combining the data resulting from various parallel computations from potentially

many nodes and disks. The latter problem is addressed by adopting the MapRe-

duce programming model [Dean and Ghemawat, 2004]. Programs written in this

functional style are automatically parallelized and executed on a large cluster of

commodity machines. Hadoop is currently an Apache project, written in Java,

and distributed under a free license.
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This chapter is structured as follows. Section 6.2 provides a concise descrip-

tion of the RF algorithm, including an alternative node splitting criterion for tree

building that is computationally convenient when the trait is high-dimensional,

and a procedure for ranking SNPs in order of their predictive importance. We

also present the strategy adopted to parallelize the algorithm using the MapRe-

duce programming model. The motivating application and data set—an imaging

genetics study of Alzheimer’s disease—are described in Section 6.3. In Section 6.4

we report on experimental results aiming to showcase the scalability properties

of the proposed software, and describe the real data analysis. We conclude by

providing an overview of alternative parallel RF algorithms and some remarks on

further work in Section 6.5.

6.2 Methods

6.2.1 Random forest regression

We call D the data set comprising N unrelated individuals or samples genotyped

at P biallelic markers. For each individual, the markers are arranged in a data

vector xi = (xi1, xi2, ..., xiP ), for i = 1, . . . , N . Depending on the coding scheme,

different genetic models can be applied. For instance, assuming an additive ge-

netic model, each xij represents the count of minor alleles recorded at the jth

locus—homozygote of minor allele is 2, heterozygote is 1 and homozygote of ma-

jor allele is 0. The associated quantitative trait for each subject is assumed to

be a Q-dimensional real-valued vector which we denote as yi = (yi1, yi2, ..., yiQ),

with i = 1, . . . , N . In imaging genetics study designs, for instance, it is common

that the sample size N is much smaller than min{P,Q}.
The RF algorithm builds an ensemble of regression trees, each one indepen-

dently learned on a bootstrapped version of D. The required number of trees in

the forest, Ntree, is a user-defined parameter. The training data set for each tree

is obtained by randomly sampling N subjects from D with replacement. The

tree building process is accomplished by introducing a second layer of random-

ness and involves selecting a random subset of Mtry candidate SNPs at each node,

among the P available SNPs, in order to reduce the correlation among trees. In
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each tree, the best split at a node is determined by evaluating a split function

for each value of a candidate SNP, and then selecting the SNP that maximises

this function (see also Section 6.2.2). To reduce bias, the trees are grown to a

maximum depth with no pruning or otherwise until a minimum sample size has

been reached; by default, we set this value to 5 for univariate trait and 20 for mul-

tivariate traits. We only consider binary trees, although in principle multi-way

splits could also be accommodated with minor changes.

For each tree, all the subjects in D that do not become part of the bootstrap

sample used for training are collected together to form an out-of-bag (OOB)

sample, which is used as a testing set. Approximately 63.2% of the subjects in

D are utilised as training data, while the remaining subjects are OOB samples.

Each OOB sample is used to obtain an estimate for the prediction error (PE)

for its tree and these estimates are then averaged across all trees to provide an

overall estimate [Breiman, 2001].

Although RF is deemed to be relatively insensitive to the choice of Ntree

and Mtry, in practice, for a large-scale GWAS involving a massive number of

predictors, and possibly multivariate responses, these parameters must be tuned

to achieve an optimal predictive performance and increase the statistical power

of the algorithm to detect the true causative SNPs. As the number of trees in

the forest increases, the OOB error rate is expected to converge to a theoretical

prediction error according to the law of large numbers [Breiman, 2001]. It is

therefore important to select a sufficiently large number of trees to guarantee

optimal performance and stable ranking.

6.2.2 Split functions for multivariate traits

The node splitting rule determines how each tree in the forest is built, and depends

on the particular predictive task at hand. For each node j, two operations are

performed: (a) every allowable split on each SNP is examined; (b) the best of

these split is selected, and the left and right daughter nodes are created. The

initial node is the root node, which contains the entire data set D, and the two

operations above are then applied repeatedly to each daughter node until no more

splits can be obtained. During this process the value of a split function φ(sm, j)
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is computed for every split at node j. In regression tasks with both univariate

and multivariate responses, sum of squares functions are commonly used [Segal,

1992]. In what follows, we let D(j) denote the subset of samples associated with

node j, and Mj the set of Mtry candidate SNPs that are available to split node j.

Furthermore, the mean response vector observed in D(j) is denoted ȳ(j). With

this notation in place, the total sum of squares at node j is

SS(j) =
∑

i∈D(j)

(yi − ȳ(j))TV −1(Θ, j)(yi − ȳ(j)) (6.1)

where V (Θ, j) is the Q×Q covariance matrix estimated from D(j), and depends

on an unknown parameter vector Θ. A fully parametrized covariance matrix

requires Q(Q + 1)/2 parameters. With low sample sizes, a more parsimonious

model is generally preferable so that Θ has only a few dimensions. It is standard

procedure to set the covariance matrices at the daughter nodes equal to the

estimated covariance matrix at the parent node, in order to guarantee that the

split function remains positive [Segal, 1992]. This procedure has the additional

benefit of reducing the number of computations. We term the RF using the

criterion in (6.1) as the Standard RF.

When a SNP is selected as a candidate to split node j into two daughter

nodes, the total sum of squares computed at the left and right daughter nodes

are SS(j)l and SS(j)r, respectively. A suitable function in this case measures

the reduction in the sum of squares due to the split, and is given by

φ(j) = SS(j)− SS(j)r − SS(j)l. (6.2)

Every candidate SNP is tested to split the node, and the one with the highest

φ(j) is selected. Once the best split has been found, the daughter nodes become

new parent nodes and the covariance matrices are estimated again.

Parsimonious parametrisation of the covariance matrices are required in order

to keep the computational burden low. In high-dimensional settings, and espe-

cially when N is much smaller than Q, it is commonplace to assume that the

covariance matrices are diagonal [Segal and Xiao, 2011; Vounou et al., 2012]. For

instance, typical whole-brain imaging genetics studies may involve a few hundred
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thousands brain-wide measurements while the sample remain in the order of a

few hundreds [Stein et al., 2010b]. In this situation, the total sum of squares of

Eq. (6.1) can be alternatively expressed in terms of all N×N squared inter-point

Euclidean distances between all N samples [Minas et al., 2011]. By rewriting Eq.

(6.1) in an equivalent form, when V (Θ, j) = diag(1, . . . , 1),

SS(j) =
1

2N(j)

∑
i∈D(j)

∑
l∈D(j)

d2E(yi,yl), (6.3)

where N(j) indicates the sample size at node j. This strategy provides an equiv-

alent but computationally more efficient way of evaluating the split function of

Eq. (6.2). The evaluation of each SS(j) term has a cost complexity of O(N(j)2)

instead of N(j) × Q. We term the RF using the distance calculation in (6.3) as

the Distance-based RF.

6.2.3 Measure of variable importance for SNP ranking

One of the attractive features of RF for GWAS consists in its ability to perform

SNP ranking by computing a measure of variable importance [Goldstein et al.,

2011]. A commonly used and computationally simple procedure for SNP ranking

consists in monitoring the value of the split function φ(j) every time a particu-

lar SNP xm has been selected as the best split, in each tree, and then add up

all these cases as its importance score. The rationale is that the more chance a

SNP is used to split a node, the more influential it is to the forest. We call this

the information gain based importance score. This criterion is usually consistent

with other variable importance measures that are based on permutations which

are computationally more expensive [Breiman, 2001]. In the context of genetics

studies, SNPs with the highest importance score are preferred candidates for fur-

ther exploration. In the literature, this approach has been used as a prescreening

step to choose informative SNPs for further analysis [De Lobel et al., 2010].
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6.2.4 Hadoop implementation

RF implementations generally build trees sequentially. However, a sequential

approach is highly inefficient, especially when each tree involves a large number

of SNPs, and many trees are needed in order to obtain reliable measures of

SNP importance and PE estimates. RF can be parallelised because all trees are

independently learned from randomised versions of the data. We describe here a

parallel version of the RF regression algorithm that we have implemented using

the MapReduce programming model for deployment on large Hadoop clusters.

Broadly speaking, the approach consists in letting each node in the cluster build

a certain number of trees in the forest, and then letting the system collect and

aggregate the partial results from all trees in the ensemble, in an automated and

fault-tolerant fashion.

The MapReduce model involves three phases: the map phase, the shuffle phase

and the reduce phase. Each one of the map and reduce phase has key-value pairs

as input and output. The shuffle phase shuffles the output of map phase to the

input of reduce phase evenly using the MapReduce library. The map phase runs a

user-defined mapper function on a set of key-value pairs [kj, vj] taken as input, and

generates a set of intermediate key-value pairs. In the map phase of our applica-

tion, each input key corresponds to a unique tree ID and value is NULL since we

load the full data set to build trees. A user-defined number of mappers, nmap, are

executed whereby each mapper function learns one or more decision trees from

bootstrapped versions of the data set. The output of the map phase consists

of three types of information: (1) Sample identifier (key) and sample’s regressed

value from RF (value), which is used to estimate the OOB error rate at the reduce

phase; (2) SNP identifier (key) and the decrease in sum-of-squares (value), which

is used to obtain the SNP importance scores at the reduce phase; (3) Sample

pair identifier (key) and its proximity (value)(http://www.stat.berkeley.edu/

~breiman/RandomForests/cc_home.htm#prox), which is used to produce the fi-

nal proximity matrix extracted from RF. All these outputs from mappers are

sorted, shuffled, and copied to reducers by Hadoop. An illustration of this initial

process is given in Figure 6.1. The Hadoop job initially distributes the data set to

each map task using a DistributedCache mechanism, which copies the read-only
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files on to the slave nodes before launching a job. In our implementation, each

map task loads the full version of the data set, which is then bootstrapped and

used to learn each tree. In this illustration, Ntree=3, and each one of the three

mappers builds one tree. When the number of required trees (Ntree) is larger

than the total number of mappers nmap, each mapper builds Ntree
Nm

[+1] trees.

The output from all the mapper functions, consisting of key-value pairs, is

then sorted, shuffled and copied to the reduce tasks, which receive their input in

the form of [kj, [vj1, vj2, . . . , ]] pairs, where the first element can be SNP or sample

identifier and the second element is a list of values associated with that SNP or

sample. The reduce tasks run a user-defined reducer function, and generate an

output again in the form of key-value pairs to be saved on file. The reduce tasks

compute information gain importance score by summing up all the φ(j) evalua-

tions obtained by the individual trees in the map phase. Again, the computations

are equally distributed across reducers. For instance, in the bottom part of Fig-

ure 6.1, each reducer generates a partial list of key-value pairs containing SNP

id and its information gain importance score. These lists are eventually saved on

file and eventually they are joined to obtain the final output.

This parallel RF regression algorithm has been implemented in Java. It can

be run in standalone, pseudo-distributed, fully distributed and commercial cloud

service platform. The current version supports biallelic markers which use ad-

ditive coding. The software gives users the options to calculate OOB, variable

importance score, proximity matrix while building the standard or distance-based

RF. For multivariate phenotypes, two options are available for modeling the co-

variance matrix (Euclidean distance and Mahalanobis distance).

6.3 Motivating application and data set

This work is originally motivated by experimental data produced by the Alzheimer’s

Disease Neuroimaging Initiative (ADNI). Alzheimer’s Disease (AD) is a moderate

to highly heritable condition, and a growing list of genetic variants have been as-

sociated with greater susceptibility to develop early- and late-onset Alzheimer’s

disease (AD) [Braskie et al., 2011]. We have obtained genotypes for 464 un-

related subjects comprising 99 Alzheimer’s diseases (AD), 154 elderly controls
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Mapper 1 Mapper 2 Mapper 3

0 1 2 1 2 1 
1 0 2 2 2 1  
2 1 1 1 0 2
0 2 0 0 1 0 
2 1 1 2 2 2 
0 0 2 1 2 0 

1.92 2.93 7.85
1.20 2.93 2.26
1.32 2.73 5.37
1.42 3.53 3.73
1.22 3.23 1.25
6.92 4.63 3.45

Genotype File Phenotype File

Input files copied to each mapper 
via DistributedCache

Reducer 1 Reducer 2 Reducer 3

Sample1(1.2)
Sample2(2.3)

SNP1(3.2),SNP2(1.3)
SNP3(4.2),SNP4(2.3)
SNP5(5.2),SNP6(3.3)

Sample_Pair12(1)

Sample5(1.2)
Sample6(2.3)

SNP1(3.2),SNP2(2.3)
SNP3(2.2),SNP4(1.3)
SNP5(1.2),SNP6(3.3)

Sample_Pair56(1)

SNP ID   VIM
SNP1     3.3
SNP2     4.6
Sample ID OOB
Sample1 1.2
Sample2 2.3
Sample_Pair Proximity
Sample_Pair12 1

 

SNP ID   VIM
SNP3     1.3
SNP4     2.6
Sample ID OOB
Sample3 2.1
Sample4 3.2
Sample_Pair Proximity
Sample_Pair34 1

SNP ID   VIM
SNP5     4.3
SNP6     1.6
Sample ID OOB
Sample5 0.2
Sample6 4.3
Sample_Pair Proximity
Sample_Pair56 1

Figure 6.1: An illustration of the RF algorithm implemented according to the
MapReduce model. In this example there are 6 SNPs observed on 6 samples, and
the analysis is carried out using 3 mappers and 3 reducers. The RF parameters
here are set to Ntree=3 and Mtry=3.

(CN) and 211 mild cognitive impairments (MCI). Genotyping was performed us-

ing the Human610-Quad Bead-Chip, which includes 620, 901 SNPs [Saykin et al.,

2010]. Subjects are unrelated, and all of European ancestry, and passed screening

for evidence of population stratification using the procedure described in Stein

et al. [2010b]. For this study, we include only autosomal SNPs, and addition-

ally exclude SNPs with a genotyping rate<95%, a Hardy-Weinberg equilibrium

p-value<5×107, and a minor allele frequency<0.1. Since our RF implementa-

tion does not allow for missing SNP minor allele counts, missing genotypes were

imputed as described by Vounou et al. [2010].

For each subject in this study, longitudinal brain scans at 6, 12 and 24 months
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after the initial screening were available. Our multivariate quantitative trait

provides a measure of structural change observed in the brain relative to baseline

over the three time points. More specifically, each individual phenotype vector yi

consists of 148, 023 slope coefficients, one for each voxel, quantifying the temporal

rate of linear brain tissue loss over time, and therefore providing an imaging

signature of the disease. A more detailed description of the preprocessing steps

and the procedure used to extract this imaging signatures can be found in Silver

et al. [2012], where the same data has been analysed in search for biological

pathways associated with AD.

6.4 Experiments and results

6.4.1 Simulations

6.4.1.1 Performance comparisons.

Monte Carlo simulation studies are designed to test the performance of our RF

algorithm. In order to reduce the computational burden incurred in extensive and

repeated simulations, we randomly extract 100 voxels out of the 148, 023 available,

and 1, 000 randomly selected SNPs from 434, 271 available. First, we estimate

the phenotype sample covariance matrix V̂ using all the available samples. Each

simulated dataset consists of 464 samples represented by a genotype vector xi

consisting of 1, 000 SNPs. The use of real data is important as it preserves

the original patterns of linkage disequilibrium and allele frequencies observed in

the imaging phenotypes. Genetic effects are induced using an additive model

involving 5 randomly selected causative SNPs with MAF 0.2. Each individual

phenotype vector yi is generated by randomly drawing from a multivariate normal

distribution with covariance matrix V̂ and such that the genetic effects explain

approximately 8% of phenotypic variability. Similar simulation procedures are

described in Vounou et al. [2010].

We first report on simulation results meant to test and validate our RF imple-

mentation. Firstly, we report on the average OOB error obtained by our proposed

PaRFR (Parallel Random Forest Regression) and a publicly available (sequen-

tial) implementation in R package randomForest. Since the R implementation
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Figure 6.2: Left: OOB error comparison with the randomForest implementation;
Right: OOB comparison between the two multivariate node splitting criteria. In
each case, we use 500 simulated datasets.

only handles univariate responses, for this study we take the average simulated

phenotype vector, ȳ, as response. As can be seen in Figure 6.2 (left), the linear

correlation coefficient between the two OOB errors is 0.91603 (p-value<0.001).

Some discrepancy is expected due to the Monte Carlo error made during the tree

building process. Secondly, we compare the two different node splitting crite-

ria introduced in Section 6.2.2—the standard calculation on the sum of squares

with diagonal covariance matrices, and the distance-based calculation using a

pre-computed Euclidean distance matrix. Figure 6.2 (right) shows that the two

criteria produce highly correlated OOB errors, with a correlation coefficient of

0.93055 (pvalue<0.001), with some difference in performance again explained by

the randomness involved during the tree building process. In both cases, we use

500 simulated data sets.
We also assessed statistical power to detect the causal variants as a function

of sample size. In Figure 6.3 we show ROC curves obtained from 500 simulated
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Figure 6.3: Power comparison between distance-based splitting RF and standard
node splitting RF when sample size is 300 and 464, each dot in the figure is the
average power over 500 simulations.

data sets, for two samples sizes (N = 300 and N = 464) and the two different

node splitting rules that assume diagonal covariance. The power is defined as

the number of causal SNPs detected by the algorithm and is reported for all

false positives rates (FPR) along the ROC curve. As expected, for each FPR,

power increases with sample size and both methods have the same power. These

results confirm that the proposed distance-based criterion performs equally to the

standard node splitting criterion when using the Euclidean distance.

6.4.1.2 Running time and scalability.

To assess the speedups that can be obtained by our implementation using the

distance-based splitting function, we simulate a large dataset containing 1, 000
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Figure 6.4: Left:runing time comparison using two different RF implementations
for different Mtry; Right: the scalability test of Distance-based RF in local cluster.

independent samples, 1 million SNPs and a 10, 000-dimensional phenotype. This

analysis was run on a private cluster with 20 nodes. Each node has 24GB mem-

ory and 16 processors with Intel(R) Xeon(R) CPU 2.27GHz. We configured each

map and reduce task to have 800MB memory, and the whole cluster capacity

to run 400 map tasks and 100 reduce task. We compare the running time for

different values of the Mtry parameter, ranging from 10 to 10, 000. Figure 6.4

(left) shows the running time of the two methods on a log scale. When Mtry=10,

the distance-based RF is only 2 times faster than the Standard RF because of

the initial time required to launch the cluster and load the data. As the value

of Mtry increases, we observe at least a 10-fold speedup, indicating that sig-

nificant running time savings can be obtained by using distance-based RF for

high-dimensional phenotypes.

To test the scalability of our implementation as the number of available nodes

increases, we analyze the same size dataset with parameters Mtry=1,000 and

Ntree=2,400. This analysis is run using our local cluster with 10, 20, 30 and 40

nodes, respectively. Figure 6.4 (right) shows that the running time decreases as

more nodes are added and that, as expected, rough linear speedup is observed as
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the number of nodes increases. For instance, doubling the number of nodes from

20 to 40 yields a 40% reduction in running time.

6.4.2 GWAS

For this study, the RF is applied to the analysis of 99 AD samples and 154 CN

samples. MCI subjects are excluded from this analysis so as to detect AD-linked

genes only. The analysis was run on our local cluster. Different Mtry and Ntree

parameter values were initially tested to determine how sensitive the results were

to changes in these values, and identify optimal values required to stabilise the

error rate, and thus obtain a reliable and stable SNP ranking. In particular,

3 different Mtry values were used (144, 757; 72, 379; 289, 514, each of the value

represent the 1/3,1/6 and 2/3 of total SNP numbers), and a range of values from

10 to 50, 000 for Ntree [Goldstein et al., 2010]. After initial testing, we settled

for a total of 50, 000 trees (using Mtry = 72, 379) to report the results, because

Figure 6.5 shows that the agreement (Jaccard coefficient) of the top 5,000 SNP

is relatively stable after building 40,000 trees. Figure 6.5 is obtained by first

calculating the Jaccard coefficient of the top 5,000 SNPs ranked by PaRFR every

time an additional 500 trees is added, and then the fitted smooth line is plotted.

The horizontal line (corresponding to Jaccard coefficient= 0.88) shows that the

fitted curve is almost horizontal after 40,000 trees. The total running time was 60

hours on a 20-node cluster. Since the process of inferring an individual tree took

approximately 20 minutes, we estimate that a sequential implementation using

the same machines would approximately take 700 days. Distance-based RF is

at least 585 (148,023/253, because the evaluation of each SS(j) term has a cost

complexity of O(N(j)2) instead of N(j)×Q, where here N(j) here is 253 and Q

is 148,023) times faster than Standard RF.

In Table 6.1 we report the 10 top-ranked SNPs, using the information gain

based importance score, and the corresponding mapped genes. Several well-

validated genes that have been shown to be linked to AD are included in this

list, including APOE, TOMM40, PVRL2, APOC1 and PICALM [Braskie et al.,

2011; Saykin et al., 2010; Silver et al., 2012]. To further validate the importance of

the SNP rankings produced by PaRFR, we carried out a further non-parametric

107



6. Parallel random forests regression on Hadoop for multivariate
quantitative trait mapping

0 10000 20000 30000 40000 50000

0.
55

0.
65

0.
75

0.
85

#trees

Ja
cc

ar
d 

co
ef

fic
ie

nt

Figure 6.5: The Jaccard coefficient plot for the agreement of top 5,000 ranked
SNPs with more trees added, the horizontal line is Jaccard coefficient = 0.88.

analysis using permutation testing. We extracted 47 AD-linked genes provided

by Saykin et al. [2010], and assessed whether these genes rank high in our list,

and whether such high rankings cannot be explained by chance only. For each

AD-linked gene g, we first obtained an observed score, ŝg, by averaging the ranks

of all SNPs that map onto that gene. Operating under the null hypothesis that

the AD-genes are randomly ranked, we shuffled the SNP rankings 10, 000 times,

and computed an empirical null distribution for each sg. A p-value was then

computed using this null distribution, the null distribution of top 2 genes is

shown in Figure 6.6. Table 6.2 shows the 6 statistically significance genes (out

of the 47 known AD-linked genes) and their scores, using a nominal significance

level of 0.05 after multiple test correction by FDR.

Besides variable importance ranking, PaRFR also produces a matrix of pair-

wise genetic proximities from which we can gain further insights. The estimated

proximity matrix is a N ×N symmetric matrix where each element pij indicates

the genetic similarity between any pair of samples, xi and xj. Each pij value is

obtained as the fraction of trees where sample xi and sample xj appear in the

same leaf. A measure of genetic distance between any two samples is then simply
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Table 6.1: ADNI: top 10 genes and corresponding SNPs, known AD-linked genes
are in bold font.

Top 10 ranking genes Corresponding SNP
TOMM40/APOE/APOC1 APOE4

PICALM rs7938033
PVRL2 rs2075650
NTNG2 rs7862808

NTM rs12293070
SLC12A1 rs6493311/rs1531916
MEF2D rs1750304
CD109 rs9352023
UNC5B rs10762435
DPYD rs496179

obtained by taking dij = 1−pij. It seems useful to compare the estimated genetic

and phenotypic distances, as we would expect to identify the two large clusters

of samples, AD patients and healthy controls. Figure 6.7 shows two-dimensional

multidimensional scaling plots: the scatter plot (a) provides a 2D representa-

tion of the AD and CN samples obtained from the pair-wise genetic distances

estimated by PaRFR, from which a clear separation between AD and CN can

be noted; the scatter plot (b) provides a 2D representation of the AD and CN

samples obtained from the pair-wise Euclidean distances of the multivariate neu-

roimaging phenotypes (148, 023 voxels), also showing a clear separation between

the two phenotypically distinct groups. Most importantly, Figure 6.8 shows that

genetic and phenotypic distances are almost linearly associated (the observed cor-

relation coefficient for AD/AD and CN/CN plots are 0.8248, 0.8245, for pooled

AD and CN groups is 0.7989). This result was further validated by performing a

Mantel test of no association between the paired genetic and phenotypic distance

matrices, which was significance at the 0.01 level in all three plots, using 10, 000

permutations. From the AD/AD plot there is a clear spread between AD/AD

sample pair due to the spread in imaging signatures of AD group, and CN/CN

plot shows more tight and smooth clustering. When looking the AD/AD plot

and the CN/CN plot together, we see a more divergent phenotypic Euclidean

distance in AD/AD plot than in CN/CN plot given the same genetic Euclidean

distance (e.g. 0.3). This suggests that the SNPs chosen to build the RF (and
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Figure 6.6: The Null distribution obtained by permuting 10,000 times the rank
of SNPs harboured by the top 2 genes.

thus involved in defining the genetic Euclidean distance) are able to account for

the larger spread of AD samples in Figure 6.7 (right). When the AD/CN plot

is compared to the CN/CN and AD/AD plots, we see that at the same pheno-

typic Euclidean distance (e.g. 1,000), the genetic Euclidean distance is generally

greater. This means that the SNPs involved in the RF exhibit a greater difference

in their alleles for CN and AD samples.

Table 6.2: ADNI: AD-linked genes with significant ranks in the proposed Null
Hypothesis.

AD-linked Genes P-value Average rank
TOMM40 <0.0001 22,371.83

TNK1 0.0022 17,890.00
NXPH1 0.0058 138,675.53
APOE 0.0088 32,035.50
ACE 0.0211 97,075.08

MYH13 0.0403 127,462.04
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Figure 6.7: Two-dimensional multidimensional scaling plots: (a) 2D representa-
tion of the AD and CN samples obtained from the pair-wise genetic distances
estimated by PaRFR; (b) 2D representation of the AD and CN samples obtained
from the pair-wise Euclidean distances of the multivariate neuroimaging pheno-
types (148, 023 voxels). Sample clustering can be seen in both plots.

6.4.3 Hypothesis testing on the quantitative phenotypes

and genetic patterns

3 dimensional (3D) multidimensional scaling (MDS) plot is a set of related statis-

tical techniques often used in information visualization for exploring similarities

or dissimilarities in data. MDS is a special case of ordination1. The spread of

the AD samples from 3D MDS plot of 148,023 voxels of 253 samples (Figure 6.9)

motivates the following analysis.

We observe that the CN samples are tightly clustered while the AD samples

are quite spread out in Figure 6.9. We believe that the spread of the AD samples

in the figure reflects the different degrees of severity (i.e., different types and levels

of cognitive impairment) of Alzheimer’s disease in the AD samples. In particular,

we make the hypothesis below.

Hypothesis A: The further away an AD sample is from the CN cluster in

1http://en.wikipedia.org/wiki/Multidimensional_scaling
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Figure 6.8: The three plots are the scatter plot of genetic Euclidean distance
derived from Figure 6.7 left and phenotypic Euclidean distance derived from
Figure 6.7 right for three types of sample pair. 4 outliers from CN groups are
excluded.

Figure 6.9, the greater the severity of the Alzheimer’s disease of the AD sample.

We believe there is a genetic explanation to the severity of the Alzheimer’s

disease of a patient and, thus, to the spread of the AD samples away from the

CN cluster. In particular, we believe that Alzheimer’s disease is the result of

cumulative effect of the dysfunction of multiple genes due to mutations and that

different combinations of mutations correspond to the different degrees of severity.

That is, we make the following hypothesis.

Hypothesis B: The more number of certain combinations of mutations are

observed in a person, the more severely he suffers from Alzheimer’s disease.

We are not able to verify Hypothesis A as the clinical notes of the AD patients

are not available to us. So we assume that Hypothesis A is true, and attempt

to verify Hypothesis B with respect to it (i.e., use the spread distance of an AD

sample from the CN cluster as an indication of the severity of the disease in that

AD sample). Now, in order to test Hypothesis B, we need to (i) identify those

combinations of mutations that are associated with Alzheimer’s disease, and (ii)
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Figure 6.9: The 3D MDS plot of the 148,023 voxels from 253 ADNI samples.
This plot is used to visualize the relative distance between different samples from
high-dimensional space to 3 dimensions.

demonstrate the correlation of the number of these combinations of mutations

with the spread (i.e., distance) away from the CN cluster.

In accordance to Hypothesis A, the samples furthest away from the CN sam-

ples are expected to be have the most severe form of Alzheimer’s disease. In

accordance to Hypothesis B, these samples should contain the most number of

the combinations of mutations that correspond to the different types and sever-

ity of cognitive impairment in Alzheimer patients. Thus we can identify those

combinations of mutations that are associated with Alzheimer’s disease as those

that are frequently observed in AD samples far away from the CN cluster and

are infrequently observed in the CN cluster.

In order to identify samples that are far away from the CN cluster in an

unbiased manner, we apply an unsupervised hierarchical clustering technique.

This clustering procedure segments the AD and CN samples into four clusters
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Figure 6.10: The 2D MDS plot of the hierarchical clustering of 253 ADNI samples.
The four clusters, from right to left, are referred to in the main text as C1, C2,
C3 and C4.

C1, C2, C3, and C4 as shown in Figure 6.10. The proportion of AD samples in

these clusters are 11%, 16%, 63%, and 93% respectively. From Figure 6.10, it

is also clear that C1 corresponds to the CN cluster and C4 corresponds to AD

samples furthest away from the CN cluster.

Thus, to identify a combination of mutations (i.e., a mutation pattern) that

is associated with the type and severity of cognitive impairment in Alzheimer’s

disease, we require a pattern to be “frequent” in C4 and “infrequent” in C1, C2

and C3. The frequency threshold of mutation patterns is set to 0.05 in our analy-

sis. All homozygous two major allele genotypes are removed in the data because

disease-causing mutation patterns are expected to occur in the homozygous two

minor allele genotypes and heterozygous genotypes. We define “frequent” based

on the null hypothesis that: The proportion of the patterns in “C4” is no differ-
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ent from the proportion in the entire data set. If the null hypothesis is rejected

and the pattern is above a specified frequency threshold (0.05), this pattern is

considered as a “mutation pattern” since it exists mostly in C4, which has the

majority of the AD samples. The procedure described above produces 17,000

mutation patterns. We considered these mutations to be associated with the type

and severity of Alzheimer’s disease. Then, if Hypothesis B is true, we should see

more number of these patterns in AD samples that have more severe degree of

Alzheimer’s disease.

To define the severity of the sample, in accordance to Hypothesis A, we con-

sider two different notions of distance. The first notion defines severity as the

Euclidean distance between a sample and the centroid of C1. This is motivated

by the radiation pattern from C1 to C4, which suggests the centroid of C1 as

the representative radiation center. The second distance notion defines severity

as the projected distance—on the axis of disease progression—of a sample to the

centroid of C1. The axis of disease progression is defined as the line connecting

the centroids of C1 (which contains mostly CN samples) and C4 (which contains

mostly AD samples).

Figure 6.11 is obtained by plotting the correlation between the above defined

mutation pattern counts and two types of distance to the C1 centroid. Both

correlations are positive and statistically significant. This provides good support

for Hypothesis B: for an AD patient, the more mutation patterns he/she carries,

the more severe he/she has the disease. From the bottom left part of the two

plots, the CN samples are tightly clustered and have less number of mutation

patterns, this is also in consistent with our expectations. The plot shows obvious

evidence for the hypothesis we propose and can be used to give us more insights

on Alzheimer’s disease.

6.5 Discussion

In this chapter, we have described a parallel RF algorithm for multivariate regres-

sion on Hadoop, which is tolerant to node failure and can be easily scaled up to

very large clusters. Two other state-of-the-art Hadoop-based implementations of

the RF are COMET [Basilico et al., 2011] and Mahout (http://mahout.apache.
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Figure 6.11: The correlation between the number mutation pattern and the dis-
tance to the healthy centroid (centroid of C1). Red stars are the AD samples and
green circles are the CN samples. The fitted line are plotted because the beta
coefficient of the line is statistically significant at p-value 0.05. The four clusters,
from bottom left to top right, are referred to in the main text as C1, C2, C3 and
C4. The star shape indicate a AD sample and circle shape indicate a CN sample.

org/). COMET is particularly suited for large data sets as it splits the input files

into blocks of fixed size (e.g. 256MB). The RF is built using a bagging method

IVoting within each block of data, and the output of different mappers results in

a mega-ensemble RF which is sorted, shuffled and copied to reducers. However,

this RF implementation only supports univariate classification and is not open

source yet.

Mahout is an open-source machine learning library for large-scale data pro-

cessing using Hadoop. Its latest version includes RF classification and regression

for univariate. The parallelisation of the algorithm is done in two different ap-

proaches : the first each map task builds trees using partial data splits generated

by Hadoop, and the second loads the full data into memory to build trees. How-

ever, Mahout is still evolving, and many features of RF, like variable importance

and proximity matrix calculation, are not supported yet. Also, both Mahout and
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COMET do not support high-dimensional quantitative response and variable im-

portance score calculation.

Other variations of RF have been developed or supported for high perfor-

mance computing (HPC). The SPRINT project [Hill et al., 2008] supports Mes-

sage Passing Interface (MPI) and provides a system for parallel computations by

transparently distributing the computation to different processors among differ-

ent nodes. Recently, the randomForest R package has also been included into

this framework, although only univariate response is implemented. A different

project also using MPI is Random Jungle, which re-implements RF efficiently and

adds several features like variable backward elimination and conditional variable

importance [Schwarz et al., 2010]. It is not applicable to high-dimensional re-

sponses. MPI-based implementations are not able to scale to data larger than

the total memory of the HPC system, and they have difficulty handling node

failures. Highly parallel GPU-based implementations of RF have been proposed,

such as CudaRF [Grahn et al., 2011] and others [Sharp, 2008]. When each dataset

is loaded into GPU memory, each thread builds a tree. However, they are difficult

to scale to large datasets because of more restrictive GPU memory limitation. A

table summarising the different parallel implementations and their main features

can be found in the following table 6.3.

In future work, we intend to investigate the difference in power and in speed

when building RF using partial data (splits) generated by Hadoop and full data

which is used in the current implementation. We also plan to build a multi-

pass MapReduce implementation which can monitor changes in OOB error as

the forest grows. This feature will automatise parameter tuning and thus will

save computational cost. A further generalisation of this approach may consist

in replacing the pair-wise Euclidean distances with more general parameter-free

distances that better capture the phenotypic variability observed in the popula-

tions. For instance, the imaging phenotypes may be brain connectivity networks,

i.e. collections of nodes (vertices) and links (edges) between pairs of nodes. Such

brain connectivity networks describe the set of connections in the neural system,

or connectome, in which nodes could be neurons or cortical areas, and edges

could be axons or fibre tracts. The edges could refer to the structural connectiv-

ity of a neural network [Rubinov and Sporns, 2010]. An additional benefit of this
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distance-based formulation can be obtained by replacing the pair-wise Euclidean

distances with more general parameter-free distances that capture the proximity

between any two subject at the phenotypic level.

Although we are mostly motivated by applications in neuroimaging genetics,

the algorithm we propose has wider scope and can be used for any QTL mapping

study involving a very large number of genetic markers and high-dimensional

responses. For instance, there is recent interest in detecting genetic variability

associated with facial shape, which can be quantified using 3D phenotypes ob-

tained from statistical shape analysis [Liu et al., 2012]. Other multivariate traits

arise, for instance, in eQTL mapping studies, where the phenotypes consist of

gene expression abundances, or in longitudinal studies involving time series or

repeated measurements [Xiao and Segal, 2009].
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Chapter 7

FastTagger: An efficient

algorithm for genome-wide tag

SNP selection using multi-marker

linkage disequilibrium and its

application in SNP imputation

7.1 Introduction

There are millions of SNPs in the human genome. Such an enormous number of

SNPs presents a challenging problem for genome-wide association study. It has

been observed that adjacent SNPs are often highly correlated. To reduce geno-

typing cost, many algorithms have been developed to select a smallest set of SNPs

such that all the other SNPs can be inferred from them. The selected SNPs are

called tag SNPs. Tag SNPs are useful because they are considered as the proxies

of other SNPs when conducting SNP association analysis. The proxy property of

Tag SNP can also be used for conducting SNP imputation. However, existing tag

SNP selection algorithms are both time and memory consuming. To overcome

these two computational challenges, we propose a fast and efficient genome-wide

tag SNP selection algorithm (called FastTagger) using multi-marker linkage dis-
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equilibrium. The algorithm can work on data with more than 100k SNPs that

previous methods cannot handle. We further utilize the rules produced by Fast-

Tagger and develop a new tag-based imputation method called RuleImpute. This

chapter is structured as two major sections. Section 7.2 and Section 7.3 describe

the work on FastTagger and RuleImpute, respectively. Section 7.2.1 gives an

overview of the existing tag SNP selection algorithms and their computational

challenges. The proposed techniques to resolve these computational difficulties

are introduced in Section 7.2.2. In Section 7.2.3, we compare the efficiency and

speed with the state-of-the-art methods on benchmark Hapmap data. Section

7.3.1 gives a concise description of the SNP imputation problem. In Section

7.3.2, we describe the rule-based imputation method RuleImpute based on Fast-

Tagger and propose five different rule selection strategies. The best strategies

are suggested in Section 7.3.3 according to the experimental results on Hapmap

data.

7.2 FastTagger: Efficient tag SNP selection

7.2.1 Background

Existing tag SNP selection methods can be classified into two categories: block-

based methods [Avi-Itzhak et al., 2003; Gabriel et al., 2002; Johnson et al., 2001;

Patil et al., 2001; Sebastiani, 2003; Thompson et al., 2003; Zhang et al., 2004] and

genome-wide approaches [Carlson, 2004; Halldorsson, 2004; Halperin, 2005; Liu

et al., 2007; Magi et al., 2006; Qin et al., 2006]. Block-based methods rely on a

predefined haplotype block structure. The blocks are separated by recombination

hot-spots, and there are few recombinations within a block. Thus the haplotypes

within a block usually are of low diversity. These methods attempt to select a

subset of SNPs that can discriminate all common haplotypes within each block.

In contrast, genome-wide tag SNP selection algorithms do not need to par-

tition the whole chromosome into blocks, and they utilize linkage disequilibrium

among nearby SNPs to find tag SNPs. Among the genome-wide approaches, those

based on the r2 linkage disequilibrium statistic have gained increasing popularity

recently because r2 is directly related to statistical power for detecting disease as-
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sociations [Pritchard and Przeworski, 2001]. LD-select [Carlson, 2004] is the first

algorithm using the r2 LD statistic to select tag SNPs, and it employs a greedy

approach to find tag SNPs. Following it, several other algorithms based on the

r2 statistic have been developed. FESTA [Qin et al., 2006] breaks down large

marker sets into disjoint pieces, where exhaustive searches can replace the greedy

algorithm, thus leading to smaller tag SNP sets. MultiPop-TagSelect [Howie,

2006] and REAPER [Magi et al., 2006] apply LD-select to multiple populations.

LRTag [Liu et al., 2007] uses a Lagrangian relaxation algorithm to find tag SNPs

across multiple populations.

All these algorithms use pairwise LD between SNPs. Recent studies have

shown that multi-marker LD can help further reduce the number of tag SNPs

needed [Bakker et al., 2005; Huang and Chao, 2008; Pe’er, 2006], and several

algorithms have been developed to select tag SNPs based on multi-marker r2

statistics [Hao, 2007; Hao et al., 2007; Wang and Jiang, 2008]. These algorithms

find association rules of the form {SNP1, · · · , SNPk} → SNPx, where k ≤ 3,

SNPx /∈ {SNP1, · · · , SNPk} and the r2 statistic between the left hand side

and the right hand side of the rule is not less than a predefined threshold. Their

results show that the multi-marker LD model can reduce the number of tag SNPs

significantly compared with pairwise algorithms.

However, existing multi-marker based algorithms are both time and memory

consuming. Most of the time is spent on calculating multi-marker r2 statistics.

Furthermore, an excess number of multi-marker association rules may be gen-

erated when k ≥ 3, which incurs high memory consumption when using these

rules to select tag SNPs. It takes hundreds of hours for the MultiTag algorithm

[Hao, 2007; Hao et al., 2007] to finish on chromosomes containing around 30k

SNPs. The MMTagger algorithm [Wang and Jiang, 2008] needs several hours

to finish, but it consumes more than 1GB memory. MMTagger cannot work on

chromosomes with more than 100k SNPs when k ≥ 3.

7.2.2 Methods

In this section, we first describe how to calculate multi-marker r2 statistics, and

then present the FastTagger algorithm. The FastTagger algorithm consists of two
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steps. In the first step, it generates tagging rules, and in the second step, it uses

a greedy approach to select tag SNPs using rules generated in the first step.

Multi-marker tagging rules

Most SNPs have only two alleles, so we consider only bi-allelic SNPs. Given

a population, the allele with higher frequency in the population is called major

allele, and the allele with lower frequency is called minor allele. We use uppercase

letters to denote the major alleles of SNPs, and use lowercase letters to denote

the minor alleles. SNPs that are far apart from each other usually are not linked.

Here we require that the distance between every pair of SNPs in a rule must not

exceed a predefined distance threshold max dist.

Given k SNPs S = {SNP1, SNP2, · · · , SNPk}, there are 2k possible haplo-

types over the k loci. To calculate the r2 statistic of rule S → SNPx, we need to

divide the 2k haplotypes into two non-empty groups and map the two groups to

the two alleles of SNPx. MultiTag [Hao, 2007] and MMTagger [Wang and Jiang,

2008] uses different methods to do the mapping.

The one-vs-the-rest model. MultiTag uses this model. There are totally

22k − 2 possible ways to group the 2k haplotypes into two non-empty groups.

MultiTag considers only 2k ways such that one group contains only one haplo-

type, and the other group contains all the other haplotypes. It calculates the r2

statistics for all the 2k groupings, and then select the one with the highest r2

statistic.

The co-occurrence model. MMTagger does the mapping based on the

co-occurrences of the alleles of the SNPs on the left hand side and the alleles of

the SNP on the right hand side. Let H be a haplotype over the SNP set S on

the left hand side, A and a be the two alleles of SNPx on the right hand side,

and f(H) be the frequency of H. We use f(HA) to denote the frequency of H

and SNPx = A occurring together, and f(Ha) to denote the frequency of H and

SNPx = a occurring together. If f(HA) > f(Ha), we map haplotype H to allele

A of SNPx, otherwise we map haplotype H to allele a of SNPx. Let HA be the

set of haplotypes mapped to allele A, and Ha be the set of haplotypes mapped to

allele a. We convert the SNP set S to a bi-allelic marker with two “alleles” HA
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and Ha. Then we can calculate the r2 statistic between S and SNPx as follows.

r2(S, SNPx) =
(P (HAA)− P (HA)P (A))2

P (HA)P (Ha)P (A)P (a)
(7.1)

where P (HA), P (Ha), P (A), P (a) and P (HAA) are the relative frequencies of HA,

Ha, A, a and HAA respectively. We implemented both models in the FastTagger

algorithm, and let users choose which model they want to use.

If the r2 statistic between S and SNPx is no less than a predefined threshold

min r2, we say that SNPx can be tagged by S, and R : S → SNPx is a tagging

rule. With the increase of the size of S, the haplotypes of S partition the whole

dataset into finer and finer groups. In an extreme case, every haplotype of S

occurs at most once. In this case, the association between haplotypes of S and

alleles of SNPx becomes unreliable. To prevent over-fitting, we put a constraint

on the size of S. The size of S should not exceeds a predefined thresholdmax size.

The r2 statistics can be calculated from phased haplotype data directly. If

the SNP data are in the form of unphased genotype data, we can use existing

haplotype inference algorithms such as PHASE [Stephens et al., 2001] to convert

genotype data into phased haplotype data. We can also estimate k-marker hap-

lotype frequencies directly from genotype data without phasing using algorithms

described in, e.g.,Hill [1974, 1975]. The second approach is used in the algorithm

LD-select [Carlson, 2004].

Generating tagging rules

To generate all the tagging rules, we need to enumerate all the SNP sets that

satisfy the maximum distance constraint and maximum size constraint, and then

calculate the r2 statistics between these SNP sets and their nearby SNPs. The

search space can be enormously large when the number of SNPs is large. We use

several techniques to reduce the number of rules to be tested.

Merging equivalent SNPs. Given two SNPs SNPi and SNPj, if r2(SNPi, SNPj) =

1, which means that SNPi and SNPj can tag each other perfectly, then we say

SNPi and SNPj are equivalent. Two equivalent SNPs always have the same r2

statistics with other SNPs. Thus, the computation cost of the rules involving

them can be shared by merging them together. For each group of merged equiv-

124



7. FastTagger: An efficient algorithm for genome-wide tag SNP
selection using multi-marker linkage disequilibrium and its

application in SNP imputation

alent SNPs, a representative SNP is picked to represent this group. FastTagger

generates tagging rules between representative SNPs only. The tagging rules

generated in this way are called representative tagging rules. One representative

tagging rule can actually represent multiple rules. Therefore, by merging equiv-

alent SNPs, we are not only saving computation cost, but also reducing storage

overhead. Note that not every rule represented by a representative tagging rule

is valid. Some of them may not satisfy the distance constraint. Equivalent SNPs

that are separated by more than max dist bases cannot appear in the same rule,

and merging them together can produce many false rules. To reduce the number

of false rules, FastTagger only merges equivalent SNPs that are within a distance

of max dist.

Pruning redundant tagging rules. If a SNP SNPx can be tagged by a

SNP set S, then any rule S ′ → SNPx such that S ′ is a proper superset of S

is redundant. FastTagger generates only non-redundant tagging rules to reduce

running time and memory consumption, and the definition of non-redundant rules

is given as follows:

Definition 1 (Non-redundant tagging rule) Given a rule S → SNPx such

that SNPx can be tagged by S, if there does not exist another rule S ′ → SNPx

such that S ′ is a proper subset of S and SNPx can be tagged by S ′, then S →
SNPx is called a non-redundant tagging rule.

To prune redundant rules, before calculating the r2 statistic between S and

SNPx, FastTagger checks whether there exists a subset S ′ of S such that SNPx

can be tagged by S ′. FastTagger uses a depth-first strategy to enumerate SNP

sets. This search strategy is adopted from a frequent generator mining algorithm

[Liu et al., 2008], and it ensures that all the tagging rules whose left hand side is a

subset of S are generated before S is processed. There can be many tagging rules

generated. To speed-up the check operation, FastTagger divides the generated

tagging rules into groups based on their a right hand side SNP; that is, rules with

the same right hand side SNP are in the same group. FastTagger then uses a

hash map to index the rules in the same group, and the hashing key is the left

hand side of the rules. To check whether S → SNPx is redundant, FastTagger

searches the hash map of SNPx for the subsets of S. If there is a subset of S in
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the hash map of SNPx, the rule is redundant; otherwise, the r2 statistic of the

rule is calculated.

Skipping rules. Even though merging equivalent SNPs and removing redun-

dant tagging rules can reduce the number of tagging rules significantly, it is still

possible that a large number of tagging rules are generated in the first step, which

incurs high memory consumption in the second step. FastTagger uses heuristics

to further reduce the number of tagging rules generated: if a SNP SNPx occurs

at the right hand side of tagging rules enough number of times, then SNPx will

not be considered as right hand side candidate in future rule generation. The

rationale behind this heuristics is that if a SNP can be tagged by many other

SNPs, then during the tag SNP selection process, the SNP has a high probability

to be covered by selected tag SNPs.

Selecting tag SNPs using a greedy approach

Finding the smallest set of tag SNPs is computationally expensive. FastTagger

uses a greedy approach similar to the one proposed in [Carlson, 2004; Hao, 2007]

to find a near optimal set of tag SNPs. Let C be the set of candidate tag SNPs,

T be the set of tag SNPs selected, and V be the set of SNPs not being covered.

A SNP is covered if either it is a tag SNP or it can be tagged by some SNP set

S such that S ⊆ T . Initially, C and V contain all the SNPs, and T is empty.

FastTagger first identifies those SNPs that do not appear at the right hand side

of any tagging rules, and these SNPs must be selected as tag SNPs. FastTagger

puts them into T and remove them from C. These SNPs are also removed from

V . For the remaining SNPs in V , if they can be tagged by some SNP set S such

that S ⊆ T , then they are removed from V too. Next, for each SNP SNPi ∈ C,

FastTagger finds the set of SNPs in V that are covered by SNPi. A SNP SNPj

in V is covered by SNPi if SNPj is not tagged by any subsets of T and there

exists a subset S of T such that SNPj is tagged by S ∪ {SNPi}. FastTagger

then picks a SNP from C that covers the largest number of SNPs in V as a tag

SNP. This newly picked tag SNP is put into T and removed from C. All the

SNPs that are covered by it including itself are removed from V . This process

is repeated until V is empty, that is, all the SNPs have been covered. In each

iteration, in order to find the set of SNPs covered by every candidate tag SNP in
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C, FastTagger needs to keep the tagging rules in memory. However, the number

of rules generated can be very large. It is possible that the total size of tagging

rules is too large to fit into the main memory. To solve this problem, we can

break the whole chromosome into several chunks such that the rules over every

chunk can fit into the main memory. We then select tag SNPs within each chunk.

When selecting tag SNPs within each chunk, only those tagging rules whose

SNPs all fall into this chunk are used. To also utilize the rules across chunks, we

allow two adjacent chunks to have certain overlap. The length of the overlap is

determined by the max dist threshold. The SNPs in one chunk that are within

max dist bases away from the first SNP of the next chunk are included in the next

chunk since they can tag or be tagged by SNPs in the next chunk. FastTagger

finds tag SNPs from each chunk from left to right. The tag SNPs selected in

the current chunk that also belong to the next chunk will be passed on to the

next chunk as tag SNPs. Note that if the distance between two adjacent SNPs is

larger than max dist, then these two SNPs are used as a breakpoint even if there

is enough memory. The reason being that if the distance between two adjacent

SNPs is larger than max dist, then the two SNPs cannot tag each other or each

other’s neighbors.

Using the above method, FastTagger can work on chromosomes containing

more than 100k SNPs with as less as 50MB memory, while existing algorithm

consumes more than 1GB memory even on chromosomes containing around 30k

SNPs.

7.2.3 Results and discussion

In this section, we study the performance of FastTagger. We conducted the exper-

iments on a PC with 2.33Ghz Intel(R) Core(TM) Duo CPU and 3.25GB memory

running Fedora 7. All codes were compiled using g++. We obtained the datasets

from HapMap release 21 (ftp://ftp.ncbi.nlm.nih.gov/hapmap/phasing/2006-07_

phaseII/phased/) and project ENCODE (ftp://ftp.ncbi.nlm.nih.gov/hapmap/

phasing/2005-03_phaseI/ENCODE/). There are 4 populations and 10 regions in

the ENCODE project. Here, we report the overall results on the ten regions for

each population. From HapMap release 21, we selected 6 chromosomes: chr1,
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chr2, chr3, chr19, chr21 and chr22, and used the Han Chinese plus Japanese pop-

ulation. Table 7.1 shows the number of SNPs with MAF ≥ 5% on the datasets.

In all the experiment, we set max dist to 100k, and select only those SNPs with

MAF ≥ 5%.

Table 7.1: The “#Rep SNPs” column is the number of representative SNPs with
merging window size of 100k. CEU, HCB, JPT, YRI datasets are from ENCODE
project

datasets #SNPs #Rep SNPs datasets #SNPs #Rep SNPs
CEU 7,221 2,484 chr2 169,905 85,807
HCB 6,430 2,286 chr3 135,058 71,244
JPT 6,216 2,196 chr19 28,931 17,807
YRI 7,963 4,408 chr21 28,914 15,644
chr1 149,716 78,893 chr22 26,595 15,553

The first experiment is to compare FastTagger with LRTag [Liu et al., 2007],

MMTagger [Wang and Jiang, 2008] and MultiTag [Hao, 2007]. LRTag uses only

pair-wise LD to find tag SNPs, and it has been shown to outperform LD-select

and FESTA. Hence we choose LRTag as a representative of the pairwise algo-

rithms. MMTagger and MultiTag both use multi-marker LD to find tag SNPs.

We obtained the programs from their respective authors. FastTagger used all

the techniques described previously except the skipping rules technique. LRTag

takes pre-computed pairwise r2 statistics as input, so the running time of LRTag

includes only tag SNP selection time. We report the results at min r2=0.95 here.

For all the four algorithms, the selected tag SNPs can cover the whole region of

interest.

We first compare FastTagger with LRTag and MultiTag on using pairwise LD

to find tag SNPs. Table 7.2 and 7.3 show the running time and the number of tag

SNPs selected by the three algorithms. The running time is measured in minutes.

FastTagger is several times faster than LRTag even though LRTag only needs to

pick tag SNPs from pre-computed pairwise r2 statistics while FastTagger needs

to compute pairwise r2 statistics as well as selecting tag SNPs. Both algorithms

are orders of magnitude faster than MultiTag.

Among the three algorithms, LRTag produces the smallest number of tag

SNPs, but the difference is very small. Overall, FastTagger generates 0.31% more

tag SNPs than LRTag when min r2=0.95. MultiTag generates 1.77% more tag
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Table 7.2: Comparison of running time when pairwise LD are used
min r2 Running time (minutes)

FastTagger LRTag MultiTag
ENCODE CEU 0.95 0.003 0.016 10.4
ENCODE HCB 0.95 0.003 0.014 7.5
ENCODE JPT 0.95 0.003 0.013 6.6
ENCODE YRI 0.95 0.004 0.008 41.6

chr1 0.95 0.076 0.242 26.2
chr2 0.95 0.088 0.293 30.2
chr3 0.95 0.070 0.222 25.1
chr19 0.95 0.015 0.032 3.6
chr21 0.95 0.015 0.040 6.0
chr22 0.95 0.014 0.033 7.9

The running time of LRTag includes only tag SNP selection time, while the running time of
FastTagger and MultiTag includes both rule generation time and tag SNP selection time.
MMTagger is excluded from this table because the MMTagger program provided by its
authors cannot use pairwise LD to find tag SNPs.

SNPs than FastTagger when min r2=0.95. LRTag uses a Lagrangian relaxation

algorithm to select tag SNPs instead of a greedy approach used in other algo-

rithms. That is why it generates less tag SNPs than other algorithms.

Table 7.4 and 7.5 show the running time and the number of tag SNP selected

by the FastTagger, MMTagger and MultiTag when multi-marker LD are used. We

implemented both models in FastTagger, and denote them as Fast-COOC (the co-

occurrence model) and Fast-1vsR (the one-vs-the-rest model). MultiTag took ex-

tremely long time to finish on the 6 chromosomes when max size=3, so its results

are not reported on the 6 chromosomes when max size=3. When max size=2,

we divided chr1, chr2 and chr3 into 20 chunks, chr19, chr21 and chr22 into 5

chunks, and then ran MultiTag on each chunk and combined the results. MM-

Tagger terminated abnormally on chr1, chr2 and chr3 whenmax size = 3 because

too many rules were generated. To solve this problem, we divided the three chro-

mosomes into 10 chunks, and then ran MMTagger on each chunk and combined

the results together.

Table 7.5 shows that the multi-marker model can reduce the number of tag

SNPs significantly under the same min r2 threshold compared with the pairwise

model (Table 7.3). The number of tag SNPs is reduced by more than 30% when

max size=2. When max size=3, the number of tag SNPs is reduced by more
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Table 7.3: Comparison of number of tag SNPs selected when pairwise LD are
used

min r2 #tag SNPs
FastTagger LRTag MultiTag

ENCODE CEU 0.95 2144 2127 2136
ENCODE HCB 0.95 2065 2055 2061
ENCODE JPT 0.95 1996 1990 1996
ENCODE YRI 0.95 4115 4107 4109

chr1 0.95 62190 61988 63391
chr2 0.95 66026 65822 67236
chr3 0.95 55895 55713 56972
chr19 0.95 14777 14744 15014
chr21 0.95 12455 12435 12658
chr22 0.95 12690 12652 12932

than 40%. However, calculating multi-marker r2 statistics is much more expensive

than computing pairwise r2. FastTagger is more than 10 times slower when

max size=2, and hundreds of times slower when max size=3.

On ENCODE regions, FastTagger and MMTagger take similar time to fin-

ish when max size=2; when max size=3, FastTagger is 2-3 times faster than

MMTagger. On the 6 chromosomes, FastTagger is 2-6 times faster than MMTag-

ger. Both algorithms are orders of magnitude faster than MultiTag. The number

of tag SNPs selected by FastTagger under the co-occurrence model is smaller

than that selected by MMTagger and MultiTag. When max size=3, FastTagger

produces 3%-9% less tag SNPs than MMTagger.

Table 7.6 shows the maximum memory usage of FastTagger and MMTagger

with max r2 = 0.95 and max size = 3. MMTagger consumes much more mem-

ory than FastTagger, that is why it cannot work on large chromosomes such as

chr1, chr2 and chr3 when max size = 3.

Table 7.5 also shows that the co-occurrence model generates smaller set of tag

SNPs than the one-vs-the-rest model. The reason being that more rules are gen-

erated under the co-occurrence model as shown in Table 7.7. When max size=2,

the two models generate similar number of rules, so does the number of tag

SNPs. When max size = 3, the co-occurrence model generates 3-4 times more

rules than the one-vs-the-rest model, hence it can use much less tag SNPs to tag

all the other SNPs. The co-occurrence model also consumes much more memory

when max size=3 as shown in the last two columns of Table 7.7.

130



7. FastTagger: An efficient algorithm for genome-wide tag SNP
selection using multi-marker linkage disequilibrium and its

application in SNP imputation

Table 7.4: Comparison of running time when multi-marker LD are used.
max min Running time (minutes)
size r2 Fast-COOC MMTagger Fast-1vsR MultiTag

ENCODE CEU 2 0.95 0.038 0.041 0.048 ≥10 hours
ENCODE HCB 2 0.95 0.032 0.032 0.042 ≥10 hours
ENCODE JPT 2 0.95 0.029 0.028 0.038 ≥10 hours
ENCODE YRI 2 0.95 0.181 0.188 0.245 ≥60 hours

chr1 2 0.95 1.13 5.84 1.40 ≥7 days
chr2 2 0.95 1.32 7.21 1.63 ≥7 days
chr3 2 0.95 1.14 5.11 1.41 ≥7 days
chr19 2 0.95 0.176 0.343 0.218 ≥30 hours
chr21 2 0.95 0.287 0.473 0.359 ≥60 hours
chr22 2 0.95 0.370 0.567 0.468 ≥100 hours

ENCODE CEU 3 0.95 1.28 3.69 1.85 ≥50 hours
ENCODE HCB 3 0.95 1.26 3.40 1.93 ≥80 hours
ENCODE JPT 3 0.95 1.06 2.74 1.60 ≥50 hours
ENCODE YRI 3 0.95 11.6 36.7 17.4 ≥14 days

chr1 3 0.95 34.9 137.3 49.6 -
chr2 3 0.95 42.9 166.9 60.8 -
chr3 3 0.95 39.3 154.6 55.5 -
chr19 3 0.95 4.34 16.6 6.25 -
chr21 3 0.95 9.91 37.7 14.4 -
chr22 3 0.95 16.5 65.3 24.4 -

Fast-COOC represents the FastTagger algorithm using the co-occurrence model, and
Fast-1vsR represents the FastTagger algorithm using the one-vs-the-rest model. max size is
the maximum number of SNPs on the left hand side of a tagging rule. For the MMTagger
algorithm, we divided chr1, chr2 and chr3 into 10 chunks when max size=3, and ran
MMTagger on each chunk, and then combined the results. For the MultiTag algorithm, we
divided chr1, chr2 and chr3 into 20 chunks, chr19, chr21 and chr22 into 5 chunks when
max size=3. When max size=3, MultiTag took too long to finish on the 6 chromosomes, so
we did not get its results on the 6 chromosomes.

The effectiveness of the techniques used in FastTagger

This experiment studies the effectiveness of the techniques used by FastTagger

in reducing running time and memory consumption. We used the co-occurrence

model in this experiment because it generates more rules and is more memory

demanding than the one-vs-the-rest model. The baseline FastTagger algorithm

in this experiment uses two techniques as in the previous experiment: merging

equivalent SNPs and pruning redundant tagging rules. The running time and

memory consumption of the baseline algorithm, and the number of tag SNPs and

tagging rules generated by the baseline algorithm on chr19, chr21 and chr22 when

max size=3 and min r2=0.95 is shown in Table 7.8.
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Table 7.5: Comparison of number of tag SNPs selected when multi-marker LD
are used.

max min #tag SNPs
size r2 Fast-COOC MMTagger Fast-1vsR MultiTag

ENCODE CEU 2 0.95 1282 1282 1291 1371
ENCODE HCB 2 0.95 1305 1328 1308 1424
ENCODE JPT 2 0.95 1234 1258 1240 1349
ENCODE YRI 2 0.95 2575 2618 2579 2770

chr1 2 0.95 43202 43483 43306 43462
chr2 2 0.95 44135 44556 44225 49289
chr3 2 0.95 37881 38206 37952 39300
chr19 2 0.95 11151 11192 11160 11747
chr21 2 0.95 8543 8627 8564 9103
chr22 2 0.95 8970 9025 8993 9533

ENCODE CEU 3 0.95 972 1017 1151 1244
ENCODE HCB 3 0.95 1003 1034 1170 1170
ENCODE JPT 3 0.95 958 1002 1129 1244
ENCODE YRI 3 0.95 1848 1927 2165 2516

chr1 3 0.95 35556 38185 40534 -
chr2 3 0.95 35502 38372 41129 -
chr3 3 0.95 30695 33041 35305 -
chr19 3 0.95 9444 10032 10546 -
chr21 3 0.95 6929 7404 7935 -
chr22 3 0.95 7327 7788 8392 -

Fast-COOC represents the FastTagger algorithm using the co-occurrence model, and
Fast-1vsR represents the FastTagger algorithm using the one-vs-the-rest model. max size is
the maximum number of SNPs on the left hand side of a tagging rule. For the MMTagger
algorithm, we divided chr1, chr2 and chr3 into 10 chunks when max size=3, and ran
MMTagger on each chunk, and then combined the results. For the MultiTag algorithm, we
divided chr1, chr2 and chr3 into 20 chunks, chr19, chr21 and chr22 into 5 chunks when
max size=3. When max size=3, MultiTag took too long to finish on the 6 chromosomes, so
we did not get its results on the 6 chromosomes.

The “#Rep SNPs” column in Table 7.1 shows the number of representative

SNPs after merging equivalent SNPs using window size of 100k. The number

of SNPs is reduced by around a half. We have tried using a larger window size

to merge equivalent SNPs, and the results show that larger window sizes do not

achieve much further reduction. The reduction in the number of SNPs greatly

reduces the number of rules to be tested. Table 7.9 shows the performance of

FastTagger without merging equivalent SNPs. Without merging equivalent SNPs,

FastTagger generates an excessive number of tagging rules, e.g., around 20 times

more than that of merging equivalent SNPs, thus taking much longer time and
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Table 7.6: Memory usage of FastTagger and MMTagger
FastTagger MMTagger FastTagger MMTagger

chr1 94.41MB - chr19 30.29MB 657MB
chr2 287.50MB - chr21 74.99MB 1210MB
chr3 119.72MB - chr22 50.20MB 1216MB

The co-occurrence model is used in FastTagger. min r2=0.95, max size=3.

Table 7.7: The number of tagging rules generated under the two models using
the FastTagger algorithm (min r2=0.9)

max #rules memory
size Fast-COOC Fast-1vsR Fast-COOC Fast-1vsR

chr19 2 121,122 120,627 6.63MB 6.63MB
chr21 2 169,864 168,936 11.43MB 11.43MB
chr22 2 156,134 155,223 8.14MB 8.13MB
chr19 3 1,421,519 377,773 38.69MB 13.29MB
chr21 3 2,713,338 657,767 101.11MB 29.92MB
chr22 3 2,590,826 573,738 67.28MB 19.21MB

consuming much more memory. There is also a slight increase in the number of

tag SNPs selected.

Table 7.10 shows the performance of FastTagger without pruning redundant

rules. Pruning redundant rules can reduce the number of rules generated by 3

times, thus reducing the maximum memory usage of FastTagger by more than a

half. Although identifying redundant rules can reduce the search space, it also

incurs some overhead. Hence the running time of FastTagger does not decrease

when it uses the pruning redundant rules technique.

Table 7.11 shows performance of FastTagger when the skipping rules technique

is used. Here if a SNP appears in the right hand side no less than 5 times, the SNP

will not be considered as right hand side any more. By using this technique, the

number of rules generated is reduced by more than a half. The running time and

memory usage of FastTagger is also reduced. The number of tag SNPs selected

increases slightly, but it is still smaller than that generated by the MMTagger

algorithm.

We also tested FastTagger under a memory constraint. The maximum mem-

ory can be used by FastTagger is limited to 50MB. We used the three large chro-

mosomes, chr1, chr2 and chr3, in this experiment. All the three chromosomes
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Table 7.8: Baseline algorithm: merging equivalent SNPs and pruning redun-
dant rules, no skipping rules. The co-occurrence model is used. max size=3,
min r2=0.95.

time #tag SNPs mem #rules
chr19 4.34 9444 30.29MB 951,392
chr21 9.91 6929 74.99MB 1,747,900
chr22 16.5 7327 50.20MB 1,658,769

Table 7.9: Baseline algorithm without merging equivalent SNPs. The co-
occurrence model is used. max size=3, min r2=0.95.

time #tag SNPs mem #rules
chr19 31.4 9476 209.83MB 17,798,798
chr21 72.3 6959 555.42MB 35,278,021
chr22 90.5 7342 340.59MB 30,954,495

contain more than 100k SNPs. Table 7.12 shows even with as little as 50MB

memory, FastTagger can still work on chromosomes with 100k SNPs. There is

only a tiny increase in its running time and the number of tag SNPs generated

by the baseline algorithm on chr19, chr21 and chr22 when max size=3 and min

r2=0.95 is shown in Table 7.8.

7.3 RuleImpute: An application of FastTagger

in SNP imputation

7.3.1 Background

SNP imputation and tag SNP selection are like two sides of one coin. Tag SNP

selection tries to find a smaller number of tag SNPs to be genotyped by using the

correlation between SNPs while SNP imputation uses typed SNPs and a reference

panel to impute those missing/untyped SNPs. This process has several benefits:

Table 7.10: Baseline algorithm without pruning redundant rules. The co-
occurrence model is used. max size=3, min r2=0.95.

time #tag SNPs mem #rules
chr19 4.24 9439 75.70MB 3,048,090
chr21 9.60 6942 191.86MB 5,643,004
chr22 15.8 7327 130.19MB 5,563,473
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Table 7.11: Baseline algorithm with skipping rules: if a SNP appears in the right
hand side no less than 5 times, the SNP will not be considered as right hand side
any more. The co-occurrence model is used. max size=3, min r2=0.95.

time #tag SNPs mem #rules
chr19 3.66 9550 18.61MB 461,139
chr21 8.06 7086 40.74MB 754,084
chr22 13.5 7447 28.62MB 755,309

Table 7.12: Performance of Fast-COOC when memory size is restricted to 50MB
(max size = 3, min r2=0.95)

No memory constraint mem=50MB
time #tag SNPs mem time #tag SNPs #chunks

chr1 34.9 35556 94.41MB 35.14 35561 16
chr2 42.9 35502 287.50MB 43.14 35518 21
chr3 39.3 30695 119.72MB 39.3 30706 15

(1) Spenceret al. [2009] show that imputation improves up to 10% power in

association analysis.

(2) It provides a finer resolution of certain associated disease region and thus

increases the chances of uncovering novel casual variants.

(3) It gives a unifying way to conduct meta-analysis for multiple GWAS. Since

different GWAS use different genotype chips, imputation analysis can make each

study has an equal number of SNPs given the same reference panel. Figure 7.1

from Marchini and Howie [2010] is used to illustrate how SNP imputation works.

Before conducting an imputation, researchers merely use a study sample (part

a) to do association analysis, and there may be few statistically significant SNPs

(part b). Then researchers prepare the reference haplotypes (part d) such as

HapMap and phased study sample (part c) for imputation. Different algorithms

differ in how to make use of reference panel information but the majority of

algorithms involve phasing the typed SNPs in the study sample (part c). The

ultimate outputs of different imputation algorithms complete the missing parts

of the original study sample (part e). Using the “complete” study sample to

conduct the association analysis again, researchers may find some untyped SNPs

having significant signals (part f).

135



7. FastTagger: An efficient algorithm for genome-wide tag SNP
selection using multi-marker linkage disequilibrium and its

application in SNP imputation

Figure 7.1: Illustration of the general workflow of SNP imputation

7.3.2 Methods

In the literature, there are mainly two types of methods for SNP imputation anal-

ysis: tagging-based methods and hidden markov model (HMM)-based methods.

Tagging-based methods

Plink [Purcell et al., 2007], TUNA [Nicolae, 2006] and our RuleImpute use tag

SNPs to impute the missing SNPs. The typed SNPs are tagging SNPs and the

missing SNPs are to be tagged. These methods search for tagging correlations

from a reference panel, and then apply them to the study samples. The differ-

ences between these methods are in how they define the correlations between

tagging SNPs and tagged SNPs and how they find the tagging correlations. The

methods are usually simple and fast, however they do not make full use of all the

available information in the reference panel and study sample. Their imputation

accuracy is lower compared with methods based on HMM. Next, we introduce
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Figure 7.2: Performance comparison of five different ruler selection strategies.

our RuleImpute method which is derived from above-mentioned FastTagger.

RuleImpute. The RuleImpute algorithm is based on multi-marker tagging.

It consists of two steps. In the first step, RuleImpute generates tagging rules

of the form: S → SNPuntyped, where S ={ SNPtyped1 , SNPtyped2 ,· · · , SNPtypedk

} is a SNP set. The linkage disequilibrium of the rules is measured using the

r2 statistic, and the r2 statistics of the rules are calculated using the method

described in Equation 7.1. The generated rules must satisfy two constraints: 1)

The span of a rule must be no larger than a threshold max span. Here the span

of a rule is defined as the maximal distance between every pair of SNPs in the

rule. 2) The r2 statistic of a rule must be no less than a threshold so that the

alleles of SNPuntyped can be inferred from the alleles of the SNPs on the left hand

side reliably.
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In the second step, RuleImpute infers the missing values using tagging rules.

It is highly possible that some untyped SNP can be tagged by multiple rules, and

we need to decide which rule should be used for imputation. Intuitively, rules

with higher r2 value, shorter length and smaller span should be selected first. To

find out which metric should be given the highest priority, we designed five rule

selection strategies:

(1) Majority Voting: We use every tagging rule of the untyped SNP to

impute, and then use the alleles with the highest frequency as the final prediction.

(2) MinAvgDistance: For every rule, we calculate the average distance

between the SNPs on the left hand side and the SNP on the right hand side, then

select the SNPs with the smallest average distance.

(3) MinSpan: The rule with the smallest span is selected.

(4) Highest-r2: The rule with the highest r2 value is selected.

(5) Shortest Length: The rule with the shortest length is selected.

HMM-based methods

IMPUTE [Howie et al., 2009], MACH [Li and Abecasis, 2006] and BIMBAM

[Servin and Stephens, 2007] are the methods based on the variants of HMM. In-

stead of only using the local tagging relationship between several SNPs, these

methods incorporate haplotype structures into some HMM. The basic compo-

nents of these methods include states, observations, state transition probabilities

and emission probabilities. Each SNP is modeled by several states, representing

possible haplotypes at the SNP. According to this model, a haplotype is gen-

erated by walking the state chain. These methods differ in how to define the

states for a SNP and how to learn transition probabilities and emission proba-

bilities. IMPUTE and MACH use a large state set to represent all the possible

haplotypes in the reference panel. However, BIMBAM uses clusters to represent

hidden states, based on the observation that haplotypes have cluster structures.

Users can set the parameter K to represent the number of clusters. As for the

parameter learning of the HMM, IMPUTE and BIMBAM use a Markov Chain

Monte Carlo method to perform the integration while MACH uses a local search
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method.

7.3.3 Results and discussion

We use release 22 from the HapMap Project in our experiments (ftp://ftp.

ncbi.nlm.nih.gov/hapmap/phasing/2007-08_rel22/). From release 22, we pick

chromosome 22 of U.S. residents of northern and western European ancestry

(CEU), which consists of 33,815 SNPs and 60 individuals. We partition the

data into four folds evenly, and each test fold contains approximately 25% of

individuals. We picked every other SNP as typed SNPs. We set the length of

tagging rules to 3, the r2 threshold to 0.9, and the maximum span threshold to

100,000.

We define the accuracy of an untyped SNP as the proportion of alleles of

this SNP that are correctly predicted, and the accuracy of each untyped SNP is

averaged over four folds. We then calculate the proportion of SNPs with accuracy

no less than a certain threshold for the five selection strategies. Figure 7.2 shows

that among the five strategies the MinSpan strategy achieves the best results.

The MinSpan rules contains SNPs that are physically close to each other, and

these SNPs have higher chance to inherit with each other from ancient population.

Therefore their tagging relationship is more reliable compared to other strategies.

However, the Highest r2 strategy gives the worst performance. This is probably

because longer rules are less reliable than shorter rules even if they have higher

r2 value.

Based on the above results, in our RuleImpute algorithm, we should first select

rules based on their spans, then based on their lengths, and lastly based on their

r2 values.
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Chapter 8

Conclusion

By first conducting an independent third-party experiments on state-of-the-art

methods in detecting epistatic interaction for GWAS, we have shown the impor-

tance of enhancing the computational power to analyze the data. The computa-

tional challenge is an unavoidable obstacle in GWAS, although different heuristic

techniques are used. We have thus proposed the first-ever cloud computing model

(CEO) using big data technologies to detect the epistatic interactions. Experi-

mental results show this brand new computing model can easily handle current

GWAS data in a reasonable amount of time on an affordable cluster size. We

have further proposed an improved computing model (eCEO) by introducing a

Boolean representation and bit operation on the data, which is motivated by Wan

et al. [2010a]. This optimization technique can be applied to different test statis-

tics that require the construction of contingency tables. Therefore, we can easily

extend the computing model to incorporate those test statistics. The performance

study of eCEO shows further speedup against CEO. The CEO and eCEO point

to a new direction for computational analysis of the GWAS data that is compu-

tationally efficient, flexible, scalable and practical. However, CEO and eCEO are

only limited to the analysis of case-control GWAS data. Recently, more challeng-

ing high-dimensional quantitative phenotype data in GWAS are available because

they are believed to be closer to characterizing some diseases than coarse case-

control phenotypes. Potkin et al. [2009] also show that using quantitative trait

has higher power than using case-control trait. MRI imaging data is a good ex-

ample of this kind, which is used as a de facto data type for studying the relation
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between genotype and high-dimensional imaging phenotype. Noticing the gap

between the demand of analyzing complex high-dimensional phenotype GWAS

data and the available computational power, we have proposed a powerful parallel

distance-based random forest algorithm to ease the computational challenge. Un-

like traditional GWAS analysis which only reports top-ranked associated SNPs,

we have extracted more insights by proposing two hypotheses:

Hypothesis A: The further away an AD sample is from the CN cluster in Fig-

ure 6.8, the greater the severity of the Alzheimer’s disease of the AD sample.

Hypothesis B: The more number of certain combinations of mutations are

observed in a person, the more severely he suffers from Alzheimer’s disease.

The validation of hypothesis A is not possible since we have no clinical infor-

mation of the AD patients. So we assume that Hypothesis A is true, and attempt

to verify Hypothesis B with respect to it. We first define the severity of patients

using two types of distance to the centroid of the healthy cluster, and then mine

“frequent” mutation patterns. By analyzing the relation between the severity of

the disease and the count of such statistically frequent mutation patterns among

253 study samples, we show that Hypothesis B is well supported. The analytical

results deepen our understanding of the disease: The more mutation patterns a

sample carries, the more severe disease a sample has. This analysis opens a new

door to uncover the etiology of complex diseases using GWAS data. We expect

more results to come out in the future.

We also address two other research problems in GWAS: tag SNP selection and

SNP imputation. Considered the connection of the two problems, we first present

an efficient algorithm called FastTagger for genome-wide tag SNP selection us-

ing multi-marker LD. FastTagger uses several techniques to reduce running time

and memory consumption. Our experiment results show that FastTagger is sev-

eral times faster than existing tag SNP selection algorithms using multi-marker

models, and it consumes much less memory at the same time, which enables

FastTagger to work on chromosomes containing more than 100k SNPs when ex-

isting algorithms using multi-marker models usually fail. FastTagger also selects
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less tag SNPs than existing algorithms using multi-marker LD. Our experiment

results also show that merging equivalent SNPs together is the most effective

technique in reducing running time and memory consumption. We provide two

multi-marker models in FastTagger. The one-vs-the-rest model generates rules

with higher average r2 and higher average accuracy than the co-occurrence model

under the same parameter settings. However, it generates much fewer length-3

rules than the co-occurrence model, thus requiring more tag SNPs to cover all

the other SNPs. We then apply FastTagger to develop a SNP imputation method

called RuleImpute, which uses the rules produced by FastTagger to impute miss-

ing SNPs. Facing a large number of generated rules, we propose five different rule

selection strategies to prioritize rules to be used for imputation. Our experimen-

tal results suggest that MinSpan rules should be selected at first to get better

accuracy.
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