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Abstract. We present a platform named Redhyte, short for an inter-
active platform for “Rapid exploration of data and hypothesis testing”.
Redhyte aims to augment the conventional statistical hypothesis test-
ing framework with data-mining techniques in a bid for more wholesome
and efficient hypothesis testing. The platform is self-diagnosing (it can
detect whether the user is doing a valid statistical test), self-correcting
(it can propose and make corrections to the user’s statistical test), and
helpful (it can search for promising or interesting hypotheses related
to the initial user-specified hypothesis). In Redhyte, hypothesis mining
consists of several steps: context mining, mined-hypothesis formulation,
mined-hypothesis scoring on interestingness, and statistical adjustments.
To capture and evaluate specific aspects of interestingness, we developed
and implemented various hypothesis-mining metrics. Redhyte is an R
shiny web application and can be found online at https://tohweizhong.
shinyapps.io/redhyte, and the source codes are housed in a GitHub
repository at https://github.com/tohweizhong/redhyte.

Keywords: Statistical hypothesis testing, hypothesis analysis, hypoth-
esis mining, data mining

1 Introduction

Much data is collected today for a variety of initial purposes. In the hands of a
careful professionally-trained statistician or analyst who has a deep knowledge
of the problem domain, many insights can be reliably gained from such data.
However, it is often the case that an analysis project has to be carried out by
someone who may lack domain knowledge or lack training, and sometimes even a
professional analyst may be overwhelmed (e.g., by the volume and complexity of
the data or the pressure of time) and may make mistakes [8]. A self-diagnosing,
self-correcting and helpful analytic system is envisioned here to make analysis
of data not only easy but also rigorous in such situations.

Self-diagnosing. All statistical tests have assumptions (e.g., observations are
independent and identically distributed, observations are normally distributed)
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and their conclusions are correct only when those assumptions are met. In tra-
ditional studies (e.g., a case-cohort study), subjects are carefully selected and
experiments are designed so that such assumptions are met. But in today’s big-
data setting, we often just assemble and pull in all relevant data we could get
our hands on, and there would typically be no careful selection to ensure such
assumptions are met. A self-diagnosing analytic system, while making it con-
venient for a user to express and do a statistical test, also checks whether the
test the user is doing is valid on his data. The challenging research questions
include: (i) There may be no known way to check some assumptions, and thus
deep statistical research is needed to figure out how to check them; (ii) the only
known ways to check some assumptions are computationally costly, and thus
deep algorithmic research is needed to figure out how to make these checks com-
putationally more feasible; and (iii) how to explain to the user in a way that he
can understand exactly why his requested statistical test is invalid.

Self-correcting. It is not sufficient to simply tell the user that he is performing
a statistical test that is invalid on his data. The user may not know what action
to take to deal with it. A self-correcting analytic system goes one step further,
and tells the user how to deal with this. The challenges include: (i) How to
identify alternative tests or correction steps, (ii) how to decide which alternative
or correction is the most suitable one, (iii) how to explain such correction steps
to the user in a way he could understand, and (iv) how to make it convenient
for the user to choose and execute these corrections. Moreover, (v) for some
situations, there is no known way to work around the problem, and novel idea
is needed to develop the alternatives that can work in such situations.

Helpful. Beyond self-diagnosing and self-correcting, a good analytic system
should also be helpful in the following sense. Initially, the user specifies a hy-
pothesis that he wants to test. Given this initial hypothesis, the system now has
some idea about what the user is interested in, and it should suggest some useful
related hypotheses to the user that may give him some deeper insight into his
problem. The challenges include: (i) How to identify related hypothesis, (ii) how
to rank them, and (iii) how best to communicate them to the user.

In this manuscript, we describe Redhyte, which is an interactive platform for
“Rapid exploration of data and hypothesis testing”. Redhyte works by allowing
the user to specify an initial hypothesis to be tested using one of the classical
statistical tests (viz. t-test or χ2 test), checks the validity of the test, makes
corrections to the test if the initial test is detected to be invalid, as well as
suggests informative related hypotheses. We believe Redhyte is a first, albeit
small, step toward a self-diagnosing, self-correcting and helpful analytic platform.

The main part of this paper is organized as follows. Section 2 is a description
of the Redhyte system, in particular its key functionalities. Section 3 is a case
study to illustrate the features of Redhyte. The case study is based on the adult
dataset from the UCI machine learning repository. Finally, Section 4 summarizes
the work and discusses related works.
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Fig. 1. A screenshot of Redhyte.

2 System Description

This section describes various modules that are more vital in Redhyte’s workflow
(and user-friendly interface); the less vital modules are omitted.

2.1 User Interface

Redhyte is fundamentally a web application that renders in a web browser, such
as Google Chrome or Mozilla Firefox. Redhyte’s user-facing interface is organised
into tabs, as shown in Figure 1, with each tab housing a specific functionality that
Redhyte provides. The tabs are ordered from left to right, mirroring the expected
workflow of an analysis: the user makes some brief checking and exploration of his
input data (the data-preview and data-visualization modules), the user specifies
his initial hypothesis (the initial-tests module), the user looks at the validity
assessments of the test on his hypothesis (the test-diagnostic module), the user
gets information on factors that could strengthen or contradict his hypothesis
(the context-mining module), and the user looks at related hypothesis mined by
Redhyte (the mined-hypothesis formulation and scoring module).

2.2 Initial Hypothesis Set-Up and Tests

After loading the input dataset into the platform, the user is prompted to set
up the initial hypothesis. To establish a common lingo between the user and
Redhyte regarding the initial hypothesis and all other steps in the Redhyte
workflow, Redhyte defines the following terms in a hypothesis: “target attribute”,
“comparing attribute”, and “context attribute”. As an example, a hypothesis
comparing resting heart rate between smokers and non-smokers amongst the
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males only, would have resting heart rate as the target attribute, smoking status
as the comparing attribute, and gender as the context attribute. In addition, an
{attribute = value} pair, e.g. {gender = male}, is called a context item. After the
hypothesis is set up, depending on whether the target attribute is numerical or
categorical, an initial t-test or χ2 test is used to assess the hypothesis. Naturally,
the user uses the Redhyte graphics interface to specify his hypothesis.

Following Liu et al. [11], we write H = 〈P,Adiff = v1|v2, Atarget = vtarget〉 to
denote a hypothesis H. The set of items P is the context, which is the subset
of the subjects in the dataset satisfying all items in P . The comparing attribute
is Adiff , and P1 = P ∪ {Adiff = v1} and P2 = P ∪ {Adiff = v2} define the
two subpopulations to be compared. The target attribute, on which the two
subpopulations is being compared, is Atarget .

2.3 Test Diagnostics

The test diagnostics tab aims to work on several issues:

– If the initial test is a t-test [7], the assumptions of normal distributions and
equal variances are checked, using the Shapiro-Wilk test [16] and F-test [5]
respectively. If either test is significant, the initial test is re-assessed using
the Wilcoxon rank sum test [12], the non-parametric equivalent of the t-test.

– If the initial test was a “collapsed” χ2 test [14], Redhyte computes the indi-
vidual χ2 contributions of each class in the comparing attribute. A collapsed
χ2 test refers to a χ2 test where one or both groups in the initial hypothesis
consist of more than one class of the comparing attribute.

– In both cases, the Cochran-Mantel-Haenszel test [3] is further used on other
attributes in the dataset, to assess whether the effect of the comparing at-
tributes on the target attribute is influenced by these co-variates.

2.4 Context Mining

In order to identify potential confounding attributes to the initial hypothe-
sis, Redhyte uses classification models. Specifically, it constructs two random-
forest [2] models to predict, using all other attributes not involved in the initial
hypothesis as predictors or covariates, the target and comparing attributes. The
idea is: If an attribute A is able to help classify the target or the comparing
attribute, then A might possibly be related to either attribute. Thus it might be
interesting to consider using A as a context attribute for the initial hypothesis.
The random-forest models confer a measure of variable importance, ranking the
attributes according to how well they contribute to the classification of the target
and comparing attribute. Shortlisting the top few attributes from the variable
importance measure gives the mined context attributes.

2.5 Mined-Hypothesis Formulation and Scoring

After shortlisting the mined context attributes, each attribute is used as a con-
text attribute and inserted into the initial hypothesis to form mined hypothe-
ses, by means of stratification. For example, if occupation is a mined context
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attribute, then examples of mined hypotheses could be restricting the initial
hypothesis to all teachers only or all engineers only.

Stratification due to a mined hypothesis can bring about one of three out-
comes: The trend observed in the hypothesis could either be (i) amplified, (ii)
unchanged, or (iii) reversed (Simpson’s reversals). After forming the mined hy-
potheses, they are ranked using the various hypothesis-mining scores (difference
lift, contribution, independence lift, and adjusted independence lift) to evalu-
ate which of these three outcomes they fit. The “difference lift” and “contri-
bution” scores are given by Liu et al. [11]. The former compares a hypothesis
H = 〈P,Adiff = v1|v2, Atarget = vtarget〉 with a new hypothesis H∗ = 〈P ∪ {A =
v}, Adiff = v1|v2, Atarget = vtarget〉, which has an extra item {A = v} in its
context, to see whether the trend specified in H has changed (amplification or
reversal) substantially in H∗. The latter measures the change in trend in a way
that is weighted by the subpopulations being compared in H and H∗. We find
that there are situations where this score disagrees completely with difference lift
(e.g., the former sometimes reports a negative change in trend when the latter
reports a positive change). So we also use the “independence lift” and “adjusted
independence lift” scores, which are defined in the full Redhyte report [18]. These
two scores always agree with difference lift in the direction of the change in trend
while also take into consideration the sizes of the subpopulations being compared
in H and H∗. Due to space contraint, definitions and detailed treatment [18] of
these scores are omitted here.

2.6 Statistical Adjustments

Besides inserting mined context items into the initial hypothesis to detect issues
like Simpson’s reversals, these mined context attributes can also be held ac-
counted for using regression models. The regression model is constructed using
the target attribute as the response variable and the mined context attributes
as predictors. We call this resultant model the adjustment model. For numeri-
cal target attributes, linear regression is used as the adjustment model [6]. For
categorical target attributes, the logistic regression model is used instead [4].

To construct the adjustment model, Redhyte first uses the stepwise regression
algorithm to further shortlist, from the mined context attributes, a subset of
them to be used for adjustments in the adjustment model. Next, the construction
of the adjustment model and its use are as follows:

– For numerical target attributes, the target attribute is used as the dependent
variable and the shortlisted mined context attributes, with all pairwise inter-
action terms, are used as predictors / covariates. The constructed adjustment
model gives the required numerical adjustments of the target attribute (com-
puted as actual values found in dataset minus fitted values from model). A
t-test is then done on the numerical adjustments, to compare with the initial
t-test.

– For categorical target attributes, the target attribute is used as the depen-
dent variable, while the shortlisted mined context attributes and the com-
paring attribute, with all pairwise interaction terms, are used as predictors /
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covariates. The constructed adjustment model lends itself a way to conduct
“what-if” analysis (i.e., what if the entire dataset consists of samples that
differ only in the target and the comparing attribute?) For instance, if the
mined context attributes are gender and occupation, we ask: What if the
entire dataset consists of samples that are all males and all engineers? The
logistic regression model provides a means for such an analysis, by “substi-
tuting” these covariate values into the model equation.

3 Use-Case

In this section, we use the adult dataset (from the UCI machine learning repos-
itory, http://archive.ics.uci.edu/ml) to illustrate a simple use-case for hy-
pothesis mining by Redhyte. The adult dataset contains the demographical data
of 32,561 adults. The target attribute in this dataset is the binary income at-
tribute, taking these values: > 50K and ≤ 50K. Consider the hypothesis below:

In the context of {race = White}, is there a difference in INCOME
between {>50K} vs. {≤50K} when comparing the samples on OCCU-
PATION between {Adm-clerical} and {Craft-repair}?

3.1 Initial Test

The initial test suggests that the relationship between income and occupation is
significant (p < 0.05), with white administrative clerks earning more than white
craft repairers, as shown in Figure 2.

Income >50K Income ≤50K Total

Adm-clerical 439 (14.2%) 2645 (85.8%) 3084
Craft-repair 844 (22.8%) 2850 (77.2%) 3694

Total 1283 5495 6778

Fig. 2. Contingency table of the initial hypothesis.

Using default settings, Redhyte identifies five mined context attributes af-
ter context mining, namely sex, relationship, workclass, education, and educa-
tion.num. In particular, considering the context items {Sex = Male}, {Sex =
Female} and {Workclass = Self-emp-not-inc} leaves us with the contingency ta-
bles in Figure 3, which illustrate two instances of a Simpson’s Paradox [17], with
both genders and workclass resulting in reversals of the trend in Figure 2.

3.2 Hypothesis-Mining Metrics

The hypothesis-mining metrics evaluated on the three items ({Sex = Male},
{Sex = Female}, and {Workclass = Self-emp-not-inc}) are given in Figure 4.
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{Sex = Male} Income>50K Income≤50K Total

Adm-clerical 251 (24.2%) 787 (75.8%) 1038
Craft-repair 829 (23.5%) 2695 (76.5%) 3524

Total 1080 3482 4562

{Sex = Female} Income>50K Income≤50K Total

Adm-clerical 188 (9.2%) 1858 (90.8%) 2046
Craft-repair 15 (8.8%) 155 (91.2%) 170

Total 203 2013 2216

{Workclass = Self-emp-not-inc} Income>50K Income≤50K Total

Adm-clerical 16 (34.8%) 30 (65.2%) 46
Craft-repair 90 (18.0%) 409 (82.0%) 499

Total 106 439 545

Fig. 3. Contingency tables of mined hypothesis with {Sex = Female}, {Sex = Male},
and {Workclass = Self-emp-not-inc}.

Context Diff Contrib Indep Adjusted p-value
items lift lift indep

lift

{Sex = Male} −0.08 −0.31 −0.06 −0.02 0.69
{Sex = Female} −0.04 0.31 −0.09 −0.05 0.98
{Workclass = Self-emp-not-inc} −1.94 −0.11 −1.89 −0.05 0.01

Fig. 4. Hypothesis-mining metrics evaluated for the selected context items.

Based on our initial hypothesis, the default settings in Redhyte is used to
illustrate the above, and to generate 27 other mined hypotheses, suitably scored
and ranked using the hypothesis-mining metrics, for the user to inspect.

3.3 Statistical Adjustments

Following through with statistical adjustments in Redhyte, sex, relationship,
workclass, and education are recommended for use in statistical adjustment.
Since the target attribute, income, is a categorical one, the adjustment model is
a logistic regression model, to be used for “what-if” analysis. In particular, as
shown in Figure 5, after adjusting for {sex = Male}, {relationship = Husband},
{workclass = Self-emp-not-inc} and {education = Bachelors}, a Simpson’s re-
versal is observed in the hypothesis that administrative clerks earn more than
craft repairers.
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Fig. 5. A visualization show the proportions of administrative clerks and craft repairers
earning more than 50k, before (left chart) and after (right chart) adjusting for sex,
relationship, worksclass, and education.

4 Conclusion

Hypothesis testing is one of the mainstay tools in data analysis, as it allows the
analyst to make comparisons between different groups of samples. Convention-
ally, data-analysis workflows primarily consist of the following steps: (i) have a
scientific question in mind, (ii) formulate an assertion or hypothesis, (iii) col-
lect and clean relevant data, and finally (iv) test the hypothesis using statistical
techniques, in order to decide whether to reject the hypothesis. Putting together
a hypothesis with a statistical test allows the analyst to make justifiable conclu-
sions from the data, and this process is often prompted by the initial question or
hypothesis in mind. In other words, collection of data in conventional data anal-
ysis settings are often driven by domain requirements and scientific questions a
priori.

From a statistical viewpoint, having some initial scientific questions to drive
the collection of data confers an important upshot: The collected data is well
specified. To be more precise, with proper sampling methods, issues such as lack
of independence, dissimilar distributions, unequal variances, class imbalance etc.
can be addressed and alleviated. However, the big-data setting brings about
two interesting scenarios, specifically the collection of data without a scientific
question a priori, and the “large p, small n” phenomenon [20].

Data collected without any initial scientific questions poses a problem: As-
sumptions of many statistical techniques, including hypothesis testing, are more
often violated than not. Moreover, having a large number of attributes in a
dataset requires adequate treatment and analysis to properly account for these
attributes. Formulating a hypothesis concerning a small number of attributes
and testing it in a large dataset while ignoring the other attributes is not only
wasteful, but flawed (due to issues such as confounding factors). For example,
given a hypothesis concerning two attributes, say A and B, for a certain class of
a third categorical attribute C, the initial hypothesis could be amplified, i.e. the
trend observed between A and B is strengthened when we consider the certain
class of C. The trend could also be reversed; this is commonly known as Simpsons
Reversal [13]. As in the use case presented earlier, while the initial observation
suggests the hypothesis that craft repairers earn more than administrative clerks
(cf. Figure 2), after automatically detecting and adjusting for confounding fac-
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tors by Redhyte, the completely opposite hypothesis that administrative clerks
earn more than craft repairers emerges (cf. Figure 5). A conventional, domain
knowledge-driven approach of analysing data gives no simple or systematic way
to reveal such phenomena, leaving discoveries of such to intuition and chance.
An epitome of such a phenomenon is the UC Berkeley gender-bias case [1].

In this paper we have introduced Redhyte, a platform for statistical hypothe-
sis testing on datasets collected without initial scientific questions. The workflow
in Redhyte is as follows: (i) User first suggests an initial hypothesis, which could
be rough, intuitive, and domain knowledge-driven. (ii) Redhyte first works on
some initial statistical test on the initial hypothesis, and assesses the validity
of the statistical test applied to the initial hypothesis. (iii) Redhyte uses data-
mining techniques to search for potential confounding attributes (context min-
ing), and uses them to form variants of the initial hypothesis, by means of strat-
ification. These variants of the initial hypothesis are then scored and ranked, to
let the user home in on the more interesting ones. (iv) Finally, Redhyte attempts
to adjust for these potential confounding attributes using regression techniques.

It is easy to make mistakes involving statistics. Powerful statistical tools—R,
Minitab, SPSS, etc.—certainly remove a lot of the difficulty of doing statistical
calculations. However, they do not check whether the user is applying the statis-
tical tests correctly. The special aspects of Redhyte compared to commonly-used
statistical tools are that it explicitly supports checking whether what the user is
doing is valid, guiding him to do his statistical test correctly, and recommending
to him related hypotheses that might lead to some deeper insight. Redhyte is
thus a step towards building a self-diagnosing, self-correcting, and helpful ana-
lytic system, albeit it current supports only very simple statistical tests.

On the data-mining side, the closest research related to Redhyte is perhaps
the work of Liu et al. on exploratory hypothesis testing and analysis [9, 11]. In
these works, algorithms for mining and visualization of hypotheses from large
datasets are described. More importantly, they also presented algorithms for
linking together related hypotheses and measures for ranking hypotheses (and
we have proposed refinements of these [18] and implemented them in Redhyte).
Works from the data-mining field on the clustering and grouping of frequent
itemsets and association rules [21, 19, 15, 10] may also be useful for generating
related hypotheses (we do not consider these clustering methods here because we
start from a single user-specified hypothesis, and so face a much lower mining
and clustering complexity than these methods). Moreover, these methods are
not concerned with ensuring the validity of a user’s statistical test or guiding
him toward a valid statistical test.
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